WO2014157744A1 - Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same - Google Patents
Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same Download PDFInfo
- Publication number
- WO2014157744A1 WO2014157744A1 PCT/KR2013/002505 KR2013002505W WO2014157744A1 WO 2014157744 A1 WO2014157744 A1 WO 2014157744A1 KR 2013002505 W KR2013002505 W KR 2013002505W WO 2014157744 A1 WO2014157744 A1 WO 2014157744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- positive electrode
- secondary battery
- lithium
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Cathode active material for a realm secondary battery Method for manufacturing the same and Li ′ f secondary battery comprising the same
- It relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery. .
- Cell generates electric power by using a material capable of electrochemical banung to the positive and negative electrodes
- a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
- the lithium secondary battery is a lithium ion . Reversible intercalation / deintercalation is possible using positive and negative active materials. It is prepared by filling an organic electrolyte or a polymer electrolyte between the anode and the cathode.
- a positive electrode active material of a lithium secondary battery a lithium composite metal is used . Compound is being used. Examples are LiCo3 ⁇ 4, LiMn 2 0 4 , LiNi0 2 . Composite metal oxides such as LiMn0 2 Is being studied.
- Mil-based positive electrode active materials such as LiMn 2 O 4 and LiMn0 2 in the positive electrode active material are easy to synthesize. It is relatively inexpensive, has the best thermal stability compared to other active materials at the time of overcharging, and has the disadvantage of low capacity, although it is an attractive material due to its low pollution to the environment .
- LiCo0 2 has good electrical conductivity and high battery voltage of about 3.7V, cycle life characteristics. Since stability and discharge capacity are also excellent, it is a representative cathode active material that is currently commercialized and commercially available. However, LiCo0 2 has a problem in that its price competitiveness is low since it occupies more than 30% of the battery price because of high price. .
- LiN) 2 exhibits the battery characteristics of the highest discharge capacity among the cathode active materials mentioned above , but has disadvantages that are difficult to synthesize.
- the high oxidation state of nickel is the source of 'battery and decrease electrode life. Self-discharge is severe and there is a problem of inferior reversibility. Arler. Insufficient stability-We are having difficulty in commercialization. .
- the present invention provides a cathode active material for a lithium secondary battery having excellent high-yield lifespan characteristics. It is to provide a lithium secondary electron-containing a positive electrode containing the positive electrode active material.
- M is Al. Zr. Ti. Mg, Ca. V. Zn. Mo, Ni. Consisting of Co and Mn.
- At least one metal selected from the group, the surface free energy of the positive electrode active material is 4 to 20% less than the surface free energy of the reversible intercalation and de-intercalation of the compound capable of lithium secondary battery Can be provided.
- M may be A1 . . .
- the compound capable of reversible intercalation and deintercalation of lithium may be a lithium cobalt complex oxide. : '
- the cathode 3 ⁇ 4 material may have a polarity of 5 to 30 mN / m as a component of surface energy.
- the increase ratio of M of the coating layer to the total weight of the positive electrode active material is 0.02 To 0.2. .
- the form of the coating layer may be in the form of island.
- a compound capable of reversible intercalation and deintercalation of lithium Preparing a compound powder comprising M 5: in a compound capable of reversible intercalation and deintercalation of lithium: comprising M.
- a compound powder comprising M By dry mixing of the compound powder, subjecting the powder compound containing M in the reversible intercalation and the surface of the possible intercalation compound of the lithium, uniformly attached; And a compound powder comprising M.
- Compounds capable of reversible intercalation and deintercalation of lithium were heat-treated to temperatures above 400 ° C and below 800 ° C.
- the firing temperature of the step of firing the prepared mixture is above 400 ° C. and
- M may be A1.
- the surface free energy of the prepared cathode active material for a lithium secondary battery may be 4 to 20% less than the surface free energy of a compound capable of reversible intercalation and deintercalation of lithium.
- the prepared cathode active material may have a degree of physical property of 5 to 30 iiiN / m, which is a component of surface energy.
- the prepared positive electrode active material may be a degree of dispersion of component of surface energy of 30 to 50 ⁇ / ⁇ .
- the weight ratio of M of the coating layer to the total amount of the prepared positive electrode active material is
- a positive electrode comprising a cathode active material for a lithium secondary battery according to one embodiment of the invention described above: a negative electrode including a negative electrode active quality; And an electrolyte: is provided.
- cathode active material having improved ratio of the conventional oxide-coated cathode active material to ' high ratio.
- FIG. 1 is a schematic view of a lithium secondary battery.
- a reversible intercalation and deintercalation 0 lithium capable compound of lithium And a port formed in the surface M of the compound, hereinafter 5 composite coating layer; back and comprises a cathode active material for a lithium secondary battery, "wherein M is Al. , Zr.
- the surface free energy of the cathode active material provides a cathode active material for a lithium secondary battery that is 4 to 20% less than the surface free energy of a compound capable of reversible intercalation and deintercalation of lithium.
- the positive electrode active material including the coating layer was able to improve the battery characteristics of the lithium secondary battery. Conventional anode. Article coated with a metal oxide to the active material surface as the invention described. Unlike the the embodiment of the invention, the lithium having the improved cities and long-life characteristics by controlling the surface energy of the positive electrode active material can be prepared a rechargeable battery. More specifically. M may be A1.
- the compound capable of reversible intercalation and deintercalation of lithium may be a lithium cobalt-based composite oxide. However, it is not limited thereto.
- the positive electrode active material having the coating layer has a lower energy level than the positive electrode active material not including the surface energy group-coating charge, thereby suppressing excessive wet ting of the electrolyte on the surface, and thus including a conventional coating layer. Deterioration due to a charge and discharge cycle (particularly, a charge and discharge cycle with high rate discharge) can be reduced. .
- the positive electrode active material including the coating layer has a polarity (y—P) of 5-30 mN / m lower than that of the positive electrode active material including the conventional coating layer.
- the surface energy is reduced to prevent excessive wet ting of the electrolyte on the surface of the cathode active material, thereby suppressing side reactions by the electrolyte. Excellent life characteristics by suppressing the increase in battery resistance . It provides a positive electrode active material.
- the positive electrode active material has a lower polarity than the positive electrode active material including a conventional coating filler, and thus, the electrical properties may be improved due to the favorable reaction caused by the electrolyte than the positive electrode active material having a high polarity.
- the dispersity (y—D) which is another component constituting the surface energy of the positive electrode active material including the coating layer, affects fluidity between particles in the positive electrode active material. The degree of cohesion may be lowered, thereby reducing the phenomenon of slurry gelation and electrode thickness unevenness in the electrode process, which may be related to electrode processability. .
- the weight ratio of the coating layer M on the total weight of the "positive electrode active material may be 0.02 to 0.2 days. M of when the increase ratio is less than 0.02 .
- Role electrolytic solution or decomposition.
- the crystal structure stability "Chemistry of the positive electrode active material surface electrode) can not be expected can receive the reduction of the initial capacity is decreased, and charge and discharge efficiency when greater than 0.2.
- the type of the coating layer is a single or multiple layers or islands It may be in the form. If the layer forms, due to the uniform coating as above - can expect such advantages, and if i on the island shape by banung the specific active site and i selectively on the active material surface while the effect of the side reaction control appear larger thermal along with improvements in battery characteristics The effect of improving stability can be expected.
- Preparing a compound capable of reversible intercalation and deintercalation of lithium Preparing a compound powder comprising M; Dry mixing a compound powder containing M with the compound capable of reversible intercalation and deintercalation of the lithium. Step for uniformly attaching the reversible intercalation and eudi intercalation capable hwahapmulwa of the lithium on the surface including the M hanon compound powder; And a compound capable of reversible intercalation and deintercalation of lithium to which the compound powder comprising M is attached at 400 ° C.
- silver for effective firing may be higher than 400 ° C and 800 ° C.
- anode Lithium secondary comprising a negative electrode and an electrolyte .
- the positive electrode comprises a current collector and a positive electrode active material layer formed on the current collector.
- the positive electrode active material layer is. Lithium. Secondary residue that includes the positive electrode active material described above. '
- the positive electrode active material layer may include a binder and a conductive material.
- the binder adheres the positive electrode active material particles to each other well. It also serves to adhere the positive electrode active material to the current collector.
- Polyvinyl alcohol is a representative example. Carboxymethyl Cell Rose, Hydroxypropyl Seal Rose, Diacetyl Cellulose.
- Epoxy resin. . Nylon may be used. It is not limited to this /
- the conductive material is used to impart conductivity to the electrode, which is composed of a battery. If any one electronically conductive material without causing chemical changes ⁇ also possible to use, and examples thereof include natural hokyeon. Artificial Graphite ⁇ Carbon Black, Acetylene Black . . Kechenbleck. Carbon-based materials such as carbon fibers; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminium and silver; conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used. "
- the negative electrode is a current collector . And a negative electrode formed on the current collector; It includes an active material layer.
- the negative electrode active material layer includes a negative electrode active material. . '
- a material capable of reversibly intercalating / deintercalating lithium silver as the negative electrode active material Lithium metal. Alloy of lithium metal. ' Materials capable of doping and undoping lithium, or transition metal oxides. '
- Any carbon-based negative electrode active material commonly used in lithium ion secondary batteries may be used. Examples thereof include crystalline carbon. Amorphous carbons or these may be used together-examples of such crystalline carbons are amorphous. Plate. Flakes. Graphite such as spherical or fibrous natural ambly ' or artificial humps. Examples of the amorphous carbon include soft carbon (low carbon). . On firing carbon) or hard carbon (hard carbon), there may be mentioned mesophase pitch carbide, fired coke, and so on. ⁇ '-
- lithium metal alloy examples include lithium and Na . . K, Rb, Cs, Fr, Be / Mg, Ca, Sr, Si, Sb, Pb ⁇ In, Zn, Ba, Ra. Alloys of metals selected from the group consisting of Ge, Al and Sn can be used. Of
- materials capable of doping and undoping lithium include Si, sio x (o ⁇ x ⁇ 2),
- Si-Y alloy (wherein Y is selected from the group consisting of alkali metal, alkaline earth metal, group 13 element, group 14 element ⁇ transition gold. Rare earth element and combinations thereof, not Si).
- Sn- Y (wherein Y is an alkali metal alkaline earth metal. 13 element. 14 elements, transition metals and rare earth elements. Being selected from the group consisting of elemental ⁇ a. Sn is not) and the like It is also possible to use a mixture of at least one of these and Si3 ⁇ 4.
- As the additive element Y Mg. Ca. Sr, Ba. Ra. Sc. Y. Ti. Zr, Hf. Rf. V. Nb, Ta. Db. Cr, Mo.
- the negative electrode active material layer also includes a binder. Optionally, more conductive materials may be included. .
- the binder makes the negative electrode active material particles well together . Attaching and cathodic bow It attaches the material well to the current collector.
- Representative examples thereof include polyvinyl alcohol. Carboxymethylcellrose. Hydroxypropylcellulose. Polyvinylchloride. Carboxylated polyvinylchloride. Polyvinylfluoride ... Polymers containing ethylene oxide—polyvinylpyrrolidone, polyurethane, polytetrafluorotoethylene, polyvinylidene fluoride, ' polyethylene, polypropylene, styrene—butadiene rubber, acrolle Yated styrene-butadiene rubber. Epoxy resin, nylon, etc. can be used. It is not limited to this.
