WO2014157541A1 - 植物の形質転換方法に使用するためのアグロバクテリウム細菌 - Google Patents

植物の形質転換方法に使用するためのアグロバクテリウム細菌 Download PDF

Info

Publication number
WO2014157541A1
WO2014157541A1 PCT/JP2014/058926 JP2014058926W WO2014157541A1 WO 2014157541 A1 WO2014157541 A1 WO 2014157541A1 JP 2014058926 W JP2014058926 W JP 2014058926W WO 2014157541 A1 WO2014157541 A1 WO 2014157541A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
plasmid
agrobacterium
agrobacterium bacterium
replication
Prior art date
Application number
PCT/JP2014/058926
Other languages
English (en)
French (fr)
Inventor
輝之 今山
祐弘 樋江井
石田 祐二
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP14773265.5A priority Critical patent/EP2980214B1/en
Priority to US14/779,875 priority patent/US10266835B2/en
Priority to CN201480024753.4A priority patent/CN105164257B/zh
Publication of WO2014157541A1 publication Critical patent/WO2014157541A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/743Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Agrobacterium; Rhizobium; Bradyrhizobium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts

Definitions

  • the present invention relates to an Agrobacterium bacterium for use in a plant transformation method containing three types of plasmids and use thereof.
  • Plant transformation methods include physical and chemical methods (direct DNA introduction method) such as polyethylene glycol method, electroporation method, and particle gun method, and biological methods that utilize the functions of Agrobacterium bacteria ( Indirect introduction method of DNA) is known.
  • direct introduction method events such as introduction of a target gene in a fragmented manner or introduction of multiple copies frequently occur. Therefore, transformants that do not express the target gene and transformants that show weak and abnormal expression (gene silencing) frequently appear.
  • the method using protoplasts since the culture period is prolonged, seed sterility or malformation due to culture mutation is likely to occur in the obtained transformant. On the other hand, the gene transfer method using Agrobacterium is unlikely to cause such a problem.
  • a target gene is introduced by controlling the expression of genes in a pathogenic region (vir region) of a Ti or Ri plasmid.
  • the target gene can recognize and interact with the interaction between plant cells and bacteria, induce vir gene expression, form a type IV secretion pathway, recognize T-DNA border repeats, It is introduced through many processes such as formation of T-DNA strands, transfer of T-DNA strands into plant cells and into the nucleus, and integration of T-DNA into the plant nucleus genome. Therefore, the introduced copy number of the target gene is kept low, and it is rarely introduced after being fragmented. As a result, a large number of individuals in which the target gene is highly expressed can be stably obtained in the obtained transformant, and there is a great advantage that there are few differences in the expression level among individuals compared to the direct introduction method.
  • the Agrobacterium method is a very excellent method for transforming plants, but the success or failure of transformation and the efficiency differ depending on the plant species, genotype and plant tissue used. (Potrykus et al., 1997). There are still many plants that cannot be transformed with sufficient efficiency, and the types of crops from which a large number of transformants can be easily obtained are limited to a part at present. Therefore, an improved technique that can solve such problems is strongly desired.
  • an intermediate vector that can be easily manipulated and inserted into a desired gene and can be replicated in E. coli is introduced into a T-DNA of a disarmed Ti plasmid of Agrobacterium.
  • This method is introduced by homologous recombination via Ditta et al., 1980) and is called the intermediate vector method (Fraley et al., 1983).
  • the other is called the binary vector method, which requires a vir region for T-DNA integration into plants, but does not need to be present on the same plasmid as T-DNA for this to function.
  • the binary vector is obtained by incorporating T-DNA into a small plasmid that can be replicated in both Agrobacterium and E. coli, and is used by introducing it into Agrobacterium having a disarm type Ti plasmid.
  • Binary vectors include pBIN19 (Bevan, 1984), pBI221 (Jefferson, 1987), pGA482 (An et al., 1988), and many new binary vectors have been constructed and used for transformation. (Lee and Gelvin, 2008).
  • Agrobacterium A281 (Watson et al., 1975) is a super-virulence strain with a broad host range and higher transformation efficiency than other strains ( Komari et al., 1986). . This characteristic is due to the Ti plasmid pTiBo542 of A281 (Jin et al., 1987).
  • the second is a super-binary vector system (Hiei et al., 1994; Ishida et al., 1996).
  • This system is a kind of binary vector system because it consists of a disarm type Ti plasmid having a vir region (virA, virB, virC, virD, virE and virG, all of virJ) and a plasmid having T-DNA. is there.
  • KpnI fragment (part of the virD1 gene, virB gene, virC gene and virG gene) cut out from the vir region of pTiBo542 was incorporated into the plasmid on the side having T-DNA, ie, a binary vector ( Komari). , 1990) Use of a super binary vector is different.
  • This KpnI fragment was 15.8 kb in the first paper (Jin et al., 1987), but it is exactly 14.8 kb.
  • Kanna and Daggard (2003) used a combination of non-strongly pathogenic Agrobacterium strain LBA4404 and superbinary vector pHK21 to obtain a wheat that could not be obtained at all with the combination of LBA4404 and ordinary binary vector pHK22. Successful acquisition of transformants.
  • the plasmid pTOK47 (Jin et al., 1987) having a 14.8 kb KpnI fragment (part of virD1, virB, virC and virG) excised from the vir region of pTiBo542 on the plasmid was transformed.
  • a booster vector for improvement it is a system additionally introduced into the binary vector system.
  • a vector system in which a booster vector is further added to a binary vector system is referred to as a “Turnary vector system”.
  • the booster vector contains the above 14.8 kb KpnI fragment. In particular, this is referred to as a “super-ternary vector system”.
  • plasmids having different origins of replication (ori) in incompatibility groups that can coexist in Agrobacterium are used.
  • the coding region of Rep protein (initiator) is essential, and they are usually used close to each other. It has been reported that the super-ternary vector system using pTOK47 exhibits high transformation efficiency in many plant species (Wenck et al., 1999; Tang, 2003; Dong and Qu, 2005; Arokiaraj et al. , 2009).
  • the replication origin (ori) of pTOK47 is the IncW incompatibility group, and ori belonging to the IncP incompatibility group is mainly used for the plasmids having T-DNA reported in these ternary vector systems. ing.
  • the vector system used by (2008) has only IncW ori but lacks its rep gene, pGreen (Hellens et al., 2000), and the IncW rep gene in trans and is necessary for its replication. It consists of pSoup with an IncP oriV (Hellens et al., 2000). That is, pSoup complements pGreen replication, and has a mechanism for stably maintaining both plasmids in Agrobacterium. Therefore, it is specially called a dual binary vector system. However, in reality, it can be said to be a super-ternary vector system composed of three types of plasmids: a disarm type Ti plasmid, a binary vector pSoup, and a tertiary vector pGreen.
  • Hiei et al. (1994) is a disarmed strain EHA101 (pIG121Hm) of the strong pathogenic strain A281, and has a normal pathogenicity (normal vir entire region), but a part of super-vir (virB, virC, A super binary vector LBA4404 (pTOK233) carrying virG) was used to compare the ability to transform rice. As a result, it was confirmed that the transformation efficiency in the latter was higher. This suggests that regarding the use of the super-vir region as a transformation vector, the use of a part of the regions (virB and virG) has a higher transformation ability than the use of the entire region.
  • virD1 and virD2 cut into the border sequence to produce T-DNA, and in particular virD2 forms a complex with T-DNA.
  • virD3 has low conservation and is considered unnecessary for T-DNA transfer.
  • virD4 together with the virB gene cluster constitutes a type IV secretion system.
  • virD5 is considered to be an accessory protein with a signal function of the type IV secretion system (Ream, W. (2008). Production of a mobile T-DNA by Agrobacterium tumefaciens. In Agrobacterium, V. T. V. , Eds (New York: Springer Science + Business Media, LLC), pp. 280-313.
  • E. coli In general, the smaller the vector, the easier the operation such as incorporation of the desired DNA, and the smaller the vector is preferable.
  • exogenous DNA that E. coli can stably hold is 1200 to 1500 kb per cell (Tao, Q., and Zhang, H.-B. (1998). Cloning and stable maintenance of DNA fragments over 300 kb in. Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Research 26 4901-4909). Therefore, E. coli cannot stably maintain a plasmid of a certain size or more.
  • a plasmid having an origin of replication derived from ColE1 is present in an amount of 30 to 40 copies per E. coli cell, so that a plasmid having a size larger than 30 to 40 kb cannot be maintained.
  • the hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside 301 Hood, E.E., Gelvin, S.B., Melchers, L.S., and Hoekema, A. (1993).
  • Transgenic Res 2, 208-218 Ishida, Y., Hiei, Y., and Komari, T. (2007).
  • the promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector.
  • Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the peribibiol.45 , 1325-1335 Potrykus, I., Bilang, R., Futterer, J., Sautter, C., and Schrotte, M., and Spangenberg, G. (1997). Genetic engineering of crop plants. In Agricultural Biotechnology, A. Altman ed (NY: Mercel Dekker Inc.), pp. 119-159 Ream, W. (2008).
  • the Agrobacterium method is a very excellent method for transforming plants, but the success and efficiency of transformation differ greatly depending on the plant species, genotype and plant tissue used (Potrykus et al., 1997). . There are still many plants that cannot be transformed with sufficient efficiency, and the types of crops from which a large number of transformants can be easily obtained are limited to a part. Therefore, an improved technique that can solve such problems has been strongly desired.
  • the present invention provides an Agrobacterium bacterium using a novel super-ternary system that enables high gene transfer efficiency and transformation efficiency into a plant, and a plant transformation method using the Agrobacterium bacterium.
  • the purpose is to do.
  • An Agrobacterium bacterium comprising the following plasmid (1)-(3): (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) origin of replication (2) disarm type Ti plasmid or disarm type of Agrobacterium bacterium Ri plasmid; and (3) Plasmid having a T-DNA region comprising the desired DNA.
  • each plasmid of (1)-(3) has a replication mechanism that can coexist with each other.
  • Aspect 2 (1) The Agrobacterium bacterium according to aspect 1, wherein the replication origin of plasmid (ii) is an IncW replication origin.
  • Aspect 3 (1) The Agrobacterium bacterium according to aspect 1 or 2, wherein the plasmid further contains a virE gene of pTiBo542.
  • Aspect 4 (1) The Agrobacterium bacterium according to any one of aspects 1-3, wherein the plasmid further contains a repA gene.
  • Aspect 5 (1) The Agrobacterium bacterium according to any one of aspects 1-4, wherein the plasmid further comprises a drug selection marker gene.
  • Aspect 6 The Agrobacterium bacterium according to aspect 5, wherein the drug selection marker gene is a gentamicin resistance gene.
  • Aspect 7 (1) The Agrobacterium bacterium according to any one of aspects 1-6, wherein the plasmid is pVGW9 having the base sequence described in SEQ ID NO: 1.
  • Aspect 8 (2) The Agrobacterium bacterium according to any one of aspects 1 to 7, wherein the disarm type plasmid of Agrobacterium bacterium is a disarm type Ti plasmid.
  • Aspect 9 The Agrobacterium bacterium according to any one of aspects 1-8, which does not retain disarm-type pTiBo542.
  • An Agrobacterium bacterium comprising the following plasmid (1)-(2): (1) a plasmid having the following components; (I) a virB gene, a virC gene, a virD1 gene, a virD2 gene, a virD3 gene, a virG gene and a virJ gene of pTiBo542, and (ii) an origin of replication and (2) a disarm type Ti plasmid or disarm of an Agrobacterium bacterium Type Ri Plasmid
  • each of the plasmids (1) and (2) has a replication mechanism that can coexist with each other.
  • a method for transforming a plant comprising contacting the Agrobacterium bacterium of aspects 1 to 10 with a plant cell.
  • a kit for use in a method for transforming plant cells via Agrobacterium comprising the following combinations of plasmids (1) to (3): (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) origin of replication (2) disarm type Ti plasmid or disarm type of Agrobacterium bacterium Ri plasmid; and (3) Plasmid having a T-DNA region comprising the desired DNA.
  • each plasmid of (1)-(3) has a replication mechanism that can coexist with each other.
  • the kit is a replication mechanism that can coexist with each other.
  • a kit for use in a method for transforming plant cells via Agrobacterium which is a combination of the following plasmids (1) and (3): (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) a replication origin and (3) a plasmid having a T-DNA region comprising a desired DNA here
  • each plasmid has a replication mechanism capable of coexisting with each other.
  • the kit is a combination of the following plasmids (1) and (3): (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) a replication origin and (3) a plasmid having a T-DNA region compris
  • the plant transformation method using the Agrobacterium bacterium utilizing the system of the present invention is transformed in comparison with the case of using a (super) ternary vector system or super binary system using a known booster vector. Efficiency is improved. It shows a remarkable effect especially in corn.
  • FIG. 1 is a schematic diagram of the pVGW9 plasmid.
  • FIG. 2 is a schematic diagram of the super-ternary vector system of the present invention.
  • FIG. 3 is a schematic diagram of the pVGW2 plasmid.
  • FIG. 4 is a schematic diagram of the pGW plasmid.
  • FIG. 5 is a schematic diagram of the pGWL plasmid.
  • FIG. 6 is a schematic diagram of the pVGW7 plasmid.
  • FIG. 7 is a schematic diagram of the pTiBo542-derived vir region used in addition to the booster vector.
  • FIG. 8 is a schematic diagram of the pLC41GWH plasmid.
  • FIG. 9 is a schematic diagram of the pLC41GWH-IG plasmid.
  • FIG. 10 shows the results of gene transfer into maize A188 using the superternary vector system.
  • the present invention relates to an Agrobacterium bacterium for use in plant transformation.
  • the Agrobacterium bacterium is a general term for the genus Rhizobium having a pathogenicity to plants, and includes Agrobacterium tumefaciens and Agrobacterium rhizogenes (Agrobacterium rhizogenes). ) Is included.
  • the Agrobacterium bacterium of the present invention does not contain a wild-type Ti plasmid and a wild-type Ri plasmid.
  • the Agrobacterium of the present invention is characterized by comprising the following three types of plasmids (1) to (3).
  • plasmid (1) used as a booster vector is novel and has the following characteristics.
  • Booster Vector a vector plasmid that can improve gene transfer efficiency and transformation efficiency and can be additionally used for Agrobacterium bacteria is called a booster vector.
  • plasmid (1) having the following components is used as a booster vector.
  • Plasmid (1) comprises (i) the virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG and virJ genes of pTiBo542, and (ii) the origin of replication.
  • Ti plasmid is a huge plasmid of about 200,000 base pairs, generally possessed by wild-type Agrobacterium. It includes T-DNA (transfer DNA) to be introduced, virulence region (virence region: vir region) and the like. T-DNA is a DNA fragment that is inserted into the genome of a plant cell by homologous recombination, and includes plant growth regulators (auxin and cytokinin) synthesis genes, opine synthesis genes, and the like.
  • the vir region is a region that encodes a group of proteins necessary for integration of T-DNA into a plant.
  • Each gene such as virA gene, virB gene, virC gene, virD gene, virE gene, virG gene and virJ gene Is included.
  • the vir region of the Ti plasmid of the p plasmid “pTiBo542” (Jin et al., 1987) of the strongly pathogenic Agrobacterium strain A281 has a particularly high transformation efficiency, and the super-virulence region (super-virulence region: super- vir region).
  • the booster vector of the present invention is characterized in that it contains all of the virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene of pTiBo542.
  • virB gene can be prepared by a conventional method from a plasmid such as pSB1 ( Komari et al. 1996 Plant J 10: 165-174).
  • the base sequence of the virB gene is defined as the 3416th to 12851th bases in the base sequence of Genbank / EMBL accession number: AB027255 (pSB1), for example.
  • the virB region is an operon composed of a plurality of genes. In the present specification, this is referred to as a “virB gene”.
  • virC gene For the virC gene, see Close et al. (1987) has a detailed description. For example, it can be prepared from a plasmid such as pSB1 by a conventional method.
  • the base sequence of the virC gene is defined, for example, as the 163574-164880th base in the base sequence of Genbank / EMBL accession number: DQ058764.
  • the virC region is an operon composed of a plurality of genes. In the present specification, this is referred to as a “virC gene”.
  • VirD gene is composed of five genes: virD1 gene, virD2 gene, virD3 gene, virD4 gene and virD5 gene.
  • virD gene see, for example, Ream, W. et al. (2008). Production of a mobile T-DNA by Agrobacterium tumefaciens. In Agrobacterium, T. Tzfire and V. Citovsky, eds (New York: Springer Science + Business Media, LLC), pp. There are detailed descriptions in 280-313.
  • the booster vector of the present invention includes a virD1 gene, a virD2 gene, and a virD3 gene among virD genes.
  • the virD1 gene, the virD2 gene, and the virD3 gene are, for example, each of the base sequence of Genbank / EMBL accession number: DQ058764, the 165149-16559th base, the 165626-166900th base, and the 166920-167558th base. Defined as a base.
  • VirG is a transcriptional regulatory (activation) factor for other vir genes such as virB and virE (Winans et al. 1986 Proc. Natl. Acad. Sci. USA 83: 8278-8282).
  • the base sequence of the virG gene is defined, for example, as the 162nd to 163463th base in the base sequence of Genbank / EMBL accession number: DQ058764.
  • the virJ gene see Pantoja et al. (2002) has a detailed description.
  • it can be prepared from a plasmid such as pTiBo542 by a conventional method.
  • the base sequence of virJ is defined as the 150873-151616th base in the base sequence of Genbank / EMBL accession number: DQ058764.
  • a virB gene, a virC gene, a virD1 gene, a virD2 gene, a virD3 gene, a virG gene, and a virJ gene each of which is a DNA comprising a base sequence that hybridizes under stringent conditions to the specific sequence described above or its complementary sequence.
  • a gene comprising a DNA having a function of each sequence can also be used.
  • DNA comprising at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical base sequences to these base sequences, each having a function of each sequence The following gene can also be used. However, the present invention is not limited to these.
  • under stringent conditions means to hybridize under moderately or highly stringent conditions.
  • moderately stringent conditions can be easily determined by those skilled in the art having general techniques based on, for example, the length of the DNA.
  • Basic conditions are shown in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Chapter 6, Cold Spring Harbor Laboratory Press, 2001, for example, 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (PH 8.0) pre-wash solution, about 50% formamide at about 42 ° C., 2 ⁇ to 6 ⁇ SSC, preferably 5 ⁇ to 6 ⁇ SSC, 0.5% SDS (or about 42 ° C.
  • hybridization solutions such as Stark solution in 50% formamide
  • moderately stringent conditions include hybridization conditions (and washing conditions) of about 50 ° C., 6 ⁇ SSC, 0.5% SDS.
  • High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA.
  • these conditions include hybridization at higher temperatures and / or lower salt concentrations than moderately stringent conditions (eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC) and / or washing, for example hybridization as described above Defined with conditions and washing at approximately 65 ° C. to 68 ° C., 0.2 ⁇ to 0.1 ⁇ SSC, 0.1% SDS.
  • moderately stringent conditions eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC
  • moderately stringent conditions eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC
  • SSC 1 ⁇ SSC is 0.15 M NaCl and 15 mM sodium citrate
  • SSPE 1 ⁇ SSPE is 0.15 M NaCl, 10 mM NaH 2 PO 4 , and 1. 25 mM EDTA, pH 7.4
  • washing is performed for 15 minutes to 1 hour after hybridization is completed.
  • hybridization kit that does not use a radioactive substance for the probe can be used.
  • hybridization using an ECL direct labeling & detection system can be mentioned.
  • ECL direct labeling & detection system manufactured by Amersham
  • For stringent hybridization for example, 5% (w / v) Blocking reagent and 0.5M NaCl are added to the hybridization buffer in the kit, and the reaction is performed at 42 ° C. for 4 hours.
  • a condition is that 20% is performed twice at 55 ° C. for 20 minutes in 4% SDS, 0.5 ⁇ SSC, and once at room temperature for 5 minutes in 2 ⁇ SSC.
  • the percent identity between two base sequences can be determined by visual inspection and mathematical calculation, or more preferably, this comparison is made by comparing the sequence information using a computer program.
  • a typical preferred computer program is the Wisconsin package, version 10.0 program “GAP” from the Genetics Computer Group (GCG; Madison, Wis.) (Devereux, et al., 1984, Nucl. Acids Res. ., 12: 387).
  • GAP Genetics Computer Group
  • GAP GCG run of an unary comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and Schwartz and Dayhoff supervised “Atlas of Polypeptide Sequence and Structure” National Biomedical Research Foundation, pages 353-358, 1979, Gribskov and Burgess, Nucl. Acids Res. 14: 6745, 1986 weighted amino acid comparison matrix; or other comparable comparison matrix; (2) 30 penalties for each gap of amino acids and one additional penalty for each symbol in each gap; or nucleotide sequence Includes 50 penalties for each gap and an additional 3 penalties for each symbol in each gap; (3) no penalty to end gaps; and (4) no maximum penalty for long gaps.
  • sequence comparison programs used by those skilled in the art are available, for example, at the National Library of Medicine website: http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html
  • a BLASTN program, version 2.2.7, or UW-BLAST 2.0 algorithm can be used. Standard default parameter settings for UW-BLAST 2.0 are described at the following Internet site: http://blast.wustl.edu.
  • BLAST algorithm uses a BLOSUM62 amino acid scoring matrix and the selection parameters that can be used are: (A) Segments of query sequences with low compositional complexity (Woughton and Federhen SEG program (Computers and Chemistry, 1993); Woton and Federhen, 1996 “Analysis of compositional weighted regions in sequence databases”, also referred to as 71:66.
  • a segment consisting of short-cycle internal repeats Including a filter to mask (determined by the XNU program of Claverie and States (Computers and Chemistry, 1993)), and (B) a threshold of statistical significance to report a fit to the database sequence; Or according to a statistical model of E-score (Karlin and Altschul, 1990), the expected probability of a match found by chance; this fit if the statistical significance due to a fit is greater than the E-score threshold Is not reported); the preferred E-score threshold value is 0.5 or, in order of increasing preference, 0.25, 0.1, 0.05, 0.01, 0.001,. 0001, 1e-5, 1e-10, 1e-15, 1e-20, 1e-2 A 1e-30,1e-40,1e-50,1e-75 or 1e-100,.
  • the position of the pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene on the vector is not particularly limited.
