WO2014157876A1 - Hydrogen separation membrane and preparation method therefor - Google Patents

Hydrogen separation membrane and preparation method therefor Download PDF

Info

Publication number
WO2014157876A1
WO2014157876A1 PCT/KR2014/002388 KR2014002388W WO2014157876A1 WO 2014157876 A1 WO2014157876 A1 WO 2014157876A1 KR 2014002388 W KR2014002388 W KR 2014002388W WO 2014157876 A1 WO2014157876 A1 WO 2014157876A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
separation membrane
hydrogen
metal
porous support
Prior art date
Application number
PCT/KR2014/002388
Other languages
French (fr)
Korean (ko)
Inventor
이신근
박종수
이춘부
이성욱
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014157876A1 publication Critical patent/WO2014157876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance

Definitions

  • the present invention relates to a hydrogen separation membrane and a method for manufacturing the same, and more particularly, to improve the corrosion resistance for sulfur compounds contained in the synthesis gas (H 2 + CO) while reducing the hydrogen permeability hydrogen separation membrane and its preparation It is about a method.
  • Hydrogen is attracting attention as a major future energy source that can replace existing energy, because it is lightweight, abundant and excellent in the environment.
  • hydrogen obtained from resources containing hydrogen such as water, natural gas, coal, biomass, etc., contains impurities and needs to be separated and purified prior to use.
  • the hydrogen separation method using a separation membrane is advantageous because it can save more energy than other hydrogen separation methods and has advantages such as easy operation and miniaturization of the equipment used. Is one of them.
  • the palladium base metal separator has a high hydrogen permeability and excellent hydrogen separation, so it is clearly superior to other methods.
  • the hydrogen separator using the palladium-based metal separator can be used to produce pure hydrogen usefully for fuel cells or other processes that consume hydrogen, and can be used in hydrogenation or dehydrogenation processes to improve the quantity of the target product. It can be applied in various ways.
  • palladium-based metal separators can be applied to the capture and storage of very large CO 2 , such as carbon dioxide capture and storage (CCS), and to hydrogen separation technology.
  • CCS carbon dioxide capture and storage
  • the CCS technology is a technology for processing carbon dioxide generated by using fossil fuels such as coal, and includes a gasifier, a gas cleaning unit, a water gas shifter reaction (WGS), a dehydration unit, and a hydrogen separation membrane module.
  • the gasifier is a part that produces a synthesis gas by partially oxidizing fossil fuel, and sulfur compounds such as H 2 S and COS exist in the synthesis gas.
  • the sulfur compound is mostly removed in the gas cleaning unit, but the residual sulfur compound may be included in the syngas that has undergone the gas cleaning process without removing it through the gas cleaning process.
  • the sulfur compound remaining in the synthesis gas forms a sulfate on the surface of the metal separator, thereby acting as a factor to weaken the performance of the hydrogen separator.
  • hydrogen permeability is known to decrease by about 40% when 2 ppm of H 2 S is included in hydrogen.
  • H 2 S concentration is 20ppm or more, a defect may be formed in the metal separator, resulting in a loss of performance as a separator.
  • the hydrogen permeability was reduced by 20% in the case of Pd-30% Cu alloy and 30% in the case of Pd-15% Au alloy when 2ppm H 2 S was included.
  • Another object of the present invention is to provide a hydrogen separation membrane having a palladium-based metal separation membrane capable of eliminating the separation process of the sulfur compound and a method for producing the same.
  • the present invention is a porous support, a buffer layer of a ceramic material formed on the porous support, a palladium-based metal separator formed on the buffer layer capable of separating hydrogen, and a plurality of columns on the metal separator It provides a hydrogen separation membrane comprising a protective layer of a metal or ceramic material formed.
  • the protective layer is the metal is Pt, Au, Cu, Ru or Rh
  • the ceramic material is Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb
  • an oxide-based ceramic material including at least one of Ga, Ta, W, and Mo.
  • the protective layer may have a diameter of 1 to 1000 nm and a thickness of 0.01 to 5 ⁇ m.
  • the buffer layer is formed of a plurality of columns on the porous support, the diameter of the column may be 10 ⁇ 200nm.
  • the buffer layer is formed of an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Can be formed.
  • the buffer layer is an oxide based composition of oxygen at MO y (M is Ti, Zr) of 1 ⁇ y ⁇ 2, or of oxygen at Al 2 O z of 2 ⁇ z ⁇ 3. It may be formed of a ceramic material.
  • the present invention also provides a hydrogen separation membrane comprising a porous support, a palladium-based metal separator formed on the porous support capable of separating hydrogen, and a protective layer of a metal or ceramic material formed of a plurality of columns on the metal separator. to provide.
  • the protective layer is the metal is Pt, Au, Cu, Ru or Rh
  • the ceramic material is Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb
  • an oxide-based ceramic material including at least one of Ga, Ta, W, and Mo.
  • the present invention also provides a method of preparing a porous support, forming a buffer layer of a ceramic material on the porous support, forming a palladium-based metal separator capable of separating hydrogen on the buffer layer, and the metal separator It provides a method for producing a hydrogen separation membrane comprising the step of forming a protective layer of a plurality of columnar metal or ceramic material.
  • the porous support is a metal
  • the roughness of the surface on which the buffer layer is formed may be 100nm or less.
  • a plurality of columnar ceramic material buffer layers may be formed on the porous support.
  • the buffer layer in the step of forming the buffer layer, at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo Physically depositing an oxide-based ceramic material comprising a to form the buffer layer.
  • the composition of oxygen in MO y (M is Ti, Zr) is 1 ⁇ y ⁇ 2, or the composition of oxygen in Al 2 O z
  • the buffer layer may be formed by physically depositing an oxide-based ceramic material having 2 ⁇ z ⁇ 3.
  • the forming of the protective layer may include forming a protective layer by physically depositing a metal of Pt, Au, Cu, Ru, or Rh, or Ti, Zr,
  • the protective layer may be formed by physically depositing an oxide-based ceramic material including at least one of Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo.
  • a protective layer in the form of a column on the palladium-based metal separator, it is possible to minimize the reduction in hydrogen permeability while improving the corrosion resistance to the sulfur compound.
  • a gas cleaning process for removing the sulfur compound that has been performed before the hydrogen separation process can be omitted.
  • the gas cleaning process can be omitted, thereby simplifying the CCS process.
  • FIG. 1 is a cross-sectional view showing a hydrogen separation membrane according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing the hydrogen separation membrane of FIG. 1.
  • 3 to 5 are views showing each step according to the manufacturing method of FIG.
  • FIG. 6 is a surface photograph showing a buffer layer of a hydrogen separation membrane according to a first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating the buffer layer of FIG. 6.
  • FIG. 9 is a graph showing hydrogen permeability when 2 ppm of H 2 S is supplied to a hydrogen separation membrane according to a first embodiment and a comparative example of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a hydrogen separation membrane according to a second embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a hydrogen separation membrane according to a third embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a hydrogen separation membrane using a metal separator according to a first embodiment of the present invention.
  • the hydrogen separation membrane 100 includes a porous support 10, a palladium-based metal separation membrane 30, and a protective layer 40, and the porous support 10 and the metal separation membrane. It may further include a buffer layer 20 of the ceramic material interposed between (30).
  • the porous support 10 may be made of metal or ceramic material.
  • the buffer layer 20 of the ceramic material is formed on the porous support 10 and may be formed of a plurality of columns.
  • the palladium metal separator 30 may be formed on the buffer layer 20 to separate hydrogen.
  • the protective layer 40 is formed of a plurality of columns on the metal separator 30 and is made of a metal or ceramic material. In this case, the porous support 10 and the buffer layer 20 form a support structure for forming the metal separator 30.
  • the porous support 10 may be a porous metal, a porous ceramic or a porous metal coated with a ceramic.
  • a material of the porous metal stainless steel, nickel, inconel, or the like may be used.
  • a material of the porous ceramic an oxide based on Al, Ti, Zr, Si, or the like may be used. It is preferable that the size of the surface pores formed in the porous support 10 is not too large or too small. For example, when the size of the surface pores of the porous support 10 is less than 0.01 ⁇ m, the permeability of the porous support 10 itself is low, making it difficult to function as the porous support 10.
  • the size of the surface pores of the porous support 10 is preferably formed to have a 0.01 to 20 ⁇ m.
  • the surface roughness of the porous support 10 is to secure the coating uniformity and good bonding force of the buffer layer 20 formed on the surface of the porous support 10. That is, since the surface is uneven when the surface of the porous support 10 is not polished, problems may occur in securing coating uniformity and good bonding force of the buffer layer 20.
  • the buffer layer 20 is used as an adhesive layer by providing good bonding force between the porous support 10 and the metal separator 30 while suppressing diffusion between the porous support 10 and the metal separator 30.
  • the buffer layer 20 is an oxide-based ceramic material, that is, an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Can be formed.
  • the buffer layer 20 may be formed of an oxide-based ceramic material having an oxygen composition of 1 ⁇ y ⁇ 2 in MO y (M is Ti and Zr) or an oxygen composition of 2 ⁇ z ⁇ 3 in Al 2 O z . have.
  • TiO y , ZrO y , and Al 2 O z may be used as the buffer layer 20 (1 ⁇ y ⁇ 2, 2 ⁇ z ⁇ 3).
  • the buffer layer 20 is formed of a single layer is disclosed.
  • the reason why the buffer layer 20 is formed in the above-described composition is to provide good bonding force between the porous support 10 and the metal separator 20 via the buffer layer 20.
  • y is 1 or less, or z is 2 or less
  • the metallicity of the buffer layer 20 becomes stronger than that of the ceramic, hydrogen is prevented by mutual diffusion between the metal separator 30 including the buffer layer 20 and the porous support 10.
  • the problem of decreasing the transmittance may occur.
  • y> 2 and z> 3 the bonding force between the porous support 10 and the metal separator 20 via the buffer layer 20 may be degraded.
  • the y value is maintained at 1.5 to 1.8, and the z value is maintained at 2.5 to 2.8.
  • the column forming the buffer layer 20 When the column forming the buffer layer 20 has a small diameter and is densely formed, it is possible to suppress diffusion and improve the bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20. Hydrogen transmittance can also be improved.
  • the column forming the buffer layer 20 may be formed to have a diameter of 10 ⁇ 200nm. If the diameter of the column exceeds 200nm, the saturation area is reduced, the hydrogen permeability is lowered, the bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20 may be lowered.
  • the diameter of the column may be formed to be 10 nm or less, it has a disadvantage in that the manufacturing process is difficult to compact.
  • the buffer layer 20 may have a thickness determined in consideration of manufacturing conditions and use conditions of the hydrogen separation membrane 100. For example, when considering the use conditions of 400 °C, when forming the TiO y to the buffer layer 20 may be formed to a thickness of 100 to 200nm. When ZrO y is formed as the buffer layer 20, it may be formed to a thickness of 500 to 800 nm. As a method of forming the buffer layer 20, a physical deposition method such as sputtering may be used.
  • the metal separator 30 is formed by attaching or coating a palladium-based metal.
  • the metal separator 30 may be formed by a physical lamination method such as lamination, a physical deposition method such as sputtering, or the like.
  • Palladium-based metals include a multi-layered structure of dissimilar metals including palladium or a palladium alloy, palladium.
  • the palladium alloy may be any one or more alloys selected from the group consisting of Au, Ag, Cu, Ni, Ru, and Rh in Pd.
  • the multilayer structure includes, but is not limited to, Pd / Cu, Pd / Au, Pd / Ag, Pd / Pt, and the like.
  • the thickness may be 0.1 ⁇ m to 10 ⁇ m. If the thickness of the metal separation membrane 30 to 0.1 ⁇ m or less, it is good because the hydrogen permeability is further improved, but it is difficult to manufacture the metal separator 30 densely at a thickness of 0.1 ⁇ m or less, and thus the life of the metal separator 30 There is a problem of this shortening. However, when the thickness of the metal separation membrane 30 is formed to 10 ⁇ m or more, it can be formed densely, while the hydrogen transmittance may be relatively low. In addition, the use of expensive palladium has a problem that the manufacturing cost of the overall hydrogen separation membrane increases due to the thick metal separator formed by more than 10 ⁇ m.
  • the metal separator 30 when the metal separator 30 is formed using palladium, it is formed to a thickness of 0.1 ⁇ 10 ⁇ m. Preferably, considering the life characteristics, hydrogen permeability and the like of the metal separation membrane, it is preferable to form a thickness of 3 ⁇ 5 ⁇ m.
  • the protective layer 40 is formed in the form of a plurality of columns on the surface of the metal separator 30, it is possible to minimize the decrease in hydrogen permeability while improving the corrosion resistance of the sulfur compound of the metal separator 30.
  • the protective layer may be formed of a metal having excellent corrosion resistance to the sulfur compound, such as Pt, Au, Cu, Ru, or Rh, or may be formed by including a ceramic material in the metal described above. In this case, one or more of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the ceramic material.
  • the column for forming the protective layer 40 When the column for forming the protective layer 40 is compactly formed with a small diameter, the reduction in hydrogen permeability can be minimized while improving the corrosion resistance to the sulfur compound of the metal separator 30.
  • the column forming the protective layer 40 may be formed to have a diameter of 1 to 1000 nm and a thickness of 0.01 to 5 ⁇ m. Since the saturation area is reduced when the diameter of the column exceeds 1000 nm, the corrosion resistance to the sulfur compound can be improved, but the hydrogen permeability may be lowered.
  • the diameter of the column may be less than 1 nm, but the reduction in hydrogen permeability may be minimized, but the corrosion resistance may be relatively low, and the manufacturing process may be difficult to compact.
  • the thickness of the protective layer 40 that is, the height of the column is 0.01 ⁇ m or less, a decrease in hydrogen permeability may be minimized, but corrosion resistance may be relatively low.
  • the thickness of the protective layer 40 is 5 ⁇ m or more, corrosion resistance to the sulfur compound may be improved, but hydrogen permeability may be deteriorated.
  • the hydrogen separation membrane 100 coats the protective layer 40 in the form of a column on the palladium-based metal separation membrane 30, thereby minimizing a decrease in hydrogen permeability while improving corrosion resistance to sulfur compounds.
  • the protective layer 40 in the form of a column on the palladium-based metal separation membrane 30, thereby minimizing a decrease in hydrogen permeability while improving corrosion resistance to sulfur compounds. Can be.
  • a gas cleaning process for removing the sulfur compound that was performed before the hydrogen separation process can be omitted.
  • the gas cleaning process can be omitted, thereby simplifying the CCS process.
  • the hydrogen separation membrane 100 forms a buffer layer 20 by coating a ceramic material having a columnar shape between the porous support 10 and the metal separation membrane 30, thereby forming the metal separation membrane 30 and the porous support. It is possible to suppress the mutual diffusion between the (10) and to facilitate the discharge of hydrogen passing through the metal separation membrane (30).
  • the hydrogen separation membrane 100 forms a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, thereby providing the porous support 10 and the metal separation membrane 30. It is possible to secure a good bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20 while suppressing diffusion of the liver. Since the buffer layer 20 is formed in the form of a plurality of independent columns or a plurality of clusters, the buffer layer 20 can effectively cope with shrinkage and expansion, thereby providing a good bonding force between the porous support 10 and the metal separator 20. have.
  • the buffer layer 20 forms the buffer layer 20 by forming a composition of oxygen in MO y (M is Ti and Zr) 1 ⁇ y ⁇ 2, or in Al 2 O z so that the composition of oxygen is 2 ⁇ z ⁇ 3. It is possible to provide a good bonding force between the porous support 10 and the metal separator 30 through the medium.
  • FIGS. 1 to 4 A method of manufacturing the hydrogen separation membrane 100 according to the first embodiment will be described with reference to FIGS. 1 to 4 as follows.
  • 2 is a flowchart according to a method of manufacturing the hydrogen separation membrane 100 of FIG. 1.
  • 3 to 5 are views showing each step according to the manufacturing method of FIG.
  • a porous support 10 is prepared in step S51.
  • the porous support 10 may be a metal or ceramic material.
  • a surface treatment process is performed to control the surface roughness of the porous support 10 in step S53.
  • a polishing process such as chemical mechanical polishing (CMP) may be used.
  • CMP chemical mechanical polishing
  • a buffer layer 20 of a ceramic material having a columnar shape is formed on the porous support 10. That is, using a physical vapor deposition method, by depositing an oxide-based ceramic material containing at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo buffer layer ( 20) can be formed.
  • the buffer layer is made of an oxide-based ceramic material having an oxygen composition of 1 ⁇ y ⁇ 2 in MO y (M is Ti and Zr) or an oxygen composition of 2 ⁇ z ⁇ 3 in Al 2 O z . 20 can be formed.
  • the buffer layer 20 may be formed by sputtering under vacuum conditions using a target of MO 2 or Al 2 O 3 .
  • a target of MO 2 or Al 2 O 3 For example, when the target is deposited using TiO 2 in the sputtering process, since the vacuum condition is used, TiO y may be formed as the buffer layer 20 such that the oxygen composition is y ⁇ 2.
  • the buffer layer 20 may be formed by supplying oxygen gas to a M metal plate or powder as a source to oxidize evaporated M to grow TiO y on the porous support 10 such that y ⁇ 2 in a columnar form.
  • the Ti metal target or powder may be used as a source, and O 2 may be supplied to the atmosphere gas to oxidize the evaporated Ti species to grow in a columnar form to form the buffer layer 20.
  • the buffer layer 20 was formed in a single layer.
  • the buffer layer 20 may be formed of one of TiO y , ZrO y , and Al 2 O z .
  • a palladium-based metal separator 30 is formed on the buffer layer 20 in step S57.
  • the metal separator 30 may be formed by a physical deposition method such as lamination or a physical deposition method such as sputtering.
  • a protective layer 20 of a metal or ceramic material having a columnar shape is formed on the metal separator 30. That is, the protective layer 20 may be formed in a columnar shape on the metal separator 30 using a physical vapor deposition method.
  • the protective layer 30 may be formed by physically depositing a metal having excellent corrosion resistance to a sulfur compound, such as Pt, Au, Cu, Ru, or Rh, or by including a ceramic material in the aforementioned metal. In this case, one or more of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the ceramic material.
  • the buffer layer 20 of the hydrogen separation membrane 100 according to the first embodiment may be formed, as shown in FIGS. 6 and 7.
  • 6 is a surface photograph showing the buffer layer 20 of the hydrogen separation membrane according to the first embodiment of the present invention.
  • 7 is a cross-sectional view illustrating the buffer layer 20 of FIG. 6.
  • a dense silicon wafer 10a that can replace the porous support is used.
  • the buffer layer 20 may be formed by a sputtering process under vacuum conditions using the target as ZrO 2 .
  • the buffer layer 20 may be formed in the form of a column by oxidizing Zr evaporated by supplying oxygen gas to a Zr metal plate or powder as a source.
  • the buffer layer 20 is densely formed of a plurality of columns 22 on the silicon wafer.
  • the diameter of the column 22 forming the buffer layer 20 is 10-20 nm.
  • the buffer layer 20 may be confirmed that a plurality of columns 22 are formed independently or a plurality of clusters 24 are formed.
  • the hydrogen separation membrane 100 according to the first embodiment includes the columnar protective layer 40, as illustrated in FIG. 8, the collection efficiency of CO 2 is improved.
  • 8 is a graph showing the collection efficiency of CO 2 using the hydrogen separation membrane according to the first embodiment and the comparative example of the present invention.
  • the hydrogen separator according to the comparative example uses an alloy of Pd-Au as a palladium-based metal separator, and has no protective layer.
  • an alloy of Pd-Au was used as the palladium metal separator and Pt-ZrO 2 was introduced as the protective layer.
  • the collection efficiency of CO 2 was improved while performing a hydrogen separation process with a synthesis gas containing 60% H 2 and 40% CO 2 at 400 ° and 20 bar. Measured. As a result of the measurement, as shown in FIG. 8, it can be seen that the collection efficiency of CO 2 is improved by about 25% compared to the first embodiment.
  • the hydrogen separation membrane 100 according to the first embodiment includes the columnar protective layer 40, as shown in FIG. 9, the hydrogen permeability was reduced when H 2 S was supplied with hydrogen containing 2 ppm. have. 9 is a graph showing the hydrogen permeability of the hydrogen separation membrane according to the first embodiment and the comparative example of the present invention.
  • the hydrogen separation membrane according to the comparative example uses an alloy of Pd-Au as a palladium-based metal separator, and has no protective layer.
  • an alloy of Pd-Au was used as the palladium metal separator and Pt-ZrO 2 was introduced as the protective layer.
  • Example 1 Pt-3% Au metal separator was coated with Pt-ZrO 2 by a co-sputtering method to compare corrosion resistance.
  • a hydrogen separation membrane having a Pd-3% Au metal separation membrane without a protective layer was used.
  • the Pt-ZrO 2 coating was performed by supplying 30 ml / min of Ar under vacuum at 20 mtorr. In addition, Pt 99.99% and ZrO 2 99.9% targets are fired independently on each gun, Pt equipped guns supply 175W of DC power and ZrO 2 equipped guns with RF power 175W currents. It was.
  • composition of Pt and ZrO 2 in the protective layer after coating was 88.2 wt% and 11.8 wt%, respectively.
  • the hydrogen separation membrane without the protective layer had a 57% permeability decrease compared to the hydrogen permeability before H 2 S supply.
  • the hydrogen separation membrane according to the first embodiment is reduced by 37% compared to the hydrogen permeability before H 2 S supply.
  • the buffer layer 20 is formed as a single layer, but is not limited thereto.
  • the buffer layer 20 may be formed of two layers.
  • FIG. 10 is a cross-sectional view illustrating a hydrogen separation membrane 200 according to a second embodiment of the present invention.
  • the hydrogen separation membrane 200 according to the second embodiment is formed on the porous support 10 and the buffer layer 20 and the buffer layer 20 of the ceramic material formed of a plurality of columns on the porous support 10. And a palladium-based metal separator 30 capable of separating hydrogen, and a protective layer 40 formed of a plurality of columns on the metal separator 30.
  • the buffer layer 20 according to the second embodiment is formed of two layers.
  • the buffer layer 20 includes a first buffer layer 21 formed on the porous support 10 and a second buffer layer 23 formed on the first buffer layer 21.
  • the first buffer layer 21 and the second buffer layer 23 may be formed of different oxide ceramic materials.
  • the second buffer layer 23 may be formed of TiO y or Al 2 O z .
  • ZrO y is formed as the first buffer layer 21
  • the first buffer layer 21 may be formed to a thickness of 100 to 1000 nm.
  • TiO y is formed as the second buffer layer 23
  • the second buffer layer 23 may be formed to a thickness of 10 to 200 nm.
  • the first buffer layer 21 functions as a shielding layer to prevent diffusion while improving the transmittance of hydrogen
  • the second buffer layer 23 performs a function as an adhesive layer.
  • the porous support 10 via the buffer layer 20 is suppressed while the diffusion between the porous support 10 and the metal separator 30 is suppressed. Good bonding force between the metal separators 30 may be provided.
  • the hydrogen separation membrane 200 according to the second embodiment has a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, the porous support 10 and the metal separation membrane ( 30) can suppress mutual diffusion.
  • the hydrogen separation membrane 200 according to the second embodiment includes the protective layer 40 in the same manner as in the first embodiment, the reduction of hydrogen permeability is minimized while improving the corrosion resistance to the sulfur compound of the metal separation membrane 30. can do.
  • the buffer layer 20 is formed in two layers, but is not limited thereto.
  • the buffer layer 20 may be formed of three layers.
  • FIG. 11 is a cross-sectional view illustrating a hydrogen separation membrane 300 according to a third embodiment of the present invention.
  • the hydrogen separation membrane 300 according to the third embodiment is formed on the porous support 10, the buffer layer 20 of the ceramic material formed of a plurality of columns on the porous support 10, and the buffer layer 20. And a palladium-based metal separator 30 capable of separating hydrogen, and a protective layer 40 formed of a plurality of columns on the metal separator 30.
  • the buffer layer 20 according to the third embodiment is formed of three layers.
  • the buffer layer 20 includes a first buffer layer 21 formed on the porous support 10, a second buffer layer 23 formed on the first buffer layer 21, and a third buffer layer 25 formed on the second buffer layer 23. It includes. In the first to third buffer layers 21, 23, and 25, neighboring buffer layers may be formed of different oxide ceramic materials. For example, when the second buffer layer 23 is formed of ZrO m , the first and third buffer layers 21 and 25 may be formed of TiO y or Al 2 O z . When ZrO y is formed as the second buffer layer 23, the second buffer layer 23 may be formed to a thickness of 100 to 1000 nm. When TiO y is formed of the first and second buffer layers 21 and 25, the first and third buffer layers 21 and 25 may be formed to have a thickness of 10 to 200 nm, respectively.
  • the first and third buffer layers 21 and 25 function as the adhesive layer
  • the second buffer layer 23 functions as the shielding layer.
  • the first and third buffer layers 21 and 25 may be formed of one of TiO y , ZrO y , and Al 2 O z , but may be formed of an oxide-based ceramic material having 1 ⁇ y ⁇ 2 or 2 ⁇ z ⁇ 3.
  • the second buffer layer 23 may be formed to have the same composition as the first and third buffer layers 21 and 25, and may be formed as y ⁇ 2 and z ⁇ 3. The reason is that since the first and third buffer layers 21 and 25 exist on both sides of the second buffer layer 23, the adhesion and shielding functions are performed even if the composition of the second buffer layer 23 is y ⁇ 2 and z ⁇ 3. can do.
  • an oxide-based ceramic material including metals such as Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the second buffer layer 23. have.
  • the porous support 10 via the buffer layer 20 is suppressed while the diffusion between the porous support 10 and the metal separator 30 is suppressed. Good bonding force between the metal separators 30 may be provided. In addition, it is possible to facilitate the discharge of hydrogen passed through the metal separation membrane (30).
  • the hydrogen separation membrane 300 according to the third embodiment has a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, the porous support 10 and the metal separation membrane ( 30) can suppress mutual diffusion.
  • the hydrogen separation membrane 300 according to the third embodiment includes the protective layer 40 in the same manner as in the first embodiment, the reduction of hydrogen permeability is minimized while improving the corrosion resistance to the sulfur compound of the metal separation membrane 30. can do.
  • the buffer layer 20 is formed in three layers, but may be formed in three or more layers as necessary.

