WO2014157131A1 - Curable resin composition, cured product, and optical article - Google Patents

Curable resin composition, cured product, and optical article Download PDF

Info

Publication number
WO2014157131A1
WO2014157131A1 PCT/JP2014/058173 JP2014058173W WO2014157131A1 WO 2014157131 A1 WO2014157131 A1 WO 2014157131A1 JP 2014058173 W JP2014058173 W JP 2014058173W WO 2014157131 A1 WO2014157131 A1 WO 2014157131A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
component
acrylate
resin composition
curable resin
Prior art date
Application number
PCT/JP2014/058173
Other languages
French (fr)
Japanese (ja)
Inventor
林 健太郎
次俊 和佐野
川辺 正直
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201480018087.3A priority Critical patent/CN105073807A/en
Priority to KR1020157030472A priority patent/KR20150134398A/en
Priority to JP2015508507A priority patent/JP6525867B2/en
Publication of WO2014157131A1 publication Critical patent/WO2014157131A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/126Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a curable resin composition, a cured product, and an optical article having excellent optical characteristics, heat resistance, and processability.
  • thermoplastic resins such as polycarbonate resin, methacrylic resin, and alicyclic olefin polymer have been used.
  • these thermoplastic resins have low heat resistance temperature and surface hardness, and have hardly been used in the advanced technical fields of optical and electronic materials that require high heat resistance, surface hardness and fine workability.
  • Patent Document 1 is obtained by copolymerizing a monovinyl aromatic compound and a divinyl aromatic compound, and a reactive vinyl group derived from a divinyl aromatic compound is added to the side chain.
  • a soluble polyfunctional copolymer having a structural unit is disclosed.
  • the soluble polyfunctional copolymer obtained by the technology disclosed therein has excellent heat resistance against heat history at high temperature, it has high workability required for the advanced field. It was difficult to achieve both refractive indexes.
  • bisphenol fluorene derivatives have a high refractive index and high heat resistance because they have a large number of aromatic rings, and also have features of low birefringence and low cure shrinkage because they form surfaces with different ring structures. have.
  • these features are very excellent for use as an optical molding material, they are not sufficient in terms of the accuracy and strength of the optical surface shape in optical lens applications. Therefore, it has excellent optical properties, has a good balance of properties such as low water absorption, moldability, heat resistance, and surface hardness. In addition, it adheres to optical properties and inorganic materials under severe actual use conditions such as wet heat conditions. So far, there has been no soluble polyfunctional copolymer with improved moldability and precise transfer of mold shape, and a curable resin composition using the copolymer.
  • JP 2008-247978 A Japanese Patent No. 4558643 JP 2009-109579 A
  • the present invention has excellent optical properties such as high refractive index and high light transmittance, heat resistance, and processability, in addition, optical properties under severe actual use conditions such as wet heat conditions, and low water absorption.
  • the present invention comprises the component (A): a plurality of reactive unsaturated groups, a weight average molecular weight of 2,000 to 100,000, and further soluble in toluene, xylene, tetrahydrofuran, dichloroethane, or chloroform.
  • R 1 and R 2 independently represent H or CH 3 —
  • R 3 and R 4 independently represent —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH 2 CH 2 O—, —CH 2 CH (OH) CH 2 O—, or CH 2 CH (OR 5 ) CH 2 O—, wherein R 5 is a meta (acryloyl) group.
  • K and l are each independently 0 or a number of 1 or more
  • k + l is a number of 1 or more
  • m and n independently represent a number of 0 to 4.
  • the polyfunctional copolymer of the component (A) is a monofunctional (meth) acrylic acid ester (a) having an aromatic ring or alicyclic structure, and one or more types of bifunctional (meth) acrylic acid.
  • a copolymer obtained by copolymerizing a component containing an ester (b), 2,4-diphenyl-4-methyl-1-pentene (c) and a thiol compound (d), and having bifunctional A structural unit derived from 2,4-diphenyl-4-methyl-1-pentene (c) and a thiol compound (d) having a reactive (meth) acrylic group derived from (meth) acrylic acid ester (b) It is a polyfunctional copolymer having the above-mentioned curable resin composition.
  • the polyfunctional copolymer of the component (A) is obtained by copolymerizing the monovinyl aromatic compound (e), the divinyl aromatic compound (f) and the aromatic ether compound, and has a side chain.
  • R 6 represents H or CH 3
  • R 7 represents a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom or a sulfur atom.
  • the present invention provides a (meth) acrylate having 1 to 8 (meth) acryloyl groups in the molecule as the component (D) in addition to the components (A), (B) and (C) (provided that And (A) and (B) except for the above case), and the content of component (A) with respect to the total of components (A) to (D) is 5.0 to 84 wt%, and component (B)
  • the content of the component (C) is 0.1 to 10 wt%
  • the content of the component (D) is 10 to 70 wt%
  • the components (A) to (D) The curable resin composition described above, wherein the total amount of the component (A) and the component (B) is 30 to 90 wt% with respect to 100 parts by weight in total.
  • the present invention is a cured resin obtained by curing the curable resin composition, and an optical article formed from the cured resin.
  • optical articles include optical lenses, microlens arrays, and imaging devices.
  • the curable resin composition of the present invention or a cured resin obtained by curing this has excellent optical properties such as high refractive index, low birefringence, and high transparency, heat resistance, and processability, In addition, optical properties under severe actual use conditions such as reflow conditions, low water absorption and good mold release during molding, scratch resistance, toughness, surface hardness, and precise mold transfer are improved. .
  • the cured resin of the present invention is excellent as an optical lens / prism material.
  • the component (A) of the present invention has a plurality of reactive unsaturated bonds, has a weight average molecular weight of 2,000 to 100,000, and is further soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Is used.
  • the polyfunctional copolymer as the component (A) may be abbreviated as a copolymer.
  • the component (A) is a soluble polyfunctional copolymer, but the term “soluble” means soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Preferably it is soluble in all of the above solvents.
  • the solubility test is performed under the conditions shown in the examples.
  • the copolymer (A) is composed of a monomer having one polymerizable reactive unsaturated group such as a monovinyl compound (monofunctional component) and a monomer having two polymerizable reactive unsaturated groups such as a divinyl compound (2 It is advantageously obtained by copolymerizing a monomer component mainly composed of a functional component).
  • the bifunctional component provides a branched structure or a crosslinked structure, but the abundance of such a crosslinked structure is limited to the extent that it is soluble.
  • the terminal of the branched structure contains an unreacted unsaturated group derived from a bifunctional component such as a divinyl compound.
  • the copolymer having an unreacted (meth) acryl group derived from a bifunctional component or an unsaturated group such as a vinyl group in the side chain.
  • This unreacted unsaturated group is also referred to as a pendant (meth) acryl group or a pendant vinyl group, and since it exhibits polymerizability, it can be polymerized by further polymerization treatment to give a solvent-insoluble resin cured product.
  • the average number of unreacted unsaturated groups needs to be 2 or more per molecule, but is preferably 3 or more. In order to increase the ratio of the unreacted unsaturated group, it is possible to increase the amount of the bifunctional component used for polymerization using a chain transfer agent.
  • Preferred copolymers include monofunctional (meth) acrylic acid ester (a) having an aromatic ring or alicyclic structure as a monomer having one unsaturated group, and one kind of monomer having two unsaturated groups.
  • the above bifunctional (meth) acrylic acid ester (b) is used, and 2,4-diphenyl-4-methyl-1-pentene (c) and thiol compound (d) are used as subcomponents and polymerized.
  • A-1 obtained as above.
  • Monofunctional monomer (meth) acrylic acid ester (a-1) having an aromatic ring structure constituting copolymer (A-1) includes benzyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 2-naphthyl acrylate, thiophenol Examples thereof include one or more monofunctional (meth) acrylic acid esters selected from the group consisting of acrylates such as acrylate and benzyl mercaptan acrylate, and methacrylates thereof.
  • monofunctional monomer (meth) acrylic acid ester (a-2) having an alicyclic structure from acrylates such as cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, isobornyl acrylate, and these methacrylates
  • monofunctional (meth) acrylic acid esters selected from the group consisting of can be mentioned, but the invention is not limited thereto.
  • Examples of the bifunctional (meth) acrylic acid ester (b) constituting the copolymer (A-1) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate cyclohexane dimethanol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, EO modified bisphenol A diacrylate,
  • Use bifunctional (meth) acrylic esters such as PO-modified bisphenol A diacrylate, 2,4-di (meth) acryloyloxynaphthalene, 9,9-bis [4-2 (-acryloyloxyethoxy) phenyl] fluorene
  • EO and PO mean ethylene oxide and propylene oxide.
  • (meth) acrylic acid esters include dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate having an alicyclic structure in terms of cost, ease of polymerization control and heat resistance of the obtained polymer, Cyclohexane dimethanol di (meth) acrylate and dimethylol tricyclodecane di (meth) acrylate are preferably used.
  • n-butyl acrylate, n-hexyl acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, which do not have an alicyclic structure, in terms of moldability such as toughness and releasability of the cured product 1,4-butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and diethylene glycol di (meth) acrylate are preferably used.
  • 2,4-diphenyl-4-methyl-1-pentene (c) and thiol compound (d) function as a chain transfer agent and control the molecular weight of the copolymer.
  • the molecular weight of the copolymer of the present invention is in the range of 2,000 to 100,000 as the weight average molecular weight Mw (where Mw is the weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography), preferably Is in the range of 2,500-60,000, more preferably 3,000-50,000.
  • the thiol compound (d) may be any thiol compound known to act as a chain transfer agent, preferably t-dodecyl mercaptan, n-dodecyl mercaptan, t-octyl mercaptan, n-octyl mercaptan, Trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol hex-3-mercaptopropionate and (tris-[(3-mercaptopropionyloxy) -ethyl ] -Isocyanurate).
  • t-dodecyl mercaptan, n-dodecyl mercaptan, t-octyl mercaptan, n-octyl mercaptan, etc. are particularly preferably used from the viewpoint of ease of polymerization control and toughness of the produced copolymer.
  • a monovinyl aromatic compound (e) is used as a monomer having one unsaturated group
  • a divinyl aromatic compound (f) is used as a monomer having two unsaturated groups
  • A-2 a copolymer obtained by using an aromatic ether compound as an accessory component.
  • the copolymer (A-2) includes the structural unit derived from the monovinyl aromatic compound (e) and the structural unit derived from the divinyl aromatic compound (f), as well as the above formula (2) derived from the aromatic ether compound. ) (Hereinafter also referred to as structural unit (g)). And the terminal group represented by the said Formula (2) is called terminal group (g). In general, it is desirable that the polymer chain (main chain and side chain) of the copolymer is generated from a divinyl aromatic compound and a monovinyl aromatic compound, and a part of the terminal is generated from an aromatic ether compound.
  • Preferred examples of the aromatic ether compound that gives the structural unit (g) or the terminal group (g) include 2-phenoxyethyl (meth) acrylate and alkoxylated 2-phenoxyethyl (meth) acrylate. However, it is not limited to these. In view of reactivity, heat resistance of the cured product, and availability, 2-phenoxyethyl (meth) acrylate is more preferable.
  • 2-phenoxyethyl (meth) acrylate has a polymerizable group, it can be copolymerized with other monomers, but in order to become a terminal group (g), the polymerizable group has low reactivity, Most of them remain unreacted, and the benzene ring preferably has a structure in which the vinyl group of the divinyl aromatic compound (f) is reacted.
  • R 6 represents H or CH 3, which depends on the aromatic ether compound used.
  • R 7 represents a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom or a sulfur atom between carbon chains, preferably a hydrocarbon group having 1 to 6 carbon atoms, more preferably —CnH 2n An alkylene group represented by-.
  • n is more preferably in the range of 1 to 4.
  • one or more vinyl aromatic compounds selected from the group consisting of styrene, ethyl vinyl benzene, vinyl biphenyl and vinyl naphthalene are 50 mol% or more, preferably 70 mol% or more, more preferably A monovinyl aromatic compound containing 85 mol% or more is preferably used.
  • the monovinyl aromatic compound (e) may contain a monovinyl aromatic compound other than those described above, and may preferably contain a small amount of less than 50 mol%.
  • these monovinyl aromatic compounds include nuclear alkyl substituted monovinyl aromatic compounds, ⁇ -alkyl substituted monovinyl aromatic compounds, ⁇ -alkyl substituted styrenes, alkoxy substituted styrenes and the like.
  • Styrene, ethyl vinyl benzene (both isomers of m- and p-), ethyl vinyl biphenyl (including each isomer) to prevent copolymer gelation and improve solubility in solvents and processability ) Is suitable from the viewpoint of cost and availability.
  • divinyl aromatic compounds (f) examples include divinylbenzene (m- and p-isomers), divinylnaphthalene (including isomers), divinylbiphenyl (including isomers), etc. Although it can, it is not limited to these. Moreover, these can be used individually or in combination of 2 or more types. In particular, divinylbenzene (both isomers of m- and p-) is required from the viewpoint of cost and availability. When higher heat resistance is required, divinylnaphthalene (including each isomer), divinylbiphenyl (Including each isomer) is preferably used.
  • the Mw of the copolymer used in the present invention is in the range of 2,000 to 100,000, preferably 2,500 to 60,000, more preferably 3,000 to 50,000. If the Mw is less than 2,000, the copolymer is too low in viscosity, so that the processability is lowered. On the other hand, if the Mw exceeds 100,000, gel is easily formed and compatibility cannot be expected.
  • the value of the molecular weight distribution (Mw / Mn) is 50.0 or less, preferably 20.0 or less, more preferably 1.5 to 3.0. When Mw / Mn exceeds 50.0, problems such as deterioration of the processing properties of the copolymer and generation of gel occur.
  • the copolymer used in the present invention has a (meth) acrylate group at the side chain or terminal, copolymerization with the (meth) acrylate compound can proceed well, and the (meth) acrylate compound and Very compatible with resin. Therefore, when it is copolymerized with a (meth) acrylate compound and cured, it is excellent in uniform curability and transparency.
  • copolymer of component (A) used in the present invention is in accordance with the methods described in Patent Document 1, Japanese Patent Application Laid-Open No. 2004-123873, Japanese Patent Application Laid-Open No. 2005-213443, Japanese Patent Application Laid-Open No. 2010-229263, and the like. Obtainable.
  • the component (B) is a (meth) acrylate represented by the general formula (1) and having a fluorene skeleton.
  • R 1 and R 2 are independently H or CH 3
  • R 3 and R 4 are independently CH 2 O, CH 2 CH 2 O, CH 2 CH (CH 3 ) O, CH 2 CH 2 CH 2 O, CH 2 CH (OH) CH 2 O, or CH 2 CH (OR 5 ) CH 2 O.
  • R 5 is a meta (acryloyl) group
  • k and l are each independently 0 or a number of 1 or more, but both cannot be 0.
  • k + 1 is 0-4.
  • m and n independently represent a number from 0 to 4.
  • R 3 and R 4 are CH 2 CH 2 O, CH 2 CH (OH) CH 2 O, or CH 2 CH (OR 5 in order to balance the properties such as high refractive index, compatibility, and reactivity in a balanced manner.
  • CH 2 O is preferred, and m and n are preferably 1 to 2.
  • the number of (meth) acryloyl groups possessed by this (meth) acrylate is preferably 1 to 4, more preferably 2 to 4.
  • Examples of the (meth) acrylate of the component B include, as a specific compound, a diacryl monomer having a bisphenolfluorene skeleton, a dimethacryl monomer, or a monomer having an acrylic group and a methacryl group.
  • Component initiator includes photopolymerization initiator or thermal polymerization initiator.
  • photopolymerization initiator compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be suitably used.
  • the photoinitiator adjuvant and the sharpening agent which show an effect in combination with a photoinitiator can also be used together. These photopolymerization initiators may be used alone or in combination of two or more.
  • thermal polymerization initiator various organic peroxides such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, peroxyester, etc.
  • ketone peroxide peroxyketal
  • hydroperoxide dialkyl peroxide
  • diacyl peroxide peroxydicarbonate
  • peroxyester etc.
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • a (meth) acrylate having 1 to 8 (meth) acryloyl groups in the molecule (provided that the above (A), (B ) Except for cases corresponding to ingredients.
  • the content of the curable resin composition is such that the content of the component (A) is 5.0 to 84 wt% with respect to the total of the components (A) to (D), the content of the component (B) is 5.0 to 84 wt%, And (C) component 0.1 to 10 wt%, (D) component content 10 to 70 wt%, and (A) component to (A) component (A) to 100 parts by weight of component (A) And (B) the total blending amount is preferably 30 to 90 wt%.
  • the component (D) 1 to 8 functional (meth) acrylate is used.
  • those having two or more (meth) acryloyl groups in the molecule are called polyfunctional (meth) acrylates, and preferably one or more of polyfunctional (meth) acrylates are used.
  • the component (D) should have an average of 2 to 5 (meth) acryloyl groups per molecule.
  • the average number of (meth) acryloyl groups per molecule is calculated by the total number of (meth) acryloyl groups / total number of molecules, and the total number of molecules of (meth) acrylate having one or more (meth) acrylate groups.
  • the components (A) and (B) and the (meth) acryloyl groups contained in them are excluded from the calculation.
  • These polyfunctional acrylates used as the component (D) are synergistically combined with the component (A) and the component (B), such as low color dispersion and high light transmittance, in addition to heat resistance and surface hardness. The optical properties are improved at the same time.
  • the polyfunctional (meth) acrylate is preferably copolymerizable with the component (A) and the component (B), such as 1,4-butanediol di (meth) acrylate, 1,6-hexanediol diester.
  • one or more monofunctional (meth) acrylates having one (meth) acryloyl group in the molecule can be used, but these monofunctional (meth) acrylates are (
  • the optical properties such as high color dispersion, low color dispersion, and high light transmittance are improved synergistically, and fluidity is improved. By raising, moldability can be improved.
  • monofunctional (meth) acrylate monofunctional (meth) acrylic acid ester (a) having an alicyclic structure used for producing the copolymer as component (A) is preferably used.
  • acryloylmorpholine 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate , Cyclohexane-1,4-dimethanol mono (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl ( (Meth) acrylate, o- Phenylphenol polyethoxy (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate, dicyclopentanyl (
  • the preferred blending composition of the curable resin composition of the present invention is as follows.
  • the blending amount of component (A) is 5.0 to 80 wt%, preferably 5.0 to 60 wt%
  • the blending amount of component (B) is 5.0 to 80 wt%, preferably 10 to 60 wt%
  • the blending amount of component (C) is 0.1 ⁇ 10wt%, preferably 0.1-5wt%.
  • the amount of the component (D) is 10 to 70 wt%, preferably 20 to 60 wt%, based on the blending amount of the components (A) to (C).
  • the content of component (A) + component (B) is 30 to 90 wt%, preferably 40 to 80 wt%.
  • the blending amount of the component (A) is lower than 5.0 wt%, it is not preferable because the accuracy of the optical surface shape of the molded product is lowered, and when the blending amount of the component (A) is too large, the viscosity increases. In association with this, the moldability and handling properties are remarkably lowered, which is not preferable.
  • the blending amount of the component (B) is lower than 5.0 wt%, the refractive index of the cured product is lowered, which is not preferable. If it is too large, the cured product has low elasticity and the heat resistance of the molded product is lowered. It is not preferable.
  • the blending amount is calculated by excluding this.
  • the curable resin composition of the present invention includes a polymerization inhibitor, an antioxidant, a release agent, a photosensitizer, an organic solvent, a silane coupling agent, a leveling agent, an antifoaming agent, and an antistatic agent as necessary.
  • ultraviolet absorbers, light stabilizers, various inorganic and organic fillers, fungicides, antibacterial agents, and the like can be added to the curable resin composition of the present invention to impart desired functionality, respectively. is there.
  • the curable resin composition of the present invention can be obtained by mixing the component (A), the component (B), the component (C), and the component (D), if necessary, and other components in any order. .
  • the curable resin composition of the present invention is stable over time.
  • the curable resin composition of the present invention can be cured by heating or light irradiation.
  • the molding temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of the thermal polymerization initiator.
  • a cured product can be obtained by irradiating active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • specific examples of the light source used for curing by irradiating with active energy rays include, for example, a xenon lamp, a carbon arc, a germicidal lamp, a fluorescent lamp for ultraviolet rays, a high pressure mercury lamp for copying, a medium pressure mercury lamp, and a high pressure mercury lamp.
  • an ultra high pressure mercury lamp, an electrodeless lamp, a metal halide lamp, or an electron beam using a scanning type or curtain type electron beam acceleration path can be used.
  • the ultraviolet irradiation amount necessary for curing may be about 300 to 20,000 mJ / cm 2 .
  • a resin composition can be hardened more efficiently by hardening in inert gas atmosphere, such as nitrogen gas.
  • the curable resin composition of the present invention can be used for castings such as plastic lenses.
  • a mold made of a gasket made of polyvinyl chloride, an ethylene vinyl acetate copolymer or the like and two glass molds having a desired shape is prepared.
  • the resin composition of the present invention is injected, the resin composition is cured by irradiating active energy rays such as ultraviolet rays, and the cured product is peeled off from the mold.
  • a method for applying the curable resin composition of the present invention to a film-like substrate as a resin composition for a prism lens sheet various methods known in the industry can be used.
  • a resin composition is coated on a mold having a prism lens shape on the surface, a resin composition layer is provided, and a colorless and transparent film-like substrate is formed on the resin composition layer.
  • a material for example, polyvinyl chloride, polystyrene, polycarbonate, poly (meth) acrylate, polyester, polyethylene terephthalate, etc.
  • the film-like base material on which the prism lens-like resin layer is formed can be peeled off from the mold after curing the resin composition layer.
  • the cured resin obtained by molding and curing the curable resin composition of the present invention is excellent as an optical material or an optical article.
  • it is useful as a material for optical plastic lenses such as Fresnel lenses, lenticular lenses, spectacle lenses, and aspheric lenses. And such a lens is used advantageously for an imaging device.
  • the curable resin composition or the cured resin can also be used for optical electronics, optical fiber, optical waveguide and other optoelectronic applications, printing inks, paints, clear coating agents, glossy varnishes, and the like.
  • the solvent resistance was measured by immersing a sample plate prepared by vacuum press-molding the copolymer at 200 ° C for 1 hour in toluene at room temperature for 10 minutes. The change of the sample was visually confirmed, and the solvent resistance was evaluated by classifying it as ⁇ : no change, ⁇ : swelling, ⁇ : deformation, and swelling.
  • the solvent solubility was measured by adding 5 g of the copolymer to 100 ml of solvent and observing the dissolution state after stirring for 10 minutes at 25 ° C. When it was dissolved uniformly and the presence of undissolved matter and gel was not recognized, it was determined to be soluble.
  • Pencil Hardness According to JISK5400, the pencil hardness of a test piece cured on a flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm was measured using a pencil scratch tester. A pencil was applied at a 45 degree angle and a 1 kg load was applied from the top, and scratched about 5 mm to confirm the degree of scratches. The measurement was performed 5 times, and the pencil hardness of one rank below where 2 or more outbreaks were observed in 5 times was described as the pencil hardness test result.
  • Synthesis example 1 1.6 mol (463.2 mL) of dimethylol tricyclodecane diacrylate, 1.2 mol (254.2 mL) of dicyclopentanyl methacrylate, 1.2 mol (226.3 mL) of 1,4-butanediol diacrylate, 0.4 mol (95.5 mL) of 2,4-diphenyl-4-methyl-1-pentene, t- Charge 2.4 mol (564.8 mL) of dodecyl mercaptan and 600 mL of toluene into a 3.0 L reactor, add 40 mmol (11.5 g) of t-butyl peroxy-2-ethylhexanoate at 90 ° C, and react for 2 hours 45 minutes I let you.
  • Copolymer A has a total structural unit (1) derived from dimethylol tricyclodecane diacrylate of 39.6 mol% and a structural unit derived from dicyclopentanyl methacrylate (2 31.1 mol% in total, and 29.3 mol% of structural units (3) derived from 1,4-butanediol diacrylate.
  • the terminal group (4) of the structure derived from 2,4-diphenyl-4-methyl-1-pentene ( ⁇ MSD) includes the structural units (1), (2) and (3), the terminal group (4) and
  • the total amount of terminal groups (5) derived from t-dodecyl mercaptan (TDM) (hereinafter referred to as the total amount of all structural units) was 1.8 mol%.
  • the end group (5) was present in an amount of 7.2 mol% based on the total amount of all the structural units.
  • copolymer A when copolymer A was subjected to a solvent solubility test in toluene, xylene, THF, dichloroethane, dichloromethane, or chloroform, no insoluble matter or gel was observed in any of the solvents.
  • Synthesis example 4 Reactor of 0.66 mol (94.0 mL) divinylbenzene, 0.0275 mol (3.9 mL) ethyl vinylbenzene, 1.56 mol (281.1 g) 4-vinylbiphenyl, 0.88 mol (167.1 mL) 2-phenoxyethyl methacrylate, 610 mL toluene Then, 50 mmol of boron trifluoride diethyl ether complex was added at 50 ° C. and reacted for 4 hours 30 minutes.
  • Synthesis example 5 A 3.0L reactor containing 0.44 mol (62.7 mL) of divinylbenzene, 0.0183 mol (2.6 mL) of ethylvinylbenzene, 1.76 mol (317.2 g) of 4-vinylbiphenyl, 0.66 mol (125.3 mL) of 2-phenoxyethyl methacrylate, and 610 mL of toluene Then, 50 mmol of boron trifluoride diethyl ether complex was added at 50 ° C. and reacted for 4 hours 30 minutes.
  • BZ benzyl methacrylate (monofunctional)
  • BPEF 9,9-bis [4-2 (-acryloyloxyethoxy) phenyl] fluorene
  • BPFEA 9,9-bis [4-3 (-acryloyloxypropoxy, 2-hydroxy) phenyl] fluorene
  • BPA BPA-2EO-dimethacrylate 19NDA: 1,9-nonanediol diacrylate (bifunctional)
  • TMP Trimethylolpropane trimethacrylate (trifunctional)
  • DPHA Dipentaerythritol hexaacrylate (hexafunctional)
  • Perbutyl O t-butyl peroxy-2-ethyl hexanate (Nippon Yushi Co., Ltd.)
  • Irgacure 184 1-hydroxy-cyclohexyl-phenyl-ketone (BASF)