  • a vir region fragment derived from pTiBo542 containing all these genes can be preferably used.
  • the booster vector ((1) plasmid) in the present invention contains an origin of replication that can replicate in E. coli and Agrobacterium bacteria.
  • an origin of replication that can replicate in E. coli and Agrobacterium bacteria.
  • the replication start point of the IncW incompatibility group the replication start point of the IncP incompatibility group
  • the replication start point of the IncQ incompatibility group the replication start point of the pVS1 incompatibility group
  • An appropriately selected replication start point can be used.
  • the replication start point is preferably the replication start point of the IncW incompatibility group, more preferably the replication start point of IncW.
  • the molecular biological characteristics of the replication origin of the IncW plasmid are described in detail in Okumura and Kado (1992 Mol Gene Genet 235: 55-63).
  • the replication start point of the IncW plasmid can be adjusted by a conventional method from an IncW plasmid such as pTOK47 (Jin et al. 1987).
  • the base sequence of the repA gene is not particularly limited as long as it has a function as a repA gene necessary for the replication of the IncW plasmid.
  • the molecular biological characteristics of repA required for the replication of IncW plasmid are described in detail in Okumura and Kado (1992 Mol Gene Genet 235: 55-63), Genbank / EMBL accession number: U30471 (full length 5500 bp) ) As the 1108th to 2079th bases.
  • RepA necessary for replication of IncW plasmid can be prepared from IncW plasmid such as pTOK47 (Jin et al. 1987) by a conventional method.
  • the booster vector ((1) plasmid) of the present invention may further contain another gene of the vir region of pTiBo542, for example, the virE gene, the virD4 gene or the virD5 gene.
  • virE gene For the virE gene, see Citovsky et al. (1988) has a detailed description. For example, it can be prepared from a plasmid such as pTiBo542 by a conventional method.
  • the base sequence of virE is defined as the 172574-176510th base in the base sequence of Genbank / EMBL accession number: DQ058764, for example.
  • the virE region is an operon composed of a plurality of genes. In the present specification, this is referred to as a “virE gene”.
  • the virD4 gene is described in detail in Christie (2004). For example, it can be prepared from a plasmid such as pTiBo542 by a conventional method.
  • the base sequence of virD4 is defined as the 167555-169513th base in the base sequence of Genbank / EMBL accession number: DQ058764, for example.
  • virD5 For the virD5 gene, see Vergunst et al. (2005) has a detailed description. For example, it can be prepared from a plasmid such as pTiBo542 by a conventional method.
  • the virD5 base sequence is defined as the 169614-172124th base in the base sequence of Genbank / EMBL accession number: DQ058764, for example.
  • the booster vector of the present invention may further contain a drug selection marker gene.
  • the drug selection marker gene can be a known gene, and is not particularly limited, but is preferably a drug selection marker gene not included in the Ti plasmid and a plasmid (binary vector) having a T-DNA region.
  • a specific example of the drug selection marker gene a gentamicin resistance gene can be preferably used, but it is not limited thereto.
  • Many drug selection marker genes including a kanamycin resistance gene, an ampicillin resistance gene, a spectinomycin resistance gene, a tetracycline resistance gene, and a hygromycin resistance gene can be preferably used according to the purpose. Changing the type of drug selection marker gene on the booster vector and binary vector of the present invention can be easily performed by infusion PCR or the like.
  • the total length of the booster vector in the present invention is not limited, but is preferably 10 kb to 30 kb, more preferably 15 kb to 25 kb.
  • pVGW9 One example of a booster vector of the present invention that satisfies the above conditions is pVGW9.
  • pVGW9 has the base sequence of SEQ ID NO: 1 attached to the present specification, and its total length is 20978 base pairs.
  • FIG. 1 A schematic diagram of pVGW9 is shown in FIG. Each component corresponds to the following position in the base sequence of SEQ ID NO: 1.
  • nucleotides 9-2758 of SEQ ID NO: 1 virJ gene nucleotides 3003-3746 of SEQ ID NO: 1 virB gene: nucleotides 5223-14658 of SEQ ID NO: 1 virG gene: SEQ ID NO: 1 14790-15593th base virC gene: 15704-17010th base of SEQ ID NO: 1 virD1 gene: 17279-17722th base of SEQ ID NO: 1 virD2 gene: 17756-19030th base of SEQ ID NO: 1 virD3 Gene: nucleotides 19050-19688 of SEQ ID NO: 1
  • the Agrobacterium bacterium of the present invention further comprises a disarm-type Ti plasmid or disarm-type Ri plasmid of the Agrobacterium (this specification And may be collectively referred to as “Ti plasmid”.
  • the Ri plasmid is a plasmid possessed by Agrobacterium rhizogenes among Agrobacterium bacteria. Similar to the Ti plasmid, it is a huge plasmid of about 200,000 base pairs and includes T-DNA (transfer DNA), virulence region (virence region) and the like introduced into plants.
  • the replication origin of the disarm-type Ti plasmid or disarm-type Ri plasmid of Agrobacterium bacteria belongs to a different incompatibility group from IncW, IncP, IncQ, and pVS1.
  • the “disarm type Ti plasmid or disarm type Ri plasmid” is a plasmid obtained by removing the T-DNA region from a wild type Ti plasmid or a wild type Ri plasmid.
  • the disarmed plasmid of Agrobacterium bacterium is a disarmed Ti plasmid.
  • Disarm-type Ti plasmids are described in, for example, Hoekema et al. , (1983), pAL4404 can be used. Disarm Ri plasmids are described, for example, in Jouanin et al. , (1987), pRiB278b can be used.
  • Agrobacterium strain in which the disarm type Ti plasmid is originally retained can be used.
  • the Agrobacterium bacterium of the present invention preferably does not contain disarmed pTiBo542.
  • disarmed pTiBo542 for example, but not limited to, LBA4404, GV3850, GV3TillSE, C58-Z707, GV3101 :: pMP90, GV3101 :: pMP90RK, GV2260, or NTI (pKPSF2) can be used.
  • the Agrobacterium bacterium of the present invention further includes a plasmid having a T-DNA region composed of a desired DNA.
  • This plasmid is replicable in both Agrobacterium and E. coli and is called a binary vector.
  • a well-known thing can be used suitably as a binary vector. Specific examples include, but are not limited to, pBin19, pBI121, pIG121, pIG121Hm, pLC41, pGreen series vectors, pCLEAN-G series vectors, pPZP series vectors, pCAMBIA series vectors, pOREO1, pGWB And vectors.
  • the DNA to be inserted into the T-DNA region of the present invention is not particularly limited.
  • arbitrary things such as a genomic DNA fragment and a cDNA fragment, can be used.
  • a genomic DNA fragment is preferable, and a plant-derived genomic DNA fragment is more preferable.
  • the size of the introduced DNA fragment is preferably 0.1 kb-100 kb, more preferably 1 kb-40 kb.
  • the Ri plasmid (Hamilton, CM, Ferry, A., Lewis, C., and Tanksley, SD (1996). Stable transfer of The replication start point of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93, 9975-91979.) can be preferably used.
  • the plasmids (1) to (3) have a replication mechanism that can coexist with each other. If a binary vector and a booster vector belong to the same incompatibility group, both vectors cannot be maintained in Agrobacterium. Therefore, these replication start points need to be different incompatibility groups. For example, IncW, IncP, IncQ, and pVS1 belong to different incompatibility groups. “Each plasmid of (1)-(3) has a replication mechanism that can coexist with each other” means that the three types of plasmids of (1)-(3) belong to different incompatibility groups, for example, It suffices to belong to an incompatibility group different from IncW, IncP, IncQ. If two of the three plasmids belong to the same group, this requirement is not met.
  • the order and method for introducing the three types of plasmids of the Agrobacterium bacterium embodiments (1) to (3) of the present invention into Agrobacterium are not particularly limited.
  • a known Agrobacterium strain in which a disarm type Ti plasmid (corresponding to (2) plasmid) is originally retained can be used.
  • LBA4404 Hoekema et al., 1983
  • GV3850 Zambrski et al., 1983
  • GV3TillSE Fraley et al., 1985
  • C58-Z707 Hepburn et al., 1985.
  • GV3101 :: pMP90 (Koncz and Schell, 1986), GV3101 :: pMP90RK (Konz and Schell, 1986), GV2260 (McBride and Summerfeld, 1990), or NTI (pKPSF2) (Palanichelval. 2000).
  • a booster vector ((1) plasmid) and a binary vector ((3) plasmid) may be introduced into these Agrobacterium strains.
  • Booster vectors and binary vectors can be introduced by known methods such as electroporation, three-way hybridization, and freeze-thaw. The order of introduction of the booster vector and the binary vector is not particularly limited. Both may be introduced simultaneously.
  • the Agrobacterium bacterium is The following groups LBA4404, GV3850, GV3TillSE, C58-Z707, GV3101 :: pMP90, GV3101 :: pMP90RK, GV2260, and NTI (pKPSF2) Agrobacterium selected from Produced by introducing (1) plasmid and (3) plasmid.
  • the present invention also includes an Agrobacterium bacterium comprising the following plasmid (1)-(2): (1) A plasmid having the following components: (I) a virB gene, a virC gene, a virD1 gene, a virD2 gene, a virD3 gene, a virG gene and a virJ gene of pTiBo542, and (ii) an origin of replication and (2) a disarm type Ti plasmid or disarm of an Agrobacterium bacterium Type Ri Plasmid
  • each of the plasmids (1) and (2) has a replication mechanism that can coexist with each other.
  • the Agrobacterium bacterium containing the plasmids (1) and (2) can further introduce (3) a binary vector having T-DNA into which a desired gene has been inserted, and is widely available. .
  • the present invention also relates to a method for transforming a plant using the Agrobacterium bacterium of the present invention and a method for introducing a gene into a plant.
  • the method of the present invention comprises contacting the Agrobacterium bacterium of the present invention with a plant cell.
  • the method of the present invention is an Agrobacterium bacterium comprising the following plasmid (1)-(2): (1) a plasmid having the following components; (I) a virB gene, a virC gene, a virD1 gene, a virD2 gene, a virD3 gene, a virG gene and a virJ gene of pTiBo542, and (ii) an origin of replication and (2) a disarm type Ti plasmid or disarm of an Agrobacterium bacterium Type Ri plasmid
  • each plasmid of (1) and (2) has a replication mechanism that can coexist with each other, (3) introducing a plasmid having a T-DNA region consisting of the desired DNA, and Contacting the Agrobacterium bacterium with a plant cell.
  • the plant that is the target of the transformation method of the present invention is not particularly limited, but is preferably an angiosperm, and may be a monocotyledonous plant or a dicotyledonous plant. Although it does not necessarily limit, as described in the Example of this specification, it can use preferably for corn, a rice, and a tomato.
  • the transformation efficiency can be greatly improved by using the Agrobacterium bacterium of the present invention in a known Agrobacterium-mediated transformation method.
  • Kit The present invention further relates to a kit for use in a method for transforming plant cells via Agrobacterium.
  • the kit of the present invention comprises the Agrobacterium bacterium of the present invention.
  • the present invention further relates to a kit for use in a method for transforming plant cells via Agrobacterium.
  • the kit of the present invention comprises the following combinations of plasmids (1) to (3): (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) origin of replication (2) disarm type Ti plasmid or disarm type of Agrobacterium bacterium Ri plasmid; and (3) Plasmid having a T-DNA region comprising the desired DNA.
  • each plasmid of (1)-(3) has a replication mechanism that can coexist with each other. including.
  • the kit of the present invention is a combination of the plasmids (1) and (3) (1) a plasmid having the following components; (I) pTiBo542 virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene, and (ii) a replication origin and (3) a plasmid having a T-DNA region comprising a desired DNA here
  • each plasmid has a replication mechanism capable of coexisting with each other. including.
  • the kit further comprises the following groups LBA4404, GV3850, GV3TillSE, C58-Z707, GV3101 :: pMP90, GV3101 :: pMP90RK, GV2260, and NTI (pKPSF2) Agrobacterium selected from may be included.
  • Plasmid The present invention further includes (1) a plasmid having the following components; (I) virB gene, virC gene, virD1 gene, virD2 gene, virD3 gene, virG gene and virJ gene of pTiBo542, and (ii) an origin of replication.
  • the plasmid of the present invention is preferably a pVGW9 plasmid having the base sequence set forth in SEQ ID NO: 1.
  • the present invention also relates to the use of the plasmid of the present invention for the plant transformation method according to any one of embodiments 12-14.
  • Plant cell transformation vector system The present invention further provides a plant cell transformation vector system (super-ternary vector system) using the above-mentioned three types of plasmids (1) to (3) in combination. To do.
  • the above-described known super binary vector is cloned in E. coli with an acceptor vector incorporating a 14.8 kb KpnI fragment (part of the virD1 gene, virB gene, virC gene and virG gene) excised from the vir region of pTiBo542. It is a hybrid vector obtained by homologous recombination between the shuttle vectors having the desired T-DNA. Therefore, since it is necessary to introduce an acceptor vector into Agrobacterium in advance, when it is desired to test many kinds of Agrobacterium strains, preparation is very troublesome.
  • Patent document WO 2007/148819 A1 reports that the hybrid vector was unstable in Agrobacterium when a large T-DNA of 30 kb to 40 kb was to be inserted by homologous recombination. It is considered that the replication origin of the shuttle vector is a multi-copy type ColE1.
  • a booster vector is introduced into an Agrobacterium strain carrying a disarm-type Ti plasmid, and a T-DNA into which a desired gene has been inserted.
  • Example 1 Construction of Superternary Vector System This example describes the construction of a vector system (superternary vector system) using the three types of plasmids of the present invention.
  • PTOK47 includes both IncW ori and pBR322 ori, and the total length is approximately 28 kb (Jin et al., 1987). The total length of pAL154 (Amoah et al., 2001) is 24 kb.
  • These booster vectors are long plasmids that contain many sequences that are not necessary for replication retention in Agrobacterium.
  • the vector used as the booster vector of the super-ternary vector system is desirably a shuttle vector that is small in size and can be easily incorporated into the vir region fragment and can be cloned in E. coli.
  • Patent document WO2007 / 148819 A1 discloses a vector pVGW2 that meets these objectives.
  • pVGW2 contains both IncW ori and pBR322 ori, and has a gentamicin resistance gene (FIG. 3).
  • a booster vector having the viralence region of pTiBo542 was constructed based on this pVGW2.
  • pSa5'EcT22I (5'-AAA ATG CAT GGC ATG TTT AAC AGA ATC TG-3 ') (sequence number 2) and M13 (-20) Fw (5'-GTA AAA CGA CGG CCA G- 3 ′) PCR was performed with the primer set (SEQ ID NO: 3), and the resulting fragment was self-ligated to create a new cloning vector “pGW” (FIG. 4).
  • pGW cloning vector
  • “PrimeStar Max” TaKaRa
  • this reagent was used in all the PCRs involved in the construction.
  • Booster Vector pVGW7 A booster vector pVGW7 containing a 14.8 Kb KpnI fragment retained in pTOK47 and pAL154 as a vir gene group was constructed. First, in order to increase the working efficiency during cloning, it was decided to incorporate the pUC19 lactose operon into pGW. The lactose operon fragment obtained by digesting pUC19 with SapI + AatII was inserted into the NsiI-NheI site of pGW to obtain a new cloning vector “pGWL” (FIG. 5). A fragment obtained by digesting pSB1 with KpnI was inserted into the KpnI site of pGWL to obtain pVGW7 (FIGS. 6 and 7).
  • the target construct pVGW9 (FIGS. 1 and 7) including the entire region of the virB, virC, virD1, D2, D3, virG and virJ genes was obtained.
  • the base sequence of pVGW9 is shown in SEQ ID NO: 1 in the sequence listing.
  • the cosmid vector pLCleo (also known as pLC41GWH) described in the patent document WO2007 / 148819 A1 is an IncP plasmid and has an origin of replication oriV (FIG. 8). oriV functions in both E. coli and Agrobacterium.
  • the T-DNA region has a hygromycin resistance gene controlled by a promoter containing the first intron of the maize ubiquitin gene.
  • the vector fragment and the inserted fragment were ligated (16 ° C., overnight), and the reaction solution was ethanol-precipitated and redissolved with MilliQ water, and introduced into E. coli GeneHogs (Invitrogen) by electroporation.
  • the cells were cultured on LB agar medium containing the antibiotic kanamycin (50 ⁇ g / ml), and the plasmid was purified from the resulting colonies.
  • the nucleotide sequences of these clones were determined, and those confirmed to have the target insertion region were named binary vector pLC41GWH-IG (FIG. 9).
  • the booster vector pVGW7 was introduced into LBA4404 (pLC41GWH-IG) by electroporation, and on AB agar medium containing kanamycin (50 ⁇ g / ml), hygromycin (50 ⁇ g / ml) and gentamicin (30 ⁇ g / ml).
  • LBA4404 pLC41GWH-IG
  • gentamicin 30 ⁇ g / ml
  • booster vector pVGW9 was introduced into each strain of LBA4404 (pLC41GWH-IG), GV2260 (pLC41GWH-IG) and GV3850 (pLC41GWH-IG) by electroporation, kanamycin (50 ⁇ g / ml) and hygromycin (50 ⁇ g / ml).
  • the booster vector pVGW9 was introduced into LBA4404 (pIG121Hm) (Hiei et al., 1994) by electroporation, and AB containing kanamycin (50 ⁇ g / ml), hygromycin (50 ⁇ g / ml) and gentamicin (30 ⁇ g / ml) was introduced.
  • LBA4404 pIG121Hm
  • AB containing kanamycin
  • hygromycin 50 ⁇ g / ml
  • gentamicin 30 ⁇ g / ml
  • Example 2 Gene Introduction into Maize A188 Using Super-Turnary Vector System
  • gene introduction into maize A188 was performed using the super-ternary vector strain LBA4404 prepared in Example 1.
  • a maize immature embryo (variety: A188) having a size of about 1.2 mm is aseptically removed from a greenhouse-grown plant and immersed in a liquid culture medium LS-inf (Ishida et al., 2007) for suspension of Agrobacterium. did. After heat treatment at 46 ° C. for 3 minutes, immature embryos were washed once with the same liquid medium.
  • LS-inf liquid culture medium
  • immature embryos were prepared in Example 1, such as LBA4404 (pLC41GWH-IG), GV2260 (pLC41GWH-IG), GV3850 (pLC41GWH-IG) and LBS4404 (pLC41GWH-IG / pVGW9), GV2260 (pLC41GWH-IG / pVGW9), GV3850 (pLC41GWH-IG / pVGW9) LS-containing 100 ⁇ mM acetosyringone suspended at a concentration of about 1 ⁇ 10 9 cfu / ml After being immersed in an inf medium, it was placed on a co-culture medium LS-AS (Ishida et al., 2007). After culturing at 25 ° C. in the dark for 3 days, the GUS activity of immature embryos was investigated with 5-bromo-4-chloro-3-indolyl- ⁇ -
  • GUS activity was observed on the scutellum of immature embryos in any of the super-ternary vector strains into which the booster vector pVGW9 was introduced. Particularly in LBA4404 (pLC41GWH-IG / pVGW9), GUS expression was observed at a high frequency (FIG. 10).
  • An immature corn embryo (variety: A188) having a size of about 1.2 mm is aseptically removed from a greenhouse-grown plant and immersed in a liquid medium LS-inf for suspension of Agrobacterium (Ishida et al., 2007). did. After heat treatment at 46 ° C. for 3 minutes, immature embryos were washed once with the same liquid medium.
  • the gene structure including the promoter and terminator on the T-DNA of pSB134 and pLC41GWH-IG is the same.
  • the cells were cultured at 25 ° C. in the dark for 3 days.
  • the immature embryos after co-culture were placed on a selection medium (Ishida et al., 2007) containing hygromycin (Hm) and cultured.
  • the grown callus was cut into small pieces, placed on a regeneration medium containing Hm (Ishida et al., 2007), and cultured under illumination. Two weeks later, redifferentiated plants showing resistance to Hm were investigated.
  • the super-ternary vector system LBA4404 (pLC41GWH-IG / pVGW9) of the present invention was significantly higher in transformation efficiency than other vector systems (Table 1).
  • the super-ternary vector system having all the virB, C, D, G, and J genes of pTiBo542 is considered to have higher transformation ability than any conventional vector system.
  • Example 4 Transformation of Indicaine IR64 by Superternary Vector System In this example, Indicaine IR64 was transformed using the superternary vector strain LBA4404 prepared in Example 1.
  • LBA4404 pLC41GWH-IG / pVGW9
  • LBA4404 pIG121Hm / pVGW9
  • GV2260 pLC41GWH-IG / pVGW9
  • GV3850 pLC41GWH-IG / pVGW9
  • Agrobacterium-suspended liquid medium AAM medium (Hiei and Komari, 2008) containing 100 ⁇ M acetosyringone was immersed. Then, it was placed on a co-culture medium NB-As (Hiei and Komari, 2008) and cultured at 25 ° C. in the dark for 3 days. The callus after co-culture was placed on a selective medium containing Hm (Hiei and Komari, 2008) and cultured. Proliferated Hm-resistant callus was treated with X-Gluc solution and examined for GUS activity.
  • Example 5 Gene Introduction into Tomato Microtom by Super-Turnary Vector System
  • gene introduction into tomato microtom was performed using the super-ternary vector strain LBA4404 prepared in Example 1.
  • the seeds of the tomato model cultivar Microtom were sterilized, germinated on an agar medium, and the cotyledons that had just begun to be extracted were cut out and subjected to Agrobacterium infection.
  • the strains used in the experiment were LBA4404 (pLC41GWH-IG), GV2260 (pLC41GWH-IG) and LBA4404 (pLC41GWH-IG / pVGW7), LBA4404 (pLC41GWH-IG / pVGW9), GV2260 (pLC41GWH-IG) prepared in Example 1. / PVGW9).
  • Co-culture was performed at 25 ° C. in the dark for 3 days. The leaf pieces after co-culture were treated with an X-Gluc solution to investigate GUS activity.
  • Example 6 Tomato Transformation by Super-Turnary Vector System
  • a comparative test of the efficiency of forming callus of tomato varieties and microtoms was conducted using the super-Turnary vector strain prepared in Example 1. .
  • the seeds of tomato cultivar Microtom are sterilized, placed on a hormone-free MS medium containing sucrose at a high concentration (120 g / L), and pre-cultured under light conditions at 25 ° C. for 5 days. Was placed in a germination ready state. Next, seeds were transplanted to a hormone-free MS medium containing no sucrose, and then cultured for another 2 days, so that germination vigor was aligned. The middle part of the cotyledon that did not completely escape from the seed coat was cut into a rectangle with a scalpel and used for Agrobacterium infection. Infection and co-culture are described in Sun et al. (2006).
  • LBA4404 pLC41GWH-IG
  • LBA4404 pLC41GWH-IG / pVGW7
  • LBA4404 pLC41GWH-IG / pVGW9
  • MS callus induction medium containing 30 g / L sucrose, 3 g / L gellan gum, 1.5 mg zeatin, 50 mg / L hygromycin, 100 mg / L carbenicillin, 250 mg / L cefotaxime. After culturing at 25 ° C.
  • the cells were transplanted to MS callus induction medium having the same composition and further cultured for 2 weeks.
  • the hygromycin-resistant callus formed on the cotyledon slices was picked with forceps and immersed in an X-Gluc solution to investigate GUS activity.
  • a plurality of transformed calli resistant to hygromycin and GUS positive were formed at positions separated from each other on the same cotyledon slice, they were counted as different transformed calli.
  • SEQ ID NO: 1 is the base sequence of the pVGW9 vector.
  • SEQ ID NO: 2 is the base sequence of PCR primer pSa5'EcT22I.
  • SEQ ID NO: 3 is the base sequence of PCR primer M13 (-20) Fw.
  • SEQ ID NO: 4 is the base sequence of the PCR primer pTiBo542: 150641Fw.
  • SEQ ID NO: 5 is the base sequence of PCR primer delD2-3′Rv.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、3種類のプラスミドを含む、植物の形質転換方法に使用するためのアグロバクテリウム細菌に関する。本発明のアグロバクテリウム細菌は下記の(1)-(3)のプラスミドを含む (1)下記の構成要素を有するプラスミド; (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び (ii)複製開始点 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに (3)所望のDNAからなるT-DNA領域を有するプラスミド ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。

