TWI782688B - Polymer, polymer composition, and solar cell module - Google Patents

Polymer, polymer composition, and solar cell module Download PDF

Info

Publication number
TWI782688B
TWI782688B TW110132611A TW110132611A TWI782688B TW I782688 B TWI782688 B TW I782688B TW 110132611 A TW110132611 A TW 110132611A TW 110132611 A TW110132611 A TW 110132611A TW I782688 B TWI782688 B TW I782688B
Authority
TW
Taiwan
Prior art keywords
solar cell
polymer
vinyl acetate
ethylene
acetate copolymer
Prior art date
Application number
TW110132611A
Other languages
Chinese (zh)
Other versions
TW202311327A (en
Inventor
廖如仕
丁文彬
梁師堯
莊貴貽
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW110132611A priority Critical patent/TWI782688B/en
Priority to CN202111127795.9A priority patent/CN115746209A/en
Application granted granted Critical
Publication of TWI782688B publication Critical patent/TWI782688B/en
Publication of TW202311327A publication Critical patent/TW202311327A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A polymer is formed by reacting 1 part by weight of diacrylate compound and 8 to 200 parts by weight of ethylene vinyl acetate copolymer. The diacrylate compound has a chemical structure of
Figure 01_image001
, wherein R 1is a single bond, -O-,
Figure 01_image003
,
Figure 01_image005
,
Figure 01_image007
,
Figure 01_image009
,
Figure 01_image011
, or -C=C-; each of R 2is independently H or CH 3; and each of R 3is independently H or CH 3.

Description

聚合物、聚合物組成物、與太陽能電池模組Polymers, polymer compositions, and solar cell modules

本揭露關於聚合物,更特別關於聚合物在太陽能電池模組的應用。This disclosure relates to polymers, and more particularly to the use of polymers in solar cell modules.

在一些已知的太陽能電池模組中緩衝層的材料包括馬來醯亞胺與高烯烴自由基共聚物、改質或未改質的聚乙烯醋酸乙烯酯、改質或未改質的聚乙烯醇縮丁醛、改質或未改質的聚烯烴彈性體、改質或未改質的聚氨基甲酸酯、改質或未改質的離子聚合物、改質或未改質的矽膠,或上述材料之組合。然而上述緩衝層材料仍使太陽能電池具有一定程度的破片問題。為克服太陽能電池的破片問題,目前亟需新的緩衝層材料以用於此太陽能模組。Materials for the buffer layer in some known solar cell modules include maleimide and high olefin radical copolymers, modified or unmodified polyethylene vinyl acetate, modified or unmodified polyethylene Butyral, modified or unmodified polyolefin elastomer, modified or unmodified polyurethane, modified or unmodified ionic polymer, modified or unmodified silicone, Or a combination of the above materials. However, the above-mentioned buffer layer materials still cause the solar cell to have a certain degree of fragmentation problem. In order to overcome the fragmentation problem of solar cells, new buffer layer materials are urgently needed for the solar modules.

本揭露一實施例提供之聚合物,係由1重量份的二丙烯酸酯基化合物與8至200重量份的乙烯-乙酸乙烯酯共聚物反應而成,其中二丙烯酸酯基化合物的結構為:

Figure 02_image001
,其中R 1為單鍵、-O-、
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
、或-C=C-;每一R 2獨立地為H或CH 3;以及每一R 3獨立地為H或CH 3。 The polymer provided in an embodiment of the present disclosure is formed by reacting 1 part by weight of a diacrylate-based compound with 8 to 200 parts by weight of ethylene-vinyl acetate copolymer, wherein the structure of the diacrylate-based compound is:
Figure 02_image001
, where R 1 is a single bond, -O-,
Figure 02_image003
,
Figure 02_image005
,
Figure 02_image007
,
Figure 02_image009
,
Figure 02_image011
, or -C=C-; each R 2 is independently H or CH 3 ; and each R 3 is independently H or CH 3 .

在一些實施例中,二丙烯酸酯基化合物的結構為

Figure 02_image013
。 In some embodiments, the diacrylate-based compound has the structure
Figure 02_image013
.

在一些實施例中,乙烯-乙酸乙烯酯共聚物的結構為

Figure 02_image015
,其中x=200至300000,以及y=1000至250000。 In some embodiments, the ethylene-vinyl acetate copolymer has the structure
Figure 02_image015
, where x=200 to 300000, and y=1000 to 250000.

本揭露一實施例提供之聚合物組成物,包括:1重量份的二丙烯酸酯基化合物;以及8至200重量份的乙烯-乙酸乙烯酯共聚物,其中二丙烯酸酯基化合物的結構為:

Figure 02_image001
,其中R 1為單鍵、-O-、
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
、或-C=C-;每一R 2獨立地為H或CH 3;以及每一R 3獨立地為H或CH 3。 The polymer composition provided by an embodiment of the present disclosure includes: 1 part by weight of a diacrylate-based compound; and 8 to 200 parts by weight of an ethylene-vinyl acetate copolymer, wherein the structure of the diacrylate-based compound is:
Figure 02_image001
, where R 1 is a single bond, -O-,
Figure 02_image003
,
Figure 02_image005
,
Figure 02_image007
,
Figure 02_image009
,
Figure 02_image011
, or -C=C-; each R 2 is independently H or CH 3 ; and each R 3 is independently H or CH 3 .

在一些實施例中,二丙烯酸酯基化合物的結構為

Figure 02_image013
。 In some embodiments, the diacrylate-based compound has the structure
Figure 02_image013
.

在一些實施例中,乙烯-乙酸乙烯酯共聚物的結構為

Figure 02_image015
,其中x=200至300000,以及y=1000至250000。 In some embodiments, the ethylene-vinyl acetate copolymer has the structure
Figure 02_image015
, where x=200 to 300000, and y=1000 to 250000.