Abstract

Provided is a curable resin composition that exhibits superior optical properties, heat resistance, and accurate mold transferability, and is excellent as an optical lens or prism material. Also provided is a cured product of the same. The curable resin composition contains: 5.0-94wt% of a component (A), which is a polyfunctional copolymer having a plurality of reactive unsaturated groups, a Mw of 2,000-100,000, and solubility in a solvent such as toluene; 5.0-94wt% of a component (B), which is a (meth)acrylate including a bisphenolfluorene skeleton and at least one (meth)acryloyl group in a molecule; and 0.1-10wt% of a component (C), which is an initiator.

Description

硬化性樹脂組成物、硬化物および光学物品Curable resin composition, cured product and optical article
 本発明は、優れた光学特性、耐熱性、及び加工性を有する硬化性樹脂組成物、硬化物及び光学物品に関する。 The present invention relates to a curable resin composition, a cured product, and an optical article having excellent optical characteristics, heat resistance, and processability.
 従来、カメラ用レンズ等の光学分野においては、比較的安価なポリカーボネート樹脂、メタクリル樹脂、脂環式オレフィンポリマー等の熱可塑性樹脂が使用されてきた。しかし、これらの熱可塑性樹脂は耐熱温度、表面硬度が低く、高度の耐熱性、表面硬度や微細加工性が要求される光・電子材料の先端技術分野においては殆ど使用されてこなかった。 Conventionally, in the optical field such as camera lenses, relatively inexpensive thermoplastic resins such as polycarbonate resin, methacrylic resin, and alicyclic olefin polymer have been used. However, these thermoplastic resins have low heat resistance temperature and surface hardness, and have hardly been used in the advanced technical fields of optical and electronic materials that require high heat resistance, surface hardness and fine workability.
 この様な熱可塑性ポリマーの欠点を解決する方法として、特許文献1にはモノビニル芳香族化合物及びジビニル芳香族化合物を共重合して得られ、側鎖にジビニル芳香族化合物由来の反応性ビニル基を含有する構造単位を有する可溶性多官能共重合体が開示されている。しかし、これに開示されている技術によって得られる可溶性多官能共重合体は高温での熱履歴に対しても優れた耐熱性を有しているものの、先端分野に必要とされる加工性と高い屈折率の両立は困難であった。 As a method for solving the disadvantages of such a thermoplastic polymer, Patent Document 1 is obtained by copolymerizing a monovinyl aromatic compound and a divinyl aromatic compound, and a reactive vinyl group derived from a divinyl aromatic compound is added to the side chain. A soluble polyfunctional copolymer having a structural unit is disclosed. However, although the soluble polyfunctional copolymer obtained by the technology disclosed therein has excellent heat resistance against heat history at high temperature, it has high workability required for the advanced field. It was difficult to achieve both refractive indexes.
 一方、ビスフェノールフルオレン誘導体は、多数の芳香環を有するため高い屈折率、高耐熱性を有しており、さらに環構造が異なる面を形成するため、低複屈折率、低硬化収縮率という特長を持っている。これらの特長は光学成形材料とする上で非常に優れているが、光学レンズ用途における光学面形状の精度、強度の点で十分なものではなかった。従って、優れた光学特性を有し、低吸水性、成形性、耐熱性、表面硬度といった特性バランスを備え、加えて湿熱条件のような厳しい実使用条件下での光学特性と無機材料との密着性、並びに、金型形状の精密な転写性が改善された可溶性多官能共重合体、及び、当該共重合体を使用した硬化性樹脂組成物はこれまで存在しなかった。 On the other hand, bisphenol fluorene derivatives have a high refractive index and high heat resistance because they have a large number of aromatic rings, and also have features of low birefringence and low cure shrinkage because they form surfaces with different ring structures. have. Although these features are very excellent for use as an optical molding material, they are not sufficient in terms of the accuracy and strength of the optical surface shape in optical lens applications. Therefore, it has excellent optical properties, has a good balance of properties such as low water absorption, moldability, heat resistance, and surface hardness. In addition, it adheres to optical properties and inorganic materials under severe actual use conditions such as wet heat conditions. So far, there has been no soluble polyfunctional copolymer with improved moldability and precise transfer of mold shape, and a curable resin composition using the copolymer.
特開2008-247978号公報JP 2008-247978 A 特許第4558643号公報Japanese Patent No. 4558643 特開2009-109579号公報JP 2009-109579 A
 本発明は、高屈折率、高光線透過率といった優れた光学特性、耐熱性、及び、加工性を有し、加えて湿熱条件のような厳しい実使用条件下での光学特性、低吸水性と成形時の良好な離型性、耐傷付き性、靭性、表面硬度、並びに、精密な金型転写性が改善された可溶性多官能共重合体(A)とビスフェノールフルオレン骨格を有する反応性(メタ)アクリレート(B)を含んでなる硬化性樹脂組成物、硬化物および光学物品を提供することを目的とする。 The present invention has excellent optical properties such as high refractive index and high light transmittance, heat resistance, and processability, in addition, optical properties under severe actual use conditions such as wet heat conditions, and low water absorption. Good releasability during molding, scratch resistance, toughness, surface hardness, and soluble polyfunctional copolymer (A) with improved mold transferability and reactivity with bisphenolfluorene skeleton (meta) It aims at providing the curable resin composition, cured | curing material, and optical article which comprise an acrylate (B).
 本発明は、(A)成分:反応性の不飽和基を複数有し、重量平均分子量が2,000~100,000であり、更にトルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶であり、反応性の不飽和基を2つ有するモノマーと1つ有するモノマーを共重合させて得られる多官能共重合体、
(B)成分:一般式(1)で表されるフルオレン骨格を有する(メタ)アクリレート、及び
(C)成分:開始剤
を含有する硬化性樹脂組成物であって、(A)~(C)成分の合計に対する(A)成分の含有量が5.0~94wt%、(B)成分の含有量が5.0~94wt%、及び(C)成分の含有量が0.1~10wt%であることを特徴とする硬化性樹脂組成物である。
The present invention comprises the component (A): a plurality of reactive unsaturated groups, a weight average molecular weight of 2,000 to 100,000, and further soluble in toluene, xylene, tetrahydrofuran, dichloroethane, or chloroform. A polyfunctional copolymer obtained by copolymerizing a monomer having two saturated groups and a monomer having one;
(B) component: a (meth) acrylate having a fluorene skeleton represented by the general formula (1), and (C) component: a curable resin composition containing an initiator, wherein (A) to (C) The content of component (A) is 5.0 to 94 wt%, the content of component (B) is 5.0 to 94 wt%, and the content of component (C) is 0.1 to 10 wt% with respect to the total of components It is a curable resin composition.
Figure JPOXMLDOC01-appb-C000003
(式中、R1及びR2は独立してH又はCH3-を表し、R3及びR4は独立して-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH2CH2O-、-CH2CH(OH)CH2O-、又はCH2CH(OR5)CH2O-を表し、R5はメタ(アクリロイル)基、k及びlは独立して0又は1以上の数であるが、k+lは1以上の数であり、m及びnは独立して0~4の数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 independently represent H or CH 3 —, and R 3 and R 4 independently represent —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH 2 CH 2 O—, —CH 2 CH (OH) CH 2 O—, or CH 2 CH (OR 5 ) CH 2 O—, wherein R 5 is a meta (acryloyl) group. , K and l are each independently 0 or a number of 1 or more, k + l is a number of 1 or more, and m and n independently represent a number of 0 to 4.)
 また、本発明は、(A)成分の多官能共重合体が、芳香環、又は脂環構造を有する単官能(メタ)アクリル酸エステル(a)、1種以上の2官能(メタ)アクリル酸エステル(b)、2,4-ジフェニル-4-メチル-1-ペンテン(c)とチオール化合物(d)を含む成分を共重合して得られる共重合体であって、側鎖に2官能(メタ)アクリル酸エステル(b)由来の反応性の(メタ)アクリル基を有し、末端に2,4-ジフェニル-4-メチル-1-ペンテン(c)及びチオール化合物(d)由来の構造単位を有する多官能共重合体であることを特徴とする上記の硬化性樹脂組成物である。 In the present invention, the polyfunctional copolymer of the component (A) is a monofunctional (meth) acrylic acid ester (a) having an aromatic ring or alicyclic structure, and one or more types of bifunctional (meth) acrylic acid. A copolymer obtained by copolymerizing a component containing an ester (b), 2,4-diphenyl-4-methyl-1-pentene (c) and a thiol compound (d), and having bifunctional ( A structural unit derived from 2,4-diphenyl-4-methyl-1-pentene (c) and a thiol compound (d) having a reactive (meth) acrylic group derived from (meth) acrylic acid ester (b) It is a polyfunctional copolymer having the above-mentioned curable resin composition.
 また、本発明は、(A)成分の多官能共重合体が、モノビニル芳香族化合物(e)、ジビニル芳香族化合物(f)及び芳香族系エーテル化合物を共重合して得られ、側鎖にジビニル芳香族化合物(f)由来の反応性ビニル基を有し、その末端に平均して1分子あたり1個以上の下記式(2)で表される芳香族系エーテル化合物に由来の構造単位を有する多官能共重合体であることを特徴とする上記の硬化性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(式中、R6はH又はCH3、R7は酸素原子又は硫黄原子を含んでもよい炭素数1~18の炭化水素基を表す。)
In the present invention, the polyfunctional copolymer of the component (A) is obtained by copolymerizing the monovinyl aromatic compound (e), the divinyl aromatic compound (f) and the aromatic ether compound, and has a side chain. A structural unit derived from an aromatic ether compound represented by the following formula (2) having a reactive vinyl group derived from a divinyl aromatic compound (f) and having an average of 1 or more per molecule at its end. It is a polyfunctional copolymer having the above-mentioned curable resin composition.
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 6 represents H or CH 3 , and R 7 represents a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom or a sulfur atom.)
 更に、本発明は、上記(A)、(B)、(C)成分に加えて、(D)成分として、分子中に1~8個の(メタ)アクリロイル基を有する(メタ)アクリレート(但し、上記(A)、(B)成分に該当する場合を除く。)を含有し、(A)~(D)成分の合計に対する(A)成分の含有量が5.0~84wt%、(B)成分の含有量が5.0~84wt%、及び(C)成分の含有量が0.1~10wt%、(D)成分の含有量が10~70wt%であって、かつ、(A)~(D)成分の合計100重量部に対する(A)成分と(B)成分の合計の配合量が30~90wt%であることを特徴とする上記の硬化性樹脂組成物である。 Furthermore, the present invention provides a (meth) acrylate having 1 to 8 (meth) acryloyl groups in the molecule as the component (D) in addition to the components (A), (B) and (C) (provided that And (A) and (B) except for the above case), and the content of component (A) with respect to the total of components (A) to (D) is 5.0 to 84 wt%, and component (B) The content of the component (C) is 0.1 to 10 wt%, the content of the component (D) is 10 to 70 wt%, and the components (A) to (D) The curable resin composition described above, wherein the total amount of the component (A) and the component (B) is 30 to 90 wt% with respect to 100 parts by weight in total.
 また、本発明は上記硬化性樹脂組成物を硬化して得られたことを特徴とする樹脂硬化物、及びこの樹脂硬化物から形成された光学物品である。かかる光学物品としては、光学レンズ、マイクロレンズアレイや撮像装置がある。 Further, the present invention is a cured resin obtained by curing the curable resin composition, and an optical article formed from the cured resin. Such optical articles include optical lenses, microlens arrays, and imaging devices.
 本発明の硬化性樹脂組成物又はこれを硬化させて得られる樹脂硬化物は、高い屈折率、低複屈折率、高透明性等の優れた光学特性、耐熱性、及び加工性を有し、加えてリフロー条件のような厳しい実使用条件下での光学特性、低吸水性と成形時の良好な離型性、耐傷付き性、靭性、表面硬度、並びに精密な金型転写性が改善される。また、本発明の樹脂硬化物は光学レンズ・プリズム材料として優れる。 The curable resin composition of the present invention or a cured resin obtained by curing this has excellent optical properties such as high refractive index, low birefringence, and high transparency, heat resistance, and processability, In addition, optical properties under severe actual use conditions such as reflow conditions, low water absorption and good mold release during molding, scratch resistance, toughness, surface hardness, and precise mold transfer are improved. . The cured resin of the present invention is excellent as an optical lens / prism material.
 以下、本発明の硬化性樹脂組成物について説明する。まず、必須成分として配合される(A)~(C)成分について説明する。 Hereinafter, the curable resin composition of the present invention will be described. First, the components (A) to (C) blended as essential components will be described.
 本発明の(A)成分には、反応性の不飽和結合を複数持ち、重量平均分子量が2,000~100,000であり、更にトルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶である多官能共重合体が使用される。以下、(A)成分である多官能共重合体を共重合体と略称することがある。 The component (A) of the present invention has a plurality of reactive unsaturated bonds, has a weight average molecular weight of 2,000 to 100,000, and is further soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Is used. Hereinafter, the polyfunctional copolymer as the component (A) may be abbreviated as a copolymer.
 (A)成分は可溶性の多官能共重合体であるが、可溶性とはトルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶であることを意味する。好ましくは上記溶媒の全部に可溶である。可溶性の試験は実施例に示す条件でなされる。 The component (A) is a soluble polyfunctional copolymer, but the term “soluble” means soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Preferably it is soluble in all of the above solvents. The solubility test is performed under the conditions shown in the examples.
 (A)成分の共重合体は、モノビニル化合物等の重合反応性の不飽和基を1つ有するモノマー(単官能成分)及びジビニル化合物等の重合反応性の不飽和基を2つ有するモノマー(2官能成分)を主とする単量体成分を共重合することにより有利に得られる。2官能成分は、分岐構造又は架橋構造を与えるが、かかる架橋構造の存在量は可溶性を示す程度に制限される。分岐構造の末端はジビニル化合物等の2官能成分に由来する未反応の不飽和基を含む。したがって、2官能成分由来の未反応の(メタ)アクリル基又はビニル基等の不飽和基を側鎖に有する共重合体となっている。この未反応の不飽和基はペンダント(メタ)アクリル基又はペンダントビニル基等ともいい、これは重合性を示すため、更なる重合処理により重合し、溶剤不溶の樹脂硬化物を与えることができる。未反応の不飽和基は1分子中に平均して2以上である必要があるが、好ましくは3以上である。未反応の不飽和基の割合を高めるためには、2官能成分の使用量を多くし、連鎖移動剤を使用して重合すること等により可能である。 The copolymer (A) is composed of a monomer having one polymerizable reactive unsaturated group such as a monovinyl compound (monofunctional component) and a monomer having two polymerizable reactive unsaturated groups such as a divinyl compound (2 It is advantageously obtained by copolymerizing a monomer component mainly composed of a functional component). The bifunctional component provides a branched structure or a crosslinked structure, but the abundance of such a crosslinked structure is limited to the extent that it is soluble. The terminal of the branched structure contains an unreacted unsaturated group derived from a bifunctional component such as a divinyl compound. Therefore, it is a copolymer having an unreacted (meth) acryl group derived from a bifunctional component or an unsaturated group such as a vinyl group in the side chain. This unreacted unsaturated group is also referred to as a pendant (meth) acryl group or a pendant vinyl group, and since it exhibits polymerizability, it can be polymerized by further polymerization treatment to give a solvent-insoluble resin cured product. The average number of unreacted unsaturated groups needs to be 2 or more per molecule, but is preferably 3 or more. In order to increase the ratio of the unreacted unsaturated group, it is possible to increase the amount of the bifunctional component used for polymerization using a chain transfer agent.
 好ましい共重合体には、不飽和基を1つ有するモノマーとして芳香環又は脂環構造を有する単官能(メタ)アクリル酸エステル(a)を使用し、不飽和基を2つ有するモノマーとして1種以上の2官能(メタ)アクリル酸エステル(b)を使用し、更に副成分として2,4-ジフェニル-4-メチル-1-ペンテン(c)とチオール化合物(d)を使用し、これを重合して得られる共重合体(A-1)がある。 Preferred copolymers include monofunctional (meth) acrylic acid ester (a) having an aromatic ring or alicyclic structure as a monomer having one unsaturated group, and one kind of monomer having two unsaturated groups. The above bifunctional (meth) acrylic acid ester (b) is used, and 2,4-diphenyl-4-methyl-1-pentene (c) and thiol compound (d) are used as subcomponents and polymerized. There is a copolymer (A-1) obtained as above.