Abstract

The present invention relates to a hydrogen separation membrane and a preparation method therefor, and the purpose thereof is to provide a hydrogen separation membrane while having high corrosion resistance to a sulfur compound contained in synthetic gases (H2+CO) and capable of minimizing a decrease in hydrogen permeability. The hydrogen separation membrane according to the present invention comprises: a porous support; a buffer layer, which is made from a ceramic material, formed on the porous support; a palladium-based metal separation membrane formed on the buffer layer and capable of separating hydrogen; and a protective layer, which is made from a metal or ceramic material, formed as a plurality of columns on the metal separation membrane.

Description

수소 분리막 및 그의 제조 방법Hydrogen Separator and its Manufacturing Method
본 발명은 수소 분리막 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 합성가스(H2+CO)에 포함된 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있는 수소 분리막 및 그의 제조 방법에 관한 것이다.The present invention relates to a hydrogen separation membrane and a method for manufacturing the same, and more particularly, to improve the corrosion resistance for sulfur compounds contained in the synthesis gas (H 2 + CO) while reducing the hydrogen permeability hydrogen separation membrane and its preparation It is about a method.
수소는 기존 에너지를 대체할 수 있는 장래의 주요한 에너지원으로 주목을 받고 있는데, 경량(輕量)이고 풍부하며 환경에 있어서 우수하기 때문이다. 그러나 물이나 천연가스, 석탄, 바이오매스(biomass) 등 수소를 포함하는 자원으로부터 얻어지는 수소에는 불순물이 포함되기 때문에, 사용의 이전 단계에서 분리ㅇ정제할 필요가 있다.Hydrogen is attracting attention as a major future energy source that can replace existing energy, because it is lightweight, abundant and excellent in the environment. However, hydrogen obtained from resources containing hydrogen, such as water, natural gas, coal, biomass, etc., contains impurities and needs to be separated and purified prior to use.
수소를 분리 및 정제하는 방법으로서, 심냉분리법이나 흡착법 또는 분리막에 의한 수소분리법 등 수 많은 기술이 제안되어 있다. 이들 중에서 분리막을 이용한 수소 분리법은 다른 수소 분리 방법과 비교하여 에너지를 더 절약할 수 있고, 조작이 간편하고 또한 사용하는 기기의 소형화가 가능하다는 등의 유리한 점을 갖고 있기 때문에, 많이 사용되고 있는 수소 분리법 중에 하나이다.As a method of separating and purifying hydrogen, a number of techniques have been proposed, such as deep cooling separation method, adsorption method or hydrogen separation method using a separation membrane. Among them, the hydrogen separation method using a separation membrane is advantageous because it can save more energy than other hydrogen separation methods and has advantages such as easy operation and miniaturization of the equipment used. Is one of them.
특히 팔라듐계(palladium base)의 금속 분리막은 높은 수소 투과율과 우수한 수소 분리성을 구비하기 때문에, 다른 방법과 비교하면 분명히 우수하다. 또한 팔라듐계의 금속 분리막을 이용한 수소 분리막은 연료전지나 수소를 소비하는 다른 프로세스를 위하여 유용하게 순수한 수소를 제조할 수 있고, 대상제품의 수량을 향상시키기 위하여 수소화나 탈수소화 반응 프로세스에 사용할 수 있는 등 다양하게 응용될 수 있다.Particularly, the palladium base metal separator has a high hydrogen permeability and excellent hydrogen separation, so it is clearly superior to other methods. In addition, the hydrogen separator using the palladium-based metal separator can be used to produce pure hydrogen usefully for fuel cells or other processes that consume hydrogen, and can be used in hydrogenation or dehydrogenation processes to improve the quantity of the target product. It can be applied in various ways.
또한 팔라듐계의 금속 분리막은 CCS(Carbon dioxide capture and storage)와 같은 초대형의 CO2의 포집 및 저장과, 수소 분리 기술에 적용될 수 있다. 여기서 CCS 기술은 석탄과 같은 화석연료 사용함에 따라 발생되는 이산화탄소를 처리하는 기술로서, 가스화기, 가스클리닝부, WGS(water gas shifter reaction), 탈수부 및 수소 분리막 모듈을 포함한다. 이때 가스화기는 화석연료를 부분산화하여 합성가스를 생성하는 부분으로, 합성가스에는 H2S, COS 등과 같은 황 화합물이 존재한다.In addition, palladium-based metal separators can be applied to the capture and storage of very large CO 2 , such as carbon dioxide capture and storage (CCS), and to hydrogen separation technology. Here, the CCS technology is a technology for processing carbon dioxide generated by using fossil fuels such as coal, and includes a gasifier, a gas cleaning unit, a water gas shifter reaction (WGS), a dehydration unit, and a hydrogen separation membrane module. At this time, the gasifier is a part that produces a synthesis gas by partially oxidizing fossil fuel, and sulfur compounds such as H 2 S and COS exist in the synthesis gas.
물론 황 화합물은 대부분 가스클리닝부에서 제거되지만, 가스클리닝 공정을 통해 제거되지 않고 잔존하는 황 화합물이 수 ppm이 가스클리닝 공정을 거친 합성가스에 포함될 수 있다. 합성가스에 잔존하는 황 화합물은 금속 분리막의 표면에 황산염(sulfate)을 형성하여 수소 분리막의 성능을 약화시키는 요인으로 작용한다.Of course, the sulfur compound is mostly removed in the gas cleaning unit, but the residual sulfur compound may be included in the syngas that has undergone the gas cleaning process without removing it through the gas cleaning process. The sulfur compound remaining in the synthesis gas forms a sulfate on the surface of the metal separator, thereby acting as a factor to weaken the performance of the hydrogen separator.
예컨대 팔라듐 단독의 금속 분리막의 경우, 수소에 H2S가 2ppm 포함될 경우 수소투과도가 40% 가량 감소하는 것으로 알려져 있다. 특히 팔라듐 단독의 금속 분리막의 경우, H2S 농도가 20ppm 이상 존재할 경우, 금속 분리막에 디펙트(defect)가 형성되어 분리막으로서의 성능을 잃게 되는 문제를 발생시킬 수 있다.For example, in the case of a metal separator of palladium alone, hydrogen permeability is known to decrease by about 40% when 2 ppm of H 2 S is included in hydrogen. In particular, in the case of the metal separator of palladium alone, when the H 2 S concentration is 20ppm or more, a defect may be formed in the metal separator, resulting in a loss of performance as a separator.
이러한 문제점을 해소하기 위해서, 금속 분리막을 Pd-Cu, Pd-Au 등의 합금으로 형성하여 황 화합물에 대한 내식성을 향상시키는 연구를 진행한 바 있다.In order to solve this problem, the research has been conducted to improve the corrosion resistance of the sulfur compound by forming a metal separator with an alloy such as Pd-Cu, Pd-Au.
본 연구 결과에 따르면, 2ppm H2S 포함될 때 Pd-30%Cu 합금의 경우, 수소 투과도는 20% 감소하고, Pd-15%Au 합금의 경우 30% 가량 수소투과도가 감소하는 것을 확인하였다. 이러한 결과는 금속 분리막의 합금화로 내식성은 향상시킬 수 있지만, 금속 분리막의 표면에 팔라듐 금속에 흡착되는 황 화합물로 인해 수소투과도 감소하는 것을 나타낸다.According to the results of the study, the hydrogen permeability was reduced by 20% in the case of Pd-30% Cu alloy and 30% in the case of Pd-15% Au alloy when 2ppm H 2 S was included. These results indicate that corrosion resistance can be improved by alloying the metal separator, but hydrogen permeability is also reduced due to sulfur compounds adsorbed to the palladium metal on the surface of the metal separator.
따라서 본 발명의 목적은 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있는 팔라듐계의 금속 분리막을 갖는 수소 분리막 및 그의 제조 방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a hydrogen separation membrane having a palladium-based metal separation membrane capable of minimizing a decrease in hydrogen permeability while improving corrosion resistance to sulfur compounds and a method of manufacturing the same.
본 발명의 다른 목적은 황 화합물의 분리 공정을 배제할 수 있는 팔라듐계의 금속 분리막을 갖는 수소 분리막 및 그의 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a hydrogen separation membrane having a palladium-based metal separation membrane capable of eliminating the separation process of the sulfur compound and a method for producing the same.
상기 목적을 달성하기 위하여, 본 발명은 다공성 지지체와, 상기 다공성 지지체 위에 형성된 세라믹 소재의 버퍼층과, 상기 버퍼층 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막, 및 상기 금속 분리막 위에 다수의 컬럼으로 형성된 금속 또는 세라믹 소재의 보호층을 포함하는 수소 분리막을 제공한다.In order to achieve the above object, the present invention is a porous support, a buffer layer of a ceramic material formed on the porous support, a palladium-based metal separator formed on the buffer layer capable of separating hydrogen, and a plurality of columns on the metal separator It provides a hydrogen separation membrane comprising a protective layer of a metal or ceramic material formed.
본 발명에 따른 수소 분리막에 있어서, 상기 보호층은 상기 금속이 Pt, Au, Cu, Ru 또는 Rh이고, 상기 세라믹 소재가 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재일 수 있다.In the hydrogen separation membrane according to the present invention, the protective layer is the metal is Pt, Au, Cu, Ru or Rh, the ceramic material is Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb And an oxide-based ceramic material including at least one of Ga, Ta, W, and Mo.
본 발명에 따른 수소 분리막에 있어서, 상기 보호층은 상기 컬럼의 직경이 1~1000nm이고, 두께는 0.01~5㎛ 일 수 있다.In the hydrogen separation membrane according to the present invention, the protective layer may have a diameter of 1 to 1000 nm and a thickness of 0.01 to 5 μm.
본 발명에 따른 수소 분리막에 있어서, 상기 버퍼층은 상기 다공성 지지체 위에 다수의 컬럼으로 형성되며, 상기 컬럼의 직경이 10~200nm일 수 있다.In the hydrogen separation membrane according to the present invention, the buffer layer is formed of a plurality of columns on the porous support, the diameter of the column may be 10 ~ 200nm.
본 발명에 따른 수소 분리막에 있어서, 상기 버퍼층은 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재로 형성될 수 있다.In the hydrogen separation membrane according to the present invention, the buffer layer is formed of an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Can be formed.
본 발명에 따른 수소 분리막에 있어서, 상기 버퍼층은 MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재로 형성될 수 있다.In the hydrogen separation membrane according to the present invention, the buffer layer is an oxide based composition of oxygen at MO y (M is Ti, Zr) of 1 <y <2, or of oxygen at Al 2 O z of 2 <z <3. It may be formed of a ceramic material.
본 발명은 또한, 다공성 지지체와, 상기 다공성 지지체 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막, 및 상기 금속 분리막 위에 다수의 컬럼으로 형성된 금속 또는 세라믹 소재의 보호층을 포함하는 수소 분리막을 제공한다.The present invention also provides a hydrogen separation membrane comprising a porous support, a palladium-based metal separator formed on the porous support capable of separating hydrogen, and a protective layer of a metal or ceramic material formed of a plurality of columns on the metal separator. to provide.
본 발명에 따른 수소 분리막에 있어서, 상기 보호층은 상기 금속이 Pt, Au, Cu, Ru 또는 Rh이고, 상기 세라믹 소재가 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재일 수 있다.In the hydrogen separation membrane according to the present invention, the protective layer is the metal is Pt, Au, Cu, Ru or Rh, the ceramic material is Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb And an oxide-based ceramic material including at least one of Ga, Ta, W, and Mo.
본 발명은 또한, 다공성 지지체를 준비하는 단계와, 상기 다공성 지지체 위에 세라믹 소재의 버퍼층을 형성하는 단계와, 상기 버퍼층 위에 수소를 분리할 수 있는 팔라듐계의 금속 분리막을 형성하는 단계, 및 상기 금속 분리막 위에 다수의 컬럼 형상의 금속 또는 세라믹 소재의 보호층을 형성하는 단계를 포함하는 수소 분리막의 제조 방법을 제공한다.The present invention also provides a method of preparing a porous support, forming a buffer layer of a ceramic material on the porous support, forming a palladium-based metal separator capable of separating hydrogen on the buffer layer, and the metal separator It provides a method for producing a hydrogen separation membrane comprising the step of forming a protective layer of a plurality of columnar metal or ceramic material.