在一些實施例中,聚合物組成物更包括0.1至2000重量份的溶劑,且溶劑包括丙二醇甲醚醋酸酯、甲苯、二甲苯、二甲基甲醯胺、N-甲基吡咯烷酮、環戊酮、或上述之組合。In some embodiments, the polymer composition further includes 0.1 to 2000 parts by weight of a solvent, and the solvent includes propylene glycol methyl ether acetate, toluene, xylene, dimethylformamide, N-methylpyrrolidone, cyclopentanone , or a combination of the above.

本揭露一實施例提供之太陽能電池模組,包括:多個太陽能電池,彼此堆疊排列,且每一太陽能電池具有第一表面與相對於第一表面的第二表面;多個導電連接件,分別位於太陽能電池的任一者的第一表面上以及與其相鄰的太陽能電池的第二表面,以串接太陽能電池;以及多個緩衝層,分別位於相鄰的太陽能電池的相鄰邊的第一表面與第二表面上,其中緩衝層的延伸方向垂直於導電連接件的延伸方向,其中緩衝層包括聚合物,且聚合物係由1重量份的二丙烯酸酯基化合物與8至200重量份的乙烯-乙酸乙烯酯共聚物反應而成,其中二丙烯酸酯基化合物的結構為:

Figure 02_image001
,其中R 1為單鍵、-O-、
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
、或-C=C-;每一R 2獨立地為H或CH 3;以及每一R 3獨立地為H或CH 3。 A solar cell module provided by an embodiment of the present disclosure includes: a plurality of solar cells stacked on each other, and each solar cell has a first surface and a second surface opposite to the first surface; a plurality of conductive connectors, respectively Located on the first surface of any one of the solar cells and the second surface of the adjacent solar cells to connect the solar cells in series; and a plurality of buffer layers respectively located on the first surfaces of the adjacent sides of the adjacent solar cells On the surface and the second surface, wherein the extension direction of the buffer layer is perpendicular to the extension direction of the conductive connector, wherein the buffer layer includes a polymer, and the polymer is composed of 1 weight part of a diacrylate-based compound and 8 to 200 weight parts of Ethylene-vinyl acetate copolymer is reacted, and the structure of the diacrylate-based compound is:
Figure 02_image001
, where R 1 is a single bond, -O-,
Figure 02_image003
,
Figure 02_image005
,
Figure 02_image007
,
Figure 02_image009
,
Figure 02_image011
, or -C=C-; each R 2 is independently H or CH 3 ; and each R 3 is independently H or CH 3 .

在一些實施例中,二丙烯酸酯基化合物的結構為

Figure 02_image013
。 In some embodiments, the diacrylate-based compound has the structure
Figure 02_image013
.

在一些實施例中,乙烯-乙酸乙烯酯共聚物的結構為

Figure 02_image015
,其中x=200至300000,以及y=1000至250000。 In some embodiments, the ethylene-vinyl acetate copolymer has the structure
Figure 02_image015
, where x=200 to 300000, and y=1000 to 250000.

在一些實施例中,緩衝層的寬度為0.5 mm至10 mm之間,且緩衝層的厚度為0.1 mm至1.2 mm之間。In some embodiments, the width of the buffer layer is between 0.5 mm and 10 mm, and the thickness of the buffer layer is between 0.1 mm and 1.2 mm.

本揭露一實施例提供之聚合物,係由1重量份的二丙烯酸酯基化合物與8至200重量份的乙烯-乙酸乙烯酯共聚物(EVA)反應而成。若乙烯-乙酸乙烯酯共聚物的比例過低或過高,則在應用於太陽能電池模組時會造成太陽能電池破片。二丙烯酸酯基化合物的結構為:

Figure 02_image001
,其中R 1為單鍵、-O-、
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
、或-C=C-;每一R 2獨立地為H或CH 3;以及每一R 3獨立地為H或CH 3。舉例來說,二丙烯酸酯基化合物的結構可為
Figure 02_image017
。 The polymer provided in an embodiment of the present disclosure is formed by reacting 1 part by weight of a diacrylate-based compound with 8 to 200 parts by weight of ethylene-vinyl acetate copolymer (EVA). If the ratio of the ethylene-vinyl acetate copolymer is too low or too high, the solar cell will be broken when applied to the solar cell module. The structure of the diacrylate-based compound is:
Figure 02_image001
, where R 1 is a single bond, -O-,
Figure 02_image003
,
Figure 02_image005
,
Figure 02_image007
,
Figure 02_image009
,
Figure 02_image011
, or -C=C-; each R 2 is independently H or CH 3 ; and each R 3 is independently H or CH 3 . For example, the structure of a diacrylate-based compound can be
Figure 02_image017
.

在一些實施例中,乙烯-乙酸乙烯酯共聚物的結構為

Figure 02_image015
,其中x=200至300000,以及y=1000至250000。在一些實施例中,可視情況挑選合適之乙烯-乙酸乙烯酯共聚物,例如x=300至100000,以及y=1500至200000。在一些實施例中,可視情況挑選合適之乙烯-乙酸乙烯酯共聚物,例如熔融指數(Melt Index) (測試方式ASTM D1238)為100 g/10 min至2000 g/10 min (190℃下)之乙烯-乙酸乙烯酯共聚物。 In some embodiments, the ethylene-vinyl acetate copolymer has the structure
Figure 02_image015
, where x=200 to 300000, and y=1000 to 250000. In some embodiments, a suitable ethylene-vinyl acetate copolymer can be selected according to the situation, for example, x=300 to 100000, and y=1500 to 200000. In some embodiments, a suitable ethylene-vinyl acetate copolymer can be selected depending on the situation, for example, one with a melt index (Melt Index) (test method ASTM D1238) of 100 g/10 min to 2000 g/10 min (at 190° C.) Ethylene-vinyl acetate copolymer.