Description

植物の形質転換方法に使用するためのアグロバクテリウム細菌
 本出願は、2013年3月29日に提出された日本国出願 特願2013-072177に基づく優先権を主張し、その全内容は本明細書中に取り込まれる。
 本発明は、3種類のプラスミドを含む、植物の形質転換方法に使用するためのアグロバクテリウム細菌及びその利用に関する。
 植物の形質転換では、一般的に、稔実種子の後代または栄養繁殖体において外来遺伝子を維持・発現させられるような、植物細胞への外来DNA導入技術が利用される。この技術を用いて、実際に非常に多くの単子葉植物や双子葉植物が形質転換されてきた。形質転換作物は、トウモロコシ、イネ、コムギ、オオムギ、ソルガム、ダイズ、ナタネ、ヒマワリ、ワタ、ジャガイモ、トマトなどは勿論、果物類や他の野菜類でも作出されており、商業上の関心も高い。
 植物の形質転換方法には、ポリエチレングリコール法、エレクトロポレーション法、パーティクルガン法などの物理・化学的方法(DNAの直接導入法)とアグロバクテリウム細菌が持つ機能を利用する生物学的方法(DNAの間接導入法)が知られている。直接導入法では、目的遺伝子が、断片化されて導入される、多コピー導入されるといった事象が高頻度で生じる。そのため、目的遺伝子が発現しない形質転換体や弱く異常な発現(ジーンサイレンシング)を示す形質転換体が高頻度で出現する。また、プロトプラストを用いる方法では、培養期間が長期化するため、得られた形質転換体において、培養変異による種子不稔や奇形などが生じ易い。これに対し、アグロバクテリウム細菌を介する遺伝子導入法はこのような問題が生じにくい。アグロバクテリウム法では、TiまたはRiプラスミドの病原性領域(vir領域)における遺伝子群の発現制御によって目的遺伝子が導入される。vir遺伝子にコードされているタンパク質群により、目的遺伝子は、植物細胞と細菌の相互作用の認識とシグナル伝達、vir遺伝子の発現誘導、タイプIV分泌経路の形成、T-DNAボーダー反復配列の認識、T-DNA鎖の形成、T-DNA鎖の植物細胞への移行と核への移行、そして植物核ゲノムへのT-DNAの組み込みなど、多くの過程を経て導入される。そのため、目的遺伝子の導入コピー数は低く保たれ、断片化されて導入されることも少ない。その結果、得られた形質転換体において目的遺伝子が高発現する個体が数多く安定して得られ、直接導入法に比べると、発現量の個体間差が少ないという大きな利点がある。
 このようにアグロバクテリウム法は、非常に優れた植物の形質転換方法であるが、形質転換の成否ならびに効率は、植物種、遺伝子型ならびに用いる植物組織に依存して大きく異なるのが実状である(Potrykus et al.,1997)。未だに十分な効率で形質転換できない植物も多く、多数の形質転換体を容易に得ることができる作物の種類は、現状では一部に限定されている。したがって、このような問題点を解決できる改良手法が強く望まれている。
 これまでに様々な形質転換用ベクターが開発され、上述のような問題点を解決するための努力が行われている。以下に、ベクター開発に関わる背景を説明する。元来、野生型アグロバクテリウムのTiプラスミドは190kb以上と巨大であるため、標準的な遺伝子工学的手法ではプラスミド上のT-DNA中に遺伝子を挿入することは困難であった。そのため、T-DNA上に外来遺伝子を挿入するための方法が開発された。まず、腫瘍性のTiプラスミドのT-DNAから植物成長調節物質合成遺伝子が除去されたディスアーム型Tiプラスミドを有する菌系であるLBA4404(Hoekema et al.,1983)、GV3850(Zambryski et al.,1983)、GV3TillSE(Fraley et al.,1985)、C58-Z707(Hepburn et al.,1985)、GV3101::pMP90(Koncz and Schell,1986)、GV3101::pMP90RK(Koncz and Schell,1986)、GV2260(McBride and Summerfelt,1990)、NTI(pKPSF2)(Palanichelvam et al.,2000)などが作成された。
 そしてこれらを用いることにより、所望の遺伝子をアグロバクテリウムのTiプラスミドのT-DNA中に、あるいは所望の遺伝子を有するT-DNAをアグロバクテリウムに導入する2種類の方法が開発された。このうち一つは、遺伝子操作が容易で所望の遺伝子の挿入が可能であり、大腸菌で複製できる中間ベクターを、アグロバクテリウムのディスアーム型TiプラスミドのT-DNA中に、三系交雑法(Ditta et al.,1980)を介して相同組換えにより導入する方法であり、中間ベクター法と呼ばれる(Fraley et al.,1983)。もう一つは、バイナリーベクター法と呼ばれるもので、T-DNAの植物への組み込みにvir領域が必要であるが、これが機能するためにT-DNAと同じプラスミド上に存在する必要がないという結果(Hoekema et al.,1983)に基づいている(Lee and Gelvin,2008)。このvir領域には、virA、virB、virC、virD、virEおよびvirGなどが存在する。バイナリーベクターは、T-DNAをアグロバクテリウムと大腸菌の両方で複製可能な小さなプラスミドに組み込んだものであり、これを、ディスアーム型Tiプラスミドを有するアグロバクテリウムに導入して用いる。アグロバクテリウムへのバイナリーベクターの導入には、エレクトロポレーション法や三系交雑法などの方法を用いることができる。バイナリーベクターには、pBIN19(Bevan,1984)、pBI221(Jefferson,1987)、pGA482(An et al.,1988)などがあり、これらを基に数多くの新たなバイナリーベクターが構築され、形質転換に用いられている(Lee and Gelvin,2008)。
 アグロバクテリウムA281(Watson et al.,1975)は強病原性(super-virulence)の菌株であり、その宿主範囲は広く、形質転換効率も他の菌系より高い(Komari et al.,1986)。この特性は、A281が有するTiプラスミドのpTiBo542によるものである(Jin et al.,1987)。
 これまでにpTiBo542を用いた3つの形質転換システムが開発されている。一つ目は、pTiBo542のディスアーム型のTiプラスミドを有する菌系EHA101(Hood et al.,1986)、EHA105(Hood et al.,1993)、AGL0(Lazo et al.,1991)またはAGL1(Lazo et al.,1991)を用いたものである。これらを上述のバイナリーベクターシステムに適用することにより、形質転換能力の高いシステムとして種々の植物の形質転換に利用されている。
 二つ目は、スーパーバイナリーベクターシステム(super-binary vector)である(Hiei et al.,1994;Ishida et al.,1996)。このシステムは、vir領域(virA、virB、virC、virD、virEおよびvirG、virJのすべて)を持つディスアーム型のTiプラスミド、およびT-DNAを有するプラスミドからなることから、バイナリーベクターシステムの一種である。しかしながら、T-DNAを有する側のプラスミド、すなわちバイナリーベクターにpTiBo542のvir領域から切り出された14.8kbのKpnI断片(virD1遺伝子の一部,virB遺伝子,virC遺伝子およびvirG遺伝子)を組み込んだ(Komari,1990)スーパーバイナリーベクターを用いる点で異なる。このKpnI断片は、最初の論文では15.8kbとされていた(Jin et al.,1987)が、正確には14.8kbである。なお、スーパーバイナリーベクターを有するアグロバクテリウムに、所望の遺伝子を組み込んだT-DNA領域を導入するには、三系交雑法を介した相同組換えが容易な手法として利用できる(Komari et al.,1996)。このスーパーバイナリーベクターシステムは、多くの植物種で非常に高い形質転換効率をもたらすことが明らかとなっている(Saito et al.,1992;Hiei et al.,1994;Ishida et al.,1996)。特にトウモロコシの形質転換には、スーパーバイナリーベクターシステムは卓越した効果を示すことが報告されている(Ishida et al.,1996)。また、Khanna and Daggard(2003)は、強病原性ではないアグロバクテリウム菌株LBA4404とスーパーバイナリーベクターpHK21の組み合わせを用いることにより、LBA4404と通常のバイナリーベクターpHK22の組み合わせで全く得ることができなかったコムギ形質転換体の獲得に成功した。
 三つ目は、プラスミド上にpTiBo542のvir領域から切り出された14.8kbのKpnI断片(virD1の一部、virB、virCおよびvirG)を有するプラスミドpTOK47(Jin et al.,1987)を形質転換効率向上のためのブースターベクター(booster vector)として、バイナリーベクターシステムに追加で導入したシステムである。一般にバイナリーベクターシステムにさらにブースターベクターが追加されているベクターシステムは「ターナリーベクターシステム」と呼ばれるが、このシステムではブースターベクターに上記14.8kbのKpnI断片が含まれていることから、本明細書ではこれを特に「スーパーターナリーベクター(super-ternary vector)システム」と呼ぶ。このシステムでは、アグロバクテリウム内で共存可能な不和合性グループが異なる複製開始点(ori)を持ったプラスミドがそれぞれ用いられる。それぞれのoriにはRepタンパク質(イニシエーター)のコード領域が必須であり、通常は近接させて用いる。pTOK47を利用したスーパーターナリーベクターシステムは、多くの植物種で高い形質転換効率を示すことが報告されている(Wenck et al.,1999;Tang,2003;Dong and Qu,2005;Arokiaraj et al.,2009)。pTOK47の複製開始点(ori)は、IncW不和合性グループであり、これらのターナリーベクターシステムによる報告例のT-DNAを有するプラスミドには、IncP不和合性グループに属するoriが主に用いられている。ブースターベクターpTOK47を用いたスーパーターナリーベクターシステムは、スーパーバイナリーベクターシステムにはやや劣るが、トウモロコシの形質転換に有用であることが報告されている(WO2007/148819 A1)。また、pTOK47と同様に、pTiBo542 vir領域由来の14.8kb KpnI断片を、T-DNAを有するプラスミドとは別のプラスミド上に配置したスーパーターナリーベクターシステムを用いて、コムギの形質転換を行った報告がある(Amoah et al.,2001;Wu et al.,2008)。Amoah et al.(2001)およびWu et al.(2008)が用いたベクターシステムは、IncW oriのみを有するがそのrep遺伝子を欠いたpGreen(Hellens et al.,2000)、ならびにIncWのrep遺伝子をトランスに有し、かつ、自らの複製に必要なIncPのoriVを有するpSoupからなる(Hellens et al.,2000)。すなわち、pSoupがpGreenの複製を補完する形で、アグロバクテリウム中で双方のプラスミドを安定的に維持する仕組みをとっている。そのため、特別にデュアルバイナリーベクターシステムと呼ばれている。しかし、実際には、ディスアーム型Tiプラスミド、バイナリーベクターpSoup及びターナリーベクターpGreenの3種のプラスミドからなるスーパーターナリーベクターシステムといえる。
 pTiBo542のvir領域に関する知見
 Jin et al.(1987)は、様々な長さのsuper-vir(pTiBo542のvir領域)を付加的にアグロバクテリウムに保持させて、クラウンゴールの形成能力を評価した。この試験には、通常の菌株A348とともに、super-vir全領域を有する強病原性菌株A281も用いられた。その結果、どちらの菌株においても形質転換能力(クラウンゴール形成能力)向上には、super-virのvirBとvirGの付加が重要であることが判明した。その一方で、virDやvirE領域については付加効果は観察されなかった(Jin, S.,Komari, T.,Gordon,M.P., and Nester, E.W.(1987). Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169,4417-4425.Table 3およびFigure 3)。
 また、Hiei et al.(1994)は、強病原性菌株A281のディスアーム型菌株EHA101(pIG121Hm)と、通常の病原性(通常のvir全領域)を有するがバイナリーベクター上にsuper-virの一部(virB、virC、virG)を保持するスーパーバイナリーベクターLBA4404(pTOK233)を用いて、イネに対する形質転換能力を比較した。その結果、後者での形質転換効率がより高いことを確認した。このことは、super-vir領域の形質転換用ベクターへの利用に関して、一部の領域(virBおよびvirG)を用いる方が、全領域を用いるより形質転換能力が高いことを示唆している。
 virDについては、virD1とvirD2はボーダー配列に切れ込みを入れ、T-DNAを生み出し、特にvirD2はT-DNAと複合体を形成する。virD3は保存性が低くT-DNAの移行に不要と考えられている。virD4はvirB遺伝子群と共にタイプIV分泌システムを構成する。virD5はタイプIV分泌システムのシグナル機能を持つ付属タンパク質であると考えられている(Ream, W.(2008). Production of a mobile T-DNA by Agrobacterium tumefaciens. In Agrobacterium, T. Tzfira and V. Citovsky, eds (New York: Springer Science+Business Media, LLC),pp.280-313.)。
 一般にベクターは、小さい方が所望のDNAを組み込むなどの操作が容易なため、小型の方が好ましい。また、大腸菌が安定的に保持できる外来DNAは細胞あたり1200~1500kbと推測されている(Tao, Q., and Zhang, H.-B.(1998).Cloning and stable maintenance of DNA fragments over 300kb in Escherichia coli with conventional plasmid-based vectors. Nucleic Acids Research 26 4901-4909)。よって、大腸菌は一定の大きさ以上のプラスミドを安定に保持することができない。例えばColE1由来の複製開始点を持つプラスミドは、大腸菌細胞あたり30~40コピー存在するため、30~40kbより大きいサイズのプラスミドを保持することができない。
 pTiBo542のvir領域に関し、特に、virD領域及びvirJ領域がアグロバクテリウム細菌を用いた形質転換に有用であることを示唆するような知見はなかった。
WO2007/148819 A1
Amoah, B.K., Wu, H., Sparks, C., and Jones, H.D. (2001). Factors influencing Agrobacterium‐mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52, 1135-1142 An, G., Evert, P.R., Mitra, A., and Ha, S.B. (1988). Binary vectors. In Plant Molecular Biology Manual A3, S.B. Gelvin and R.A. Schilperoort, eds (Dordrecht: Kluwer Academic Press), pp. 1-19 Arokiaraj, P., Leelawathy, R., and Yeang, H.Y. (2009). The Supervirulence Plasmid pToK47 from Agrobacterium tumefaciens A281 Improves Transformation Efficiency of Hevea brasiliensis. Am J Biochem Biotechnol 5, 137-141 Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12, 8711-8721 Christie, P J. (2004). Type IV Secretion: the Agrobacterium VirB/D4 and related conjugation systems, Biochim Biopys Acta 1694, 219-234 Citovsky, V., de Vos, G., and Zambryski, P. (1988). Single-Stranded DNA Binding Protein Encoded by the virE Locus of Agrobacterium tumefaciens. Science 240, 501-504 Close, T.J., Tait, R.C., Rempel, H.C., Hirooka, T., Kim, L., and Kado, C.I. (1987). Molecular characterization of the virC genes of the Ti plasmid. J Bacteriol 169, 2336-2344 Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. (1980). Broad host range DNA cloning system for Gram-negative bacteria: Construction of gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77, 7347-7351 Dong, S., and Qu, R. (2005). High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci 168, 1453-1458 Fraley, R.T., Rogers, S.G., Horsch, R.B., Eicholtz, D.A., and Flick, J.S. (1985). The SEV system: a new disarmed Ti plasmid vector for plant transformation. Biotechnology 3, 629-635 Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L., and Woo, S.C. (1983). Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80, 4803-4807 Hamilton, C.M., Frary, A., Lewis, C., and Tanksley, S.D. (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93,9975-9979 Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., and Mullineaux, P.M. (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. In Plant Molecular Biology (Springer Netherlands), pp. 819-832 Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J gen microbiol 131, 2961-2969 Hiei, Y., and Komari, T. (2006). Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 85, 271-283 , pp. 271-283 Hiei, Y., and Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed Nat Protocols 3, 824-834 Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271-282 Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983). A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179-180 Hood, E.E., Helmer, G.L., Fraley, R.T., and Chilton, M.-D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168, 1291-1301 Hood, E.E., Gelvin, S.B., Melchers, L.S., and Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2, 208-218 Ishida, Y., Hiei, Y., and Komari, T. (2007). Agrobacterium-mediated transformation of maize Nat Protocols 2, 1614-1621 Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14, 745-750 Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405 Jin, S., Komari, T., Gordon, M.P., and Nester, E.W. (1987). Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169, 4417-4425 Jouanin, L., Guerche, P., Pamboukdjian, N., Tourneur, C., Delbart, F.C., and Tourneur, J. (1987). Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet MGG 206, 387-392 Khanna, H.K., and Daggard, G.D. (2003). Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 5, 429-436 Komari, T. (1990). Genetic characterization of double-flowered tobacco plant obtained in a transformation experiment. Theor Appl Genet 80, 167-171 Komari, T., Halperin, W., and Nester, E.W. (1986). Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J Bacteriol 166, 88-94 Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996). Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10, 165-174 Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383-396 Lazo, G.R., Stein, P.A., and Ludwig, R.A. (1991). A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium Biotechnology 9, 963-967 Lee, L.-Y., and Gelvin, S.B. (2008). T-DNA Binary Vectors and Systems. Plant Physiol 146, 325-332 McBride, K.E., and Summerfelt, K.R. (1990). Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14, 269-276 Okumura and Kado, (1992) The region essential for efficient autonomous replication of pSa in Escherichia coli. Mol Gen Genet 235:55-63 Palanichelvam, K., Oger, P., Clough, S.J., Cha, C., Bent, A.F., and Farrand, S.K. (2000). A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microbe Interact 13, 1081-1091 Pantoja, M., Chen, L., Chen, Y., and Nester, E.W. (2002). Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 45, 1325-1335 Potrykus, I., Bilang, R., Futterer, J., Sautter, C., and Schrotte, M., and Spangenberg, G. (1997). Genetic engineering of crop plants. In Agricultural Biotechnology, A. Altman, ed (NY: Mercel Dekker Inc.), pp. 119-159 Ream, W.(2008). Production of a mobile T-DNA by Agrobacterium tumefaciens. In Agrobacterium, T. Tzfira and V. Citovsky, eds (New York: Springer Science+Business Media, LLC), pp.280-313 Saito, Y., Komari, T., Masuta, C., Hayashi, Y., Kumashiro, T., and Takanami, Y. (1992). Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA. Theor Appl Genet 83, 679-683 Sun, H.-J., Uchii, S., Watanabe, S., and Ezura, H. (2006). A Highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. Plant Cell Physiol 47, 426-431 Tang, W. (2003). Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21, 555-562 Tao, Q., and Zhang, H.-B.(1998).Cloning and stable maintenance of DNA fragments over 300kb in Escherichia coli with conventional plasmid-based vectors. Nuc Acids Res 26, 4901-4909 Vergunst, A.C., van Lier, M.C.M., den Dulk-Ras, A., Grosse Stuve, T.A., Ouwehand, A., and Hooykaas, P.J.J. (2005 ). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Nat Acad Sci USA 102, 832-837 Ward J.E., Akiyoshi D.E., Regier D., Datta A., Gordon M.P., Nester E.W. (1988) Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263, 5804-5814 Watson, B., Currier, T.C., Gordon, M.P., Chilton, M.-D., and Nester, E.W. (1975). Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123, 255-264 Wenck, A.R., Quinn, M., Whetten, R.W., Pullman, G., and Sederoff, R. (1999). High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39, 407-416 Winans, S,C., Ebert, P.R., Stachel, S.E., Gordon, M.P. and Nester, E.W. (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83, 8278-8282 Wu, H., Doherty, A., and Jones, H.D. (2008). Efficient and rapid Agrobacterium- mediated genetic transformation of durum wheat ( Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17, 425-436 Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2, 2143-2150
 アグロバクテリウム法は、非常に優れた植物の形質転換方法であるが、形質転換の成否ならびに効率は、植物種、遺伝子型ならびに用いる植物組織に依存して大きく異なる(Potrykus et al.,1997)。未だに十分な効率で形質転換できない植物も多く、多数の形質転換体を容易に得ることができる作物の種類は、一部に限定されている。したがって、このような問題点を解決できる改良手法が強く望まれていた。
 本発明は、植物への高い遺伝子導入効率及び形質転換効率を可能にする、新規なスーパーターナリーシステムを利用したアグロバクテリウム細菌、及び当該アグロバクテリウム細菌を用いた植物の形質転換方法を提供することを目的とする。
 限定されるわけではないが、本発明は、好ましい態様として以下の態様を含む。
[態様1]
 下記の(1)-(3)のプラスミドを含むアグロバクテリウム細菌
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。
[態様2]
 (1)プラスミドの(ii)の複製開始点がIncW複製開始点である、態様1記載のアグロバクテリウム細菌。
[態様3]
 (1)プラスミドが、さらにpTiBo542のvirE遺伝子を含む、態様1又は2記載のアグロバクテリウム細菌。
[態様4]
 (1)プラスミドが、さらにrepA遺伝子を含む、態様1-3のいずれか1項記載のアグロバクテリウム細菌。
[態様5]
 (1)プラスミドが、さらに薬剤選抜マーカー遺伝子を含む、態様1-4のいずれか1項記載のアグロバクテリウム細菌。
[態様6]
 薬剤選抜マーカー遺伝子がゲンタマイシン耐性遺伝子である、態様5記載のアグロバクテリウム細菌。
[態様7]
 (1)プラスミドが、配列番号1に記載の塩基配列を有するpVGW9である、態様1-6のいずれか1項記載のアグロバクテリウム細菌。
[態様8]
 (2)アグロバクテリウム細菌のディスアーム型プラスミドが、ディスアーム型Tiプラスミドである、態様1-7のいずれか1項記載のアグロバクテリウム細菌。
[態様9]
 ディスアーム型pTiBo542を保持しない、態様1-8のいずれか1項記載のアグロバクテリウム細菌。
[態様10]
 下記のグループ
 LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
から選択されるアグロバクテリウム細菌に、
 (1)プラスミド及び(3)プラスミドを導入することによって製造される、態様1-9のいずれか1項記載のアグロバクテリウム細菌。
[態様11]
 下記の(1)-(2)のプラスミドを含むアグロバクテリウム細菌
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
並びに
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド
 ここにおいて、(1)及び(2)の各プラスミドは、互いに共存可能な複製機構を有する。
[態様12]
 態様1ないし10のアグロバクテリウム細菌を植物細胞に接触させる、ことを含む、植物の形質転換方法。
[態様13]
 態様11のアグロバクテリウム細菌に(3)所望のDNAからなるT-DNA領域を有するプラスミドを導入し、そして、
 当該アグロバクテリウム細菌を植物細胞に接触させる、ことを含む、植物の形質転換方法。
[態様14]
 植物が被子植物である、態様12又は13に記載の植物の形質転換方法。
[態様15]
 アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、態様1-10又は態様11のいずれか1項記載のアグロバクテリウム細菌を含む、前記キット。
[態様16]
 アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、下記の(1)-(3)のプラスミドの組み合わせ
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。
を含む、前記キット。
[態様17]
 アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、下記の(1)及び(3)のプラスミドの組み合わせ
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 ここにおいて、(1)と(3)の各プラスミドは、互いに共存可能な複製機構を有する。
を含む、前記キット。
[態様18]
 下記のグループ
 LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
から選択されるアグロバクテリウム細菌をさらに含む、態様17に記載のキット。
[態様19]
 配列番号1に記載の塩基配列を有するpVGW9プラスミド。
[態様20]
 態様19に記載のプラスミドの、態様12-14のいずれか1項に記載の植物の形質転換方法への使用。
 本発明のシステムを利用したアグロバクテリウム細菌を使用した植物の形質転換方法は、公知のブースターベクターを用いた(スーパー)ターナリーベクターシステムやスーパーバイナリーシステムを使用した場合と比較して、形質転換効率が向上する。特にトウモロコシにおいて顕著な効果を示す。
図1は、pVGW9プラスミドの模式図である。 図2は、本発明のスーパーターナリーベクターシステムの模式図である。 図3は、pVGW2プラスミドの模式図である。 図4は、pGWプラスミドの模式図である。 図5は、pGWLプラスミドの模式図である。 図6は、pVGW7プラスミドの模式図である。 図7は、ブースターベクターに付加して用いたpTiBo542由来vir領域の模式図である。 図8は、pLC41GWHプラスミドの模式図である。 図9は、pLC41GWH-IGプラスミドの模式図である。 図10は、スーパーターナリーベクターシステムによるトウモロコシA188への遺伝子導入の結果を示す。
 I.アグロバクテリウム細菌
 本発明は、植物の形質転換に用いるためのアグロバクテリウム細菌に関する。
 本明細書において、アグロバクテリウム細菌とは、リゾビウム属(Rhizobium)の中で、植物に対する病原性を持つものの総称であり、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)及びアグロバクテリウム・リゾゲネス(Agrobacterium rhizogenes)に分類されていたものを含む。本発明のアグロバクテリウム細菌は、野生型のTiプラスミド及び野生型のRiプラスミドを含まない。
 本発明のアグロバクテリウム細菌は、下記の(1)-(3)の三種類のプラスミドを含むことを特徴とする。
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 (1)-(3)の3種類のプラスミドベクターを利用することから、スーパーターナリーベクターシステム、と呼称される。特に、ブースターベクターとして使用されるプラスミド(1)は、新規であり、以下の特徴を有する。
 (1)ブースターベクター
 本明細書において、遺伝子導入効率および形質転換効率を向上させることができ、アグロバクテリウム細菌に付加的に用いることができるベクタープラスミドを、ブースターベクターと呼ぶ。本発明において、下記の構成要素を有するプラスミド(1)をブースターベクターとして用いる。プラスミド(1)は、(i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び、(ii)複製開始点を含む。
 (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子
 Tiプラスミドは、野生型アグロバクテリウムが有する一般に20万塩基対前後の巨大なプラスミドで、植物に導入されるT-DNA(transferDNA)、ビルレンス領域(virlence領域:vir領域)等を含む。T-DNAは、相同組換えにより植物細胞のゲノムに挿入されるDNA断片であり、植物生長調節因子(オーキシン及びサイトカイニン)合成遺伝子、オパイン合成遺伝子などを含む。vir領域は、T-DNAの植物への組み込みのために必要となるタンパク質群をコードする領域で、virA遺伝子、virB遺伝子、virC遺伝子、virD遺伝子、virE遺伝子、virG遺伝子及びvirJ遺伝子等の各遺伝子が含まれる。
 強病原性アグロバクテリウム菌株A281が有するTiプラスミドの「pTiBo542」(Jin et al.,1987)が有するTiプラスミドのvir領域は形質転換効率が特に高く、スーパービルレンス領域(super-virulence領域:super-vir領域)と呼ばれる。
 本発明のブースターベクターは、pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子の全てを含むことを特徴とする。
 virB遺伝子については、Ward et al. (1988) J Biol Chem 263:5804-5814に詳細な記載がある。
 例えばpSB1(Komari et al. 1996 Plant J 10:165-174)などのプラスミドから、常法により調製することができる。virB遺伝子の塩基配列は、例えば、Genbank/EMBLアクセッション番号:AB027255(pSB1)の塩基配列のうち、第3416から12851番目の塩基として規定される。なお、virB領域は、複数の遺伝子から構成されているオペロンであるが、本明細書においては、これを「virB遺伝子」と記載する。
 virC遺伝子については、Close et al.(1987)に詳細な記載がある。例えばpSB1などのプラスミドから、常法により調製することができる。virC遺伝子の塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第163574-164880番目の塩基として規定される。なお、virC領域は、複数の遺伝子から構成されているオペロンであるが、本明細書においては、これを「virC遺伝子」と記載する。
 virD遺伝子は、virD1遺伝子、virD2遺伝子、virD3遺伝子、virD4遺伝子及びvirD5遺伝子の5つの遺伝子から構成される。virD遺伝子については、例えば、Ream, W.(2008). Production of a mobile T-DNA by Agrobacterium tumefaciens. In Agrobacterium, T. Tzfira and V. Citovsky, eds (New York: Springer Science+Business Media,LLC),pp.280-313に詳細な記載がある。本発明のブースターベクターは、virD遺伝子のうち、virD1遺伝子、virD2遺伝子、virD3遺伝子を含む。virD1遺伝子、virD2遺伝子及び、virD3遺伝子は各々、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第165149-165592番目の塩基、第165626-166900番目の塩基及び第166920-167558番目の塩基として規定される。
 virGは、virBやvirEなど他のvir遺伝子群の転写調節(活性化)因子である(Winans et al. 1986 Proc. Natl. Acad. Sci. USA 83: 8278-8282)。virG遺伝子の塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第162660-163463番目の塩基として規定される。
 virJ遺伝子については、Pantoja et al.(2002)に詳細な記載がある。例えばpTiBo542などのプラスミドから、常法により調製することができる。virJの塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第150873-151616番目の塩基として規定される。
 virB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子として、各々上述した特定の配列またはその相補配列にストリンジェントな条件でハイブリダイズする塩基配列を含んでなるDNAであって、各配列の機能を有するDNAからなる遺伝子も利用することができる。これらの塩基配列に少なくとも80%、85%、90%、95%、96%、97%、98%、99%同一の塩基配列を含んでなるDNAであって、各配列の機能を有するDNAからなる遺伝子も利用することができる。しかしながら、これらに限られるものではない。
 本明細書において、「ストリンジェントな条件下」とは、中程度または高程度にストリンジェントな条件においてハイブリダイズすることを意味する。具体的には、中程度にストリンジェントな条件は、例えば、DNAの長さに基づき、一般の技術を有する当業者によって、容易に決定することが可能である。基本的な条件は、Sambrookら,Molecular Cloning: A Laboratory Manual,第3版,第6章,Cold Spring Harbor Laboratory Press, 2001に示され、例えば5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約42℃での、約50%ホルムアミド、2×ないし6×SSC、好ましくは5×ないし6×SSC、0.5% SDS(または約42℃での約50%ホルムアミド中の、スターク溶液などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、及び例えば、約50℃ないし68℃、0.1×、ないし、6×SSC、0.1% SDSの洗浄条件の使用が含まれる。好ましくは中程度にストリンジェントな条件は、約50℃、6×SSC、0.5% SDSのハイブリダイゼーション条件(及び洗浄条件)を含む。高ストリンジェントな条件もまた、例えばDNAの長さに基づき、当業者によって、容易に決定することが可能である。