본 발명에 따른 수소 분리막의 제조 방법에 있어서, 상기 준비하는 단계에서, 상기 다공성 지지체는 금속이며, 상기 버퍼층이 형성되는 표면의 조도가 100nm 이하일 수 있다.In the method for producing a hydrogen separation membrane according to the present invention, in the preparing step, the porous support is a metal, the roughness of the surface on which the buffer layer is formed may be 100nm or less.
본 발명에 따른 수소 분리막의 제조 방법에 있어서, 상기 버퍼층을 형성하는 단계에서, 상기 다공성 지지체 위에 다수의 컬럼 형상의 세라믹 소재의 버퍼층을 형성할 수 있다.In the method of manufacturing a hydrogen separation membrane according to the present invention, in the forming of the buffer layer, a plurality of columnar ceramic material buffer layers may be formed on the porous support.
본 발명에 따른 수소 분리막의 제조 방법에 있어서, 상기 버퍼층을 형성하는 단계에서, Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재를 물리적으로 증착하여 상기 버퍼층을 형성할 수 있다.In the method for producing a hydrogen separation membrane according to the present invention, in the step of forming the buffer layer, at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo Physically depositing an oxide-based ceramic material comprising a to form the buffer layer.
본 발명에 따른 수소 분리막의 제조 방법에 있어서, 상기 버퍼층을 형성하는 단계에서, MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재를 물리적으로 증착하여 상기 버퍼층을 형성할 수 있다.In the method of manufacturing a hydrogen separation membrane according to the present invention, in the step of forming the buffer layer, the composition of oxygen in MO y (M is Ti, Zr) is 1 <y <2, or the composition of oxygen in Al 2 O z The buffer layer may be formed by physically depositing an oxide-based ceramic material having 2 <z <3.
그리고 본 발명에 따른 수소 분리막의 제조 방법에 있어서, 상기 보호층을 형성하는 단계는, Pt, Au, Cu, Ru 또는 Rh의 금속을 물리적으로 증착하여 상기 보호층을 형성허가나, Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재를 물리적으로 증착하여 상기 보호층을 형성할 수 있다.In the method of manufacturing a hydrogen separation membrane according to the present invention, the forming of the protective layer may include forming a protective layer by physically depositing a metal of Pt, Au, Cu, Ru, or Rh, or Ti, Zr, The protective layer may be formed by physically depositing an oxide-based ceramic material including at least one of Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo.
본 발명에 따르면, 팔라듐계의 금속 분리막 위에 컬럼 형태의 보호층을 코팅함으로써, 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다.According to the present invention, by coating a protective layer in the form of a column on the palladium-based metal separator, it is possible to minimize the reduction in hydrogen permeability while improving the corrosion resistance to the sulfur compound.
이와 같이 황 화합물에 대한 내식성이 우수한 수소 분리막을 제공함으로써, 수소 분리 공정 이전에 수행되었던 황 화합물의 제거하기 위한 가스클리닝 공정을 생략할 수 있다. 특히 가스클리닝 공정의 생략으로 CCS 공정을 간소화하여 경제적인 공정 구성이 가능한 이점도 있다.As such, by providing a hydrogen separation membrane having excellent corrosion resistance to the sulfur compound, a gas cleaning process for removing the sulfur compound that has been performed before the hydrogen separation process can be omitted. In particular, the gas cleaning process can be omitted, thereby simplifying the CCS process.
또한 팔라듐계의 금속 분리막 위에 컬럼 형태의 보호층을 코팅함으로써, CO2의 포집 효율을 향상시킬 수 있다.In addition, by coating a protective layer in the form of a column on the metal separator of the palladium-based, it is possible to improve the CO 2 collection efficiency.
도 1은 본 발명의 제1 실시예에 따른 수소 분리막을 보여주는 단면도이다.1 is a cross-sectional view showing a hydrogen separation membrane according to a first embodiment of the present invention.
도 2는 도 1의 수소 분리막의 제조 방법에 따른 흐름도이다.2 is a flowchart illustrating a method of manufacturing the hydrogen separation membrane of FIG. 1.
도 3 내지 도 5는 도 2의 제조 방법에 따른 각 단계를 보여주는 도면들이다.3 to 5 are views showing each step according to the manufacturing method of FIG.
도 6은 본 발명의 제1 실시예에 따른 수소 분리막의 버퍼층을 보여주는 표면 사진이다.6 is a surface photograph showing a buffer layer of a hydrogen separation membrane according to a first embodiment of the present invention.
도 7은 도 6의 버퍼층을 보여주는 단면 사진이다.7 is a cross-sectional view illustrating the buffer layer of FIG. 6.
도 8은 본 발명의 제1 실시예 및 비교예에 따른 수소 분리막을 이용한 CO2의 포집 효율을 보여주는 그래프이다.8 is a graph showing the collection efficiency of CO 2 using the hydrogen separation membrane according to the first embodiment and the comparative example of the present invention.
도 9는 본 발명의 제1 실시예 및 비교예에 따른 수소 분리막에 H2S를 2ppm 공급할 때 수소투과도를 보여주는 그래프이다.FIG. 9 is a graph showing hydrogen permeability when 2 ppm of H 2 S is supplied to a hydrogen separation membrane according to a first embodiment and a comparative example of the present invention.
도 10은 본 발명의 제2 실시예에 따른 수소 분리막을 보여주는 단면도이다.10 is a cross-sectional view illustrating a hydrogen separation membrane according to a second embodiment of the present invention.
도 11은 본 발명의 제3 실시예에 따른 수소 분리막을 보여주는 단면도이다.11 is a cross-sectional view illustrating a hydrogen separation membrane according to a third embodiment of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, it should be noted that the description of other parts will be omitted so as not to distract from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are appropriate to the concept of terms in order to explain their invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
제1 실시예First embodiment
도 1은 본 발명의 제1 실시예에 따른 금속 분리막을 이용한 수소 분리막을 보여주는 단면도이다.1 is a cross-sectional view showing a hydrogen separation membrane using a metal separator according to a first embodiment of the present invention.
도 1을 참조하면, 제1 실시예에 따른 수소 분리막(100)은 다공성 지지체(10), 팔라듐계의 금속 분리막(30) 및 보호층(40)을 포함하며, 다공성 지지체(10)와 금속 분리막(30) 사이에 개재된 세라믹 소재의 버퍼층(20)을 더 포함할 수 있다. 다공성 지지체(10)는 금속 또는 세라믹 소재로 제조될 수 있다. 세라믹 소재의 버퍼층(20)은 다공성 지지체(10) 위에 형성되며, 다수의 컬럼으로 형성될 수 있다. 팔라듐계의 금속 분리막(30)은 버퍼층(20) 위에 형성되며 수소를 분리할 수 있다. 그리고 보호층(40)은 금속 분리막(30) 위에 다수의 컬럼으로 형성되며, 금속 또는 세라믹 소재로 제조된다. 이때 다공성 지지체(10)와 버퍼층(20)은 금속 분리막(30)을 형성하기 위한 지지체 구조를 형성한다.Referring to FIG. 1, the hydrogen separation membrane 100 according to the first embodiment includes a porous support 10, a palladium-based metal separation membrane 30, and a protective layer 40, and the porous support 10 and the metal separation membrane. It may further include a buffer layer 20 of the ceramic material interposed between (30). The porous support 10 may be made of metal or ceramic material. The buffer layer 20 of the ceramic material is formed on the porous support 10 and may be formed of a plurality of columns. The palladium metal separator 30 may be formed on the buffer layer 20 to separate hydrogen. The protective layer 40 is formed of a plurality of columns on the metal separator 30 and is made of a metal or ceramic material. In this case, the porous support 10 and the buffer layer 20 form a support structure for forming the metal separator 30.
여기서 다공성 지지체(10)는 다공성 금속, 다공성 세라믹 또는 세라믹이 코팅된 다공성 금속일 수 있다. 다공성 금속의 소재로는 스테인리스 스틸, 니켈, 인코넬 등이 사용될 수 있다. 다공성 세라믹의 소재로는 Al, Ti, Zr, Si 등을 기반으로 한 산화물이 사용될 수 있다. 다공성 지지체(10)에 형성된 표면 기공의 크기가 너무 크거나 너무 작지 않은 것이 바람직하다. 예컨대, 다공성 지지체(10)의 표면 기공의 크기가 0.01㎛ 미만인 경우에는 다공성 지지체(10) 자체의 투과도가 낮아 다공성 지지체(10)로서의 기능을 수행하기 어렵다. 반면에 표면 기공의 크기가 20㎛를 초과하는 경우에는 기공 직경이 너무 커져서 금속 분리막(30)의 두께를 두껍게 형성해야 하는 단점이 있다. 따라서 다공성 지지체(10)의 표면 기공의 크기는 0.01㎛ 내지 20㎛를 갖도록 형성하는 것이 바람직하다.The porous support 10 may be a porous metal, a porous ceramic or a porous metal coated with a ceramic. As the material of the porous metal, stainless steel, nickel, inconel, or the like may be used. As a material of the porous ceramic, an oxide based on Al, Ti, Zr, Si, or the like may be used. It is preferable that the size of the surface pores formed in the porous support 10 is not too large or too small. For example, when the size of the surface pores of the porous support 10 is less than 0.01 μm, the permeability of the porous support 10 itself is low, making it difficult to function as the porous support 10. On the other hand, if the size of the surface pores exceeds 20㎛ has a disadvantage that the pore diameter is too large to form a thick thickness of the metal separator 30. Therefore, the size of the surface pores of the porous support 10 is preferably formed to have a 0.01 to 20㎛.
또한 다공성 지지체(10)로서 금속 소재를 사용할 때, 버퍼층(20)이 형성될 표면을 연마하여 표면 조도를 조절하는 것이 바람직하며, 예컨대 100nm 이하가 되게 조절한다. 이와 같이 다공성 지지체(10)의 표면 조도를 조절하는 이유는, 다공성 지지체(10)의 표면에 형성되는 버퍼층(20)의 코팅 균일성과 양호한 결합력을 확보하기 위해서이다. 즉 다공성 지지체(10)의 표면을 연마하지 않는 경우 표면이 불균일하기 때문에, 버퍼층(20)의 코팅 균일성과 양호한 결합력을 확보하는 데 문제가 발생할 수 있다.In addition, when using a metal material as the porous support 10, it is preferable to adjust the surface roughness by grinding the surface on which the buffer layer 20 is to be formed, for example, to be adjusted to 100nm or less. The reason for adjusting the surface roughness of the porous support 10 is to secure the coating uniformity and good bonding force of the buffer layer 20 formed on the surface of the porous support 10. That is, since the surface is uneven when the surface of the porous support 10 is not polished, problems may occur in securing coating uniformity and good bonding force of the buffer layer 20.
버퍼층(20)은 다공성 지지체(10)와 금속 분리막(30) 간의 확산을 억제하면서, 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 제공하여 접착층으로 사용된다. 이러한 버퍼층(20)은 산화물계 세라믹 소재, 즉 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재로 형성할 수 있다. 예컨대 버퍼층(20)은 MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재로 형성될 수 있다. 즉 버퍼층(20)으로는 TiOy, ZrOy, Al2Oz이 사용될 수 있다(1<y<2, 2<z<3). 제1 실시예에서는 버퍼층(20)이 단일 층으로 형성된 예를 개시하였다.The buffer layer 20 is used as an adhesive layer by providing good bonding force between the porous support 10 and the metal separator 30 while suppressing diffusion between the porous support 10 and the metal separator 30. The buffer layer 20 is an oxide-based ceramic material, that is, an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Can be formed. For example, the buffer layer 20 may be formed of an oxide-based ceramic material having an oxygen composition of 1 <y <2 in MO y (M is Ti and Zr) or an oxygen composition of 2 <z <3 in Al 2 O z . have. That is, TiO y , ZrO y , and Al 2 O z may be used as the buffer layer 20 (1 <y <2, 2 <z <3). In the first embodiment, an example in which the buffer layer 20 is formed of a single layer is disclosed.