 共重合体(A-1)を構成する芳香環構造を有する単官能モノマー(メタ)アクリル酸エステル(a-1)としては、ベンジルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート等のアクリレート及びこれらのメタクリレートからなる群から選ばれる一種以上単官能(メタ)アクリル酸エステルを挙げることができるを挙げることが出来る。また、脂環構造を有する単官能モノマー(メタ)アクリル酸エステル(a-2)としては、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、イソボルニルアクリレート等のアクリレート及びこれらのメタクリレートからなる群から選ばれる一種以上単官能(メタ)アクリル酸エステルを挙げることができるが、これらに制限されるものではない。 Monofunctional monomer (meth) acrylic acid ester (a-1) having an aromatic ring structure constituting copolymer (A-1) includes benzyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 2-naphthyl acrylate, thiophenol Examples thereof include one or more monofunctional (meth) acrylic acid esters selected from the group consisting of acrylates such as acrylate and benzyl mercaptan acrylate, and methacrylates thereof. Moreover, as monofunctional monomer (meth) acrylic acid ester (a-2) having an alicyclic structure, from acrylates such as cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, isobornyl acrylate, and these methacrylates One or more monofunctional (meth) acrylic acid esters selected from the group consisting of can be mentioned, but the invention is not limited thereto.
 共重合体(A-1)を構成する2官能(メタ)アクリル酸エステル(b)としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレートシクロへキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、2,4-ジ(メタ)アクリロイルオキシナフタレン、9,9-ビス[4-2(-アクリロイルオキシエトキシ)フェニル]フルオレン等の2官能(メタ)アクリル酸エステルを用いることができるが、これらに制限されるものではない。ここで、EO、POはエチレンオキサイド、プロピレンオキサイドを意味する。 Examples of the bifunctional (meth) acrylic acid ester (b) constituting the copolymer (A-1) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate cyclohexane dimethanol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, EO modified bisphenol A diacrylate, Use bifunctional (meth) acrylic esters such as PO-modified bisphenol A diacrylate, 2,4-di (meth) acryloyloxynaphthalene, 9,9-bis [4-2 (-acryloyloxyethoxy) phenyl] fluorene However, it is not limited to these. Here, EO and PO mean ethylene oxide and propylene oxide.
 共重合体(A-1)に靭性、離型性、反応性等の機能を付与したい場合、用いる(メタ)アクリル酸エステルにより任意に調節することができる。(メタ)アクリル酸エステルの具体例としては、コスト、重合制御の容易さ及び得られたポリマーの耐熱性の点で脂環構造を持つジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロへキサンジメタノールジ(メタ)アクリレート及びジメチロールトリシクロデカンジ(メタ)アクリレートが好ましく用いられる。また、硬化物の靭性、離型性などの成形加工性の点では、脂環構造を持たないn-ブチルアクリレート、n-ヘキシルアクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレートを用いることが好ましい。 When it is desired to impart functions such as toughness, releasability and reactivity to the copolymer (A-1), it can be arbitrarily adjusted depending on the (meth) acrylate used. Specific examples of (meth) acrylic acid esters include dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate having an alicyclic structure in terms of cost, ease of polymerization control and heat resistance of the obtained polymer, Cyclohexane dimethanol di (meth) acrylate and dimethylol tricyclodecane di (meth) acrylate are preferably used. In addition, n-butyl acrylate, n-hexyl acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, which do not have an alicyclic structure, in terms of moldability such as toughness and releasability of the cured product 1,4-butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and diethylene glycol di (meth) acrylate are preferably used.
 2,4-ジフェニル-4-メチル-1-ペンテン(c)及びチオール化合物(d)は、連鎖移動剤として機能し、共重合体の分子量を制御する。本発明の共重合体の分子量は重量平均分子量Mw(ここで、Mwはゲル浸透クロマトグラフィーを用いて測定される標準ポリスチレン換算の重量平均分子量である)として、2,000~100,000の範囲であり、好ましくは2,500~60,000、更に好ましくは3,000~50,000の範囲である。この分子量範囲の共重合体を使用することにより樹脂硬化物の成形性及び離型性をより高めることができる。 2,4-diphenyl-4-methyl-1-pentene (c) and thiol compound (d) function as a chain transfer agent and control the molecular weight of the copolymer. The molecular weight of the copolymer of the present invention is in the range of 2,000 to 100,000 as the weight average molecular weight Mw (where Mw is the weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography), preferably Is in the range of 2,500-60,000, more preferably 3,000-50,000. By using a copolymer having this molecular weight range, the moldability and mold release property of the cured resin can be further improved.
 チオール化合物(d)としては、連鎖移動剤として作用することが知られているチオール化合物であればよいが、好ましくはt-ドデシルメルカプタン、n-ドデシルメルカプタン、t-オクチルメルカプタン、n-オクチルメルカプタン、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート、ジペンタエリスリトールへキサ-3-メルカプトプロピオネート及び(トリス-[(3-メルカプトプロピオニロキシ)-エチル]-イソシアヌレート)等である。これらの内、重合制御の容易さ、生成した共重合体の靭性の観点から、特に好適に使用されるのは、t-ドデシルメルカプタン、n-ドデシルメルカプタン、t-オクチルメルカプタン、n-オクチルメルカプタンなどの炭素数5~30のモノアルキルメルカプタンである。 The thiol compound (d) may be any thiol compound known to act as a chain transfer agent, preferably t-dodecyl mercaptan, n-dodecyl mercaptan, t-octyl mercaptan, n-octyl mercaptan, Trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol hex-3-mercaptopropionate and (tris-[(3-mercaptopropionyloxy) -ethyl ] -Isocyanurate). Of these, t-dodecyl mercaptan, n-dodecyl mercaptan, t-octyl mercaptan, n-octyl mercaptan, etc. are particularly preferably used from the viewpoint of ease of polymerization control and toughness of the produced copolymer. Is a monoalkyl mercaptan having 5 to 30 carbon atoms.
 他の好ましい共重合体としては、不飽和基を1つ有するモノマーとしてモノビニル芳香族化合物(e)を使用し、不飽和基を2つ有するモノマーとしてジビニル芳香族化合物(f)を使用し、更に副成分として芳香族系エーテル化合物を使用して得られる共重合体(A-2)がある。 As another preferred copolymer, a monovinyl aromatic compound (e) is used as a monomer having one unsaturated group, a divinyl aromatic compound (f) is used as a monomer having two unsaturated groups, and There is a copolymer (A-2) obtained by using an aromatic ether compound as an accessory component.
 共重合体(A-2)は、モノビニル芳香族化合物(e)に由来する構造単位及びジビニル芳香族化合物(f)に由来する構造単位の他、芳香族系エーテル化合物に由来する上記式(2)で表される構造単位(以下、構造単位(g)ともいう)を有する。そして、上記式(2)で表される末端基を末端基(g)という。そして、概ね共重合体の重合鎖(主鎖及び側鎖)はジビニル芳香族化合物及びモノビニル芳香族化合物から生じ、末端の一部は芳香族系エーテル化合物から生じることが望ましい。 The copolymer (A-2) includes the structural unit derived from the monovinyl aromatic compound (e) and the structural unit derived from the divinyl aromatic compound (f), as well as the above formula (2) derived from the aromatic ether compound. ) (Hereinafter also referred to as structural unit (g)). And the terminal group represented by the said Formula (2) is called terminal group (g). In general, it is desirable that the polymer chain (main chain and side chain) of the copolymer is generated from a divinyl aromatic compound and a monovinyl aromatic compound, and a part of the terminal is generated from an aromatic ether compound.
 構造単位(g)又は末端基(g)を与える芳香族系エーテル化合物としては、2-フェノキシエチル(メタ)アクリレート、アルコキシ化2-フェノキシエチル(メタ)アクリレートが好ましく例示される。しかし、これらに限定されない。反応性、硬化物の耐熱性、入手の容易さの観点から、2-フェノキシエチル(メタ)アクリレートがより好ましい。2-フェノキシエチル(メタ)アクリレートは、重合性基を有するので、他の単量体と共重合可能であるが、末端基(g)となるためには、重合性基は反応性が低く、多くが未反応で残り、そのベンゼン環にジビニル芳香族化合物(f)のビニル基が反応した構造となることが好ましい。 Preferred examples of the aromatic ether compound that gives the structural unit (g) or the terminal group (g) include 2-phenoxyethyl (meth) acrylate and alkoxylated 2-phenoxyethyl (meth) acrylate. However, it is not limited to these. In view of reactivity, heat resistance of the cured product, and availability, 2-phenoxyethyl (meth) acrylate is more preferable. Since 2-phenoxyethyl (meth) acrylate has a polymerizable group, it can be copolymerized with other monomers, but in order to become a terminal group (g), the polymerizable group has low reactivity, Most of them remain unreacted, and the benzene ring preferably has a structure in which the vinyl group of the divinyl aromatic compound (f) is reacted.
 上記式(2)において、R6はH又はCH3を表すが、これらは使用する芳香族エーテル化合物によって決まる。R7は炭素鎖の間に酸素原子又は硫黄原子を含んでもよい炭素数1~18の炭化水素基を表すが、好ましくは炭素数1~6の炭化水素基であり、より好ましくは-CnH2n-で表されるアルキレン基である。ここで、nは1~4の範囲がより好ましい。 In the above formula (2), R 6 represents H or CH 3, which depends on the aromatic ether compound used. R 7 represents a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom or a sulfur atom between carbon chains, preferably a hydrocarbon group having 1 to 6 carbon atoms, more preferably —CnH 2n An alkylene group represented by-. Here, n is more preferably in the range of 1 to 4.
 モノビニル芳香族化合物(e)としてはスチレン、エチルビニルベンゼン、ビニルビフェニル及びビニルナフタレンからなる群から選ばれる1種以上のビニル芳香族化合物を50モル%以上、好ましくは70モル%以上、更に好ましくは85モル%以上含むモノビニル芳香族化合物を使用することがよい。 As the monovinyl aromatic compound (e), one or more vinyl aromatic compounds selected from the group consisting of styrene, ethyl vinyl benzene, vinyl biphenyl and vinyl naphthalene are 50 mol% or more, preferably 70 mol% or more, more preferably A monovinyl aromatic compound containing 85 mol% or more is preferably used.
 また、モノビニル芳香族化合物(e)は上記以外のモノビニル芳香族化合物を含んでいても良く、好ましくは50モル%未満の少量を含んでいても良い。これらのモノビニル芳香族化合物の例としては、核アルキル置換モノビニル芳香族化合物、α-アルキル置換モノビニル芳香族化合物、β-アルキル置換スチレン、アルコキシ置換スチレン等がある。共重合体のゲル化を防ぎ、溶媒への溶解性、加工性を改善するために、特にスチレン、エチルビニルベンゼン(m-及びp-両方の異性体)、エチルビニルビフェニル(各異性体を含む)がコスト及び入手の容易さの観点から適する。 In addition, the monovinyl aromatic compound (e) may contain a monovinyl aromatic compound other than those described above, and may preferably contain a small amount of less than 50 mol%. Examples of these monovinyl aromatic compounds include nuclear alkyl substituted monovinyl aromatic compounds, α-alkyl substituted monovinyl aromatic compounds, β-alkyl substituted styrenes, alkoxy substituted styrenes and the like. Styrene, ethyl vinyl benzene (both isomers of m- and p-), ethyl vinyl biphenyl (including each isomer) to prevent copolymer gelation and improve solubility in solvents and processability ) Is suitable from the viewpoint of cost and availability.
 ジビニル芳香族化合物(f)の例としては、ジビニルベンゼン(m-及びp-両方の異性体)、ジビニルナフタレン(各異性体を含む)、ジビニルビフェニル(各異性体を含む)等を用いることができるが、これらに限定されない。また、これらは単独又は2種以上を組み合わせて用いることができる。特に、コスト及び入手の容易さの観点からはジビニルベンゼン(m-及びp-両方の異性体)が、より高度の耐熱性が求められる場合は、ジビニルナフタレン(各異性体を含む)、ジビニルビフェニル(各異性体を含む)が好ましく使用される。 Examples of divinyl aromatic compounds (f) include divinylbenzene (m- and p-isomers), divinylnaphthalene (including isomers), divinylbiphenyl (including isomers), etc. Although it can, it is not limited to these. Moreover, these can be used individually or in combination of 2 or more types. In particular, divinylbenzene (both isomers of m- and p-) is required from the viewpoint of cost and availability. When higher heat resistance is required, divinylnaphthalene (including each isomer), divinylbiphenyl (Including each isomer) is preferably used.
 本発明に使用される共重合体のMwは2,000~100,000の範囲であり、好ましくは2,500~60,000、更に好ましくは3,000~50,000の範囲である。Mwが2,000未満であると共重合体の粘度が低すぎるため、加工性が低下し、また、Mwが100,000を超えると、ゲルが生成しやすくなり相溶性が望めない。分子量分布(Mw/Mn)の値は50.0以下、好ましくは20.0以下、より好ましくは1.5~3.0である。Mw/Mnが50.0を超えると、共重合体の加工特性の悪化、ゲルの発生といった問題点を生ずる。 The Mw of the copolymer used in the present invention is in the range of 2,000 to 100,000, preferably 2,500 to 60,000, more preferably 3,000 to 50,000. If the Mw is less than 2,000, the copolymer is too low in viscosity, so that the processability is lowered. On the other hand, if the Mw exceeds 100,000, gel is easily formed and compatibility cannot be expected. The value of the molecular weight distribution (Mw / Mn) is 50.0 or less, preferably 20.0 or less, more preferably 1.5 to 3.0. When Mw / Mn exceeds 50.0, problems such as deterioration of the processing properties of the copolymer and generation of gel occur.
 本発明に使用される共重合体は、側鎖又は末端に(メタ)アクリレート基を有するため、(メタ)アクリレート化合物との共重合化が良好に進行可能であり、また(メタ)アクリレート化合物及び樹脂に対し相溶性が非常に高い。したがって、(メタ)アクリレート化合物と共重合させて硬化させた場合、均一硬化性や透明性に優れるものとなる。 Since the copolymer used in the present invention has a (meth) acrylate group at the side chain or terminal, copolymerization with the (meth) acrylate compound can proceed well, and the (meth) acrylate compound and Very compatible with resin. Therefore, when it is copolymerized with a (meth) acrylate compound and cured, it is excellent in uniform curability and transparency.
 本発明に使用される(A)成分の共重合体は特許文献1、特開2004-123873号公報、特開2005-213443号号公報、特開2010-229263公報等に示される方法に準じて得ることができる。 The copolymer of component (A) used in the present invention is in accordance with the methods described in Patent Document 1, Japanese Patent Application Laid-Open No. 2004-123873, Japanese Patent Application Laid-Open No. 2005-213443, Japanese Patent Application Laid-Open No. 2010-229263, and the like. Obtainable.
 次に、本発明の硬化性樹脂組成物の(B)成分として使用される(メタ)アクリレートについて説明する。 Next, (meth) acrylate used as the component (B) of the curable resin composition of the present invention will be described.
 (B)成分は、上記一般式(1)で表され、フルオレン骨格を有する(メタ)アクリレートである。一般式(1)において、
R1およびR2は独立してH又はCH3であり、
R3及びR4は独立してCH2O、CH2CH2O、CH2CH(CH3)O、CH2CH2CH2O、CH2CH(OH)CH2O、又はCH2CH(OR5)CH2Oである。
R5はメタ(アクリロイル)基、k及びlは独立して0か1以上の数であるが、両方ともに0となることはない。好ましくは、k+lは0~4である。
m及びnは独立して0~4の数を表す。
 高い屈折率、相溶性、反応性等の特性をバランス良く両立する上で、R3及びR4は、CH2CH2O、CH2CH(OH)CH2O、又はCH2CH(OR5)CH2Oが好ましく、m及びnは1~2が好ましい。また、この(メタ)アクリレートが持つ(メタ)アクリロイル基の数は、好ましくは1~4であり、より好ましくは2~4である。
The component (B) is a (meth) acrylate represented by the general formula (1) and having a fluorene skeleton. In general formula (1),
R 1 and R 2 are independently H or CH 3 ,
R 3 and R 4 are independently CH 2 O, CH 2 CH 2 O, CH 2 CH (CH 3 ) O, CH 2 CH 2 CH 2 O, CH 2 CH (OH) CH 2 O, or CH 2 CH (OR 5 ) CH 2 O.
R 5 is a meta (acryloyl) group, and k and l are each independently 0 or a number of 1 or more, but both cannot be 0. Preferably, k + 1 is 0-4.
m and n independently represent a number from 0 to 4.
R 3 and R 4 are CH 2 CH 2 O, CH 2 CH (OH) CH 2 O, or CH 2 CH (OR 5 in order to balance the properties such as high refractive index, compatibility, and reactivity in a balanced manner. ) CH 2 O is preferred, and m and n are preferably 1 to 2. Further, the number of (meth) acryloyl groups possessed by this (meth) acrylate is preferably 1 to 4, more preferably 2 to 4.