 一般に、こうした条件は、中程度にストリンジェントな条件よりも高い温度及び/又は低い塩濃度でのハイブリダイゼーション(例えば、0.5%程度のSDSを含み、約65℃、6×SSCないし0.2×SSC、好ましくは6×SSC、より好ましくは2×SSC、より好ましくは0.2×SSC、あるいは0.1×SSCのハイブリダイゼーション)及び/又は洗浄を含み、例えば上記のようなハイブリダイゼーション条件、及びおよそ65℃、ないし68℃、0.2×ないし0.1×SSC、0.1% SDSの洗浄を伴うと定義される。ハイブリダイゼーションおよび洗浄の緩衝液では、SSC(1×SSCは、0.15M NaClおよび15mM クエン酸ナトリウムである)にSSPE(1×SSPEは、0.15M NaCl、10mM NaHPO、および1.25mM EDTA、pH7.4である)を代用することが可能であり、洗浄はハイブリダイゼーションが完了した後で15分間ないし1時間程度行う。
 また、プローブに放射性物質を使用しない市販のハイブリダイゼーションキットを使用することもできる。具体的には、ECL direct labeling & detection system(Amersham社製)を使用したハイブリダイゼーション等が挙げられる。ストリンジェントなハイブリダイゼーションとしては、例えば、キット中のhybridization bufferにBlocking試薬を5%(w/v)、NaClを0.5Mになるように加え、42℃で4時間行い、洗浄は、0.4% SDS、0.5xSSC中で、55℃で20分を2回、2xSSC中で室温、5分を一回行う、という条件が挙げられる。
 2つの塩基配列の同一性%は、視覚的検査と数学的計算により決定可能であるか、またはより好ましくは、この比較はコンピュータ・プログラムを使用して配列情報を比較することによってなされる。代表的な、好ましいコンピュータ・プログラムは、遺伝学コンピュータ・グループ(GCG;ウィスコンシン州マディソン)のウィスコンシン・パッケージ、バージョン10.0プログラム「GAP」である(Devereux, et al., 1984, Nucl. Acids Res., 12:387)。この「GAP」プログラムの使用により、2つの塩基配列の比較の他に、2つのアミノ酸配列の比較、塩基配列とアミノ酸配列との比較を行うことができる。ここで、「GAP」プログラムの好ましいデフォルトパラメーターには:(1)ヌクレオチドについての(同一物について1、及び非同一物について0の値を含む)一元(unary)比較マトリックスのGCG実行と、Schwartz及びDayhoff監修「ポリペプチドの配列および構造のアトラス(Atlas of Polypeptide Sequence and Structure)」国立バイオ医学研究財団、353-358頁、1979により記載されるような、GribskovおよびBurgess, Nucl. Acids Res., 14: 6745, 1986の加重アミノ酸比較マトリックス;又は他の比較可能な比較マトリックス;(2)アミノ酸の各ギャップについて30のペナルティと各ギャップ中の各記号について追加の1のペナルティ;又はヌクレオチド配列の各ギャップについて50のペナルティと各ギャップ中の各記号について追加の3のペナルティ;(3)エンドギャップへのノーペナルティ:及び(4)長いギャップへは最大ペナルティなし、が含まれる。当業者により使用される他の配列比較プログラムでは、例えば、米国国立医学ライブラリーのウェブサイト:http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.htmlにより使用が利用可能なBLASTNプログラム、バージョン2.2.7、またはUW-BLAST2.0アルゴリズムが使用可能である。UW-BLAST2.0についての標準的なデフォルトパラメーターの設定は、以下のインターネットサイト:http://blast.wustl.eduに記載されている。さらに、BLASTアルゴリズムは、BLOSUM62アミノ酸スコア付けマトリックスを使用し、使用可能である選択パラメーターは以下の通りである:(A)低い組成複雑性を有するクエリー配列のセグメント(WoottonおよびFederhenのSEGプログラム(Computers and Chemistry,1993)により決定される;WoottonおよびFederhen,1996「配列データベースにおける組成編重領域の解析(Analysis of compositionally biased regions in sequence databases)」Methods Enzymol.,266:544-71も参照されたい)、又は、短周期性の内部リピートからなるセグメント(ClaverieおよびStates(Computers and Chemistry,1993)のXNUプログラムにより決定される)をマスクするためのフィルターを含むこと、及び(B)データベース配列に対する適合を報告するための統計学的有意性の閾値、またはE-スコア(KarlinおよびAltschul,1990)の統計学的モデルにしたがって、単に偶然により見出される適合の期待確率;ある適合に起因する統計学的有意差がE-スコア閾値より大きい場合、この適合は報告されない);好ましいE-スコア閾値の数値は0.5であるか、または好ましさが増える順に、0.25、0.1、0.05、0.01、0.001、0.0001、1e-5、1e-10、1e-15、1e-20、1e-25、1e-30、1e-40、1e-50、1e-75、または1e-100である。
 本発明のブースターベクターにおいて、pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子のベクター上の位置は特段限定されるものではない。例えば、これらの遺伝子を全て含むようなpTiBo542由来のvir領域断片(図7)を好ましく使用することができる。
 (ii)複製開始点
 本発明におけるブースターベクター((1)プラスミド)は、大腸菌及びアグロバクテリウム細菌で複製可能な複製開始点を含む。限定されるわけではないが、例えば、IncW不和合性グループの複製開始点、IncP不和合性グループの複製開始点、IncQ不和合性グループの複製開始点およびpVS1不和合性グループの複製開始点から適宜選択される複製開始点を利用することができる。
 複製開始点は、好ましくはIncW不和合性グループの複製開始点、さらに好ましくはIncWの複製開始点である。IncWプラスミドの複製開始点の分子生物学的諸特性については、Okumura and Kado(1992 Mol Gen Genet 235:55-63)に詳細な記載があり、Genbank/EMBLアクセッション番号:U30471(全長5500bp)の第2170~2552番目の塩基として規定される。IncWプラスミドの複製開始点は、pTOK47(Jin et al.1987)などの、IncWプラスミドから、常法により調整することができる。
 また、IncWプラスミドの複製開始点を機能させるため、RepAタンパク質(イニシエーター)のコード領域を含むことが好ましい。repA遺伝子の塩基配列は、IncWプラスミドの複製に必要なrepA遺伝子として機能を有する配列であれば、特に限定されない。IncWプラスミドの複製に必要なrepAの分子生物学的諸特性については、Okumura and Kado(1992 Mol Gen Genet 235:55-63)に詳細な記載があり、Genbank/EMBLアクセッション番号:U30471(全長5500bp)の第1108~2079番目の塩基として規定される。
 IncWプラスミドの複製に必要なrepAは、pTOK47(Jin et al. 1987)などの、IncWプラスミドから、常法により調整することができる。
 (iii)その他の構成要素
 本発明のブースターベクター((1)プラスミド)は、さらに、pTiBo542のvir領域の他の遺伝子、例えば、virE遺伝子、virD4遺伝子又はvirD5遺伝子を含んでもよい。
 virE遺伝子については、Citovsky et al.(1988)に詳細な記載がある。例えばpTiBo542などのプラスミドから、常法により調製することができる。virEの塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第172574-176510番目の塩基として規定される。なお、virE領域は、複数の遺伝子から構成されているオペロンであるが、本明細書においては、これを「virE遺伝子」と記載する。
 virD4遺伝子については、Christie(2004)に詳細な記載がある。例えばpTiBo542などのプラスミドから、常法により調製することができる。virD4の塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第167555-169513番目の塩基として規定される。
 virD5遺伝子については、Vergunst et al.(2005)に詳細な記載がある。例えばpTiBo542などのプラスミドから、常法により調製することができる。virD5塩基配列は、例えば、Genbank/EMBLアクセッション番号:DQ058764の塩基配列のうち、第169614-172124番目の塩基として規定される。
 本発明のブースターベクターは、さらに、薬剤選抜マーカー遺伝子を含んでもよい。薬剤選抜マーカー遺伝子は、公知の遺伝子を使用することができ特に限定されないが、TiプラスミドおよびT-DNA領域を有するプラスミド(バイナリーベクター)に含まれない薬剤選抜マーカー遺伝子であることが好ましい。薬剤選抜マーカー遺伝子の具体例として、好ましくはゲンタマイシン耐性遺伝子を使用することができるが、それには全く限定されない。カナマイシン耐性遺伝子,アンピシリン耐性遺伝子,スペクチノマイシン耐性遺伝子,テトラサイクリン耐性遺伝子,ハイグロマイシン耐性遺伝子をはじめとする多くの薬剤選抜マーカー遺伝子を、目的に応じて好ましく用いることができる。本発明のブースターベクター上およびバイナリーベクター上の薬剤選抜マーカー遺伝子の種類を変更することは、in fusion PCRなどにより、容易に行うことができる。
 本発明におけるブースターベクターの全長は、限定されるものではないが、好ましくは10kb~30kb、より好ましくは15kb~25kbである。
 (iv)pVGW9
 上記のような条件を満たした、本発明のブースターベクターの一つとしてpVGW9が挙げられる。pVGW9は本明細書に添付の配列番号1の塩基配列を有し、全長は20978塩基対である。
 pVGW9の模式図を図1に示す。各構成要素は、配列番号1の塩基配列中、以下の位置に相当する。
 複製開始点: 配列番号1の第9-2758番目の塩基
 virJ遺伝子: 配列番号1の第3003-3746番目の塩基
 virB遺伝子: 配列番号1の第5223-14658番目の塩基
 virG遺伝子: 配列番号1の第14790-15593番目の塩基
 virC遺伝子: 配列番号1の第15704-17010番目の塩基
 virD1遺伝子: 配列番号1の第17279-17722番目の塩基
 virD2遺伝子: 配列番号1の第17756-19030番目の塩基
 virD3遺伝子: 配列番号1の第19050-19688番目の塩基
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド
 本発明のアグロバクテリウム細菌は、さらに、アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド(本明細書中、「Tiプラスミド」と総称する場合がある)を含む。
 Riプラスミドはアグロバクテリウム細菌のうち特にAgrobacterium rhizogenesの有するプラスミドである。Tiプラスミドと同様に、20万塩基対前後の巨大なプラスミドで、植物に導入されるT-DNA(transferDNA)、ビルレンス領域(virlence領域:vir領域)等を含む。
 なお、アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミドの複製開始点は、IncW、IncP、IncQおよびpVS1とは、異なる不和合性グループに属する。
 「ディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド」とは、野生型Tiプラスミド若しくは野生型RiプラスミドからT-DNA領域を除去したプラスミドである。好ましくは、アグロバクテリウム細菌のディスアーム型プラスミドは、ディスアーム型Tiプラスミドである。
 ディスアーム型Tiプラスミドは、例えば、Hoekema et al.,(1983)に記載されている、pAL4404を利用することができる。ディスアーム型Riプラスミドは、例えば、Jouanin et al.,(1987)に記載されている、pRiB278bを利用することができる。
 あるいは、ディスアーム型Tiプラスミドが元来保持されている公知のアグロバクテリウム菌株を利用することも可能である。本発明のアグロバクテリウム細菌は、好ましくはディスアーム型pTiBo542を含まない。限定されるものではないが、例えばLBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90,GV3101::pMP90RK、GV2260、又はNTI(pKPSF2)を使用することができる。
 (3)バイナリーベクター(所望のDNAからなるT-DNA領域を有するプラスミド)
 本発明のアグロバクテリウム細菌はさらに、所望のDNAからなるT-DNA領域を有するプラスミドを含む。このプラスミドはアグロバクテリウムと大腸菌の両方で複製可能であり、バイナリーベクターと呼ばれる。バイナリーベクターとしては、公知のものを適宜用いることができる。以下に限定されるわけではないが、具体的には、pBin19、pBI121、pIG121、pIG121Hm、pLC41、pGreenシリーズのベクター、pCLEAN-Gシリーズのベクター、pPZPシリーズのベクター、pCAMBIAシリーズのベクター、pOREO1、pGWBなどのベクターが挙げられる。
 本発明のT-DNA領域に挿入するDNAは特に限定されない。例えば、ゲノムDNA断片、cDNA断片等、任意のものを利用可能である。好ましくはゲノムDNA断片、より好ましくは植物由来のゲノムDNA断片である。限定されるわけではないが、好ましくは導入されるDNA断片のサイズは、0.1kb-100kb、より好ましくは1kb-40kbである。
 なお、大断片のT-DNAをバイナリーベクターに挿入する場合、Riプラスミド(Hamilton, C.M., Frary, A., Lewis, C., and Tanksley, S.D. (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93,9975-9979.)の複製開始点を好ましく用いることができる。
 本発明において、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。バイナリーベクターとブースターベクターが、同じ不和合性グループに属する場合には、両ベクターをアグロバクテリウム中で保持することができない。そのため、これらの複製開始点を異なる不和合性グループとする必要がある。例えば、IncW、IncP、IncQおよびpVS1は、それぞれ異なる不和合性グループに属する。「(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する」とは、(1)-(3)の3種類のプラスミドが各々異なる不和合性グループに属する、例えば、各々IncW、IncP、IncQと互いに異なる不和合性グループに属すればよい。3種類のプラスミドのうち、2種類でも同じグループに属すると、本要件を満たさない。
 本発明のアグロバクテリウム細菌の態様
 (1)-(3)の3種類のプラスミドをアグロバクテリウム細菌に導入する順序、導入する方法は特に限定されない。
 例えば、ディスアーム型Tiプラスミド((2)プラスミドに相当する)が元来保持されている公知のアグロバクテリウム菌株を利用することも可能である。限定されるものではないが、例えばLBA4404(Hoekema et al.,1983)、GV3850(Zambryski et al.,1983)、GV3TillSE(Fraley et al.,1985)、C58-Z707(Hepburn et al.,1985)、GV3101::pMP90(Koncz and Schell,1986),GV3101::pMP90RK(Koncz and Schell,1986)、GV2260(McBride and Summerfelt,1990)、又はNTI(pKPSF2)(Palanichelvam et al.,2000)を使用することができる。これらのアグロバクテリウム菌株に、ブースターベクター((1)プラスミド)及びバイナリーベクター((3)プラスミド)を導入してもよい。ブースターベクターとバイナリーベクターは、例えば、エレクトロポレーション法、三系交雑法、凍結融解法などの公知の方法によって導入することが可能である。ブースターベクターとバイナリーベクターの導入順序は特に限定されない。両者を同時に導入してもよい。
 本発明の一態様において、アグロバクテリウム細菌は、
 下記のグループ
 LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
から選択されるアグロバクテリウム細菌に、
 (1)プラスミド及び(3)プラスミドを導入することによって製造される。
 本発明はまた、一態様において、下記の(1)-(2)のプラスミドを含むアグロバクテリウム細菌を含む、
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
並びに
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド
 ここにおいて、(1)及び(2)の各プラスミドは、互いに共存可能な複製機構を有する。
 (1)及び(2)のプラスミドを含むアグロバクテリウム細菌は、さらに、所望の遺伝子が挿入されたT-DNAを有する(3)バイナリーベクターを導入することが可能であり、広く利用可能である。
 II.植物の形質転換方法
 本発明は、また、本発明のアグロバクテリウム細菌を利用した植物の形質転換方法、植物への遺伝子導入方法に関する。本発明の方法は、本発明のアグロバクテリウム細菌を植物細胞に接触させる、ことを含む。
 本発明の方法は一態様において、下記の(1)-(2)のプラスミドを含むアグロバクテリウム細菌
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
並びに
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド
 ここにおいて、(1)及び(2)の各プラスミドは、互いに共存可能な複製機構を有する、
に、(3)所望のDNAからなるT-DNA領域を有するプラスミドを導入し、そして、
 当該アグロバクテリウム細菌を植物細胞に接触させる、ことを含む。
 本発明の形質転換方法の対象とされる植物は、特に限定されないが、好ましくは被子植物であり、単子葉植物であっても双子葉植物であってもよい。限定されるわけではないが、本明細書の実施例に記載のとおり、トウモロコシやイネ、トマトに好ましく使用できる。
 本発明のアグロバクテリウム細菌を、公知のアグロバクテリウムを介した形質転換方法に使用することにより、形質転換効率を大幅に向上させることができる。
 III.キット
 本発明は、さらに、アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットに関する。一態様において、本発明のキットは、本発明のアグロバクテリウム細菌を含む。
 本発明は、さらにまた、アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットに関する。一態様において、本発明のキットは、下記の(1)-(3)のプラスミドの組み合わせ
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
 (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。
を含む。
 本発明のキットはまた、別の態様において、(1)及び(3)のプラスミドの組み合わせ
 (1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
並びに
 (3)所望のDNAからなるT-DNA領域を有するプラスミド
 ここにおいて、(1)と(3)の各プラスミドは、互いに共存可能な複製機構を有する。
を含む。当該態様において、キットはさらに、下記のグループ
 LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
から選択されるアグロバクテリウム細菌を含んでもよい。
 IV.プラスミド
 本発明はさらに、(1)下記の構成要素を有するプラスミド;