在一些實施例中,聚合物係由1重量份的二丙烯酸酯基化合物與8至150重量份的乙烯-乙酸乙烯酯共聚物(EVA)反應而成。In some embodiments, the polymer is formed by reacting 1 part by weight of a diacrylate-based compound with 8 to 150 parts by weight of ethylene-vinyl acetate copolymer (EVA).

為形成上述聚合物,可取1重量份的二丙烯酸酯基化合物;以及8至200重量份或8至150重量份的乙烯-乙酸乙烯酯共聚物混合形成聚合物組成物。二丙烯酸酯基化合物與乙烯-乙酸乙烯酯共聚物如上述,在此不重複說明。To form the above polymer, 1 part by weight of a diacrylate compound; and 8 to 200 parts by weight or 8 to 150 parts by weight of ethylene-vinyl acetate copolymer can be mixed to form a polymer composition. The diacrylate-based compound and the ethylene-vinyl acetate copolymer are as described above and will not be repeated here.

在一些實施例中,聚合物組成物更包括0.1至2000重量份或10至500重量份的溶劑,且溶劑包括丙二醇甲醚醋酸酯、甲苯、二甲苯、二甲基甲醯胺、N-甲基吡咯烷酮、環戊酮、或上述之組合。在此實施例中,二丙烯酸酯基化合物與乙烯-乙酸乙烯酯共聚物可分散於溶劑中,以利後續製程。舉例來說,可加熱上述聚合物組成物,使二丙烯酸酯基化合物與乙烯-乙酸乙烯酯共聚物反應形成聚合物,接著塗佈於基板上,經疊層後加熱加壓以得緩衝層。上述聚合物組成物在使用前可長時間儲放於室溫下,只要在使用前加熱聚合物組成物以形成聚合物即可。In some embodiments, the polymer composition further includes 0.1 to 2000 parts by weight or 10 to 500 parts by weight of a solvent, and the solvent includes propylene glycol methyl ether acetate, toluene, xylene, dimethylformamide, N-formaldehyde pyrrolidone, cyclopentanone, or a combination of the above. In this embodiment, the diacrylate-based compound and ethylene-vinyl acetate copolymer can be dispersed in a solvent to facilitate subsequent processes. For example, the above polymer composition can be heated to react the diacrylate-based compound and ethylene-vinyl acetate copolymer to form a polymer, which is then coated on a substrate, laminated and then heated and pressed to obtain a buffer layer. The above polymer composition can be stored at room temperature for a long time before use, as long as the polymer composition is heated to form a polymer before use.

上述之聚合物可用於太陽能電池模組,比如申請人早先獲證的台灣專利TWI686053B。圖1A係本揭露一實施例的太陽能電池模組的結構剖面圖。圖1B是圖1A的剖線I-I’的剖面圖。太陽能電池模組100包括多個彼此堆疊排列的太陽能電池102、多個導電連接件104、以及多個緩衝層106a及106b, 其中太陽能電池102可為矽晶太陽能電池或其它類型的太陽能電池。在一實施例中,矽晶太陽能電池除了可為完整未切割的6吋矽晶片外,還可包括但不限於1/2、1/3、1/4、1/5、1/6、1/7或1/8的電池切割片。每個太陽能電池102具有第一表面102a與相對於第一表面102a的第二表面102b。此實施例的太陽能電池102是以堆疊形式組成疊片式太陽能電池模組100,與傳統平鋪式的太陽能電池模組相比,由於太陽能電池102之間無空隙,所以預期在相同的面積內能裝設更多的太陽能電池102,藉此提升太陽能電池模組100的效率。The above-mentioned polymers can be used in solar cell modules, such as the Taiwan patent TWI686053B obtained by the applicant earlier. FIG. 1A is a cross-sectional view of the structure of a solar cell module according to an embodiment of the present disclosure. Fig. 1B is a cross-sectional view of line I-I' in Fig. 1A. The solar cell module 100 includes a plurality of stacked solar cells 102, a plurality of conductive connectors 104, and a plurality of buffer layers 106a and 106b, wherein the solar cells 102 can be silicon solar cells or other types of solar cells. In one embodiment, the silicon solar cell may include but not limited to 1/2, 1/3, 1/4, 1/5, 1/6, 1 /7 or 1/8 battery cut pieces. Each solar cell 102 has a first surface 102a and a second surface 102b opposite to the first surface 102a. The solar cells 102 in this embodiment are stacked to form a laminated solar cell module 100. Compared with the traditional tiled solar cell module, since there is no gap between the solar cells 102, it is expected that within the same area More solar cells 102 can be installed, thereby improving the efficiency of the solar cell module 100 .