이때 버퍼층(20)을 전술된 바와 같은 조성으로 형성하는 이유는, 버퍼층(20)을 매개로 한 다공성 지지체(10)와 금속 분리막(20) 간의 양호한 결합력을 제공하기 위해서이다. 즉 y가 1 이하이거나, z가 2 이하인 경우, 버퍼층(20)의 세라믹이 아닌 금속성이 강해지기 때문에, 버퍼층(20)을 포함한 금속 분리막(30)과 다공성 지지체(10) 간의 상호 확산에 의해 수소 투과도가 감소하는 문제가 발생될 수 있다. 반대로 y>2, z>3이 되면, 버퍼층(20)을 매개로 한 다공성 지지체(10)와 금속 분리막(20) 간의 결합력이 떨어지는 문제가 발생될 수 있다. 예컨대 바람직하게는 y값은 1.5~1.8을 유지하는 것이고, z값은 2.5~2.8을 유지하는 것이다.In this case, the reason why the buffer layer 20 is formed in the above-described composition is to provide good bonding force between the porous support 10 and the metal separator 20 via the buffer layer 20. In other words, when y is 1 or less, or z is 2 or less, since the metallicity of the buffer layer 20 becomes stronger than that of the ceramic, hydrogen is prevented by mutual diffusion between the metal separator 30 including the buffer layer 20 and the porous support 10. The problem of decreasing the transmittance may occur. On the contrary, when y> 2 and z> 3, the bonding force between the porous support 10 and the metal separator 20 via the buffer layer 20 may be degraded. For example, preferably the y value is maintained at 1.5 to 1.8, and the z value is maintained at 2.5 to 2.8.
버퍼층(20)을 형성하는 컬럼은 직경이 작으면서 조밀하게 형성하면, 확산을 억제하고, 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 결합력을 향상시킬 수 있고, 수소 투과율도 향상시킬 수 있다. 예컨대 버퍼층(20)을 형성하는 컬럼이 10~200nm의 직경을 갖도록 형성할 수 있다. 컬럼의 직경이 200nm를 초과하면 포화 면적이 줄어들기 때문에, 수소 투과율이 떨어지고, 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 결합력이 떨어질 수 있다. 컬럼의 직경을 10nm 이하로 형성하면 좋겠지만, 제조 공정 상 조밀하게 제조하기 힘든 단점을 갖고 있다.When the column forming the buffer layer 20 has a small diameter and is densely formed, it is possible to suppress diffusion and improve the bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20. Hydrogen transmittance can also be improved. For example, the column forming the buffer layer 20 may be formed to have a diameter of 10 ~ 200nm. If the diameter of the column exceeds 200nm, the saturation area is reduced, the hydrogen permeability is lowered, the bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20 may be lowered. Although the diameter of the column may be formed to be 10 nm or less, it has a disadvantage in that the manufacturing process is difficult to compact.
버퍼층(20)은 수소 분리막(100)의 제조 조건 및 사용 조건을 고려하여 두께가 결정될 수 있다. 예컨대 400℃의 사용 조건을 고려할 때, 버퍼층(20)으로 TiOy을 형성하는 경우 100 내지 200nm의 두께로 형성될 수 있다. 버퍼층(20)으로 ZrOy을 형성하는 경우 500 내지 800nm의 두께로 형성될 수 있다. 버퍼층(20)의 형성 방법으로는 스퍼터링과 같은 물리적 증착 방법이 사용될 수 있다.The buffer layer 20 may have a thickness determined in consideration of manufacturing conditions and use conditions of the hydrogen separation membrane 100. For example, when considering the use conditions of 400 ℃, when forming the TiO y to the buffer layer 20 may be formed to a thickness of 100 to 200nm. When ZrO y is formed as the buffer layer 20, it may be formed to a thickness of 500 to 800 nm. As a method of forming the buffer layer 20, a physical deposition method such as sputtering may be used.
금속 분리막(30)은 팔라듐계 금속을 부착하거나 코팅하여 형성한다. 예컨대 금속 분리막(30)은 라미네이션과 같은 물리적인 적층 방법, 스퍼터링과 같은 물리적 증착 방법 등으로 형성할 수 있다. 팔라듐계 금속으로는 팔라듐 또는 팔라듐 합금, 팔라듐을 포함하는 이종금속의 다층 구조를 포함한다. 팔라듐 합금은 Pd에 Au, Ag, Cu, Ni, Ru 및 Rh으로 구성된 그룹에서 선택된 어느 하나 이상의 합금일 수 있다. 다층 구조는 Pd/Cu, Pd/Au, Pd/Ag, Pd/Pt 등을 포함하며 이것에 한정되는 것은 아니다.The metal separator 30 is formed by attaching or coating a palladium-based metal. For example, the metal separator 30 may be formed by a physical lamination method such as lamination, a physical deposition method such as sputtering, or the like. Palladium-based metals include a multi-layered structure of dissimilar metals including palladium or a palladium alloy, palladium. The palladium alloy may be any one or more alloys selected from the group consisting of Au, Ag, Cu, Ni, Ru, and Rh in Pd. The multilayer structure includes, but is not limited to, Pd / Cu, Pd / Au, Pd / Ag, Pd / Pt, and the like.
금속 분리막(30)으로 팔라듐을 물리적으로 증착하여 형성하는 경우, 두께를 0.1~10㎛로 형성할 수 있다. 금속 분리막(30)의 두께를 0.1㎛ 이하로 형성하면 수소 투과율이 더욱 향상되기 때문에 좋겠지만, 0.1㎛ 이하의 두께에서 금속 분리막(30)을 조밀하게 제조하기 힘들고 이로 인해 금속 분리막(30)의 수명이 짧아지는 문제점을 안고 있다. 그렇다고 금속 분리막(30)의 두께를 10㎛ 이상으로 형성할 경우, 조밀하게 형성할 수 있는 반면에 수소 투과율이 상대적으로 떨어질 수 있다. 또한 고가인 팔라듐을 이용하여 10㎛ 이상의 두껍게 형성된 금속 분리막으로 인해 전체적인 수소 분리막의 제조 비용이 증가하는 문제점을 안고 있다. 따라서 팔라듐을 사용하여 금속 분리막(30)을 형성하는 경우, 0.1~10㎛의 두께로 형성하는 것이다. 바람직하게는 금속 분리막의 수명 특성, 수소 투과율 등을 고려할 때, 3~5㎛의 두께로 형성하는 것이 바람직하다.When the palladium is physically deposited by the metal separator 30, the thickness may be 0.1 μm to 10 μm. If the thickness of the metal separation membrane 30 to 0.1㎛ or less, it is good because the hydrogen permeability is further improved, but it is difficult to manufacture the metal separator 30 densely at a thickness of 0.1㎛ or less, and thus the life of the metal separator 30 There is a problem of this shortening. However, when the thickness of the metal separation membrane 30 is formed to 10㎛ or more, it can be formed densely, while the hydrogen transmittance may be relatively low. In addition, the use of expensive palladium has a problem that the manufacturing cost of the overall hydrogen separation membrane increases due to the thick metal separator formed by more than 10㎛. Therefore, when the metal separator 30 is formed using palladium, it is formed to a thickness of 0.1 ~ 10㎛. Preferably, considering the life characteristics, hydrogen permeability and the like of the metal separation membrane, it is preferable to form a thickness of 3 ~ 5㎛.
그리고 보호층(40)은 금속 분리막(30)의 표면에 다수의 컬럼 형태로 형성됨으로써, 금속 분리막(30)의 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다. 이러한 보호층은 황 화합물에 대한 내식성이 우수한 금속, 예컨대 Pt, Au, Cu, Ru 또는 Rh으로 형성하거나, 전술된 금속에 세라믹 소재를 포함시켜 형성할 수 있다. 이때 세라믹 소재로는 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상이 사용될 수 있다.In addition, since the protective layer 40 is formed in the form of a plurality of columns on the surface of the metal separator 30, it is possible to minimize the decrease in hydrogen permeability while improving the corrosion resistance of the sulfur compound of the metal separator 30. The protective layer may be formed of a metal having excellent corrosion resistance to the sulfur compound, such as Pt, Au, Cu, Ru, or Rh, or may be formed by including a ceramic material in the metal described above. In this case, one or more of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the ceramic material.
보호층(40)을 형성하는 컬럼은 직경이 작으면서 조밀하게 형성하면, 금속 분리막(30)의 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다. 예컨대 보호층(40)을 형성하는 컬럼이 1~1000nm의 직경과, 0.01~5㎛ 의 두께를 갖도록 형성할 수 있다. 컬럼의 직경이 1000nm를 초과하면 포화 면적이 줄어들기 때문에, 황 화합물에 대한 내식성은 향상시킬 수 있지만 수소투과도가 떨어질 수 있다. 컬럼의 직경을 1nm 이하로 형성하면 좋겠지만, 수소투과도의 감소는 최소화할 수 있지만 내식성이 상대적으로 떨어질 수 있고, 제조 공정 상 조밀하게 제조하기 힘든 단점을 갖고 있다. 또한 보호층(40)의 두께 즉 컬럼의 높이가 0.01㎛ 이하인 경우, 수소투과도의 감소는 최소화할 수 있지만 내식성이 상대적으로 떨어질 수 있다. 보호층(40)의 두께가 5㎛ 이상인 경우, 황 화합물에 대한 내식성은 향상시킬 수 있지만 수소투과도가 떨어질 수 있다.When the column for forming the protective layer 40 is compactly formed with a small diameter, the reduction in hydrogen permeability can be minimized while improving the corrosion resistance to the sulfur compound of the metal separator 30. For example, the column forming the protective layer 40 may be formed to have a diameter of 1 to 1000 nm and a thickness of 0.01 to 5 μm. Since the saturation area is reduced when the diameter of the column exceeds 1000 nm, the corrosion resistance to the sulfur compound can be improved, but the hydrogen permeability may be lowered. The diameter of the column may be less than 1 nm, but the reduction in hydrogen permeability may be minimized, but the corrosion resistance may be relatively low, and the manufacturing process may be difficult to compact. In addition, when the thickness of the protective layer 40, that is, the height of the column is 0.01 μm or less, a decrease in hydrogen permeability may be minimized, but corrosion resistance may be relatively low. When the thickness of the protective layer 40 is 5 μm or more, corrosion resistance to the sulfur compound may be improved, but hydrogen permeability may be deteriorated.
이와 같이 제1 실시예에 따른 수소 분리막(100)은 팔라듐계의 금속 분리막(30) 위에 컬럼 형태의 보호층(40)을 코팅함으로써, 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다.As described above, the hydrogen separation membrane 100 according to the first embodiment coats the protective layer 40 in the form of a column on the palladium-based metal separation membrane 30, thereby minimizing a decrease in hydrogen permeability while improving corrosion resistance to sulfur compounds. Can be.
황 화합물에 대한 내식성이 우수한 수소 분리막(100)을 제공함으로써, 수소 분리 공정 이전에 수행되었던 황 화합물의 제거하기 위한 가스클리닝 공정을 생략할 수 있다. 특히 가스클리닝 공정의 생략으로 CCS 공정을 간소화하여 경제적인 공정 구성이 가능한 이점도 있다.By providing the hydrogen separation membrane 100 having excellent corrosion resistance to the sulfur compound, a gas cleaning process for removing the sulfur compound that was performed before the hydrogen separation process can be omitted. In particular, the gas cleaning process can be omitted, thereby simplifying the CCS process.
또한 제1 실시예에 따른 수소 분리막(100)은 다공성 지지체(10)와 금속 분리막(30) 사이에 컬럼 형태의 세라믹 소재를 코팅하여 버퍼층(20)을 형성함으로써, 금속 분리막(30)과 다공성 지지체(10) 사이에 상호 확산을 억제함과 동시에 금속 분리막(30)을 통과한 수소의 배출이 용이하도록 할 수 있다.In addition, the hydrogen separation membrane 100 according to the first embodiment forms a buffer layer 20 by coating a ceramic material having a columnar shape between the porous support 10 and the metal separation membrane 30, thereby forming the metal separation membrane 30 and the porous support. It is possible to suppress the mutual diffusion between the (10) and to facilitate the discharge of hydrogen passing through the metal separation membrane (30).
또한 제1 실시예 따른 수소 분리막(100)은 다공성 지지체(10)와 금속 분리막(30) 사이에 컬럼 형상의 세라믹 소재의 버퍼층(20)을 형성함으로써, 다공성 지지체(10)와 금속 분리막(30) 간의 확산을 억제하면서 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 확보할 수 있다. 이와 같은 버퍼층(20)은 다수의 독립된 컬럼 형태나 복수개가 군집을 이루는 형태로 형성되기 때문에, 수축과 팽창에 효과적으로 대응할 수 있어 다공성 지지체(10) 및 금속 분리막(20) 간의 양호한 결합력을 제공할 수 있다.In addition, the hydrogen separation membrane 100 according to the first embodiment forms a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, thereby providing the porous support 10 and the metal separation membrane 30. It is possible to secure a good bonding force between the porous support 10 and the metal separator 30 via the buffer layer 20 while suppressing diffusion of the liver. Since the buffer layer 20 is formed in the form of a plurality of independent columns or a plurality of clusters, the buffer layer 20 can effectively cope with shrinkage and expansion, thereby providing a good bonding force between the porous support 10 and the metal separator 20. have.
또한 버퍼층(20)은 MOy(M은 Ti, Zr)에서 산소의 조성을 1<y<2으로 하거나, Al2Oz에서 산소의 조성을 2<z<3이 되게 형성함으로써, 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 제공할 수 있다.In addition, the buffer layer 20 forms the buffer layer 20 by forming a composition of oxygen in MO y (M is Ti and Zr) 1 <y <2, or in Al 2 O z so that the composition of oxygen is 2 <z <3. It is possible to provide a good bonding force between the porous support 10 and the metal separator 30 through the medium.
