WO2014157753A1 - 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법 - Google Patents

수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법 Download PDF

Info

Publication number
WO2014157753A1
WO2014157753A1 PCT/KR2013/002613 KR2013002613W WO2014157753A1 WO 2014157753 A1 WO2014157753 A1 WO 2014157753A1 KR 2013002613 W KR2013002613 W KR 2013002613W WO 2014157753 A1 WO2014157753 A1 WO 2014157753A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
data
decision tree
target point
target
Prior art date
Application number
PCT/KR2013/002613
Other languages
English (en)
French (fr)
Inventor
김창원
김예진
김효수
김민수
박문화
이슬아
이영철
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2014157753A1 publication Critical patent/WO2014157753A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management

Definitions

  • the present invention relates to a water quality information providing system and method capable of diagnosing and predicting water quality conditions.
  • the water quality of a particular point is predicted and provided through the water quality prediction model consisting of a series of rules and the water quality measurement of the upstream point, while providing a qualitative diagnosis of the water quality.
  • the present invention relates to a water quality information providing system and method capable of diagnosis and prediction.
  • the quality of the discharged water system has a close effect on the lives and welfare of the local people.As a result, the office in charge of the aquatic environment has been analyzing and recording the water quality items by sampling the stream water at regular intervals.
  • the water quality automatic measurement network is installed at the point where water quality can be represented by a certain section of the system. It is also stored in a database installed at a specific location and is open to interested public.
  • the present invention has been made to solve such a problem, the present invention reflects the fluctuation of the target point and upstream water quality items in order to replace a mathematical model that is difficult to optimize the value of the water quality items of the target point
  • the purpose of the present invention is to provide a water quality information providing system and method capable of diagnosing and predicting water quality conditions to provide a range and meaning of values that can be taken by the water quality of a target site.
  • the data processing unit for collecting the data necessary for the diagnosis and prediction of the water quality from the database for storing the water quality measurement data to set and process the data at regular intervals;
  • the water quality type of the target point is grouped with respect to the data of the target point among the processed data, the grouped water quality type is a target variable, and the data corresponding to the upstream point of the target point is separated based on the separation criteria.
  • Diagnostic decision tree generation unit for generating a diagnostic decision tree for diagnosing the water quality of the target point;
  • a diagnostic decision unit for deriving a water quality type of the target point by applying data of a target point among the processed data to the diagnostic decision tree;
  • the predictive decision tree predicting the quantitative range of the target variable of the target point using the data of the target point among the processed data as the target variable, and using the data corresponding to the upstream point of the target point as a separation criterion.
  • Prediction decision tree generation unit to generate; And a prediction decision unit configured to apply data of a target point among the processed data to the predictive decision tree to derive a quantitative range for the target variable of the target point, wherein the processed data includes a BOD, Diagnosis and prediction of water quality conditions comprising at least one of COD, SS, TN, TP, STN, STP, NH 4 + N, NO X -N, PO 4 -P, and GHI-a pH.
  • a water quality information system that is possible.
  • the diagnostic decision tree generation unit groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision trees are assigned to the grouped water types. Generated by a decision tree algorithm, which is derived by the following equation.
  • Pi is the fraction of S belonging to class i
  • A is a variable
  • Sv is a subset of S when variable A has the value v.
  • the diagnostic decision tree generation unit groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision trees are assigned to the grouped water types. Generated by a decision tree algorithm, which is derived using a chi-square test that measures whether there is a difference in variance between the types of water quality included in each end segment. It features.
  • the diagnostic decision unit displays the water quality type of the target point as a linguistic diagnosis result of the data of the target point including the concentration of organic matter and nutrients
  • the predictive decision unit is a possible value of the data of the target point It is characterized by displaying the range of as a prediction result in the form of mean ⁇ standard deviation.
  • the water quality type of the target point is grouped with respect to the data of the target point among the processed data, the grouped water quality type is a target variable, and the data corresponding to the upstream point of the target point is separated based on the separation criteria.
  • the predictive decision tree predicting the quantitative range of the target variable of the target point using the data of the target point among the processed data as the target variable, and using the data corresponding to the upstream point of the target point as a separation criterion.
  • Generating a predictive decision tree to generate and a predictive decision step of deriving a quantitative range for the target variable of the target point by applying the data of the target point among the processed data to the predictive decision tree.
  • the step of generating a diagnostic decision tree groups the water quality type of the target point by hierarchical clustering method with respect to the data of the target point among the processed data, the diagnostic decision tree is the grouped water quality type Are generated by the decision tree algorithm separately, and the decision tree algorithm is derived by the following equation.
  • Pi is the fraction of S belonging to class i
  • A is a variable
  • Sv is a subset of S when variable A has the value v.
  • the step of generating a diagnostic decision tree groups the water quality type of the target point by hierarchical clustering method with respect to the data of the target point among the processed data
  • the diagnostic decision tree is the grouped water quality type Generated by a decision tree algorithm, which is derived using a chi-square test that measures whether there is a difference in variance between the types of water included in each end segment. It is characterized by.
  • the diagnostic decision step displays the water quality type of the target point as a linguistic diagnostic result of the data of the target point including the concentration of organic matter and nutrients, and the predictive decision step includes the presence of the data of the target point.
  • the range of possible values is indicated by the result of the prediction in the form of mean ⁇ standard deviation.
  • all subjects utilizing the water quality of the corresponding water point can use information according to the water quality prediction result provided from the present invention rather than a single value, and the water quality of the target point is existing.
  • the fluctuation range of the existing water quality there is an effect that it can be provided as a linguistic intuitive diagnosis result to which level the water quality type corresponds.
  • the present invention may be produced by a specific program for the diagnosis result and the prediction result of the state of water quality, or the information provided by the particular program may be provided on the web.
  • FIG. 1 is a block diagram showing a water quality information providing system capable of diagnosing and predicting a water quality condition according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for providing water quality information capable of diagnosing and predicting a water quality condition according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a diagnostic decision tree generated by the diagnostic decision tree generation unit of FIG. 1.
  • FIG. 4 is a diagram illustrating a prediction decision tree for predicting the BOD concentration generated by the prediction decision tree generation unit of FIG. 1.