  (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
  (ii)複製開始点
に関する。本発明のプラスミドは、好ましくは、配列番号1に記載の塩基配列を有するpVGW9プラスミドである。
 本発明はまた、本発明のプラスミドの、態様12-14のいずれか1項に記載の植物の形質転換方法への使用に関する。
 V.植物細胞形質転換用ベクターシステム
 本発明は、さらにまた、上述した(1)-(3)の三種類のプラスミドを組み合わせて利用する、植物細胞形質転換用ベクターシステム(スーパーターナリーベクターシステム)を提供する。
 上述した公知のスーパーバイナリーベクターは、pTiBo542のvir領域から切り出された14.8kbのKpnI断片(virD1遺伝子の一部,virB遺伝子,virC遺伝子およびvirG遺伝子)を組み込んだアクセプターベクターと、大腸菌でクローニングした所望のT-DNAを有するシャトルベクターの間において相同組換えにより得られるハイブリッドベクターである。したがって、アグロバクテリウムにあらかじめアクセプターベクターを導入しておく必要があるため、アグロバクテリウム菌株を多種類試験したいときなどには、準備に大変手間が掛かる。また、特許文献WO2007/148819 A1には、30kb~40kbの大きなT-DNAを相同組換えで挿入しようとした時、ハイブリッドベクターがアグロバクテリウム内で不安定であったことが報告されている。シャトルベクターの複製開始点が多コピー型のColE1であることが要因と考えられる。
 これに対して、本発明のスーパーターナリーベクターシステムは、ブースターベクターをディスアーム型Tiプラスミドが保持されているアグロバクテリウム菌株に導入しておき、そこに所望の遺伝子が挿入されたT-DNAを有するバイナリープラスミドをエレクトロポレーション法などで導入すれば、植物の形質転換に用いることができる。すなわち、種々の植物で広く用いられているバイナリーベクター菌株に、本発明のブースターベクターをエレクトロポレーション法などにより導入するだけで、スーパーターナリーベクターシステムを容易に構築することができ、これにより格段に高い効率で形質転換植物体を獲得することが可能である。
 以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
 実施例1 スーパーターナリーベクターシステムの構築
 本実施例は、本発明の3種類のプラスミドを利用するベクターシステム(スーパーターナリーベクターシステム)の構築について記載する。
 pTOK47には、IncW oriとpBR322のoriの双方が含まれ、全長はおよそ28kbである(Jin et al.,1987)。また、pAL154(Amoah et al.,2001)の全長は、24kbである。これらのブースターベクターは、アグロバクテリウム内での複製保持に不要な配列を多く含む長いプラスミドである。スーパーターナリーベクターシステムのブースターベクターとして用いるベクターは、サイズが小さくvir領域断片の組み込みが容易で、大腸菌でのクローニングも可能なシャトルベクターであることが望まれる。特許文献WO2007/148819 A1には、これらの目的に合致するベクターpVGW2が開示されている。pVGW2は、IncW oriとpBR322のoriの双方が含まれ、ゲンタマイシン耐性遺伝子を有している(図3)。本実施例では、このpVGW2を基にpTiBo542のvirulence領域を有するブースターベクターの構築を行った。
 まず、pVGW2をテンプレートにpSa5’EcT22I(5’-AAA ATG CAT GGC ATG TTT AAC AGA ATC TG-3’)(配列番号2)とM13(-20)Fw(5’-GTA AAA CGA CGG CCA G-3’)(配列番号3)のプライマーセットでPCRを行い、得られたフラグメントをセルフライゲーションさせて新規クローニングベクター「pGW」を作成した(図4)。なお、PCR試薬にはFiderityの高い「PrimeSTAR Max」(TaKaRa)を用いた。以下、コンストラクションに関わるすべてのPCRでこの試薬を用いた。
 ブースターベクターpVGW7の作成
 vir遺伝子群としてpTOK47およびpAL154に保持されている14.8KbのKpnI 断片を含むブースターベクターpVGW7の作成を行った。まずクローニング時の作業効率を高めるため、pGWにpUC19のラクトース・オペロンを組み込むことにした。pUC19をSapI+AatIIで消化して得られたラクトース・オペロン断片をpGWのNsiI-NheIサイトに挿入し、新規クローニングベクター「pGWL」を得た(図5)。このpGWLのKpnIサイトにpSB1をKpnIで消化して得られた断片を挿入してpVGW7(図6、図7)を得た。
 ブースターベクターpVGW9の作成
 ブースタープラスミドに挿入するpTiBo542由来vir遺伝子群の領域をさらに広げることにより、形質転換能力がさらに向上するかどうか試験を行うこととした。pTiBo542を鋳型にあらかじめリン酸化しておいたプライマー、pTiBo542:150641Fw(5’-aaa aac tag tca gag cca ccc cat cag gaa tat cgc cca ttc cgt cat cag cgt ggt gac-3’)(配列番号4)およびdelD2-3’Rv(5’-tcc aaa gat cgg ccc ctt gat gcg act gta acg ctg cag ata ac-3’)(配列番号5)でPCRを行い、その増幅産物をSmaIにより開環され脱リン酸化処理されたpGWベクターの両末端へライゲーションした。その結果、virB、virC、virD1、D2、D3、virGおよびvirJ遺伝子の全領域を含む目的のコンストラクトpVGW9(図1、図7)を得た。pVGW9の塩基配列を配列表の配列番号1に記載した。
 pLC41GWH-IGの作成
 特許文献WO2007/148819 A1に記載されているコスミドベクターpLCleo(別名pLC41GWH)は、IncPプラスミドであり複製開始点oriVを有する(図8)。oriVは大腸菌およびアグロバクテリウムの双方で機能する。また、T-DNA領域中にトウモロコシのユビキチン遺伝子の第一イントロンを含むプロモーターで制御されるハイグロマイシン耐性遺伝子を有している。このpLC41GWHのマルチクローニング部位(MCS)に、CaMVの35Sプロモーターで制御されヒマのカタラーゼ第一イントロンが介在するGUS遺伝子(P35S:Icat:GUS:T35S)を挿入するため、pLC41GWHおよびpSB34(Hiei and Komari,2006)をHindIIIで消化。消化サンプルは0.7% SeaKem GTGアガロースで電気泳動し、目的のバンドを切り出してQIAEX II(QIAGEN社)によりゲルからDNAを抽出・精製した。ベクター断片と挿入断片をライゲーションし(16℃、一晩)、反応液をエタノール沈殿処理してMilliQ水で再溶解したものをエレクトロポレーションで大腸菌GeneHogs(Invitrogen社)へ導入した。抗生物質カナマイシン(50μg/ml)を含んだLB寒天培地上で培養し、得られたコロニーからプラスミドを精製した。これらのクローンに関して塩基配列を決定し、目的の挿入領域を有していることが確認されたものをバイナリーベクターpLC41GWH-IGと命名した(図9)。
 バイナリーベクター菌株およびスーパーターナリーベクター菌株の作成
 pLC41GWH-IGをエレクトロポレーションによりアグロバクテリウム菌株LBA4404、GV2260、GV3850に導入し、抗生物質カナマイシン(50μg/ml)およびハイグロマイシン(50μg/ml)を含んだAB寒天培地上で培養し、3種類のバイナリーベクター菌株を得た。次にブースターベクターpVGW7をエレクトロポレーションにより、LBA4404(pLC41GWH-IG)へ導入し、カナマイシン(50μg/ml)およびハイグロマイシン(50μg/ml)、ゲンタマイシン(30μg/ml)を含んだAB寒天培地上で培養し、スーパーターナリーベクター菌株LBA4404(pLC41GWH-IG/pVGW7)を得た。さらに、LBA4404(pLC41GWH-IG)、GV2260(pLC41GWH-IG)、GV3850(pLC41GWH-IG)各菌株に、ブースターベクターpVGW9をエレクトロポレーションにより導入、カナマイシン(50μg/ml)およびハイグロマイシン(50μg/ml)、ゲンタマイシン(30μg/ml)を含んだAB寒天培地上で培養し、スーパーターナリーベクター菌株LBA4404(pLC41GWH-IG/pVGW9)、GV2260(pLC41GWH-IG/pVGW9)、GV3850(pLC41GWH-IG/pVGW9)を得た。またLBA4404(pIG121Hm)(Hiei et al.,1994)に、ブースターベクターpVGW9をエレクトロポレーションにより導入、カナマイシン(50μg/ml)およびハイグロマイシン(50μg/ml)、ゲンタマイシン(30μg/ml)を含んだAB寒天培地上で培養し、スーパーターナリーベクター菌株LBA4404(pIG121Hm/pVGW9)を得た。
 実施例2 スーパーターナリーベクターシステムによるトウモロコシA188への遺伝子導入
 本実施例では、実施例1で作成したスーパーターナリーベクター菌株LBA4404を用いてトウモロコシA188への遺伝子導入を行った。
 材料および方法
 大きさ約1.2mmのトウモロコシ未熟胚(品種:A188)を温室栽培した植物から無菌的に取り出し、アグロバクテリウム懸濁用液体培地LS-inf (Ishida et al.,2007)に浸漬した。46℃、3分間の熱処理後、同液体培地で未熟胚を1回洗浄した。次に20,000Gで10分間(4℃)の遠心処理を行った後、未熟胚を実施例1で作成したLBA4404(pLC41GWH-IG)、GV2260(pLC41GWH-IG)、GV3850(pLC41GWH-IG)およびLBA4404(pLC41GWH-IG/pVGW9)、GV2260(pLC41GWH-IG/pVGW9)、GV3850(pLC41GWH-IG/pVGW9)の各菌株を約1x10cfu/mlの濃度で懸濁したアセトシリンゴン100μmMを含むLS-inf培地に浸漬後、共存培地LS-AS(Ishida et al.,2007)に置床した。25℃、暗黒下で3日間培養後、5-ブロモ-4-クロロ-3-インドリル-β-D-グルクロニド(X-Gluc)によって未熟胚のGUS活性を調査した。
 結果および考察
 各種菌株をA188未熟胚に接種し、共存培養3日目にGUS遺伝子の一過性の発現を観察した。対照のLBA4404(pLC41GWH-IG)、GV2260(pLC41GWH-IG)およびGV3850(pLC41GWH-IG)を接種した未熟胚では、LBA4404(pLC41GWH-IG)を接種した場合のみわずかにGUS活性が認められた。GV2260(pLC41GWH-IG)およびGV3850(pLC41GWH-IG)では、ほとんど遺伝子導入が生じなかった(図10)。
 これに対し、ブースターベクターpVGW9を導入したスーパーターナリーベクター菌株では、いずれの菌株でも未熟胚の胚盤上にGUS活性が観察された。特にLBA4404(pLC41GWH-IG/pVGW9)では、高頻度でGUS発現が観察された(図10)。
 実施例3 スーパーターナリーベクターシステムによるトウモロコシA188の形質転換
 本実施例では、実施例1で作成したスーパーターナリーベクター菌株LBA4404を用いてトウモロコシA188の形質転換を行った。
 材料および方法
 大きさ約1.2mmのトウモロコシ未熟胚(品種:A188)を温室栽培した植物から無菌的に取り出し、アグロバクテリウム懸濁用液体培地LS-inf(Ishida et al.,2007)に浸漬した。 46℃、3分間の熱処理後、同液体培地で未熟胚を1回洗浄した。次に20,000Gで10分間(4℃)の遠心処理を行った後、未熟胚をバイナリーベクターシステムLBA4404(pLC41GWH-IG)、およびターナリーベクターシステムLBA4404(pLC41GWH-IG/pVGW7)、スーパーターナリーベクターシステムLBA4404(pLC41GWH-IG/pVGW9)およびスーパーバイナリーベクターシステムのLBA4404(pSB134)(Hiei and Komari,2006)の各菌株を約1x10cfu/mlの濃度で懸濁したアセトシリンゴン100μMを含むLS-inf培地に浸漬後、共存培地LS-AS(Ishida et al.,2007)に置床した。なお、pSB134とpLC41GWH-IGのT-DNA上のプロモーター,ターミネーターを含めた遺伝子構成は同一である。25℃、暗黒下で3日間培養した。共存培養後の未熟胚をハイグロマイシン(Hm)含有の選抜培地(Ishida et al.,2007)に置床し培養を行った。増殖したカルスを小片に切り取り、Hmを含む再分化培地(Ishida et al.,2007)に置床し、照明下で培養した。2週間後、Hmに抵抗性を示す再分化植物の調査を行った。
 結果および考察
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 バイナリーベクターシステムLBA4404(pLC41GWH-IG)のみでは全く形質転換体を得ることができなかった。それ以外のpTiBo542のvirB、C、Gを付加したベクターシステムすべてでHm耐性かつGUS陽性のトウモロコシ形質転換体が得られた(表1)。
 各ベクターシステム間の比較では、スーパーバイナリーベクターシステムLBA4404(pSB134)とスーパーターナリーベクターシステムLBA4404(pLC41GWH-IG/pVGW7)の間では、後者の方がやや形質転換効率が高かった(表1)。特許文献WO2007/148819 A1では、同様にA188の未熟胚を用いた形質転換試験において、14.8kbのKpnI断片を有するスーパーバイナリーベクターシステムの方が、同様に14.8kbのKpnI断片を有するpTOK47を付加したスーパーターナリーベクターシステムよりわずかに形質転換効率が高かったことを報告している。
 これに対し、本発明のスーパーターナリーベクターシステムLBA4404(pLC41GWH-IG/pVGW9)は、他のベクターシステムより顕著に形質転換効率が高かった(表1)。pTiBo542のvirB、C、D、G、Jの全遺伝子を有するスーパーターナリーベクターシステムは、従来のいずれのベクターシステムより形質転換能力が高いものと考えられる。
 実施例4 スーパーターナリーベクターシステムによるインディカイネIR64の形質転換
 本実施例では、実施例1で作成したスーパーターナリーベクター菌株LBA4404を用いてインディカイネIR64の形質転換を行った。
 材料および方法
 インディカイネ品種IR64の1.5mm長の未熟胚を無菌的に単離し、CCMカルス誘導培地に置床し、30℃暗黒下で10日間培養した。胚盤から増殖したカルスをさらに30℃明条件下で2週間培養した。得られたカルスを1-2mmの大きさに切りさらに4日間培養した後、実施例1で作成したLBA4404(pLC41GWH-IG)、LBA4404(pIG121Hm)、GV2260(pLC41GWH-IG)、GV3850(pLC41GWH-IG)およびLBA4404(pLC41GWH-IG/pVGW9)、LBA4404(pIG121Hm/pVGW9)、GV2260(pLC41GWH-IG/pVGW9)、GV3850(pLC41GWH-IG/pVGW9)の各菌株を約1x10cfu/mlの濃度で懸濁したアセトシリンゴン100μMを含むアグロバクテリウム懸濁用液体培地AAM培地(Hiei and Komari,2008)に浸漬した。その後、共存培地NB-As(Hiei and Komari,2008)に置床し、25℃、暗黒下で3日間培養した。共存培養後のカルスをHm含有の選抜培地(Hiei and Komari,2008)に置床し培養を行った。増殖したHm耐性カルスをX-Gluc溶液で処理しGUS活性を調査した。
 結果および考察
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 Hm耐性かつGUS陽性カルスは、対照のLBA4404(pLC41GWH-IG)、LBA4404(pIG121Hm)、GV2260(pLC41GWH-IG)およびGV3850(pLC41GWH-IG)を接種したカルスからは一切得ることはできなかった(表2)。これに対し、ブースターベクターpVGW9を導入したスーパーターナリーベクター菌株では、いずれの菌株でも形質転換カルスが得られ、特にLBA4404(pLC41GWH-IG/pVGW9)では、供試した9.6%のカルスから形質転換カルスが得られた(表2)。インディカイネは、未熟胚を材料に用いた形質転換は比較的容易に獲得できるが、カルスを材料に用いた場合には大変困難である。従来から用いられてきた様々なバイナリーベクターシステムの菌株に、ブースターベクターpVGW9を導入するだけで、形質転換能力が向上し、どの菌株からも容易に形質転換細胞が得られることが実証できた。
 実施例5 スーパーターナリーベクターシステムによるトマト マイクロトムへの遺伝子導入
 本実施例では、実施例1で作成したスーパーターナリーベクター菌株LBA4404を用いてトマト マイクロトムへの遺伝子導入を行った。
 材料および方法
 トマトのモデル品種マイクロトムの種子を殺菌処理し、寒天培地上で発芽させ、本葉が抽出し始めたばかりの子葉を切り取り、アグロバクテリウムの感染に供試した。方法の詳細は、Sun et al.(2006)によった。実験に用いた菌株は、実施例1で作成したLBA4404(pLC41GWH-IG)、GV2260(pLC41GWH-IG)およびLBA4404(pLC41GWH-IG/pVGW7)、LBA4404(pLC41GWH-IG/pVGW9)、GV2260(pLC41GWH-IG/pVGW9) である。共存培養は、25℃、暗黒下で3日間行った。共存培養後の葉片をX-Gluc溶液で処理しGUS活性を調査した。
 結果および考察
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 GUS遺伝子の一過性の発現を観察したところ、共存培養をアセトシリンゴン存在下で実施した場合には、ブースターベクターの付加効果は小さかったが、アセトシリンゴンを添加しなかった試験区では、ブースターベクターpVGW7およびpVGW9の付加効果は明瞭であった(表3)。特にpVGW9を用いたスーパーターナリーベクターシステムでは、供試したすべての子葉片でGUS活性が観察された。マイクロトムはもともと形質転換が可能な品種であるが、バイナリーベクターシステム菌株に、ブースターベクターpVGW9を導入したスーパーターナリーベクターシステムを用いれば、従来にない高い効率で形質転換体を得られるものと推測された。
 実施例6 スーパーターナリーベクターシステムによるトマトの形質転換
 本実施例では、実施例1において作成したスーパーターナリーベクター菌株を用いて、トマト品種、マイクロトムの形質転換カルス形成効率の比較試験を行った。
 材料および方法
 トマト品種マイクロトムの種子を殺菌処理し、高濃度(120g/L)のショ糖を含むホルモンフリーMS培地上へ置床し、25℃明条件下で5日間前培養することにより、種子を発芽準備状態に置いた。次に、ショ糖を含まないホルモンフリーMS培地へ種子を移植したのち、さらに2日間培養することにより、発芽勢を揃えた。種皮から完全に抜け出ていない子葉の中ほどをメスで長方形に切り出し、アグロバクテリウムの感染に用いた。感染および共存培養は、Sun et al.(2006)の方法によった。菌株には、実施例1で作成したLBA4404(pLC41GWH-IG)、LBA4404(pLC41GWH-IG/pVGW7)、LBA4404(pLC41GWH-IG/pVGW9)を用いた。なお、共存培養の培地には、0.1mMアセトシリンゴンを添加した。共存培養後、葉片を、30g/Lショ糖、3g/Lジェランガム、1.5mgゼアチン、50mg/Lハイグロマイシン、100mg/Lカルベニシリン、250mg/Lセフォタキシムを含むMSカルス誘導培地へ移植した。25℃明条件下で2週間培養後、同組成のMSカルス誘導培地へ移植しさらに2週間培養した。培養後、子葉切片上に形成されたハイグロマイシン耐性のカルスをピンセットで摘み取り、X-Gluc溶液に浸漬処理することによりGUS活性を調査した。なお、ハイグロマイシン耐性かつGUS陽性の形質転換カルスが、同一子葉切片上に互いに離れた位置に複数形成された場合には、異なる形質転換カルスとしてカウントした。
 結果および考察
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 子葉切片上に形成されたハイグロマイシン耐性のカルスの90%以上が、強いGUS活性を示す形質転換カルスであった。ブースターベクターpVGW9の付加は、形質転換カルスの形成効率を2倍以上に向上させる効果を示した。これに対し、ブースターベクターpVGW7の付加効果はおよそ1.4倍とやや劣っていた(表4)。このように、ブースターベクターpVGW9を保有する菌株が、ブースターベクターpVGW7を保有する菌株よりも高い形質転換能力を示したのは、pVGW9にpTiBo542に由来するvirD1遺伝子、virD2遺伝子、virD3遺伝子、及びvirJ遺伝子が付加されていることによるものである。
 配列番号1は、pVGW9ベクターの塩基配列である。
 配列番号2は、PCRプライマーpSa5’EcT22Iの塩基配列である。
 配列番号3は、PCRプライマーM13(-20)Fwの塩基配列である。
 配列番号4は、PCRプライマーpTiBo542:150641Fwの塩基配列である。
 配列番号5は、PCRプライマーdelD2-3’Rvの塩基配列である。