 B成分の(メタ)アクリレートとしては、具体的な化合物として例えば、ビスフェノールフルオレン骨格を有する、ジアクリルモノマー、ジメタクリルモノマー、又はアクリル基およびメタクリル基を有するモノマーが挙げられる。具体的には、9,9-ビス(4-(メタ)アクリロイルオキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシプロポキシ)フェニル)フルオレン、9,9-ビス(4-(3-(メタ)アクリロイルオキシプロポキシ)フェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジメトキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジプロポキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリメトキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリエトキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリプロポキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシプロポキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(3- (メタ)アクリロイルオキシプロポキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジメトキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジエトキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジプロポキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリメトキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリエトキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリプロポキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)-3-エチルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシプロポキシ)-3-エチルフェニル)フルオレン、9,9-ビス(4-(3-(メタ)アクリロイルオキシプロポキシ)-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジメトキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジエトキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジプロポキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリメトキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリエトキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリプロポキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシメトキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)-3-プロピルフェニル)フルオレン、9,9-ビス(4-(2-(メタ)アクリロイルオキシプロポキシ)-3-プロピルフェニル)フルオレン、9,9-ビス(4-(3-(メタ)アクリロイルオキシプロポキシ)-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジメトキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジエトキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシジプロポキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリメトキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリエトキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシトリプロポキシ-3-プロピルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-(2-ヒドロキシ)プロポキシフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-(2-ヒドロキシ)プロポキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-(メタ)アクリロイルオキシ-(2-ヒドロキシ)プロポキシエトキシフェニル)フルオレン、ビスフェノールフルオレンジヒドロキシアクリレートすなわち9,9-ビス(4-ヒドロキシフェニル)フルオレンのグリシジルエーテルのアクリル酸付加物(新日鉄化学(株)製)、ビスフェノールフルオレンジメタクリレート(新日鉄化学(株)製)、ビスフェノキシエタノールフルオレンジアクリレート(大阪ガス(株)製、BPEF-A)、ビスフェノキシエタノールフルオレンジメタアクリレート(大阪ガス(株)製、BPEF-MA)、ビスフェノキシエタノールフルオレンジエポキシアクリレート(大阪ガス(株)製、BPEF-GA)、ビスフェノールフルオレンジエポキシアクリレート(大阪ガス(株)製、BPF-GA)、ビスクレゾールフルオレンジエポキシアクリレート(大阪ガス(株)製、BCF-GA)等が挙げられる。 Examples of the (meth) acrylate of the component B include, as a specific compound, a diacryl monomer having a bisphenolfluorene skeleton, a dimethacryl monomer, or a monomer having an acrylic group and a methacryl group. Specifically, 9,9-bis (4- (meth) acryloyloxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxymethoxyphenyl) fluorene, 9,9-bis (4- (2 -(Meth) acryloyloxyethoxy) phenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxypropoxy) phenyl) fluorene, 9,9-bis (4- (3- (meth) acryloyloxy) (Propoxy) phenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydimethoxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydiethoxyphenyl) fluorene, 9,9-bis (4 -(Meth) acryloyloxydipropoxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytrimethoxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytriethoxyphenyl) fluorene, 9,9-bis (4- (meth) acryloylio Xytripropoxyphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxy-3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxymethoxy-3-methylphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxyethoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxypropoxy) -3-methylphenyl) Fluorene, 9,9-bis (4- (3- (meth) acryloyloxypropoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydimethoxy-3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydiethoxy-3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydipropoxy-3-methylphenyl) fluorene, 9,9- Bis (4- (meth) acryloyloxytrimethoxy-3-methylphenyl) full 9,9-bis (4- (meth) acryloyloxytriethoxy-3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytripropoxy-3-methylphenyl) fluorene, 9, 9-bis (4- (meth) acryloyloxy-3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxymethoxy-3-ethylphenyl) fluorene, 9,9-bis (4- ( 2- (meth) acryloyloxyethoxy) -3-ethylphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxypropoxy) -3-ethylphenyl) fluorene, 9,9-bis (4 -(3- (meth) acryloyloxypropoxy) -3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydimethoxy-3-ethylphenyl) fluorene, 9,9-bis (4- ( (Meth) acryloyloxydiethoxy-3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acrylo Ruoxydipropoxy-3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytrimethoxy-3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytriethoxy -3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytripropoxy-3-ethylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxy-3-propylphenyl) Fluorene, 9,9-bis (4- (meth) acryloyloxymethoxy-3-propylphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxyethoxy) -3-propylphenyl) fluorene, 9,9-bis (4- (2- (meth) acryloyloxypropoxy) -3-propylphenyl) fluorene, 9,9-bis (4- (3- (meth) acryloyloxypropoxy) -3-propylphenyl) Fluorene, 9,9-bis (4- (meth) acryloyloxydimethoxy Cy-3-propylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydiethoxy-3-propylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxydipropoxy-3- Propylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytrimethoxy-3-propylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxytriethoxy-3-propylphenyl) fluorene 9,9-bis (4- (meth) acryloyloxytripropoxy-3-propylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxy- (2-hydroxy) propoxyphenyl) fluorene, 9-bis (4- (meth) acryloyloxy- (2-hydroxy) propoxy-3-methylphenyl) fluorene, 9,9-bis (4- (meth) acryloyloxy- (2-hydroxy) propoxyethoxyphenyl) fluorene , Bisphenol Acrylic acid adduct of glycidyl ether of orange hydroxy acrylate, ie 9,9-bis (4-hydroxyphenyl) fluorene (manufactured by Nippon Steel Chemical Co., Ltd.), bisphenol full orange methacrylate (manufactured by Nippon Steel Chemical Co., Ltd.), bisphenoxyethanol full orange Acrylate (Osaka Gas Co., Ltd., BPEF-A), bisphenoxyethanol full orange methacrylate (Osaka Gas Co., Ltd., BPEF-MA), bisphenoxyethanol full orange epoxy acrylate (Osaka Gas Co., Ltd., BPEF-GA) ), Bisphenol full orange epoxy acrylate (manufactured by Osaka Gas Co., Ltd., BPF-GA), biscresol full orange epoxy acrylate (manufactured by Osaka Gas Co., Ltd., BCF-GA), and the like.
 (C)成分の開始剤としては、光重合開始剤又は熱重合開始剤がある。ここで、光重合開始剤としては、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。また、光重合開始剤と組み合わせて効果を発揮する光開始助剤や鋭感剤を併用することもできる。これら光重合開始剤は単独で使用しても、2種類以上を混合して使用してもよい。 (C) Component initiator includes photopolymerization initiator or thermal polymerization initiator. Here, as the photopolymerization initiator, compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be suitably used. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. Moreover, the photoinitiator adjuvant and the sharpening agent which show an effect in combination with a photoinitiator can also be used together. These photopolymerization initiators may be used alone or in combination of two or more.
 また、熱重合開始剤としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシジカーボネート系、パーオキシエステル系など各種の有機過酸化物を好適に使用することができる。具体的にはシクロヘキサノンパーオキサイド、1,1-ビス(t-ヘキサパーオキシ)シクロヘキシサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、t-ブチルパーオキシ2-エチルヘキサノエート等を例示する事ができるが、これに何ら制限されるものではない。また、これら熱重合開始剤は単独で使用しても、2種類以上を混合して使用してもよい。 In addition, as the thermal polymerization initiator, various organic peroxides such as ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, peroxyester, etc. A thing can be used conveniently. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, t-butylperoxy 2-ethyl Although hexanoate etc. can be illustrated, it is not restrict | limited at all to this. These thermal polymerization initiators may be used alone or in combination of two or more.
 上記(A)~(C)成分に加えて、必要により(D)成分として、分子中に1~8個の(メタ)アクリロイル基を有する(メタ)アクリレート(但し、上記(A)、(B)成分に該当する場合を除く。)を配合することができる。この場合、硬化性樹脂組成物における含有量は、(A)~(D)成分の合計に対する(A)成分の含有量が5.0~84wt%、(B)成分の含有量が5.0~84wt%、及び(C)成分の含有量が0.1~10wt%、(D)成分の含有量が10~70wt%であって、かつ、(A)~(D)成分の合計100重量部に対する(A)成分と(B)成分の合計の配合量が30~90wt%であることが好ましい。 In addition to the above components (A) to (C), if necessary, as a component (D), a (meth) acrylate having 1 to 8 (meth) acryloyl groups in the molecule (provided that the above (A), (B ) Except for cases corresponding to ingredients. In this case, the content of the curable resin composition is such that the content of the component (A) is 5.0 to 84 wt% with respect to the total of the components (A) to (D), the content of the component (B) is 5.0 to 84 wt%, And (C) component 0.1 to 10 wt%, (D) component content 10 to 70 wt%, and (A) component to (A) component (A) to 100 parts by weight of component (A) And (B) the total blending amount is preferably 30 to 90 wt%.
 (D)成分としては1~8官能(メタ)アクリレートが使用される。この中で、分子中に2個以上の(メタ)アクリロイル基を有するものを多官能(メタ)アクリレートとよび、好ましくは多官能(メタ)アクリレートの1種又は2種以上が使用される。有利には、(D)成分は1分子当たり平均して2~5個の(メタ)アクリロイル基を有することがよい。ここで、1分子当たり平均の(メタ)アクリロイル基の数は、全(メタ)アクリロイル基数/全分子数で計算され、全分子数は、(メタ)アクリレート基を1以上有する(メタ)アクリレートの合計として計算されるが、(A)成分及び(B)成分及びそれらに含まれる(メタ)アクリロイル基は計算から除外される。
 これらの(D)成分として用いられる多官能アクリレートは、(A)成分及び(B)成分と併用することによって相乗的に、耐熱性及び表面硬度に加えて、低色分散、高光線透過率といった光学特性が同時に向上する。
As the component (D), 1 to 8 functional (meth) acrylate is used. Among these, those having two or more (meth) acryloyl groups in the molecule are called polyfunctional (meth) acrylates, and preferably one or more of polyfunctional (meth) acrylates are used. Advantageously, the component (D) should have an average of 2 to 5 (meth) acryloyl groups per molecule. Here, the average number of (meth) acryloyl groups per molecule is calculated by the total number of (meth) acryloyl groups / total number of molecules, and the total number of molecules of (meth) acrylate having one or more (meth) acrylate groups. Although calculated as a sum, the components (A) and (B) and the (meth) acryloyl groups contained in them are excluded from the calculation.
These polyfunctional acrylates used as the component (D) are synergistically combined with the component (A) and the component (B), such as low color dispersion and high light transmittance, in addition to heat resistance and surface hardness. The optical properties are improved at the same time.
 上記多官能(メタ)アクリレートとしては、(A)成分及び(B)成分と共重合可能なものがよく、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、ヒドロキシビバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシビバリン酸ネオペングリコールのε-カプロラクトン付加物のジ(メタ)アクリレート(例えば、日本化薬(株)製、KAYARADHX-220、HX-620等)、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及びジメチロールトリシクロデカンジ(メタ)アクリレート、等のモノマー類を挙げることができる。表面硬度の観点から、特に好ましくは、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパンポリエチキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートを挙げることができる。
 一方光学面の形状精度の観点から、好ましいのは、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートを挙げることができる。
The polyfunctional (meth) acrylate is preferably copolymerizable with the component (A) and the component (B), such as 1,4-butanediol di (meth) acrylate, 1,6-hexanediol diester. (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polypropoxydi (meth) acrylate, bisphenol F polyethoxydi (meth) acrylate, ethylene glycol di (meth) acrylate , Trimethylolpropane trioxyethyl (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol Sa (meth) acrylate, polyethylene glycol di (meth) acrylate, tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tri Pentaerythritol penta (meth) acrylate, neopentyl glycol di (meth) acrylate hydroxybivalate, di (meth) acrylate of ε-caprolactone adduct of neopentyl hydroxybivalate (eg, Nippon Kayaku Co., Ltd.) , KAYARADHX-220, HX-620, etc.), trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) Mention may be made of monomers such as acrylate, cyclohexanedimethanol di (meth) acrylate and dimethyloltricyclodecane di (meth) acrylate. From the viewpoint of surface hardness, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol penta (meth) ) Acrylate, trimethylolpropane polyethytri (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate.
On the other hand, from the viewpoint of the shape accuracy of the optical surface, preferred are cyclohexanedimethanol di (meth) acrylate and dimethyloltricyclodecanedi (meth) acrylate.
 また、(D)成分として、分子中に1個の(メタ)アクリロイル基を有する1種以上の単官能(メタ)アクリレートを使用することもできるが、これらの単官能(メタ)アクリレートは、(A)成分、(B)成分及び多官能(メタ)アクリレートと併用することによって、相乗的に、高色分散、又は低色分散、高光線透過率といった光学特性が同時に向上すると共に、流動性を高めることによって、成形性を向上させることができる。上記単官能(メタ)アクリレートとしては、(A)成分である共重合体を製造するために使用される脂環式構造を有する単官能(メタ)アクリル酸エステル(a)が好ましく使用されるが、その他に例えば、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、シクロへキサン-1,4-ジメタノールモノ(メタ)アクリレート、テトラヒドロフロフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルポリエトキシ(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等を挙げることができる。 In addition, as the component (D), one or more monofunctional (meth) acrylates having one (meth) acryloyl group in the molecule can be used, but these monofunctional (meth) acrylates are ( By using together with A) component, (B) component and polyfunctional (meth) acrylate, the optical properties such as high color dispersion, low color dispersion, and high light transmittance are improved synergistically, and fluidity is improved. By raising, moldability can be improved. As the monofunctional (meth) acrylate, monofunctional (meth) acrylic acid ester (a) having an alicyclic structure used for producing the copolymer as component (A) is preferably used. In addition, for example, acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate , Cyclohexane-1,4-dimethanol mono (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl ( (Meth) acrylate, o- Phenylphenol polyethoxy (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) ) Acrylate, dicyclopentenyloxyethyl (meth) acrylate, and the like.