- the conductive material is .
- a battery which is used to impart conductivity to an electrode it is configured. Any electronically conductive material can be used without causing chemical changes, e.g. natural smoke. Artificial graphite. Carbon black. Acetylene black. Carbon-based materials such as ketjenblack carbon fiber; Copper. Nickel, aluminum. Metal powders such as silver, metal oils and the like, and metal-based materials; conductive polymers such as polyphenylene derivatives; Or a conductive material containing these ' combinations.
- the current collector is copper foil.
- Nickel foil Stainless steel foil, titanium foil.
- Nickel foam copper foam.
- a polymer substrate coated with a conductive metal, and a combination thereof may be used.
- the current collector may be used in the A1, but is not limited thereto.
- the negative electrode and the positive electrode are mixed with an active material, a conductive material and a binder in a solvent to prepare an active material composition.
- This composition is prepared by applying to a current collector. Since such an electrode manufacturing method is well known in the art, in the present specification Detailed description will be omitted.
- the solvent may be N-methylpyridone or the like, but is not limited thereto.
- the electrolyte contains a non-aqueous organic solvent and a lithium salt.
- the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
- the non-aqueous-organic solvent is a carbonate-based. Ester system. Ether type. Ketone based, alcohol based, or aprotic ' solvents may be used.
- the carbonate solvent include dimethyl carbonate (DMC). Diethyl carbonate (DEC), dipropyl carbonate (DPC). Methylpropyl carbonate (MPC). Ethyl Pro Phil carbonate (EPC). Methylethyl carbonate (MEC). Ethylene carbonate (EC), propylene carbonate (PC). Butylene carbonate (BC) and the like can be used.
- the ester solvent is methyl acetate.
- the ether solvent is dibutyl ether, tetraglyme. Diglyme. Dimethoxyethane, 2-methyltetrahydrofuran. Tetrahydrofuran and the like can be used.
- cyclonucleanone may be used as the ketone solvent.
- ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and as the aprotic solvent, R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms).
- R-CN a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms.
- the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using a mixture of one or more subphases is 5 to the desired battery performance. Depending flew to properly adjusted, it can be well understood by those who engage in art 'field. ——. ''
- the carbonate solvent it is preferable to use a mixture of a cyclic carbonate and a chain ' carbonate.
- the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte 0 may be excellent.
- the non-aqueous' organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
- the carbonaceous solvent and the aromatic ⁇ hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1. . : . -'
- aromatic hydrocarbon-based organic solvent may be used an aromatic hydrocarbon compound of the formula (1).
- ⁇ (In Formula 1, to 3 ⁇ 4 are each independently hydrogen, -halogen, C1 to C10 alkyl group, haloalkyl group or a combination thereof.)
- the aromatic hydrocarbon organic solvent may be benzene, fluorobenzene, 1.2-difluoro benzene, 1,3-difluorobenzene, 1,4-difluorobenzene. 1,2,3—trifluorobenzene, 1.2, 4-trifluorobenzene. Chlorobenzene, 1.2-dichlorobenzene. , 1,3-dichlorobenzene. 1,4'dichlorobenzene, 1,2,3'trichlorobenzene, 1.2.4-trichlorobenzene, iodobenzene, ⁇ 1,2-dioodobenene, 1.3—diodobenzene.
- the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by the following Chemical Formula 2 to improve battery life.
- R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ), or a C1 to C5 fluoroalkyl group, and R 7 and R 8 least one of the enemy 'is a halogen group, a cyano group (CN), nitro (N02) or a C1 to C5 alkyl group in the fluoroalkyl),:.,,.
- Representative examples of the ethylene ' carbonate-based compound is difluoro ethylene carbonate, chloroethylene carbonate ⁇ dichloroethylene carbonate / bromoethyl styrene carbonate.
- Dibromoethylene carbonate, nitroethylene carbonate, cyano ethylene carbonate, fluoroethylene carbonate, etc. are mentioned. In the case of further use of such a life improving additive, the amount thereof can be properly adjusted.
- the lithium salt air are dissolved in an organic solvent. Acts as a source lead of the lithium ions in the battery enables the operation, the basic lithium secondary battery, and a material which serves to facilitate the movement of lithium ions between the positive electrode and the negative electrode eu such lithium salt Representative examples include LiPF 6 , LiBF 4 . LiSbF 6 . LiAsF 6 , LiC 4 F 9 S0 3 . LiC10 4 . LiA10 2 .
- LiAlCl 4 LiN (C x F 2x + 1 S0 2 KC y F 2y + 1 S0 2 ), where. X and y are natural numbers) LiCl, Lil and LiB (C 2 0 4 ) 2 (lithium bisoxalato One or two subphases selected from the group consisting of lithium bis (oxalato borate: Li BOB) are included as supporting electrolytic salts. ”
- the concentration of lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance and can effectively move lithium.
- Between the type of lithium secondary battery between the positive and negative electrodes . Separator may be present. These separators, polyethylene. Polypropylene. Polyvinylidene
- the fluoride or yideulwa multilayer film having two or more layers'. It is a matter of course that a mixed multilayer film such as polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / pol 5ethylene ' 5 three-layer , separator, polypropylene / polyethylene / polypropylene, three-layer separator and the like can be used.
- a mixed multilayer film such as polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / pol 5ethylene ' 5 three-layer , separator, polypropylene / polyethylene / polypropylene, three-layer separator and the like can be used.
- Lithium secondary batteries are lithium-ion 'batteries, depending on the type of separator and electrolyte used. Can be classified into lithium ion polymer battery and lithium polymer battery, and according to the shape of cylindrical. Square shape. ⁇ coin type. It can be classified into pouch type. Depending on the size, it can be divided into 10 bulk type and thin film type. The structure and manufacturing method of these batteries are widely used in this field . Since it is known, the detailed description is omitted. 1 shows a lithium secondary battery of the present invention . A representative structure is shown schematically. That "as the lithium secondary battery 1 shown in Figure 1 is present between the anode 3, cathode 2 and the anode 3 and the" negative electrode (2). 15 electrolytic solution impregnated in the separator 4 And a battery container 5 comprising a. And a sealing member 6 for sealing the battery container 5.
- the mixed powder was heat-treated at 1000 ° C. for 8 hours to prepare a lithium-cobalt composite oxide.
- the lithium cobalt composite oxide and A1 (0H) .3 powder were dry mixed at a weight ratio of 100: 0.2 (lithium cobalt composite oxide: A ⁇ 0 ⁇ ) 3) to uniformly mix the A1 (0 ⁇ ) 3 powder on the surface of the lithium cobalt composite oxide particles. Attached.
- a lithium ion positive active material was prepared in the same manner, except that the dry mixed powder prepared in Example 1 was heat-treated at 500 t for 5 hours. Comparative Example 1 Co 3 O 4 and Li 2 CO 3 were added to the mixer in a molar ratio of 1: 1.040 (Co 3 0 4 : Li 2 CO 3 ) and mixed. 8 hours at 1000 ° C mixed powder. Heat treatment to prepare a positive electrode active material. Comparative Example 2
- a positive electrode active material was prepared in the same manner, except that the dry mixed powder prepared in Example 1 was heat-treated at 400 ° C. for 5 hours. . Comparative Example 3 '
- the positive electrode active material was then low tapped in so r.
- Table 1 shows the evaluation results measured in the experimental example.
- Table 1 shows the surface free energy of the positive electrode active material according to Example 1 to magnetic field 2 and Comparative Examples 1 to 4. It can be seen that the surface free energy of Examples 1 and 2 of the present application is lower than that of the comparative example without forming the coating layer. This—the coating method is different . The surface free energy of Comparative Examples 3 to 4 is higher than that of Comparative Example 1, showing the difference between the results. See Examples 1 and 2 and Comparative Example 2. With decreasing firing temperature
- Comparative Example 3 which is a conventional coating method, does not form an A1 coating layer, and Comparative Example 1 does not have a difference in surface free energy.
- Cathode forms positive electrode active material in electrolyte
- a positive electrode slurry was prepared by adding 2.5 wt% PVDF as a binder to 5.0 wt% N-methyl-2 pyridone (NMP) as a solvent (solvent). The positive electrode slurry has a thickness of 20 to.
- a positive electrode was prepared by coating, vacuum drying, and rolling press on a thin film of aluminum (A1), which is a 40 m positive electrode current collector.
- Li-metal was used as the negative electrode.
- Example 1 is a comparative example 1 and 2 the initial Formation, rate characteristic and cycle 1, 30cycle, 50cycle capacity and the life characteristic of data.
- Example 1 and Comparative Example 3 exhibited excellent battery properties compared to Comparative Example 1, in which the coating layer was not formed by the coating of ⁇ (for example, A1) on the surface of the positive electrode active material. ⁇
- Example 1 In the case of Example 1, the discharge capacity, rate characteristics and Good results were obtained in the service life characteristics. Especially. Longer life results have been identified.
- the invention is ahniri "can be made in many different forms and conventional in the art to be limited to the above embodiments - not change the person with knowledge spirit or essential characteristics of the present invention.”. It is to be understood that the embodiments described above are illustrative in all respects and not restrictive, in that they may be embodied in other specific forms.
Landscapes
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
The present invention relates to a cathode active material for a lithium secondary battery, a method for producing same, and a lithium secondary battery comprising same and can provide a cathode active material for a lithium secondary battery, the cathode active material comprising: a compound capable of reversible lithium intercalation and deintercalation; and a complex coating layer comprising M formed on the surface of the compound, wherein said M is at least one metal selected from the group consisting of Al, Zr, Ti, Mg, V, Zn, Mo, Ni, Co, and Mn and the surface free energy of the cathode active material is 4 to 20% lower than that of the compound capable of reversible lithium intercalation and deintercalation.
Description
【명세서】 【Specification】
【발명의 명칭 Γ [Name of invention Γ
리름 이차 전지용 양극 활물질. 이의 제조방법 및 이를 포함하는 리' f 이차 전지 Cathode active material for a realm secondary battery. Method for manufacturing the same and Li ′ f secondary battery comprising the same
【기술분야】 Technical Field
리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다. . It relates to a method for producing a cathode active material for a lithium secondary battery and a cathode active material for a lithium secondary battery. .
【배경기술】 Background Art
최근 휴대용 전자기 "기의 소형화 및 경량화 추세와 관련하여 이돌 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차전지가 있다. Recently, increasing the need for high performance and high capacity of a battery used as a power source for portable electronic "in relation to the miniaturization and weight reduction trend in the group yidol device. Cell generates electric power by using a material capable of electrochemical banung to the positive and negative electrodes A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
상기 리튬 이차전지는 리튬 이온의 . 가역적인 인터칼레이션 /디인터칼레이션아 가능한 물질을 양극과 음극 활물질로 사용하고. 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다. 리튬 이차전지의 양극 활물질로는 리튬 복합금속. 화합물이 사용되고 있으며. 그 예로 LiCo¾, LiMn204, LiNi02. LiMn02 등의 복합금속 산화물들이
연구되고 있다. The lithium secondary battery is a lithium ion . Reversible intercalation / deintercalation is possible using positive and negative active materials. It is prepared by filling an organic electrolyte or a polymer electrolyte between the anode and the cathode. As a positive electrode active material of a lithium secondary battery, a lithium composite metal is used . Compound is being used. Examples are LiCo¾, LiMn 2 0 4 , LiNi0 2 . Composite metal oxides such as LiMn0 2 Is being studied.
상기 양극 활물질 중 LiMn204, LiMn02 등의 Mil계 양극 활물질은 합성하기도 쉽고. 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점흘 가지고 있다 / . Mil-based positive electrode active materials such as LiMn 2 O 4 and LiMn0 2 in the positive electrode active material are easy to synthesize. It is relatively inexpensive, has the best thermal stability compared to other active materials at the time of overcharging, and has the disadvantage of low capacity, although it is an attractive material due to its low pollution to the environment .
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높^ 전지 전압을 가지며, 사이클 수명 특성 . 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되 ί 았는 대표적인 양극 활물질이다/ 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지 -는 문제점이 있다. . LiCo0 2 has good electrical conductivity and high battery voltage of about 3.7V, cycle life characteristics. Since stability and discharge capacity are also excellent, it is a representative cathode active material that is currently commercialized and commercially available. However, LiCo0 2 has a problem in that its price competitiveness is low since it occupies more than 30% of the battery price because of high price. .
또한 LiN )2는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은 산화상태는 ' 전지 및 전극 수명 저하의 원인이 되며. 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아을러. 안정성 확보가 완전하지 않아서 - 상용화에 어려움을 겪고 있다. . In addition, LiN) 2 exhibits the battery characteristics of the highest discharge capacity among the cathode active materials mentioned above , but has disadvantages that are difficult to synthesize. In addition, the high oxidation state of nickel is the source of 'battery and decrease electrode life. Self-discharge is severe and there is a problem of inferior reversibility. Arler. Insufficient stability-We are having difficulty in commercialization. .
전지의 안전성 및 수명을 향상시키기 위해 KR1999-0071411에 따르면. 양극 활물질 표면에 결정성 또는 준 결정성으 Γ금속 알콕사이드, 졸로 코팅한 후. 열처리함으로써 금속 산화물이 표면 처리된 형태의 양극 활물질을 제공하는 것이 개시되어 있고, KR 2002— 0029218에 따르면 고율 특성 및 전지 수명 .향상을 위한 목적으로 금속 산화물 코팅 보고 되고 있다.
【발명의 내용】 According to KR1999-0071411 to improve the safety and life of the battery . After the surface of the positive electrode active material was coated with Γ metal alkoxide and sol in crystalline or semi-crystalline state. It has been disclosed to provide a positive electrode active material in the form of a surface treated with a metal oxide by heat treatment, and according to KR 2002—0029218, a metal oxide coating has been reported for the purpose of improving high rate characteristics and battery life. [Content of invention]
【해결하려는 과제】 [Problem to solve]
, 고율ᅳ 수명 특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며. 상기 양극 활물질을 포함하는 양극을 —포함하는 리튬 이차 전자를 제공하는 것이다. The present invention provides a cathode active material for a lithium secondary battery having excellent high-yield lifespan characteristics. It is to provide a lithium secondary electron-containing a positive electrode containing the positive electrode active material.
【과제의 해결 수단】 [Measures of problem]
본 . 발명의 일 구현예에서는. 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면에 형성된 M을 포함하는 복합 코팅층;을 포함하는 리튬 이차전지용 양극 활물질이되. 상기 M은 Al. Zr. Ti. Mg, Ca. V. Zn. Mo, Ni . Co 및 Mn으로 이루어진. 군에서 선택된 적어도 하나의 금속이고, 상기 양극 활물질의 표면 자유 에너지는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면 자유 에너지보다 4 내지 20% 감소한 것인 리름 이차전지용 양극 활물질을 제공할 수 있다. Seen. In one embodiment of the invention. Compounds capable of reversible intercalation and deintercalation of lithium; And a composite coating layer comprising M formed on the surface of the compound; to be a cathode active material for a lithium secondary battery. M is Al. Zr. Ti. Mg, Ca. V. Zn. Mo, Ni. Consisting of Co and Mn. At least one metal selected from the group, the surface free energy of the positive electrode active material is 4 to 20% less than the surface free energy of the reversible intercalation and de-intercalation of the compound capable of lithium secondary battery Can be provided.
' 상기 M은 A1일 수 있다.. . ' 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 리튬 코발트 복합 산화물일 수 있다. : ' M may be A1 . . . The compound capable of reversible intercalation and deintercalation of lithium may be a lithium cobalt complex oxide. : '
상기 양극 ¾물질은 표면 에너지의 성분인 극성도가 5 내지 30 mN/m 일 수 있다. The cathode ¾ material may have a polarity of 5 to 30 mN / m as a component of surface energy.
상기 양극 활물질의 총 중량에 대한 상기 코팅층의 M의 증량비는 0.02
내지 0.2일 수 았다. . The increase ratio of M of the coating layer to the total weight of the positive electrode active material is 0.02 To 0.2. .
, 상기 코팅층의 형태는아일랜드 (Island) 형태일 수 있다. The form of the coating layer may be in the form of island.
본 발명의 다른 ,일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단.계; M을 포함하는 화합물 분말을 5 준비하는 단계: 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에: 상기 M을 포함하는. 화합물 분말을 건식 혼합하여 , 상기 상기 리튬의 가역적인 인터칼레이션 및 다인터칼레이션이 가능한 화합물의 표면에 M을 포함하는 화합물 분말을 '균일하게 부착시키는 단계 ; 및 상기 M을 포함하는 화합물 분말이 부착된. 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이0 가능한 화합물을 400 °C 초과 및 800 °C 이하의 온도로 열처리하여 ᅳ. M을 포함하는 복합 코탕층이 표면에 코¾된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을. 수득하는 단계;를 포함하고'. 상기 M은 A1. Zr. Ti, Mg, Ca. V, Zn. Mo. Ni . Co 및 Mn으로 이루어진 군에서 선택된 적어도 하나의 금속인 것인 리롬 이차전지용 양극 활물질와 제조 방법을 제공할 수 있다.5' . 상기 제조된 혼합물을 소성하는 단계의 소성 온도는 400 °C 초과 및 In another embodiment of the present invention, a compound capable of reversible intercalation and deintercalation of lithium; Preparing a compound powder comprising M 5: in a compound capable of reversible intercalation and deintercalation of lithium: comprising M. By dry mixing of the compound powder, subjecting the powder compound containing M in the reversible intercalation and the surface of the possible intercalation compound of the lithium, uniformly attached; And a compound powder comprising M. Compounds capable of reversible intercalation and deintercalation of lithium were heat-treated to temperatures above 400 ° C and below 800 ° C. A compound capable of reversible intercalation and deintercalation of lithium coated with a composite cotang layer comprising M; Obtaining; comprising ' . M is A1. Zr. Ti, Mg, Ca. V, Zn. Mo. Ni. It may provide at least one of metal, like a secondary battery, the positive electrode rirom hwalmuljilwa method selected from the group consisting of Co and Mn .5 '. The firing temperature of the step of firing the prepared mixture is above 400 ° C. and
600 °C 이하일 수 있다. . It may be up to 600 ° C. .
상기 M은 A1일 수밌다. M may be A1.
상기 제조된 리튬 이차전지용 양극 활물질의 표면 자유 에너지는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면 자유0 에너지보다 4 내지 20% 감소할 수 있다.
상기 제조된 양극 활물질은 표면 에너지의 성분인 끅성도가 5 내지 30 iiiN/m 일 수 있다. The surface free energy of the prepared cathode active material for a lithium secondary battery may be 4 to 20% less than the surface free energy of a compound capable of reversible intercalation and deintercalation of lithium. The prepared cathode active material may have a degree of physical property of 5 to 30 iiiN / m, which is a component of surface energy.
' 상기 제조된 양극 활물질은 표면 에너지의 성분인 분산도가 30 내지 50 ριΝ/ηι 일 수 있다. "The prepared positive electrode active material may be a degree of dispersion of component of surface energy of 30 to 50 ριΝ / ηι.
상기 제조된 양극 활물질의 총 증량에 대한 상기 코팅층의 M의 중량비는 The weight ratio of M of the coating layer to the total amount of the prepared positive electrode active material is
0.02 내지 ' 0.2일 수 있다. . . . · ; - 본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극: 음극 활 질을 포함하는 .음극; 및 전해질:을 포함하눈 리름 이차 전지를 제공한다. 0.02 to ' 0.2. . . . ,; - In another embodiment of the present invention, a positive electrode comprising a cathode active material for a lithium secondary battery according to one embodiment of the invention described above: a negative electrode including a negative electrode active quality; And an electrolyte: is provided.
【발명의 효과】 【Effects of the Invention】
종래의 산화물 코팅 된 양극 활물질 대'비 고율 .특성 및 수명특성이 개선된 양극 활물질을 제공하는 것이다. 【도면의 간단한 설명】 . It is to provide a cathode active material having improved ratio of the conventional oxide-coated cathode active material to ' high ratio. 【Brief Description of Drawings】 .
도 1은 리튬 이차전지의 개략도이다. 1 is a schematic view of a lithium secondary battery.
【발명을 실시하기 위한 구체적안 내용】 [Specific plan contents to carry out invention]
이하. 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로ᅳ 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할
청구범위의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는ᅳ 리튬의 가역적인 인터칼레이션 및 디인터칼레이션0 Γ가능한 화합물; 및 상기 화합물의 표면에 형성된 M을 포'함하는 5 복합 코팅층;을 포함하 리튬 이차전지용 양극 활물질이되,' 상기 M은 Al., Zr. Below. Embodiments of the present invention will be described in detail. However, the present invention is presented by way of example and the present invention is not limited thereto. It is only defined by the scope of the claims. In one embodiment of the invention there is provided a reversible intercalation and deintercalation 0 lithium capable compound of lithium; And a port formed in the surface M of the compound, hereinafter 5 composite coating layer; back and comprises a cathode active material for a lithium secondary battery, "wherein M is Al. , Zr.
Ti, Mg, Ca. V, Zn. Mo, ^Ni, Co 및 Mn으로 이루어진 군에서 선택된 적어도 하나의 금속이고. 상기 양극 활물질의 표면 자유 에너지는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면 자유 에너지보다 4 내지 20% 감소한 것인 리튬 이차전지용 양극 활물질을 제공한다. Ti, Mg, Ca. V, Zn. At least one metal selected from the group consisting of Mo, ^ Ni, Co and Mn. The surface free energy of the cathode active material provides a cathode active material for a lithium secondary battery that is 4 to 20% less than the surface free energy of a compound capable of reversible intercalation and deintercalation of lithium.
0 상기 코팅층을 포함하는 양극 활물질은 리튬 이차전지의 전지적 특성을 향상시킬 수 았다. 종전의 양극. 활물질 표면에 금속산화물로 코팅하는 기술과 ' 달리 본.발명의 일 구현예에'따른 발명은 양극 활물질의 표면 에너지를 조절하여 보다 향상된 고을 및 장수명 특성을 가지는 리튬 :이차전지를 제조할 수 있다. 보다 구체적으로. 상기 M은 A1일 수 있다.The positive electrode active material including the coating layer was able to improve the battery characteristics of the lithium secondary battery. Conventional anode. Article coated with a metal oxide to the active material surface as the invention described. Unlike the the embodiment of the invention, the lithium having the improved cities and long-life characteristics by controlling the surface energy of the positive electrode active material can be prepared a rechargeable battery. More specifically. M may be A1.
5 보다 . 구체적으로. 상기 . 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 리륨 코발트계 복합 산화물일 수 있다. 다만, 이에 제한되는 것은 아니다. Than 5. Specifically. Above . The compound capable of reversible intercalation and deintercalation of lithium may be a lithium cobalt-based composite oxide. However, it is not limited thereto.
상기 코팅층을 가지는 양극 활물질은 표면 에너지기- 코팅충을 포함하지 않는 양극 활물질 보다 낮은 에너지 준위를 가짐에 따라 양극 활물질 —표면에 전해액의 과도한 wet ting을 억제하여, 종전의 코팅층을 포함하는 양극 활물질
보다 충방전 사이클 (특히 . 하이 레이트 방전을 수반하는 충반전 사이클)에 의한 열화가 감소할 수 있다. . The positive electrode active material having the coating layer has a lower energy level than the positive electrode active material not including the surface energy group-coating charge, thereby suppressing excessive wet ting of the electrolyte on the surface, and thus including a conventional coating layer. Deterioration due to a charge and discharge cycle (particularly, a charge and discharge cycle with high rate discharge) can be reduced. .
또한, 상기 코,팅층을 포함하^ 양극 활물질은 표면에너지의 성분인 극성도 (y— P)가 종래의 코팅층을 포함하는 양극 활물질 보다 낮은 5 내지 30mN/m 값을 가진다. ' In addition, the positive electrode active material including the coating layer has a polarity (y—P) of 5-30 mN / m lower than that of the positive electrode active material including the conventional coating layer. '
이러한 낮은 극성ᅳ도로 인하여 표면에너지를 감소시켜 양극 활물질의 표면에 전해액의 과도한 wet ting을 방지하여 전해액에 의한 부반웅을 억제. 전지의 저항 증가를 억제하여 수명 특성이 우수한 .양극 활물질을 제공한다. Due to such low polarity, the surface energy is reduced to prevent excessive wet ting of the electrolyte on the surface of the cathode active material, thereby suppressing side reactions by the electrolyte. Excellent life characteristics by suppressing the increase in battery resistance . It provides a positive electrode active material.
본 발명의 일 구현예에 른 코팅춤을 포함하는. 양극 활물질은 종래의 코팅충을;포함하는 양극 활물질 보다 극성도가 낮아 높은 .극성도를 가지는 양극 활물질 보다 전해액에 의한 부받웅이 즐어들어 전기적 특성이 개선될 수 있다. 상기 코팅층을 포함하는 양극 활물질의 표면에너지를 구성하는 다른 성분인 분산도 (y— D)는 양극 활물질 내에서 입자간의 유동성을 을리고. 응집도가 낮아져 전극 공정에서 슬러리 겔레이션, 전극 두께 불균일 등의 현상을 감소시켜 전극 공정성과 관련 될 수 있다. . ·, 상기 '양극 활물질의 총 중량에 대한 상기 코팅층의 M의 중량비는 0.02 내지 0.2일 수 있다. 상기 증량비가 0.02 미만의 경우 M의. 역할 (전해액 분해나. 양극활물질 극표면의 결정 구조 안정'화)을 기대할 수 없으며 0.2 초과되면 초기용량 감소 및 충방전 효율의 감소가 나타날 수 있다. According to one embodiment of the present invention comprising a coating dance . The positive electrode active material has a lower polarity than the positive electrode active material including a conventional coating filler, and thus, the electrical properties may be improved due to the favorable reaction caused by the electrolyte than the positive electrode active material having a high polarity. The dispersity (y—D), which is another component constituting the surface energy of the positive electrode active material including the coating layer, affects fluidity between particles in the positive electrode active material. The degree of cohesion may be lowered, thereby reducing the phenomenon of slurry gelation and electrode thickness unevenness in the electrode process, which may be related to electrode processability. . , The weight ratio of the coating layer M on the total weight of the "positive electrode active material may be 0.02 to 0.2 days. M of when the increase ratio is less than 0.02 . Role (electrolytic solution or decomposition. The crystal structure stability "Chemistry of the positive electrode active material surface electrode) can not be expected can receive the reduction of the initial capacity is decreased, and charge and discharge efficiency when greater than 0.2.
一 상기 코팅층의 형태는 단일^ 또는 복수층의 레이어 형태 또는 아일랜드
형태일 수 있다. 레이어 형태인 경우, 균일 코팅으로 인해 위와 -같은 장점을 기대할 수 있으며 아일랜드 형태의ᅵ 경우는 활물질 표면상의 특정 활성점과 ᅵ 선택적으로 반웅하여 부반응 제어의 효과가 크게 나타나면서 전지 특성의 향상과 함께 열적 안정성이 개선되는 효과를 기대할 수 있다. The type of the coating layer is a single or multiple layers or islands It may be in the form. If the layer forms, due to the uniform coating as above - can expect such advantages, and if i on the island shape by banung the specific active site and i selectively on the active material surface while the effect of the side reaction control appear larger thermal along with improvements in battery characteristics The effect of improving stability can be expected.
. 본 발명의. 다른 일 구현예에서는. 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; M을 포함하는 화합물 분말을 준비하는 단계; 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 M을 포함하는 화합물 분말을 건식 흔합하여. 상기 상기 리튬의 가역적인 인터칼레이션 및 ᅳ디인터칼레이션이 가능한 화합물와, 표면에 M을 포함하논 화합물 분말을 균일하게 부착시키는 단계; 및 상기 M을 포함하는 화합물 분말이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레쉬션이 가능한 화합물을 400 °C . 초과 및 800 "C 이하의 온도로 열처리하여 . M을 포함하는 복합 코팅충이 표면에 코팅된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하고. 상기 M은 A1, Zr. Ti . Mg. Ca. V, Zn. Mo. Ni , Co 및 Mn으로 이루어진 군에서 선택된 적어도 하나의 금속인 것인. 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.. . Of the present invention . In another embodiment. Preparing a compound capable of reversible intercalation and deintercalation of lithium; Preparing a compound powder comprising M; Dry mixing a compound powder containing M with the compound capable of reversible intercalation and deintercalation of the lithium. Step for uniformly attaching the reversible intercalation and eudi intercalation capable hwahapmulwa of the lithium on the surface including the M hanon compound powder; And a compound capable of reversible intercalation and deintercalation of lithium to which the compound powder comprising M is attached at 400 ° C. And heat-treating at a temperature above 800 "C to obtain a compound capable of reversible intercalation and deintercalation of lithium coated on the surface of the composite coating comprising M. It is at least one metal selected from the group consisting of A1, Zr.Ti.Mg.Ca.V, Zn.Mo.Ni, Co and Mn.
상기 화합물의 M을 포함하는 코팅층을 위한 M을 포함하는 화합물과 양극 활물질을 함께 소성할 경우 효과적인 소성을 위한 은도는 400 °C 초과 및 800 °C 일 수 있다.. When firing together the compound containing M for the coating layer including M of the compound and the positive electrode active material, silver for effective firing may be higher than 400 ° C and 800 ° C.
. . . . 8' ■
. 예를 들어 , 400°C '이하의 온도에서 소성할 경우에는 코팅재와 양극활. 물질간의 반웅성이 떨어져 코팅재의 .유라 C遊離)등 코팅의 효과를' 기대하기 어렵다. 두한, 80CTC 초과의 온도에서 소성 할 경우에는 M이 과도하게 도핑되어 전지의 초기. 용량의 감소와 함께 상온, 고온 및 저온에서의 수명 특성 저하가 일어날 수 있다. - ' . . . . 8 '■ . For example, when fired at temperatures below 400 ° C ' , the coating material and the anode active . Due to the lack of reaction between materials, it is difficult to expect the effect of coatings such as ' Yura C ' ). In addition, when fired at a temperature above 80 CTC, M is excessively doped and the initial stage of the battery. Along with the decrease in capacity, deterioration of life characteristics at room temperature, high temperature and low temperature may occur. - '
상기 코팅된 양끅.활물질에 대한.설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록.한다. .. 본 발명의 또 다른 일 구현예에서는. 양극. 음극 및 전해질을 포함하는 리튬 이차.전.지이며. 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 /포함하며. 상기 양극 활물질층은. 전술한 양극 활물질을 포함하는 것인 리튬.이차잔지를 제공한다. ' . For the coated bicarbonate active material . Since the description is the same as the embodiment of the present invention described above, it will be omitted. In another embodiment of the present invention. anode. Lithium secondary comprising a negative electrode and an electrolyte . I'm former. The positive electrode comprises a current collector and a positive electrode active material layer formed on the current collector. The positive electrode active material layer is. Lithium. Secondary residue that includes the positive electrode active material described above. '
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동.일하기 때문에 생략하도록 한다. Descriptions related to the cathode active material are omitted because they are the same as in the above-described embodiment of the present invention.
상기 양극 활물질층은 바인더 및 도전재를 포함핥 수 있다. The positive electrode active material layer may include a binder and a conductive material.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고. 또한 양극 활 물질을 전류 집전체에 잘 부착시키는 역할을 하며ᅳ 그 대표적인 예로는 폴리비닐 알콜. 카르복시메틸셀를로즈, 히드록시프로필씰를로즈, 디아세틸쎌롤로즈. 폴리 비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드ᅳ 에탈 렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄ᅳ 폴리테트라플루
오로에틸렌 , 폴리비닐리덴 플루오라이드, 폴라에틸렌, 폴리프로필렌, 스티렌-부 ' 타디엔 러버,. 아크릴레이티드 스티렌—부타디엔 러버. 에폭시 수지.. 나일론 등을 사용할 수 있으나. 이에 한정되는 것은 아니다/ The binder adheres the positive electrode active material particles to each other well. It also serves to adhere the positive electrode active material to the current collector. Polyvinyl alcohol is a representative example. Carboxymethyl Cell Rose, Hydroxypropyl Seal Rose, Diacetyl Cellulose. Polyvinylchloride, carboxylated polyvinylchloride, polymers comprising polyvinylfluoride ᅳ ethylene oxide, polyvinylpyrrolidone, polyurethane ᅳ polytetraflu Oroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber ,. Acrylated styrene—butadiene rubber. Epoxy resin. . Nylon may be used. It is not limited to this /
상기 도전재는 전극에 도전성을 부여하기 위해 사용 Sᅵ는 것으로서, 구성 되는 전지에 있어서. 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것 ■ 도 사용가능하며 , 그 예로 천연 혹연. 인조 흑연ᅳ 카본 블랙, 아세틸렌 블랙.. 케 첸블택. 탄소섬유 등의 탄소계 .물질; 구리, 니켈, 알루미 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다. " The conductive material is used to impart conductivity to the electrode, which is composed of a battery. If any one electronically conductive material without causing chemical changes ■ also possible to use, and examples thereof include natural hokyeon. Artificial Graphite ᅳ Carbon Black, Acetylene Black . . Kechenbleck. Carbon-based materials such as carbon fibers; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminium and silver; conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used. "
상기 음극은 집전체.및 상기 집전체 위에 형성된 음극; 활물질층을 포함하 며. 상기 음극 활물질층은 음극 활물질을 포함한다. . ' The negative electrode is a current collector . And a negative electrode formed on the current collector; It includes an active material layer. The negative electrode active material layer includes a negative electrode active material. . '
상기 음극 활물질로는 리튬 이은을 가역적으로 인터칼레이션 /디인터칼레 이션할 수 있는 물질. 리튬 금속. 리튬 금속의 합금. 리튬을 도프 및 탈도프할 수 있는 '물질 , 또는 전이 금속 산화물을 포함한다. ' A material capable of reversibly intercalating / deintercalating lithium silver as the negative electrode active material. Lithium metal. Alloy of lithium metal. ' Materials capable of doping and undoping lithium, or transition metal oxides. '
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물 Water capable of reversibly intercalating / deintercalating the lithium ions
/ 질로는 탄소 물질로서 . 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음 극 활물질은 어떠한 것도 사용할 수 있으며ᅳ 그 대표적인 예로는 결정질 탄소. 비정질 탄소 또는 이들을 함께 사용할 수 있다- 상기 결정질 탄소의 예로는 무 정형. 판상. 린편상 (flake). 구형 또는 섬유형의 천연 혹연'또는 인조 혹딴과 같 은 흑연을 들 수 았고, 상기 비정질 탄소의 예로는소프트 카본 (soft carbon: 저
온 소성 탄소) 또는 하드 카본 (hard carbon) , .메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.. ^ '― / As a carbon material. Any carbon-based negative electrode active material commonly used in lithium ion secondary batteries may be used. Examples thereof include crystalline carbon. Amorphous carbons or these may be used together-examples of such crystalline carbons are amorphous. Plate. Flakes. Graphite such as spherical or fibrous natural ambly ' or artificial humps. Examples of the amorphous carbon include soft carbon (low carbon). . On firing carbon) or hard carbon (hard carbon), there may be mentioned mesophase pitch carbide, fired coke, and so on. ^ '-
상기 리튬 금속의 합금으로는 리륨과 Na.. K, Rb, Cs, Fr, Be / Mg, Ca, Sr, Si, Sb, Pbᅳ In, Zn, Ba, Ra. Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 의 、합금이 사용될 수 있다. / Examples of the lithium metal alloy include lithium and Na . . K, Rb, Cs, Fr, Be / Mg, Ca, Sr, Si, Sb, Pb ᅳ In, Zn, Ba, Ra. Alloys of metals selected from the group consisting of Ge, Al and Sn can be used. Of
- y] 리튬을 도프 및 탈도프할 수 있는' 물질로는 Si, siox(o < x < 2), y ] materials capable of doping and undoping lithium include Si, sio x (o <x <2),
Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소ᅳ 전이금 속. 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며. Si은 아님). Sn. ' Sn02. Sn— Y (상기 Y는 알칼리 금속. 알칼리 토금속. .13족 원소. 14족 원소, 전이금속.. 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되^ 원 소이며. Sn은 아님) 등을 들 수 있고, 또한 이들 증 적어도 하나와 Si¾를 흔합 하여 사용할 수도 있다. 상가 원소 Y로는 Mg. Ca. Sr, Ba. Ra. Sc. Y. Ti . Zr, Hf . Rf . V. Nb, Ta. Db. Cr , Mo. W, Sg. Tc. Re, Bh, Fe. Pb, Ru, 0s, Hs, Rh, Ir. Pd, Pt. Cu. Ag. Au, Zn. Cd. B. Al , Ga. Sn. In. Ti , Ge. P. As , Sb„ Bi , S. Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. . ' 상기 전아 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. -Si-Y alloy (wherein Y is selected from the group consisting of alkali metal, alkaline earth metal, group 13 element, group 14 element ᅳ transition gold. Rare earth element and combinations thereof, not Si). Sn. ' Sn0 2 . Sn- Y (wherein Y is an alkali metal alkaline earth metal. 13 element. 14 elements, transition metals and rare earth elements. Being selected from the group consisting of elemental ^ a. Sn is not) and the like It is also possible to use a mixture of at least one of these and Si¾. As the additive element Y, Mg. Ca. Sr, Ba. Ra. Sc. Y. Ti. Zr, Hf. Rf. V. Nb, Ta. Db. Cr, Mo. W, Sg. Tc. Re, Bh, Fe. Pb, Ru, 0s, Hs, Rh, Ir. Pd, Pt. Cu. Ag. Au, Zn. CD. B. Al, Ga. Sn. In. Ti, Ge. P. As, Sb 'Bi, S. Se, Te, Po, and combinations thereof. . To "the jeonah metal oxide and the like can be mentioned vanadium oxide, lithium vanadium oxide. -
. 상기 음극 활물질 층은 또한 바인더를 포함하며. 선택적으로 도전재를 더 욱 포함할 수도 있다. . . The negative electrode active material layer also includes a binder. Optionally, more conductive materials may be included. .
상기 바인더는 음극 활물질 입자들을 서로 잘. 부착시키고ᅳ 또한 음극 활
물질을 전류 집전체에 잘 부착시키는 역할을 하며. 그 대표적인 예로 폴리비닐알 콜. 카르복시메틸셀를로즈. 히드록시프로필셀롤로즈. 폴리비닐클로라이드. 카르 복실화된 폴리비닐클로라이드. 폴리비닐플루오라이드.. 에틸렌.옥사이드를—포함하 는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오토에틸렌, 폴리비날 리덴 플루오라이드,' 폴리에틸렌, 폴리프로필렌, 스티렌—부타디엔 러버, 아크뮐레 이티드 스티렌-부타디엔 러버.. 에폭시 수지, 나일론 등을 사용할 수 있으나. 이 에 한정되는 것은 아니다. The binder makes the negative electrode active material particles well together . Attaching and cathodic bow It attaches the material well to the current collector. Representative examples thereof include polyvinyl alcohol. Carboxymethylcellrose. Hydroxypropylcellulose. Polyvinylchloride. Carboxylated polyvinylchloride. Polyvinylfluoride ... Polymers containing ethylene oxide—polyvinylpyrrolidone, polyurethane, polytetrafluorotoethylene, polyvinylidene fluoride, ' polyethylene, polypropylene, styrene—butadiene rubber, acrolle Yated styrene-butadiene rubber. Epoxy resin, nylon, etc. can be used. It is not limited to this.
상기 도전재는. 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성 되는 전지에 있어서. 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것 도 사용가능하.며, 그 예로 천연 혹연. 인조 흑연. 카본 블랙. 아세틸렌 블랙. 케 첸블랙ᅳ 탄소섬유 등의 탄소계 물질; 구리. 니켈, 알루미늄. 은 등의 금속 분말 또는 금속 섶유 등와 금속계 물질; 폴리페닐렌 유도체 등의 .도전성 폴리머; 또는 이들의' 흔합물을 포함하는 도전성 재료를 사용할 수 있다.. The conductive material is . In a battery which is used to impart conductivity to an electrode, it is configured. Any electronically conductive material can be used without causing chemical changes, e.g. natural smoke. Artificial graphite. Carbon black. Acetylene black. Carbon-based materials such as ketjenblack carbon fiber; Copper. Nickel, aluminum. Metal powders such as silver, metal oils and the like, and metal-based materials; conductive polymers such as polyphenylene derivatives; Or a conductive material containing these ' combinations.
상기 집전체로는 구리 _박. 니켈 박ᅳ 스테인레스강 박, 티타늄 박. 니켈 발포체 (foam), 구리 발포체. 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합 으로 이루어진 군에서 선택되는 것을 사용할 수 있다. The current collector is copper foil. Nickel foil Stainless steel foil, titanium foil. Nickel foam, copper foam. A polymer substrate coated with a conductive metal, and a combination thereof may be used.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 : 것은 아니다. 상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고. 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서
상세한 설명은 생략하기로 한다. 상기.용매로는 N -메틸피를리돈 등을 사용할 수 있으나 이에 .한정되는 것은 아니다. It is not: The current collector may be used in the A1, but is not limited thereto. The negative electrode and the positive electrode are mixed with an active material, a conductive material and a binder in a solvent to prepare an active material composition. This composition is prepared by applying to a current collector. Since such an electrode manufacturing method is well known in the art, in the present specification Detailed description will be omitted. The solvent may be N-methylpyridone or the like, but is not limited thereto.
' . 상기 전해질은 비수성 유기 용매와 리튬염을 포함한다. '. The electrolyte contains a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
상기 ,비수성―유기용매로는 카보네이트계 . 에스테르계 . 에테르계. 케톤계 , 알코을계, 또는 비양성자성 '용매를 사용할 수 있다ᅳ 상기 카보네이트계 용매로 는 디메틸 카보네이트 (DMC). 디에틸 카보네이트 (DEC), 디프로필 카보네이트 (DPC). 메틸프로필 카보네이트 (MPC). 에틸프로'필 카보네이트 (EPC). 메틸에틸 카보네이트 ( MEC ). 에틸렌 카보네이트 ( EC ) , .프로필렌 카보네이트 ( PC ) . 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며. 상기 에스테르계 용매로는 메틸 아세테이트.' 에틸 아세테이트 , η-프로필 아세테이트,ᅳ디메틸아세테이트. '메틸프로피오네이트, 에틸 프로피오네이트 , Υ-부티로락톤, 데카놀라이드 (decanolide), 발레로락톤, 메발로 노락톤 (iiieval ono lac tone), 카프로락론(€3 ()13 01 ) , 등이 사용될 수 있다. 상 기 에테르계 용매로는 디부틸 에테르, 테트라글라임. 디글라임. 디메특시에탄, 2-메틸테트라히드로퓨란. 테트라히드로퓨란 등이 사용될 수 있으며. 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸 알코을, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상. 분지상. 또는 환 구조의 탄화수소기이몌 이중결합 방향 환 또는'에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포
름아미드 등의 아미드류, 1ᅳ, 3:디옥솔란 등의 디옥솔란류 설포란 (sulfolane)류 등 이 사용될 " 있다. The non-aqueous-organic solvent is a carbonate-based. Ester system. Ether type. Ketone based, alcohol based, or aprotic ' solvents may be used. Examples of the carbonate solvent include dimethyl carbonate (DMC). Diethyl carbonate (DEC), dipropyl carbonate (DPC). Methylpropyl carbonate (MPC). Ethyl Pro Phil carbonate (EPC). Methylethyl carbonate (MEC). Ethylene carbonate (EC), propylene carbonate (PC). Butylene carbonate (BC) and the like can be used. The ester solvent is methyl acetate. , Ethyl acetate, η- propyl acetate, dimethyl acetate eu. , Methyl propionate, ethyl propionate, lactones in Υ- butynyl, big surprise Id (decanolide), valerolactone, methoxy feet no lactone (iiieval ono lac tone), rakron (€ 3 () 13 01) caprolactam, And the like can be used. The ether solvent is dibutyl ether, tetraglyme. Diglyme. Dimethoxyethane, 2-methyltetrahydrofuran. Tetrahydrofuran and the like can be used. As the ketone solvent, cyclonucleanone may be used. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and as the aprotic solvent, R-CN (R is a straight-chain, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms). Nitrile dimethyl foam, such as a double bond aromatic ring or an ' ether bond) Amides, such as 1 eu name amide, 3: dioxide dioxide, such as sulfonic acids solran solran there is used ", such as sulfolane (sulfolane) acids.
- . 상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 아상 흔합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 5 . 따라 적절하게 조절할 수 았고, 이는 당해 '분야에 종사하는 사람들에게는 널리 이해될 수 있다. —— . ' ' -. The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using a mixture of one or more subphases is 5 to the desired battery performance. Depending flew to properly adjusted, it can be well understood by those who engage in art 'field. ——. ''
.또한. 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사슬형 (chain) '카보네이트를 혼합하여 사용하는.것이 좋다. 이 경우 환형 카보네이트 와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 흔합하여 사용하는 것이 전해0 액의 성능이 우수하게 나타날 수 있다. .Also. In the case of the carbonate solvent, it is preferable to use a mixture of a cyclic carbonate and a chain ' carbonate. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte 0 may be excellent.
본 발명의 일 구현예에 따른 비수성 '유기용매는 상기 카보네이트계 용매 에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이 계 용매와 방향족ᅵ탄화수소계 유기용매는 1:1 내지 30:1의 부피비로 .혼합될 수 있다. . : . - 'The non-aqueous' organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonaceous solvent and the aromatic ᅵ hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1. . : . -'
5 . 상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소 계 화합물이 사용될 수 있다. 5. As the aromatic hydrocarbon-based organic solvent may be used an aromatic hydrocarbon compound of the formula (1).
화학:식 1] Chemistry: Formula 1]
1ί 1ί
Λ
(상기 화학식 1에서 , 내지 ¾는 각각 독립적으로 수소, -할로겐, C1 내 지 C10 알킬기. 할로알킬기 또는 이들의 조합이다.) Λ (In Formula 1, to ¾ are each independently hydrogen, -halogen, C1 to C10 alkyl group, haloalkyl group or a combination thereof.)
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1.2-디플루오로 벤젠, 1,3-디플루오로벤젠, 1,4—디플루오로벤젠. 1,2,3—트리플루오로벤젠, 1.2, 4-트리플루오로벤젠. 클로로벤젠, 1.2-디클로로벤젠.' 1,3-디클로로벤젠. 1,4ᅳ디클로로벤젠, 1,2, 3ᅳ트리클로로벤젠, 1.2.4-트리클로로벤젠, 아이오도벤젠, ᅳ 1,2-디아이오도벤렌, 1.3—디아이오도벤젠. 1.4-디아이오도벤젠. 1.2,3—트리아이 오도벤젠, 1.2.4-트리아이오도벤젠. 를루엔 ./플牟오로를루엔. 1.2—디플루오로틀 루엔..1.3ᅳ디풀루오로를루엔. 1.4—디플루오로를루엔ᅳ 1.2.3—트리플루오로를루엔ᅳ 1.2,4—트리플루오로를루엔. 클로로를루엔, 1.2-디클로로를루엔. 1.3-디클로로를 루엔. 1.4-디클로로를루엔. 1.2,3-트리클로로를루엔. 1.2, 4-트리클로로를루엔. 아이오도를루엔ᅳ 1,2-디아이오도를루엔.. 1,3-디아이오도를루엔ᅳ 1,4-디아이오도 를루엔 . 1.2.3-트리아이오도를루.엔. 1.2.4-트리아이오도를루엔. 자일렌ᅳ 및 이들 의 조합으로 이루어진 군에서 선택되는 것이다.. . 상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다. The aromatic hydrocarbon organic solvent may be benzene, fluorobenzene, 1.2-difluoro benzene, 1,3-difluorobenzene, 1,4-difluorobenzene. 1,2,3—trifluorobenzene, 1.2, 4-trifluorobenzene. Chlorobenzene, 1.2-dichlorobenzene. , 1,3-dichlorobenzene. 1,4'dichlorobenzene, 1,2,3'trichlorobenzene, 1.2.4-trichlorobenzene, iodobenzene, ᅳ 1,2-dioodobenene, 1.3—diodobenzene. 1.4-Diiodobenzene. 1.2,3—triiodobenzene, 1.2.4-triiodobenzene. Toluluen./Pluoruluen. 1.2—difluorotle-luene. 1.3 ᅳ difuluroluene. 1.4—difluoroluene ᅳ 1.2.3—trifluoroluene ᅳ 1.2,4—trifluoroluene. Chloroluene, 1.2-dichloroluene. Luene 1.3-dichloro. 1.4-dichloroluene. 1.2,3-trichloroluene. 1.2, 4-trichloroluene. Iodine toluene ᅳ 1,2-Diiodo toluene .. 1,3-Diaodo toluene ᅳ 1,4-Diaodo toluene. 1.2.3-triiodoru.en. 1.2.4-triiodoluene. Xylenes and combinations thereof. The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by the following Chemical Formula 2 to improve battery life.
(상기 화학식 2에서, R7 및 R8는 각각.독립적으로 수소, 할로겐기 , 시아노 기 (CN)..니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 R8중 적' 어도 하나는 할로겐기 , 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의. 플루오 로알킬기이다.) , : , , . 상기 에틸렌' 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌 카보네이트, 클로로에틸렌 카보네이트ᅳ 디클로로에틸렌 카보네이트/ 브로모에틸 ᅳ 렌 카보네이트. 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에 틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수 명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다. 상기 리튬염은 유기 용매에 용해되 '어. 전지 내에서 리튬 이온의 공급원으 로 작용하여 기본적인 리튬 이차전지의 작동'을 가능하게 하고, 양극과 음극 사이 의 .리튬 이온의 이동을 촉진하는 역할을 하는 물질이다ᅳ 이러한 리튬염의 대표 적인 예로는 LiPF6, LiBF4. LiSbF6. LiAsF6, LiC4F9S03. LiC104. LiA102. LiAlCl4, LiN(CxF2x+1S02KCyF2y+1S02) (여기서 . x 및 y는 자연수임 )ᅳ LiCl , Lil 및 LiB(C204)2(리튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate: Li BOB) 로 이루어진 군에서 선택되는 하나 또는 둘 아상을 지지 (supporting) 전해염으로 포함한다. " 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면ᅳ 전해질이 적절한 전도도 및 점도를 가지 므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이은이 효과적으로 이동할 수 . 있다.
리튬 이차전지의 종류에 따라 양극과 음극 사이에. 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 ' 폴리에틸렌 . 폴리프로필렌. 폴리비닐리덴 In Formula 2, R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ), or a C1 to C5 fluoroalkyl group, and R 7 and R 8 least one of the enemy 'is a halogen group, a cyano group (CN), nitro (N02) or a C1 to C5 alkyl group in the fluoroalkyl),:.,,. Representative examples of the ethylene ' carbonate-based compound is difluoro ethylene carbonate, chloroethylene carbonate ᅳ dichloroethylene carbonate / bromoethyl styrene carbonate. Dibromoethylene carbonate, nitroethylene carbonate, cyano ethylene carbonate, fluoroethylene carbonate, etc. are mentioned. In the case of further use of such a life improving additive, the amount thereof can be properly adjusted. The lithium salt air, are dissolved in an organic solvent. Acts as a source lead of the lithium ions in the battery enables the operation, the basic lithium secondary battery, and a material which serves to facilitate the movement of lithium ions between the positive electrode and the negative electrode eu such lithium salt Representative examples include LiPF 6 , LiBF 4 . LiSbF 6 . LiAsF 6 , LiC 4 F 9 S0 3 . LiC10 4 . LiA10 2 . LiAlCl 4 , LiN (C x F 2x + 1 S0 2 KC y F 2y + 1 S0 2 ), where. X and y are natural numbers) LiCl, Lil and LiB (C 2 0 4 ) 2 (lithium bisoxalato One or two subphases selected from the group consisting of lithium bis (oxalato borate: Li BOB) are included as supporting electrolytic salts. ” The concentration of lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance and can effectively move lithium. Depending on the type of lithium secondary battery, between the positive and negative electrodes . Separator may be present. These separators, polyethylene. Polypropylene. Polyvinylidene
' 플루오라이드 또는 이들와 2층 이상의 다층막이 ' 사용될 수 있으며,. 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴 5에틸렌 ' 5 3층 , 세퍼레이터 , 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 ,3층 .세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다. May be used, the fluoride or yideulwa multilayer film having two or more layers'. It is a matter of course that a mixed multilayer film such as polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / pol 5ethylene ' 5 three-layer , separator, polypropylene / polyethylene / polypropylene, three-layer separator and the like can be used.
리튬 이차전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 '전지. 리튬 이온 폴리머 전지 및 리튬 폴리머 전쩌로 분류될 수 있고, 형태에 따라 원통형 . 각형 .■ 코인형. 파우치형 등으로 분류될 수 있으며 . 사이즈에 따라 10 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리.알려져 있으므로 상세한 설명은 생략한다. - ' 도 1에 본 발명의 리튬 이차전지와 .대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과」 같이 상기 리튬 이차전지 (1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과' 음극 (2) 사이에 존재하는.세퍼레이터 (4)에 함침된 15 전해액을 포함하는 전지 용기 (5)와. 상기 전지 용기 (5)를 봉 ύ하는 봉입 부재 (6)를 포함한다. Lithium secondary batteries are lithium-ion 'batteries, depending on the type of separator and electrolyte used. Can be classified into lithium ion polymer battery and lithium polymer battery, and according to the shape of cylindrical. Square shape. ■ coin type. It can be classified into pouch type. Depending on the size, it can be divided into 10 bulk type and thin film type. The structure and manufacturing method of these batteries are widely used in this field . Since it is known, the detailed description is omitted. 1 shows a lithium secondary battery of the present invention . A representative structure is shown schematically. That "as the lithium secondary battery 1 shown in Figure 1 is present between the anode 3, cathode 2 and the anode 3 and the" negative electrode (2). 15 electrolytic solution impregnated in the separator 4 And a battery container 5 comprising a. And a sealing member 6 for sealing the battery container 5.
. 이하 본 발명의 실시예 및 비교예를 기재한다 . 그러한 하기한 실시예는 본 발명의 일 셜시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 0 실시예
실시예 1 . Hereinafter, examples and comparative examples of the present invention are described. Such following examples are only one shishishi of the present invention, and the present invention is not limited to the following examples. 0 Example Example 1
믹서에 Co304. 와 Li2C03 를 1:1.040. (Co304:Li2C03) 의 몰비로 넣고 흔합하였다. Co 3 0 4 on the mixer. And Li 2 C0 3 1: 1.040. It was put in a molar ratio of (Co 3 O 4 : Li 2 C0 3 ) and mixed.
혼합된 분말을 1000 °C로 8 시간 열처리하여 리튬 -코발트 복합 산화물을 제조하였다. The mixed powder was heat-treated at 1000 ° C. for 8 hours to prepare a lithium-cobalt composite oxide.
제조한 리튬 코발트 복합 산화물과 A1(0H).3 분말을 100:0.2(리튬 코발트 복합 산화물: ΑΚ0Η)3)의 중량비로 건식 혼합하여 Α1(0Η)3 분말을 리튬 코발트 복합 산화물 입자 표면에 균일하게 부착시켰다. The lithium cobalt composite oxide and A1 (0H) .3 powder were dry mixed at a weight ratio of 100: 0.2 (lithium cobalt composite oxide: AΚ0Η) 3) to uniformly mix the A1 (0Η) 3 powder on the surface of the lithium cobalt composite oxide particles. Attached.
■ 리튬 코발트 복합 산화물 입자 표면에 Α1(0Η)3 분말을 균일하게 부착시키기 '위하여ᅳ NOBILTA(Hosokawa Micron Groupft)를 이용하여 정밀 흔합하였다ᅳ N0BILTA 장비의 강한 전단력을 이용하여 A1 (0H)3 분말을 균일하게 부착시켰다. ᅵ ■ the lithium cobalt oxide particles surface Α1 (0Η) a to uniformly attach the third powder "eu NOBILTA was heunhap precision using (Hosokawa Micron Groupft) eu N0BILTA A1 (0H) using a high shear equipment to 3 powder Evenly attached. ᅵ
상기 건식 혼합된 분말을 600 °C로 5 시간 열처리하여 양극 활물질을 제조하였다. ' . 실시예 2 The dry mixed powder was heat-treated at 600 ° C. for 5 hours to prepare a cathode active material. ' Example 2
상기 실시예 1에서 제조한 건식 흔합된 분말을 500 t로 5 시간 열처리 것을 제외하고, 동일한 방법으로 리튬 이온 양극 활물질을 제조하였다. 비교예 1
믹서에 Co304. 와 Li2C03 를 1:1.040 (Co304:Li2C03)의 몰비로 넣고 흔합하였다. 혼합된 분말을 1000 °C로 8 시간. 열처리하여 양극 활물질을 제조하였다. 비교예 2 A lithium ion positive active material was prepared in the same manner, except that the dry mixed powder prepared in Example 1 was heat-treated at 500 t for 5 hours. Comparative Example 1 Co 3 O 4 and Li 2 CO 3 were added to the mixer in a molar ratio of 1: 1.040 (Co 3 0 4 : Li 2 CO 3 ) and mixed. 8 hours at 1000 ° C mixed powder. Heat treatment to prepare a positive electrode active material. Comparative Example 2
상기 실시예 1에서 제조한 건식 흔합된 분말을 400 °C로 5 시간 열처리 한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. . 비교예 3 ' A positive electrode active material was prepared in the same manner, except that the dry mixed powder prepared in Example 1 was heat-treated at 400 ° C. for 5 hours. . Comparative Example 3 '
A1—이소프로폭사이드 으 .4635g을 에탄을. lOiiil에 용해시킨 후 믹서를 이용하여 혼합용액을 제조하였다. 상기 혼합용액을 상기 비교예 '1의 양극 활물질 100g에 ^가 후 교반하였다. A1—.4635 g of isopropoxide to ethane. After dissolving in lOiiil, a mixed solution was prepared using a mixer. The mixed solution was stirred at 100 g of the positive electrode active material of Comparative Example ' 1.
이후 상기 양극 활물질을 so r에서 간조하였다. The positive electrode active material was then low tapped in so r.
건조된 분말을 600 °C로 5h시간 열처^하여 습식으로 M 산화물이 코팅된 양극 활물질을 제조하였다. 비교예 4 - 상기 비교예 3에서 제조한 건조된 분말을 500 C로 5 시간 열처리 한 것을 제외하고, 동일한 방법으로 활물질을 제조하였다.
실험예 1: 표면자유에너지 측정 The dried powder was heat-treated at 600 ° C. for 5 h to prepare a positive electrode active material coated with a wet M oxide. Comparative Example 4 An active material was prepared in the same manner, except that the dried powder prepared in Comparative Example 3 was heat-treated at 500 C for 5 hours. Experimental Example 1 Surface Free Energy Measurement
; 상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조돤 양극 활물질의 표면자유에너지. 측정을 실시하였다 . 측정은 KRUSS社의 DSA100, K100 기기를 이용하여 측정하였으며 . 측정은 Contact Angle Method로 측정하였다. Surface free energy of the positive electrode active material prepared in Examples 1 to 2 and Comparative Examples 1 to 4 ; The measurement was performed . The measurement was performed using KRUSS DSA100 and K100 instruments. The measurement was measured by the Contact Angle Method.
- 표면자유에너지 측정 결과 -Surface free energy measurement result
하기 표 : 1은 상기 실험예에서 측정한 평가 결과이다. Table 1 shows the evaluation results measured in the experimental example.
[표 1] TABLE 1
상기 표 1은 실시예 1 내자 2 및 비교예 1 내지 4에 따른 양극 활물질의 표면자유에너지를 나타낸다. 코팅층을 형성하지 않은 비교예시에 비해 본원의 실시예 1 및 2의 표면 자유 에너지가 낮아짐을 인할 수 있다. 이는—코팅 방법이 다른. 비교예 3 내지 4의 표면 자유 에너지가 비교예 1에 비해 오히려 높아지는 것과는 차아를 보이는 결과이다.
실시예 1 내지 2 및 비교예 2를 보면. 소성 온도에 감소함에 따라 Table 1 shows the surface free energy of the positive electrode active material according to Example 1 to magnetic field 2 and Comparative Examples 1 to 4. It can be seen that the surface free energy of Examples 1 and 2 of the present application is lower than that of the comparative example without forming the coating layer. This—the coating method is different . The surface free energy of Comparative Examples 3 to 4 is higher than that of Comparative Example 1, showing the difference between the results. See Examples 1 and 2 and Comparative Example 2. With decreasing firing temperature
표면자유에너 7、ᅵ는 증가하며 . 표면자유에너.지의 성분 중 하나인 분산도의 .증가를 Surface free energy 7 , increase. Increasing the dispersion of one of the components of surface free energy and energy
확인 할 수 있다. 따라서 비교예 2는. 실시여 1 1에ᅳ 비하여 코팅의 소성 온도가 You can check. Therefore, Comparative Example 2. The firing temperature of the coating was
' 낮음에 따라 분산도가 증가하여 일 실시예의 표면자유에너지 감소에 따른 특성을 '' The lower the dispersion, the higher the dispersion.
구현하기가 힘든 단점이 .있다. 또한 종래의 .코팅 방법인 비교예 3은 A1 코팅층을 ¬형성하지 않은 비교예 1은 표면자유에너지 차이가 없으며, 표면자유에너지의 There are disadvantages that are hard to implement. In addition, Comparative Example 3, which is a conventional coating method, does not form an A1 coating layer, and Comparative Example 1 does not have a difference in surface free energy.
성분인 분산도 및 극성도의 변화 또한 없어. 분산도 및 극성도에 의한 특성 There is no change in dispersion and polarity. Characteristics by Dispersion and Polarity
. 구현이 힘들다. 、 ' · . Difficult to implement 、 '·
- -
- 상기 표 1에 있어서 Co 용출량을 기재하였다. Co 용출의 측정은 60 °C 오본에서 EC:EMC=1:1 LiPF6 1M 5ml에 일 실시예의 양극 활물질 lg 을 30rpm 으로 -Table 1 shows the Co elution amount. Co dissolution was measured using 5 ml of EC: EMC = 1: 1 LiPF 6 1M at 60 ° C in Aubon at 30 rpm with the positive electrode active material lg of one example.
교반하며 14일 동안 방치한 측정치이다. 상기 표 1에서 확인 할.수 있듯이 일 The measurement was left for 14 days with stirring. As you can see in Table 1 above.
- 실시예의 표면자유에너지가 감소하는 코. 충을 형성하여 전해액에의 양극 활물질 Nose with reduced surface free energy of the embodiment. Cathode forms positive electrode active material in electrolyte
표면에서의 과도한 wetting을 억제하여 Co 용출아 감소함을 확인 할 수 있으며. It can be confirmed that Co dissolution is reduced by suppressing excessive wetting on the surface.
실시예 1 내지 2가 비교예 3내지 4에 비하여 용출량의 감소도가 더 큰 것을 확인 It is confirmed that Examples 1 to 2 have a greater reduction in elution amount than Comparative Examples 3 to 4.
할 수 있다. 코인셀의 제조 can do. Production of coin cell
상기 실시예 1, 2 및 비교예 1.내지 4에서 제조된 양극 활물질 95 중량 ¾,
도전제로 카본 블랙 (carbon black) 2.5 중량%. 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N-메틸 -2 피를리돈 (NMP) 5.0.중량%에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 .40 m의 양극 집전체인 알루미늄 (A1) 박막에 도포 및 진공 건조하고 롤 프레스 (roll press)를 실시하여 양극을 제조하였다. 95 wt ¾ of the positive electrode active material prepared in Examples 1 and 2 and Comparative Examples 1 to 4, 2.5% by weight carbon black as a conductive agent. A positive electrode slurry was prepared by adding 2.5 wt% PVDF as a binder to 5.0 wt% N-methyl-2 pyridone (NMP) as a solvent (solvent). The positive electrode slurry has a thickness of 20 to. A positive electrode was prepared by coating, vacuum drying, and rolling press on a thin film of aluminum (A1), which is a 40 m positive electrode current collector.
음극으로는 Li-금속을 이용하였다. Li-metal was used as the negative electrode.
이와 .같이 제조된 양극과 Li-금속을 대극으로, 전해액'으로는 1.15M LiPF6 EC:DMC(l:lvol«을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다. 실험예 2: 전지 특성 평가 . In the counter electrode for the positive electrode and the metal Li- prepared as electrolyte "is a 1.15M LiPF 6 EC: DMC (l :. Using lvol« prepare a coin cell-type half cell in Experimental Example 2: Characterization of cell
" 하기. 표 2는 실시예 1. '.비교예 1. 및 2의 초기 Formation, 율특성 및 1 cycle, 30cycle, 50cycle 용량 및 수명특성 데이터이다. "Below. Table 2 Example 1 'is a comparative example 1 and 2 the initial Formation, rate characteristic and cycle 1, 30cycle, 50cycle capacity and the life characteristic of data.
[표 2] TABLE 2
상기 표 2에서 알 수 있듯이. 실시예 1 및 비교예 3의 경우 양극 활물질 표면에 Μ (예를 들어, A1)의 코팅에 의해 코팅층을 형성하지 않은 비교예 1에 비해 율특성 및 수명특성쎄서 우수한 전지특성을 나타내었다.. - 一 As can be seen in Table 2 above. Example 1 and Comparative Example 3 exhibited excellent battery properties compared to Comparative Example 1, in which the coating layer was not formed by the coating of Μ (for example, A1) on the surface of the positive electrode active material.一
실시예 1의 경우 종전의 기술인 비교예 3에 비해 방전 용량, 율특성 및
수명특성에서 좋은 결과를 보였다. 특히. 장수명에서 더 뛰어난 결과가 확인 되었다. 본 발명은 상기 실시예들에 한정되는 것이 아니리" 서로 다른 다양한 형태로 제조될 수 있으며. 본 발명이 속하는 기술분야에서 통상의 —지식을 가진 자는 본 '발명의 기술적 사상이나 .필수적인 특징을 변경하지 、않고서 다른 구체적인 형태로 실시될 수 있다는 것을. 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
In the case of Example 1, the discharge capacity, rate characteristics and Good results were obtained in the service life characteristics. Especially. Longer life results have been identified. The invention is ahniri "can be made in many different forms and conventional in the art to be limited to the above embodiments - not change the person with knowledge spirit or essential characteristics of the present invention.". It is to be understood that the embodiments described above are illustrative in all respects and not restrictive, in that they may be embodied in other specific forms.
Claims
【특허청구범위】 Patent Claim
【청구항 1】 [Claim 1]
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면에 형성된 M을 포함하는 복합 코팅층; . 5 을 포함하는 리튬 아차전지용 양극 활물질이되,. Compounds capable of reversible intercalation and deintercalation of lithium; And a composite coating layer comprising M formed on the surface of the compound. . Being a positive electrode active material for a lithium secondary battery, including 5.