Claims (20)

  1.  下記の(1)-(3)のプラスミドを含むアグロバクテリウム細菌
     (1)下記の構成要素を有するプラスミド;
      (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
      (ii)複製開始点
     (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
     (3)所望のDNAからなるT-DNA領域を有するプラスミド
     ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。
  2.  (1)プラスミドの(ii)の複製開始点がIncW複製開始点である、請求項1記載のアグロバクテリウム細菌。
  3.  (1)プラスミドが、さらにpTiBo542のvirE遺伝子を含む、請求項1又は2記載のアグロバクテリウム細菌。
  4.  (1)プラスミドが、さらにrepA遺伝子を含む、請求項1-3のいずれか1項記載のアグロバクテリウム細菌。
  5.  (1)プラスミドが、さらに薬剤選抜マーカー遺伝子を含む、請求項1-4のいずれか1項記載のアグロバクテリウム細菌。
  6.  薬剤選抜マーカー遺伝子がゲンタマイシン耐性遺伝子である、請求項5記載のアグロバクテリウム細菌。
  7.  (1)プラスミドが、配列番号1記載の塩基配列を有するpVGW9である、請求項1-6のいずれか1項記載のアグロバクテリウム細菌。
  8.  (2)アグロバクテリウム細菌のディスアーム型プラスミドが、ディスアーム型Tiプラスミドである、請求項1-7のいずれか1項記載のアグロバクテリウム細菌。
  9.  ディスアーム型pTiBo542を保持しない、請求項1-8のいずれか1項記載のアグロバクテリウム細菌。
  10.  下記のグループ
     LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
    から選択されるアグロバクテリウム細菌に、
     (1)プラスミド及び(3)プラスミドを導入することによって製造される、請求項1-9のいずれか1項記載のアグロバクテリウム細菌。
  11.  下記の(1)-(2)のプラスミドを含むアグロバクテリウム細菌
     (1)下記の構成要素を有するプラスミド;
      (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
      (ii)複製開始点
    並びに
     (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド
     ここにおいて、(1)及び(2)の各プラスミドは、互いに共存可能な複製機構を有する。
  12.  請求項1ないし10のアグロバクテリウム細菌を植物細胞に接触させる、ことを含む、植物の形質転換方法。
  13.  請求項11のアグロバクテリウム細菌に(3)所望のDNAからなるT-DNA領域を有するプラスミドを導入し、そして、
     当該アグロバクテリウム細菌を植物細胞に接触させる、ことを含む、植物の形質転換方法。
  14.  植物が被子植物である、請求項12又は13に記載の植物の形質転換方法。
  15.  アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、請求項1-10又は請求項11のいずれか1項記載のアグロバクテリウム細菌を含む、前記キット。
  16.  アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、下記の(1)-(3)のプラスミドの組み合わせ
     (1)下記の構成要素を有するプラスミド;
      (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
      (ii)複製開始点
     (2)アグロバクテリウム細菌のディスアーム型Tiプラスミド若しくはディスアーム型Riプラスミド;並びに
     (3)所望のDNAからなるT-DNA領域を有するプラスミド
     ここにおいて、(1)-(3)の各プラスミドは、互いに共存可能な複製機構を有する。
    を含む、前記キット。
  17.  アグロバクテリウムを介して植物細胞を形質転換する方法に用いるためのキットであって、下記の(1)及び(3)のプラスミドの組み合わせ
     (1)下記の構成要素を有するプラスミド;
      (i)pTiBo542のvirB遺伝子、virC遺伝子、virD1遺伝子、virD2遺伝子、virD3遺伝子、virG遺伝子及びvirJ遺伝子、及び
      (ii)複製開始点
    並びに
     (3)所望のDNAからなるT-DNA領域を有するプラスミド
     ここにおいて、(1)と(3)の各プラスミドは、互いに共存可能な複製機構を有する。
    を含む、前記キット。
  18.  下記のグループ
     LBA4404、GV3850、GV3TillSE、C58-Z707、GV3101::pMP90、GV3101::pMP90RK、GV2260、及びNTI(pKPSF2)
    から選択されるアグロバクテリウム細菌をさらに含む、請求項17に記載のキット。
  19.  配列番号1に記載の塩基配列を有するpVGW9プラスミド。
  20.  請求項19に記載のプラスミドの、請求項12-14のいずれか1項に記載の植物の形質転換方法への使用。
     
     
PCT/JP2014/058926 2013-03-29 2014-03-27 植物の形質転換方法に使用するためのアグロバクテリウム細菌 WO2014157541A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14773265.5A EP2980214B1 (en) 2013-03-29 2014-03-27 Agrobacterium bacterium to be used in plant transformation method
US14/779,875 US10266835B2 (en) 2013-03-29 2014-03-27 Agrobacterium bacterium to be used in plant transformation method
CN201480024753.4A CN105164257B (zh) 2013-03-29 2014-03-27 用于植物的转化方法的土壤杆菌属细菌

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072177 2013-03-29
JP2013072177A JP2016111926A (ja) 2013-03-29 2013-03-29 植物の形質転換方法に使用するためのアグロバクテリウム細菌

Publications (1)

Publication Number Publication Date
WO2014157541A1 true WO2014157541A1 (ja) 2014-10-02

Family

ID=51624502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058926 WO2014157541A1 (ja) 2013-03-29 2014-03-27 植物の形質転換方法に使用するためのアグロバクテリウム細菌

Country Status (5)

Country Link
US (1) US10266835B2 (ja)
EP (1) EP2980214B1 (ja)
JP (1) JP2016111926A (ja)
CN (1) CN105164257B (ja)
WO (1) WO2014157541A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017040343A1 (en) * 2015-08-28 2017-03-09 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
WO2017078836A1 (en) * 2015-11-06 2017-05-11 Pioneer Hi-Bred International, Inc. Methods and compositions of improved plant transformation
WO2020128968A1 (en) 2018-12-20 2020-06-25 Benson Hill, Inc. Pre-conditioning treatments to improve plant transformation
US11180770B2 (en) 2017-03-07 2021-11-23 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use
WO2021260632A1 (en) 2020-06-24 2021-12-30 Benson Hill, Inc. Plant cell treatments to improve plant transformation
US11371056B2 (en) 2017-03-07 2022-06-28 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use
WO2022145427A1 (ja) 2020-12-28 2022-07-07 株式会社カネカ トウモロコシの形質転換された細胞又は植物体を作成する方法、核酸コンストラクト、並びに、トウモロコシの細胞又は植物体に核酸を導入する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969793A (zh) * 2016-05-10 2016-09-28 广西兆和种业有限公司 一种水稻育种方法
EP3959967A4 (en) * 2019-03-21 2023-06-28 Masashi Mori Method for producing transformed plant and transformation agent
WO2020198496A1 (en) * 2019-03-28 2020-10-01 Pioneer Hi-Bred International, Inc. Modified agrobacterium strains and use thereof for plant transformation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148819A1 (ja) 2006-06-23 2007-12-27 Japan Tobacco Inc. 植物形質転換用コスミドベクター及びその利用法
US20090075358A1 (en) * 2007-03-29 2009-03-19 Cambia Vectors for transformation of plant cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117816B1 (en) 1998-10-01 2005-12-21 Pioneer Hi-Bred International, Inc. Method of plant transformation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148819A1 (ja) 2006-06-23 2007-12-27 Japan Tobacco Inc. 植物形質転換用コスミドベクター及びその利用法
US20090075358A1 (en) * 2007-03-29 2009-03-19 Cambia Vectors for transformation of plant cells