  • FIG. 5 is a diagram illustrating a prediction decision tree for predicting the T-N concentration generated by the prediction decision tree generation unit of FIG. 1.
  • FIG. 6 is a diagram illustrating a prediction decision tree for predicting the T-P concentration generated by the prediction decision tree generation unit of FIG. 1.
  • the data processing unit for collecting the data necessary for the diagnosis and prediction of the water quality from the database for storing the water quality measurement data to set and process the data at regular intervals;
  • the water quality type of the target point is grouped with respect to the data of the target point among the processed data, the grouped water quality type is a target variable, and the data corresponding to the upstream point of the target point is separated based on the separation criteria.
  • Diagnostic decision tree generation unit for generating a diagnostic decision tree for diagnosing the water quality of the target point;
  • a diagnostic decision unit for deriving a water quality type of the target point by applying data of a target point among the processed data to the diagnostic decision tree;
  • the predictive decision tree predicting the quantitative range of the target variable of the target point using the data of the target point among the processed data as the target variable, and using the data corresponding to the upstream point of the target point as a separation criterion.
  • Prediction decision tree generation unit to generate; And a prediction decision unit configured to apply data of a target point among the processed data to the predictive decision tree to derive a quantitative range for the target variable of the target point, wherein the processed data includes a BOD, Diagnosis and prediction of water quality conditions comprising at least one of COD, SS, TN, TP, STN, STP, NH 4 + N, NO X -N, PO 4 -P, and GHI-a pH.
  • FIG. 1 is a block diagram showing a water quality information providing system for diagnosing and predicting a water quality according to an embodiment of the present invention
  • Figure 2 is a water quality information capable of diagnosing and predicting a water quality according to an embodiment of the present invention
  • 3 is a flowchart illustrating a providing method
  • FIG. 3 is a diagram illustrating a diagnostic tree generated by the diagnostic tree generation unit of FIG. 1
  • FIG. 4 is a BOD concentration generated by the predictive tree structure generation unit of FIG. 1.
  • FIG. 5 is a diagram illustrating a prediction decision tree for predicting T
  • FIG. 5 is a diagram showing a prediction decision tree for predicting TN concentration generated by the prediction decision tree generation unit of FIG. 1, and
  • the water quality information providing system 10 capable of diagnosing and predicting a water quality condition according to the present invention includes a data processing unit 100, a diagnostic decision tree generation unit 200, and a diagnostic decision unit 300. ), The prediction decision tree generator 400 and the prediction decision unit 500.
  • the data processing unit 100 collects data necessary for diagnosing and predicting water quality from a database storing water quality measurement data, and sets and processes the data at predetermined time intervals.
  • the processed data includes at least one of BOD, COD, SS, TN, TP, STN, STP, NH 4 + N, NO X -N, PO 4 -P, GHI-a pH.
  • the database stores and stores the water quality item measurement values at regular time intervals which are periodically measured and transmitted through an automatic measuring device installed at specific measuring points of the water system.
  • the water quality items include various water quality items that can be automatically measured, including BOD, COD, SS, T-N, T-P, and Chl-a.
  • the measurement interval can be as short as one week to as long as once a month, and the preferred measurement interval is one week.
  • the data processing unit 100 processes the latest measurement data upstream and the target point and utilizes the diagnostic decision tree generation unit 200 and the prediction decision tree generation unit 400.
  • the latest measurement data is composed of data of at least one year or more, and it is desirable to use all the items that can be processed by setting the water quality measurement items at a predetermined time interval and setting them to one set per measurement number.
  • BOD, COD, SS, TN, TP, Chl-a, STP, STN are measured and stored once a week, and other items such as Cr, Mg, etc. are measured once a month.
  • the data processing unit 100 used to ensure the performance of the decision tree to be generated through these data is the data BOD, COD, SS, TN, TP, Chl-a, STP, STN It is preferable to construct.
  • the diagnostic decision tree generating unit 200 groups the water quality types of the target points with respect to the data of the target points among the processed data, and sets the grouped water types as target variables, and upstream of the target points. It serves to generate a diagnostic decision tree for diagnosing the water quality of the target site by using the data corresponding to the site as a separation criterion.
  • the diagnostic decision tree generation unit 200 groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision tree is the grouped water quality. Generated by decision tree algorithm separately for the type, the decision tree algorithm can be derived by the following equation.
  • Pi is the fraction of S belonging to class i
  • A is a variable
  • Sv is a subset of S when variable A has the value v.
  • the diagnostic decision tree generation unit 200 classifies and classifies the water quality types of the target points by hierarchical clustering analysis of the data of the target points among the processed data, preferably grouped into 5 to 7 types. It is preferable. Subsequently, the diagnostic decision tree, which is a means for deriving the type of water quality downstream of the target point and providing it as a diagnosis result, is generated using the upstream water quality measurement data as a separation criterion. The CART algorithm is preferred.
  • the diagnostic decision tree that is created is a set of rules that can provide the water quality type of the target point according to the distribution of water quality items upstream. If the individual rules constituting the diagnostic decision tree are provided in the form of IF to THEN, then the upstream water quality items are referenced after the IF, followed by the water quality type of the target point.
  • the diagnostic decision tree generation unit 200 may also generate a diagnostic decision tree that can derive the type of water quality downstream of a target point using both upstream and target water quality measurement items.
  • the difference from the previous case is that the upstream water quality measurement data is used as a separation criterion for constructing the diagnostic decision tree, and the downstream water quality measurement data, which is a target point, is also used. You can choose when.
  • the diagnostic decision tree generation unit 200 groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision trees are grouped. Generated by decision tree algorithms individually for water types, which use a chi-square test that measures whether there is a difference in variance between water types included in each end segment. Can be derived.
  • the diagnostic decision unit 300 serves to derive the water quality type of the target point by applying the data of the target point among the processed data to the diagnostic decision tree. Therefore, the diagnostic decision unit 300 provides what type of water quality the target point belongs to (eg, a high concentration of organic matter and a low concentration of nutrients).
  • the prediction decision tree generating unit 400 uses the data of the target point as the target variable among the processed data, and separates the data corresponding to the upstream point of the target point as a reference for the target variable of the target point. It is responsible for generating predictive decision trees that predict quantitative range.
  • the predictive decision tree generating unit 400 is for generating a predictive decision tree for providing a water quality prediction result of a target point, and the latest upstream collected from the database as in the diagnostic decision tree generating unit 200. And predictive decision trees for prediction of each water quality item to be estimated at the target point, based on the measured data at the target point.
  • the algorithm for constructing the prediction decision tree is preferably a CART or CHAID algorithm.