이와 같이 버퍼층(20)을 매개로 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 제공함으로써, 궁극적으로 수소 분리막(100)의 수소투과속도를 향상시킬 수 있다.As such, by providing a good bonding force between the porous support 10 and the metal separation membrane 30 through the buffer layer 20, it is possible to ultimately improve the hydrogen permeation rate of the hydrogen separation membrane 100.
이와 같은 제1 실시예에 따른 수소 분리막(100)의 제조 방법을 도 1 내지 도 4를 참조하여 설명하면 다음과 같다. 여기서 도 2는 도 1의 수소 분리막(100)의 제조 방법에 따른 흐름도이다. 도 3 내지 도 5는 도 2의 제조 방법에 따른 각 단계를 보여주는 도면들이다.A method of manufacturing the hydrogen separation membrane 100 according to the first embodiment will be described with reference to FIGS. 1 to 4 as follows. 2 is a flowchart according to a method of manufacturing the hydrogen separation membrane 100 of FIG. 1. 3 to 5 are views showing each step according to the manufacturing method of FIG.
먼저 도 3에 도시된 바와 같이, S51단계에서 다공성 지지체(10)를 준비한다. 이때 다공성 지지체(10)로는 금속 또는 세라믹 소재가 사용될 수 있다.First, as shown in FIG. 3, a porous support 10 is prepared in step S51. In this case, the porous support 10 may be a metal or ceramic material.
다음으로 S53단계에서 다공성 지지체(10)의 표면 조도를 조절하기 위해서 표면 처리 공정을 수행한다. 표면 처리 방법으로는 CMP(Chemical Mechanical Polishing)와 같은 연마 공정이 사용될 수 있다. 이때 다공성 지지체(10)는 표면 조도가 100nm 이하가 되게 표면이 연마된다.Next, a surface treatment process is performed to control the surface roughness of the porous support 10 in step S53. As the surface treatment method, a polishing process such as chemical mechanical polishing (CMP) may be used. At this time, the surface of the porous support 10 is polished so that the surface roughness is 100nm or less.
다음으로 도 4에 도시된 바와 같이, S55단계에서 다공성 지지체(10) 위에 컬럼 형상의 세라믹 소재의 버퍼층(20)을 형성한다. 즉 물리적 증착 방법을 사용하여, Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재를 증착하여 버퍼층(20)을 형성할 수 있다. 예컨대 다공성 지지체(10) 상에 MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재로 버퍼층(20)을 형성할 수 있다.Next, as shown in FIG. 4, in step S55, a buffer layer 20 of a ceramic material having a columnar shape is formed on the porous support 10. That is, using a physical vapor deposition method, by depositing an oxide-based ceramic material containing at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo buffer layer ( 20) can be formed. For example, on the porous support 10, the buffer layer is made of an oxide-based ceramic material having an oxygen composition of 1 <y <2 in MO y (M is Ti and Zr) or an oxygen composition of 2 <z <3 in Al 2 O z . 20 can be formed.
이러한 버퍼층(20)은 타겟을 MO2 또는 Al2O3하여 진공 조건에서 스퍼터링 공정으로 형성할 수 있다. 예컨대 스퍼터링 공정에서 타겟을 TiO2를 사용하여 증착하게 되면, 진공 조건이기 때문에 산소의 조성이 y<2이 되게 TiOy를 버퍼층(20)으로 형성할 수 있다.The buffer layer 20 may be formed by sputtering under vacuum conditions using a target of MO 2 or Al 2 O 3 . For example, when the target is deposited using TiO 2 in the sputtering process, since the vacuum condition is used, TiO y may be formed as the buffer layer 20 such that the oxygen composition is y <2.
또는 버퍼층(20)은 M 금속판 또는 분말을 소스로 산소가스를 공급하여 증발된 M을 산화시켜 컬럼 형태로 y<2이 되게 TiOy를 다공성 지지체(10) 위에 성장시켜 형성할 수 있다. 예컨대 Ti 금속 타켓 또는 분말을 소스로 이용하고, 분위기 가스 중에 O2를 공급하여 증발된 Ti 종을 산화시켜서 컬럼 형태로 성장시켜 버퍼층(20)을 형성할 수 있다.Alternatively, the buffer layer 20 may be formed by supplying oxygen gas to a M metal plate or powder as a source to oxidize evaporated M to grow TiO y on the porous support 10 such that y <2 in a columnar form. For example, the Ti metal target or powder may be used as a source, and O 2 may be supplied to the atmosphere gas to oxidize the evaporated Ti species to grow in a columnar form to form the buffer layer 20.
본 제조 방법에서는 버퍼층(20)을 단일층으로 형성하였다. 예컨대 버퍼층(20)은 TiOy, ZrOy, Al2Oz 중에 하나로 형성할 수 있다.In this manufacturing method, the buffer layer 20 was formed in a single layer. For example, the buffer layer 20 may be formed of one of TiO y , ZrO y , and Al 2 O z .
이어서 도 5에 도시된 바와 같이, S57단계에서 버퍼층(20) 위에 팔라듐계의 금속 분리막(30)을 형성한다. 이때 금속 분리막(30)은 라미네이션과 같은 물리적 적층 방법이나 스퍼터링과 같은 물리적 증착 방법으로 형성할 수 있다.Subsequently, as shown in FIG. 5, a palladium-based metal separator 30 is formed on the buffer layer 20 in step S57. In this case, the metal separator 30 may be formed by a physical deposition method such as lamination or a physical deposition method such as sputtering.
그리고 도 1에 도시된 바와 같이, S59단계에서 금속 분리막(30) 위에 컬럼 형상의 금속 또는 세라믹 소재의 보호층(20)을 형성한다. 즉 보호층(20)은 물리적 증착 방법을 사용하여 금속 분리막(30) 위에 컬럼 형태로 형성할 수 있다. 보호층(30)은 황 화합물에 대한 내식성이 우수한 금속, 예컨대 Pt, Au, Cu, Ru 또는 Rh을 물리적으로 증착하여 형성하거나, 전술된 금속에 세라믹 소재를 포함시켜 형성할 수 있다. 이때 세라믹 소재로는 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상이 사용될 수 있다.1, in step S59, a protective layer 20 of a metal or ceramic material having a columnar shape is formed on the metal separator 30. That is, the protective layer 20 may be formed in a columnar shape on the metal separator 30 using a physical vapor deposition method. The protective layer 30 may be formed by physically depositing a metal having excellent corrosion resistance to a sulfur compound, such as Pt, Au, Cu, Ru, or Rh, or by including a ceramic material in the aforementioned metal. In this case, one or more of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the ceramic material.
이와 같은 제1 실시예에 따른 수소 분리막(100)의 버퍼층(20)은, 도 6 및 도 7에 도시된 바와 같이, 형성될 수 있다. 여기서 도 6은 본 발명의 제1 실시예에 따른 수소 분리막의 버퍼층(20)을 보여주는 표면 사진이다. 도 7은 도 6의 버퍼층(20)을 보여주는 단면 사진이다.The buffer layer 20 of the hydrogen separation membrane 100 according to the first embodiment may be formed, as shown in FIGS. 6 and 7. 6 is a surface photograph showing the buffer layer 20 of the hydrogen separation membrane according to the first embodiment of the present invention. 7 is a cross-sectional view illustrating the buffer layer 20 of FIG. 6.
도 6 및 도 7을 참조하면, 다공성 지지체 상에 버퍼층이 다수의 컬럼 형상으로 형성되는 지의 여부를 확인하기 위해서, 다공성 지지체를 대신할 수 있는 치밀한 실리콘 웨이퍼(10a)를 사용하였다.6 and 7, in order to confirm whether the buffer layer is formed in a plurality of column shapes on the porous support, a dense silicon wafer 10a that can replace the porous support is used.
그리고 실리콘 웨이퍼(10a) 위에 ZrOy(y=1.5~1.8)로 버퍼층(20)을 형성하였다. 예컨대 타겟을 ZrO2로 하여 진공 조건에서 스퍼터링 공정으로 버퍼층(20)을 형성할 수 있다. Zr 금속판 또는 분말을 소스로 산소가스를 공급하여 증발된 Zr을 산화시켜 컬럼 형태로 버퍼층(20)을 형성할 수 있다.The buffer layer 20 was formed on the silicon wafer 10a by ZrO y (y = 1.5 to 1.8). For example, the buffer layer 20 may be formed by a sputtering process under vacuum conditions using the target as ZrO 2 . The buffer layer 20 may be formed in the form of a column by oxidizing Zr evaporated by supplying oxygen gas to a Zr metal plate or powder as a source.
버퍼층(20)은 실리콘 웨이퍼 위에 다수의 컬럼(22)으로 조밀하게 형성된 것을 확인할 수 있다. 또한 버퍼층(20)을 형성하는 컬럼(22)의 직경이 10~20nm인 것을 확인할 수 있다. 또한 버퍼층(20)은 다수의 컬럼(22)이 독립적으로 형성되거나 복수개가 군집(24)을 이루는 형태로 형성된 것을 확인할 수 있다.It can be seen that the buffer layer 20 is densely formed of a plurality of columns 22 on the silicon wafer. In addition, it can be seen that the diameter of the column 22 forming the buffer layer 20 is 10-20 nm. In addition, the buffer layer 20 may be confirmed that a plurality of columns 22 are formed independently or a plurality of clusters 24 are formed.
또한 제1 실시예에 따른 수소 분리막(100)이 컬럼 형상의 보호층(40)을 구비함으로써, 도 8과 같이 CO2의 포집 효율이 향상된 것을 확인할 수 있다. 여기서 도 8은 본 발명의 제1 실시예 및 비교예에 따른 수소 분리막을 이용한 CO2의 포집 효율을 보여주는 그래프이다.In addition, since the hydrogen separation membrane 100 according to the first embodiment includes the columnar protective layer 40, as illustrated in FIG. 8, the collection efficiency of CO 2 is improved. 8 is a graph showing the collection efficiency of CO 2 using the hydrogen separation membrane according to the first embodiment and the comparative example of the present invention.
도 8을 참조하면, 비교예에 따른 수소 분리막은 팔라듐계 금속 분리막으로 Pd-Au의 합금을 사용하고, 보호층이 없다. 그리고 제1 실시예에 따른 수소 분리막은 팔라듐계 금속 분리막으로 Pd-Au의 합금을 사용하고, 보호층으로 Pt-ZrO2를 도입하였다.Referring to FIG. 8, the hydrogen separator according to the comparative example uses an alloy of Pd-Au as a palladium-based metal separator, and has no protective layer. In the hydrogen separator according to the first embodiment, an alloy of Pd-Au was used as the palladium metal separator and Pt-ZrO 2 was introduced as the protective layer.
제1 실시예 및 비교예에 따른 수소 분리막을 이용하여 400도, 20bar에서, 60%의 H2와 40%의 CO2를 포함하는 합성가스로 수소 분리 공정을 수행하면서, CO2의 포집 효율을 측정하였다. 측정 결과, 도 8에 도시된 바와 같이, 제1 실시예가 비교예에 비하여 25% 정도 CO2의 포집 효율이 향상된 것을 확인할 수 있다.Using the hydrogen separation membrane according to the first embodiment and the comparative example, the collection efficiency of CO 2 was improved while performing a hydrogen separation process with a synthesis gas containing 60% H 2 and 40% CO 2 at 400 ° and 20 bar. Measured. As a result of the measurement, as shown in FIG. 8, it can be seen that the collection efficiency of CO 2 is improved by about 25% compared to the first embodiment.
또한 제1 실시예에 따른 수소 분리막(100)이 컬럼 형상의 보호층(40)을 구비함으로써, 도 9에 도시된 바와 같이 H2S가 2ppm 포함된 수소를 공급할 때 수소 투과도가 감소한 것을 확인할 수 있다. 여기서 도 9는 본 발명의 제1 실시예 및 비교예에 따른 수소 분리막의 수소 투과도를 보여주는 그래프이다.In addition, since the hydrogen separation membrane 100 according to the first embodiment includes the columnar protective layer 40, as shown in FIG. 9, the hydrogen permeability was reduced when H 2 S was supplied with hydrogen containing 2 ppm. have. 9 is a graph showing the hydrogen permeability of the hydrogen separation membrane according to the first embodiment and the comparative example of the present invention.
도 9를 참조하면, 비교예에 따른 수소 분리막은 팔라듐계 금속 분리막으로 Pd-Au의 합금을 사용하고, 보호층이 없다. 그리고 제1 실시예에 따른 수소 분리막은 팔라듐계 금속 분리막으로 Pd-Au의 합금을 사용하고, 보호층으로 Pt-ZrO2를 도입하였다.Referring to FIG. 9, the hydrogen separation membrane according to the comparative example uses an alloy of Pd-Au as a palladium-based metal separator, and has no protective layer. In the hydrogen separator according to the first embodiment, an alloy of Pd-Au was used as the palladium metal separator and Pt-ZrO 2 was introduced as the protective layer.
즉 제1 실시예에서는 Pd-3%Au 금속 분리막 표면에 Pt-ZrO2를 Co-sputtering 방법으로 코팅하여 내식성을 비교하였다. 비교예로는 보호층 없이 Pd-3%Au 금속 분리막을 구비하는 수소 분리막을 사용하였다.That is, in Example 1, Pt-3% Au metal separator was coated with Pt-ZrO 2 by a co-sputtering method to compare corrosion resistance. As a comparative example, a hydrogen separation membrane having a Pd-3% Au metal separation membrane without a protective layer was used.
여기서 Pt-ZrO2 코팅은 진공 20 mtorr조건에서 Ar을 30ml/min 공급하며 진행하였다. 또한 Pt 99.99%, ZrO2 99.9% 타켓을 각각의 건에 독립적으로 장작하고, Pt가 장착된 건에는 DC파워 175W 전류를 공급하고, ZrO2가 장착된 건에는 RF파워 175W 전류를 공급하여 동시에 코팅하였다.The Pt-ZrO 2 coating was performed by supplying 30 ml / min of Ar under vacuum at 20 mtorr. In addition, Pt 99.99% and ZrO 2 99.9% targets are fired independently on each gun, Pt equipped guns supply 175W of DC power and ZrO 2 equipped guns with RF power 175W currents. It was.