 本発明の硬化性樹脂組成物の好ましい配合組成は、次のとおりである。(A)成分の配合量が5.0~80wt%、好ましくは5.0~60wt%、(B)成分の配合量が5.0~80wt%、好ましくは10~60wt%、及び(C)成分の配合量が0.1~10wt%、好ましくは0.1~5wt%。(D)成分を配合する場合は、上記(A)~(C)成分の配合量で、(D)成分が10~70wt%、好ましくは20~60wt%である。そして、(A)成分+(B)成分の含有量は30~90wt%、好ましくは40~80wt%である。 The preferred blending composition of the curable resin composition of the present invention is as follows. The blending amount of component (A) is 5.0 to 80 wt%, preferably 5.0 to 60 wt%, the blending amount of component (B) is 5.0 to 80 wt%, preferably 10 to 60 wt%, and the blending amount of component (C) is 0.1 ~ 10wt%, preferably 0.1-5wt%. When the component (D) is blended, the amount of the component (D) is 10 to 70 wt%, preferably 20 to 60 wt%, based on the blending amount of the components (A) to (C). The content of component (A) + component (B) is 30 to 90 wt%, preferably 40 to 80 wt%.
 (A)成分の配合量が、5.0wt%よりも低くなると、成形品の光学面形状の精度が低下するため好ましくなく、また、(A)成分の配合量が多すぎると、粘度の上昇に伴い、成形性、ハンドリング性が著しく低下するため好ましくない。一方、(B)成分の配合量が、5.0wt%よりも低くなると硬化物の屈折率が低下するため好ましくなく、多すぎると、硬化物が低弾性化し、成形品の耐熱性が低下するため好ましくない。なお、硬化性樹脂組成物中に有機溶剤及びフィラーを含む場合は、上記配合量は、これを除外して計算される。 When the blending amount of the component (A) is lower than 5.0 wt%, it is not preferable because the accuracy of the optical surface shape of the molded product is lowered, and when the blending amount of the component (A) is too large, the viscosity increases. In association with this, the moldability and handling properties are remarkably lowered, which is not preferable. On the other hand, if the blending amount of the component (B) is lower than 5.0 wt%, the refractive index of the cured product is lowered, which is not preferable. If it is too large, the cured product has low elasticity and the heat resistance of the molded product is lowered. It is not preferable. In addition, when an organic solvent and a filler are included in the curable resin composition, the blending amount is calculated by excluding this.
 また、本発明の硬化性樹脂組成物には、必要により重合禁止剤、酸化防止剤、離型剤、光増感剤、有機溶剤、シランカップリング剤、レベリング剤、消泡剤、帯電防止剤、更には紫外線吸収剤、光安定剤、無機、有機各種フィラー、防かび剤、抗菌剤などを本発明の硬化性樹脂組成物に添加し、それぞれ目的とする機能性を付与することも可能である。 In addition, the curable resin composition of the present invention includes a polymerization inhibitor, an antioxidant, a release agent, a photosensitizer, an organic solvent, a silane coupling agent, a leveling agent, an antifoaming agent, and an antistatic agent as necessary. Furthermore, ultraviolet absorbers, light stabilizers, various inorganic and organic fillers, fungicides, antibacterial agents, and the like can be added to the curable resin composition of the present invention to impart desired functionality, respectively. is there.
 本発明の硬化性樹脂組成物は、上記(A)成分、(B)成分、(C)成分、並びに必要により(D)成分、その他の成分を任意の順序で混合することにより得ることができる。本発明の硬化性樹脂組成物は経時的に安定である。 The curable resin composition of the present invention can be obtained by mixing the component (A), the component (B), the component (C), and the component (D), if necessary, and other components in any order. . The curable resin composition of the present invention is stable over time.
 本発明の硬化性樹脂組成物は、加熱又は光照射によって硬化させることができる。加熱によって成形する場合、その成形温度は、熱重合開始剤の選択により、室温から200℃前後までの広い範囲から選択することができる。
 光照射によって成型させる場合は、紫外線等の活性エネルギー線を照射することにより硬化物を得ることができる。ここで、活性エネルギー線を照射して硬化する場合に用いられる光源の具体例としては、例えば、キセノンランプ、カーボンアーク、殺菌灯、紫外線用蛍光灯、複写用高圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、あるいは走査型、カーテン型電子線加速路による電子線等を挙げることができる。また、本発明の硬化性樹脂組成物を紫外線照射により硬化する場合、硬化に必要な紫外線照射量は300~20,000mJ/cm2程度でよい。なお、窒素ガス等の不活性ガス雰囲気中で硬化することで、樹脂組成物をより効率よく硬化させることができる。
The curable resin composition of the present invention can be cured by heating or light irradiation. When molding by heating, the molding temperature can be selected from a wide range from room temperature to around 200 ° C., depending on the selection of the thermal polymerization initiator.
In the case of molding by light irradiation, a cured product can be obtained by irradiating active energy rays such as ultraviolet rays. Here, specific examples of the light source used for curing by irradiating with active energy rays include, for example, a xenon lamp, a carbon arc, a germicidal lamp, a fluorescent lamp for ultraviolet rays, a high pressure mercury lamp for copying, a medium pressure mercury lamp, and a high pressure mercury lamp. An ultra high pressure mercury lamp, an electrodeless lamp, a metal halide lamp, or an electron beam using a scanning type or curtain type electron beam acceleration path can be used. When the curable resin composition of the present invention is cured by ultraviolet irradiation, the ultraviolet irradiation amount necessary for curing may be about 300 to 20,000 mJ / cm 2 . In addition, a resin composition can be hardened more efficiently by hardening in inert gas atmosphere, such as nitrogen gas.
 本発明の硬化性樹脂組成物は、プラスチックレンズ等のような注型物に使用することができる。本発明の樹脂組成物を用いたプラスチックレンズの作製法としては、ポリ塩化ビニル、エチレン酢酸ビニル共重合体等からなるガスケットと所望の形状の2枚のガラス鋳型によって造られた型を作り、これに本発明の樹脂組成物を注入した後、紫外線等の活性エネルギー線を照射して樹脂組成物を硬化し、硬化物を型より剥離する方法等がある。 The curable resin composition of the present invention can be used for castings such as plastic lenses. As a method for producing a plastic lens using the resin composition of the present invention, a mold made of a gasket made of polyvinyl chloride, an ethylene vinyl acetate copolymer or the like and two glass molds having a desired shape is prepared. There is a method in which after the resin composition of the present invention is injected, the resin composition is cured by irradiating active energy rays such as ultraviolet rays, and the cured product is peeled off from the mold.
 また本発明の硬化性樹脂組成物をプリズムレンズシート用樹脂組成物としてフィルム状基材に塗布する方法としては、業界公知の種々の方法を用いることができる。具体的な方法としては、例えば、樹脂組成物を表面にプリズムレンズの形状を有する金型上に塗布し、樹脂組成物の層を設け、その樹脂組成物層の上に無色透明なフィルム状基材(例えば、ポリ塩化ビニル、ポリスチレン、ポリカーボネート、ポリ(メタ)アクリレート、ポリエステル、ポリエチレンテレフタレート等)を気泡が入らないように圧着し、次いでその状態でフィルム状基材側から高圧水銀灯を用いて紫外線を照射して樹脂組成物の層を硬化した後、プリズムレンズ状の樹脂層を形成したフィルム状基材を金型より剥離する方法を挙げることができる。 In addition, as a method for applying the curable resin composition of the present invention to a film-like substrate as a resin composition for a prism lens sheet, various methods known in the industry can be used. As a specific method, for example, a resin composition is coated on a mold having a prism lens shape on the surface, a resin composition layer is provided, and a colorless and transparent film-like substrate is formed on the resin composition layer. A material (for example, polyvinyl chloride, polystyrene, polycarbonate, poly (meth) acrylate, polyester, polyethylene terephthalate, etc.) is pressure-bonded so that bubbles do not enter, and then in that state, ultraviolet light is used from the film-like substrate side using a high-pressure mercury lamp. The film-like base material on which the prism lens-like resin layer is formed can be peeled off from the mold after curing the resin composition layer.
 本発明の硬化性樹脂組成物を成形、硬化して得られる樹脂硬化物は、光学材料又は光学物品として優れる。とりわけフレネルレンズ、レンチキュラーレンズ、眼鏡レンズ、非球面レンズ等の光学プラスチックレンズ用材料として有用である。そして、このようなレンズは、撮像装置に有利に使用される。また、硬化性樹脂組成物又は樹脂硬化物はその他にも、光ディスク、光ファイバー、光導波路等のオプトエレクトロニクス向け用途、印刷インキ、塗料、クリアーコート剤、ツヤニス等にも使用できる。 The cured resin obtained by molding and curing the curable resin composition of the present invention is excellent as an optical material or an optical article. In particular, it is useful as a material for optical plastic lenses such as Fresnel lenses, lenticular lenses, spectacle lenses, and aspheric lenses. And such a lens is used advantageously for an imaging device. In addition, the curable resin composition or the cured resin can also be used for optical electronics, optical fiber, optical waveguide and other optoelectronic applications, printing inks, paints, clear coating agents, glossy varnishes, and the like.
 次に実施例により本発明を説明するが、本発明はこれらにより制限されるものではない。なお、各例中の部は特に断らない限りいずれも重量部である。また、実施例中の軟化温度等の測定は以下に示す方法により試料調製及び測定を行った。 Next, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, all the parts in each example are parts by weight unless otherwise specified. Moreover, the measurement of the softening temperature etc. in an Example performed sample preparation and measurement with the method shown below.
(共重合体及びその硬化物の物性測定)
1)ポリマーの分子量及び分子量分布
 可溶性多官能共重合体の分子量及び分子量分布測定はGPC(東ソー製、HLC-8120GPC)を使用し、溶媒:テトラヒドロフラン(THF)、流量:1.0ml/min、カラム温度:40℃で行った。共重合体の分子量は単分散ポリスチレンによる検量線を用い、ポリスチレン換算分子量として測定を行った。
(Measurement of physical properties of copolymer and its cured product)
1) Polymer molecular weight and molecular weight distribution GPC (Tosoh, HLC-8120GPC) is used for measuring the molecular weight and molecular weight distribution of the soluble polyfunctional copolymer, solvent: tetrahydrofuran (THF), flow rate: 1.0 ml / min, column temperature. : Performed at 40 ° C. The molecular weight of the copolymer was measured as a molecular weight in terms of polystyrene using a calibration curve with monodisperse polystyrene.
2)ポリマーの構造
 日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及び1H-NMR分析により決定した。溶媒としてクロロホルム-d1を使用し、テトラメチルシランの共鳴線を内部標準として使用した。
2) Polymer structure It was determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as a solvent, and the tetramethylsilane resonance line was used as an internal standard.
3)耐溶剤性の測定及び溶剤溶解性の測定
 耐溶剤性の測定は、共重合体を200℃一時間真空プレス成形して作製した試料板をトルエンに室温で10分間浸漬し、浸漬後の試料の変化を目視にて確認し、○:変化無し、△:膨潤、×:変形、膨れ有りに分類することにより耐溶剤性の評価を行った。
 溶剤溶解性の測定は、共重合体5gを、100mlの溶媒に加え、25℃で10分間撹拝後の溶解状況を観察した。均一に溶解し、未溶解物及びゲルの存在が認められない場合を、可溶性と判定した。
3) Measurement of solvent resistance and measurement of solvent solubility The solvent resistance was measured by immersing a sample plate prepared by vacuum press-molding the copolymer at 200 ° C for 1 hour in toluene at room temperature for 10 minutes. The change of the sample was visually confirmed, and the solvent resistance was evaluated by classifying it as ○: no change, Δ: swelling, ×: deformation, and swelling.
The solvent solubility was measured by adding 5 g of the copolymer to 100 ml of solvent and observing the dissolution state after stirring for 10 minutes at 25 ° C. When it was dissolved uniformly and the presence of undissolved matter and gel was not recognized, it was determined to be soluble.
(組成物及びその硬化物の物性測定)
(1)屈折率の測定
 樹脂組成物の屈折率測定のため、幅50mm、長さ50mm、厚み1.0mmの2枚のガラス板の間に厚さ1.0mmの隙間を開けて外周をポリイミドテープで巻き固定したガラス型に組成物を注入し、1)このガラス型の片面から前述の高圧水銀ランプにより、数秒問紫外線を照射する、或いは、2)このガラス型の代わりにSUS製の金属板を用いて同様の試験片作成用型を作成し、窒素ガス気流下のイナートガスオーブンに入れ、180℃で1時間加熱することによって硬化させた。ガラス型又は金型から硬化した樹脂板を脱型して、サンプルとした。アッベ屈折率計(アタゴ(株)製)でサンプルの屈折率及びアッベ数を測定した。
(Measurement of physical properties of composition and its cured product)
(1) Refractive index measurement In order to measure the refractive index of the resin composition, a gap of 1.0mm thickness is opened between two glass plates 50mm wide, 50mm long and 1.0mm thick, and the outer periphery is fixed with polyimide tape. Inject the composition into the glass mold, 1) irradiate the glass mold with ultraviolet light for several seconds from the one side of the glass mold, or 2) use a SUS metal plate instead of the glass mold. A similar test piece mold was prepared and placed in an inert gas oven under a nitrogen gas stream and cured by heating at 180 ° C. for 1 hour. The cured resin plate was removed from the glass mold or mold and used as a sample. The refractive index and Abbe number of the sample were measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).
(2)色相
 厚さ1.0mm、幅40mm、長さ40mmの平板を色彩色差計(商品名「MODELTC_8600」、東京電色(株)製)で測定し、そのYI値を示した。
(2) Hue A flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm was measured with a color difference meter (trade name “MODELTC — 8600”, manufactured by Tokyo Denshoku Co., Ltd.), and the YI value was shown.
(3)Haze(濁り度)及び全光線透過率
 厚さ1.0mm、幅40mm、長さ40mmの平板に硬化させた試験片を作成し、これのHaze(濁り度)と全光線透過率を、積分球式光線透過率測定装置(日本電色社製、SZ-Σ90)を用い測定した。
(3) Haze (turbidity) and total light transmittance A test piece cured on a flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm was prepared, and the Haze (turbidity) and total light transmittance were Measurement was performed using an integrating sphere light transmittance measuring device (Nippon Denshoku Co., Ltd., SZ-Σ90).
(4)離型性
 厚さ1.0mm、幅40mm、長さ40mmの平板に硬化した樹脂を金型より離型させた時の難易度により評価した。
○・・・金型からの離型性が良好。
△・・・離型がやや困難、
×・・・離型が困難或は型のこりがある
(4) Releasability Evaluation was made based on the degree of difficulty when the resin cured on a flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm was released from the mold.
○ ... Good releasability from the mold.
△ ・ ・ ・ Slightly difficult to release,
× ・ ・ ・ Different mold release or mold stiffness
(5)型再現性
 厚さ0.6mm、直径3.0mmの球面レンズ形状に硬化した樹脂層の表面形状と金型のクリアランスへの樹脂の洩れ込みにより評価した。
○・・・再現性が良好
×・・・再現性が不良
(5) Mold reproducibility The evaluation was performed by the surface shape of the resin layer cured into a spherical lens shape having a thickness of 0.6 mm and a diameter of 3.0 mm and the leakage of the resin into the mold clearance.
○ ・ ・ ・ Reproducibility is good × ・ ・ ・ Reproducibility is poor
(6)バリ、モレ
 厚さ0.6mm、直径3.0mmの球面レンズ形状に硬化した樹脂を金型より離型させた時に、製品部分以外に生じたバリの大きさ及び金型のクリアランスへの樹脂の洩れこみの度合いにより評価した。
○・・・バリの生成量が0.05mm未満、金型クリアランスへの樹脂の洩れこみが1.0mm未満
△・・・バリの生成量が0.05mm以上、0.2mm未満。金型クリアランスへの樹脂の洩れこみが1.0mm以上、3.0mm未満
×・・・バリの生成量が0.2mm以上、金型クリアランスへの樹脂の洩れこみが3.0mm以上。
(6) Burr, Molecule When the resin hardened into a spherical lens shape with a thickness of 0.6 mm and a diameter of 3.0 mm is released from the mold, the size of the burr generated outside the product area and the resin to the mold clearance Evaluation was based on the degree of leakage.
○ ... Burr generation amount is less than 0.05mm, resin leakage to mold clearance is less than 1.0mm. Δ ... Burr formation amount is 0.05mm or more and less than 0.2mm. Resin leakage into the mold clearance is 1.0 mm or more, less than 3.0 mm x ... Burr generation amount is 0.2 mm or more, and resin leakage into the mold clearance is 3.0 mm or more.
(7)気泡
 厚さ0.6mm、直径3.0mmの球面レンズ形状に硬化した樹脂を金型より離型させた時に、成形品部分に生じた気泡の有無及び大きさの度合いにより評価した。
○・・・気泡の生成が観察されない
△・・・気泡の生成が観察され、気泡の大ききが成形品の体積に対し2%未満
×・・・気泡の生成が観察きれ、気泡の大ききが成形品の体積に対し2%以上