- . 상기 M은 Al, Zr, Ti, Mg. Ca, V. Zn. Mo. Ni . Co .및 Mn으로 이루어진- . M is Al, Zr, Ti, Mg. Ca, V. Zn. Mo. Ni. Co and Mn
• 군에서 선택된 적어도 하나의 금속이고. , • is at least one metal selected from the group. ,
'상기 양극 활물질의' 표면 자유 에너지는 상기 리튬의 가역적인The surface free energy "of the positive electrode active material, is of the reversible lithium
' 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면 자유 에너지보다 4 10 내지 20% 감소한 것인 리튬 이차전지용 양극 활물질 . ' Cathode active material for lithium secondary battery, which is 4 10 to 20% less than the surface free energy of the compound capable of intercalation and deintercalation.
【청구항 2】 [Claim 2]
. 제 1항에 있어서. . The method of claim 1.
상기 M은 A1인 것인 리튬 이차전지용 양극 활물질 . Wherein M is A1 positive electrode active material for lithium secondary batteries.
15' 15 '
【청구항 3】 [Claim 3]
- 제 1항에 있어서, -According to claim 1,
. 상기 리튬의 가역적인 인터칼레이션 및 다인터칼레이션이 가능한 화합물은 리튬 코발트 복합 산화물인 리륨 이차전지용 양극 활물질. . The compound capable of reversible intercalation and multiintercalation of lithium is a lithium cobalt composite oxide positive electrode active material for a lithium secondary battery.
20 .
【청구항 4】 ' 20. [Claim 4] "
제 1항에 있어서. The method of claim 1.
상기 양극 활물질은 표면 에너지의 성분인 극성도가 5 내지 30 mN/m 인 것인 리튬 이차전지용 양극 활물질. The cathode active material is a cathode active material for a lithium secondary battery having a polarity of 5 to 30 mN / m as a component of the surface energy.
【청구항 5】 ' [5.] "
제 1항에 있어서. ' - 상기 양극 활물질의 총 증량에 대한 상기 코팅층의 M의 중량비는 0.02 내지 0.2인 ¾인 리튬 이차전지용 양극 활물질. The method of claim 1. ' -The weight ratio of M of the coating layer to the total amount of the positive electrode active material is a lithium secondary battery positive electrode active material is ¾ of 0.02 to 0.2.
Γ청구항 6】 Γclaim 6
제 1항에 있어서, The method of claim 1,
상기 코팅층의 형태는 아일랜드 (Island) 형태인 것인 리튬 이차전지용 양극활물질. ' ' . , 【청구항 7】 The coating layer has a form of an island (Island) form a cathode active material for a lithium secondary battery. '' . [Claim 7]
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; Preparing a compound capable of reversible intercalation and deintercalation of lithium;
M을 포함하는 화합물 분말을 준비하는 단계 ; Preparing a compound powder comprising M;
상기 리륨의 가역적인 인터칼레이션 및 디인터칼레이션어 가능한 화합물에
상기 l을 포함하는 화합물 분말을 건식 혼합하여 . 상기 상기 .리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물와 표면에 M을 포함하는 화합물 분말을 균일하게 부착시키는 단계; 및 Reversible intercalation and deintercalation of the lithium Dry mixing the compound powder containing l. Uniformly attaching a compound powder containing M to the surface and a compound capable of reversible intercalation and deintercalation of the .lithium; And
상기 M을 포함하는 화합물 분말이 부착된 리 "의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 400 °C 초과 및 800 °C 이하의 온도로 열처리하여, M을 .포함하는 복합 코팅층이 표면에 '코팅된 리튬의 가역적 ¾ 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하고, 상기 M은 Al. Zr. Ti . g , Ca . V. Ζη. Mo. Ni . Co 및 Mn으로 이루어진 군에서 선택된 적어도 하나의 금속인 것언 리튬 이차전지용 양극 활물질의 제조 방법. . The reversible intercalation and deintercalation of a compound having a compound powder comprising M is heat-treated at a temperature of more than 400 ° C. and less than 800 ° C., whereby a composite coating layer comprising M is provided. on the surface "¾ reversible intercalation of lithium coated and de-intercalation the compound; to obtain a;..... comprises a, wherein M is Ti g Zr Al, Ca V. Ζη Mo. Ni A method for producing a positive electrode active material for a lithium secondary battery, which is at least one metal selected from the group consisting of Co and Mn.
【청구항' 8】 [Claim port] 8
제 7항에 있어서 . The method of claim 7.
상기 제조된 흔합물을 소성하는 단계의 소성 온도는 . 400 °C 초과 및 00 °C 이하인 것인 리튬 이차전지용 양극 활물질의 제조 방법. The firing temperature of the step of firing the prepared mixture is . Method for producing a positive electrode active material for lithium secondary battery that is more than 400 ° C and less than 00 ° C.
[청구항 9】 ' [9.] "
제 7항에 있어서ᅳ The method of claim 7 wherein
상기 M은 A1인 것인 리튬 이차전지용 양극 활물질의 제조 방법.
【청구항 10】 M is a method of producing a positive electrode active material for lithium secondary batteries. [Claim 10]
제 7항에 있어서.. The method of claim 7. .
상기 제조된 리름 이차전지용 양극 활물질의 표면 자유 에너지는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레아션이 가능한 화합물의 표면 자유 에너지보다 4 내지 20% 감소한 것인 리튬 이차전지용 양극 활물질의 제조 방법. The surface free energy of the prepared positive electrode active material for lim secondary battery is 4 to 20% less than the surface free energy of the compound capable of reversible intercalation and deintercalation of the lithium secondary battery.
【청구항 11】 [Claim 11]
제 7항에 있어서. The method of claim 7.
상기 제조된 양극 활물질은 표면 에너지의 성분인 극성도가 5 내지 30 mN/m 인 것인 라톱 이차전지용 양극 활물질의 제조 방법. The prepared cathode active material has a polarity of 5 to 30 mN / m as a component of the surface energy manufacturing method of the cathode active material for a la top secondary battery.
【청구항 12】 [Claim 12]
제 7항에 있어서.. 8. The method of claim 7,
상기 .제조된 양극 활물질은 표면 쎄너지의 성분인 분산도가 30 내지 50 mN/m 인. 것인 리튬 이차전지용 양극 활물질의 제조 방법 . The prepared cathode active material has a dispersion of 30 to 50 mN / m, which is a component of surface energy. The manufacturing method of the positive electrode active material for lithium secondary batteries.
【청구항.13] [Claims.13]
. 제 7항에 있어서. . . The method of claim 7. .
상기 제조된 양극 활물잘의 총 중량에 대한 상기 코팅충의 M의 중량비는 0.02 내지 0.2인 것인 리륨 이차전지용 양극 활물질의 제조 방법. ,
-【청구항 14】 Method for producing a positive electrode active material for a lithium secondary battery that the weight ratio of M of the coating charge to the total weight of the prepared positive electrode active material is 0.02 to 0.2. , -Claim 14
제 1항 내지 제 6항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; A positive electrode comprising the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 6;
음극 활물질을 포함하는 음극; 및 . ' A negative electrode including a negative electrode active material; And. '
전해질; . Electrolyte; .
을 포함하는 리튬 이차 전지. . . .
Lithium secondary battery comprising a. . . .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2013/002505 WO2014157744A1 (en) | 2013-03-26 | 2013-03-26 | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2013/002505 WO2014157744A1 (en) | 2013-03-26 | 2013-03-26 | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157744A1 true WO2014157744A1 (en) | 2014-10-02 |
Family
ID=51624697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/002505 WO2014157744A1 (en) | 2013-03-26 | 2013-03-26 | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014157744A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020182502A1 (en) * | 2000-02-16 | 2002-12-05 | Hong-Kyu Park | Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance |
KR20070016431A (en) * | 2005-08-03 | 2007-02-08 | 삼성에스디아이 주식회사 | Active material for lithium secondary battery, preparing method for the same and secondary battery with the same |
KR20100060363A (en) * | 2008-11-27 | 2010-06-07 | 주식회사 에너세라믹 | Method of preparing of positive material for a lithium secondary battery, positive material prepared thereby, and lithium secondary battery comprising the same |
KR20110063335A (en) * | 2009-12-03 | 2011-06-10 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery and lithium secondary battery using the same |
KR20120028622A (en) * | 2010-09-15 | 2012-03-23 | 한양대학교 산학협력단 | Cathode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same |
-
2013
- 2013-03-26 WO PCT/KR2013/002505 patent/WO2014157744A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020182502A1 (en) * | 2000-02-16 | 2002-12-05 | Hong-Kyu Park | Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance |
KR20070016431A (en) * | 2005-08-03 | 2007-02-08 | 삼성에스디아이 주식회사 | Active material for lithium secondary battery, preparing method for the same and secondary battery with the same |
KR20100060363A (en) * | 2008-11-27 | 2010-06-07 | 주식회사 에너세라믹 | Method of preparing of positive material for a lithium secondary battery, positive material prepared thereby, and lithium secondary battery comprising the same |
KR20110063335A (en) * | 2009-12-03 | 2011-06-10 | 주식회사 엘앤에프신소재 | Cathode active material for lithium secondary battery and lithium secondary battery using the same |
KR20120028622A (en) * | 2010-09-15 | 2012-03-23 | 한양대학교 산학협력단 | Cathode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7229145B2 (en) | Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery containing the same | |
KR101155913B1 (en) | Negative active material for rechargeable lithium battery and rechargeable lithium battery including same | |
JP6755253B2 (en) | Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery including this | |
WO2015083900A1 (en) | Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same | |
WO2015115699A1 (en) | Cathode active material for lithium secondary battery, manufacturing method therefor and lithium secondary battery comprising same | |
WO2015083901A1 (en) | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same | |
JP7022730B2 (en) | Positive active material for lithium secondary battery, its manufacturing method and lithium secondary battery containing it | |
KR20100118825A (en) | Rechargeable lithium battery | |
KR20120103263A (en) | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same | |
WO2015053586A1 (en) | Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same | |
WO2015084026A1 (en) | Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same | |
KR102356495B1 (en) | Positive active material for rechargeable lithium battery and rechargeable lithium battery including same | |
CN109802102B (en) | Positive active material for rechargeable lithium battery, rechargeable lithium battery including the same, and battery module including the same | |
CN109661740B (en) | Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same | |
KR102272265B1 (en) | Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same | |
WO2016132662A1 (en) | Carbon coating treatment device, negative-electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium-ion secondary battery, and electrochemical capacitor | |
JP6274722B2 (en) | Positive electrode for lithium secondary battery and lithium secondary battery including the same | |
WO2016032290A1 (en) | Cathode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same | |
WO2017150915A1 (en) | Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same | |
JP2011249293A (en) | Lithium transition metal compound and its manufacturing method, and lithium ion battery | |
WO2014157743A1 (en) | Cathode active material for lithium secondary battery, and lithium secondary battery using same | |
WO2017150914A1 (en) | Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same | |
WO2016186479A1 (en) | Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same | |
KR101135491B1 (en) | Positive electrode for rechargeable lithium and rechargeable lithium battery comprising same | |
CN111668462B (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880087 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13880087 Country of ref document: EP Kind code of ref document: A1 |