그리고 코팅 후 보호층의 Pt와 ZrO2의 조성은 분석 결과 각각 88.2wt%, 11.8wt%임을 확인하였다.The composition of Pt and ZrO 2 in the protective layer after coating was 88.2 wt% and 11.8 wt%, respectively.
제1 실시예 및 비교예에 따른 수소 분리막에 H2S 2ppm 공급하며 수소 투과도를 측정결과, 보호층이 없는 수소 분리막은 H2S 공급 전 수소 투과도에 비하여 57% 투과도가 감소하였다. 반면에 제1 실시예에 따른 수소 분리막은 H2S 공급 전 수소 투과도에 비하여 37% 감소한 것을 확인할 수 있다.As a result of supplying 2 ppm of H 2 S to the hydrogen separation membranes according to the first and comparative examples and measuring the hydrogen permeability, the hydrogen separation membrane without the protective layer had a 57% permeability decrease compared to the hydrogen permeability before H 2 S supply. On the other hand, it can be seen that the hydrogen separation membrane according to the first embodiment is reduced by 37% compared to the hydrogen permeability before H 2 S supply.
제2 실시예Second embodiment
한편 제1 실시예에서는 버퍼층(20)이 단일 층으로 형성되는 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 도 10에 도시된 바와 같이, 버퍼층(20)은 두 층으로 형성될 수 있다.Meanwhile, in the first embodiment, an example in which the buffer layer 20 is formed as a single layer is disclosed, but is not limited thereto. For example, as shown in FIG. 10, the buffer layer 20 may be formed of two layers.
도 10은 본 발명의 제2 실시예에 따른 수소 분리막(200)을 보여주는 단면도이다.10 is a cross-sectional view illustrating a hydrogen separation membrane 200 according to a second embodiment of the present invention.
도 10을 참조하면, 제2 실시예에 따른 수소 분리막(200)은 다공성 지지체(10)와, 다공성 지지체(10) 위에 다수의 컬럼으로 형성된 세라믹 소재의 버퍼층(20), 버퍼층(20) 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막(30), 및 금속 분리막(30) 위에 다수의 컬럼으로 형성된 보호층(40)을 포함한다. 이때 제2 실시예에 따른 버퍼층(20)은 두 층으로 형성된다.Referring to FIG. 10, the hydrogen separation membrane 200 according to the second embodiment is formed on the porous support 10 and the buffer layer 20 and the buffer layer 20 of the ceramic material formed of a plurality of columns on the porous support 10. And a palladium-based metal separator 30 capable of separating hydrogen, and a protective layer 40 formed of a plurality of columns on the metal separator 30. At this time, the buffer layer 20 according to the second embodiment is formed of two layers.
버퍼층(20)은 다공성 지지체(10) 위에 형성된 제1 버퍼층(21)과, 제1 버퍼층(21) 위에 형성된 제2 버퍼층(23)을 포함한다. 제1 버퍼층(21)과 제2 버퍼층(23)은 서로 다른 산화물계 세라믹 소재로 형성될 수 있다. 예컨대 제1 버퍼층(21)이 ZrOy으로 형성되는 경우, 제2 버퍼층(23)은 TiOy 또는 Al2Oz으로 형성될 수 있다. 제1 버퍼층(21)으로 ZrOy을 형성하는 경우, 100 내지 1000nm의 두께로 제1 버퍼층(21)이 형성될 수 있다. 제2 버퍼층(23)으로 TiOy을 형성하는 경우 10 내지 200nm의 두께로 제2 버퍼층(23)이 형성될 수 있다. 이때 제1 버퍼층(21)은 수소의 투과율을 향상시키면서 확산을 방지하는 차폐층으로서의 기능을 수행하고, 제2 버퍼층(23)은 접착층으로서의 기능을 수행하게 된다.The buffer layer 20 includes a first buffer layer 21 formed on the porous support 10 and a second buffer layer 23 formed on the first buffer layer 21. The first buffer layer 21 and the second buffer layer 23 may be formed of different oxide ceramic materials. For example, when the first buffer layer 21 is formed of ZrO y , the second buffer layer 23 may be formed of TiO y or Al 2 O z . When ZrO y is formed as the first buffer layer 21, the first buffer layer 21 may be formed to a thickness of 100 to 1000 nm. When TiO y is formed as the second buffer layer 23, the second buffer layer 23 may be formed to a thickness of 10 to 200 nm. In this case, the first buffer layer 21 functions as a shielding layer to prevent diffusion while improving the transmittance of hydrogen, and the second buffer layer 23 performs a function as an adhesive layer.
이와 같이 버퍼층(20)을 이종의 세라믹 소재를 이용하여 2층으로 형성함으로써, 다공성 지지체(10)와 금속 분리막(30) 간의 확산을 억제하면서 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 제공할 수 있다.By forming the buffer layer 20 in two layers using heterogeneous ceramic materials as described above, the porous support 10 via the buffer layer 20 is suppressed while the diffusion between the porous support 10 and the metal separator 30 is suppressed. Good bonding force between the metal separators 30 may be provided.
또한 제2 실시예에 따른 수소 분리막(200)은 다공성 지지체(10)와 금속 분리막(30) 사이에 컬럼 형상의 세라믹 소재의 버퍼층(20)을 구비하기 때문에, 다공성 지지체(10)와 금속 분리막(30) 간의 상호 확산을 억제할 수 있다.In addition, since the hydrogen separation membrane 200 according to the second embodiment has a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, the porous support 10 and the metal separation membrane ( 30) can suppress mutual diffusion.
또한 제2 실시예에 따른 수소 분리막(200)은 제1 실시예와 동일하게 보호층(40)을 구비하기 때문에, 금속 분리막(30)의 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다.In addition, since the hydrogen separation membrane 200 according to the second embodiment includes the protective layer 40 in the same manner as in the first embodiment, the reduction of hydrogen permeability is minimized while improving the corrosion resistance to the sulfur compound of the metal separation membrane 30. can do.
제3 실시예Third embodiment
한편 제2 실시예에 따른 수소 분리막(200)에서는 버퍼층(20)이 2층으로 형성되는 예를 개시하였지만, 이것에 한정되는 것은 아니다. 예컨대 도 11에 도시된 바와 같이, 버퍼층(20)은 3층으로 형성될 수 있다.On the other hand, in the hydrogen separation membrane 200 according to the second embodiment, an example in which the buffer layer 20 is formed in two layers has been disclosed, but is not limited thereto. For example, as shown in FIG. 11, the buffer layer 20 may be formed of three layers.
도 11은 본 발명의 제3 실시예에 따른 수소 분리막(300)을 보여주는 단면도이다.11 is a cross-sectional view illustrating a hydrogen separation membrane 300 according to a third embodiment of the present invention.
도 11을 참조하면, 제3 실시예에 따른 수소 분리막(300)은 다공성 지지체(10)와, 다공성 지지체(10) 위에 다수의 컬럼으로 형성된 세라믹 소재의 버퍼층(20), 버퍼층(20) 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막(30), 및 금속 분리막(30) 위에 다수의 컬럼으로 형성된 보호층(40)을 포함한다. 이때 제3 실시예에 따른 버퍼층(20)은 세 층으로 형성된다.Referring to FIG. 11, the hydrogen separation membrane 300 according to the third embodiment is formed on the porous support 10, the buffer layer 20 of the ceramic material formed of a plurality of columns on the porous support 10, and the buffer layer 20. And a palladium-based metal separator 30 capable of separating hydrogen, and a protective layer 40 formed of a plurality of columns on the metal separator 30. At this time, the buffer layer 20 according to the third embodiment is formed of three layers.
버퍼층(20)은 다공성 지지체(10) 위에 형성된 제1 버퍼층(21)과, 제1 버퍼층(21) 위에 형성된 제2 버퍼층(23)과, 제2 버퍼층(23) 위에 형성된 제3 버퍼층(25)을 포함한다. 제1 내지 제3 버퍼층(21, 23, 25)에 있어서, 서로 이웃하는 버퍼층은 서로 다른 산화물계 세라믹 소재로 형성될 수 있다. 예컨대 제2 버퍼층(23)이 ZrOm으로 형성되는 경우, 제1 및 제3 버퍼층(21, 25)은 TiOy 또는 Al2Oz으로 형성될 수 있다. 제2 버퍼층(23)으로 ZrOy을 형성하는 경우, 100 내지 1000nm의 두께로 제2 버퍼층(23)이 형성될 수 있다. 제1 및 제2 버퍼층(21, 25)으로 TiOy을 형성하는 경우 10 내지 200nm의 두께로 제1 및 제3 버퍼층(21, 25)이 각각 형성될 수 있다.The buffer layer 20 includes a first buffer layer 21 formed on the porous support 10, a second buffer layer 23 formed on the first buffer layer 21, and a third buffer layer 25 formed on the second buffer layer 23. It includes. In the first to third buffer layers 21, 23, and 25, neighboring buffer layers may be formed of different oxide ceramic materials. For example, when the second buffer layer 23 is formed of ZrO m , the first and third buffer layers 21 and 25 may be formed of TiO y or Al 2 O z . When ZrO y is formed as the second buffer layer 23, the second buffer layer 23 may be formed to a thickness of 100 to 1000 nm. When TiO y is formed of the first and second buffer layers 21 and 25, the first and third buffer layers 21 and 25 may be formed to have a thickness of 10 to 200 nm, respectively.
이때 제1 및 제3 버퍼층(21,25)은 접착층으로서의 기능을 수행하고, 제2 버퍼층(23)은 차폐층으로서의 기능을 수행한다. 제1 및 제3 버퍼층(21,25)은 TiOy, ZrOy, Al2Oz 중에 하나로 형성하되, 1<y<2 이거나 2<z<3인 산화물계 세라믹 소재로 형성한다. 제2 버퍼층(23)은 제1 및 제3 버퍼층(21,25)와 동일한 조성을 갖도록 형성할 수도 있고, y≥2 및 z≥3 으로 형성하여도 무방하다. 이유는 제2 버퍼층(23)의 양쪽에 제1 및 제3 버퍼층(21,25)이 존재하기 때문에, 제2 버퍼층(23)의 조성이 y≥2 및 z≥3 이더라도 접착 및 차폐 기능을 수행할 수 있다. 이와 같이 제2 버퍼층(23)으로는 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, Mo 등의 금속을 포함하는 산화물계 세라믹 소재가 사용될 수 있다.In this case, the first and third buffer layers 21 and 25 function as the adhesive layer, and the second buffer layer 23 functions as the shielding layer. The first and third buffer layers 21 and 25 may be formed of one of TiO y , ZrO y , and Al 2 O z , but may be formed of an oxide-based ceramic material having 1 <y <2 or 2 <z <3. The second buffer layer 23 may be formed to have the same composition as the first and third buffer layers 21 and 25, and may be formed as y ≧ 2 and z ≧ 3. The reason is that since the first and third buffer layers 21 and 25 exist on both sides of the second buffer layer 23, the adhesion and shielding functions are performed even if the composition of the second buffer layer 23 is y≥2 and z≥3. can do. As such, an oxide-based ceramic material including metals such as Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo may be used as the second buffer layer 23. have.
이와 같이 버퍼층(20)을 이종의 세라믹 소재를 이용하여 3층으로 형성함으로써, 다공성 지지체(10)와 금속 분리막(30) 간의 확산을 억제하면서 버퍼층(20)을 매개로 한 다공성 지지체(10) 및 금속 분리막(30) 간의 양호한 결합력을 제공할 수 있다. 또한 금속 분리막(30)을 통과한 수소의 배출이 용이하도록 할 수 있다.By forming the buffer layer 20 in three layers using heterogeneous ceramic materials as described above, the porous support 10 via the buffer layer 20 is suppressed while the diffusion between the porous support 10 and the metal separator 30 is suppressed. Good bonding force between the metal separators 30 may be provided. In addition, it is possible to facilitate the discharge of hydrogen passed through the metal separation membrane (30).
또한 제3 실시예에 따른 수소 분리막(300)은 다공성 지지체(10)와 금속 분리막(30) 사이에 컬럼 형상의 세라믹 소재의 버퍼층(20)을 구비하기 때문에, 다공성 지지체(10)와 금속 분리막(30) 간의 상호 확산을 억제할 수 있다.In addition, since the hydrogen separation membrane 300 according to the third embodiment has a columnar ceramic buffer layer 20 between the porous support 10 and the metal separation membrane 30, the porous support 10 and the metal separation membrane ( 30) can suppress mutual diffusion.
또한 제3 실시예에 따른 수소 분리막(300)은 제1 실시예와 동일하게 보호층(40)을 구비하기 때문에, 금속 분리막(30)의 황 화합물에 대한 내식성을 향상시키면서 수소투과도의 감소를 최소화할 수 있다.In addition, since the hydrogen separation membrane 300 according to the third embodiment includes the protective layer 40 in the same manner as in the first embodiment, the reduction of hydrogen permeability is minimized while improving the corrosion resistance to the sulfur compound of the metal separation membrane 30. can do.
이와 같이 제3 실시예에서는 버퍼층(20)을 3층으로 형성하는 예를 개시하였지만, 필요에 따라 3층 이상으로 형성할 수도 있다.As described above, in the third embodiment, an example in which the buffer layer 20 is formed in three layers is disclosed, but may be formed in three or more layers as necessary.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (14)

  1. 다공성 지지체;Porous support;
    상기 다공성 지지체 위에 형성된 세라믹 소재의 버퍼층;A buffer layer of a ceramic material formed on the porous support;
    상기 버퍼층 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막;A palladium-based metal separator formed on the buffer layer and capable of separating hydrogen;
    상기 금속 분리막 위에 다수의 컬럼으로 형성된 금속 또는 세라믹 소재의 보호층;A protective layer of a metal or ceramic material formed of a plurality of columns on the metal separator;
    을 포함하는 것을 특징으로 하는 수소 분리막.Hydrogen separation membrane comprising a.
  2. 제1항에 있어서, 상기 보호층은,The method of claim 1, wherein the protective layer,
    상기 금속이 Pt, Au, Cu, Ru 또는 Rh이고,The metal is Pt, Au, Cu, Ru or Rh,
    상기 세라믹 소재가 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재인 것을 특징으로 하는 수소 분리막.The hydrogen separation membrane, characterized in that the ceramic material is an oxide-based ceramic material containing at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo.
  3. 제2항에 있어서,The method of claim 2,
    상기 보호층은 상기 컬럼의 직경이 1~1000nm이고, 두께는 0.01~5㎛인 것을 특징으로 하는 수소 분리막.The protective layer is a hydrogen separation membrane, characterized in that the diameter of the column is 1 ~ 1000nm, the thickness is 0.01 ~ 5㎛.
  4. 제1항에 있어서, 상기 버퍼층은,The method of claim 1, wherein the buffer layer,
    상기 다공성 지지체 위에 다수의 컬럼으로 형성되며, 상기 컬럼의 직경이 10~200nm인 것을 특징으로 하는 수소 분리막.A hydrogen separation membrane is formed of a plurality of columns on the porous support, the diameter of the column is 10 ~ 200nm.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 버퍼층은 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재로 형성된 것을 특징으로 하는 수소 분리막.The buffer layer is formed of an oxide-based ceramic material comprising at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 버퍼층은 MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재로 형성된 것을 특징으로 하는 수소 분리막.The buffer layer is hydrogen, characterized in that formed of an oxide-based ceramic material having an oxygen composition of 1 <y <2 in MO y (M is Ti, Zr) or an oxygen composition of 2 <z <3 in Al 2 O z . Separator.
  7. 다공성 지지체;Porous support;
    상기 다공성 지지체 위에 형성되며 수소를 분리할 수 있는 팔라듐계의 금속 분리막;A palladium-based metal separator formed on the porous support and capable of separating hydrogen;
    상기 금속 분리막 위에 다수의 컬럼으로 형성된 금속 또는 세라믹 소재의 보호층;A protective layer of a metal or ceramic material formed of a plurality of columns on the metal separator;
    을 포함하는 것을 특징으로 하는 수소 분리막.Hydrogen separation membrane comprising a.
  8. 제7항에 있어서, 상기 보호층은,The method of claim 7, wherein the protective layer,
    상기 금속이 Pt, Au, Cu, Ru 또는 Rh이고,The metal is Pt, Au, Cu, Ru or Rh,
    상기 세라믹 소재가 Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재인 것을 특징으로 하는 수소 분리막.The hydrogen separation membrane, characterized in that the ceramic material is an oxide-based ceramic material containing at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W and Mo.
  9. 다공성 지지체를 준비하는 단계;Preparing a porous support;
    상기 다공성 지지체 위에 세라믹 소재의 버퍼층을 형성하는 단계;Forming a buffer layer of a ceramic material on the porous support;
    상기 버퍼층 위에 수소를 분리할 수 있는 팔라듐계의 금속 분리막을 형성하는 단계;Forming a palladium-based metal separator capable of separating hydrogen on the buffer layer;
    상기 금속 분리막 위에 다수의 컬럼 형상의 금속 또는 세라믹 소재의 보호층을 형성하는 단계;Forming a protective layer of a plurality of column-shaped metal or ceramic materials on the metal separator;
    를 포함하는 것을 특징으로 하는 수소 분리막의 제조 방법.Method for producing a hydrogen separation membrane comprising a.
  10. 제9항에 있어서, 상기 준비하는 단계에서,The method of claim 9, wherein in the preparing step,
    상기 다공성 지지체는 금속이며, 상기 버퍼층이 형성되는 표면의 조도가 100nm 이하인 것을 특징으로 하는 수소 분리막의 제조 방법.The porous support is a metal, the method of producing a hydrogen separation membrane, characterized in that the roughness of the surface on which the buffer layer is formed is 100nm or less.
  11. 제10항에 있어서, 상기 버퍼층을 형성하는 단계에서,The method of claim 10, wherein in the forming of the buffer layer,
    상기 다공성 지지체 위에 다수의 컬럼 형상의 세라믹 소재의 버퍼층을 형성하는 것을 특징으로 하는 수소 분리막의 제조 방법.Method for producing a hydrogen separation membrane, characterized in that to form a buffer layer of a plurality of columnar ceramic material on the porous support.
  12. 제11항에 있어서, 상기 버퍼층을 형성하는 단계에서,The method of claim 11, wherein in the forming of the buffer layer,
    Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재를 물리적으로 증착하여 상기 버퍼층을 형성하는 것을 특징으로 하는 수소 분리막의 제조 방법.The buffer layer is formed by physically depositing an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Method for producing a hydrogen separation membrane.
  13. 제11항에 있어서, 상기 버퍼층을 형성하는 단계에서,The method of claim 11, wherein in the forming of the buffer layer,
    MOy(M은 Ti, Zr)에서 산소의 조성이 1<y<2이거나, Al2Oz에서 산소의 조성이 2<z<3인 산화물계 세라믹 소재를 물리적으로 증착하여 상기 버퍼층을 형성하는 것을 특징으로 하는 수소 분리막의 제조 방법.The buffer layer is formed by physically depositing an oxide-based ceramic material having an oxygen composition of 1 <y <2 in MO y (M is Ti and Zr) or an oxygen composition of 2 <z <3 in Al 2 O z . Method for producing a hydrogen separation membrane, characterized in that.
  14. 제11항에 있어서, 상기 보호층을 형성하는 단계는,The method of claim 11, wherein forming the protective layer,
    Pt, Au, Cu, Ru 또는 Rh의 금속을 물리적으로 증착하여 상기 보호층을 형성허가나,Physically deposit a metal of Pt, Au, Cu, Ru or Rh to form the protective layer,
    Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W 및 Mo 중에 하나 이상을 포함하는 산화물계 세라믹 소재를 물리적으로 증착하여 상기 보호층을 형성하는 것을 특징으로 하는 수소 분리막의 제조 방법.The protective layer is formed by physically depositing an oxide-based ceramic material including at least one of Ti, Zr, Al, Si, Ce, La, Sr, Cr, V, Nb, Ga, Ta, W, and Mo. Method for producing a hydrogen separation membrane.
PCT/KR2014/002388 2013-03-26 2014-03-21 Hydrogen separation membrane and preparation method therefor WO2014157876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0031898 2013-03-26
KR20130031898A KR101494186B1 (en) 2013-03-26 2013-03-26 Hydrogen separation membrane and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014157876A1 true WO2014157876A1 (en) 2014-10-02

Family

ID=51624776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002388 WO2014157876A1 (en) 2013-03-26 2014-03-21 Hydrogen separation membrane and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101494186B1 (en)
WO (1) WO2014157876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492279A (en) * 2014-12-24 2015-04-08 沈阳工程学院 Method for preparing sulfur resistant palladium composite membrane by separating hydrogen from synthesis gas from coal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019011707B1 (en) * 2016-12-08 2022-11-16 Tecnalia Research & Innovation HYDROGEN PERMEABLE MEMBRANE DEVICE
KR20200076094A (en) 2018-12-19 2020-06-29 한국가스공사 Simultaneous production method of hydrogen and dimethylether from syngas and manufacturing device therefor
CN111778437A (en) * 2020-07-15 2020-10-16 桂林电子科技大学 Thin strip-shaped crystalline Nb-Ti-Co hydrogen separation material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028850A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Hydrogen separation structure
JP2008237945A (en) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc Hydrogen-separating membrane
KR20110004970A (en) * 2009-07-09 2011-01-17 이창호 A process for preparing high glossy board decorated with a pattern
KR20110092506A (en) * 2010-02-09 2011-08-18 한국에너지기술연구원 Protection layer of hydrogen membrane and preparation method thereof
JP4909600B2 (en) * 2005-03-14 2012-04-04 日本碍子株式会社 Hydrogen separator and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028850A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Hydrogen separation structure
JP4909600B2 (en) * 2005-03-14 2012-04-04 日本碍子株式会社 Hydrogen separator and method for producing the same
JP2008237945A (en) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc Hydrogen-separating membrane
KR20110004970A (en) * 2009-07-09 2011-01-17 이창호 A process for preparing high glossy board decorated with a pattern
KR20110092506A (en) * 2010-02-09 2011-08-18 한국에너지기술연구원 Protection layer of hydrogen membrane and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492279A (en) * 2014-12-24 2015-04-08 沈阳工程学院 Method for preparing sulfur resistant palladium composite membrane by separating hydrogen from synthesis gas from coal

Also Published As

Publication number Publication date
KR20140117056A (en) 2014-10-07
KR101494186B1 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
WO2014157876A1 (en) Hydrogen separation membrane and preparation method therefor
KR100679341B1 (en) Preparation Method of Palladium Alloy Composite Membrane for Hydrogen Separation
WO2014092333A1 (en) Hydrogen separation membrane, and method for manufacturing same
JP2002219343A (en) Material-separating structure and method for producing the same
WO2013015566A2 (en) Hydrogen-separation-membrane protection layer and a coating method therefor
JPWO2002045832A1 (en) Hydrogen permeable structure and manufacturing method thereof
WO2013105752A1 (en) Heat resistant hydrogen separation membrane and method for manufacturing same
KR101471616B1 (en) Apparatus of carbon dioxide capture and storage
WO2013065988A1 (en) Separation layer module having a mixing part for purifying hydrogen
KR101136853B1 (en) Method for Thin Film Coating of Palladium Alloy on Porous Metal Substrate
KR101166911B1 (en) Method for producing hydrogen separation membrane having improved selectivity and hydrogen separation membrane produced thereby
JP3645088B2 (en) Hydrogen permeable membrane and method for producing the same
KR101150873B1 (en) Protection layer of hydrogen membrane and preparation method thereof
KR101784437B1 (en) membrane for Hydrogen separation and use thereof
KR101388649B1 (en) Method for producing hydrogen separation membrane
JP2010036080A (en) Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
JP5223240B2 (en) Hydrogen permeable membrane and method for producing the same
KR101494187B1 (en) Hydrogen separation membrane module sing foil separation film and manufacturing method thereof
KR101335623B1 (en) Hydrogen separation membrane and method for producing the same
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
WO2013024937A1 (en) Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same
JP2002119834A (en) Method of manufacturing inorganic hydrogen separating membrane
CN106694550A (en) Novel preparation technology for cold rolling of ultrathin Pd-Ag alloy membrane
JP2008218293A (en) Hydrogen separation film, and manufacturing method for hydrogen separation film-electrolyte film conjugant
KR20090119098A (en) Composite membrane for hydrogen separation and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775961

Country of ref document: EP

Kind code of ref document: A1