在圖1A中,導電連接件104分別焊接於一個太陽能電池102的第一表面102a與相鄰的另一個太陽能電池102的第二表面102b,以串接數個太陽能電池102。由於一般的太陽能電池102的電極設計於太陽能電池102的正面(如第一表面102a),其分布有許多指狀電極(未圖示)以作為正面電極,再藉由至少一匯流條(未圖示)連接指狀電極。在太陽能電池102的背面(如第二表面102b)設有背面電極(未圖示),以收集太陽能電池102所產生的電,因此導電連接件104 (可稱為焊帶,ribbon)可直接焊接於匯流條與背面電極,並分別電性連接至一個太陽能電池102的正面電極與相鄰的另一個太陽能電池102的背面電極,使太陽能電池模組100整合至現有太陽能板而不需另外更新材料與設備。此外,若是以6吋太陽能板為例,實施例的太陽能電池102可為將6吋電池切割為一半的「半切電池」,再拉線(導電連接件104)進行兩個相鄰太陽能電池102的焊接。因此,與一般疊片模組(使用面積為1/4~1/6切的6吋電池切割片)相比,此實施例半切的太陽能電池模組100的切割處較少,所以載子對再結合機率也低於一般疊片模組。另一方面,若此實施例的太陽能電池102為1/3切~1/8切的6吋電池切割片,因產生的電流較半切電池的電流為低,所以歐姆損失較低。In FIG. 1A , the conductive connectors 104 are respectively welded on the first surface 102 a of one solar cell 102 and the second surface 102 b of another adjacent solar cell 102 to connect several solar cells 102 in series. Since the electrodes of the general solar cell 102 are designed on the front side of the solar cell 102 (such as the first surface 102a), it is distributed with many finger electrodes (not shown) as front electrodes, and then at least one bus bar (not shown) shown) to connect the finger electrodes. A back electrode (not shown) is provided on the back side of the solar cell 102 (such as the second surface 102b) to collect the electricity generated by the solar cell 102, so the conductive connector 104 (which may be called a ribbon, ribbon) can be directly welded On the bus bar and the back electrode, and respectively electrically connected to the front electrode of one solar cell 102 and the back electrode of another adjacent solar cell 102, so that the solar cell module 100 can be integrated into the existing solar panel without additional renewal of materials with equipment. In addition, if a 6-inch solar panel is taken as an example, the solar cell 102 of the embodiment can be a "half-cut cell" in which the 6-inch cell is cut in half, and then the wires (conductive connectors 104) are used to connect two adjacent solar cells 102. welding. Therefore, compared with the general laminated module (using 6-inch cell cutting sheets with an area of 1/4~1/6 cut), the half-cut solar cell module 100 of this embodiment has fewer cutting places, so the carrier pairs The probability of recombination is also lower than that of general laminated modules. On the other hand, if the solar cell 102 of this embodiment is a 1/3-1/8 cut 6-inch cut sheet, the ohmic loss is lower because the generated current is lower than that of the half-cut cell.

此外,此實施例的太陽能電池模組100中的緩衝層106a及106b分別設置於相鄰的太陽能電池102的相鄰邊的第一表面102a與第二表面102b,且緩衝層106a及106b的延伸方向垂直於導電連接件104的延伸方向,所以在進行模組層壓製程或熱循環測試時,緩衝層106a及106b可減少導電連接件104與太陽能電池102側緣交會處出現矽晶片裂隙的機率。在一實施例中,所述緩衝層106a及106b的熱變形溫度(heat-distortion temperature)可大於或等於250ºC,以承受導電連接件104焊接於電池匯流條時的高溫。另外,緩衝層106a及106b的玻璃轉換溫度(Tg)可為-20℃至-80℃。舉例來說,此實施例之緩衝層106a及106b包括上述之聚合物,比如聚合物組成物所形成的聚合物。In addition, the buffer layers 106a and 106b in the solar cell module 100 of this embodiment are respectively disposed on the first surface 102a and the second surface 102b of the adjacent side of the adjacent solar cell 102, and the extension of the buffer layers 106a and 106b The direction is perpendicular to the extending direction of the conductive connector 104, so when the module lamination process or thermal cycle test is performed, the buffer layers 106a and 106b can reduce the chance of silicon wafer cracks appearing at the intersection of the conductive connector 104 and the side edge of the solar cell 102 . In one embodiment, the heat-distortion temperature of the buffer layers 106a and 106b may be greater than or equal to 250°C, so as to withstand the high temperature when the conductive connector 104 is soldered to the battery bus bar. In addition, the glass transition temperature (Tg) of the buffer layers 106a and 106b may be -20°C to -80°C. For example, the buffer layers 106 a and 106 b of this embodiment include the above-mentioned polymers, such as polymers formed from polymer compositions.

在圖1B中,緩衝層106a是連續結構、緩衝層106b也是連續結構,以覆蓋太陽能電池102的相鄰邊,但是本揭露並不限於此;上述緩衝層106a及106b也可為不連續結構(未圖示),其係對應於導電連接件104的位置而覆蓋太陽能電池102的部分相鄰邊。也就是說,凡是有導電連接件104通過的太陽能電池102的側緣,均需設置有緩衝層106a及106b,使得側緣處的導電連接件104設置於緩衝層106a及106b之間,因此緩衝層106a及106b無論是連續或不連續結構均可達到防止矽晶片產生裂隙的效果。In FIG. 1B, the buffer layer 106a is a continuous structure, and the buffer layer 106b is also a continuous structure to cover adjacent sides of the solar cell 102, but the present disclosure is not limited thereto; the above-mentioned buffer layers 106a and 106b can also be a discontinuous structure ( not shown), which cover part of the adjacent side of the solar cell 102 corresponding to the position of the conductive connecting member 104 . That is to say, buffer layers 106a and 106b must be provided on the side edges of the solar cell 102 through which the conductive connectors 104 pass, so that the conductive connectors 104 at the side edges are disposed between the buffer layers 106a and 106b, thus buffering Whether the layers 106a and 106b are continuous or discontinuous, the effect of preventing cracks in the silicon wafer can be achieved.

圖1C是圖1A的部位110的放大圖。圖1C顯示的是導電連接件104焊接於一片太陽能電池102的情況,其中尚未進行層壓製程的緩衝層106b的寬度w可為0.5 mm至10 mm、厚度t可為0.1 mm至1.2 mm,但本揭露並不限於此。若寬度w過大會減少導電連接件104與電池匯流條的接觸區域,導致太陽能電池模組100的串聯電阻升高;若厚度t過小會造成太陽能電池102在模組層壓製程或是熱循環測試時產生裂隙。在層壓製程之後,緩衝層106b的厚度t會因為壓縮而減小。另外,若是緩衝層106b的熱變形溫度較低,則導電連接件104的焊接部與緩衝層106b之間的距離d可設定在2mm以上。若是緩衝層106b的熱變形溫度較高,則導電連接件104的焊接部與緩衝層106b之間的距離d可小於2mm。FIG. 1C is an enlarged view of site 110 of FIG. 1A . 1C shows the situation where the conductive connector 104 is welded to a solar cell 102, wherein the buffer layer 106b that has not been laminated can have a width w of 0.5 mm to 10 mm and a thickness t of 0.1 mm to 1.2 mm, but The present disclosure is not limited thereto. If the width w is too large, the contact area between the conductive connector 104 and the battery bus bar will be reduced, resulting in an increase in the series resistance of the solar cell module 100; if the thickness t is too small, it will cause the solar cell 102 to fail in the module lamination process or thermal cycle test. cracks occur. After the lamination process, the thickness t of the buffer layer 106b is reduced due to compression. In addition, if the thermal deformation temperature of the buffer layer 106b is relatively low, the distance d between the soldering portion of the conductive connector 104 and the buffer layer 106b can be set to be greater than 2 mm. If the thermal deformation temperature of the buffer layer 106b is relatively high, the distance d between the soldering portion of the conductive connector 104 and the buffer layer 106b may be less than 2mm.

上述聚合物不含鹵系、磷系化合物,且不需添加有毒性的高分子以符合太陽能電池模組測試。上述聚合物具有耐高溫的彈性緩衝特性,其表面電阻≧10 12Ω,彎曲模量(Flexural Modulus)≦400 MPa,相變化溫度≦150℃,Td≧330℃,浮焊時間(Floating Solder)≧20秒(288℃)。經錫爐評估上述聚合物,其通過無鉛製程溫度要求且可減少空焊缺失。 The above-mentioned polymers do not contain halogen and phosphorus compounds, and do not need to add toxic polymers to comply with solar cell module tests. The above-mentioned polymers have high temperature resistant elastic cushioning properties, their surface resistance≧10 12 Ω, flexural modulus≦400 MPa, phase change temperature≦150℃, Td≧330℃, floating soldering time≧ 20 seconds (288°C). The above-mentioned polymers have been evaluated by tin oven, and they pass the lead-free process temperature requirements and can reduce the missing soldering.

上述聚合物兼具環保及高耐熱之特性,適於高溫無鉛材料製程應用。值得注意的是,除了作為上述太陽能電池模組的緩衝層之外,上述聚合物組成物與其反應形成的聚合物可用於其他環保及高耐熱的無鉛材料製程應用。The above-mentioned polymers have both environmental protection and high heat resistance characteristics, and are suitable for high-temperature lead-free material process applications. It is worth noting that, in addition to being used as the buffer layer of the above-mentioned solar cell module, the polymer formed by the reaction of the above-mentioned polymer composition with it can be used in other environment-friendly and highly heat-resistant lead-free material process applications.

為讓本揭露之上述內容和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下: [ 實施例 ] In order to make the above content and other purposes, features, and advantages of this disclosure more comprehensible, the preferred embodiments are listed below, together with the accompanying drawings, and are described in detail as follows: [ Embodiment ]

合成例 取136 g的4-羥基苯乙酮 (1 mol)、185 g的甲基丙烯酸酐(1.2 mol)、與8.4 g的碳酸氫鈉(0.1 mol),於氮氣保護下80°C混合反應2小時。反應完成後加入700 mL的氫氧化鈉水溶液(2 M),攪拌隔夜後過濾產物,水洗後烘乾。得產物198克(收率97%)。上述反應如下所示:

Figure 02_image018
Synthetic example Take 136 g of 4-hydroxyacetophenone (1 mol), 185 g of methacrylic anhydride (1.2 mol), and 8.4 g of sodium bicarbonate (0.1 mol), and mix and react at 80 ° C under nitrogen protection 2 hours. After the reaction was complete, 700 mL of aqueous sodium hydroxide solution (2 M) was added, stirred overnight, and the product was filtered, washed with water, and dried. 198 g of product was obtained (yield 97%). The above reaction looks like this:
Figure 02_image018

取上述產物加入64 g的硫酸肼(0.49 mol)、49 g的三乙胺(0.49 mol)、200 g的乙醇,迴流反應5小時。反應結束後降至室溫,待產物析出用後乙醇與去離子水清洗產物並烘乾,得產物120克。上述產物的氫譜如下: 1H NMR (400 MHz, d 6-DMSO): 7.97 (d, 4H, J=8.0 Hz ), 7.26 (d, 4H, J=8.0 Hz),  6.30 (s, 2H), 5.91 (s, 2H), 2.29 (s, 6H), 2.01 (s, 6H)。上述反應如下:

Figure 02_image020
Take the above product and add 64 g of hydrazine sulfate (0.49 mol), 49 g of triethylamine (0.49 mol), and 200 g of ethanol, and react under reflux for 5 hours. After the reaction was completed, the temperature was lowered to room temperature, and after the product was precipitated, the product was washed with ethanol and deionized water and dried to obtain 120 g of the product. The hydrogen spectrum of the above product is as follows: 1 H NMR (400 MHz, d 6 -DMSO): 7.97 (d, 4H, J=8.0 Hz ), 7.26 (d, 4H, J=8.0 Hz), 6.30 (s, 2H) , 5.91 (s, 2H), 2.29 (s, 6H), 2.01 (s, 6H). The above reaction is as follows:
Figure 02_image020

實施例1 取2 g之合成例的產物、198 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)、與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。加熱聚合物組成物至80℃並攪拌120分鐘以形成聚合物。反應結束後待溫度降至室溫即得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為0%。上述緩衝層之導熱性為0.31 W/m*℃ (量測標準為ASTM D5470)、相變化溫度為85℃ (量測標準為流變儀升溫:5℃/min)、熱分解溫度(Td 5%)為334℃ (量測標準為TGA升溫:20℃/min)、浮焊時間為25秒(288℃,量測標準為IPC TM-650-2.4.13)、且190℃的熔融指數為795 g/10分鐘(量測標準為ASTM D1238)。 Example 1 Take 2 g of the product of the synthesis example, 198 g of ethylene-vinyl acetate copolymer (EVA, UE647 purchased from USI Co.), and 600 g of cyclopentanone (cyclopentanone), and mix to form a polymer Composition. The polymer composition was heated to 80° C. and stirred for 120 minutes to form a polymer. After the reaction, wait until the temperature drops to room temperature to obtain the glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 0%. The thermal conductivity of the above-mentioned buffer layer is 0.31 W/m*°C (the measurement standard is ASTM D5470), the phase change temperature is 85°C (the measurement standard is the rheometer temperature rise: 5°C/min), and the thermal decomposition temperature (Td 5 % ) is 334°C (the measurement standard is TGA temperature rise: 20°C/min), the float soldering time is 25 seconds (288°C, the measurement standard is IPC TM-650-2.4.13), and the melt index at 190°C is 795 g/10 minutes (the measurement standard is ASTM D1238).

實施例2 取20 g之合成例的產物、180 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)、與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。加熱聚合物組成物至80℃並攪拌120分鐘以形成聚合物。反應結束後待溫度降至室溫即得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為0%。上述緩衝層之導熱性為0.35 W/m*℃、相變化溫度為75℃、熱分解溫度(Td 5%)為343℃、浮焊時間為28秒(288℃)、且190℃的熔融指數為710 g/10分鐘。上述量測標準與實施例1相同。 Example 2 Take 20 g of the product of the synthesis example, 180 g of ethylene-vinyl acetate copolymer (EVA, UE647 purchased from USI Co.), and 600 g of cyclopentanone (cyclopentanone), and mix to form a polymer Composition. The polymer composition was heated to 80° C. and stirred for 120 minutes to form a polymer. After the reaction, wait until the temperature drops to room temperature to obtain the glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 0%. The thermal conductivity of the above buffer layer is 0.35 W/m*°C, the phase change temperature is 75°C, the thermal decomposition temperature (Td 5% ) is 343°C, the float soldering time is 28 seconds (288°C), and the melt index is 190°C It is 710 g/10 minutes. The above measurement standard is the same as that of Example 1.

實施例3 取10 g之合成例的產物、190 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)、與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。加熱聚合物組成物至80℃並攪拌120分鐘以形成聚合物。反應結束後待溫度降至室溫即得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為0%。上述緩衝層之導熱性為0.32 W/m*℃、相變化溫度為62℃、熱分解溫度(Td 5%)為352℃、浮焊時間為28秒(288℃)、且190℃的熔融指數為730 g/10分鐘。上述量測標準與實施例1相同。 Example 3 Take 10 g of the product of the synthesis example, 190 g of ethylene-vinyl acetate copolymer (EVA, UE647 purchased from USI Co.), and 600 g of cyclopentanone (cyclopentanone), and mix to form a polymer Composition. The polymer composition was heated to 80° C. and stirred for 120 minutes to form a polymer. After the reaction, wait until the temperature drops to room temperature to obtain the glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 0%. The thermal conductivity of the above buffer layer is 0.32 W/m*°C, the phase change temperature is 62°C, the thermal decomposition temperature (Td 5% ) is 352°C, the float soldering time is 28 seconds (288°C), and the melt index is 190°C It is 730 g/10 minutes. The above measurement standard is the same as that of Example 1.

比較例1 取200 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。加熱聚合物組成物至80℃並攪拌120分鐘,待溫度降至室溫即得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為0.2%。上述緩衝層之導熱性為0.21 W/m*℃、相變化溫度為77℃、熱分解溫度(Td 5%)為312℃、浮焊時間為21秒(288℃)、且190℃的熔融指數為795 g/10分鐘。上述量測標準與實施例1相同。由比較例1可知,無合成例的產物與EVA反應形成聚合物,則膠水所形成的緩衝層會造成太陽能電池破片。 Comparative Example 1 200 g of ethylene-vinyl acetate copolymer (EVA, UE647 available from USI Co.) and 600 g of cyclopentanone (cyclopentanone) were mixed to form a polymer composition. Heat the polymer composition to 80°C and stir for 120 minutes, and wait until the temperature drops to room temperature to obtain the glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 0.2%. The thermal conductivity of the above buffer layer is 0.21 W/m*°C, the phase change temperature is 77°C, the thermal decomposition temperature (Td 5% ) is 312°C, the float soldering time is 21 seconds (288°C), and the melt index is 190°C It is 795 g/10 minutes. The above measurement standard is the same as that of Example 1. It can be seen from Comparative Example 1 that the product of the non-synthetic example reacts with EVA to form a polymer, and the buffer layer formed by the glue will cause the solar cell to break.

比較例2 取25 g之合成例的產物、175 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)、與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。加熱聚合物組成物至80℃並攪拌120分鐘以形成聚合物。反應結束後待溫度降至室溫即得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為1.5%。上述緩衝層之導熱性為0.35 W/m*℃、相變化溫度為76℃、熱分解溫度(Td 5%)為328℃、浮焊時間為15秒(288℃)、且190℃的熔融指數為590 g/10分鐘。上述量測標準與實施例1相同。由比較例2可知,若合成例的產物比例過高,則膠水所形成的緩衝層會造成太陽能電池破片。 Comparative Example 2 Take 25 g of the product of the synthesis example, 175 g of ethylene-vinyl acetate copolymer (EVA, UE647 purchased from USI Co.), and 600 g of cyclopentanone (cyclopentanone), and mix to form a polymer Composition. The polymer composition was heated to 80° C. and stirred for 120 minutes to form a polymer. After the reaction, wait until the temperature drops to room temperature to obtain the glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 1.5%. The thermal conductivity of the above buffer layer is 0.35 W/m*°C, the phase change temperature is 76°C, the thermal decomposition temperature (Td 5% ) is 328°C, the float soldering time is 15 seconds (288°C), and the melt index is 190°C It is 590 g/10 minutes. The above measurement standard is the same as that of Example 1. It can be known from Comparative Example 2 that if the ratio of the product in the synthesis example is too high, the buffer layer formed by the glue will cause the solar cell to break.

比較例3 取10 g之合成例的產物、190 g之乙烯-乙酸乙烯酯共聚物(EVA,購自USI Co.的UE647)、與600 g的環戊酮(cyclopentanone),混合後形成聚合物組成物。在室溫下攪拌聚合物組成物120分鐘以得膠水。將膠水塗佈於太陽能電池的邊側上,並形成導電連接件串連太陽能電池。經疊層於150℃下加熱加壓1小時,使膠水形成緩衝層以得太陽能電池模組。太陽能電池模組經標準測試法IEC61215-2016之熱循環(50 cycles)測試後,以電致發光檢測太陽能電池是否破片,其破片率為0.3%。上述緩衝層之導熱性為0.26 W/m*℃、相變化溫度為70℃、熱分解溫度(Td 5%)為331℃、浮焊時間為23秒(288℃)、且190℃的熔融指數為735 g/10分鐘。上述量測標準與實施例1相同。由比較例3可知,若合成例的產物與EVA僅混合而未反應形成聚合物,則無法作為緩衝層。 Comparative Example 3 Take 10 g of the product of the synthesis example, 190 g of ethylene-vinyl acetate copolymer (EVA, UE647 purchased from USI Co.), and 600 g of cyclopentanone (cyclopentanone), and mix to form a polymer Composition. The polymer composition was stirred at room temperature for 120 minutes to obtain a glue. Glue is coated on the sides of the solar cells, and conductive connectors are formed to connect the solar cells in series. After stacking, heat and press at 150° C. for 1 hour to make the glue form a buffer layer to obtain a solar cell module. After the solar cell module is tested by the thermal cycle (50 cycles) of the standard test method IEC61215-2016, electroluminescence is used to detect whether the solar cell is broken, and the broken rate is 0.3%. The thermal conductivity of the above buffer layer is 0.26 W/m*°C, the phase change temperature is 70°C, the thermal decomposition temperature (Td 5% ) is 331°C, the float soldering time is 23 seconds (288°C), and the melt index is 190°C It is 735 g/10 minutes. The above measurement standard is the same as that of Example 1. It can be known from Comparative Example 3 that if the product of the synthesis example is only mixed with EVA without reacting to form a polymer, it cannot be used as a buffer layer.

雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the disclosure has been disclosed above with several preferred embodiments, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field can make any changes without departing from the spirit and scope of the disclosure. and retouching, so the scope of protection of this disclosure should be defined by the scope of the appended patent application.

d:距離 t:厚度 w:寬度 I-I’:剖線 100:太陽能電池模組 102:太陽能電池 102a:第一表面 102b:第二表面 104:導電連接件 106a,106b:緩衝層 110:部位 d: distance t: thickness w: width I-I': section line 100:Solar battery module 102: Solar cell 102a: first surface 102b: second surface 104: Conductive connector 106a, 106b: buffer layer 110: parts

圖1A係本揭露一實施例的太陽能電池模組的結構剖視圖。 圖1B是圖1A的剖線I-I’的剖視圖。 圖1C是圖1A的部位放大圖。 FIG. 1A is a structural cross-sectional view of a solar cell module according to an embodiment of the present disclosure. Fig. 1B is a cross-sectional view taken along line I-I' of Fig. 1A. FIG. 1C is an enlarged view of the part of FIG. 1A .

Figure 01_image001
Figure 01_image001

I-I’:剖線 I-I': section line

100:太陽能電池模組 100:Solar battery module

102:太陽能電池 102: Solar cell

102a:第一表面 102a: first surface

102b:第二表面 102b: second surface

104:導電連接件 104: Conductive connector

106a,106b:緩衝層 106a, 106b: buffer layer

110:部位 110: parts

Claims (7)

一種聚合物,係由1重量份的二丙烯酸酯基化合物與8至200重量份的乙烯-乙酸乙烯酯共聚物反應而成,其中二丙烯酸酯基化合物的結構為:
Figure 110132611-A0305-02-0020-1
A polymer formed by reacting 1 part by weight of a diacrylate-based compound with 8 to 200 parts by weight of ethylene-vinyl acetate copolymer, wherein the structure of the diacrylate-based compound is:
Figure 110132611-A0305-02-0020-1
如請求項1之聚合物,其中乙烯-乙酸乙烯酯共聚物 的結構為
Figure 110132611-A0305-02-0020-2
,其中x=200至300000,以及 y=1000至250000。
As the polymer of claim 1, wherein the structure of ethylene-vinyl acetate copolymer is
Figure 110132611-A0305-02-0020-2
, where x=200 to 300000, and y=1000 to 250000.
一種聚合物組成物,包括:1重量份的二丙烯酸酯基化合物;以及8至200重量份的乙烯-乙酸乙烯酯共聚物,其中二丙烯酸酯基化合物的結構為:
Figure 110132611-A0305-02-0021-4
A polymer composition, comprising: 1 part by weight of a diacrylate-based compound; and 8 to 200 parts by weight of an ethylene-vinyl acetate copolymer, wherein the structure of the diacrylate-based compound is:
Figure 110132611-A0305-02-0021-4
如請求項3之聚合物組成物,其中乙烯-乙酸乙烯酯 共聚物的結構為
Figure 110132611-A0305-02-0021-5
,其中x=200至 300000,以及y=1000至250000。
As the polymer composition of claim 3, wherein the structure of ethylene-vinyl acetate copolymer is
Figure 110132611-A0305-02-0021-5
, where x=200 to 300000, and y=1000 to 250000.
如請求項3之聚合物組成物,更包括0.1至2000重量份的溶劑,且溶劑包括丙二醇甲醚醋酸酯、甲苯、二甲苯、二甲基甲醯胺、N-甲基吡咯烷酮、環戊酮、或上述之組合。 Such as the polymer composition of claim 3, further comprising 0.1 to 2000 parts by weight of a solvent, and the solvent includes propylene glycol methyl ether acetate, toluene, xylene, dimethylformamide, N-methylpyrrolidone, cyclopentanone , or a combination of the above. 一種太陽能電池模組,包括:多個太陽能電池,彼此堆疊排列,且每一該些太陽能電池具有一第一表面與相對於該第一表面的一第二表面;多個導電連接件,分別位於該些太陽能電池的任一者的該第一表面上以及與其相鄰的該太陽能電池的該第二表面,以串接該些太陽能電池;以及多個緩衝層,分別位於相鄰的該些太陽能電池的相鄰邊的該第一表面與該第二表面上,其中該些緩衝層的延伸方向垂直於該導電連接件的延伸方向, 其中該緩衝層包括一聚合物,且該聚合物係由1重量份的二丙烯酸酯基化合物與8至200重量份的乙烯-乙酸乙烯酯共聚物反應而成,其中二丙烯酸酯基化合物的結構為:
Figure 110132611-A0305-02-0022-6
A solar cell module, comprising: a plurality of solar cells stacked on each other, and each of the solar cells has a first surface and a second surface opposite to the first surface; a plurality of conductive connectors are located on the On the first surface of any one of the solar cells and the second surface of the solar cell adjacent to it, so as to connect the solar cells in series; and a plurality of buffer layers, respectively located on the adjacent solar cells On the first surface and the second surface of the adjacent side of the battery, wherein the extension direction of the buffer layers is perpendicular to the extension direction of the conductive connector, wherein the buffer layer includes a polymer, and the polymer is made of It is formed by reacting 1 part by weight of a diacrylate-based compound with 8 to 200 parts by weight of ethylene-vinyl acetate copolymer, wherein the structure of the diacrylate-based compound is:
Figure 110132611-A0305-02-0022-6
如請求項6之太陽能電池模組,其中乙烯-乙酸乙烯 酯共聚物的結構為
Figure 110132611-A0305-02-0022-8
,其中x=200至 300000,以及y=1000至250000。
Such as the solar cell module of claim 6, wherein the structure of the ethylene-vinyl acetate copolymer is
Figure 110132611-A0305-02-0022-8
, where x=200 to 300000, and y=1000 to 250000.
TW110132611A 2021-09-02 2021-09-02 Polymer, polymer composition, and solar cell module TWI782688B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110132611A TWI782688B (en) 2021-09-02 2021-09-02 Polymer, polymer composition, and solar cell module
CN202111127795.9A CN115746209A (en) 2021-09-02 2021-09-26 Polymer, polymer composition, and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132611A TWI782688B (en) 2021-09-02 2021-09-02 Polymer, polymer composition, and solar cell module

Publications (2)

Publication Number Publication Date
TWI782688B true TWI782688B (en) 2022-11-01
TW202311327A TW202311327A (en) 2023-03-16

Family

ID=85332768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132611A TWI782688B (en) 2021-09-02 2021-09-02 Polymer, polymer composition, and solar cell module

Country Status (2)

Country Link
CN (1) CN115746209A (en)
TW (1) TWI782688B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240864A (en) * 1998-02-24 1999-09-07 Nof Corp Styrene polymer for plastic optical material and its raw material
CN105073807A (en) * 2013-03-25 2015-11-18 新日铁住金化学株式会社 Curable resin composition, cured product, and optical article
US20170255061A1 (en) * 2016-03-04 2017-09-07 Samsung Display Co., Ltd. Liquid crystal display and method of manufacturing the same
TW201927890A (en) * 2017-12-25 2019-07-16 財團法人工業技術研究院 Thermally conductive resin, resin composition, prepreg, and copper clad laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240864A (en) * 1998-02-24 1999-09-07 Nof Corp Styrene polymer for plastic optical material and its raw material
CN105073807A (en) * 2013-03-25 2015-11-18 新日铁住金化学株式会社 Curable resin composition, cured product, and optical article
US20170255061A1 (en) * 2016-03-04 2017-09-07 Samsung Display Co., Ltd. Liquid crystal display and method of manufacturing the same
TW201927890A (en) * 2017-12-25 2019-07-16 財團法人工業技術研究院 Thermally conductive resin, resin composition, prepreg, and copper clad laminate

Also Published As

Publication number Publication date
TW202311327A (en) 2023-03-16
CN115746209A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
CN203910823U (en) Back-contact solar cell module
KR101502349B1 (en) Photovoltaic module comprising insulation layer with silane groups
CN104334631B (en) Solar cell sealing material and solar module
JP5057642B2 (en) Dye-sensitized solar cell spacer
CN109216490A (en) High-efficient disposition for solar battery string
KR20080078816A (en) Filler for solar cell module, solar cell module using same, and method for producing filler for solar cell module
CN104247042B (en) Solar cell sealing material and solar module
TWI782688B (en) Polymer, polymer composition, and solar cell module
TW202021262A (en) Solar cell panel and solar cell module
CN114958216A (en) Packaging adhesive film for heterojunction battery and preparation method and application thereof
JP5820109B2 (en) Sealing film for solar cell module and solar cell module using the same
JP2011228435A (en) Sealing film for solar cell, solar cell module, and method of manufacturing the same
JP6371403B2 (en) Sealing sheet, solar cell module, and method for manufacturing sealing sheet
WO2022252755A1 (en) Ribbon carrier film, preparation method therefor, and application thereof
JP2011066286A (en) Solar cell module and method of manufacturing the same
TWI545788B (en) Sheet and module structure
JP2014107436A (en) Solar cell module and conductive laminate
JPH1098206A (en) Adhesive sheet for solar cell, solar cell module and manufacture of solar cell module
JP2012209335A (en) Sealing material sheet for thin film type solar cell module, and thin film type solar cell module
CN106133917A (en) Solaode and use the solar module of this solaode
JP2020136427A (en) Collector wire fixing film for solar cell module
CN220873597U (en) Battery string and photovoltaic module
CN116102987B (en) Solar cell module packaging adhesive film, preparation method thereof and solar cell module
CN214068734U (en) Light conversion type battery structure
CN220208984U (en) Solar cell module and solar power generation device