  • the separation criteria of the predictive decision tree is upstream water quality measurement item data, and the upstream water quality item in the first part of each rule (IF THEN) constituting the predictive decision tree, and any water quality item at the target point in the second part.
  • the rule is derived as (IF BOD_Upstream1> A and COD Upstream 2 ⁇ B, THEN BOD_Target is in the range of C ⁇ D. (C is mean and D is standard deviation) .
  • the prediction decision unit 500 serves to derive a quantitative range for the target variable of the target point by applying the data of the target point of the processed data to the prediction decision tree.
  • the diagnostic decision unit 300 displays the water quality type of the target point as a linguistic diagnosis result of data of the target point including the concentration of organic matter and nutrients, and the prediction decision unit 500 determines the target point.
  • the range of possible values of the data can be expressed as a prediction result in the form of mean ⁇ standard deviation. Therefore, the diagnosis result and the prediction result about the state of the water quality may be produced and viewed by a specific program, or the information provided by the specific program may be provided on the web.
  • FIG. 2 describes a water quality information providing method capable of diagnosing and predicting the state of water quality according to the present invention.
  • the first step is a data processing step of collecting data necessary for diagnosing and predicting water quality from a database storing water quality measurement data and processing the set data at predetermined time intervals (S110).
  • the second step groups the water quality types of the target points among the processed data among the processed data, sets the grouped water types as target variables, and separates data corresponding to the upstream points of the target points.
  • the diagnostic decision tree generation step (S120) groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision tree is the grouped water quality.
  • the decision tree algorithm can be derived by the following equation.
  • Pi is the fraction of S belonging to class i
  • A is a variable
  • Sv is a subset of S when variable A has the value v.
  • the diagnostic decision tree generation step (S120) groups the water quality types of the target points by hierarchical clustering with respect to the data of the target points among the processed data, and the diagnostic decision trees are grouped. Generated by decision tree algorithms individually for water types, which use a chi-square test that measures whether there is a difference in variance between water types included in each end segment. Can be derived.
  • the third step is a diagnostic decision step of deriving the water quality type of the target point by applying the data of the target point of the processed data to the diagnostic decision tree (S130).
  • the fourth step is a prediction that predicts the quantitative range of the target variable of the target point by using the data of the target point among the processed data as the target variable, and by using the data corresponding to the upstream point of the target point as a separation criterion.
  • the fifth step is a prediction decision step of deriving a quantitative range for the target variable of the target point by applying the data of the target point among the processed data to the prediction decision tree (S150).
  • the diagnostic decision step (S130) displays the water quality type of the target point as a linguistic diagnosis result on the data of the target point including the concentration of organic matter and nutrients, and the predictive decision step (S150) is the target point.
  • the range of possible values of the data can be expressed as a prediction result in the form of mean ⁇ standard deviation.
  • the diagnostic decision tree generation step (S120) and the diagnostic decision step (S130), the diagnostic decision step (S130) and the prediction decision step (S150) may be reversed. In other words, the order of diagnosis and prediction is irrelevant.
  • the target target point may be a Gupo point downstream of the Nakdong River.
  • Nakbon-K point and Nakbon-L point which are national measurement networks of the Ministry of Environment, may be selected.
  • BOD, COD, SS, TN, TP, Chl-a, pH, organonitrogen, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, organic phosphorus, and dissolved phosphorus are measured.
  • the data for use in the present invention was determined by the reliability of the decision tree.
  • the BOD, COD, SS, TN, TP, Chl-a, pH is measured only once a week, it is preferable to prepare to have one set of measurements per week.
  • the data set thus prepared is input to the diagnosis decision unit 300 and the prediction decision unit 500 to provide a prediction result and a diagnosis result for achieving the object of the present invention.
  • the diagnostic decision unit 300 is characterized by providing a qualitative and linguistic diagnosis of the water quality of the target point by the diagnostic decision tree generated and provided by the diagnostic decision tree generation unit 200 and , According to an embodiment of the present invention, may provide a water quality diagnosis result such as "the current water quality of the bubbling point is [type of high organic matter and low concentration of nutrients]."
  • the prediction decision unit 500 predicts and provides a quantitative range of water quality of the target point by the prediction decision tree generated and provided by the prediction decision tree generation unit 400, and the present invention.
  • the current water quality of the bubbling point is [in the range of 5.41.2 ppm] can provide a quantitative and realistic prediction result.
  • BOD, COD, SS, TN, TP, Chl-a, pH is selected from the screened or processed data (BOD, COD, SS, TN, TP, Chl-a, pH). It is grouped into seven types by hierarchical clustering method as shown in [Table 1] and [Table 2] below. Table 1 shows seven water types and average values for each item grouped from the water quality of Gupo point, and Table 2 shows the grade of water pollution in the water type.
  • the prediction decision tree which is a set of rules used to derive the prediction result in the prediction decision unit 500, is generated in the prediction decision tree generation unit 400, which is a diagnostic decision tree generation unit 200.
  • the prediction decision tree generation unit 400 which is a diagnostic decision tree generation unit 200.
  • water quality items measured at one or more points of the target point and upstream are called during a predetermined preset measurement period, and the water quality items that are commonly present for each shortest measurement section are selected.
  • the predictive decision tree generator 400 is driven by using a function of configuring one data set per data set.
  • water quality measurement data measured at a target point and one or more upstream points are selected from a prepared data set at a predetermined time interval, and then.
  • the water quality measurement data of the upstream point of the data set prepared by the data processing unit 100 using the water quality item to be predicted as the target variable are generated based on the separation criteria.
  • the predictive decision tree generation unit 400 the water quality of a certain point downstream of the swimming river ("downstream") and the water quality of the "upstream 1" point that exists upstream therefrom
  • the predictive decision tree for prediction is constructed using the water quality measured at the point where the sewage treatment plant effluent is discharged and joined ("confluence point").
  • FIGS. 4, 5, and 6 Decision trees for forecasting per water quality item will be derived.
  • Figure 4 is a predictive decision tree for predicting the BOD concentration of the downstream swimming river
  • Figure 5 is a predictive decision tree for predicting the TN concentration of the downstream swimming river
  • Figure 6 is a downstream of the swimming river Predictive decision tree to predict TP concentration.
  • the predictive decision tree for the prediction as shown in FIGS. 4 to 6 is used in the prediction decision unit 500 of the present invention, and the prediction such as "the BOD water quality of the target point exists in the range of 4.333 ⁇ 0.208". It can provide results.
  • the present invention predicts and provides the water quality of a specific point through the water quality prediction model composed of a series of rules and the water quality measurement of the upstream point, and provides qualitative diagnostic results for the corresponding water quality to diagnose and predict the water quality. This can be widely used to determine the water quality of the discharge system.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