(7) Bubbles When the resin cured into a spherical lens shape having a thickness of 0.6 mm and a diameter of 3.0 mm was released from the mold, the evaluation was made based on the presence and size of bubbles generated in the molded product portion.
○ ... Bubble formation is not observed △ ... Bubble formation is observed and the size of the bubble is less than 2% of the volume of the molded product × ... Bubble formation is observed and the bubble size is large 2% or more of the volume of the molded product
(8)ワレ
 厚さ0.6mm、直径3.0mmの球面レンズ形状に硬化した樹脂を金型より離型させた時に、成形品の製品部分に生じたワレの有無及び大きさの度合により評価した。
○・・・ワレの生成が観察されない
△・・・ワレの生成が観察されるが、成形品の外周部のコーナー部分にのみ観察される。
×・・・ワレの生成が観察され、成形品の外周部のコーナ部分以外にも観察される。
(8) Cracking When the resin cured into a spherical lens shape with a thickness of 0.6 mm and a diameter of 3.0 mm was released from the mold, the evaluation was based on the presence and size of cracks generated in the product part of the molded product.
... Formation of cracks is not observed. Δ... Formation of cracks is observed, but is observed only at the corner portion of the outer peripheral portion of the molded product.
X: Formation of cracks is observed, and it is also observed other than the corner portion of the outer peripheral portion of the molded product.
(9)リフロー耐熱性
 厚さ1.0mm、幅40mm、長さ40mmの平板をテストピースとして、分光測色計CM-3700d(コニカミノルタ社製)にて波長:400nmの分光透過率を測定した。測定タイミングは、200℃60分でのポストキュアを行った耐熱試験前と、エアーオーブン中、250℃、7分間の耐熱試験後とした。これらの測定により得られた分光透過率変化の結果を以下の表3に示す。
(9) Reflow heat resistance Using a flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm as a test piece, a spectral transmittance at a wavelength of 400 nm was measured with a spectrocolorimeter CM-3700d (manufactured by Konica Minolta). The measurement timing was before the heat resistance test after post-curing at 200 ° C. for 60 minutes and after the heat resistance test at 250 ° C. for 7 minutes in an air oven. The results of changes in spectral transmittance obtained by these measurements are shown in Table 3 below.
(10)吸水率
 60℃で24時間真空乾燥した厚さ1.0mm、幅40mm、長さ40mmの平板の試験片の重さをWoとし、それを±0.1mgまで測定可能な秤で秤量し、温度:85℃、相対湿度:85%の恒温恒湿槽内で1週間、加湿を行った。加湿後、テストサンプルについた水気をふき取り、サンプルを±0.1mgまで測定可能な秤で秤量し、Wとした。下記の式(3)で給水率を算出した。同じテストサンプルを3つ準備し、同様に試験を行った。
Wo/W×100=吸水率(%) (3)
(10) Water absorption rate The weight of a 1.0mm thick, 40mm wide, 40mm long flat test piece vacuum-dried at 60 ° C for 24 hours was weighed and weighed with a balance capable of measuring ± 0.1mg. Humidification was performed for 1 week in a constant temperature and humidity chamber at a temperature of 85 ° C. and a relative humidity of 85%. After humidification, water attached to the test sample was wiped off, and the sample was weighed with a balance capable of measuring up to ± 0.1 mg. The water supply rate was calculated by the following formula (3). Three identical test samples were prepared and tested in the same manner.
Wo / W × 100 = water absorption rate (%) (3)
(11)鉛筆硬度
 JISK5400に従い、鉛筆引っかき試験機を用いて、厚さ1.0mm、幅40mm、長さ40mmの平板に硬化させた試験片の鉛筆硬度を測定した。鉛筆を45度の角度で、上から1kgの荷重を掛け5mm程度引っかき、傷の付き具合を確認した。5回測定を行い、5回中2回以上の傷発生が見られた1ランク下の鉛筆硬度を鉛筆硬度試験結果として記載した。
(11) Pencil Hardness According to JISK5400, the pencil hardness of a test piece cured on a flat plate having a thickness of 1.0 mm, a width of 40 mm, and a length of 40 mm was measured using a pencil scratch tester. A pencil was applied at a 45 degree angle and a 1 kg load was applied from the top, and scratched about 5 mm to confirm the degree of scratches. The measurement was performed 5 times, and the pencil hardness of one rank below where 2 or more outbreaks were observed in 5 times was described as the pencil hardness test result.
合成例1
 ジメチロールトリシクロデカンジアクリレート1.6モル(463.2mL)、
ジシクロペンタニルメタクリレート1.2モル(254.2mL)、1,4-ブタンジオールジアクリレート1.2モル(226.3mL)、2,4-ジフェニル-4-メチル-1-1ペンテン0.4モル(95.5mL)、t-ドデシルメルカプタン2.4モル(564.8mL)、トルエン600mLを3.0Lの反応器内に投入し90℃で40mmol(11.5g)のt-ブチルパ-オキシ-2-エチルへキサノエートを添加し、2時間45分反応させた。重合反応を冷却により停止させた後、室温で反応混合液を大量のへキサンに投入し、共重合体を析出させた。得られた共重合体をヘキサンで洗浄し、濾別、乾燥、秤量して、共重合体A691.0gを得た。
Synthesis example 1
1.6 mol (463.2 mL) of dimethylol tricyclodecane diacrylate,
1.2 mol (254.2 mL) of dicyclopentanyl methacrylate, 1.2 mol (226.3 mL) of 1,4-butanediol diacrylate, 0.4 mol (95.5 mL) of 2,4-diphenyl-4-methyl-1-pentene, t- Charge 2.4 mol (564.8 mL) of dodecyl mercaptan and 600 mL of toluene into a 3.0 L reactor, add 40 mmol (11.5 g) of t-butyl peroxy-2-ethylhexanoate at 90 ° C, and react for 2 hours 45 minutes I let you. After stopping the polymerization reaction by cooling, the reaction mixture was poured into a large amount of hexane at room temperature to precipitate a copolymer. The obtained copolymer was washed with hexane, filtered, dried and weighed to obtain 691.0 g of copolymer A.
 得られた共重合体AのMwは34,200、Mnは5,620、Mw/Mnは6.1であった。共重合体Aは、全アクリル酸エステル量を100モル%とした場合、ジメチロールトリシクロデカンジアクリレート由来の構造単位(1)を合計39.6モル%、ジシクロペンタニルメタクリレート由来の構造単位(2)を合計31.1モル%、1,4-ブタンジオールジアクリレート由来の構造単位(3)を29.3モル%含有していた。また2,4-ジフェニル-4-メチル-1-ペンテン(αMSD)由来の構造の末端基(4)は、構造単位(1)、(2)及び(3)と、末端基(4)及び、t-ドデシルメルカプタン(TDM)由来の構造の末端基(5)の総計(以下、全構成単位の総量という)に対し、1.8モル%存在していた。
 一方、末端基(5)は、全構成単位の総量に対し、7.2モル%存在していた。
 また、共重合体Aについて、トルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、又はクロロホルムに対する溶剤溶解性試験を行ったところ、いずれの溶剤の場合も、不溶物やゲルの生成は認められなかった。
Mw of the obtained copolymer A was 34,200, Mn was 5,620, and Mw / Mn was 6.1. Copolymer A has a total structural unit (1) derived from dimethylol tricyclodecane diacrylate of 39.6 mol% and a structural unit derived from dicyclopentanyl methacrylate (2 31.1 mol% in total, and 29.3 mol% of structural units (3) derived from 1,4-butanediol diacrylate. The terminal group (4) of the structure derived from 2,4-diphenyl-4-methyl-1-pentene (αMSD) includes the structural units (1), (2) and (3), the terminal group (4) and The total amount of terminal groups (5) derived from t-dodecyl mercaptan (TDM) (hereinafter referred to as the total amount of all structural units) was 1.8 mol%.
On the other hand, the end group (5) was present in an amount of 7.2 mol% based on the total amount of all the structural units.
Further, when copolymer A was subjected to a solvent solubility test in toluene, xylene, THF, dichloroethane, dichloromethane, or chloroform, no insoluble matter or gel was observed in any of the solvents.
合成例2
 ジメチロールトリシクロデカンジアクリレート2.64モル(764.3mL)、ジシクロペンタニルアクリレート0.24モル(47.2mL)、1,4-ブタンジオールジアクリレート0.96モル(181.0mL)、2-ヒドロキシプロピルアクリレート0.96モル(118.5mL)、2,4-ジフェニル-4-メチル-1-ペンテン0.48モル(114.6mL)、t-ドデシルメルカプタン3.12モル(734.3mL)、トルエン720mLを3.0Lの反応器内に投入し、90℃で62mmol(13.9g)のt-ブチルパ-オキシ-2-エチルへキサノエートを添加し、2時間30分反応させた。重合反応を冷却により停止させた後、室温で反応混合液を大量のへキサンに投入し、重合体を析出きせた。得られた重合体をヘキサンで洗浄し、濾別、乾燥、秤量して、共重合体B782.2gを得た。
 共重合体Aと同様に共重合体Bの試験を行った結果を表1に記載した。
Synthesis example 2
Dimethylol tricyclodecane diacrylate 2.64 mol (764.3 mL), dicyclopentanyl acrylate 0.24 mol (47.2 mL), 1,4-butanediol diacrylate 0.96 mol (181.0 mL), 2-hydroxypropyl acrylate 0.96 mol (118.5 mL), 0.48 mol (114.6 mL) of 2,4-diphenyl-4-methyl-1-pentene, 3.12 mol (734.3 mL) of t-dodecyl mercaptan, and 720 mL of toluene in a 3.0 L reactor at 90 ° C. 62 mmol (13.9 g) of t-butyl peroxy-2-ethylhexanoate was added and reacted for 2 hours 30 minutes. After stopping the polymerization reaction by cooling, the reaction mixture was poured into a large amount of hexane at room temperature to precipitate a polymer. The obtained polymer was washed with hexane, filtered, dried and weighed to obtain 782.2 g of copolymer B.
Table 1 shows the results of testing copolymer B in the same manner as copolymer A.
合成例3
 ジメチロールトリシクロデカンジアクリレート0.8モル(231.5mL)、ジシクロペンタニルメタクリレート2.0モル(393.4ml)、1,4-ブタンジオールジアクリレート1.2モル(226.3mL)、2,4-ジフェニル-4-メチル-1-ペンテン0.4モル(95.5mL)、t-ドデシルメルカプタン1.6モル(376.45mL)、トルエン600mLを3.0Lの反応器内に投入し90℃で40mmol(11.5g)のt-ブチルパ-オキシ-2-エチルへキサノエートを添加し、2時間45分反応させた。重合反応を冷却により停止させた後、室温で反応混合液を大量のへキサンに投入し、共重合体を析出させた。得られた共重合体をヘキサンで洗浄し、濾別、乾燥、秤量して、共重合体C536.4g(収率:73.2wt%)を得た。
 共重合体Aと同様に共重合体Cの試験を行った結果を表1に記載した。
Synthesis example 3
Dimethylol tricyclodecane diacrylate 0.8 mol (231.5 mL), dicyclopentanyl methacrylate 2.0 mol (393.4 ml), 1,4-butanediol diacrylate 1.2 mol (226.3 mL), 2,4-diphenyl-4-methyl 1-pentene 0.4 mol (95.5 mL), t-dodecyl mercaptan 1.6 mol (376.45 mL) and toluene 600 mL were charged into a 3.0 L reactor and 40 mmol (11.5 g) t-butyl peroxy-2 at 90 ° C. -Ethylhexanoate was added and allowed to react for 2 hours 45 minutes. After stopping the polymerization reaction by cooling, the reaction mixture was poured into a large amount of hexane at room temperature to precipitate a copolymer. The obtained copolymer was washed with hexane, filtered, dried and weighed to obtain 536.4 g of copolymer C (yield: 73.2 wt%).
The results of testing the copolymer C in the same manner as the copolymer A are shown in Table 1.
合成例4
 ジビニルベンゼン0.66モル(94.0mL)、エチルビニルベンゼン0.0275モル(3.9mL)、4-ビニルビフェニル1.56モル(281.1g)、2-フェノキシエチルメタクリレート0.88モル(167.1mL)、トルエン610mLを3.0Lの反応器内に投入し、50℃で50mmolの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間30分反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で5回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をトルエンに溶解させた後、メタノールで再沈を行うという操作を3回繰り返した後、パウダー状の固体ポリマーをメタノールで洗浄し、濾別、乾燥、秤量して、共重合体D258.3gを得た。
 共重合体Aと同様に共重合体Dの試験を行った結果を表1に記載した。
Synthesis example 4
Reactor of 0.66 mol (94.0 mL) divinylbenzene, 0.0275 mol (3.9 mL) ethyl vinylbenzene, 1.56 mol (281.1 g) 4-vinylbiphenyl, 0.88 mol (167.1 mL) 2-phenoxyethyl methacrylate, 610 mL toluene Then, 50 mmol of boron trifluoride diethyl ether complex was added at 50 ° C. and reacted for 4 hours 30 minutes. After the polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, the oil layer was washed 5 times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. After the obtained polymer was dissolved in toluene and then reprecipitated with methanol three times, the powdered solid polymer was washed with methanol, filtered, dried, weighed, Combined D258.3g was obtained.
Table 1 shows the results of testing the copolymer D in the same manner as the copolymer A.
合成例5
 ジビニルベンゼン0.44モル(62.7mL)、エチルビニルベンゼン0.0183モル(2.6mL)、4-ビニルビフェニル1.76モル(317.2g)、2-フェノキシエチルメタクリレート0.66モル(125.3mL)、トルエン610mLを3.0Lの反応器内に投入し、50℃で50mmolの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間30分反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で5回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をトルエンに溶解させた後、メタノールで再沈を行うという操作を3回繰り返した後、パウダー状の固体ポリマーをメタノールで洗浄し、濾別、乾燥、秤量して、共重合体E250.6gを得た。
 共重合体Aと同様に共重合体Eの試験を行った結果を表1に記載した。
Synthesis example 5
A 3.0L reactor containing 0.44 mol (62.7 mL) of divinylbenzene, 0.0183 mol (2.6 mL) of ethylvinylbenzene, 1.76 mol (317.2 g) of 4-vinylbiphenyl, 0.66 mol (125.3 mL) of 2-phenoxyethyl methacrylate, and 610 mL of toluene Then, 50 mmol of boron trifluoride diethyl ether complex was added at 50 ° C. and reacted for 4 hours 30 minutes. After the polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, the oil layer was washed 5 times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. After the obtained polymer was dissolved in toluene and then reprecipitated with methanol three times, the powdered solid polymer was washed with methanol, filtered, dried, weighed, Combined E250.6g was obtained.
The results of testing the copolymer E in the same manner as the copolymer A are shown in Table 1.
合成例6
 ジビニルベンゼン0.27モル(38.5mL)、エチルビニルベンゼン0.063モル(9.0mL)、2-ビニルナフタレン0.567モル(87.4g)、2-フェノキシエチルメタクリレート0.36モル(68.4mL)、トルエン250mLを1.0Lの反応器内に投入し、50℃で18mmolの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間00分反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で5回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をトルエンに溶解させた後、メタノールで再沈を行うという操作を3回繰り返した後、パウダー状の固体ポリマーをメタノールで洗浄し、濾別、乾燥、秤量して、共重合体F85.3gを得た。
 共重合体Aと同様に共重合体Fの試験を行った結果を表1に記載した。
Synthesis Example 6
Divinylbenzene 0.27 mol (38.5 mL), ethyl vinylbenzene 0.063 mol (9.0 mL), 2-vinylnaphthalene 0.567 mol (87.4 g), 2-phenoxyethyl methacrylate 0.36 mol (68.4 mL), toluene 250 mL 1.0 L reactor Then, 18 mmol of boron trifluoride diethyl ether complex was added at 50 ° C. and reacted for 4 hours and 00 minutes. After the polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, the oil layer was washed 5 times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. After the obtained polymer was dissolved in toluene and reprecipitated with methanol three times, the powdered solid polymer was washed with methanol, filtered, dried, weighed, Combined F85.3g was obtained.
The results of testing the copolymer F in the same manner as the copolymer A are shown in Table 1.
実施例1~7及び比較例1~4
 表2に示す割合で各成分を配合し(数字は重量部)、安定剤として株式会社アデカ製のアデカスタブAO-60 0.1重量部を加えて硬化性樹脂組成物を得た。次にこの硬化性樹脂組成物を、上記の各種試験方法により硬化し、性能評価を行った。性能評価結果を表3に示す。
Examples 1 to 7 and Comparative Examples 1 to 4
Each component was mix | blended in the ratio shown in Table 2 (a number is a weight part), Adeka stub AO-60 0.1 weight part made from Adeka Co., Ltd. was added as a stabilizer, and the curable resin composition was obtained. Next, this curable resin composition was cured by the various test methods described above, and performance evaluation was performed. Table 3 shows the performance evaluation results.
 表で使用した略号を以下に示す。
BZ:ベンジルメタクリレート(単官能)
BPEF:9,9-ビス[4-2(-アクリロイルオキシエトキシ)フェニル]フルオレン(2官能)
BPFEA:9,9-ビス[4-3(-アクリロイルオキシプロポキシ,2-ヒドロキシ)フェニル]フルオレン(2官能)
BPA:BPA-2EO-ジメタクリレート
19NDA:1,9-ノナンジオールジアクリレート(2官能)
TMP:トリメチロールプロパントリメタクリレート(3官能)
DPHA:ジペンタエリスリトールヘキサアクリレート(6官能)
パーブチルO:t-ブチルパーオキシ-2-エチルヘキサネート(日本油脂株式会社製)
イルガキュア184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製)
Abbreviations used in the table are shown below.
BZ: benzyl methacrylate (monofunctional)
BPEF: 9,9-bis [4-2 (-acryloyloxyethoxy) phenyl] fluorene (bifunctional)
BPFEA: 9,9-bis [4-3 (-acryloyloxypropoxy, 2-hydroxy) phenyl] fluorene (bifunctional)
BPA: BPA-2EO-dimethacrylate
19NDA: 1,9-nonanediol diacrylate (bifunctional)
TMP: Trimethylolpropane trimethacrylate (trifunctional)
DPHA: Dipentaerythritol hexaacrylate (hexafunctional)
Perbutyl O: t-butyl peroxy-2-ethyl hexanate (Nippon Yushi Co., Ltd.)
Irgacure 184: 1-hydroxy-cyclohexyl-phenyl-ketone (BASF)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (7)

