WO2014161376A1 - 一种激活时刻的计算方法及装置 - Google Patents

一种激活时刻的计算方法及装置 Download PDF

Info

Publication number
WO2014161376A1
WO2014161376A1 PCT/CN2014/070946 CN2014070946W WO2014161376A1 WO 2014161376 A1 WO2014161376 A1 WO 2014161376A1 CN 2014070946 W CN2014070946 W CN 2014070946W WO 2014161376 A1 WO2014161376 A1 WO 2014161376A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx cycle
extended drx
sequence number
period
network side
Prior art date
Application number
PCT/CN2014/070946
Other languages
English (en)
French (fr)
Inventor
梁靖
陈东
吴昱民
阮航
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP14780219.3A priority Critical patent/EP2983395B1/en
Priority to US14/781,883 priority patent/US10397866B2/en
Publication of WO2014161376A1 publication Critical patent/WO2014161376A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to DRX technology, and in particular, to a method and apparatus for calculating an activation time. Background technique
  • Machine-type communication is a new communication concept. Its purpose is to combine many different types of communication technologies, such as: machine-to-machine communication, machine control communication, human-computer interaction communication, mobile Connected communications to promote social production and lifestyle development. It is expected that the business of human-to-human communication in the future may only account for 1/3 of the entire terminal market, and a larger amount of communication is the MTC communication service. Sometimes MTC communication is also known as Machine-to-machine (M2M) communication or the Internet of Things.
  • M2M Machine-to-machine
  • the terminal From the wireless network side, in the Long Term Evolution (LTE) system, the terminal has two states, namely, Radio Resource Control (RRC)-connected state and RRC-idle. status.
  • RRC Radio Resource Control
  • the terminal In the Universal Mobile Telecommunications System (UMTS), the terminal has five states, that is, a state in which a dedicated channel is established (cell-dch), a state in which a forward access channel is established (cell_fach), and periodicity.
  • the network monitoring terminal releases the RRC connection of the terminal through the RRC connection release message for a long time without data transmission, so that the terminal enters the RRC idle state.
  • the main job of the terminal in the idle state is to listen to the paging on the network side. In order to save power, it is discontinuous reception
  • the current network side configured DRX cycle has a maximum length of 2 9th radio frames (ie, 5120ms). That is to say, for the DRX in the UMTS, the terminal only opens the receiver once every 5120 ms to receive the network side paging indication message and the possible paging message, and the receiver is turned off at other times. This way can achieve the purpose of saving electricity.
  • the maximum DRX period configured on the network side is 2560 ms.
  • the terminal may be configured with two DRX lengths.
  • the Radio Network Controller (RNC)/eNB is configured through System Information Block (SIB) messages and can be called default DRX.
  • SIB System Information Block
  • This configuration applies to all terminals residing in the cell.
  • the other is the Core Network (CN) entity and the terminal negotiated through the Non-Access Stratum (NAS) process, called UE-specific DRX.
  • CN Core Network
  • NAS Non-Access Stratum
  • This configuration is only applicable to a single terminal. For the latter, the RNC/eNB is unaware of the negotiation process. The terminal obtains two DRX cycles, which take a smaller of the two to listen to the paging message.
  • the paging is initiated by the CN entity, and the paging message is first sent to the RNC (for UMTS) / eNB (for the LTE system), as shown in Figures 2 and 3.
  • the UE specific DRX configuration is carried in the paging message (i.e., the paging message).
  • the RNC will send a paging message on the air interface (ie, the Iu interface) using the DRX parameters configured in the paging message.
  • the eNB compares the DRX parameters configured in the paging message with the DRX parameters configured in the system message, and uses the shorter DRX cycles indicated by the two to send the paging message.
  • the LTE in order to save the energy consumption of the UE and extend the usage time of the UE battery, the LTE introduces a DRX operation mode in the connected state (ie, the RRC_connected state), allowing the terminal to continuously monitor the control channel.
  • the DRX operating mode in the connected state includes an active period and a dormant period.
  • the UE needs to monitor the Physical Downlink Control Channel (PDCCH), receive and transmit data, and transmit signaling.
  • the UE turns off the radio unit to reduce unnecessary power consumption.
  • the two states are divided in time based on the DRX cycle, as shown in Figure 4.
  • the connected DRX operation mode is designed in two cycles, and the length of the long DRX cycle and the short DRX is different according to the UE.
  • the activation characteristics are configured.
  • the length of the long DRX period is configured by the RRC message, and the value is in the range of 10 2560.
  • the unit is the subframe.
  • the length of the short DRX period is configured by the RRC message. The value ranges from 2 to 640.
  • the unit is the subframe.
  • the starting position of the DRX is the starting point of the "on" state in the DRX cycle, and the starting point of the DRX determines when the UE wakes up to monitor the control channel.
  • the offset of the DRX starting point can be notified by the RRC signaling.
  • both the cell_fach state and the cell_pch state introduce the DRX mechanism, which uses both long and short periods.
  • the maximum value of the DRX long period is 5120ms in both states.
  • the starting point of the DRX cycle "on" state is indeed The mode is similar to the LTE system.
  • the system frame number (SFN) replacement period (also known as the SFN period) has a length of 10.24 s, and the SFN period includes 1024 radio frames, numbered from 0 to 1023, each The wireless frame length is 10ms.
  • the SFN period has a length of 40.96 s, which contains 4096 radio frames, numbered from 0 to 4095, and each radio frame has a length of 10 ms.
  • the DRX cycle specified in the existing protocol is required (for example, the LTE system has a maximum of 2.56 seconds, and the UMTS is the largest. Extend for 5.12 seconds) to the order of minutes or even hours.
  • the UE cannot calculate an accurate activation time because the activation time calculated according to the existing method is In an SFN period, the UE cannot wake up to receive the message and data sent by the network side at the corresponding activation time, which can easily cause information loss, thereby seriously reducing the service QoS of the UE.
  • the embodiment of the invention provides a method and a device for calculating an activation time, which are used to solve the problem that the UE cannot enter the activation state at an accurate moment when using the extended DRX cycle.
  • a notification method for an activation moment including:
  • the network side notifies the UE of the sequence number of the current SFN period in the extended DRX cycle, and causes the UE to calculate the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle.
  • a method for calculating an activation time including:
  • the user equipment UE receives the sequence number of the current SFN period sent by the network side in the extended DRX cycle;
  • the UE calculates the activation time of the UE according to the sequence number in the extended DRX cycle of the current SFN period and the length of the preset extended DRX cycle.
  • a determining unit configured to determine a sequence number of the current SFN cycle in the extended DRX cycle
  • the communication unit is configured to notify the UE of the sequence number of the current SFN period in the extended DRX cycle, and enable the UE to calculate the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle.
  • a computing device for an activation moment comprising:
  • a communication unit configured to receive a sequence number of the current SFN period sent by the network side in the extended DRX cycle; the main control unit, configured to calculate, according to the sequence number in the extended DRX cycle of the current SFN cycle, combined with the length of the preset extended DRX cycle, The activation time of this device.
  • the network side notifies the UE of the sequence number of the current SFN period in the extended DRX cycle, and the UE calculates the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle, so that when the extended DRX is extended,
  • the UE can still calculate the correct paging moment or/and the time when the service data is received, thereby effectively avoiding the situation that the UE loses the paging message or the service data due to the calculation error, so that the UE can enter at an accurate time.
  • the activation state guarantees the service QoS of the UE and improves the service performance of the system.
  • FIG. 1 is a schematic diagram of a terminal listening to a DRX mode in a paging cycle in the prior art
  • FIG. 2 is a schematic diagram of a paging message of an S1 interface in an LTE system in the prior art
  • FIG. 3 is a schematic diagram of a paging message of an Iu interface in a UMTS system in the prior art
  • FIG. 4 is a schematic diagram of a DRX cycle in a connected state in the prior art
  • FIG. 5 is a schematic flowchart of a network side notifying an UE of an activation time according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a UE calculating a activation time according to a network side notification according to an embodiment of the present invention
  • FIGS. 7-9 are schematic diagrams of a scenario in which a UE calculates an activation time according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another network side device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another UE function according to an embodiment of the present invention. detailed description
  • the UE uses the extended DRX cycle, in order to enable the UE to enter the active state at an accurate time, in the embodiment of the present invention, a new calculation method of the activation time is proposed, which can be used regardless of whether the UE is in an idle state or a connected state.
  • the extended DRX cycle is greater than the SFN cycle, the correct activation time is calculated.
  • Step 500 The network side determines the sequence number of the current SFN period in the extended DRX cycle.
  • Step 510 The network side notifies the UE of the sequence number of the SFN period in the extended DRX cycle, and causes the UE to calculate the activation time of the UE in the current SFN period based on the sequence number combined with the preset extended DRX cycle length.
  • the network side e.g., the base station
  • the network side can use the Master Information Block (MIB) to send the Index of the current SFN period in the extended DRX cycle.
  • MIB Master Information Block
  • the remaining bits in the existing MIB can be used to carry the index of the current SFN period in the extended DRX cycle; for example, when the length of the largest extended DRX cycle is 8 times the SFN period, 3 bits can be used in the MIB.
  • the above index is identified as the first SFN period of the 8 SFN periods.
  • the network side uses the extended SIB to transmit the Index of the current SFN period in the extended DRX cycle.
  • some information elements may be extended in the existing SIB to transmit the index of the current SFN period in the extended DRX cycle; for example, using SIB2 to transmit, a new IE needs to be extended in the SIB2 to carry Index.
  • the network side may use the newly added SIB to send the index of the current SFN period in the extended DRX cycle.
  • is sent by SIB20, and the SIB20 only contains the index of the current SFN period in the extended DRX cycle.
  • the index of the current SFN period broadcasted by the network side in the extended DRX cycle must be the same in one SFN period.
  • the UE After receiving the sequence number of the current SFN period in the extended DRX cycle, the UE calculates its own activation time according to the corresponding method.