본 발명은 특정지점의 수계수질을 그보다 상류지점의 수질측정치와 일련의 규칙으로 구성된 수질예측모델을 통해 예측하여 제공하는 동시에 해당 수질상태에 대한 정성적인 진단결과를 제공하는 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법에 관한 것이다. 본 발명에 의하면, 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공부; 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성부; 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정부; 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성부; 및 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정부;를 포함하되, 상기 가공된 데이터는 BOD, COD, SS, T-N, T-P, STN, STP, NH4 +N, NOX-N, PO4-P, GHI-a pH 중에서 적어도 하나 이상을 포함하는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템을 제공한다.

Description

수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법
본 발명은 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법에 관한 것이다. 보다 상세하게 설명하면, 특정지점의 수계수질을 그보다 상류지점의 수질측정치와 일련의 규칙으로 구성된 수질예측모델을 통해 예측하여 제공하는 동시에 해당 수질상태에 대한 정성적인 진단결과를 제공하는 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법에 관한 것이다.
방류수계의 수질은 인근 지역민의 삶과 삶의 복지수준에 밀접한 영향을 미치며, 이에 수계 환경을 담당하는 관청에서는 일정한 시간간격으로 하천수를 샘플링하여 수질항목을 분석하여 기록하여 보관하여 왔고, 근래에는 하천의 일정 구간별로 수질을 대표할 수 있는 지점에 수질자동측정망을 설치하여 일정한 시간간격으로 수질을 자동측정하고 있다. 또한 이를 특정한 장소에 설치되어 있는 데이터베이스에 저장하여 관심있는 대중에게 공개하고 있다.
그러나 이러한 시스템에 의해서 수집되는 데이터는 그의 측정간격이 길어 시시때때로 변화하는 수질에 대해 알고자 하는 요구에 부응하지 못하였으므로, 각종 모델들을 활용하여 알고자 하는 시점의 수질을 알기 위한 노력이 수행되어져 왔다. 이들 모델들은 대부분 대상 수계의 지형학적 정보와 해당 시점의 유량 및 관련이 있는 지점의 수질을 사용하여 일련의 이론적 수학적 식들에 대입하여 목표지점의 수질을 예측해 내는 것이 대부분이다.
이러한 수학적 모델들은 지형정보를 얻기 위한 조사과정에 비용과 시간이 소요되며, 또한 모델의 수식을 구성하는 계수들의 값을 모델링하고자 하는 해당 수계의 수질 변동을 잘 모사하도록 최적화하는 과정이 주기적으로 요구된다는 단점을 가지고 있다.
더욱이 이러한 모델들은 예측하고자 하는 시점 당 예측된 단 하나의 값으로 이루어진 숫자의 시리즈를 제공할 뿐이었다. 이러한 일련의 예측된 숫자들은 항상 오차를 포함하고 있어 예측 결과의 활용에 있어 신뢰성이 떨어졌으며, 또한 예측 결과가 일련의 숫자로만 이루어져 있어 사전에 수질 측정값이 가지는 높낮이에 대한 사전지식이 없는 사람에게는 정보력이 부족하였다.
이에, 결정론적이지만 오차를 가지는 수치값보다는 있을 법한 수질수치의 범위를 제공할 수 있으며, 보다 직관적으로 수질항목의 예측값이 가지는 의미에 대한 정성적인 진단 결과를 제공하는 정보제공의 방법이 요구되고 있는 실정이다.
본 발명은 이와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명은 최적화가 어려운 수학적 모델을 대신하기 위해 목표지점과 그 상류의 수질항목의 변동경향을 반영하여 목표지점의 수질항목이 가질 수 있는 값의 범위를 예측하는 규칙 기반 예측모델을 의사결정나무알고리즘에 의해 개발하고, 또한 그 예측수질이 가지고 있는 직관적 의미를 제공하기 위한 규칙 기반 진단모델을 개발하여, 상류의 수질 측정 데이터와 이들 규칙기반 모델들을 사용하여 목표지점의 수질이 취할 수 있는 값의 범위와 의미를 제공하기 위한 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법을 제공하는데 그 목적이 있다.
본 발명에 의하면, 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공부; 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성부; 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정부; 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성부; 및 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정부;를 포함하되, 상기 가공된 데이터는 BOD, COD, SS, T-N, T-P, STN, STP, NH4 +N, NOX-N, PO4-P, GHI-a pH 중에서 적어도 하나 이상을 포함하는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템을 제공한다.
한편, 상기 진단의사결정나무 생성부는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출되는 것을 특징으로 한다.
[규칙 제91조에 의한 정정 13.06.2013] 
Figure WO-DOC-FIGURE-10a
(여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
한편, 상기 진단의사결정나무 생성부는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출되는 것을 특징으로 한다.
한편, 상기 진단의사결정부는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정부는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 주는 것을 특징으로 한다.
또한 본 발명에 의하면, 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공단계; 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성단계; 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정단계; 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성단계; 및 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정단계;를 포함하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법을 제공한다.
한편, 상기 진단의사결정나무 생성단계는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출되는 것을 특징으로 한다.
[규칙 제91조에 의한 정정 13.06.2013] 
Figure WO-DOC-FIGURE-16a
(여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
한편, 상기 진단의사결정나무 생성단계는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출되는 것을 특징으로 한다.
한편, 상기 진단의사결정단계는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정단계는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 주는 것을 특징으로 한다.
본 발명은 해당 수계 지점의 수질을 활용하는 모든 주체들이 본 발명으로부터 제공되는 수질 예측 결과가 하나의 수치가 아닌 가능한 범위로 제공됨에 따라 그에 따른 정보활용이 가능하며, 또한 목표지점의 수질이 기존에 존재하여 오던 수질의 변동범위에 비추어 보았을 때에 어떠한 수준에 해당하는 수질 유형에 속하는지를 언어적인 직관적 진단결과로서 제공받을 수 있는 효과가 있다.
또한 본 발명은 수계수질의 상태에 대한 진단결과 및 예측결과를 특정 프로그램으로 제작되어 존재하거나 상기 특정 프로그램이 제공하는 정보가 웹상에 제공될 수도 있다.
도 1은 본 발명의 실시예에 따른 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템을 나타내는 구성도이다.
도 2는 본 발명의 실시예에 따른 수계수질상태의 진단 및 예측이 가능한 수질정보제공방법을 나타내는 순서도이다.