  1.  (A)成分:反応性の不飽和基を複数有し、重量平均分子量が2,000~100,000であり、更にトルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶であり、反応性の不飽和基を2つ有するモノマーと1つ有するモノマーを共重合させて得られる多官能共重合体、
    (B)成分:一般式(1)で表されるフルオレン骨格を有する(メタ)アクリレート、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は独立してH又はCH3-を表し、R3及びR4は独立して-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH2CH2O-、-CH2CH(OH)CH2O-、又はCH2CH(OR5)CH2O-を表し、R5はメタ(アクリロイル)基、k及びlは独立して0又は1以上の数であるが、k+lは1以上の数であり、m及びnは独立して0~4の数を表す。)、及び
    (C)成分:開始剤
    を含有する硬化性樹脂組成物であって、(A)~(C)成分の合計に対する(A)成分の含有量が5.0~94wt%、(B)成分の含有量が5.0~94wt%、及び(C)成分の含有量が0.1~10wt%であることを特徴とする硬化性樹脂組成物。
    Component (A): It has a plurality of reactive unsaturated groups, has a weight average molecular weight of 2,000 to 100,000, is further soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform, and has two reactive unsaturated groups. A polyfunctional copolymer obtained by copolymerizing one monomer and one monomer,
    (B) component: (meth) acrylate having a fluorene skeleton represented by general formula (1),
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 independently represent H or CH 3 —, and R 3 and R 4 independently represent —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH 2 CH 2 O—, —CH 2 CH (OH) CH 2 O—, or CH 2 CH (OR 5 ) CH 2 O—, wherein R 5 is a meta (acryloyl) group. , K and l are each independently 0 or a number of 1 or more, k + l is a number of 1 or more, and m and n independently represent a number of 0 to 4), and (C) Component: A curable resin composition containing an initiator, wherein the content of component (A) is 5.0 to 94 wt% relative to the total of components (A) to (C), and the content of component (B) is 5.0 to A curable resin composition comprising 94 wt% and a content of component (C) of 0.1 to 10 wt%.
  2.  (A)成分の多官能共重合体が、芳香環、又は脂環構造を有する単官能(メタ)アクリル酸エステル(a)、1種以上の2官能(メタ)アクリル酸エステル(b)、2,4-ジフェニル-4-メチル-1-ペンテン(c)とチオール化合物(d)を含む成分を共重合して得られる共重合体であって、側鎖に2官能(メタ)アクリル酸エステル(b)由来の反応性の(メタ)アクリル基を有し、末端に2,4-ジフェニル-4-メチル-1-ペンテン(c)及びチオール化合物(d)由来の構造単位を有する多官能共重合体であることを特徴とする請求項1記載の硬化性樹脂組成物。 The (A) component polyfunctional copolymer is a monofunctional (meth) acrylic acid ester (a) having an aromatic ring or alicyclic structure, one or more bifunctional (meth) acrylic acid esters (b), 2 , 4-Diphenyl-4-methyl-1-pentene (c) and a copolymer obtained by copolymerizing a component containing a thiol compound (d), and a bifunctional (meth) acrylic acid ester ( b) a polyfunctional copolymer having a reactive (meth) acrylic group derived from and having a structural unit derived from 2,4-diphenyl-4-methyl-1-pentene (c) and a thiol compound (d) at the terminal The curable resin composition according to claim 1, which is a coalescence.
  3.  (A)成分の多官能共重合体が、モノビニル芳香族化合物(e)、ジビニル芳香族化合物(f)及び芳香族系エーテル化合物を共重合して得られ、側鎖にジビニル芳香族化合物(f)由来の反応性ビニル基を有し、その末端に平均して1分子あたり1個以上の下記式(2)で表される芳香族系エーテル化合物に由来の構造単位を有する多官能共重合体であることを特徴とする請求項1記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R6はH又はCH3を表し、R7は酸素原子又は硫黄原子を含んでもよい炭素数1~18の炭化水素基を表す。)
    The polyfunctional copolymer of component (A) is obtained by copolymerizing a monovinyl aromatic compound (e), a divinyl aromatic compound (f) and an aromatic ether compound, and the side chain has a divinyl aromatic compound (f ) -Derived polyfunctional copolymer having a reactive vinyl group and an average of at least one structural unit derived from an aromatic ether compound represented by the following formula (2) per molecule. The curable resin composition according to claim 1, wherein
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 6 represents H or CH 3 , and R 7 represents a hydrocarbon group having 1 to 18 carbon atoms which may contain an oxygen atom or a sulfur atom.)
  4.  上記(A)、(B)、(C)成分に加えて、(D)成分として、分子中に1~8個の(メタ)アクリロイル基を有する(メタ)アクリレート(但し、上記(A)、(B)成分に該当する場合を除く。)を含有し、(A)~(D)成分の合計に対する(A)成分の含有量が5.0~84wt%、(B)成分の含有量が5.0~84wt%、及び(C)成分の含有量が0.1~10wt%、(D)成分の含有量が10~70wt%であって、かつ、(A)~(D)成分の合計100重量部に対する(A)成分と(B)成分の合計の配合量が30~90wt%であることを特徴とする請求項1~3記載の硬化性樹脂組成物。 In addition to the components (A), (B) and (C), as the component (D), a (meth) acrylate having 1 to 8 (meth) acryloyl groups in the molecule (provided that the (A), (Excluding cases corresponding to the component (B)), the content of the component (A) is 5.0 to 84 wt% with respect to the total of the components (A) to (D), and the content of the component (B) is 5.0 to 84 wt%, and the content of component (C) is 0.1 to 10 wt%, the content of component (D) is 10 to 70 wt%, and the total amount of components (A) to (D) is 100 parts by weight ( 4. The curable resin composition according to claim 1, wherein the total amount of component A) and component (B) is 30 to 90 wt%.
  5.  請求項1~4のいずれかに記載の硬化性樹脂組成物を硬化して得られることを特徴とする樹脂硬化物。 A cured resin obtained by curing the curable resin composition according to any one of claims 1 to 4.
  6.  請求項5に記載の樹脂硬化物が形成されたことを特徴とする光学物品。 An optical article in which the cured resin product according to claim 5 is formed.
  7.  光学物品が、光学レンズであることを特徴とする請求項6記載の光学物品。 The optical article according to claim 6, wherein the optical article is an optical lens.
PCT/JP2014/058173 2013-03-25 2014-03-25 Curable resin composition, cured product, and optical article WO2014157131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480018087.3A CN105073807A (en) 2013-03-25 2014-03-25 Curable resin composition, cured product, and optical article
KR1020157030472A KR20150134398A (en) 2013-03-25 2014-03-25 Curable resin composition, cured product, and optical article
JP2015508507A JP6525867B2 (en) 2013-03-25 2014-03-25 Curable resin composition, cured product and optical article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013061709 2013-03-25
JP2013-061709 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157131A1 true WO2014157131A1 (en) 2014-10-02

Family

ID=51624102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058173 WO2014157131A1 (en) 2013-03-25 2014-03-25 Curable resin composition, cured product, and optical article

Country Status (4)

Country Link
JP (1) JP6525867B2 (en)
KR (1) KR20150134398A (en)
CN (1) CN105073807A (en)
WO (1) WO2014157131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155533A (en) * 2014-01-16 2015-08-27 株式会社菱晃 Curable resin composition, cured product, optical member, and optical device
US20170166528A1 (en) * 2014-07-22 2017-06-15 Sabic Global Technologies B.V. High heat monomers and methods of use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115813A1 (en) * 2015-12-28 2017-07-06 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same and curable composition
CN108690166B (en) * 2017-04-05 2020-09-29 宁波激智科技股份有限公司 High-refractive-index flexible diffusion particle, preparation method thereof and optical film
CN112745463B (en) * 2019-10-31 2023-11-03 威斯坦(厦门)实业有限公司 Photo-curing resin and preparation method thereof
TWI782688B (en) * 2021-09-02 2022-11-01 財團法人工業技術研究院 Polymer, polymer composition, and solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136220A (en) * 1998-10-30 2000-05-16 Kureha Chem Ind Co Ltd Optical material made from synthetic resin and its production
WO2005033061A1 (en) * 2003-10-01 2005-04-14 Osaka Gas Co., Ltd. Multifunctional (meth)acrylate and method for producing same
JP2011039165A (en) * 2009-08-07 2011-02-24 Hitachi Chem Co Ltd Alkali-soluble photocurable composition, cured coating film using the composition and transparent member
JP2012184349A (en) * 2011-03-07 2012-09-27 Teijin Chem Ltd Photocurable resin composition, article having its cured film, and method for producing the same
WO2013022065A1 (en) * 2011-08-11 2013-02-14 大阪ガスケミカル株式会社 Multifunctional (meth)acrylate having fluorene skeleton and curable composition containing same
JP2013204034A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Semi-cured product, cured product, method of producing them, optical component and curable resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094987A (en) * 2006-10-13 2008-04-24 Nippon Kayaku Co Ltd Resin composition with high refractive index for optical material and its cured article
CN101965373B (en) * 2008-03-04 2013-03-27 新日铁化学株式会社 Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
KR101779531B1 (en) * 2010-02-26 2017-09-18 신닛테츠 수미킨 가가쿠 가부시키가이샤 Curable resin composition, cured article thereof, and optical material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136220A (en) * 1998-10-30 2000-05-16 Kureha Chem Ind Co Ltd Optical material made from synthetic resin and its production
WO2005033061A1 (en) * 2003-10-01 2005-04-14 Osaka Gas Co., Ltd. Multifunctional (meth)acrylate and method for producing same
JP2011039165A (en) * 2009-08-07 2011-02-24 Hitachi Chem Co Ltd Alkali-soluble photocurable composition, cured coating film using the composition and transparent member
JP2012184349A (en) * 2011-03-07 2012-09-27 Teijin Chem Ltd Photocurable resin composition, article having its cured film, and method for producing the same
WO2013022065A1 (en) * 2011-08-11 2013-02-14 大阪ガスケミカル株式会社 Multifunctional (meth)acrylate having fluorene skeleton and curable composition containing same
JP2013204034A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Semi-cured product, cured product, method of producing them, optical component and curable resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155533A (en) * 2014-01-16 2015-08-27 株式会社菱晃 Curable resin composition, cured product, optical member, and optical device
US20170166528A1 (en) * 2014-07-22 2017-06-15 Sabic Global Technologies B.V. High heat monomers and methods of use thereof
US10435368B2 (en) * 2014-07-22 2019-10-08 Sabic Global Technologies B.V. High heat monomers and methods of use thereof

Also Published As

Publication number Publication date
CN105073807A (en) 2015-11-18
JPWO2014157131A1 (en) 2017-02-16
JP6525867B2 (en) 2019-06-05
KR20150134398A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5841835B2 (en) Curable resin composition, cured product and optical article
JP5281710B2 (en) Curable resin composition, cured product and optical material
JP5781384B2 (en) Curable resin composition and cured product thereof
US8404797B2 (en) Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
JP6525867B2 (en) Curable resin composition, cured product and optical article
KR101790646B1 (en) Soluble polyfunctional (meth)acrylic ester copolymer, and method for production thereof, curable resin composition and cured product
KR102174272B1 (en) Polyfunctional (meth)acrylic acid ester copolymer, and curable resin composition and cured product thereof
JP5502791B2 (en) Curable resin composition, cured product and optical material
JP5444177B2 (en) Curable composite composition and cured product thereof
KR101841595B1 (en) Soluble polyfunctional (meth)acrylic ester copolymer having alicyclic structure, curable resin composition and cured product
JP5485205B2 (en) Soluble polyfunctional (meth) acrylic acid ester copolymer having alicyclic structure, curable resin composition, cured product, and optical material
JP5596390B2 (en) Soluble polyfunctional (meth) acrylic acid ester copolymer having alcoholic hydroxyl group and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018087.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030472

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14773521

Country of ref document: EP

Kind code of ref document: A1