Non-Patent Citations (64)

* Cited by examiner, † Cited by third party
Title
"Atlas of Polypeptide Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
AMOAH B.K. ET AL.: "Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue", J. EXP. BOT., vol. 52, no. 358, May 2001 (2001-05-01), pages 1135 - 1142, XP002995060 *
AMOAH, B.K.; WU, H.; SPARKS, C.; JONES, H.D.: "Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue", J EXP BOT, vol. 52, 2001, pages 1135 - 1142, XP002995060, DOI: doi:10.1093/jexbot/52.358.1135
AN, G.; EVERT, P.R.; MITRA, A.; HA, S.B.: "Plant Molecular Biology Manual A3", 1988, KLUWER ACADEMIC PRESS, article "Binary vectors", pages: 1 - 19
AROKIARAJ, P.; LEELAWATHY, R; YEANG, H.Y.: "The supervirulence plasmid pTOK47 from Agrobacterium tumefaciens A281 improves transformation efficiency of Hevea brasiliensis", AM J BIOCHEM BIOTECHNOL, vol. 5, 2009, pages 137 - 141
BEVAN, M.: "Binary Agrobacterium vectors for plant transformation", NUCLEIC ACIDS RES, vol. 12, 1984, pages 8711 - 8721
BILANG, R; FUTTERER, J.; SAUTTER, C.; SCHROTTE, M.; SPANGENBERG, G.: "Agricultural Biotechnology", 1997, MERCEL DEKKER INC., article "Genetic engineering of crop plants", pages: 119 - 159
CHRISTIE, P. J.: "Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems", BIOCHIM BIOPYS ACTA, vol. 1694, 2004, pages 219 - 234, XP004687667, DOI: doi:10.1016/j.bbamcr.2004.02.013
CITOVSKY, V.; DE VOS, G.; ZAMBRYSKI, P.: "Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens", SCIENCE, vol. 240, 1988, pages 501 - 504
CLAYERIE; STATES, COMPUTERS AND CHEMISTRY, 1993
CLOSE, T.J.; TAIT, R.C.; REMPEL, H.C.; HIROOKA, T.; KIM, L.; KADO, C.I.: "Molecular characterization of the virC genes of the Ti plasmid", J BACTERIOL, vol. 169, 1987, pages 2336 - 2344
DEVEREUX ET AL., NUCL. ACIDS RES., vol. 12, 1984, pages 387
DITTA, G.; STANFIELD, S.; CORBIN, D.; HELINSKI, D.R.: "Broad host range DNA cloning system for gram-negative bacteria: construction of gene bank of Rhizobium meliloti.", PROC NATL ACAD SCI USA, vol. 77, 1980, pages 7347 - 7351
DONG, S.; QU, R.: "High efficiency transformation of tall fescue with Agrobacterium tumefaciens", PLANT SCI, vol. 168, 2005, pages 1453 - 1458, XP025296148, DOI: doi:10.1016/j.plantsci.2005.01.008
FRALEY, RT.; ROGERS, S.G.; HORSCH, RB.; EICHOLTZ, D.A.; FLICK, J.S.: "The SEV system: a new disarmed Ti plasmid vector for plant transformation", BIOTECHNOLOGY, vol. 3, 1985, pages 629 - 635
FRALEY, RT.; ROGERS, S.G.; HORSCH, RB.; SANDERS, P.R.; FLICK, J.S.; ADAMS, S.P.; BITTNER, M.L.; BRAND, L.A.; FINK, C.L.; FRY, J.S.: "Expression of bacterial genes in plant cells", PROC NATL ACAD SCI USA, vol. 80, 1983, pages 4803 - 4807, XP001062995, DOI: doi:10.1073/pnas.80.15.4803
GRIBSKOV; BURGESS, NUCL. ACIDS RES., vol. 14, 1986, pages 6745
HAMILTON, C.M.; FRARY, A.; LEWIS, C.; TANKSLEY, S.D.: "Stable transfer of intact high molecular weight DNA into plant chromosomes", PROC NATL ACAD SCI USA, vol. 93, 1996, pages 9975 - 9979, XP002263681, DOI: doi:10.1073/pnas.93.18.9975
HELLENS, R.P.; EDWARDS, E.A.; LEYLAND, N.R.; BEAN, S.; MULLINEAUX, P.M.: "pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation", PLANT MOL BIOL, vol. 42, 2000, pages 819 - 832, XP002959415, DOI: doi:10.1023/A:1006496308160
HEPBURN, A.G.; WHITE, J.; PEARSON, L.; MAUNDERS, M.J.; CLARKE, L.E.; PRESCOTT, A.G.; BLUNDY, K.S.: "The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids", J GEN MICROBIOL, vol. 131, 1985, pages 2961 - 2969
HIEI Y. ET AL.: "Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA", PLANT J., vol. 6, no. 2, August 1994 (1994-08-01), pages 271 - 282, XP002922710 *
HIEI, Y.; KOMARI, T.: "Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed", NAT PROTOCOLS, vol. 3, 2008, pages 824 - 834
HIEI, Y.; KOMARI, T.: "Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens", PLANT CELL TISSUE ORGAN CULT, vol. 85, 2006, pages 271 - 283, XP019409331, DOI: doi:10.1007/s11240-005-9069-8
HIEI, Y.; OHTA, S.; KOMARI, T.; KUMASHIRO, T.: "Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA", PLANT J, vol. 6, 1994, pages 271 - 282
HOEKEMA, A.; HIRSCH, P.R.; HOOYKAAS, P.J.J.; SCHILPEROORT, R.A.: "A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid", NATURE, vol. 303, 1983, pages 179 - 180, XP000941788, DOI: doi:10.1038/303179a0
HOOD, E.E.; GELVIN, S.B.; MELCHERS, L.S.; HOEKEMA, A.: "New Agrobacterium helper plasmids for gene transfer to plants", TRANSGENIC RES, vol. 2, 1993, pages 208 - 218, XP000197154, DOI: doi:10.1007/BF01977351
HOOD, E.E.; HELMER, G.L.; FRALEY, RT.; CHILTON, M.-D.: "The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA", J BACTERIOL, vol. 168, 1986, pages 1291 - 1301, XP002676672
ISHIDA, Y.; HIEI, Y.; KOMARI, T.: "Agrobacterium-mediated transformation of maize", NAT PROTOCOLS, vol. 2, 2007, pages 1614 - 1621, XP009148413, DOI: doi:10.1038/nprot.2007.241
ISHIDA, Y.; SAITO, H.; OHTA, S.; HIEI, Y.; KOMARI, T.; KUMASHIRO, T: "High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens", NAT BIOTECHNOL, vol. 14, 1996, pages 745 - 750, XP002046364, DOI: doi:10.1038/nbt0696-745
JEFFERSON, R.A.: "Assaying chimeric genes in plants: the GUS gene fusion system", PLANT MOL. BIOL. REP., vol. 5, 1987, pages 387 - 405, XP002906650
JIN, S.; KOMARI, T.; GORDON, M.P.; NESTER, E.W.: "Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281", J. BACTERIOL., vol. 169, 1987, pages 4417 - 4425, XP008101731, DOI: doi:10.1128/jb.169.10.4417-4425.1987
JOUANIN, L.; GUERCHE, P.; PAMBOUKDJIAN, N.; TOURNEUR, C.; DELBART, F.C.; TOURNEUR, J.: "Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4", MOL GEN GENET, vol. 206, 1987, pages 387 - 392
KHANNA, H.K.; DAGGARD, G.D.: "Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium", PLANT CELL REP, vol. 5, 2003, pages 429 - 436, XP002982472
KOMARI ET AL., PLANT J, vol. 10, 1996, pages 165 - 174
KOMARI, T.: "Genetic characterization of double-flowered tobacco plant obtained in a transformation experiment", THEOR APPL GENET, vol. 80, 1990, pages 167 - 171
KOMARI, T.; HALPERIN, W.; NESTER, E.W: "Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542", J BACTERIOL, vol. 166, 1986, pages 88 - 94, XP000918204
KOMARI, T.; HIEI, Y.; SAITO, Y.; MURAI, N.; KUMASHIRO, T.: "Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers", PLANT J, vol. 10, 1996, pages 165 - 174
KONCZ, C.; SCHELL, J.: "The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector", MOL GEN GENET, vol. 204, 1986, pages 383 - 396
LAZO, G.R.; STEIN, P.A.; LUDWIG, R.A.: "A DNA transformation-competent Arabidopsis genomic library", AGROBACTERIUM BIOTECHNOLOGY, vol. 9, 1991, pages 963 - 967, XP008062132, DOI: doi:10.1038/nbt1091-963
LEE, L.-Y.; GELVIN, S.B.: "T-DNA binary vectors and systems", PLANT PHYSIOL, vol. 146, 2008, pages 325 - 332, XP002487764, DOI: doi:10.1104/pp.107.113001
MCBRIDE, K.E.; SUMMERFELT, K.R.: "Improved binary vectors for Agrobacterium-mediated plant transformation", PLANT MOL BIOL, vol. 14, 1990, pages 269 - 276, XP002000712, DOI: doi:10.1007/BF00018567
OKUMURA; KADO, MOL GEN GENET, vol. 235, 1992, pages 55 - 63
OKUMURA; KADO: "The region essential for efficient autonomous replication of pSa in Escherichia coli", MOL GEN GENET, vol. 235, 1992, pages 55 - 63, XP003024413, DOI: doi:10.1007/BF00286181
PALANICHELVAM, K.; OGER, P.; CLOUGH, S.J.; CHA, C.; BENT, A.F.; FARRAND, S.K: "A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid", MOL PLANT MICROBE INTERACT, vol. 13, 2000, pages 1081 - 1091, XP002676671, DOI: doi:10.1094/MPMI.2000.13.10.1081
PANTOJA, M.; CHEN, L.; CHEN, Y.; NESTER, E.W.: "Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm", MOL MICROBIOL, vol. 45, 2002, pages 1325 - 1335
REAM, W.: "Agrobacterium", 2008, SPRINGER SCIENCE+BUSINESS MEDIA, LLC, article "Production of a mobile T-DNA by Agrobacterium tumefaciens", pages: 280 - 313
REAM, W.: "Agrobacterium", 2008, SPRINGER SCIENCE+BUSINESS MEDIA,LLC, article "Production of a mobile T-DNA by Agrobacterium tumefaciens", pages: 280 - 313
SAITO, Y.; KOMARI, T.; MASUTA, C.; HAYASHI, Y.; KUMASHIRO, T.; TAKANAMI, Y: "Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA", THEOR APPL GENET, vol. 83, 1992, pages 679 - 683
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SUN, H.-J.; UCHII, S.; WATANABE, S.; EZURA, H.: "A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics", PLANT CELL PHYSIOL, vol. 47, 2006, pages 426 - 431
TANG, W.: "Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation", PLANT CELL REP, vol. 21, 2003, pages 555 - 562
TAO, Q.; ZHANG, H.-B.: "Cloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors", NUCLEIC ACIDS RESEARCH, vol. 26, 1998, pages 4901 - 4909, XP002933437, DOI: doi:10.1093/nar/26.21.4901
TAO, Q.; ZHANG, H.-B.: "Cloning and stable maintenance of DNA fragments over 300kb in Escherichia coli with conventional plasmid-based vectors", NUC ACIDS RES, vol. 26, 1998, pages 4901 - 4909, XP002933437, DOI: doi:10.1093/nar/26.21.4901
VERGUNST, A.C.; VAN LIER, M.C.M.; DEN DULK-RAS, A.; GROSSE STUVE, T.A.; OUWEHAND, A.; HOOYKAAS, P.J.J.: "Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium", PROC NAT ACAD SCI USA, vol. 102, 2005, pages 832 - 837
WARD ET AL., J BIOL CHEM, vol. 263, 1988, pages 5804 - 5814
WARD J.E.; AKIYOSHI D.E.; REGIER D.; DATTA A.; GORDON M.P.; NESTER E.W.: "Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid", J BIOL CHEM, vol. 263, 1988, pages 5804 - 5814
WATSON, B.; CURRIER, T.C.; GORDON, M.P.; CHILTON, M.-D.; NESTER, E.W.: "Plasmid required for virulence of Agrobacterium tumefaciens", J BACTERIOL, vol. 123, 1975, pages 255 - 264
WENCK A.R. ET AL.: "High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda", PLANT MOL. BIOL., vol. 39, 1999, pages 407 - 416, XP002909525 *
WENCK, A.R.; QUINN, M.; WHETTEN, R.W.; PULLMAN, G.; SEDEROFF, R.: "High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda", PLANT MOL BIOL, vol. 39, 1999, pages 407 - 416, XP002909525, DOI: doi:10.1023/A:1006126609534
WINANS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 83, 1986, pages 8278 - 8282
WINANS, S,C.; EBERT, P.R.; STACHEL, S.E.; GORDON, M.P.; NESTER, E.W.: "A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci", PROC NATL ACAD SCI USA, vol. 83, 1986, pages 8278 - 8282
WOOTTON; FEDERHEN: "Analysis of compositionally biased regions in sequence databases", METHODS ENZYMOL., vol. 266, 1996, pages 544 - 71
WU, H.; DOHERTY, A.; JONES, H.D.: "Efficient and rapid Agrobacterium- mediated genetic transformation of durum wheat ( Triticum turgidum L. var. durum) using additional virulence genes", TRANSGENIC RES, vol. 17, 2008, pages 425 - 436, XP019616114
ZAMBRYSKI, P.; JOOS, H.; GENETELLO, C.; LEEMANS, J.; VAN MONTAGU, M.; SCHELL, J.: "Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration ability", EMBO J, vol. 2, 1983, pages 2143 - 2150, XP009030759

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017040343A1 (en) * 2015-08-28 2017-03-09 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
CN108513584A (zh) * 2015-08-28 2018-09-07 先锋国际良种公司 苍白杆菌介导的植物转化
JP2018527931A (ja) * 2015-08-28 2018-09-27 パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド 植物のオクロバクテリウム(ochrobactrum)媒介形質転換
US11236347B2 (en) 2015-08-28 2022-02-01 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
WO2017078836A1 (en) * 2015-11-06 2017-05-11 Pioneer Hi-Bred International, Inc. Methods and compositions of improved plant transformation
CN108350465A (zh) * 2015-11-06 2018-07-31 先锋国际良种公司 改善植物转化的方法和组合物
JP2018537123A (ja) * 2015-11-06 2018-12-20 パイオニア ハイ−ブレッド インターナショナル, インコーポレイテッド 改良された植物形質転換の方法および組成物
US11180770B2 (en) 2017-03-07 2021-11-23 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use
US11371056B2 (en) 2017-03-07 2022-06-28 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use
WO2020128968A1 (en) 2018-12-20 2020-06-25 Benson Hill, Inc. Pre-conditioning treatments to improve plant transformation
WO2021260632A1 (en) 2020-06-24 2021-12-30 Benson Hill, Inc. Plant cell treatments to improve plant transformation
WO2022145427A1 (ja) 2020-12-28 2022-07-07 株式会社カネカ トウモロコシの形質転換された細胞又は植物体を作成する方法、核酸コンストラクト、並びに、トウモロコシの細胞又は植物体に核酸を導入する方法

Also Published As

Publication number Publication date
EP2980214A4 (en) 2016-09-28
JP2016111926A (ja) 2016-06-23
EP2980214B1 (en) 2018-05-09
CN105164257A (zh) 2015-12-16
EP2980214A1 (en) 2016-02-03
US10266835B2 (en) 2019-04-23
CN105164257B (zh) 2018-08-07
US20160083737A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
WO2014157541A1 (ja) 植物の形質転換方法に使用するためのアグロバクテリウム細菌
Gelvin Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool
Shrawat et al. Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.)
JP4932719B2 (ja) 非病害性アグロバクテリウム株、Riプラスミド、およびそれらに基づく形質転換方法
Hansen et al. Lessons in gene transfer to plants by a gifted microbe
JP6871260B2 (ja) 改良された植物形質転換の方法および組成物
Torregrosa et al. Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L
Ghedira et al. The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant
Mankin et al. Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659
US20190225974A1 (en) Targeted genome optimization in plants
JP4532413B2 (ja) 植物材料への遺伝子導入を行う方法
CA2386125C (en) Method of improving gene transfer efficiency into plant cells
Alimohammadi et al. Agrobacterium-mediated transformation of plants: Basic principles and influencing factors
AU785336B2 (en) Method of improving gene transfer efficiency into plant cells
Komari et al. Plant transformation technology: Agrobacterium‐mediated transformation
Ye et al. Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation
JP4424784B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法
Cunningham et al. Recombinant proteins from plants
JP2000342255A (ja) 植物細胞への遺伝子導入の効率を向上させる方法
Lindsey Transgenic plant research
JP4428757B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法
Takavar et al. Agrobacterium mediated transformation of maize (Zea mays L.)
de Mello-Farias et al. Advances in Agrobacterium-mediated plant transformation with enphasys on soybean
Gelvin Manipulating plant histone genes to improve Agrobacterium-and direct DNA-mediated plant genetic transformation
JP2006280282A (ja) 選抜マーカー遺伝子の影響が排除された遺伝子導入細胞、組織又は植物の作成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024753.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014773265

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP