WO2014157086A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2014157086A1
WO2014157086A1 PCT/JP2014/058086 JP2014058086W WO2014157086A1 WO 2014157086 A1 WO2014157086 A1 WO 2014157086A1 JP 2014058086 W JP2014058086 W JP 2014058086W WO 2014157086 A1 WO2014157086 A1 WO 2014157086A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
pixel
circuits
amplifier
signal
Prior art date
Application number
PCT/JP2014/058086
Other languages
French (fr)
Japanese (ja)
Inventor
香川 景一郎
川人 祥二
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2015508483A priority Critical patent/JP6324372B2/en
Publication of WO2014157086A1 publication Critical patent/WO2014157086A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • the present invention relates to an imaging apparatus for imaging an observation object.
  • FCS Fluorescence Correlation Spectroscopy
  • the present invention has been made in view of such a problem, and an object thereof is to provide an imaging apparatus that realizes multi-point observation of an observation object at high speed and with low noise.
  • an imaging device includes a plurality of pixel circuits that convert light into electric charge, a plurality of signal processing circuits connected to each of the plurality of pixel circuits, and a pixel circuit. And a control circuit that controls the operation of the signal processing circuit.
  • the pixel circuit includes a light receiving unit that converts light into electric charge, a longitudinal charge discharging unit that is formed from the center to the end of the light receiving unit, and a charge discharging unit.
  • Temporary storage unit provided on the end side of the storage unit, a plurality of transfer gates arranged so as to surround the temporary storage unit, and a plurality of charge detections provided across the plurality of transfer gates in the temporary storage unit
  • Each of the plurality of signal processing circuits has a plurality of readout circuits provided corresponding to each of the plurality of charge detection units, and each of the readout circuits receives a voltage signal from the charge detection unit.
  • the impedance change And a source follower amplifier that reads out and amplifies by removing reset noise from the voltage signal, and a plurality of sample and hold circuits that receive the voltage signal output from the gain amplifier in parallel.
  • the reset operation, charge accumulation operation, and charge read operation are controlled to be executed by pipeline processing corresponding to a plurality of charge detection units, and at the same time, the amplification operation, the sample hold operation, and the external in the plurality of read circuits of the signal processing circuit Control is performed so that the signal read operation to the is executed by pipeline processing.
  • the charges generated by the light receiving unit in the pixel circuit are transferred at high speed to the plurality of charge detection units via the charge discharging unit, the temporary storage unit, and the plurality of transfer gates. Further, the charges transferred to the plurality of charge detection units are converted into voltage signals by a readout circuit provided corresponding to the plurality of charge detection units, and then subjected to sample hold processing and signal readout processing. At this time, reset, charge accumulation, and charge readout in the plurality of charge transfer paths of the pixel circuit are executed by pipeline processing by the control circuit, and amplification, sample hold, and signal readout in the plurality of readout circuits for each pixel are also piped. It is executed by line processing.
  • multi-point observation of an observation object can be realized at high speed and with low noise.
  • FIG. 1 is a schematic configuration diagram of a fluorescence correlation spectroscopic microscope system 100 including an imaging device 1 according to a preferred embodiment of the present invention. It is a block diagram which shows schematic structure of the imaging device 1 of FIG.
  • FIG. 3 is a plan view showing a structure of a pixel circuit 3 in FIG. 2.
  • 4 is a graph showing a potential distribution along a longitudinal direction of a charge discharging unit 15 of the pixel circuit 3 of FIG. 3.
  • 4 is a graph showing a simulation result of the number of remaining charges in the light receiving unit 13 and the charge discharging unit 15 when the charge is transferred to the lower charge detection unit 19 in FIG. 3.
  • FIG. 3 is a circuit diagram showing a configuration of one pixel including a pixel circuit 3 and a pixel amplifier 5 in FIG. 2.
  • 3 is a timing chart of a clock signal generated by the control circuit 7 of FIG. It is a top view which shows the structure of 3 A of pixel circuits which concern on the modification of this invention.
  • 7 is a timing chart showing temporal changes in the intensity of excitation light controlled by the control circuit 7 and temporal changes in the clock signal given from the control circuit 7 to a transfer gate 14A.
  • FIG. 1 is a schematic configuration diagram of a fluorescence correlation spectroscopic microscope system 100 including an imaging device 1 according to a preferred embodiment of the present invention.
  • the fluorescence correlation spectroscopic microscope system 100 is a measurement system that performs an analysis by FCS at a two-dimensional multipoint on the observation object S.
  • the fluorescence correlation spectroscopic microscope system 100 includes an excitation light source 101 such as a laser light source that generates excitation light to be irradiated on the observation target S, and spot-like excitation in which the excitation light irradiated from the excitation light source 101 is two-dimensionally arranged.
  • the excitation light is condensed and incident on the optical element 103 made of a diffraction grating or a microlens array that converts light into light and the observation object S, and the fluorescence generated from the observation object S is concomitantly connected to the imaging apparatus 1.
  • a microscope 105 for imaging, a signal processing unit 107 that is connected to the imaging device 1 and processes an analog signal output from the imaging device 1, and a data processing unit 109 that processes digital data output from the signal processing unit 107 Consists of including.
  • the microscope 105 included in the fluorescence correlation spectroscopy microscope system 100 reflects the excitation light from the optical element 103 toward the observation object S and transmits the fluorescence from the observation object S toward the imaging device 1.
  • the signal processing unit 107 also converts a plurality of AD converters 115 that convert analog voltage signals output in parallel from the plurality of output terminals of the imaging device 1 into digital signals, and the digital signals output from the AD converter 115.
  • An FPGA (Field Programmable Gate Array) 117 that performs various operations is provided.
  • the data processing unit 109 uses the calculation data output from the FPGA 117 to calculate autocorrelation or cross-correlation, and generates and outputs an analysis value such as a power spectrum.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the imaging apparatus 1.
  • the imaging device 1 is two-dimensionally arranged, and includes a plurality of pixel circuits 3 that convert fluorescence into electric charges, and a plurality of pixel amplifiers (signals) connected to each of the plurality of pixel circuits 3.
  • These pixel circuits 3 are arranged in a total of 100, for example, 10 rows and 10 columns, but the number can be set to various numbers.
  • the plurality of pixel amplifiers 5 are provided in the same number as the pixel circuits 3 corresponding to the pixel circuits 3, and a plurality of (for example, five) pixel amplifiers are grouped to form a plurality of pixel amplifier units 9.
  • Each pixel amplifier unit 9 is provided with an analog output terminal for outputting a voltage signal generated by the pixel circuit 3 to the outside. From the analog output terminal, the outputs of the plurality of pixel circuits 3 are bundled from the pixel amplifier unit 9 and read out serially.
  • the image pickup apparatus 1 is configured such that signal readout operations can be simultaneously performed from all the pixel circuits 3 by controlling the pixel amplifier 5.
  • the control circuit 7 controls the operation timing of each circuit by supplying various clock signals to the pixel circuit 3, the pixel amplifier 5, and the pixel amplifier unit 9.
  • FIG. 3 is a plan view showing the structure of the pixel circuit 3.
  • the pixel circuit 3 is integrated and formed on a semiconductor substrate 11 such as a silicon substrate, and has a substantially circular light receiving portion 13, a longitudinal charge discharging portion 15, and three transfer gates 17. And three charge detectors 19.
  • the light receiving unit 13 is a region that converts incident fluorescence into electric charges (photoelectrons), and is, for example, a buried photodiode formed on the semiconductor substrate 11.
  • the size of the light receiving unit 13 can be set to various sizes according to the pixel size, but is set to a diameter of about 10 ⁇ m, for example.
  • the charge discharging portion 15 is formed so as to increase in width from the center portion to the end portion from the center portion to the end portion of the light receiving portion 13.
  • the accumulation part 15a is integrally formed.
  • the charge discharging unit 15 and the temporary storage unit 15a are doped with n-type impurities, and the impurity concentration is set higher than that of the light receiving unit 13, so that the potential is set higher than that of the light receiving unit. Has been. As a result, a potential gradient is formed such that the potential increases from the entire light receiving unit 13 toward the charge discharging unit 15.
  • the charge discharging unit 15 is formed so as to become narrower from the end of the light receiving unit 13 toward the center, the charge discharging unit 15 is temporarily extended from the center of the light receiving unit 13 in the longitudinal direction inside the charge discharging unit 15. A potential gradient in which the potential gradually increases toward the accumulation unit 15a is also formed.
  • the three transfer gates 17 are gate electrodes stacked on the semiconductor substrate 11 with an insulating layer interposed therebetween.
  • the clock signal TX is given from the external control circuit 7, the charge discharge unit 15 to the charge detection unit 19 are provided. Control charge transfer.
  • These transfer gates 17 are arranged at a distance from each other so as to be in contact with the temporary storage unit 15 a provided on the outer side (end side) of the light receiving unit 13 of the charge discharging unit 15.
  • the three transfer gates 17 have the same distance from the center of the temporary storage unit 15a, the distance from the center of the light receiving unit 13 is substantially equal to each other, and the distance from each other is also equal. It is arranged on three sides of the outer edge so as to surround the temporary storage unit 15a.
  • the three charge detection units 19 are formed outside the light receiving unit 13 and adjacent to the temporary storage unit 15a with the transfer gates 17 interposed therebetween, and are transferred from the temporary storage unit 15a by the control of the respective transfer gates 17. It is a floating diffusion layer that accumulates the accumulated charge.
  • the number of transfer gates 17 and charge detection units 19 is not limited to three as long as it is two or more, but is set to three in terms of both miniaturization of pixel circuit 3 and high speed of charge transfer. It is preferred that
  • FIG. 4 shows a potential distribution along the longitudinal direction of the charge discharging unit 15 of the pixel circuit 3.
  • FIG. 4A shows an overall potential distribution of the pixel circuit 3
  • FIG. 4B shows a clock signal TX. 2 shows potential distribution around the transfer gate 17 when V is set to various voltages.
  • the potential of the charge discharging unit 15 is set higher than the potential of the light receiving unit 13, and the potential along the longitudinal direction of the charge discharging unit 15 is changed from the light receiving unit 13 side to the temporary storage unit.
  • a potential gradient that gradually increases toward the side 15a is formed. Therefore, it can be seen that charges generated in the entire light receiving unit 13 are quickly transported to the temporary storage unit 15a via the charge discharging unit 15. Further, as shown in FIG.
  • FIGS. 5 to 7 show the simulation results of the time change of the number of transferred charges when it is assumed that photoelectrons are generated at the edge of the light receiving unit 13, and FIG. FIG. 6 is a simulation result of the number of remaining charges in the light receiving unit 13 and the charge discharging unit 15 when transferred to the detecting unit 19, and FIG. 6 shows the light receiving unit 13 and the charge discharging when transferred to the left charge detecting unit 19 in FIG.
  • FIG. 7 shows the simulation results of the number of charges returned to the light receiving unit 13 and the charge discharging unit 15 when transferred to the lower charge detection unit 19 in FIG. Yes. From these results, it was found that charge transfer could be completed in about 20 ns regardless of the position of the charge detection unit 19 as a transfer destination, and it was confirmed that there was almost no influence of return charge.
  • FIG. 8 is a circuit diagram illustrating a configuration of one pixel of the imaging device 1 including the pixel circuit 3 and the pixel amplifier 5.
  • the pixel circuit 3 includes one light receiving unit 13, three transfer gates 17, and three charge detection units 19. Each charge detection unit 19 further includes a charge detection unit.
  • the reset gate 21 for resetting the charge of 19 is connected to an amplifier 23 which is a source follower amplifier circuit that reads out the voltage signal output from the charge detection unit 19 by impedance conversion.
  • the reset gate 21 is supplied with a clock signal RST from the control circuit 7 to control the charge reset timing.
  • the pixel amplifier 5 is provided corresponding to the three charge detectors 19 of the pixel circuit 3, and receives in parallel the three gain amplifiers 25 that amplify the output from the amplifier 23 and the voltage signals of the respective gain amplifiers 25.
  • Three sample and hold circuits 27 are included.
  • the gain amplifier 25 includes two-stage CDS (Correlated Double Sampling) amplifiers (first and second amplifiers) 29a and 29b having different gains. Specifically, the CDS amplifier 29a is set to a relatively large gain such as 32 times, and the CDS amplifier 29b is set to a relatively small gain such as 8 times.
  • a CDS amplifier 29b is connected to the subsequent stage of the CDS amplifier 29a, and the input of the CDS amplifier 29a is grounded via the capacitor 33 and is connected to the output of the amplifier 23 via the switch 31.
  • the CDS amplifier 29a includes a switch 35a, capacitors 37a and 39a, and an operational amplifier 41a
  • the CDS amplifier 29b includes a switch 35b, capacitors 37b and 39b, and an operational amplifier 41b.
  • One input of the operational amplifier 41a receives an output voltage from the amplifier 23 via the switch 31 and the capacitor 37a connected in series, and the other input of the operational amplifier 41a receives a common reference signal.
  • a switch 35a and a capacitor 39a are connected in parallel between one input of the operational amplifier 41a and the output of the operational amplifier 41a.
  • one input of the operational amplifier 41b receives an output voltage from the operational amplifier 41a via the capacitor 37b
  • the other input of the operational amplifier 41b receives a common reference signal.
  • a switch 35b and a capacitor 39b are connected in parallel between one input of the operational amplifier 41b and the output of the operational amplifier 41b. The output of the operational amplifier 41b is connected to the sample hold circuit 27 in the subsequent stage.
  • the clock signals ⁇ R1 and ⁇ R2 are supplied from the control circuit 7 to the switches 35a and 35b, respectively, so that the timing of the amplification operation is controlled. That is, at the timing when the reset potential is output from the amplifier 23, the switches 31, 35a and 35b are closed, and the reset levels are taken into the capacitors 37a, 39a, 37b and 39b. Next, after the accumulation is completed, the switch 35a is opened while the switch 31 is closed, and then the switch 35b is opened. Then, the transfer gate 17 is turned on to transfer the charge of the temporary storage unit 15 a to the charge detection unit 19, and the voltage level of the charge detection unit 19 is taken into the capacitors 37 a, 39 a, 37 b and 39 b via the amplifier 23. At this time, since the switches 35a and 35b are opened, a difference between the reset level and the voltage level, that is, an analog CDS result is generated at the outputs of the operational amplifiers 41a and 41b.
  • capacitors 43a and 43b which are two storage elements, are connected in parallel to the output of the gain amplifier 25. Specifically, one end of each of the capacitors 43a and 43b is grounded, and the other end is connected to the output of the operational amplifier 41b via the switches 45a and 45b. Furthermore, the other ends of the capacitors 43a and 43b are connected to analog output terminals of the imaging device 1 via switches 47a and 47b, respectively.
  • the sample hold circuit 27 is supplied with clock signals SH0, SEL0, SH1, and SEL1 from the control circuit 7 in each of the switches 45a, 47a, 45b, and 47b.
  • the timing of reading is controlled. That is, the clock signal SH0 is turned on, the switch 45a is closed, and the sample hold operation of the output voltage level of the gain amplifier 25 to the capacitor 43a is executed. Next, the clock signal SH0 is turned off, the clock signal SEL0 is turned on, the switch 45a is opened, the switch 47a is closed, and the signal reading operation to the outside of the output voltage level held by the capacitor 43a is executed.
  • the timing of the sample hold operation and signal read operation in the capacitor 43b is similarly controlled by the clock signals SH1 and SEL1.
  • the sample and hold circuit 27 including the two capacitors 43a and 43b can perform a double buffering operation. By alternately operating the two capacitors 43a and 43b, the output voltage level can be stored and read out to the outside. The reading speed can be improved by performing in parallel.
  • FIG. 9 is a timing chart of the clock signal generated by the control circuit 7.
  • a part of the change of the clock signal in the operation from the charge reset to the signal output in the two signal readout paths corresponding to the two charge detectors 19 of the pixel circuit 3 is shown.
  • the reference numerals of the clock signals are numbered in parentheses to identify each signal readout path.
  • the clock signal RST (1) when the clock signal RST (1) is turned on, the charge of the charge detection unit 19 in the first signal readout path is reset, and immediately thereafter, the clock signals ⁇ R1 (1) and ⁇ R2 (1) are turned on. Incorporation of the reset level into the gain amplifier 25 is started. Thereafter, the clock signals ⁇ R1 (1) and ⁇ R2 (1) are turned off after a predetermined time has elapsed, and the clock signal TX (1) is turned on immediately thereafter. Thereby, the charge transfer operation in the charge detection unit 19 in the first signal readout path, the signal readout operation from the charge detection unit 19 to the gain amplifier 25, and the CDS operation (amplification operation) are sequentially performed.
  • the clock signal SEL0 (1) is turned on after the clock signal SH0 (1) is turned on for a predetermined time, whereby the sample / hold operation in the sample / hold circuit 27 and the signal reading operation to the outside are sequentially performed. Thereafter, the clock signal changing in the same manner is repeated, whereby the signal reading using the first signal reading path is repeated. At that time, in the sample hold operation and the external signal read operation in the sample hold circuit 27, the clock signals SH0, SEL0, SH1, and SEL1 are generated so that the two capacitors 43a and 43b are sequentially used.
  • the clock signal RST (2), TX is executed by the control circuit 7 so that charge reset, charge accumulation, and charge read in the second signal read path are executed with a shift from the timing in the first signal read path. (2) is generated. Thereby, each operation corresponding to the plurality of charge detection units 19 is executed by pipeline processing. Furthermore, the amplification operation, the sample hold operation, and the signal read operation in the gain amplifier 25 and the sample hold circuit 27 corresponding to the second signal read path are also executed while being shifted from the timing in the first signal read path. In addition, clock signals ⁇ R1 (2), ⁇ R2 (2), SH0 (2), SEL0 (2), SH1 (2), and SEL1 (2) are generated. Thereby, each operation corresponding to the plurality of gain amplifiers 25 and the plurality of sample and hold circuits 27 is also executed by the pipeline processing.
  • the charges generated by the light receiving unit 13 in the pixel circuit 3 are transferred in parallel to the plurality of charge detection units 19 via the charge discharging unit 15 and the plurality of transfer gates 17 at high speed.
  • the charges transferred to the plurality of charge detection units 19 are converted into voltage signals by a gain amplifier 25 provided corresponding to the plurality of charge detection units 19, and then sample-hold processing and signal reading by the sample-hold circuit 27. Processing is performed.
  • reset, charge accumulation, and charge readout in a plurality of signal readout paths of the pixel circuit 3 are executed by pipeline processing by the control circuit 7, and a plurality of gain amplifiers 25 and a plurality of sample hold units provided for each pixel are executed.
  • Amplification, sample hold, and signal readout in the circuit 27 are also executed by pipeline processing. This speeds up the signal readout operation for one pixel and also ensures the length of time from signal accumulation to signal readout for each pixel signal readout path, so that noise in the readout signal can also be reduced. Specifically, if there are M signal readout paths, the sampling rate for each pixel can be theoretically increased to M times, and a sampling rate of 1 MS / sec can be realized. As a result, multi-point observation can be realized at high speed and with low noise.
  • the gain amplifier 25 is composed of two stages of CDS amplifiers 29a and 29b having different gains. As a result, the input conversion noise can be reduced by limiting the band with the first stage CDS amplifier 29a, and the reset noise remaining in the first stage can be reduced with the second stage CDS amplifier 29b.
  • sample hold circuit 27 is controlled so as to sequentially execute the two capacitors 43a and 43b connected in parallel in the sample hold operation and the signal read operation. As a result, signal readout from the gain amplifier 25 to the outside can be further accelerated.
  • FIG. 10 is a plan view showing the structure of a pixel circuit 3A which is a modification of the present invention.
  • the pixel circuit 3A is formed on the semiconductor substrate 11 to be integrated, and has a substantially rectangular light receiving part 13A, four charge temporary storage parts 15A formed at the four corners of the light receiving part 13, A transfer gate 14A for controlling charge transfer from the light receiving unit 13 to each of the temporary charge storage units 15A, four transfer gates 17A arranged adjacent to the outside of each of the temporary charge storage units 15A, and a transfer gate 17A
  • the four charge detectors 19A are formed outside the temporary charge storage unit 15A.
  • the charge generated by the light receiving unit 13A passes through the four temporary charge storage units 15A. It can be transported at high speed in parallel to the four charge detectors 19A and taken out as signals.
  • the number of transfer gates 14A and 17A, the temporary charge storage unit 15A, and the charge detection unit 19A in the pixel circuit 3A is not limited to four, and an arbitrary number can be set.
  • the fluorescence correlation spectroscopic microscope system 100 including such a pixel circuit 3A modulates a clock signal applied to the transfer gate 14A corresponding to the plurality of charge transfer paths, thereby generating a plurality of power spectra equivalent to the autocorrelation function.
  • the frequency component can be obtained discretely. That is, using the structure in which one pixel includes K transfer gates 14A and K charge temporary storage units 15A, the control circuit 7 controls the result of inner products for several basis functions.
  • the pixel value is stored in the temporary charge storage unit 15A, and after a sufficient storage time, the pixel value is read out to the data processing unit 109. Then, the data processing unit 109 reads K pixel values for one pixel.
  • the data processing unit 109 can calculate a discrete power spectrum from K ⁇ L pixel values read from one pixel by repeating L times by changing the basis function and reading the pixel value.
  • the control circuit 7 controls the driving of the pixel circuit 3A and the modulation of the excitation light in the excitation light source 101. That is, to realize complete charge transfer, only one transfer gate 14A is simultaneously turned on, so that a plurality of transfer gates 14A are not turned on at the same time and an intermediate potential is not applied to the transfer gates 14A. Controlled. Under such conditions, the control circuit 7 performs high-speed on / off binary control for the plurality of transfer gates 14A, and a clock applied to each transfer gate 14A so as to express an arbitrary basis function. Modulate the signal.
  • FIG. 11 shows the time change of the intensity of the excitation light controlled by the control circuit 7 and the time change of the clock signal given from the control circuit 7 to the transfer gate 14A when the pixel circuit 3A has three charge transfer paths.
  • the sine wave is approximated by a rectangular shape, and at the same time, the clock signals TX1 (1), TX1 (2), TX1 (3 ) Is intermittently turned on so that it is not turned on.
  • the control signal CTL for modulating the intensity of the excitation light is generated so as to increase or decrease in accordance with the sum of the weights of the basis functions h 1 (t), h 2 (t), and h 3 (t).
  • the calculation of the power spectrum in the data processing unit 109 is executed as follows.
  • the data processing unit 109 The power spectrum at frequencies 0 and ⁇ can be calculated by the following equation.
  • ( g 1 + g 3) 2/2,
  • (g 1 2 +2 g 2 2 + g 3 2 -2 g 1 g 2 -2 g 2 g 3 ) / 2
  • a matrix in which basis functions for obtaining a discrete power spectrum are arranged as a row vector is A
  • a temporal change in fluorescence intensity is a column vector f
  • a measured inner product value is a column vector g.
  • Af Af Represented by
  • A (1 + cos ⁇ 1 t, 1 + sin ⁇ 1 t, 1-cos ⁇ 1 t,..., 1 + cos ⁇ K t, 1 + sin ⁇ K t).
  • the data processing unit 109 can convert the measured g into a power spectrum using the above-described relational expression.
  • the data processing unit 109 performs an operation as shown in the following equation from a column vector g ′ of inner product values measured using an arbitrary matrix B and a matrix B having an inverse matrix B ⁇ 1 . It can be converted into a column vector g that can be converted into a power spectrum.
  • g ′ Bf
  • 3L basis functions are required to obtain L power spectra.
  • the same number of power spectrum components can be obtained by 2L + 1 basis functions.
  • the size of the molecule is obtained. And the number can be measured at a low frame rate. For example, by reading two frames, the size of the molecule can be identified.
  • the conventional method of calculating the correlation function after measuring the temporal change of the fluorescence intensity continuous measurement of about 1 to 10 seconds is required at a frame rate of 1 Mbps or more. According to this embodiment, it is more useful for molecular screening than conventional methods.
  • fluorescence correlation spectroscopy can be realized with almost the same architecture and frame rate as a normal image sensor, it is advantageous in terms of reduction in area, resolution, and cost.
  • the charge discharging portion is formed so as to increase in width from the center portion to the end portion of the light receiving portion.
  • a potential gradient can be formed in the longitudinal direction of the charge discharging unit, so that charges can be transported from the light receiving unit to the charge detecting unit at a high speed, and as a result, charge reading from the pixel circuit can be performed at higher speed.
  • the pixel circuit preferably has three transfer gates and three charge detection units. In this case, both downsizing of the pixel circuit and high speed of charge reading from the pixel circuit can be achieved.
  • the gain amplifier has a first amplifier having a larger gain and a second amplifier having a smaller gain. In this case, input conversion noise and reset noise in the voltage signal of the readout circuit can be reduced.
  • control circuit performs control so that a plurality of sample hold circuits are sequentially used in the sample hold operation and the signal read operation in each of the read circuits.
  • control circuit controls the plurality of signal processing circuits to simultaneously execute the signal reading operation from all of the plurality of pixel circuits.
  • the present invention uses an imaging apparatus for imaging an observation object, and realizes multi-point observation of the observation object at high speed and with low noise.

Abstract

This imaging device (1) is equipped with multiple pixel circuits (3), pixel amplifiers (5), and a control circuit (7). Each pixel circuit (3) has a light-receiving section (13), a charge-draining section (15), a temporary accumulation section (15a) that is provided on an end side of the charge-draining section (15), multiple transfer gates (17) that are arranged so as to surround the temporary accumulation section (15a), and multiple charge detection sections (19) that are arranged on the temporary accumulation section (15a) across the transfer gates (17). Each pixel amplifier (5) includes a gain amplifier (25) and a sample-and-hold circuit (27) for each of the multiple charge detection sections (19). The control circuit (7) performs control such that reset operations, charge accumulation operations, and charge readout operations are executed in a pipelined manner for pixel circuits (3), and amplification operations, sample-and-hold operations, and signal read operations for outputting signals to the outside are executed in a pipelined manner for gain amplifiers (25) and sample-and-hold circuits (27).

Description

撮像装置Imaging device
 本発明は、観察対象物のイメージングを行うための撮像装置に関する。 The present invention relates to an imaging apparatus for imaging an observation object.
 近年、分子イメージングの分野において、分子の大きさ及び数をごく微量のサンプルで高感度に計測可能な手法として、蛍光相関分光法(FCS:Fluorescence Correlation Spectroscopy)が知られている。この方法は、共焦点顕微鏡と同様の構成を用いることで、サブフェムトリットルの極微小体積内に出入りするわずかな分子の数を、蛍光強度の時間的な揺らぎから計測する方法である。分子は液体中でブラウン運動をしているため、蛍光強度は時間的にランダムに変化する。蛍光強度の時間変化の自己相関又は相互相関を計算することで、分子の数と大きさを定量的に計測できるため、分析装置の小型化に有効である。また、FCSにより細胞内の分子移動を分子レベルで追うことができるため、細胞機能解明のツールとしても有望視されている(例えば、下記特許文献1参照)。 In recent years, in the field of molecular imaging, fluorescence correlation spectroscopy (FCS: Fluorescence Correlation Spectroscopy) is known as a technique capable of measuring the size and number of molecules with a very small amount of sample with high sensitivity. In this method, by using the same configuration as that of the confocal microscope, the number of small molecules entering and exiting the very small volume of the sub-femtoliter is measured from the temporal fluctuation of the fluorescence intensity. Since the molecule has Brownian motion in the liquid, the fluorescence intensity changes randomly with time. By calculating the autocorrelation or cross-correlation of the change in fluorescence intensity over time, the number and size of molecules can be measured quantitatively, which is effective for downsizing the analyzer. In addition, since the molecular movement in the cell can be followed at the molecular level by FCS, it is considered promising as a tool for elucidating cell functions (for example, see Patent Document 1 below).
国際公開WO2004/072624号パンフレットInternational Publication WO2004 / 072624 Pamphlet
 従来のFCS用の分析装置では、蛍光による光子を1個単位で、200ns以下の時間分解能で正確に捉えるために、ガイガーモードで動作するアバランシェフォトダイオード(APD)或いはフォトマルチプライヤ(PM)等の受光素子が利用されている。光子は、1個単位でタイムスタンプとともにデータロガーに記憶され、計測後に解析される。細胞機能の解明は、生物学における大きな課題であり、個々の細胞のみならず、細胞間の分子輸送、及び分子間の相互作用の観察が必要とされている。 Conventional analyzers for FCS use avalanche photodiodes (APDs) or photomultipliers (PMs) that operate in Geiger mode in order to accurately capture photons by fluorescence with a time resolution of 200 ns or less. A light receiving element is used. Photons are stored in the data logger together with a time stamp in units of one, and analyzed after measurement. Elucidation of cell functions is a major issue in biology, and it is necessary to observe not only individual cells but also molecular transport between cells and interactions between molecules.
 しかしながら、従来のFCSは、点計測であるため広がりのある空間の計測には適していない。一方で、共焦点顕微鏡のもつレーザ走査機能を利用する方法、或いは、検出器を多数利用する方法が試みられている。しかし、前者は1点を観測できる時間が短くなる傾向にある。また、後者は多数の装置を用意するには限界があり高々数点の観察に留まっている。どちらの方法も大がかりな高価な装置が必要になるため、小型分析機器への適用は現実的には困難である。上記特許文献1に記載された分析装置のように、CCD、CMOS等のイメージセンサによりFCSによる二次元イメージ情報を取得する試みもあるが、高速サンプリングと低ノイズの両立は極めて困難であり、適用範囲は限られている。 However, the conventional FCS is not suitable for measuring a wide space because it is a point measurement. On the other hand, a method using a laser scanning function of a confocal microscope or a method using many detectors has been attempted. However, the former tends to shorten the time during which one point can be observed. In the latter case, there are limits to preparing a large number of devices, and only a few observations are possible. Since both methods require a large and expensive apparatus, it is practically difficult to apply to a small analytical instrument. Although there is an attempt to acquire two-dimensional image information by FCS using an image sensor such as a CCD or CMOS as in the analysis apparatus described in Patent Document 1, it is extremely difficult to achieve both high-speed sampling and low noise. The range is limited.
 そこで、本発明は、かかる課題に鑑みて為されたものであり、観察対象物の多点の観察を高速かつ低ノイズで実現する撮像装置を提供することを目的とする。 Therefore, the present invention has been made in view of such a problem, and an object thereof is to provide an imaging apparatus that realizes multi-point observation of an observation object at high speed and with low noise.
 上記課題を解決するため、本発明の一側面に係る撮像装置は、光を電荷に変換する複数の画素回路と、複数の画素回路のそれぞれに接続された複数の信号処理回路と、画素回路と信号処理回路の動作を制御する制御回路とを備え、画素回路は、光を電荷に変換する受光部と、受光部の中心部から端部にかけて形成された長手状の電荷排出部と、電荷排出部の端部側に設けられた一時蓄積部と、一時蓄積部を囲むように配置された複数の転送ゲートと、一時蓄積部において複数の転送ゲートのそれぞれを挟んで設けられた複数の電荷検出部とを有し、複数の信号処理回路は、それぞれ、複数の電荷検出部のそれぞれに対応して設けられた複数の読み出し回路を有し、読み出し回路のそれぞれは、電荷検出部からの電圧信号をインピーダンス変換して読み出すソースフォロアアンプと、電圧信号からリセットノイズを除去して増幅するゲインアンプと、ゲインアンプの出力する電圧信号を並列に受ける複数のサンプルホールド回路とを含み、制御回路は、画素回路におけるリセット動作、電荷蓄積動作、及び電荷読み出し動作を複数の電荷検出部に対応してパイプライン処理で実行するように制御すると同時に、信号処理回路の複数の読み出し回路における増幅動作、サンプルホールド動作、外部への信号読み出し動作をパイプライン処理で実行するように制御する。 In order to solve the above problems, an imaging device according to one aspect of the present invention includes a plurality of pixel circuits that convert light into electric charge, a plurality of signal processing circuits connected to each of the plurality of pixel circuits, and a pixel circuit. And a control circuit that controls the operation of the signal processing circuit. The pixel circuit includes a light receiving unit that converts light into electric charge, a longitudinal charge discharging unit that is formed from the center to the end of the light receiving unit, and a charge discharging unit. Temporary storage unit provided on the end side of the storage unit, a plurality of transfer gates arranged so as to surround the temporary storage unit, and a plurality of charge detections provided across the plurality of transfer gates in the temporary storage unit Each of the plurality of signal processing circuits has a plurality of readout circuits provided corresponding to each of the plurality of charge detection units, and each of the readout circuits receives a voltage signal from the charge detection unit. The impedance change And a source follower amplifier that reads out and amplifies by removing reset noise from the voltage signal, and a plurality of sample and hold circuits that receive the voltage signal output from the gain amplifier in parallel. The reset operation, charge accumulation operation, and charge read operation are controlled to be executed by pipeline processing corresponding to a plurality of charge detection units, and at the same time, the amplification operation, the sample hold operation, and the external in the plurality of read circuits of the signal processing circuit Control is performed so that the signal read operation to the is executed by pipeline processing.
 このような撮像装置によれば、画素回路において受光部によって生成された電荷が、電荷排出部、一時蓄積部、及び複数の転送ゲートを介して複数の電荷検出部に高速で転送される。さらに、複数の電荷検出部に転送された電荷は、複数の電荷検出部に対応して設けられた読み出し回路によって電圧信号に変換された後にサンプルホールド処理及び信号読み出し処理が施される。このとき、制御回路により、画素回路の複数の電荷転送経路におけるリセット、電荷蓄積、及び電荷読み出しがパイプライン処理で実行され、画素ごとの複数の読み出し回路における増幅、サンプルホールド、及び信号読み出しもパイプライン処理で実行される。これにより、1画素の信号読み出し動作が高速化されるとともに、画素の電荷転送経路ごとの電荷蓄積から信号読み出しの時間の長さも確保されるので、読み出し信号のノイズも低減することができる。その結果、多点の観察を高速かつ低ノイズで実現することができる。 According to such an imaging apparatus, the charges generated by the light receiving unit in the pixel circuit are transferred at high speed to the plurality of charge detection units via the charge discharging unit, the temporary storage unit, and the plurality of transfer gates. Further, the charges transferred to the plurality of charge detection units are converted into voltage signals by a readout circuit provided corresponding to the plurality of charge detection units, and then subjected to sample hold processing and signal readout processing. At this time, reset, charge accumulation, and charge readout in the plurality of charge transfer paths of the pixel circuit are executed by pipeline processing by the control circuit, and amplification, sample hold, and signal readout in the plurality of readout circuits for each pixel are also piped. It is executed by line processing. This speeds up the signal readout operation for one pixel and ensures the length of time for signal readout from charge accumulation for each charge transfer path of the pixel, so that noise in the readout signal can also be reduced. As a result, multi-point observation can be realized at high speed and with low noise.
 本発明の一側面によれば、観察対象物の多点の観察を高速かつ低ノイズで実現することができる。 According to one aspect of the present invention, multi-point observation of an observation object can be realized at high speed and with low noise.
本発明の好適な一実施形態に係る撮像装置1を含む蛍光相関分光顕微鏡システム100の概略構成図である。1 is a schematic configuration diagram of a fluorescence correlation spectroscopic microscope system 100 including an imaging device 1 according to a preferred embodiment of the present invention. 図1の撮像装置1の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the imaging device 1 of FIG. 図2の画素回路3の構造を示す平面図である。FIG. 3 is a plan view showing a structure of a pixel circuit 3 in FIG. 2. 図3の画素回路3の電荷排出部15の長手方向に沿った電位分布を示すグラフである。4 is a graph showing a potential distribution along a longitudinal direction of a charge discharging unit 15 of the pixel circuit 3 of FIG. 3. 図3の下側の電荷検出部19に電荷転送させた際の受光部13及び電荷排出部15における残存電荷数のシミュレーション結果を示すグラフである。4 is a graph showing a simulation result of the number of remaining charges in the light receiving unit 13 and the charge discharging unit 15 when the charge is transferred to the lower charge detection unit 19 in FIG. 3. 図3の左側の電荷検出部19に電荷転送させた際の受光部13及び電荷排出部15における残存電荷数のシミュレーション結果を示すグラフである。4 is a graph showing a simulation result of the number of remaining charges in the light receiving unit 13 and the charge discharging unit 15 when charges are transferred to the charge detection unit 19 on the left side of FIG. 3. 図3の下側の電荷検出部19に電荷転送させた際の受光部13及び電荷排出部15への戻り電荷数のシミュレーション結果を示すグラフである。4 is a graph showing a simulation result of the number of charges returned to the light receiving unit 13 and the charge discharging unit 15 when the charge is transferred to the lower charge detection unit 19 in FIG. 3. 図2の画素回路3と画素アンプ5を含む1画素の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of one pixel including a pixel circuit 3 and a pixel amplifier 5 in FIG. 2. 図2の制御回路7によって生成されるクロック信号のタイミングチャートである。3 is a timing chart of a clock signal generated by the control circuit 7 of FIG. 本発明の変形例に係る画素回路3Aの構造を示す平面図である。It is a top view which shows the structure of 3 A of pixel circuits which concern on the modification of this invention. 制御回路7によって制御される励起光の強度の時間変化、及び制御回路7から転送ゲート14Aに与えられるクロック信号の時間変化を示すタイミングチャートである。7 is a timing chart showing temporal changes in the intensity of excitation light controlled by the control circuit 7 and temporal changes in the clock signal given from the control circuit 7 to a transfer gate 14A.
 以下、図面を参照しつつ本発明に係る撮像装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。 Hereinafter, preferred embodiments of an imaging apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.
 図1は、本発明の好適な一実施形態に係る撮像装置1を含む蛍光相関分光顕微鏡システム100の概略構成図である。この蛍光相関分光顕微鏡システム100は、観察対象物Sを対象にした二次元の多点でのFCSによる分析を行う計測システムである。この蛍光相関分光顕微鏡システム100は、観察対象物Sに照射する励起光を生成するレーザ光源等の励起光源101と、励起光源101から照射された励起光を二次元に配列されたスポット状の励起光に変換する回折格子或いはマイクロレンズアレイ等からなる光学素子103と、観察対象物S上に励起光を集光して入射させ、それに伴って観察対象物Sから生じる蛍光を撮像装置1に結像させる顕微鏡105と、撮像装置1に接続されて撮像装置1から出力されるアナログ信号を処理する信号処理部107と、信号処理部107から出力されるデジタルデータを処理するデータ処理部109とを含んで構成される。 FIG. 1 is a schematic configuration diagram of a fluorescence correlation spectroscopic microscope system 100 including an imaging device 1 according to a preferred embodiment of the present invention. The fluorescence correlation spectroscopic microscope system 100 is a measurement system that performs an analysis by FCS at a two-dimensional multipoint on the observation object S. The fluorescence correlation spectroscopic microscope system 100 includes an excitation light source 101 such as a laser light source that generates excitation light to be irradiated on the observation target S, and spot-like excitation in which the excitation light irradiated from the excitation light source 101 is two-dimensionally arranged. The excitation light is condensed and incident on the optical element 103 made of a diffraction grating or a microlens array that converts light into light and the observation object S, and the fluorescence generated from the observation object S is concomitantly connected to the imaging apparatus 1. A microscope 105 for imaging, a signal processing unit 107 that is connected to the imaging device 1 and processes an analog signal output from the imaging device 1, and a data processing unit 109 that processes digital data output from the signal processing unit 107 Consists of including.
 この蛍光相関分光顕微鏡システム100に含まれる顕微鏡105は、光学素子103からの励起光を観察対象物Sに向けて反射させると共に観察対象物Sからの蛍光を撮像装置1に向けて透過するダイクロイックミラー111と、ダイクロイックミラー111と観察対象物Sの間に配置される対物レンズ113と、ダイクロイックミラー111と撮像装置1の間に配置される結像レンズ114とによって構成される。また、信号処理部107は、撮像装置1の複数の出力端子から並列に出力されたアナログ電圧信号をデジタル信号に変換する複数のADコンバータ115と、ADコンバータ115から出力されたデジタル信号に対して各種演算を施すFPGA(Field Programmable Gate Array)117とを備えている。データ処理部109は、FPGA117から出力された演算データを用いて、自己相関或いは相互相関を計算してパワースペクトル等の分析値を生成して出力する。 The microscope 105 included in the fluorescence correlation spectroscopy microscope system 100 reflects the excitation light from the optical element 103 toward the observation object S and transmits the fluorescence from the observation object S toward the imaging device 1. 111, an objective lens 113 disposed between the dichroic mirror 111 and the observation object S, and an imaging lens 114 disposed between the dichroic mirror 111 and the imaging device 1. The signal processing unit 107 also converts a plurality of AD converters 115 that convert analog voltage signals output in parallel from the plurality of output terminals of the imaging device 1 into digital signals, and the digital signals output from the AD converter 115. An FPGA (Field Programmable Gate Array) 117 that performs various operations is provided. The data processing unit 109 uses the calculation data output from the FPGA 117 to calculate autocorrelation or cross-correlation, and generates and outputs an analysis value such as a power spectrum.
 以下、撮像装置1の構成を詳細に説明する。 Hereinafter, the configuration of the imaging apparatus 1 will be described in detail.
 図2は、撮像装置1の概略構成を示すブロック図である。同図に示すように、撮像装置1は、二次元で配列されており、蛍光を電荷に変換する複数の画素回路3と、複数の画素回路3のそれぞれに接続された複数の画素アンプ(信号処理回路)5と、画素回路3及び画素アンプ5の動作タイミングを制御する制御回路7とを備えている。これらの画素回路3は、例えば、10行、10列の合計100個で配列されているが、個数は様々な数に設定され得る。また、複数の画素アンプ5は画素回路3に対応して画素回路3と同数設けられており、それらが複数個(例えば5個)ずつにグループ分けされて複数の画素アンプユニット9が構成され、これらの画素アンプユニット9毎に画素回路3で生成された電圧信号を外部に出力するためのアナログ出力端子が設けられている。アナログ出力端子からは、画素アンプユニット9から複数の画素回路3の出力が束ねられてシリアルに読み出される。これにより、撮像装置1においては、画素アンプ5が制御されることにより、全ての画素回路3から同時に信号読み出し動作を実行可能なように構成される。制御回路7は、画素回路3、画素アンプ5、及び画素アンプユニット9に対して各種クロック信号を供給することにより、各回路の動作タイミングを制御する。 FIG. 2 is a block diagram illustrating a schematic configuration of the imaging apparatus 1. As shown in the figure, the imaging device 1 is two-dimensionally arranged, and includes a plurality of pixel circuits 3 that convert fluorescence into electric charges, and a plurality of pixel amplifiers (signals) connected to each of the plurality of pixel circuits 3. Processing circuit) 5 and a control circuit 7 for controlling the operation timing of the pixel circuit 3 and the pixel amplifier 5. These pixel circuits 3 are arranged in a total of 100, for example, 10 rows and 10 columns, but the number can be set to various numbers. The plurality of pixel amplifiers 5 are provided in the same number as the pixel circuits 3 corresponding to the pixel circuits 3, and a plurality of (for example, five) pixel amplifiers are grouped to form a plurality of pixel amplifier units 9. Each pixel amplifier unit 9 is provided with an analog output terminal for outputting a voltage signal generated by the pixel circuit 3 to the outside. From the analog output terminal, the outputs of the plurality of pixel circuits 3 are bundled from the pixel amplifier unit 9 and read out serially. As a result, the image pickup apparatus 1 is configured such that signal readout operations can be simultaneously performed from all the pixel circuits 3 by controlling the pixel amplifier 5. The control circuit 7 controls the operation timing of each circuit by supplying various clock signals to the pixel circuit 3, the pixel amplifier 5, and the pixel amplifier unit 9.
 図3は、画素回路3の構造を示す平面図である。同図に示すように、画素回路3は、シリコン基板等の半導体基板11上に集積されて形成され、略円形状の受光部13と、長手状の電荷排出部15と、3つの転送ゲート17と、3つの電荷検出部19とにより構成されている。受光部13は入射した蛍光を電荷(光電子)に変換する領域であり、例えば、半導体基板11上に形成された埋め込みフォトダイオードである。この受光部13のサイズとしては画素サイズに合わせて様々なサイズに設定され得るが、例えば、直径約10μmに設定される。電荷排出部15は、受光部13の中心部から端部にかけて中心部から端部に向けて幅が広くなるように形成されており、受光部13の端部から外側には略矩形状の一時蓄積部15aが一体的に形成されている。この電荷排出部15及び一時蓄積部15aは、半導体基板11がp型の場合はn型の不純物がドープされており、その不純物濃度が受光部13より高くされることにより電位が受光部より高く設定されている。これにより、受光部13の全体から電荷排出部15に向けて電位が上昇するような電位勾配が形成される。さらに、電荷排出部15は、受光部13の端部から中心部に向けて細くなるように形成されているので、電荷排出部15の内部の長手方向には、受光部13の中心部から一時蓄積部15aに向けて電位が徐々に上昇する電位勾配も形成される。 FIG. 3 is a plan view showing the structure of the pixel circuit 3. As shown in the figure, the pixel circuit 3 is integrated and formed on a semiconductor substrate 11 such as a silicon substrate, and has a substantially circular light receiving portion 13, a longitudinal charge discharging portion 15, and three transfer gates 17. And three charge detectors 19. The light receiving unit 13 is a region that converts incident fluorescence into electric charges (photoelectrons), and is, for example, a buried photodiode formed on the semiconductor substrate 11. The size of the light receiving unit 13 can be set to various sizes according to the pixel size, but is set to a diameter of about 10 μm, for example. The charge discharging portion 15 is formed so as to increase in width from the center portion to the end portion from the center portion to the end portion of the light receiving portion 13. The accumulation part 15a is integrally formed. When the semiconductor substrate 11 is p-type, the charge discharging unit 15 and the temporary storage unit 15a are doped with n-type impurities, and the impurity concentration is set higher than that of the light receiving unit 13, so that the potential is set higher than that of the light receiving unit. Has been. As a result, a potential gradient is formed such that the potential increases from the entire light receiving unit 13 toward the charge discharging unit 15. Furthermore, since the charge discharging unit 15 is formed so as to become narrower from the end of the light receiving unit 13 toward the center, the charge discharging unit 15 is temporarily extended from the center of the light receiving unit 13 in the longitudinal direction inside the charge discharging unit 15. A potential gradient in which the potential gradually increases toward the accumulation unit 15a is also formed.
 3つの転送ゲート17は、半導体基板11上に絶縁層を介して積層されたゲート電極であり、外部の制御回路7からクロック信号TXが与えられることにより電荷排出部15から電荷検出部19への電荷の転送を制御する。これらの転送ゲート17は、電荷排出部15の受光部13の外側(端部側)に設けられた一時蓄積部15aに接するように、互いに距離を空けて配置されている。具体的には、3つの転送ゲート17は、一時蓄積部15aの中心からの距離が互いに等しく、受光部13の中心部からの距離もほぼ互いに等しく、かつ互いの距離も均等になるように、一時蓄積部15aを取り囲むようにその外縁の三辺上に配置される。3つの電荷検出部19は、受光部13の外側においてそれぞれの転送ゲート17を挟んで一時蓄積部15aに隣り合って形成されており、それぞれの転送ゲート17の制御により一時蓄積部15aから転送された電荷を蓄積する浮遊拡散層である。ここで、転送ゲート17及び電荷検出部19の数は、2つ以上であれば3つには限定されないが、画素回路3の小型化と電荷転送の高速化の両立という点では3つで設定されることが好ましい。 The three transfer gates 17 are gate electrodes stacked on the semiconductor substrate 11 with an insulating layer interposed therebetween. When the clock signal TX is given from the external control circuit 7, the charge discharge unit 15 to the charge detection unit 19 are provided. Control charge transfer. These transfer gates 17 are arranged at a distance from each other so as to be in contact with the temporary storage unit 15 a provided on the outer side (end side) of the light receiving unit 13 of the charge discharging unit 15. Specifically, the three transfer gates 17 have the same distance from the center of the temporary storage unit 15a, the distance from the center of the light receiving unit 13 is substantially equal to each other, and the distance from each other is also equal. It is arranged on three sides of the outer edge so as to surround the temporary storage unit 15a. The three charge detection units 19 are formed outside the light receiving unit 13 and adjacent to the temporary storage unit 15a with the transfer gates 17 interposed therebetween, and are transferred from the temporary storage unit 15a by the control of the respective transfer gates 17. It is a floating diffusion layer that accumulates the accumulated charge. Here, the number of transfer gates 17 and charge detection units 19 is not limited to three as long as it is two or more, but is set to three in terms of both miniaturization of pixel circuit 3 and high speed of charge transfer. It is preferred that
 図4には、画素回路3の電荷排出部15の長手方向に沿った電位分布を示しており、(a)には、画素回路3の全体の電位分布、(b)には、クロック信号TXを様々な電圧に設定した際の転送ゲート17周辺の電位分布を示している。同図(a)に示すように、電荷排出部15の電位は受光部13の電位よりも高くされ、かつ、電荷排出部15の長手方向に沿った電位は、受光部13側から一時蓄積部15a側にかけて徐々に高くなるような電位勾配が形成されている。従って、受光部13の全体で生じた電荷が速やか電荷排出部15を経由して一時蓄積部15aまで輸送されることがわかる。また、同図(b)に示すように、クロック信号TXの電圧値が0V、1V、2Vのときには矢印で示すようなディップが存在しているが、電圧値が-1V、3Vのときにはディップが生じておらず、一時蓄積部15aから電荷検出部19への電荷転送動作に問題が無いことがわかる。 FIG. 4 shows a potential distribution along the longitudinal direction of the charge discharging unit 15 of the pixel circuit 3. FIG. 4A shows an overall potential distribution of the pixel circuit 3, and FIG. 4B shows a clock signal TX. 2 shows potential distribution around the transfer gate 17 when V is set to various voltages. As shown in FIG. 5A, the potential of the charge discharging unit 15 is set higher than the potential of the light receiving unit 13, and the potential along the longitudinal direction of the charge discharging unit 15 is changed from the light receiving unit 13 side to the temporary storage unit. A potential gradient that gradually increases toward the side 15a is formed. Therefore, it can be seen that charges generated in the entire light receiving unit 13 are quickly transported to the temporary storage unit 15a via the charge discharging unit 15. Further, as shown in FIG. 5B, there is a dip as indicated by an arrow when the voltage value of the clock signal TX is 0V, 1V, or 2V, but when the voltage value is −1V or 3V, the dip is present. It does not occur, and it can be seen that there is no problem in the charge transfer operation from the temporary storage unit 15a to the charge detection unit 19.
 図5~図7には、受光部13の縁部に光電子が発生したことを想定した場合の転送電荷数の時間変化のシミュレーション結果を示しており、図5は、図3の下側の電荷検出部19に転送させた際の受光部13及び電荷排出部15における残存電荷数のシミュレーション結果、図6は、図3の左側の電荷検出部19に転送させた際の受光部13及び電荷排出部15における残存電荷数のシミュレーション結果、図7は、図3の下側の電荷検出部19に転送させた際の受光部13及び電荷排出部15への戻り電荷数のシミュレーション結果をそれぞれ示している。これらの結果より、転送先の電荷検出部19の位置に関わらず、約20nsで電荷転送を完了できることがわかり、戻り電荷の影響もほとんど存在しないことが確認された。 FIGS. 5 to 7 show the simulation results of the time change of the number of transferred charges when it is assumed that photoelectrons are generated at the edge of the light receiving unit 13, and FIG. FIG. 6 is a simulation result of the number of remaining charges in the light receiving unit 13 and the charge discharging unit 15 when transferred to the detecting unit 19, and FIG. 6 shows the light receiving unit 13 and the charge discharging when transferred to the left charge detecting unit 19 in FIG. FIG. 7 shows the simulation results of the number of charges returned to the light receiving unit 13 and the charge discharging unit 15 when transferred to the lower charge detection unit 19 in FIG. Yes. From these results, it was found that charge transfer could be completed in about 20 ns regardless of the position of the charge detection unit 19 as a transfer destination, and it was confirmed that there was almost no influence of return charge.
 次に、上記の画素回路3に接続される画素アンプ5の詳細構成について説明する。図8は、画素回路3と画素アンプ5を含む撮像装置1の1画素の構成を示す回路図である。 Next, a detailed configuration of the pixel amplifier 5 connected to the pixel circuit 3 will be described. FIG. 8 is a circuit diagram illustrating a configuration of one pixel of the imaging device 1 including the pixel circuit 3 and the pixel amplifier 5.
 同図に示すように、画素回路3は、1つの受光部13、3つの転送ゲート17、及び3つの電荷検出部19を備えており、それぞれの電荷検出部19には、さらに、電荷検出部19の電荷をリセットするためのリセットゲート21と、電荷検出部19から出力される電圧信号をインピーダンス変換して読み出すソースフォロアアンプ回路であるアンプ23とが接続される。このリセットゲート21には、制御回路7からクロック信号RSTが供給されて電荷のリセットタイミングが制御される。 As shown in the figure, the pixel circuit 3 includes one light receiving unit 13, three transfer gates 17, and three charge detection units 19. Each charge detection unit 19 further includes a charge detection unit. The reset gate 21 for resetting the charge of 19 is connected to an amplifier 23 which is a source follower amplifier circuit that reads out the voltage signal output from the charge detection unit 19 by impedance conversion. The reset gate 21 is supplied with a clock signal RST from the control circuit 7 to control the charge reset timing.
 画素アンプ5は、画素回路3の3つの電荷検出部19に対応して設けられ、アンプ23からの出力を電圧増幅する3つのゲインアンプ25と、それぞれのゲインアンプ25の電圧信号を並列に受ける3つのサンプルホールド回路27とを含んでいる。ゲインアンプ25は、ゲインの異なる2段のCDS(相関二重サンプリング:Correlated Double Sampling)アンプ(第1及び第2の増幅器)29a,29bを有する。具体的には、CDSアンプ29aは、32倍等に比較的ゲインが大きく設定され、CDSアンプ29bは、8倍等に比較的ゲインが小さく設定されている。このCDSアンプ29aの後段にCDSアンプ29bが接続され、CDSアンプ29aの入力は、キャパシタ33を介して接地されると共に、スイッチ31を介してアンプ23の出力と接続されている。 The pixel amplifier 5 is provided corresponding to the three charge detectors 19 of the pixel circuit 3, and receives in parallel the three gain amplifiers 25 that amplify the output from the amplifier 23 and the voltage signals of the respective gain amplifiers 25. Three sample and hold circuits 27 are included. The gain amplifier 25 includes two-stage CDS (Correlated Double Sampling) amplifiers (first and second amplifiers) 29a and 29b having different gains. Specifically, the CDS amplifier 29a is set to a relatively large gain such as 32 times, and the CDS amplifier 29b is set to a relatively small gain such as 8 times. A CDS amplifier 29b is connected to the subsequent stage of the CDS amplifier 29a, and the input of the CDS amplifier 29a is grounded via the capacitor 33 and is connected to the output of the amplifier 23 via the switch 31.
 CDSアンプ29aは、スイッチ35a、キャパシタ37a,39a、及び演算増幅器41aを含み、CDSアンプ29bは、スイッチ35b、キャパシタ37b,39b、及び演算増幅器41bを含む。演算増幅器41aの一入力は、直列に接続されたスイッチ31及びキャパシタ37aを介してアンプ23からの出力電圧を受け、演算増幅器41aの他入力は、共通参照信号を受ける。演算増幅器41aの一入力と演算増幅器41aの出力との間にはスイッチ35a及びキャパシタ39aが並列に接続されている。同様に、演算増幅器41bの一入力は、キャパシタ37bを介して演算増幅器41aからの出力電圧を受け、演算増幅器41bの他入力は、共通参照信号を受ける。演算増幅器41bの一入力と演算増幅器41bの出力との間にはスイッチ35b及びキャパシタ39bが並列に接続されている。この演算増幅器41bの出力が後段のサンプルホールド回路27に接続される。 The CDS amplifier 29a includes a switch 35a, capacitors 37a and 39a, and an operational amplifier 41a, and the CDS amplifier 29b includes a switch 35b, capacitors 37b and 39b, and an operational amplifier 41b. One input of the operational amplifier 41a receives an output voltage from the amplifier 23 via the switch 31 and the capacitor 37a connected in series, and the other input of the operational amplifier 41a receives a common reference signal. A switch 35a and a capacitor 39a are connected in parallel between one input of the operational amplifier 41a and the output of the operational amplifier 41a. Similarly, one input of the operational amplifier 41b receives an output voltage from the operational amplifier 41a via the capacitor 37b, and the other input of the operational amplifier 41b receives a common reference signal. A switch 35b and a capacitor 39b are connected in parallel between one input of the operational amplifier 41b and the output of the operational amplifier 41b. The output of the operational amplifier 41b is connected to the sample hold circuit 27 in the subsequent stage.
 上記のゲインアンプ25は、スイッチ35a,35bのそれぞれにおいて、制御回路7からクロック信号φR1,φR2が供給されることにより、増幅動作のタイミングが制御される。すなわち、アンプ23からリセット電位が出力されるタイミングでスイッチ31,35a,35bを閉じキャパシタ37a,39a,37b,39bにリセットレベルを取り込む。次に、蓄積終了後、スイッチ31を閉じたままスイッチ35aを開き、続いてスイッチ35bを開く。そして、転送ゲート17をオンにして一時蓄積部15aの電荷を電荷検出部19に転送し、電荷検出部19の電圧レベルをアンプ23を介してキャパシタ37a,39a,37b,39bに取り込む。このときは、スイッチ35a,35bが開かれているので、演算増幅器41a,41bの出力には、リセットレベルと電圧レベルとの差、すなわちアナログCDS結果が生成される。 In the gain amplifier 25, the clock signals φR1 and φR2 are supplied from the control circuit 7 to the switches 35a and 35b, respectively, so that the timing of the amplification operation is controlled. That is, at the timing when the reset potential is output from the amplifier 23, the switches 31, 35a and 35b are closed, and the reset levels are taken into the capacitors 37a, 39a, 37b and 39b. Next, after the accumulation is completed, the switch 35a is opened while the switch 31 is closed, and then the switch 35b is opened. Then, the transfer gate 17 is turned on to transfer the charge of the temporary storage unit 15 a to the charge detection unit 19, and the voltage level of the charge detection unit 19 is taken into the capacitors 37 a, 39 a, 37 b and 39 b via the amplifier 23. At this time, since the switches 35a and 35b are opened, a difference between the reset level and the voltage level, that is, an analog CDS result is generated at the outputs of the operational amplifiers 41a and 41b.
 サンプルホールド回路27は、2つの記憶素子であるキャパシタ43a,43bが、ゲインアンプ25の出力に並列に接続されている。詳細には、キャパシタ43a,43bは、それぞれ、一端が接地されると共に、他端がスイッチ45a,45bを介して演算増幅器41bの出力に接続されている。さらに、キャパシタ43a,43bの他端は、それぞれ、スイッチ47a,47bを介して撮像装置1のアナログ出力端子に接続される。 In the sample and hold circuit 27, capacitors 43a and 43b, which are two storage elements, are connected in parallel to the output of the gain amplifier 25. Specifically, one end of each of the capacitors 43a and 43b is grounded, and the other end is connected to the output of the operational amplifier 41b via the switches 45a and 45b. Furthermore, the other ends of the capacitors 43a and 43b are connected to analog output terminals of the imaging device 1 via switches 47a and 47b, respectively.
 上記サンプルホールド回路27は、スイッチ45a,47a、45b,47bのそれぞれにおいて、制御回路7からクロック信号SH0,SEL0,SH1,SEL1が供給さることにより、サンプルホールド動作及び撮像装置1から外部への信号読み出しのタイミングが制御される。すなわち、クロック信号SH0がオンされてスイッチ45aが閉じられて、キャパシタ43aへのゲインアンプ25の出力電圧レベルのサンプルホールド動作が実行される。次に、クロック信号SH0がオフ、クロック信号SEL0がオンされて、スイッチ45aが開かれてからスイッチ47aが閉じられて、キャパシタ43aで保持された出力電圧レベルの外部への信号読み出し動作が実行される。クロック信号SH1,SEL1により、キャパシタ43bにおけるサンプルホールド動作及び信号読み出し動作のタイミングも同様に制御される。このように2つのキャパシタ43a,43bを備えるサンプルホールド回路27により、ダブルバッファリング動作が可能であり、2つのキャパシタ43a,43bを交互に動作させることにより、出力電圧レベルの記憶と外部への読み出しを並行して行うことで読み出し速度が向上できる。 The sample hold circuit 27 is supplied with clock signals SH0, SEL0, SH1, and SEL1 from the control circuit 7 in each of the switches 45a, 47a, 45b, and 47b. The timing of reading is controlled. That is, the clock signal SH0 is turned on, the switch 45a is closed, and the sample hold operation of the output voltage level of the gain amplifier 25 to the capacitor 43a is executed. Next, the clock signal SH0 is turned off, the clock signal SEL0 is turned on, the switch 45a is opened, the switch 47a is closed, and the signal reading operation to the outside of the output voltage level held by the capacitor 43a is executed. The The timing of the sample hold operation and signal read operation in the capacitor 43b is similarly controlled by the clock signals SH1 and SEL1. As described above, the sample and hold circuit 27 including the two capacitors 43a and 43b can perform a double buffering operation. By alternately operating the two capacitors 43a and 43b, the output voltage level can be stored and read out to the outside. The reading speed can be improved by performing in parallel.
 上述した撮像装置1における制御回路7による制御手順について説明する。図9は、制御回路7によって生成されるクロック信号のタイミングチャートである。同図には、画素回路3の2つの電荷検出部19に対応する2つの信号読み出し経路における電荷リセットから信号出力までの動作におけるクロック信号の変化を一部抜粋して示している。同図において、各クロック信号の符号には、括弧つきでそれぞれの信号読み出し経路を識別する番号を付している。 A control procedure by the control circuit 7 in the imaging apparatus 1 described above will be described. FIG. 9 is a timing chart of the clock signal generated by the control circuit 7. In the figure, a part of the change of the clock signal in the operation from the charge reset to the signal output in the two signal readout paths corresponding to the two charge detectors 19 of the pixel circuit 3 is shown. In the figure, the reference numerals of the clock signals are numbered in parentheses to identify each signal readout path.
 まず、クロック信号RST(1)がオンされることにより、第1の信号読み出し経路の電荷検出部19の電荷がリセットされ、その直後にクロック信号φR1(1),φR2(1)がオンされてゲインアンプ25へのリセットレベルの取り込みが開始される。その後、一定時間経過後にクロック信号φR1(1),φR2(1)がオフされ、その直後にクロック信号TX(1)がオンされる。これにより、第1の信号読み出し経路の電荷検出部19における電荷転送動作、及び電荷検出部19からゲインアンプ25への信号読み出し動作とCDS動作(増幅動作)が順次実行される。その後、クロック信号SH0(1)が一定時間オンされた後にクロック信号SEL0(1)がオンされることにより、サンプルホールド回路27におけるサンプルホールド動作及び外部への信号読み出し動作が順次実行される。その後、同様に変化するクロック信号が繰り返されることにより、第1の信号読み出し経路を用いた信号読み出しが繰り返される。その際、サンプルホールド回路27におけるサンプルホールド動作及び外部への信号読み出し動作においては、2つのキャパシタ43a,43bを順次用いるように、クロック信号SH0,SEL0,SH1,SEL1が生成される。 First, when the clock signal RST (1) is turned on, the charge of the charge detection unit 19 in the first signal readout path is reset, and immediately thereafter, the clock signals φR1 (1) and φR2 (1) are turned on. Incorporation of the reset level into the gain amplifier 25 is started. Thereafter, the clock signals φR1 (1) and φR2 (1) are turned off after a predetermined time has elapsed, and the clock signal TX (1) is turned on immediately thereafter. Thereby, the charge transfer operation in the charge detection unit 19 in the first signal readout path, the signal readout operation from the charge detection unit 19 to the gain amplifier 25, and the CDS operation (amplification operation) are sequentially performed. Thereafter, the clock signal SEL0 (1) is turned on after the clock signal SH0 (1) is turned on for a predetermined time, whereby the sample / hold operation in the sample / hold circuit 27 and the signal reading operation to the outside are sequentially performed. Thereafter, the clock signal changing in the same manner is repeated, whereby the signal reading using the first signal reading path is repeated. At that time, in the sample hold operation and the external signal read operation in the sample hold circuit 27, the clock signals SH0, SEL0, SH1, and SEL1 are generated so that the two capacitors 43a and 43b are sequentially used.
 一方、制御回路7により、第2の信号読み出し経路における電荷リセット、電荷蓄積、電荷読み出しが第1の信号読み出し経路におけるタイミングに対してずらして実行されるように、クロック信号RST(2),TX(2)が生成される。これにより、複数の電荷検出部19に対応する各動作がパイプライン処理で実行される。さらに、第2の信号読み出し経路に対応したゲインアンプ25及びサンプルホールド回路27における増幅動作、サンプルホールド動作、及び信号読み出し動作も、第1の信号読み出し経路におけるタイミングに対してずらして実行されるように、クロック信号φR1(2),φR2(2),SH0(2),SEL0(2),SH1(2),SEL1(2)が生成される。これにより、複数のゲインアンプ25及び複数のサンプルホールド回路27に対応する各動作もパイプライン処理で実行される。 On the other hand, the clock signal RST (2), TX is executed by the control circuit 7 so that charge reset, charge accumulation, and charge read in the second signal read path are executed with a shift from the timing in the first signal read path. (2) is generated. Thereby, each operation corresponding to the plurality of charge detection units 19 is executed by pipeline processing. Furthermore, the amplification operation, the sample hold operation, and the signal read operation in the gain amplifier 25 and the sample hold circuit 27 corresponding to the second signal read path are also executed while being shifted from the timing in the first signal read path. In addition, clock signals φR1 (2), φR2 (2), SH0 (2), SEL0 (2), SH1 (2), and SEL1 (2) are generated. Thereby, each operation corresponding to the plurality of gain amplifiers 25 and the plurality of sample and hold circuits 27 is also executed by the pipeline processing.
 以上説明した撮像装置1によれば、画素回路3において受光部13によって生成された電荷が、電荷排出部15及び複数の転送ゲート17を介して複数の電荷検出部19に並列に高速で転送される。さらに、複数の電荷検出部19に転送された電荷は、複数の電荷検出部19に対応して設けられたゲインアンプ25によって電圧信号に変換された後にサンプルホールド回路27によりサンプルホールド処理及び信号読み出し処理が施される。このとき、制御回路7により、画素回路3の複数の信号読み出し経路におけるリセット、電荷蓄積、及び電荷読み出しがパイプライン処理で実行され、画素ごとに設けられた複数のゲインアンプ25及び複数のサンプルホールド回路27における増幅、サンプルホールド、及び信号読み出しもパイプライン処理で実行される。これにより、1画素の信号読み出し動作が高速化されるとともに、画素の信号読み出し経路ごとの電荷蓄積から信号読み出しの時間の長さも確保されるので、読み出し信号のノイズも低減することができる。具体的には、信号読み出し経路をM個にすれば1画素ごとのサンプリングレートを理論上M倍にまで高めることができ、1MS/secのサンプリングレートの実現も可能である。その結果、多点の観察を高速かつ低ノイズで実現することができる。 According to the imaging apparatus 1 described above, the charges generated by the light receiving unit 13 in the pixel circuit 3 are transferred in parallel to the plurality of charge detection units 19 via the charge discharging unit 15 and the plurality of transfer gates 17 at high speed. The Further, the charges transferred to the plurality of charge detection units 19 are converted into voltage signals by a gain amplifier 25 provided corresponding to the plurality of charge detection units 19, and then sample-hold processing and signal reading by the sample-hold circuit 27. Processing is performed. At this time, reset, charge accumulation, and charge readout in a plurality of signal readout paths of the pixel circuit 3 are executed by pipeline processing by the control circuit 7, and a plurality of gain amplifiers 25 and a plurality of sample hold units provided for each pixel are executed. Amplification, sample hold, and signal readout in the circuit 27 are also executed by pipeline processing. This speeds up the signal readout operation for one pixel and also ensures the length of time from signal accumulation to signal readout for each pixel signal readout path, so that noise in the readout signal can also be reduced. Specifically, if there are M signal readout paths, the sampling rate for each pixel can be theoretically increased to M times, and a sampling rate of 1 MS / sec can be realized. As a result, multi-point observation can be realized at high speed and with low noise.
 また、ゲインアンプ25は、ゲインの異なる2段のCDSアンプ29a,29bにより構成されている。これにより、1段目のCDSアンプ29aで帯域制限することにより入力換算ノイズを低減でき、2段目のCDSアンプ29bで1段目に残存するリセットノイズを低減することができる。 The gain amplifier 25 is composed of two stages of CDS amplifiers 29a and 29b having different gains. As a result, the input conversion noise can be reduced by limiting the band with the first stage CDS amplifier 29a, and the reset noise remaining in the first stage can be reduced with the second stage CDS amplifier 29b.
 さらに、サンプルホールド回路27は、サンプルホールド動作及び信号読み出し動作において2つの並列接続されたキャパシタ43a,43bを順次用いて実行させるように制御される。これにより、ゲインアンプ25から外部への信号読み出しをさらに高速化することができる。 Further, the sample hold circuit 27 is controlled so as to sequentially execute the two capacitors 43a and 43b connected in parallel in the sample hold operation and the signal read operation. As a result, signal readout from the gain amplifier 25 to the outside can be further accelerated.
 本発明は、上述した実施形態に限定されるものではない。例えば、画素回路3の構造は様々に変更することができる。図10は、本発明の変形例である画素回路3Aの構造を示す平面図である。同図に示すように、画素回路3Aは、半導体基板11上に集積されて形成され、略矩形状の受光部13Aと、受光部13の四隅に形成された4つの電荷一時蓄積部15Aと、受光部13からそれぞれの電荷一時蓄積部15Aへの電荷転送を制御する転送ゲート14Aと、電荷一時蓄積部15Aのそれぞれの外側に隣接して配置された4つの転送ゲート17Aと、転送ゲート17Aを挟んで電荷一時蓄積部15Aの外側に形成された4つの電荷検出部19Aとにより構成されている。 The present invention is not limited to the embodiment described above. For example, the structure of the pixel circuit 3 can be variously changed. FIG. 10 is a plan view showing the structure of a pixel circuit 3A which is a modification of the present invention. As shown in the figure, the pixel circuit 3A is formed on the semiconductor substrate 11 to be integrated, and has a substantially rectangular light receiving part 13A, four charge temporary storage parts 15A formed at the four corners of the light receiving part 13, A transfer gate 14A for controlling charge transfer from the light receiving unit 13 to each of the temporary charge storage units 15A, four transfer gates 17A arranged adjacent to the outside of each of the temporary charge storage units 15A, and a transfer gate 17A The four charge detectors 19A are formed outside the temporary charge storage unit 15A.
 このような構造の画素回路3Aにおいても、制御回路7によって転送ゲート14A,17Aにクロック信号が設定されることにより、受光部13Aで生成された電荷が4つの電荷一時蓄積部15Aを経由して4つの電荷検出部19Aに並列に高速に輸送されて外部に信号として取り出すことができる。ここで、画素回路3Aにおける転送ゲート14A,17A、電荷一時蓄積部15A、及び電荷検出部19Aの個数は4つには限定されず、任意の個数を設定できる。 Also in the pixel circuit 3A having such a structure, when the clock signal is set to the transfer gates 14A and 17A by the control circuit 7, the charge generated by the light receiving unit 13A passes through the four temporary charge storage units 15A. It can be transported at high speed in parallel to the four charge detectors 19A and taken out as signals. Here, the number of transfer gates 14A and 17A, the temporary charge storage unit 15A, and the charge detection unit 19A in the pixel circuit 3A is not limited to four, and an arbitrary number can be set.
 また、このような画素回路3Aを含む蛍光相関分光顕微鏡システム100は、複数の電荷転送経路に対応した転送ゲート14Aに与えるクロック信号を変調することにより、自己相関関数と等価なパワースペクトルを複数の周波数成分について離散的に取得することができる。すなわち、1画素にK個の転送ゲート14AとK個の電荷一時蓄積部15Aとを設けた構造を利用して、制御回路7の制御により、いくつかの基底関数に対する内積の結果をK個の電荷一時蓄積部15Aに保存し、十分な蓄積時間の後、画素値をデータ処理部109に読み出す。そして、データ処理部109は、1画素に対してK個の画素値を読み出す。さらに、データ処理部109は、基底関数を変更して画素値を読み出すことをL回繰り返し、1画素から読み出したK×L個の画素値から離散的なパワースペクトルを算出することができる。 In addition, the fluorescence correlation spectroscopic microscope system 100 including such a pixel circuit 3A modulates a clock signal applied to the transfer gate 14A corresponding to the plurality of charge transfer paths, thereby generating a plurality of power spectra equivalent to the autocorrelation function. The frequency component can be obtained discretely. That is, using the structure in which one pixel includes K transfer gates 14A and K charge temporary storage units 15A, the control circuit 7 controls the result of inner products for several basis functions. The pixel value is stored in the temporary charge storage unit 15A, and after a sufficient storage time, the pixel value is read out to the data processing unit 109. Then, the data processing unit 109 reads K pixel values for one pixel. Furthermore, the data processing unit 109 can calculate a discrete power spectrum from K × L pixel values read from one pixel by repeating L times by changing the basis function and reading the pixel value.
 このとき、蛍光相関分光顕微鏡システム100におけるパワースペクトルの取得時には、制御回路7によって画素回路3Aの駆動及び励起光源101における励起光の変調が制御される。すなわち、電荷の完全転送を実現するために同時にオンする転送ゲート14Aは1つだけに制御され、複数の転送ゲート14Aを同時にオンすることや、転送ゲート14Aに中間電位を印加することはないように制御される。このような条件のもと、制御回路7は、複数の転送ゲート14Aに対して高速なオンオフの2値制御を行い、任意の基底関数を表現するようにそれらの転送ゲート14A毎に印加するクロック信号を変調させる。上述した画素構造では、受光部13Aで発生した電荷がK個の電荷一時蓄積部15Aに振り分けられる。そのため、基底関数を{h(t)、i=1,…K}としたとき、蛍光強度f(t)が見かけ上f(t)/(Σh(t))となる。このように蛍光強度が変動することを防止するために、制御回路7は、励起光の強度を転送ゲート14Aの制御に用いる基底関数の重みの総和Σh(t)に比例するように変調する。 At this time, when the power spectrum is acquired in the fluorescence correlation spectroscopic microscope system 100, the control circuit 7 controls the driving of the pixel circuit 3A and the modulation of the excitation light in the excitation light source 101. That is, to realize complete charge transfer, only one transfer gate 14A is simultaneously turned on, so that a plurality of transfer gates 14A are not turned on at the same time and an intermediate potential is not applied to the transfer gates 14A. Controlled. Under such conditions, the control circuit 7 performs high-speed on / off binary control for the plurality of transfer gates 14A, and a clock applied to each transfer gate 14A so as to express an arbitrary basis function. Modulate the signal. In the pixel structure described above, the charges generated in the light receiving unit 13A are distributed to the K temporary charge storage units 15A. Therefore, when the basis function is {h i (t), i = 1,... K}, the fluorescence intensity f (t) is apparently f (t) / (Σh i (t)). In order to prevent the fluorescence intensity from fluctuating in this way, the control circuit 7 modulates the intensity of the excitation light so as to be proportional to the sum Σh i (t) of the basis function weights used for controlling the transfer gate 14A. .
 図11には、画素回路3Aの電荷転送経路が3つの場合に、制御回路7によって制御される励起光の強度の時間変化及び制御回路7から転送ゲート14Aに与えられるクロック信号の時間変化を示している。このように、3つの転送ゲート14Aに与えられるクロック信号TX1(1),TX1(2),TX1(3)は、それぞれ、基底関数h(t)=1+cosωt,h(t)=1+sinωt,h(t)=1-cosωtに対応して設定され、図11の例では正弦波を矩形形状で近似しており、さらに、同時にクロック信号TX1(1),TX1(2),TX1(3)がオンされないように間欠的にオンされる。また、励起光の強度を変調する制御信号CTLは、基底関数h(t)、h(t)、h(t)の重みの総和に対応して増減するように生成される。 FIG. 11 shows the time change of the intensity of the excitation light controlled by the control circuit 7 and the time change of the clock signal given from the control circuit 7 to the transfer gate 14A when the pixel circuit 3A has three charge transfer paths. ing. As described above, the clock signals TX1 (1), TX1 (2), and TX1 (3) supplied to the three transfer gates 14A have basis functions h 1 (t) = 1 + cosωt, h 2 (t) = 1 + sinωt, h 3 (t) = 1−cos ωt is set. In the example of FIG. 11, the sine wave is approximated by a rectangular shape, and at the same time, the clock signals TX1 (1), TX1 (2), TX1 (3 ) Is intermittently turned on so that it is not turned on. Further, the control signal CTL for modulating the intensity of the excitation light is generated so as to increase or decrease in accordance with the sum of the weights of the basis functions h 1 (t), h 2 (t), and h 3 (t).
 また、データ処理部109におけるパワースペクトルの計算は次のようにして実行される。 Further, the calculation of the power spectrum in the data processing unit 109 is executed as follows.
 基底関数として上記のh(t),h(t),h(t)を用いた場合に得られた画素値をそれぞれg,g,gとすると、データ処理部109は、周波数0とωにおけるパワースペクトルを下記式により計算することができる。
|F(0)|=(g+g/2,
|F(ω)|=(g +2g +g -2g-2g)/2
Assuming that the pixel values obtained when h 1 (t), h 2 (t), and h 3 (t) are used as basis functions are g 1 , g 2 , and g 3 , respectively, the data processing unit 109 The power spectrum at frequencies 0 and ω can be calculated by the following equation.
| F (0) | = ( g 1 + g 3) 2/2,
| F (ω) | = (g 1 2 +2 g 2 2 + g 3 2 -2 g 1 g 2 -2 g 2 g 3 ) / 2
 ここで、離散的なパワースペクトルを求めるための基底関数を行ベクトルとして並べた行列をA、蛍光強度の時間変化を列ベクトルf、計測される内積値を列ベクトルgとするとこれらの間の関係は、次式;
g=Af
によって表される。ここで、A=(1+cosωt,1+sinωt,1-cosωt,…,1+cosωt,1+sinωt)とする。データ処理部109は、計測したgから、上述した関係式を用いてパワースペクトルに変換できる。
Here, a matrix in which basis functions for obtaining a discrete power spectrum are arranged as a row vector is A, a temporal change in fluorescence intensity is a column vector f, and a measured inner product value is a column vector g. Is the following formula:
g = Af
Represented by Here, A = (1 + cos ω 1 t, 1 + sin ω 1 t, 1-cos ω 1 t,..., 1 + cos ω K t, 1 + sin ω K t). The data processing unit 109 can convert the measured g into a power spectrum using the above-described relational expression.
 また、データ処理部109は、任意の行列Bであって逆行列B-1が存在する行列Bを用いて計測した内積値の列ベクトルg’から、下記式に示すように演算することにより、パワースペクトルに変換可能な列ベクトルgに変換できる。
g’=Bf,
AB-1g’=AB-1Bf=Af=g
正弦波基底を用いて各パワースペクトル成分を別々に求める場合、L個のパワースペクトルを求めるために、3L個の基底関数が必要である。それに対し、適切な基底関数を選ぶことにより、2L+1個の基底関数により、同数のパワースペクトル成分を得ることができる。
Further, the data processing unit 109 performs an operation as shown in the following equation from a column vector g ′ of inner product values measured using an arbitrary matrix B and a matrix B having an inverse matrix B −1 . It can be converted into a column vector g that can be converted into a power spectrum.
g ′ = Bf,
AB −1 g ′ = AB −1 Bf = Af = g
When each power spectrum component is obtained separately using a sine wave basis, 3L basis functions are required to obtain L power spectra. On the other hand, by selecting an appropriate basis function, the same number of power spectrum components can be obtained by 2L + 1 basis functions.
 このような蛍光相関分光顕微鏡システム100によるパワースペクトルの取得方法により、図10に示すような画素構造を利用して自己相関関数と等価なパワースペクトルの概形を計測することで、分子の大きさ及び数を低いフレームレートで計測できる。例えば、2フレーム読み出すことで、分子の大小の識別ができる。これに対して、蛍光強度の時間変化を計測した後で相関関数を計算する従来の方法では、1Mfps以上のフレームレートで1~10秒程度の連続計測が必要である。本実施形態によれば、従来方法に比べて分子のスクリーニングに有用である。また、通常のイメージセンサとほぼ同じアーキテクチャとフレームレートで蛍光相関分光法を実現できるため、小面積化、高解像度化、及び低コスト化の点で有利である。 By measuring the rough shape of the power spectrum equivalent to the autocorrelation function using the pixel structure as shown in FIG. 10 by the method for acquiring the power spectrum by the fluorescence correlation spectroscopy microscope system 100 as described above, the size of the molecule is obtained. And the number can be measured at a low frame rate. For example, by reading two frames, the size of the molecule can be identified. On the other hand, in the conventional method of calculating the correlation function after measuring the temporal change of the fluorescence intensity, continuous measurement of about 1 to 10 seconds is required at a frame rate of 1 Mbps or more. According to this embodiment, it is more useful for molecular screening than conventional methods. In addition, since fluorescence correlation spectroscopy can be realized with almost the same architecture and frame rate as a normal image sensor, it is advantageous in terms of reduction in area, resolution, and cost.
 上記実施形態においては、電荷排出部は、受光部の中心部から端部に向けて幅が広くなるように形成されている、ことが好ましい。このような電荷排出部を備えれば、電荷排出部における長手方向に電位勾配を形成できるので、電荷を受光部から電荷検出部により高速に輸送でき、その結果画素回路からの電荷読み出しをより高速化することができる。 In the above-described embodiment, it is preferable that the charge discharging portion is formed so as to increase in width from the center portion to the end portion of the light receiving portion. By providing such a charge discharging unit, a potential gradient can be formed in the longitudinal direction of the charge discharging unit, so that charges can be transported from the light receiving unit to the charge detecting unit at a high speed, and as a result, charge reading from the pixel circuit can be performed at higher speed Can be
 また、画素回路は、3つの転送ゲートと3つの電荷検出部とを有する、ことが好ましい。この場合、画素回路の小型化及び画素回路からの電荷読み出しの高速化とを両立することができる。 Also, the pixel circuit preferably has three transfer gates and three charge detection units. In this case, both downsizing of the pixel circuit and high speed of charge reading from the pixel circuit can be achieved.
 また、ゲインアンプは、より大きいゲインを有する第1の増幅器と、より小さいゲインを有する第2の増幅器とを有する、ことも好ましい。この場合、読み出し回路の電圧信号における入力換算ノイズ及びリセットノイズを低減することができる。 It is also preferable that the gain amplifier has a first amplifier having a larger gain and a second amplifier having a smaller gain. In this case, input conversion noise and reset noise in the voltage signal of the readout circuit can be reduced.
 さらに、制御回路は、読み出し回路のそれぞれにおけるサンプルホールド動作及び信号読み出し動作においては、複数のサンプルホールド回路を順次用いて実行させるように制御する、ことも好ましい。このような構成を採れば、読み出し回路から外部への信号読み出しをさらに高速化することができる。 Furthermore, it is also preferable that the control circuit performs control so that a plurality of sample hold circuits are sequentially used in the sample hold operation and the signal read operation in each of the read circuits. By adopting such a configuration, signal readout from the readout circuit to the outside can be further accelerated.
 またさらに、制御回路は、複数の信号処理回路に対して、複数の画素回路の全てから同時に信号読み出し動作を実行させるように制御する、ことも好ましい。かかる構成を採れば、多点での観察を行う際に複数の画素からの信号読み出しを高速化することができる。 Furthermore, it is also preferable that the control circuit controls the plurality of signal processing circuits to simultaneously execute the signal reading operation from all of the plurality of pixel circuits. By adopting such a configuration, it is possible to speed up signal readout from a plurality of pixels when performing observation at multiple points.
 本発明は、観察対象物のイメージングを行うための撮像装置を使用用途とし、観察対象物の多点の観察を高速かつ低ノイズで実現するものである。 The present invention uses an imaging apparatus for imaging an observation object, and realizes multi-point observation of the observation object at high speed and with low noise.
 1…撮像装置、3,3A…画素回路、5…画素アンプ(信号処理回路)、7…制御回路、9…画素アンプユニット、13,13A…受光部、14A,17A,17…転送ゲート、15…電荷排出部、15A…電荷一時蓄積部、15a…一時蓄積部、19,19A…電荷検出部、23…ソースフォロアアンプ、25…ゲインアンプ(読み出し回路)、27…サンプルホールド回路(読み出し回路)、29a,29b…CDSアンプ、100…蛍光相関分光顕微鏡システム、S…観察対象物。 DESCRIPTION OF SYMBOLS 1 ... Imaging device 3, 3A ... Pixel circuit, 5 ... Pixel amplifier (signal processing circuit), 7 ... Control circuit, 9 ... Pixel amplifier unit, 13, 13A ... Light-receiving part, 14A, 17A, 17 ... Transfer gate, 15 ... charge discharging unit, 15A ... charge temporary storage unit, 15a ... temporary storage unit, 19, 19A ... charge detection unit, 23 ... source follower amplifier, 25 ... gain amplifier (read circuit), 27 ... sample hold circuit (read circuit) , 29a, 29b ... CDS amplifier, 100 ... fluorescence correlation spectroscopy microscope system, S ... observation object.

Claims (6)

  1.  光を電荷に変換する複数の画素回路と、
     前記複数の画素回路のそれぞれに接続された複数の信号処理回路と、
     前記画素回路と前記信号処理回路の動作を制御する制御回路とを備え、
     前記画素回路は、
     光を電荷に変換する受光部と、前記受光部の中心部から端部にかけて形成された長手状の電荷排出部と、前記電荷排出部の前記端部側に設けられた一時蓄積部と、前記一時蓄積部を囲むように配置された複数の転送ゲートと、前記一時蓄積部において前記複数の転送ゲートのそれぞれを挟んで設けられた複数の電荷検出部とを有し、
     前記複数の信号処理回路は、それぞれ、前記複数の電荷検出部のそれぞれに対応して設けられた複数の読み出し回路を有し、
     前記読み出し回路のそれぞれは、前記電荷検出部からの電圧信号をインピーダンス変換して読み出すソースフォロアアンプと、前記電圧信号からリセットノイズを除去して増幅するゲインアンプと、前記ゲインアンプの出力する電圧信号を並列に受ける複数のサンプルホールド回路とを含み、
     前記制御回路は、前記画素回路におけるリセット動作、電荷蓄積動作、及び電荷読み出し動作を前記複数の電荷検出部に対応してパイプライン処理で実行するように制御すると同時に、前記信号処理回路の前記複数の読み出し回路における増幅動作、サンプルホールド動作、外部への信号読み出し動作をパイプライン処理で実行するように制御する、
    ことを特徴とする撮像装置。
    A plurality of pixel circuits for converting light into electric charge;
    A plurality of signal processing circuits connected to each of the plurality of pixel circuits;
    A control circuit for controlling the operation of the pixel circuit and the signal processing circuit;
    The pixel circuit includes:
    A light receiving portion for converting light into electric charge, a longitudinal charge discharging portion formed from a center portion to an end portion of the light receiving portion, a temporary storage portion provided on the end portion side of the charge discharging portion, A plurality of transfer gates disposed so as to surround the temporary storage unit; and a plurality of charge detection units provided across the plurality of transfer gates in the temporary storage unit,
    Each of the plurality of signal processing circuits includes a plurality of readout circuits provided corresponding to each of the plurality of charge detection units,
    Each of the readout circuits includes a source follower amplifier that impedance-converts and reads out a voltage signal from the charge detection unit, a gain amplifier that amplifies the voltage signal by removing reset noise, and a voltage signal output from the gain amplifier A plurality of sample-and-hold circuits that receive the
    The control circuit controls the pixel circuit to perform a reset operation, a charge accumulation operation, and a charge readout operation by pipeline processing corresponding to the plurality of charge detection units, and at the same time, the plurality of the signal processing circuits Control to execute the amplification operation, the sample hold operation, and the signal readout operation to the outside by pipeline processing in the readout circuit.
    An imaging apparatus characterized by that.
  2.  前記電荷排出部は、前記受光部の前記中心部から前記端部に向けて幅が広くなるように形成されている、
    ことを特徴とする請求項1記載の撮像装置。
    The charge discharging part is formed so as to increase in width from the central part of the light receiving part toward the end part.
    The imaging apparatus according to claim 1.
  3.  前記画素回路は、3つの転送ゲートと3つの電荷検出部とを有する、
    ことを特徴とする請求項1又は2記載の撮像装置。
    The pixel circuit includes three transfer gates and three charge detection units.
    The imaging apparatus according to claim 1 or 2, wherein
  4.  前記ゲインアンプは、より大きいゲインを有する第1の増幅器と、より小さいゲインを有する第2の増幅器とを有する、
    ことを特徴とする請求項1~3のいずれか1項に記載の撮像装置。
    The gain amplifier includes a first amplifier having a larger gain and a second amplifier having a smaller gain.
    The imaging apparatus according to any one of claims 1 to 3, wherein:
  5.  前記制御回路は、前記読み出し回路のそれぞれにおけるサンプルホールド動作及び前記信号読み出し動作においては、前記複数のサンプルホールド回路を順次用いて実行させるように制御する、
    ことを特徴とする請求項1~4のいずれか1項に記載の撮像装置。
    The control circuit performs control so that the plurality of sample and hold circuits are sequentially executed in the sample and hold operation and the signal read operation in each of the readout circuits.
    The imaging apparatus according to any one of claims 1 to 4, wherein:
  6.  前記制御回路は、前記複数の信号処理回路に対して、前記複数の画素回路の全てから同時に信号読み出し動作を実行させるように制御する、
    ことを特徴とする請求項1~5のいずれか1項に記載の撮像装置。
    The control circuit controls the plurality of signal processing circuits to simultaneously perform signal readout operations from all of the plurality of pixel circuits;
    The imaging apparatus according to any one of claims 1 to 5, wherein:
PCT/JP2014/058086 2013-03-25 2014-03-24 Imaging device WO2014157086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508483A JP6324372B2 (en) 2013-03-25 2014-03-24 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062917 2013-03-25
JP2013-062917 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157086A1 true WO2014157086A1 (en) 2014-10-02

Family

ID=51624059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058086 WO2014157086A1 (en) 2013-03-25 2014-03-24 Imaging device

Country Status (2)

Country Link
JP (1) JP6324372B2 (en)
WO (1) WO2014157086A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917313B2 (en) 2021-09-21 2024-02-27 Kabushiki Kaisha Toshiba Solid-state imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052048A (en) * 2001-08-07 2003-02-21 Olympus Optical Co Ltd Imaging element, imaging apparatus and imaging method
JP2003234496A (en) * 2002-02-12 2003-08-22 Sony Corp Solid-state image pickup device and its manufacturing method
JP2007194488A (en) * 2006-01-20 2007-08-02 Sony Corp Solid photographing device
JP2011243862A (en) * 2010-05-20 2011-12-01 Sony Corp Imaging device and imaging apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194488A (en) * 2002-12-13 2004-07-08 Toyota Motor Corp Hybrid motor
JP2004266597A (en) * 2003-03-03 2004-09-24 Shoji Kawahito Image sensor with full-pixel simultaneous electronic shutter function
JP4644825B2 (en) * 2007-03-30 2011-03-09 国立大学法人静岡大学 Solid-state imaging device and driving method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052048A (en) * 2001-08-07 2003-02-21 Olympus Optical Co Ltd Imaging element, imaging apparatus and imaging method
JP2003234496A (en) * 2002-02-12 2003-08-22 Sony Corp Solid-state image pickup device and its manufacturing method
JP2007194488A (en) * 2006-01-20 2007-08-02 Sony Corp Solid photographing device
JP2011243862A (en) * 2010-05-20 2011-12-01 Sony Corp Imaging device and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917313B2 (en) 2021-09-21 2024-02-27 Kabushiki Kaisha Toshiba Solid-state imaging device

Also Published As

Publication number Publication date
JP6324372B2 (en) 2018-05-16
JPWO2014157086A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US9960198B2 (en) Solid-state image sensor, and imaging system
US20160295151A1 (en) Digital readout method and apparatus
KR101595687B1 (en) Solid-state image capture device
JP4351057B2 (en) Photodetection device, imaging device, and distance image acquisition device
US20140048683A1 (en) Readout integrated circuit for dynamic imaging
US5354980A (en) Segmented multiplexer for spectroscopy focal plane arrays having a plurality of groups of multiplexer cells
JPWO2008012897A1 (en) Light or radiation imaging device
WO2013157423A1 (en) Solid-state image capture device
EP3446476B1 (en) Imaging sensor and method for reading out image information
JP6324372B2 (en) Imaging device
JP2007108168A (en) System and apparatus for time-resolved spectrometer
JP2004264034A (en) Photodetector
WO2016080016A1 (en) Optical detector
US7601981B1 (en) Electrically programmable hyper-spectral focal-plane-array
JP5120458B2 (en) Light or radiation imaging device
JP2008283057A (en) Solid-state image pickup element and imaging apparatus using the same
US10129494B2 (en) Imaging device, and solid-state image sensor
JP2005164363A (en) Light-receiving element and light-receiving element array using the same
JP5591088B2 (en) Photodetection device and observation device
US20050098725A1 (en) Signal detection method and apparatus
Treberspurg et al. Performance of a kilo-pixel RNDR-DEPFET detector
WO2023228452A1 (en) Spectroscopic device, raman spectroscopic measurement device, and spectroscopic method
EP4027637B1 (en) Image sensor and control method of image sensor
JP7383500B2 (en) Solid-state imaging device and amplifier array
US11436823B1 (en) High resolution fast framing infrared detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774602

Country of ref document: EP

Kind code of ref document: A1