  • the calculation mode will be further introduced in the following embodiments.
  • the overview process of the UE calculating the activation time according to the network side notification is as follows:
  • Step 600 The UE receives the sequence number of the current SFN period sent by the network side in the extended DRX cycle.
  • is the multiple of the extended DRX period relative to the SFN period.
  • the UE may receive the sequence number of the current SFN period in the extended DRX cycle, that is, Index, through the system information and/or the dedicated signaling.
  • the UE may receive an Index of the current SFN period broadcasted by the remaining bits in the MIB by the network side in the extended DRX cycle.
  • the UE may receive an Index in the extended DRX cycle of the current SFN period of the extended IE broadcast in the network side.
  • the UE may receive an index in the extended DRX cycle of the current SFN period broadcasted by the newly added SIB on the network side.
  • the SFN period is further divided into a thousand system information modification period, and each of the UEs in an SFN period
  • the current SFN period of the network side broadcast received during the system information modification period must be the same in the extended DRX period.
  • the UE In the first case, the UE is in an idle state.
  • the activation time of the UE refers to the time when the UE starts to receive the paging on the network side (the network side cannot determine the exact location of the UE before paging), and is therefore also referred to as the paging moment.
  • the UE After the UE receives the index of the current SFN period notified by the network side in the extended DRX period (which may also be referred to as a paging period), combined with the length of the preset extended DRX period, the UE calculates and obtains its own activation in the following manner. Time (ie, paging time, also refers to the radio frame where the paging message is located).
  • the UE calculates, according to the length T of the preset extended DRX cycle, the length S of the preset SFN cycle, locally calculates the sequence number Y of the SFN cycle in the extended DRX cycle, and calculates the activation time locally. Number Z in the SFN cycle;
  • the UE determines, according to the sequence index of the current SFN period sent by the network side in the extended DRX cycle, that the index and the locally calculated SFN period of the activation time meet the set numerical relationship between the sequence number Y in the extended DRX cycle,
  • the current SFN period is the SFN period in which the UE's activation time is located, and the activation time of the UE is determined according to the number Z of the activation time in the SFN period.
  • the UE calculates a radio frame in which the active time is located in the extended DRX cycle according to the length T of the preset extended DRX cycle, the paging density, and the identification information of the UE.
  • the UE combines the radio frame X in which the activation time is located in the extended DRX cycle, and locally calculates the sequence number ⁇ of the SFN period in the extended DRX cycle where the activation time is located, and locally. Calculate the number ⁇ of an activation time in the current SFN cycle;
  • the UE calculates a multiple C of the extended DRX period relative to the current SFN period according to the length ⁇ of the preset extended DRX period and the length S of the SFN period;
  • the UE determines that the current SFN period is the SFN period in which the UE is activated according to the index of the current SFN period in the extended DRX period, and determines that the current SFN period is the SFN period in which the UE is activated. In this case, the UE can be in the Z.
  • the indicated activation time begins to receive the radio frame for paging sent by the network side.
  • S X is the radio frame in which the activation time is located in the extended DRX cycle
  • T is the length of the extended DRX cycle
  • N is the paging density
  • UE_ID is the terminal identifier
  • Y is the SFN period in which the UE locally calculated activation time is in the extended DRX cycle.
  • Z is the number of the radio frame in which the activation time of the UE is locally calculated in the SFN period
  • S is the length of the SFN period (ie, 10.24 s)
  • C is a multiple of the extended DRX period relative to the SFN period.
  • the SFN period corresponding to the index indicated by the network side is the SFN period in which the UE is activated.
  • the Z obtained by the previous calculation is the activation time corresponding to the UE.
  • the UE In the second case, the UE is in the connected state.
  • the activation time of the UE refers to the time when the UE starts to receive the data on the network side (the network side knows the exact location of the UE before transmitting the data), and is therefore also referred to as the onDuration time.
  • the UE After receiving the index of the current SFN period of the network side notification, the UE combines the length of the preset extended DRX period with the length of the preset extended DRX period, and calculates the activation time of the self (ie, the On Duration moment, which also refers to the start of reception). Radio frames and subframes of data, also known as DRX on Duration )
  • the UE determines the subframe number where the activation time is located according to the preset subframe offset
  • the UE calculates the activation according to the index of the current SFN period notified by the network side in the extended DRX period, the subframe number of the activation time obtained by the calculation, and the preset subframe offset and the extended DRX period length. The number of the radio frame where the moment is located.
  • the SFN is the number of the radio frame where the DRX onDuration is located; K is the index of the SFN period in which the DRX onDuration is located in the extended DRX short period; the TSFN is the inversion period of the SFN; the subframe number is the subframe number of the DRX onDuration; and the shortDRX-Cycle is the pre- Set the length of the extended DRX short period; drxStartOfFset is the subframe offset of DRX onDuration.
  • the network side informs the UE of the index of the current SFN period in the extended DRX period
  • the UE learns that the index of the current SFN period is the same as K it confirms that the current SFN period is the SFN of the DRX on Duration. cycle.
  • the above embodiments are further described in detail below using several specific application scenarios.
  • the first application scenario Taking the paging moment calculation in the LTE system as an example.
  • the currently set SFN period length is 10.24s
  • the length of the extended DRX cycle (in this case, the paging cycle) is 4 times the maximum SFN period, that is, 40.96s
  • the system information modification period is 2.56s. s.
  • the network side broadcasts the sequence number of the current SFN period in the extended DRX cycle, that is, Index, in each system information modification period in each SFN period, and the network side must ensure that all system information is broadcast in one SFN period.
  • the index is the same.
  • the network side can add the IE to the existing System Information (SI) to broadcast the Index, or use the new SIB (for example, SIB20) to broadcast the Index.
  • SI System Information
  • SIB for example, SIB20
  • the UE After receiving the above index broadcast by the network side, the UE can calculate the radio frame where the activation time is based according to the following formula (the units in the formula are all radio frames):
  • X is the radio frame in which the activation time is located in the extended DRX cycle
  • T is the length of the extended DRX cycle
  • N is the paging density
  • UE_ID is the terminal identifier
  • Y is the SFN period in which the UE locally calculated activation time is in the extended DRX cycle.
  • the serial number in the Z is the number of the radio frame in which the local time is calculated by the UE in the current SFN period
  • S is the length of the SFN period (ie, 10.24s, 1024 radio frames)
  • C is the extended DRX period relative to the SFN period. multiple. Mod means that after the remainder is removed, the div is meant to be rounded down.
  • T is 4096
  • N is 16
  • UE ID is 25.
  • the SFN period corresponding to the Index is the SFN period in which the radio frame where the UE's activation time is located.
  • the second application scenario is as follows:
  • the paging time calculation in the UMTS system is taken as an example.
  • the currently set SFN period is 40.96s
  • the extended DRX period has a maximum value of 4 times the SFN period, that is, 163.84s
  • the system information modification period is 5.12s.
  • the network side broadcasts the index of the current SFN period in the extended DRX period by using the system information in each system information modification period in each SFN period, and the network side guarantees that the Index broadcasted in all system information is in one SFN period. the same.
  • the network side can add an IE to the existing SI to broadcast the index, or use a new SIB (for example, SIB20) to broadcast the index.
  • SIB for example, SIB20
  • the SFN period Index broadcasted by the network side is 1 and 3, that is, the network side broadcasts twice, and is broadcasted in the first SFN period.
  • the Index is 1 and the index broadcasted in the 3rd SFN cycle is 3.
  • the two cases are combined for the purpose of merging.
  • the UE After receiving the above index broadcast by the network side, the UE can calculate the radio frame where the activation time is based according to the following formula (the units in the formula are all radio frames):
  • X is the radio frame in which the activation time is located in the extended DRX cycle
  • T is the length of the extended DRX cycle
  • N is the paging density
  • UE_ID is the terminal identifier
  • Y is the SFN period in which the UE locally calculated activation time is in the extended DRX cycle.
  • the serial number in the Z is the number of the radio frame in which the activation time of the UE is locally calculated in the current SFN period
  • S is the length of the SFN period (ie, 40.96 s)
  • C is a multiple of the extended DRX period relative to the SFN period. Mod indicates that after the remainder is removed, the div is rounded down.
  • T is 8192
  • N is 32
  • UE_ID is 49.
  • the SFN period corresponding to the index is the SFN period in which the radio frame where the UE is activated is located.
  • the third application scenario is based on the DRX onDuration calculation in LTE.
  • the currently set SFN period is 10.24s, and the extended DRX period is 4 times maximum.
  • the SFN period that is, 40.96s
  • the system information tampering period is 2.56s, as shown in Figure 9.
  • the network side broadcasts the index of the current SFN period in the extended DRX period by using the system information in each system information modification period in each SFN period, and the network side guarantees that all system information is broadcast in one SFN period.
  • the index is the same.
  • the network side may add an IE to the existing SI to broadcast the Index, or may use a new SIB (for example, SIB20) to broadcast the Index.
  • the index of the SFN period broadcasted by the network side is 1 and 3, that is, the network side broadcasts twice, and the index broadcasted in the first SFN period.
  • the index broadcasted in the third SFN cycle is 3, and the following two cases are combined for the purpose of cleaning.
  • the longDRX-Cycle that is, the extended DRX long period
  • the sequence number K of the SFN cycle in the extended DRX cycle is 3.
  • the UE calculates the DRX onDuration position of the DRX long period according to the following formula:
  • the UE can calculate the DRX long-period DRX onDuration position by calculation:
  • the shortDRX-Cycle that is, the extended DRX short period
  • the UE can calculate the DRX short-cycle DRX onDuration position by:
  • the SFN is the number of the radio frame where the DRX onDuration is located; K is the index of the SFN period in which the DRX onDuration is in the extended DRX short period; the TSFN is the inversion period of the SFN, 10240 in the LTE system; the subframe number is the subframe number of the DRX onDuration ; longDRX-Cycle is the length of the preset extended DRX long period; drxStartOfFset is the subframe offset of DRX onDuration.
  • the UE may also calculate the location of the DRX onDuration in the extended DRX long period and calculate the location of the DRXonDuration in the extended DRX short period using the following formula.
  • the UE uses the following formula to calculate the position of the extended DRX long period in the SFN period:
  • Toffset drxStartOfFset div TSFN
  • Tlong longDRX-Cycle div TSFN
  • the TSFN is the inversion period of the SFN, and the value in the LTE system is 10240; K is the index of the SFN period in which the DRX on Duration is located.
  • the UE uses the following formula to calculate the SFN and subframe number that appear in the SFN period K:
  • the SFN is the number of the wireless frame where the DRX onDuration is located; the subframe number is the subframe number of the subframe number being DRX onDuration.
  • the UE can calculate the radio frame where the DRX onDuration is located in the extended DRX long period by using the following formula:
  • the UE can calculate the location of the DRX onDuration in the extended DRX short period using the following formula.
  • the UE uses the following formula to calculate the position of the extended DRX short period in the SFN period:
  • the TSFN is the inversion period of the SFN, and the value in the LTE system is 10240; K is the index of the SFN period in which the DRX on Duration is located.
  • the UE uses the following formula to calculate the SFN and subframe number that appear in the SFN period K:
  • the SFN is the number of the wireless frame where the DRX onDuration is located; the subframe number is the subframe number of the subframe number being DRX onDuration.
  • the UE can calculate the radio frame in which the extended DRX short-period DRX onDuration is located using the following formula:
  • the UE only when the UE is in the idle state or the connected state, only the UE obtains the index of the current SFN period notified by the network side in the extended DRX cycle, and obtains a preset (can be configured locally, or The length of the extended DRX cycle negotiated with the network side, that is, the number of the radio frame in which the activation time is obtained can be calculated, so that the paging can be received or the service data can be received at an accurate time.
  • a preset can be configured locally, or The length of the extended DRX cycle negotiated with the network side, that is, the number of the radio frame in which the activation time is obtained can be calculated, so that the paging can be received or the service data can be received at an accurate time.
  • the network side device includes a determining unit 100 and a communication unit 101:
  • a determining unit 100 configured to determine a sequence number of the current SFN period in the extended DRX cycle
  • the communication unit 101 is configured to notify the standby UE of the sequence number of the current SFN period in the extended DRX cycle, and enable the UE to calculate the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle.
  • the communication unit 101 notifies the UE of the sequence number of the current SFN period in the extended DRX cycle during each system information modification period in the current SFN period.
  • the communication unit 101 broadcasts the sequence number of the current SFN period in the extended DRX cycle to the UE through the system information; or/and, transmits the sequence number of the current SFN period in the extended DRX cycle to the UE by signaling.
  • the communication unit 101 carries the sequence number of the current SFN period in the extended DRX cycle in the remaining bits in the MIB; or, in the SIB, the corresponding information unit IE carries the sequence number of the current SFN period in the extended DRX cycle; or,
  • the SIB carries the sequence number of the current SFN period in the extended DRX cycle.
  • another network side device includes a memory 311 and a processor 312.
  • the processor 312 is configured with a computer program or the like for performing the network side method described in the foregoing embodiment of the present invention, thereby implementing the function of the network side device provided by the embodiment of the present invention; and the memory 311 for storing the The code of the computer program may be used to configure the processor 312.
  • the processor 312 may include a baseband processing component, a radio frequency processing component, and the like according to actual needs, for transmitting related information. specifically:
  • the processor 312 determines a sequence number of the current SFN cycle in the extended DRX cycle
  • the processor 312 notifies the standby UE of the sequence number of the current SFN period in the extended DRX cycle, and causes the UE to calculate the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle.
  • the processor 312 notifies the UE of the sequence number of the current SFN period in the extended DRX cycle during each system information modification period in the current SFN period.
  • the processor 312 broadcasts the sequence number of the current SFN period in the extended DRX cycle to the UE through the system information; or / and, by signaling, the sequence number of the current SFN cycle in the extended DRX cycle is transmitted to the UE.
  • the processor 312 carries the sequence number of the current SFN period in the extended DRX cycle in the remaining bits in the MIB; or, the corresponding information unit IE in the SIB carries the sequence number of the current SFN period in the extended DRX cycle; or, The SIB carries the sequence number of the current SFN period in the extended DRX cycle.
  • the UE side device includes a communication unit 110 and a main control unit 111, where
  • the communication unit 110 is configured to receive a sequence number of the current SFN period that is sent by the network side in the extended DRX cycle, and the main control unit 111 is configured to combine the sequence number in the extended DRX cycle according to the current SFN period, and combine the length of the preset extended DRX cycle. , Calculate the activation time of the device.
  • the communication unit 110 receives the sequence number of the current SFN period notified by the network side in the extended DRX cycle in each system information modification period in the current SFN period.
  • the communication unit 110 receives, by the system information, the sequence number of the current SFN period broadcasted by the network side in the extended DRX cycle; or / and, receives the sequence number of the current SFN period transmitted by the network side in the extended DRX cycle by dedicated signaling.
  • the communication unit 110 receives the sequence number of the current SFN period broadcasted by the remaining bits in the main information block MIB by the network side in the extended DRX cycle; or, the current SFN period broadcast by the receiving network side through the extended information unit IE in the system information block SIB is The sequence number in the extended DRX cycle is extended; or the sequence number in the extended DRX cycle of the current SFN period broadcasted by the newly added SIB by the receiving network side.
  • the main control unit 111 calculates the sequence number Y of the SFN period in the extended DRX cycle in which the activation time is located according to the length T of the preset extended DRX cycle and the length S of the preset SFN cycle. , And locally calculating the number Z of the activation time in the SFN cycle;
  • the current SFN period is determined as the SFN period in which the UE is activated, and the activation time of the UE is determined according to the number Z of the activation time in the SFN period.
  • the main control unit 111 determines the subframe number in which the activation time is located according to the preset subframe offset; and obtains the sequence number in the extended DRX cycle according to the current SFN period notified by the network side, and obtains the calculation according to the calculation.
  • another UE side device includes a memory 411 and a processor 412.
  • the processor 412 is configured with a computer program or the like for performing the UE side method described in the foregoing embodiments of the present invention, thereby implementing the function of the UE side device provided by the embodiment of the present invention; and the memory 411 is configured to store the The code of the computer program may be used to configure the processor 412.
  • the processor 312 may include a baseband processing component, a radio frequency processing component, and the like according to actual needs, for transmitting related information. specifically:
  • the processor 412 receives the sequence number of the current SFN period sent by the network side in the extended DRX cycle;
  • the processor 412 calculates the activation time of the device according to the sequence number in the extended DRX cycle of the current SFN cycle and the length of the preset extended DRX cycle.
  • the processor 412 receives the sequence number of the current SFN period notified by the network side in the extended DRX cycle during each system information modification period in the current SFN period.
  • the processor 412 receives, by the system information, the sequence number of the current SFN period broadcasted by the network side in the extended DRX cycle; or / and, receives the sequence number of the current SFN period transmitted by the network side in the extended DRX cycle by using dedicated signaling.
  • the processor 412 receives the sequence number of the current SFN period broadcasted by the remaining bits in the main information block MIB by the network side in the extended DRX cycle; or, the current SFN period broadcast by the receiving network side through the extended information unit IE in the system information block SIB is The sequence number in the extended DRX cycle is extended; or the sequence number in the extended DRX cycle of the current SFN period broadcasted by the newly added SIB by the receiving network side.
  • the processor 412 calculates, according to the length T of the preset extended DRX cycle, the length S of the preset SFN cycle, and locally calculates the sequence number Y of the SFN cycle in the extended DRX cycle.
  • the current SFN cycle is determined to be the SFN cycle in which the UE is activated, and the activation time of the UE is determined according to the number Z of the activation time in the SFN cycle.
  • the processor 412 determines the subframe in which the activation time is located according to the preset subframe offset. No.; and according to the sequence number in the extended DRX cycle of the current SFN period notified by the network side, combined with the calculated subframe number of the activation time, and the preset subframe offset and the extended DRX cycle length, the calculation is activated. The number of the radio frame where the moment is located.
  • the network side notifies the UE of the sequence number of the current SFN period in the extended DRX cycle, and the UE calculates the activation time of the UE according to the sequence number and the length of the preset extended DRX cycle.
  • the extended DRX period is greater than the SFN period, the UE can still calculate the correct paging moment or/and the time of receiving the service data, thereby effectively avoiding the situation that the UE loses the paging message or the service data due to the calculation error, thereby It can enter the activation state at an accurate moment, thereby ensuring the service QoS of the UE and improving the service performance of the system.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及 DRX技术,公开了一种激活时刻的计算方法及装置,用以解决 UE使用扩展 DRX周期时无法在准确时刻进入激活状态的问题。该方法为:网络侧将当前 SFN周期在扩展 DRX周期中的序号通知 UE,而 UE根据该序号,结合预设的扩展 DRX周期的长度计算本 UE的激活时刻,这样,当扩展的 DRX周期大于 SFN周期时,UE仍然可以计算出正确的寻呼时刻或/和接收业务数据的时刻,从而能够在准确时刻进入激活状态,有效避免了 UE因为计算错误而丢失寻呼消息或者业务数据的情况,进而保障了 UE的业务 QoS,提升了系统的服务性能。

Description

一种激活时刻的计算方法及装置 本申请要求在 2013年 4月 2日提交中国专利局、 申请号为 201310112462.8、 发明名称 为"一种激活时刻的计算方法及装置"的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。
技术领域
本发明涉及 DRX技术, 特别涉及一种激活时刻的计算方法及装置。 背景技术
机器类型通信(Machine-type communication, MTC )作为一种新型的通信理念, 其目 的是将多种不同类型的通信技术有机结合, 如: 机器对机器通信、 机器控制通信、 人机交 互通信、 移动互联通信, 从而推动社会生产和生活方式的发展。 预计未来人对人通信的业 务可能仅占整个终端市场的 1/3 , 而更大数量的通信是 MTC通信业务。 有时, MTC通信 又称为机器间 (Machine-to-machine, M2M )通信或物联网。
当前的移动通信网络是针对人与人之间的通信设计的, 如: 网络容量的确定等。 如果 希望利用移动通信网络来支持 MTC通信就需要根据 MTC通信的特点对移动通信系统的机 制进行优化, 以便能够在对传统的人与人通信不受或受较小影响的情况下, 更好地实现 MTC通信。
在 MTC的通信场景中, 需要考虑的一个重要问题是省电。 在一些场景中, 电池的寿 命直接决定了 MTC设备的寿命, 比如用于动物追踪的 MTC设备或用于水文监测的 MTC 设备, 这些设备更换电池几乎是不可能的, 所以就要求 MTC设备有极低的耗电量。
从无线网络侧来说, 在长期演进(Long Term Evolution, LTE ) 系统中, 终端有两种状 态, 即无线资源控制 (Radio Resource Control, RRC ) -连接(connected )状态和 RRC-空 闲( idle )状态。在通用移动通信系统( Universal Mobile Telecommunications System, UMTS ) 中, 终端有五种状态, 即建立了专用信道的状态 (cell-dch )、 建立了前向接入信道的状态 ( cell_fach )、 进行周期性小区更新的状态 ( cell_pch )、 进行周期性注册区更新的状态 ( ura_pch )以及 idle状态,其中 cell-dch、 cell_fach、 cell_pch和 ura_pch都是 RRC connected 状态,终端只有在进入到 RRC_connected状态才能发送上行数据。一旦终端发送数据完成, 网络监测终端长时间无数据传输后通过 RRC连接释放(RRC connection release )消息释放 终端的 RRC连接, 使终端进入 RRC idle状态。
终端在 idle 状态下的主要工作就是监听网络侧的寻呼。 为了省电都是以非连续接收
( Discontinuous Reception, DRX ) 方式监听寻呼。 即每一个寻呼周期中仅仅有一个子帧 ( 10ms )是处于接收状态, 该寻呼周期内其它时间都是非接收状态的, 具体如图 1所示。 对 UMTS而言,当前网络侧配置的 DRX周期最长为 2的 9次方个无线帧(即 5120ms )。 也就是说, 对于 UMTS中的 DRX来说, 终端最多在每 5120ms时间内, 仅打开一次接收 机来接收网络侧寻呼指示消息以及可能的寻呼消息, 其他时间都是关闭接收机的, 通过这 种方式可以达到省电的目的。 而对于 LTE系统而言, 目前网络侧配置的最大 DRX周期为 2560ms。
对于 UMTS和 LTE系统而言, 终端均有可能配置有两个 DRX长度。 一个是无线网络 控制器( Radio Network Controller, RNC ) /eNB通过系统信息块( System Information Block, SIB ) 消息配置的, 可以称为缺省 (default ) DRX。 该配置适用于所有驻留在该小区内的 终端。 而另一个是核心网 (Core Network, CN ) 实体和终端通过非接入层 (Non-Access Stratum, NAS )过程协商的, 称作 UE专属 ( specific ) DRX, 该配置仅适用单个终端。 对于后者, 在协商过程中 RNC/eNB是不知情的。 终端获得两个 DRX周期 ( cycle ), 会取 二者中更小值的来监听寻呼消息。
对于寻呼过程, 由 CN实体发起寻呼, 寻呼消息首先发送到 RNC (对于 UMTS而言) /eNB (对于 LTE系统而言), 具体参阅图 2和图 3所示。 如图 2和图 3所示, 在该寻呼消 息(即 paging消息)中携带 UE specific DRX配置。 对于 UMTS系统而言, RNC将使用该 paging消息中配置的 DRX参数在空口 (即 Iu接口)发送寻呼消息。 对于 LTE系统而言, eNB将比较 paging消息中配置的 DRX参数和系统消息中配置的 DRX参数, 使用二者指 示的较短的 DRX周期来发送寻呼消息。
对于 LTE系统而言, 为了节省 UE的能量消耗, 延长 UE电池的使用时间, LTE在连接状 态 (即 RRC_connected状态) 下引入了 DRX操作模式, 允许终端非连续监听控制信道。 连 接状态下的 DRX操作模式包括激活期和休眠期, 激活期内 UE需要监听物理下行控制信道 ( Physical Downlink Control Channel, PDCCH ), 接收和发送数据以及信令传输。 休眠期内 UE关闭射频单元, 以减少不必要的电量开销。 两种状态在时间上基于 DRX周期进行划分, 具体如图 4所示。
由于用户各种业务的激活程度不一样, 针对不同业务的激活程度需要配置不同的 DRX 周期, 因此连接态 DRX操作模式设计了长短两种周期, 长 DRX周期和短 DRX的周期长度根 据 UE不同业务的激活特性进行配置。长 DRX周期的长度是由 RRC消息进行配置 ,取值范围 为 10 2560, 单位是子帧; 短 DRX周期的长度是由 RRC消息进行配置, 取值范围为 2 640, 单位是子帧。
DRX的起点位置是 DRX周期中 "on" 状态的起点, DRX的起点决定了 UE何时醒来监 听控制信道。 在 DRX的起点可以通过 RRC信令显示通知 UE—个 DRX起点的偏移量。
对于 UMTS系统而言, cell_fach状态和 cell_pch状态均引入了 DRX机制, 都釆用长、 短 两种周期, 两种状态下 DRX长周期的最大值均为 5120ms, DRX周期 "on"状态的起点的确 定方式与 LTE系统相似。
在 LTE系统中, 系统帧号 ( System Frame Number, SFN ) 的更换周期 (又称为 SFN周 期) 的长度为 10.24s, —个 SFN周期中包含 1024个无线帧, 编号从 0到 1023 , 每个无线帧长 度为 10ms。 在 UMTS系统中, SFN周期的长度为 40.96s, 其中包含 4096个无线帧, 编号从 0 到 4095 , 每个无线帧长度为 10ms。
对于某些 MTC终端而言, 为了达到更好的省电性能, 需要使用更长的 DRX周期; 相应 的, 需要对现有协议中规定的 DRX周期(如, LTE系统最大为 2.56秒, UMTS最大为 5.12秒) 进行扩展, 达到分钟甚至小时的量级。 但是当把 DRX周期扩展之后, 会导致当扩展的 DRX 周期大于 SFN周期 (10.24s ) 时, 按照现有方式, UE无法计算出准确的激活时刻, 因为按 照现有方式计算出来的激活时刻都是在一个 SFN周期内的, 这样, UE便无法在对应的激活 时刻及时醒来接收网络侧发送的消息及数据,从而很容易造成信息丢失, 进而严重降低 UE 的业务 QoS。 发明内容
本发明实施例提供一种激活时刻的计算方法及装置,用以解决 UE使用扩展 DRX周期 时无法在准确时刻进入激活状态的问题。
本发明实施例提供的具体技术方案如下:
一种激活时刻的通知方法, 包括:
网络侧确定当前 SFN周期在扩展 DRX周期中的序号;
网络侧将当前 SFN周期在扩展 DRX周期中的序号通知 UE,令 UE根据所述序号, 结 合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
一种激活时刻的计算方法, 包括:
用户设备 UE接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号;
UE根据当前 SFN周期在扩展 DRX周期中的序号,结合预设的扩展 DRX周期的长度, 计算本 UE的激活时刻。
一种激活时刻的通知装置, 包括:
确定单元, 用于确定当前 SFN周期在扩展 DRX周期中的序号;
通信单元, 用于将当前 SFN周期在扩展 DRX周期中的序号通知 UE,令 UE根据所述 序号, 结合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
一种激活时刻的计算装置, 包括:
通信单元, 用于接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号; 主控单元, 用于根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX 周期的长度, 计算本装置的激活时刻。 本发明实施例中, 网络侧将当前 SFN周期在扩展 DRX周期中的序号通知 UE, 而 UE 根据该序号, 结合预设的扩展 DRX周期的长度计算本 UE的激活时刻, 这样, 当扩展的 DRX周期大于 SFN周期时, UE仍然可以计算出正确的寻呼时刻或 /和接收业务数据的时 刻, 从而有效避免了 UE因为计算错误而丢失寻呼消息或者业务数据的情况, 从而能够在 准确时刻进入激活状态, 进而保障了 UE的业务 QoS, 提升了系统的服务性能。 附图说明
图 1为现有技术下终端在寻呼周期内釆用 DRX方式监听寻呼示意图;
图 2为现有技术下 LTE系统中 S 1接口寻呼消息示意图;
图 3为现有技术下 UMTS系统中 Iu接口寻呼消息示意图;
图 4为现有技术下连接态下 DRX周期示意图;
图 5为本发明实施例中网络侧向 UE通知激活时刻示意流程图;
图 6为本发明实施例中 UE根据网络侧通知计算激活时刻示意流程图;
图 7 - 9为本发明实施例中 UE计算激活时刻场景示意图;
图 10为本发明实施例中网络侧装置功能结构示意图;
图 11为本发明实施例中另一种网络侧装置功能结构示意图;
图 12为本发明实施例中 UE功能结构示意图;
图 13为本发明实施例中另一种 UE功能结构示意图。 具体实施方式
在 UE使用扩展 DRX周期时, 为了令 UE能够在准确时刻进入激活状态, 本发明实施 例中, 提出了一种新的激活时刻的计算方法, 无论 UE处于空闲态还是连接态, 均可以在 使用的扩展 DRX周期大于 SFN周期时, 计算出正确的激活时刻。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图 5所示, 本发明实施例中, 网络侧向 UE通知激活时刻的示意流程图如下: 步骤 500: 网络侧确定当前 SFN周期在扩展 DRX周期中的序号。
本发明实施例中, 当前 SFN周期在扩展 DRX周期中的序号记为 Index, lndex=0, 1 , ... ... , η-1 , 其中 η为扩展 DRX周期的最大值相对于 SFN周期的倍数。
步骤 510: 网络侧将当 SFN周期在扩展 DRX周期中的序号通知 UE, 令 UE基于该序 号结合预设的扩展 DRX周期的长度, 计算出该 UE在当前 SFN周期中的激活时刻。
本发明实施例中, 网络侧(如, 基站)可以使用系统信息和 /或专用信令向 UE通知当 前 SFN周期在扩展 DRX周期中的序号, 即 Index。
以网络侧釆用系统信息为例。 例如: 网络侧可以釆用主信息块 ( Master Information Block, MIB ) 来发送当前 SFN 周期在扩展 DRX周期中的 Index。较佳的,可以利用现有 MIB中的剩余比特携带当前 SFN 周期在扩展 DRX周期中的 Index; 如, 当最大的扩展 DRX周期的长度为 8倍的 SFN周期 时, 可以在 MIB中使用 3bit来标识上述 Index是 8个 SFN周期中的第几个 SFN周期。
又例如: 网络侧釆用扩展的 SIB来发送当前 SFN周期在扩展 DRX周期中的 Index。 较佳的, 可以在现有 SIB中扩展一些信息单元(Information Element, IE )来发送当前 SFN 周期在扩展 DRX周期中的 Index; 如, 利用 SIB2来发送, 需要在 SIB2中扩展新的 IE以 携带 Index。
又例如:网络侧可以釆用新增的 SIB来发送当前 SFN周期在扩展 DRX周期中的 Index。 如, 釆用 SIB20发送, 该 SIB20中只包含当前 SFN周期在扩展 DRX周期中的 Index。
不管釆用上述哪种方式发送, 在一个 SFN周期内, 网络侧广播的当前 SFN周期在扩 展 DRX周期内的 Index必须一样。
具体的, SFN周期内又分为若千系统信息修改周期, 网络侧在一个 SFN周期内的每一 个系统信息修改周期内广播的当前 SFN周期在扩展 DRX周期内的 Index必须一样。
UE接收到网络侧通知的当前 SFN周期在扩展 DRX周期中的序号后, 会根据相应方 式计算自身的激活时刻, 具体在计算方式将在后续实施例中会作出进一步介绍。
与上述实施例相对应的, 参阅图 6所示, 本发明实施例中, UE根据网络侧通知计算 自身激活时刻的概述流程如下:
步骤 600: UE接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号。
本发明实施例中, 当前 SFN周期在扩展 DRX周期中的序号记为 Index, lndex=0,
1 , ... ... , η-1 , 其中 η为扩展 DRX周期的最大值相对于 SFN周期的倍数。
步骤 610: UE根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX 周期的长度, 计算本 UE的激活时刻。
本发明实施例中, UE可以通过系统信息和 /或专用信令接收网络侧通知的当前 SFN周 期在扩展 DRX周期中的序号, 即 Index。
以 UE釆用系统信息为例。
例如: UE可以接收网络侧通过 MIB中的剩余比特广播的当前 SFN周期在扩展 DRX 周期中的 Index。
又例如: UE可以接收网络侧通过中扩展的 IE广播的当前 SFN周期在扩展 DRX周期 中的 Index。
又例如: UE可以接收网络侧通过新增的 SIB广播的当前 SFN周期在扩展 DRX周期 中的 Index。
具体的, SFN周期内又分为若千系统信息修改周期, UE在一个 SFN周期内的每一个 系统信息修改周期内接收的网络侧广播的当前 SFN周期在扩展 DRX周期内的 Index必须 一样。
进一步, UE获得网络侧通知的当前 SFN周期在扩展 DRX周期中的 Index后,根据自 身当前的状态 (即空闲态或连接态), 选择不同的方式计算本 UE在扩展 DRX周期中的激 活时刻; 下面分别作出介绍。
第一种情况下, UE处于空闲态。 此时, 所谓 UE的激活时刻即是指 UE开始接收网络 侧寻呼的时刻 (网络侧在进行寻呼之前无法确定 UE的准确位置), 因此也称为寻呼时刻。
UE接收到网络侧通知的当前 SFN周期在扩展 DRX周期 (此时也可称为寻呼周期) 中的 Index之后, 结合预设的扩展 DRX周期的长度, 釆用下述方式计算获得自身的激活时 刻 (即寻呼时刻, 亦指寻呼消息所在的无线帧)。
首先, UE根据预设的扩展 DRX周期的长度 T , 结合预设的 SFN周期的长度 S , 在本 地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y, 以及在本地计算出激活时 刻在 SFN周期中的编号 Z;
接着, UE根据网络侧发送的当前 SFN周期在扩展 DRX周期中的序号 Index, 判定该 Index和本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y之间满足设置的 数值关系时, 确定当前 SFN周期即是 UE的激活时刻所在的 SFN周期, 并根据激活时刻 在 SFN周期中的编号 Z确定本 UE的激活时刻。
具体为:
首先, UE根据预设的扩展 DRX周期的长度 T、 寻呼密度和 UE的标识信息计算出激 活时刻在扩展 DRX周期中位于的无线帧 X
其次, UE根据预设的 SFN周期的长度 S , 结合上述激活时刻在扩展 DRX周期中位于 的无线帧 X, 在本地计算出一个激活时刻所在 SFN周期在扩展 DRX周期中的序号 Υ, 以 及在本地计算出一个激活时刻在当前 SFN周期中的编号 Ζ;
接着, UE根据预设的扩展 DRX周期的长度 Τ和 SFN周期的长度 S ,计算出扩展 DRX 周期相对于当前 SFN周期的倍数 C;
最后, UE根据网络侧发送的当前 SFN周期在扩展 DRX周期中的 Index,判定 Y=Index mod C时, 确定当前 SFN周期即是 UE的激活时刻所在的 SFN周期, 此时, UE便可以在 Z指示的激活时刻开始接收网络侧发送的用于寻呼的无线帧。 X mod T = (T div N)*(UE_ID mod N)
Y = X div S
Z = X mod S
C=T div S 其中, X为激活时刻在扩展 DRX周期中位于的无线帧, T为扩展 DRX周期的长度, N为寻呼密度, UE_ID为终端标识, Y为 UE本地计算的激活时刻所在 SFN周期在扩展 DRX周期中的序号, Z为 UE本地计算的激活时刻所在无线帧在 SFN周期中的编号, S为 SFN周期的长度(即 10.24s ), C是扩展 DRX周期相对于 SFN周期的倍数。
当 Y=Index mod C时, 网络侧指示的 Index所对应的 SFN周期就是 UE的激活时刻所 在的 SFN周期, 此时, 之前计算获得的 Z便是 UE对应的激活时刻。
第二种情况下, UE处于连接态。 此时, 所谓 UE的激活时刻即是指 UE开始接收网络 侧数据的时刻 (网络侧在发送数据之前已确知 UE的准确位置), 因此, 也称为 onDuration 时刻。
UE接收到网络侧通知的当前 SFN周期在扩展 DRX周期中的 Index之后 ,结合预设的 扩展 DRX周期的长度, 釆用下述方式计算获得自身的激活时刻 (即 on Duration时刻, 亦 指开始接收数据的无线帧及子帧, 也称为 DRX on Duration )
首先, UE根据预设的子帧偏移量确定激活时刻所在的子帧编号;
其次, UE根据网络侧通知的当前 SFN周期在扩展 DRX周期中的 Index, 结合计算获 得的激活时刻所在的子帧编号, 以及预设的子帧偏移量和扩展 DRX周期的长度, 计算获 得激活时刻所在的无线帧的编号。
例如: 在釆用 DRX长周期时, 可以釆用以下公式进行计算:
[(SFN * 10) + (K * TSFN) + subframe number] modulo (longDRX-Cycle) = drxStartOfFset 其中, SFN为 DRX onDuration所在无线帧的编号; K为 DRX onDuration所在 SFN周 期在扩展 DRX长周期中的 Index; TSFN为 SFN的翻转周期; subframe number为 DRX onDuration 的子帧号; longDRX-Cycle 为预设的扩展 DRX长周期的长度; drxStartOfFset 为 DRX onDuration的子帧偏移量;
又例如: 在釆用 DRX短周期时, 可以釆用以下公式进行计算:
[(SFN * 10) + (K * TSFN) + subframe number] modulo (shortDRX-Cycle) = (drxStartOfFset) modulo (shortDRX-Cycle)
其中, SFN为 DRX onDuration所在无线帧的编号; K为 DRX onDuration所在 SFN周 期在扩展 DRX短周期中的 Index; TSFN为 SFN的翻转周期; subframe number为 DRX onDuration的子帧号; shortDRX-Cycle 为预设的扩展 DRX短周期的长度; drxStartOfFset 为 DRX onDuration的子帧偏移量。
当然, 网络侧在釆用专用信令通知 UE当前 SFN周期在扩展 DRX周期中的 Index时, 当 UE获知当前 SFN周期的 Index与 K相同时,则确认当前 SFN周期即为 DRX on Duration 出现的 SFN周期。
下面釆用几个具体的应用场景对上述实施例作出进一步详细说明。 第一种应用场景: 以 LTE系统中的寻呼时刻计算为例。
在 LTE系统中, 当前设置的 SFN周期长度为 10.24s, 扩展后的 DRX周期的长度(此 时为寻呼周期) 的最大值为 4倍的 SFN周期, 即 40.96s, 系统信息修改周期为 2.56s。 某 UE按照扩展 DRX周期 40.96s接收寻呼, 其激活时刻所在寻呼无线帧的位置为扩展 DRX 周期中序号为 2的 SFN周期内 SFN=256的无线帧, 具体如图 7所示。
网络侧在每个 SFN周期中的每一个系统信息修改周期内,利用系统信息广播当前 SFN 周期在扩展 DRX周期中的序号, 即 Index, 网络侧必须保证在一个 SFN周期中, 所有系统 信息中广播的 Index均相同。 网络侧可以在现有系统信息 ( System Information, SI ) 中新 增 IE来广播该 Index, 也可以使用新的 SIB (如, SIB20 ) 来广播该 Index。 本实施例中, 在 UE的激活时刻所在的 SFN周期中, 网络侧广播的 SFN周期的 Index为 2。
UE接收到网络侧广播的上述 Index后,可以根据以下公式计算激活时刻所在的无线帧 (公式里的单位均为无线帧):
X mod T = (T div N)*(UE_ID mod N)
Y = X div S
Z = X mod S
C = T div S
其中, X为激活时刻在扩展 DRX周期中位于的无线帧, T为扩展 DRX周期的长度, N为寻呼密度, UE_ID为终端标识, Y为 UE本地计算的激活时刻所在 SFN周期在扩展 DRX周期中的序号, Z为 UE本地计算的激活时刻所在无线帧在当前 SFN周期中的编号, S为 SFN周期的长度 (即 10.24s, 1024个无线帧), C是扩展 DRX周期相对于 SFN周期 的倍数。 mod表示除完剩下的余数, div是表示除完向下取整。
在本实施例中, T为 4096 , N为 16 , UE ID为 25。
UE根据上述公式计算得到 X=2304 , Y=2 , Z=256 , C=4 , 然后 UE读取系统信息中的 当前 SFN周期在扩展 DRX周期中的 Index, 当 Y=Index mod C时, 该 Index所对应的 SFN 周期就是 UE的激活时刻所在的无线帧位于的 SFN周期。 在本实施例中, Index=2为激活 时刻所在无线帧位于的 SFN周期, 因此, UE在第 2个 SFN周期中, 找到 SFN=256的无 线帧, 醒来并读取网络侧的寻呼消息。
区别于上述计算方式, 在另外一种计算方式中, UE读取当前 SFN周期在扩展 DRX 周期中的 Index后, 可以根据当前无线帧的 SFN (记为 M )计算得到 P=S*Index+M 。 对 于 P mod T = X 的无线帧, 即为 UE的激活时刻所在无线帧。 在本实施例中, T=4096 , X=2304 , Index=2 , S=1024 , 当 P mod T= X时, M=256 , 此时, SFN=256的无线帧即为 UE的激活时刻所在的寻呼无线帧。
第二种应用场景: 以 UMTS系统中的寻呼时刻计算为例。 在 UMTS系统中,当前设置的 SFN周期为 40.96s,扩展 DRX周期最大值为 4倍的 SFN 周期, 即 163.84s, 系统信息修改周期为 5.12s。 某 UE按照扩展后的 DRX周期 81.92s接收 寻呼, 其激活时刻所在寻呼无线帧的位置为扩展 DRX周期中序号为 1 的 SFN周期内的 SFN=256的无线帧, 具体如图 8所示。
网络侧在每个 SFN周期中的每个系统信息修改周期里, 利用系统信息广播当前 SFN 周期在扩展 DRX周期中的 Index, 网络侧保证在一个 SFN周期中,所有系统信息中所广播 的 Index均相同。网络侧可以在现有 SI中新增 IE来广播该 Index,也可以使用新的 SIB(如, SIB20 )来广播该 Index。 本实施例中, 在 UE的激活时刻所在寻呼无线帧位于的 SFN周期 中, 网络侧广播的 SFN周期 Index为 1和 3 , 即网络侧分两次广播, 在第 1个 SFN周期里 广播的 Index为 1 ,在第 3个 SFN周期里广播的 Index为 3 , 以下实施例中以筒洁为目的将 两种情况合并描述。
UE接收到网络侧广播的上述 Index后,可以根据以下公式计算激活时刻所在的无线帧 (公式里的单位均为无线帧):
X mod T = (T div N)*(UE_ID mod N)
Y = X div S
Z = X mod S
C = T div S
其中, X为激活时刻在扩展 DRX周期中位于的无线帧, T为扩展 DRX周期的长度, N为寻呼密度, UE_ID为终端标识, Y为 UE本地计算的激活时刻所在 SFN周期在扩展 DRX周期中的序号, Z为 UE本地计算的激活时刻所在无线帧在当前 SFN周期中的编号, S为 SFN周期的长度(即 40.96s ), C是扩展 DRX周期相对于 SFN周期的倍数。 mod表示 除完剩下的余数, div是表示除完向下取整。
在本实施例中, T为 8192 , N为 32 , UE_ID为 49。
UE根据上述公式计算得到 X=4352 , Y=l , Z=256 , C=2。 然后 UE读取系统信息中的 SFN周期的 Index, 当 Y=Index mod C时, 该 Index所对应的 SFN周期就是 UE的激活时 刻所在无线帧位于的 SFN周期。 本实施例中, Index=l和 Index=3的 SFN周期均为激活时 刻所在无线帧位于的 SFN周期, 因此, UE在第 1个和第 3个 SFN周期中, 均需要找到 SFN=256的无线帧, 醒来并读取网络侧的寻呼消息。
第三种应用场景, 以 LTE中的 DRX onDuration计算为例。
在 LTE系统中, 当前设置的 SFN周期为 10.24s , 扩展后的 DRX周期最大值为 4倍的
SFN周期, 即 40.96s, 系统信息爹改周期为 2.56s, 具体如图 9所示。
网络侧在每个 SFN周期中的每一个系统信息修改周期里,利用系统信息广播当前 SFN 周期在扩展 DRX周期中的 Index, 网络侧保证在一个 SFN周期中,所有系统信息中所广播 的 Index均相同。网络侧可以在现有 SI中新增 IE来广播该 Index,也可以使用新的 SIB(如, SIB20 ) 来广播该 Index。
本实施例中, 在 UE的 DRX onDuration所在无线帧位于的 SFN周期中, 网络侧广播 的 SFN周期的 Index为 1和 3 , 即网络侧分两次广播, 在第 1个 SFN周期里广播的 Index 为 1 , 在第 3个 SFN周期里广播的 Index为 3 , 以下实施例中以筒洁为目的将两种情况合 并描述。
若 UE通过专用信令接收到的 longDRX-Cycle (即扩展 DRX长周期) 为 4倍的 SFN 周期( 10240 * 4 = 40960 ), DRX的子帧偏移量为 ( 10240 * 3 + 103 = 30823 ) ms, SFN周 期在扩展 DRX周期中的序号 K为 3。UE根据以下公式计算 DRX长周期的 DRX onDuration 位置:
[(SFN * 10) + (K * TSFN) + subframe number] modulo (longDRX-Cycle) = drxStartOfFset 其中, SFN为 DRX onDuration所在无线帧的编号; K为 DRX onDuration所在 SFN 周期在扩展 DRX长周期中的 Index; TSFN 为 SFN 的翻转周期, LTE 系统中为 10240; subframe number为 DRX onDuration的子帧号; longDRX-Cycle 为预设的扩展 DRX长周期 的长度; drxStartOfFset为 DRX onDuration的子帧偏移量。
UE可以通过计算得到 DRX长周期 DRX onDuration位置为:
[(10 * 10) + (3* 10240) + 3] modulo (40960) = 30823
Subframe nubmer = 3。
K = 3。
SFN = 10。
若 UE通过专用信令接收到的 shortDRX-Cycle (即扩展 DRX短周期) 为 2倍的 SFN 周期( 10240 * 2 = 20480 ),即 K为 2。UE根据以下公式计算 DRX短周期的 DRX onDuration 位置:
[(SFN * 10) + (K * TSFN) + subframe number] modulo (shortDRX-Cycle) = (drxStartOfFset) modulo (shortDRX-Cycle)
UE可以通过计算得到 DRX短周期 DRX onDuration位置为:
[(10 * 10) + (1 * 10240) + 3] modulo (20480) = (10240 * 3 + 103 = 30823) modulo (10240 * 2)=10343
其中, SFN为 DRX onDuration所在无线帧的编号; K为 DRX onDuration所在 SFN 周期在扩展 DRX短周期中的 Index; TSFN 为 SFN 的翻转周期, LTE 系统中为 10240; subframe number为 DRX onDuration的子帧号; longDRX-Cycle 为预设的扩展 DRX长周期 的长度; drxStartOfFset为 DRX onDuration的子帧偏移量。
UE可以通过计算得到 DRX短周期 DRX onDuration位置为: Subframe nubmer = 3。
K = 1。
SFN = 10。
显然, UE可以在当前 SFN周期内的 SFN=10的无线帧中的第 3个子帧内醒来接收网 络侧发送的业务数据。
另一方面, 在第三种应用场景下, UE也可以釆用以下公式计算扩展 DRX长周期中的 DRX onDuration的位置, 以及计算扩展 DRX短周期中的 DRXonDuration的位置。
一、 扩展 DRX长周期中的 DRX onDuration的位置计算。
首先, UE釆用以下公式计算扩展 DRX长周期在 SFN周期中出现的位置:
Toffset = drxStartOfFset div TSFN
Tlong = longDRX-Cycle div TSFN
K modulo Tlong = Toffset
其中, TSFN为 SFN的翻转周期, LTE系统中取值为 10240; K为 DRX on Duration 所在 SFN周期的 Index。
其次, UE釆用以下公式计算在 SFN周期 K中出现的 SFN和子帧号:
(SFN * 10) + subframe number = drxStartOfFset modulo TSFN
其中, SFN为 DRX onDuration所在无线巾贞的编号; subframe number为 subframe number 为 DRX onDuration的子帧号。
最后, UE可以釆用以下公式通过计算得到扩展 DRX长周期中 DRX onDuration所在 的无线帧:
1 ) :
Toffset = 30823 div 10240 = 3
Tlong = 40960 div 10240 = 4
3 modulo 4 = 3
K = 3。
2 ) :
(10 * 10) + 3 = (30823 modulo 10240)
SFN = 10。
Subframe nubmer = 3。
二、 当 UE收到的扩展 DRX短周期为 2倍的 SFN周期 ( 10240 * 2 = 20480 ) 时, UE 可以釆用以下公式计算扩展 DRX短周期中 DRX onDuration的位置。
首先, UE釆用以下公式计算扩展 DRX短周期在 SFN周期中出现的位置:
TofFset short = [(drxStartOfFset) modulo (shortDRX-Cycle)] div TSFN Tshort = shortDRX-Cycle div TSFN
K modulo Tshort = TofFset short
其中, TSFN为 SFN的翻转周期, LTE系统中取值为 10240; K为 DRX on Duration 所在 SFN周期的 Index。
其次, UE釆用以下公式计算在 SFN周期 K中出现的 SFN和子帧号:
(SFN * 10) + subframe number = [(drxStartOfFset) modulo (shortDRX-Cycle)] modulo TSFN
其中, SFN为 DRX onDuration所在无线巾贞的编号; subframe number为 subframe number 为 DRX onDuration的子帧号。
最后, UE可以釆用以下公式计算得到扩展 DRX短周期 DRX onDuration所在的无线 帧:
1 ) :
TofFset short = [(30823) modulo (20480)] div 10240 = 1
Tshort = 20480 div 10240 = 2
1 modulo 2 = 1
K = 1。
2 ) :
(10* 10) + 3 = [(30823) modulo (20480)] modulo 10240 = 103
SFN = 10。
subframe number = 3。
从上述各实施例中可以看出, 无论 UE处于空闲态还是连接态, 只有 UE获得网络侧 通知的当前 SFN周期在扩展 DRX周期中的 Index, 以及获得预设的(可以由本地配置, 也 可以和网络侧协商) 的扩展 DRX周期的长度, 即可以计算获得激活时刻所在的无线帧的 编号, 从而可以在准确的时刻醒来接收寻呼或者接收业务数据。
基于上述各实施例, 参阅图 10所示, 本发明实施例中, 网络侧装置包括确定单元 100 和通信单元 101 :
确定单元 100, 用于确定当前 SFN周期在扩展 DRX周期中的序号;
通信单元 101 , 用于将当前 SFN周期在扩展 DRX周期中的序号通知备 UE, 令 UE根 据该序号, 结合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
通信单元 101在当前 SFN周期中的每一个系统信息修改周期内, 均将当前 SFN周期 在扩展 DRX周期中的序号通知 UE。
通信单元 101通过系统信息将当前 SFN周期在扩展 DRX周期中的序号向 UE广播; 或 /和, 通过用信令将当前 SFN周期在扩展 DRX周期中的序号发送至 UE。 通信单元 101在 MIB中的剩余比特内携带当前 SFN周期在扩展 DRX周期中的序号; 或者,在 SIB中扩展相应的信息单元 IE携带当前 SFN周期在扩展 DRX周期中的序号;或 者, 在新增的 SIB中携带当前 SFN周期在扩展 DRX周期中的序号。
参阅图 11所示, 本发明实施例中, 另一种网络侧装置包括存储器 311和处理器 312。 其中, 处理器 312被配置了用于执行上述本发明实施例中所述的网络侧的方法的计算 机程序等, 从而实现本发明实施例提供的网络侧设备的功能; 存储器 311 , 用于存储该计 算机程序的代码, 可以被用于配置所述处理器 312; 处理器 312根据实际需要可以包括基 带处理部件、 射频处理部件等设备, 用于传输相关信息。 具体地:
处理器 312确定当前 SFN周期在扩展 DRX周期中的序号;
处理器 312将当前 SFN周期在扩展 DRX周期中的序号通知备 UE,令 UE根据该序号, 结合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
处理器 312在当前 SFN周期中的每一个系统信息修改周期内, 均将当前 SFN周期在 扩展 DRX周期中的序号通知 UE。
处理器 312通过系统信息将当前 SFN周期在扩展 DRX周期中的序号向 UE广播; 或 / 和, 通过用信令将当前 SFN周期在扩展 DRX周期中的序号发送至 UE。
处理器 312在 MIB中的剩余比特内携带当前 SFN周期在扩展 DRX周期中的序号; 或 者,在 SIB中扩展相应的信息单元 IE携带当前 SFN周期在扩展 DRX周期中的序号;或者, 在新增的 SIB中携带当前 SFN周期在扩展 DRX周期中的序号。
参阅图 12所示, 本发明实施例中, UE侧装置包括通信单元 110和主控单元 111 , 其 中,
通信单元 110, 用于接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号; 主控单元 111 , 用于根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周期的长度 , 计算本装置的激活时刻。
通信单元 110在当前 SFN周期中的每一个系统信息修改周期内,均接收网络侧通知的 当前 SFN周期在扩展 DRX周期中的序号。
通信单元 110通过系统信息接收网络侧广播的当前 SFN周期在扩展 DRX周期中的序 号; 或 /和, 通过专用信令接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号。
通信单元 110接收网络侧通过主信息块 MIB中的剩余比特广播的当前 SFN周期在扩 展 DRX周期中的序号; 或者, 接收网络侧通过系统信息块 SIB中扩展的信息单元 IE广播 的当前 SFN周期在扩展 DRX周期中的序号; 或者, 接收网络侧通过新增的 SIB广播的当 前 SFN周期在扩展 DRX周期中的序号。
若本装置处于空闲态,则主控单元 111根据预设的扩展 DRX周期的长度 T,结合预设 的 SFN周期的长度 S ,在本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y, 以及在本地计算出激活时刻在 SFN周期中的编号 Z;
接着,再根据网络侧发送的当前 SFN周期在扩展 DRX周期中的序号 Index,判定所述 Index 和本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y之间满足设置的数值关 系时, 确定当前 SFN周期即是 UE的激活时刻所在的 SFN周期, 并根据激活时刻在 SFN 周期中的编号 Z确定本 UE的激活时刻。
若本装置处于连接态, 则主控单元 111根据预设的子帧偏移量确定激活时刻所在的子 帧编号; 并根据网络侧通知的当前 SFN周期在扩展 DRX周期中的序号, 结合计算获得的 激活时刻所在的子帧编号, 以及预设的子帧偏移量和扩展 DRX周期的长度, 计算获得激 活时刻所在的无线帧的编号。
参阅图 13所示, 本发明实施例中, 另一种 UE侧装置包括存储器 411和处理器 412。 其中, 处理器 412被配置了用于执行上述本发明实施例中所述的 UE侧的方法的计算 机程序等, 从而实现本发明实施例提供的 UE侧装置的功能; 存储器 411 , 用于存储该计 算机程序的代码, 可以被用于配置所述处理器 412; 处理器 312根据实际需要可以包括基 带处理部件、 射频处理部件等设备, 用于传输相关信息。 具体地:
处理器 412接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号;
处理器 412根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周 期的长度, 计算本装置的激活时刻。
处理器 412在当前 SFN周期中的每一个系统信息修改周期内,均接收网络侧通知的当 前 SFN周期在扩展 DRX周期中的序号。
处理器 412通过系统信息接收网络侧广播的当前 SFN周期在扩展 DRX周期中的序号; 或 /和, 通过专用信令接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号。
处理器 412接收网络侧通过主信息块 MIB中的剩余比特广播的当前 SFN周期在扩展 DRX周期中的序号; 或者, 接收网络侧通过系统信息块 SIB中扩展的信息单元 IE广播的 当前 SFN周期在扩展 DRX周期中的序号; 或者, 接收网络侧通过新增的 SIB广播的当前 SFN周期在扩展 DRX周期中的序号。
若本装置处于空闲态,则处理器 412根据预设的扩展 DRX周期的长度 T,结合预设的 SFN周期的长度 S , 在本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y, 以及在本地计算出激活时刻在 SFN周期中的编号 Z; 接着, 再根据网络侧发送的当前 SFN 周期在扩展 DRX周期中的序号 Index,判定所述 Index和本地计算出激活时刻所在 SFN周 期在扩展 DRX周期中的序号 Y之间满足设置的数值关系时, 确定当前 SFN周期即是 UE 的激活时刻所在的 SFN周期, 并根据激活时刻在 SFN周期中的编号 Z确定本 UE的激活 时刻。
若本装置处于连接态, 则处理器 412根据预设的子帧偏移量确定激活时刻所在的子帧 编号; 并根据网络侧通知的当前 SFN周期在扩展 DRX周期中的序号, 结合计算获得的激 活时刻所在的子帧编号, 以及预设的子帧偏移量和扩展 DRX周期的长度, 计算获得激活 时刻所在的无线帧的编号。
综上所述, 本发明实施例中, 网络侧将当前 SFN周期在扩展 DRX周期中的序号通 知 UE, 而 UE根据该序号, 结合预设的扩展 DRX周期的长度计算本 UE的激活时刻, 这 样, 当扩展的 DRX周期大于 SFN周期时, UE仍然可以计算出正确的寻呼时刻或 /和接收 业务数据的时刻,从而有效避免了 UE因为计算错误而丢失寻呼消息或者业务数据的情况, 从而能够在准确时刻进入激活状态,进而保障了 UE的业务 QoS ,提升了系统的服务性能。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内

Claims

权 利 要 求
1、 一种激活时刻的通知方法, 其特征在于, 包括:
网络侧确定当前系统帧号 SFN周期在扩展非连接接收 DRX周期中的序号; 网络侧将当前 SFN周期在扩展 DRX周期中的序号通知用户设备 UE,令 UE根据所述 序号, 结合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
2、 如权利要求 1所述的方法, 其特征在于, 网络侧在当前 SFN周期中的每一个系统 信息修改周期内, 均将当前 SFN周期在扩展 DRX周期中的序号通知 UE。
3、 如权利要求 1或 2所述的方法, 其特征在于, 网络侧将当前 SFN周期在扩展 DRX 周期中的序号通知 UE, 包括:
网络侧通过系统信息将当前 SFN周期在扩展 DRX周期中的序号向 UE广播; 或 /和
网络侧通过专用信令将当前 SFN周期在扩展 DRX周期中的序号发送至 UE。
4、 如权利要求 3所述的方法, 其特征在于, 网络侧通过系统信息将当前 SFN周期在 扩展 DRX周期中的序号向 UE广播, 包括:
网络侧通过在系统信息中的主信息块 MIB中的剩余比特内携带当前 SFN周期在扩展
DRX周期中的序号向 UE广播; 或者,
网络侧通过在系统信息中的系统信息块 SIB中扩展相应的信息单元 IE携带当前 SFN 周期在扩展 DRX周期中的序号向 UE广播; 或者,
网络侧通过在系统信息中新增的 SIB中携带当前 SFN周期在扩展 DRX周期中的序号 向 UE广播。
5、 一种激活时刻的计算方法, 其特征在于, 包括:
用户设备 UE接收网络侧发送的当前系统帧号 SFN周期在扩展非连接接收 DRX周期 中的序号;
UE根据当前 SFN周期在扩展 DRX周期中的序号,结合预设的扩展 DRX周期的长度, 计算本 UE的激活时刻。
6、 如权利要求 5所述的方法, 其特征在于, UE在当前 SFN周期中的每一个系统信息 修改周期内 , 均接收网络侧通知的当前 SFN周期在扩展 DRX周期中的序号。
7、 如权利要求 5或 6所述的方法, 其特征在于, UE接收网络侧通知的前 SFN周期在 扩展 DRX周期中的序号, 包括:
UE通过系统信息接收网络侧广播的当前 SFN周期在扩展 DRX周期中的序号; 或 /和
UE通过专用信令接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号。
8、 如权利要求 7所述的方法, 其特征在于, UE通过系统消息接收网络侧广播的将当 前 SFN周期在扩展 DRX周期中的序号, 包括:
UE接收网络侧通过在系统消息中的主信息块 MIB中的剩余比特广播的当前 SFN周期 在扩展 DRX周期中的序号; 或者,
UE接收网络侧通过在系统消息中的系统信息块 SIB中扩展的信息单元 IE广播的当前
SFN周期在扩展 DRX周期中的序号; 或者,
UR接收网络侧通过在系统消息中新增的 SIB广播的当前 SFN周期在扩展 DRX周期 中的序号。
9、 如权利要求 7所述的方法, 其特征在于, 若 UE处于空闲态, 则 UE根据当前 SFN 周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周期的长度, 计算本 UE的激活时 刻, 包括:
UE根据预设的扩展 DRX周期的长度 T , 结合预设的 SFN周期的长度 S , 在本地计算 出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y,以及在本地计算出激活时刻在 SFN 周期中的编号 Z;
UE根据网络侧发送的当前 SFN周期在扩展 DRX周期中的序号 Index,判定所述 Index 和本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y之间满足设置的数值关 系时, 确定当前 SFN周期为 UE的激活时刻所在的 SFN周期, 并根据激活时刻在 SFN周 期中的编号 Z确定本 UE的激活时刻。
10、如权利要求 7所述的方法,其特征在于, 若 UE处于连接态, 则 UE根据当前 SFN 周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周期的长度, 计算本 UE的激活时 刻, 包括:
UE根据预设的子帧偏移量确定激活时刻所在的子帧编号;
UE根据网络侧通知的当前 SFN周期在扩展 DRX周期中的序号, 结合计算获得的激 活时刻所在的子帧编号, 以及预设的子帧偏移量和扩展 DRX周期的长度, 计算获得激活 时刻所在的无线帧的编号。
11、 一种激活时刻的通知装置, 其特征在于, 包括:
确定单元, 用于确定当前系统帧号 SFN周期在扩展非连接接收 DRX周期中的序号; 通信单元, 用于将当前 SFN周期在扩展 DRX周期中的序号通知用户设备 UE, 令 UE 根据所述序号, 结合预设的扩展 DRX周期的长度计算该 UE的激活时刻。
12、 如权利要求 11所述的装置, 其特征在于, 所述通信单元在当前 SFN周期中的每 一个系统信息修改周期内, 均将当前 SFN周期在扩展 DRX周期中的序号通知 UE。
13、 如权利要求 11或 12所述的装置, 其特征在于, 所述通信单元将当前 SFN周期在 扩展 DRX周期中的序号通知 UE, 包括: 通过系统信息将当前 SFN周期在扩展 DRX周期中的序号向 UE广播; 或 /和
通过用信令将当前 SFN周期在扩展 DRX周期中的序号发送至 UE。
14、如权利要求 13所述的装置,其特征在于, 所述通信单元通过系统信息将当前 SFN 周期在扩展 DRX周期中的序号向 UE广播, 包括:
通过在系统信息中的主信息块 MIB中的剩余比特内携带当前 SFN周期在扩展 DRX周 期中的序号向 UE广播; 或者,
通过在系统信息中的系统信息块 SIB中扩展相应的信息单元 IE携带当前 SFN周期在 扩展 DRX周期中的序号向 UE广播; 或者,
通过在系统信息中新增的 SIB中携带当前 SFN周期在扩展 DRX周期中的序号向 UE 广播。
15、 一种激活时刻的计算装置, 其特征在于, 包括:
通信单元, 用于接收网络侧发送的当前系统帧号 SFN周期在扩展非连接接收 DRX周 期中的序号;
主控单元, 用于根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX 周期的长度, 计算本装置的激活时刻。
16、 如权利要求 15所述的装置, 其特征在于, 所述通信单元在当前 SFN周期中的每 一个系统信息修改周期内,均接收网络侧通知的当前 SFN周期在扩展 DRX周期中的序号。
17、 如权利要求 15或 16所述的装置, 其特征在于, 所述通信单元接收网络侧通知的 前 SFN周期在扩展 DRX周期中的序号, 包括:
通过系统信息接收网络侧广播的当前 SFN周期在扩展 DRX周期中的序号; 或 /和
通过专用信令接收网络侧发送的当前 SFN周期在扩展 DRX周期中的序号。
18、 如权利要求 17 所述的装置, 其特征在于, 所述通信单元通过系统消息接收网络 侧广播的将当前 SFN周期在扩展 DRX周期中的序号, 包括:
接收网络侧通过在系统消息中的主信息块 MIB中的剩余比特广播的当前 SFN周期在 扩展 DRX周期中的序号; 或者,
接收网络侧通过在系统消息中的系统信息块 SIB中扩展的信息单元 IE广播的当前 SFN 周期在扩展 DRX周期中的序号; 或者,
接收网络侧通过在系统消息中新增的 SIB广播的当前 SFN周期在扩展 DRX周期中的 序号。
19、 如权利要求 17 所述的装置, 其特征在于, 若本装置处于空闲态, 则所述主控单 元根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周期的长度, 计 算本装置的激活时刻, 包括:
根据预设的扩展 DRX周期的长度 T, 结合预设的 SFN周期的长度 S, 在本地计算出 激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y, 以及在本地计算出激活时刻在 SFN 周期中的编号 Z;
根据网络侧发送的当前 SFN周期在扩展 DRX周期中的序号 Index,判定所述 Index和 本地计算出激活时刻所在 SFN周期在扩展 DRX周期中的序号 Y之间满足设置的数值关系 时, 确定当前 SFN周期为 UE的激活时刻所在的 SFN周期, 并根据激活时刻在 SFN周期 中的编号 Z确定本 UE的激活时刻。
20、 如权利要求 17 所述的装置, 其特征在于, 若本装置处于连接态, 则所述主控单 元根据当前 SFN周期在扩展 DRX周期中的序号, 结合预设的扩展 DRX周期的长度, 计 算本装置的激活时刻, 包括:
根据预设的子帧偏移量确定激活时刻所在的子帧编号;
根据网络侧通知的当前 SFN周期在扩展 DRX周期中的序号, 结合计算获得的激活时 刻所在的子帧编号, 以及预设的子帧偏移量和扩展 DRX周期的长度, 计算获得激活时刻 所在的无线帧的编号。
PCT/CN2014/070946 2013-04-02 2014-01-21 一种激活时刻的计算方法及装置 WO2014161376A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14780219.3A EP2983395B1 (en) 2013-04-02 2014-01-21 Method and device for computing activation time
US14/781,883 US10397866B2 (en) 2013-04-02 2014-01-21 Method and device for computing activation time

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310112462.8A CN104105111B (zh) 2013-04-02 2013-04-02 一种激活时刻的计算方法及装置
CN201310112462.8 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014161376A1 true WO2014161376A1 (zh) 2014-10-09

Family

ID=51657547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070946 WO2014161376A1 (zh) 2013-04-02 2014-01-21 一种激活时刻的计算方法及装置

Country Status (4)

Country Link
US (1) US10397866B2 (zh)
EP (1) EP2983395B1 (zh)
CN (1) CN104105111B (zh)
WO (1) WO2014161376A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133777A1 (en) * 2015-02-16 2016-08-25 Qualcomm Incorporated Connected mode extended discontinuous reception
WO2017078889A1 (en) * 2015-11-04 2017-05-11 Qualcomm Incorporated System information change notification for extended discontinuous reception
CN107113716A (zh) * 2015-04-03 2017-08-29 株式会社Ntt都科摩 基站及用户装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3033911B1 (en) * 2013-08-16 2020-02-12 Nokia Solutions and Networks Oy Method and apparatus
WO2016114698A1 (en) * 2015-01-16 2016-07-21 Telefonaktiebolaget Lm Ericsson (Publ) A wireless communication device, a core network node and methods therein, for extended drx paging cycle
CN106465268B (zh) * 2015-01-23 2019-09-27 华为技术有限公司 一种用户设备省电方法及设备
RU2680745C1 (ru) * 2015-03-11 2019-02-26 Нокиа Солюшнс энд Нетуоркс Ой Сигнализация расширенного прерывистого приема для пользовательского оборудования в режиме соединения
CN106304337B (zh) 2015-06-26 2019-09-17 电信科学技术研究院 寻呼方法、移动管理实体及终端
US10057311B2 (en) * 2015-08-13 2018-08-21 Lg Electronics Inc. Method of transmitting system information with extended DRX cycle in wireless communication system and apparatus therefor
US10165545B2 (en) 2015-09-25 2018-12-25 Nokia Solutions And Networks Oy PF/PO calculations and use thereof for EDRX
KR20180081784A (ko) 2015-12-18 2018-07-17 후지쯔 가부시끼가이샤 사용자 장비를 페이징하기 위한 장치 및 방법, 및 통신 시스템
CN108307499B (zh) * 2016-08-12 2019-07-19 电信科学技术研究院 寻呼、接收寻呼、寻呼控制方法及装置
KR102501931B1 (ko) * 2016-09-13 2023-02-21 삼성전자 주식회사 무선 통신 시스템에서 시스템 정보 갱신 방법 및 장치
CN111885713B (zh) * 2017-10-05 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
KR20200114435A (ko) * 2019-03-28 2020-10-07 삼성전자주식회사 무선 통신 시스템에서 drx 값을 설정하는 방법 및 장치
WO2023239652A1 (en) * 2022-06-06 2023-12-14 Parsa Wireless Communications Llc Network indication of energy saving parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300297A (zh) * 2011-09-07 2011-12-28 大唐移动通信设备有限公司 一种演进型基站的非连续接收的判决方法及装置
KR20120122791A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 무선 통신 시스템에서의 불연속 수신 동작 수행 방법 및 장치
US20130044659A1 (en) * 2011-08-16 2013-02-21 Renesas Mobile Corporation Wireless Devices and Base Stations and Methods of Operating

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE393558T1 (de) * 2004-06-18 2008-05-15 Matsushita Electric Ind Co Ltd Zyklishe übertragung von benachrichtigungskoordinaten in einem kommunikationssystem
EP1608196A1 (en) * 2004-06-18 2005-12-21 Matsushita Electric Industrial Co., Ltd. Detection of notifications in a communication system
DE102006038583A1 (de) * 2006-08-17 2008-02-21 Nokia Siemens Networks Gmbh & Co.Kg Ergänzung der Nachbarzelllisten eines Mobilfunkkommunikationssystems durch Auslastungs-Informationen
US8121632B2 (en) * 2008-02-04 2012-02-21 Qualcomm Incorporated Suitable trigger mechanism to control new cell identification in UE when in DRX mode
US8583128B2 (en) * 2009-07-13 2013-11-12 Intel Mobile Communications GmbH Apparatus and method for mapping physical control channels
US8617228B2 (en) * 2009-10-23 2013-12-31 Medtronic Cryocath Lp Method and system for preventing nerve injury during a medical procedure
KR101720334B1 (ko) * 2010-01-12 2017-04-05 삼성전자주식회사 이동통신 시스템에서 불연속 수신 동작을 지원하는 방법 및 장치
CN101715188B (zh) * 2010-01-14 2015-11-25 中兴通讯股份有限公司 一种空口密钥的更新方法及系统
EP2369890A1 (en) * 2010-03-26 2011-09-28 Panasonic Corporation Connection peak avoidance for machine-type-communication (MTC) devices
CN102421148B (zh) * 2010-09-28 2016-03-30 华为技术有限公司 一种控制多种通信系统实现通信的方法和用户设备
TWI602412B (zh) * 2011-06-10 2017-10-11 內數位專利控股公司 執行鄰居發現的方法及裝置
CN110602669B (zh) * 2012-05-09 2023-08-18 交互数字专利控股公司 处理mtc长drx周期/睡眠长度

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122791A (ko) * 2011-04-29 2012-11-07 삼성전자주식회사 무선 통신 시스템에서의 불연속 수신 동작 수행 방법 및 장치
US20130044659A1 (en) * 2011-08-16 2013-02-21 Renesas Mobile Corporation Wireless Devices and Base Stations and Methods of Operating
CN102300297A (zh) * 2011-09-07 2011-12-28 大唐移动通信设备有限公司 一种演进型基站的非连续接收的判决方法及装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133777A1 (en) * 2015-02-16 2016-08-25 Qualcomm Incorporated Connected mode extended discontinuous reception
KR20170118074A (ko) * 2015-02-16 2017-10-24 퀄컴 인코포레이티드 접속 모드 확장된 불연속 수신
JP2018505626A (ja) * 2015-02-16 2018-02-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated 接続モード拡張間欠受信
US10085300B2 (en) 2015-02-16 2018-09-25 Qualcomm Incorporated Connected mode extended discontinuous reception
KR102495150B1 (ko) * 2015-02-16 2023-02-01 퀄컴 인코포레이티드 접속 모드 확장된 불연속 수신
CN107113716A (zh) * 2015-04-03 2017-08-29 株式会社Ntt都科摩 基站及用户装置
EP3280191A4 (en) * 2015-04-03 2018-04-11 NTT DoCoMo, Inc. Base station and user device
US10420164B2 (en) 2015-04-03 2019-09-17 Ntt Docomo, Inc. Base station and user equipment for configuring an extended DRX
WO2017078889A1 (en) * 2015-11-04 2017-05-11 Qualcomm Incorporated System information change notification for extended discontinuous reception
US10028329B2 (en) 2015-11-04 2018-07-17 Qualcomm Incorporated System information change notification for extended discontinuous reception

Also Published As

Publication number Publication date
EP2983395A4 (en) 2016-03-30
CN104105111B (zh) 2017-11-21
CN104105111A (zh) 2014-10-15
EP2983395B1 (en) 2020-03-11
EP2983395A1 (en) 2016-02-10
US20160112948A1 (en) 2016-04-21
US10397866B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2014161376A1 (zh) 一种激活时刻的计算方法及装置
CN109219116B (zh) 一种终端设备的休眠方法及装置
TWI676368B (zh) 一種資訊發送、通道監聽處理方法及裝置
CN107197508B (zh) 一种基于csm机制drx的设备休眠方法
JP6622920B2 (ja) Ue edrx下での信頼性のあるページング送信の方法
JP7150657B2 (ja) ダウンリンク・スケジューリング・データの監視方法、ダウンリンク・スケジューリング・データの送信方法、および装置
EP2983416B1 (en) Paging method, apparatus, and system
US10187871B2 (en) Paging method and device for network and terminal
WO2016197366A1 (zh) 一种drx实现方法、配置方法及相关设备
WO2013017006A1 (zh) 空闲状态下非连续接收的方法及装置
US20150036575A1 (en) Sleeping method and device
WO2014071551A1 (zh) 寻呼ue的方法、基站及ue
CN102413587B (zh) 一种非连续接收的实现方法
WO2011038696A1 (zh) 一种调度信息传输的方法及系统
WO2013102389A1 (zh) 非连续接收的方法及装置
CN102932884A (zh) 一种实现drx的方法和系统
WO2013023483A1 (zh) 一种实现drx的方法和系统
WO2012116555A1 (zh) 非连续接收方法及装置
JP7053802B2 (ja) 非連続受信の方法、端末デバイス及びネットワークデバイス
US20230088615A1 (en) Discontinuous reception processing method, terminal, device and medium
WO2013107404A1 (zh) 无线数据通信方法、基站与用户设备
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
CN112219446A (zh) Drx分组唤醒方法及装置、通信设备及存储介质
Vikhrova et al. Energy-efficient paging in cellular Internet of things networks
WO2022151070A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014780219

Country of ref document: EP