도 3은 도 1의 진단의사결정나무 생성부에 의해 생성된 진단의사결정나무를 나타낸 도면이다.
도 4는 도 1의 예측의사결정나무 생성부에 의해 생성된 BOD 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이다.
도 5는 도 1의 예측의사결정나무 생성부에 의해 생성된 T-N 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이다.
도 6은 도 1의 예측의사결정나무 생성부에 의해 생성된 T-P 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이다.
본 발명에 의하면, 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공부; 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성부; 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정부; 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성부; 및 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정부;를 포함하되, 상기 가공된 데이터는 BOD, COD, SS, T-N, T-P, STN, STP, NH4 +N, NOX-N, PO4-P, GHI-a pH 중에서 적어도 하나 이상을 포함하는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템를 제공한다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 실시예에 따른 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템을 나타내는 구성도이고, 도 2는 본 발명의 실시예에 따른 수계수질상태의 진단 및 예측이 가능한 수질정보제공방법을 나타내는 순서도이고, 도 3은 도 1의 진단의사결정나무 생성부에 의해 생성된 진단의사결정나무를 나타낸 도면이고, 도 4는 도 1의 예측의사결정나무 생성부에 의해 생성된 BOD 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이고, 도 5는 도 1의 예측의사결정나무 생성부에 의해 생성된 T-N 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이고, 도 6은 도 1의 예측의사결정나무 생성부에 의해 생성된 T-P 농도를 예측하기 위한 예측의사결정나무를 나타낸 도면이다.
도 1을 참조하면, 본 발명에 의한 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템(10)은 데이터가공부(100), 진단의사결정나무 생성부(200), 진단의사결정부(300), 예측의사결정나무 생성부(400) 및 예측의사결정부(500)를 포함한다.
상기 데이터가공부(100)는 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 역할을 한다. 상기 가공된 데이터는 BOD, COD, SS, T-N, T-P, STN, STP, NH4 +N, NOX-N, PO4-P, GHI-a pH 중에서 적어도 하나 이상을 포함한다.
상기 데이터베이스는 해당 수계의 특정 측정 지점들에 설치된 자동측정기기를 통하여 주기적으로 측정하여 전송되는 일정시간 간격의 수질항목측정치를 저장하여 보관한다. 이때 수질항목은 대표적 수질오염항목인 BOD, COD, SS, T-N, T-P, Chl-a를 포함한 자동측정가능한 다양한 수질항목을 포함하는 것이 바람직하다. 측정간격은 짧게는 일주일에서 길게는 한 달에 1회일 수 있으며 바람직한 측정간격은 일주일이다.
이때 자동측정기가 설치된 지점들 중 수질정보제공이 요구되는 목표지점을 선정하면, 목표지점으로부터 상류 방향으로 거슬러가며 하나 이상의 측정지점을 상류 지점이라고 명명하겠다. 상기 데이터가공부(100)는 상류 및 목표지점의 최근의 측정자료를 가공하여 진단의사결정나무 생성부(200)와 예측의사결정나무 생성부(400)에서 활용한다. 이때 최근의 측정자료는 최소한 최근 1년 이상의 데이터로 구성되는 것이 바람직하며, 수질측정항목은 일정한 시간간격으로 측정되어 측정횟수당 한 셋으로 세트화시켜 가공할 수 있는 항목을 모두 이용하는 것이 바람직하다. 예를 들어, 하나의 측정지점에서 BOD, COD, SS, T-N, T-P, Chl-a, STP, STN은 일주일 1회 측정되어 저장되고, Cr, Mg, 등의 타 항목은 1개월에 1회 측정되어 저장된다고 할 때, 이들 데이터를 통해 생성될 의사결정나무의 성능을 보장하기 위해 사용하는 데이터가공부(100)는 BOD, COD, SS, T-N, T-P, Chl-a, STP, STN으로 데이터를 구성하는 것이 바람직하다.
상기 진단의사결정나무 생성부(200)는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 역할을 한다.
상기 진단의사결정나무 생성부(200)는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출될 수 있다.
[규칙 제91조에 의한 정정 13.06.2013] 
Figure WO-DOC-FIGURE-37a
(여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
상기 진단의사결정나무 생성부(200)에서는 가공된 데이터 중 목표지점의 데이터에 대하여 계층적 군집분석에 의하여 해당 목표지점의 수질 유형을 분류하여 그룹화하는데, 바람직하게는 5~7개의 유형으로 그룹화하는 것이 바람직하다. 이후에, 상류의 수질측정자료를 분리기준으로 하여 목표지점인 하류의 수질이 어떠한 유형에 해당할지를 도출하여 진단결과로서 제공하기 위한 수단인 진단의사결정나무를 생성하게 되는데, 이 때 사용되는 알고리즘은 CART 알고리즘이 바람직하다. 이로서 생성되는 진단의사결정나무는 상류의 수질항목의 분포에 따라 목표지점의 수질유형을 제공해 줄 수 있는 규칙들의 집합이다. 진단의사결정나무를 구성하는 개별 규칙들이 IF ~ THEN 의 형태로 제공될 경우에 IF 뒤에는 상류의 수질항목들이 참조되며, THEN 뒤에는 목표지점의 수질 유형이 존재하게 된다.
또한 상기 진단의사결정나무 생성부(200)에서는 상류 및 목표지점의 수질측정항목 모두를 사용하여 목표지점인 하류의 수질의 유형을 도출하여 줄 수 있는 진단의사결정나무의 생성도 가능하다. 앞선 경우와의 차이점은 진단의사결정나무를 구성하기 위한 분리기준으로서 상류의 수질측정자료만을 사용하지 않고 목표지점인 하류의 수질측정자료도 함께 사용한다는 것으로서, 어느 경우를 선택할 것인지는 본 발명을 적용하고자 할 때 선택할 수 있다.
또한 상기 진단의사결정나무 생성부(200)는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출될 수 있다.
상기 진단의사결정부(300)는 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 역할을 한다. 따라서 상기 진단의사결정부(300)에서는 목표지점의 수질이 어떠한 유형에 속하는지를(예를 들어, 유기물의 농도는 높고 영양염류의 농도는 낮은 유형) 제공하게 된다.
상기 예측의사결정나무 생성부(400)는 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 역할을 한다.
상기 예측의사결정나무 생성부(400)는 목표지점의 수질예측 결과를 제공하기 위한 예측의사결정나무를 생성하기 위한 것으로서, 진단의사결정나무 생성부(200)에서와 마찬가지로 데이터베이스로부터 수집한 최근의 상류 및 목표지점에서의 측정자료들을 대상으로, 목표지점에서 추정하고자 하는 수질항목 각각에 대하여 예측을 위한 예측의사결정나무를 생성한다. 이 때 예측의사결정나무를 구성하기 위한 알고리즘은 CART 혹은 CHAID 알고리즘이 바람직하다. 이 때 예측의사결정나무의 분리기준은 상류의 수질측정항목 데이터로서, 예측의사결정나무를 구성하는 각각의 규칙(IF THEN)의 전반부에는 상류의 수질항목이, 후반부에는 목표지점에서의 어떤 수질항목의 값의 집합이 존재하게 된다. 예를 들어, 규칙은 (IF BOD_상류1 > A and COD 상류 2 < B, THEN BOD_목표지점 is in the range of C±D.(C is mean and D is standard deviation)와 같이 도출되게 된다.
상기 예측의사결정부(500)는 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 역할을 한다. 상기 예측의사결정부(500)에서는 BOD = A ± D (A:mean, B:standard deviation)와 같은 예측결과를 도출하여 제공하게 된다.
상기 진단의사결정부(300)는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정부(500)는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 줄 수 있다. 따라서 수계수질의 상태에 대한 진단결과 및 예측결과는 특정 프로그램으로 제작되어 보여질 수도 있고, 또는 상기 특정 프로그램이 제공하는 정보가 웹상에서 제공될 수도 있을 것이다.
도 2를 참조하여 본 발명에 의한 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법을 설명하면 다음과 같다.
제 1단계는 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공단계이다(S110).
제 2단계는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성단계이다(S120). 상기 진단의사결정나무 생성단계(S120)는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출될 수 있다.
[규칙 제91조에 의한 정정 13.06.2013] 
Figure WO-DOC-FIGURE-50a
(여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
또한 상기 진단의사결정나무 생성단계(S120)는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출될 수 있다.
제 3단계는 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정단계이다(S130).
제 4단계는 상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성단계이다(S140).
제 5단계는 상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정단계이다(S150). 상기 진단의사결정단계(S130)는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정단계(S150)는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 줄 수 있다.
그리고 진단의사결정나무 생성단계(S120) 및 진단의사결정단계(S130)와, 진단의사결정단계(S130) 및 예측의사결정단계(S150)의 순서는 뒤바뀌어도 무방하다. 즉, 진단 및 예측의 순서는 상관없다는 것이다.
이하, 실시예를 기준으로 본 발명에서 언급하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법을 설명하기로 한다.
본 실시예에서 대상 목표지점은 낙동강 하류의 구포 지점이 될 수 있으며, 이러한 경우 목표지점의 상류지점으로는 환경부의 국가측정망인 낙본-K 지점과 낙본-L 지점이 선정될 수 있다. 낙본-K 지점과 낙본-L 지점에서는 BOD, COD, SS, T-N, T-P, Chl-a, pH, 유기질소, 암모니어성질소, 아질산성질소, 질산성질소, 유기인, 용존성인을 측정하나, 그들 중 오직 BOD, COD, SS, T-N, T-P, Chl-a, pH를 1주일에 1회 측정하고 나머지 항목들을 1개월에 1회 측정하는 경우에는, 본 발명에 사용할 데이터는 의사결정나무의 신뢰성을 획득하기 위하여 1주일에 1회 측정하는 BOD, COD, SS, T-N, T-P, Chl-a, pH만을 선별하여 1주일에 1 셋의 측정치가 존재하도록 준비하는 것이 바람직하다.
이렇게 준비된 데이터셋은 진단의사결정부(300) 및 예측의사결정부(500)에 입력되어 본 발명의 목적을 달성하기 위한 예측 결과와 진단 결과를 제공하게 된다. 여기서 진단의사결정부(300)는 진단의사결정나무 생성부(200)에 의하여 생성되어 제공되는 진단의사결정나무에 의하여 목표지점의 수질에 대한 정성적이며 언어적인 진단결과를 제공하는 것을 특징으로 하며, 본 발명의 실시예에 따르면, "구포 지점의 현재 수질은 [유기물의 농도는 높고 영양염류의 농도는 낮은 유형]입니다."와 같은 수질 진단 결과를 제공해 줄 수 있다. 또한 예측의사결정부(500)는 예측의사결정나무 생성부(400)에서 생성되어 제공되는 예측의사결정나무에 의하여 목표지점의 수질에 대한 정량적인 범위를 예측하여 제공하는 것을 특징으로 하며, 본 발명의 실시예에 따르면, "구포 지점의 현재 수질은 [5.41.2 ppm 의 범위에 존재]합니다."와 같은 정량적이며 현실성 있는 예측 결과를 제공해 줄 수 있다.
좀 더 구체적으로 살펴보면, 선별 또는 가공된 데이터(BOD, COD, SS, T-N, T-P, Chl-a, pH) 중에서 목표지점의 수질인 구포지점의 BOD, COD, T-N, T-P, pH만을 선별하고, 아래 [표 1] 및 [표 2]와 같이 계층적 군집분석법에 의해 7가지 유형으로 그룹화한다. [표 1]은 구포지점의 수질로부터 그룹화된 7가지 수질유형 및 각 항목당 평균값을 나타내고, [표 2]는 수질유형에서의 수질오염도의 등급을 나타낸다.
표 1
Group Case Number pH BOD COD T-N T-P
1 31 MH MH H ML H
7.858 2.932 5.697 3.440 0.129
2 60 M M ML L MH
7.380 2.280 5.422 3.121 0.124
3 2 LL LL LL HH LL
6.500 1.200 4.200 4.006 0.090
4 15 HH H H M M
8.753 3.973 7.453 3.546 0.118
5 5 L L L H L
6.760 1.540 4.820 3.650 0.098
6 5 H HH HH MH HH
8.680 4.280 7.500 3.554 0.132
7 2 ML ML M MH HH
7.300 2.050 5.750 3.115 0.110
표 2
기호 부하크기
HH 아주 큰 부하
H 큰 부하
MH 조금 큰 부하
M 중간 부하
ML 조금 작은 부하
L 작은 부하
LL 아주 작은 부하
이후 상류지점인 낙본-L 지점의 BOD, pH, SS, TOC, EC, T-N를 분리기준으로 설정하고, [표 1]의 그룹 중 1, 2, 4, 5유형을 진단하기 위해 진단의사결정나무를 도 3과 같이 생성하였다. 여기서 도 3은 구포지점의 수질유형을 진단하기 위한 진단의사결정나무를 나타낸다. 따라서 도 3을 통해 알 수 있듯이, 진단의사결정나무를 통해 "해당 목표지점(구포)의 수질은 [모든 오염물질의 농도가 낮은 유형]입니다."와 같은 진단 결과를 제공하게 된다.
또한, 상기 예측의사결정부(500)에서 예측결과를 도출하는데 사용되는 규칙의 집합인 예측의사결정나무는 예측의사결정나무 생성부(400)에서 생성되는데, 이는 진단의사결정나무 생성부(200)에서와 마찬가지로 사전에 설정된 최근으로부터의 일정 측정기간에 목표지점 및 그 상류의 하나 혹은 그 이상의 지점에서 측정된 수질항목 측정 결과들을 호출해서 가장 짧은 측정구간별로 공통적으로 존재하는 수질항목들을 선별하여 측정시점 당 하나의 데이터셋으로 구성하는 것을 특징으로 하는 기능을 사용하여 예측의사결정나무 생성부(400)가 구동되게 된다. 예측의사결정나무 생성부(400)에 의해 진행되는 예측의사결정나무 생성단계를 설명하면, 준비된 데이터셋에서 일정 시간구간에 목표지점 및 하나 혹은 그 이상의 상류지점에서 측정된 수질측정데이터을 선별하고, 뒤이어 예측하고자 하는 각각의 목표변수 별로 예측을 위한 예측의사결정나무를 구성함에 있어, 예측하고자 하는 수질항목을 목표변수로 하고 데이터가공부(100)에 의하여 준비되어 있던 데이터셋의 상류 지점의 수질측정데이터들을 분리기준으로 하여 예측을 위한 예측의사결정나무를 생성하는 된다.
따라서 상기 예측의사결정나무 생성부(400)의 바람직한 실시예에 의한 결과로서, 수영강 하류("하류")의 일정 지점의 수질은 그로부터 상류 지점에 존재하는 "상류1" 지점의 수질과 수영강으로 하수처리장 유출수질이 방류되어 합류하는 지점에서 측정된 수질("합류지점")을 사용하여 예측을 위한 예측의사결정나무를 구성하게 되는데, 이의 결과로서 도 4, 도 5, 도 6과 같은 각 수질항목당 예측을 위한 의사결정나무가 도출되게 된다. 여기서, 도 4는 수영강 하류지점의 BOD농도를 예측하기 위한 예측의사결정나무이고, 도 5는 수영강 하류지점의 T-N농도를 예측하기 위한 예측의사결정나무이고, 도 6은 수영강 하류지점의 T-P농도를 예측하기 위한 예측의사결정나무를 나타낸다.
따라서 도 4 내지 도 6에서와 같은 예측을 위한 예측의사결정나무는 본 발명의 예측의사결정부(500)에 사용되어 "해당 목표지점의 BOD 수질은 4.333±0.208의 범위에 존재합니다"와 같은 예측 결과를 제공할 수 있는 것이다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 특정지점의 수계수질을 그보다 상류지점의 수질측정치와 일련의 규칙으로 구성된 수질예측모델을 통해 예측하여 제공하는 동시에 해당 수질상태에 대한 정성적인 진단결과를 제공하여 수계수질상태를 진단 및 예측함으로써 방류수계의 수질상태를 판단하는데 널리 이용될 수 있다.

Claims (8)

  1. 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공부;
    상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성부;
    상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정부;
    상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성부; 및
    상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정부;를 포함하되,
    상기 가공된 데이터는 BOD, COD, SS, T-N, T-P, STN, STP, NH4 +N, NOX-N, PO4-P, GHI-a pH 중에서 적어도 하나 이상을 포함하는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템.
  2. [규칙 제91조에 의한 정정 13.06.2013]
    제 1항에 있어서,
    상기 진단의사결정나무 생성부는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출되는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템.
    Figure WO-DOC-FIGURE-c2
    (여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
  3. 제 1항에 있어서,
    상기 진단의사결정나무 생성부는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출되는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템.
  4. 제 2항 또는 제 3항에 있어서,
    상기 진단의사결정부는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정부는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 주는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공시스템.
  5. 수계수질 측정데이터를 저장하는 데이터베이스로부터 수계수질 상태의 진단 및 예측에 필요한 데이터를 수집하여 상기 데이터들을 일정시간 간격으로 세트화시켜 가공하는 데이터가공단계;
    상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 그룹화하고, 상기 그룹화된 수질유형을 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 수질유형을 진단해 주는 진단의사결정나무를 생성시키는 진단의사결정나무 생성단계;
    상기 가공된 데이터들 중 목표지점의 데이터들을 상기 진단의사결정나무에 적용시켜 상기 목표지점의 수질유형을 도출해 주는 진단의사결정단계;
    상기 가공된 데이터들 중 목표지점의 데이터를 목표변수로 하며, 상기 목표지점의 상류지점에 해당하는 데이터를 분리기준으로 하여 상기 목표지점의 목표변수에 대한 정량적인 범위를 예측해 주는 예측의사결정나무를 생성시키는 예측의사결정나무 생성단계; 및
    상기 가공된 데이터들 중 목표지점의 데이터들을 상기 예측의사결정나무에 적용시켜 상기 목표지점의 목표변수에 대한 정량적인 범위를 도출해 주는 예측의사결정단계;를 포함하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법.
  6. [규칙 제91조에 의한 정정 13.06.2013]
    제 5항에 있어서,
    상기 진단의사결정나무 생성단계는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 아래의 수식에 의해 도출되는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법.
    Figure WO-DOC-FIGURE-c6
    (여기서, Pi는 S가 i분류에 속하는 분율이며, A는 한 변수, Sv는 변수 A가 v라는 값을 가질 때의 S의 부분집합을 말함.)
  7. 제 5항에 있어서,
    상기 진단의사결정나무 생성단계는 상기 가공된 데이터들 중 목표지점의 데이터들에 대하여 상기 목표지점의 수질유형을 계층적 군집분석법에 의하여 그룹화하며, 상기 진단의사결정 나무는 상기 그룹화된 수질유형에 대해 개별적으로 의사결정나무 알고리즘에 의해 생성되며, 상기 의사결정나무 알고리즘은 분리되는 각각의 끝마디에 포함되는 수질유형들 간의 분산의 차이가 존재하는가를 척도로 삼는 카이제곱 검정결과를 이용하여 도출되는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법.
  8. 제 6항 또는 제 7항에 있어서,
    상기 진단의사결정단계는 상기 목표지점의 수질유형을 유기물 및 영양염류의 농도를 포함한 목표지점의 데이터에 대한 언어적인 진단결과로 표시해 주며, 상기 예측의사결정단계는 상기 목표지점의 데이터들의 존재가능한 수치의 범위를 평균±표준편차의 형식의 예측결과로 표시해 주는 것을 특징으로 하는 수계수질 상태의 진단 및 예측이 가능한 수질정보제공방법.
PCT/KR2013/002613 2013-03-28 2013-03-29 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법 WO2014157753A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130033628A KR101432437B1 (ko) 2013-03-28 2013-03-28 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법
KR10-2013-0033628 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157753A1 true WO2014157753A1 (ko) 2014-10-02

Family

ID=51624705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002613 WO2014157753A1 (ko) 2013-03-28 2013-03-29 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법

Country Status (2)

Country Link
KR (1) KR101432437B1 (ko)
WO (1) WO2014157753A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction
CN111310788A (zh) * 2020-01-15 2020-06-19 广东奥博信息产业股份有限公司 基于参数优化的水体pH值预测方法
CN111579547A (zh) * 2020-04-17 2020-08-25 北京农业智能装备技术研究中心 水体cod快速检测方法及装置
CN112819244A (zh) * 2021-02-23 2021-05-18 浙江大学 一种基于气象因子的rf-hw水质指标混合预测方法
CN113344130A (zh) * 2021-06-30 2021-09-03 广州市河涌监测中心 差异化巡河策略的生成方法及装置
CN117933572A (zh) * 2024-03-20 2024-04-26 四川飞洁科技发展有限公司 一种水质预测方法及相关装置
CN117933572B (zh) * 2024-03-20 2024-06-11 四川飞洁科技发展有限公司 一种水质预测方法及相关装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987897B1 (ko) 2018-11-28 2019-06-11 부산가톨릭대학교 산학협력단 하수처리 시설의 공정 성능 모니터링 시스템
KR20200064237A (ko) 2018-11-28 2020-06-08 부산가톨릭대학교 산학협력단 하수처리장 운전 제어 시스템
KR102242993B1 (ko) * 2018-12-04 2021-04-21 주식회사 엘지생활건강 자외선 차단지수 산출 장치, 자외선 차단지수 산출 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001116A (ko) * 2010-06-29 2012-01-04 부산대학교 산학협력단 하폐수 처리장의 공정진단 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866909B1 (ko) 2007-06-05 2008-11-04 연세대학교 산학협력단 토양환경 생태등급 예측방법
KR101268444B1 (ko) * 2010-12-17 2013-06-04 한남대학교 산학협력단 최적 수질 관측망 구성 방법 및 이를 지원하는 관측망 선정 지원 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120001116A (ko) * 2010-06-29 2012-01-04 부산대학교 산학협력단 하폐수 처리장의 공정진단 시스템 및 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ELENI DAKOU ET AL., DECISION TREE MODELS FOR PREDICTION OF MACROINVERTEBRATE TAXA IN THE RIVER AXIOS (NORTHERN GREECE, 2006, UNIVERSITY OF THESSALONIKI, GREECE, pages 399 - 411 *
H. BOYACIOGLU ET AL., WATER POLLUTION SOURCES ASSESSMENT BY MULTIVARIATE STATISTICAL METHODS IN THE TAHTALI BASIN, TURKEY, 2007, DOKUZ EYLUL UNIVERSITY, TURKEY, pages 275 - 282 *
KIM, SANG SOO ET AL.: "Evaluation of Seasonal Variation of Water Quality by Pattern Recognition Techniques and Multivariate Analysis in the Nakdong River", JOURNAL OF 2012 COMMON CONFERENCE, 21 March 2012 (2012-03-21), ILSAN KINTEX, pages 788 - 789 *
PARK, JUN DAE ET AL.: "Performance on 3 Year Implementation and Future Tasks in the Management of Total Maximum Daily Load", NIER NO. 2008-31- 981, 2008, pages 1 - 199 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458969B2 (en) 2016-03-22 2019-10-29 International Business Machines Corporation Dynamic water quality prediction
CN111310788A (zh) * 2020-01-15 2020-06-19 广东奥博信息产业股份有限公司 基于参数优化的水体pH值预测方法
CN111310788B (zh) * 2020-01-15 2023-06-09 广东奥博信息产业股份有限公司 基于参数优化的水体pH值预测方法
CN111579547A (zh) * 2020-04-17 2020-08-25 北京农业智能装备技术研究中心 水体cod快速检测方法及装置
CN112819244A (zh) * 2021-02-23 2021-05-18 浙江大学 一种基于气象因子的rf-hw水质指标混合预测方法
CN112819244B (zh) * 2021-02-23 2022-06-21 浙江大学 一种基于气象因子的rf-hw水质指标混合预测方法
CN113344130A (zh) * 2021-06-30 2021-09-03 广州市河涌监测中心 差异化巡河策略的生成方法及装置
CN113344130B (zh) * 2021-06-30 2022-01-11 广州市河涌监测中心 差异化巡河策略的生成方法及装置
CN117933572A (zh) * 2024-03-20 2024-04-26 四川飞洁科技发展有限公司 一种水质预测方法及相关装置
CN117933572B (zh) * 2024-03-20 2024-06-11 四川飞洁科技发展有限公司 一种水质预测方法及相关装置

Also Published As

Publication number Publication date
KR101432437B1 (ko) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014157753A1 (ko) 수계수질상태의 진단 및 예측이 가능한 수질정보제공시스템 및 방법
CN107463633B (zh) 一种基于eemd-神经网络的实时数据异常值检测方法
CN106371939B (zh) 一种时序数据异常检测方法及其系统
US20220082545A1 (en) Total Nitrogen Intelligent Detection Method Based on Multi-objective Optimized Fuzzy Neural Network
CN107436277B (zh) 基于相似距离判别的单指标数据质量控制方法
CN106204392A (zh) 环境风险源预警系统
CN108733966A (zh) 一种基于决策树群的多维电能表现场状态检验方法
WO2014157748A1 (ko) 최근린기법을 이용한 하수처리장의 유입유량과 유입성분농도의 예측 장치 및 방법
CN107918629B (zh) 一种告警故障的关联方法和装置
CN109254219B (zh) 一种考虑多元因素态势演变的配变迁移学习故障诊断方法
CN107423141A (zh) 信息处理方法及装置
Christakos et al. Spatiotemporal analysis of environmental exposure–health effect associations
CN106817708A (zh) 一种巡检簇构建方法及装置
CN117436700B (zh) 一种基于bim的新能源工程数据管理系统及方法
WO2014157750A1 (ko) 하수처리장 유출수질의 상태에 대한 원인인자 제공장치 및 방법
CN112445185A (zh) 一种基于人工智能的污水管理系统
CN107145995A (zh) 生产环境安全性预测方法、装置和系统
CN111695048B (zh) 疫情溯源方法及介质
CN116853056A (zh) 基于数据分析的充电桩智能管理系统
CN116051330A (zh) 一种基于大数据的智慧校园安全管理系统及方法
CN116051335A (zh) 一种通过大数据预测方向的环境碳管理方法
CN113015120B (zh) 一种基于神经网络的治污监测系统和方法
CN114646735A (zh) 一种空气中二氧化碳浓度监测系统
CN114969068A (zh) 城市压力管网实时流量监测数据分析方法及系统
CN112116513A (zh) 一种国土空间规划监测与预警的管理方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879808

Country of ref document: EP

Kind code of ref document: A1