WO2014156992A1 - Method for producing positive electrode active material - Google Patents

Method for producing positive electrode active material Download PDF

Info

Publication number
WO2014156992A1
WO2014156992A1 PCT/JP2014/057856 JP2014057856W WO2014156992A1 WO 2014156992 A1 WO2014156992 A1 WO 2014156992A1 JP 2014057856 W JP2014057856 W JP 2014057856W WO 2014156992 A1 WO2014156992 A1 WO 2014156992A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
carbonate
compound
Prior art date
Application number
PCT/JP2014/057856
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 智弘
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015508428A priority Critical patent/JP6388573B2/en
Publication of WO2014156992A1 publication Critical patent/WO2014156992A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • a positive electrode active material of a lithium ion secondary battery a positive electrode active material (LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.) made of a composite oxide containing Li and a transition metal element .)It has been known.
  • a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using a lithium alloy, graphite, carbon fiber, or the like as a negative electrode can be widely used as a battery having a high energy density because a high voltage of about 4 V can be obtained.
  • LiCoO 2 LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.
  • the lithium ion secondary battery has a discharge capacity per unit mass (hereinafter simply referred to as “discharge capacity”) and characteristics that make it difficult to reduce the discharge capacity and the average discharge voltage after repeated charge / discharge cycles (hereinafter referred to as “discharge capacity”). It is also called “cycle characteristics”).
  • Patent Document 1 includes a solid solution of a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure, and the composition ratio of Li and transition metal element contained in the solid solution is expressed by the composition formula Li 1 + 1 / 3x Co 1-1.
  • Patent Document 1 the positive electrode active material of Patent Document 1 is likely to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. Therefore, the crystal structure of the positive electrode active material tends to become unstable, and sufficient cycle characteristics cannot be obtained.
  • Patent Document 2 describes a method of doping fluorine by blending a positive electrode active material and LiF or NH 4 HF 2 as a powder and heating in order to improve cycle characteristics.
  • fluorine cannot be doped sufficiently uniformly, and it is difficult to obtain sufficient cycle characteristics.
  • the present invention provides a method for producing a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage. Moreover, this invention provides the lithium ion secondary battery which has a positive electrode for lithium ion secondary batteries using the positive electrode active material obtained by the said manufacturing method, and this positive electrode for lithium ion secondary batteries.
  • the gist of the present invention is as follows.
  • a method for producing a positive electrode active material comprising the following steps (I) to (IV): (I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate; At least one carbonate (B) selected from the group consisting of Na carbonate and K carbonate, Mix in the state of aqueous solution, Depositing a carbonate compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
  • (II) A step of mixing the carbonate compound with an aqueous solution (C) containing at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca.
  • (III) A step of obtaining a precursor compound by volatilizing water from a mixture of the carbonate compound and the aqueous solution (C).
  • (IV) A step of mixing the precursor compound and the lithium compound and baking at 500 to 1000 ° C.
  • (2) The method for producing a positive electrode active material according to (1), wherein, in the step (I), the aqueous solution of the sulfate (A) includes a sulfate of Ni, a sulfate of Co, and a sulfate of Mn.
  • the concentration of the transition metal element (X) composed of Mn, Ni and Co in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg,
  • step (II) the ratio of the total molar amount of the element (Y) contained in the aqueous solution (C) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound ( The method for producing a positive electrode active material according to any one of (1) to (4), wherein Y / X) is 0.01 to 10%. (6) The process according to any one of (1) to (5), wherein the concentration of the compound containing the element (Y) in the aqueous solution (C) is 0.1 to 50% by mass in the step (II). Of manufacturing positive electrode active material.
  • the compound containing element (Y) is a basic aluminum lactate salt, ammonium hydrogen fluoride, colloidal silica, ammonium zirconium carbonate, yttrium nitrate, hexaammonium heptamolybdate, cerium nitrate, and nitric acid
  • step (IV) the ratio (Li / X) of the total molar amount of Li contained in the lithium compound to the total molar amount of transition metal element (X) contained in the precursor compound is 1.1.
  • the method for producing a positive electrode active material according to any one of (1) to (8) above. (10) In the step (IV), the precursor compound and the lithium compound are mixed, pre-baked at 400 to 700 ° C., and then subjected to main baking at 700 to 1000 ° C. ).
  • the manufacturing method of the positive electrode active material as described in any one of. (11)
  • the method for producing a positive electrode active material according to any one of (1) to (10), wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
  • Y ′ is the element (Y)
  • a to e are 0.1 ⁇ a ⁇ 0.6, 0.0001 ⁇ b ⁇ 0.105, 0.1 ⁇ c, respectively.
  • f is Li, element (Y), Ni, Co, and Mn. (The number is determined by the valence.)
  • the positive electrode for lithium ion secondary batteries containing the positive electrode active material obtained by the manufacturing method of description, a electrically conductive material, and a binder.
  • a lithium ion secondary battery comprising the lithium ion secondary battery positive electrode according to (12), a negative electrode, and a nonaqueous electrolyte.
  • a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage can be obtained. If the positive electrode for lithium ion secondary batteries of the present invention is used, a lithium ion secondary battery having excellent cycle characteristics and a small decrease in discharge voltage can be obtained.
  • the lithium ion secondary battery of the present invention has excellent cycle characteristics and a small decrease in discharge voltage.
  • the method for producing a positive electrode active material of the present invention includes the following steps (I) to (IV).
  • step (I) sulfate (A) and carbonate (B) are mixed in the form of an aqueous solution. You may use an additive further as needed. Thereby, a carbonate compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn is deposited.
  • transition metal element (X) selected from the group consisting of Ni, Co and Mn
  • the aspect which mixes sulfate (A) and carbonate (B) in the state of aqueous solution will not be specifically limited if sulfate (A) and carbonate (B) are in the state of aqueous solution at the time of mixing.
  • both the aqueous solution of sulfate (A) and the aqueous solution of carbonate (B) are continuously added to the mixing tank. It is preferable. It is preferable to put ion exchange water, pure water, distilled water, etc. in the mixing tank in advance, and it is more preferable to control the pH using a carbonate (B), an additive described later, or the like.
  • the pH of the mixed solution in the mixing tank when mixing the sulfate (A) and the carbonate (B) is maintained at 7 to 12 because the carbonate compound containing the transition metal element (X) is likely to precipitate. It is preferable to keep it at 7.5-10.
  • the aqueous solution of sulfate (A) may be two or more kinds of aqueous solutions separately containing each of the two or more kinds of sulfates (A). It is good also as 1 type of aqueous solution containing the above sulfate (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A). The same applies when two types of carbonate (B) are used.
  • the sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
  • Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
  • Examples of Co sulfate include cobalt sulfate (II) heptahydrate and cobalt sulfate (II) ammonium hexahydrate.
  • Mn examples include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
  • the sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity. Ni sulfate, Co sulfate and Mn More preferably, it contains all of the sulfates. That is, the carbonate compound is preferably a carbonate compound containing Ni and Mn as the transition metal element (X), and is a carbonate compound containing all of Ni, Co and Mn as the transition metal element (X). Is more preferable.
  • the carbonate (B) is at least one carbonate selected from the group consisting of Na carbonate and K carbonate.
  • the carbonate (B) also serves as a pH adjuster for precipitating the carbonate compound containing the transition metal element (X).
  • Examples of the carbonate of Na include sodium carbonate and sodium hydrogen carbonate.
  • Examples of the carbonate of K include potassium carbonate and potassium hydrogen carbonate.
  • sodium carbonate or potassium carbonate is preferable because it is inexpensive and allows easy control of the particle diameter of the carbonate compound.
  • sodium hydrogen carbonate or potassium hydrogen carbonate is preferable in terms of easily increasing the tap density of the carbonate compound.
  • carbonate (B) only 1 type may be sufficient and 2 or more types may be sufficient.
  • the amount of Ni contained in the sulfate of Ni is preferably 10 to 50 mol% and more preferably 15 to 45 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 20 to 45 mol% is particularly preferable. If the ratio of the amount of Ni is equal to or higher than the lower limit value, a positive electrode active material exhibiting a high discharge voltage is easily obtained. If the ratio of the amount of Ni is not more than the upper limit value, a positive electrode active material exhibiting a high discharge capacity is easily obtained.
  • the amount of Co contained in the sulfate of Co is preferably 0 to 30 mol% and more preferably 0 to 20 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 0 to 15 mol% is particularly preferable. If the ratio of the amount of Co is not more than the upper limit value, a positive electrode active material exhibiting excellent cycle characteristics can be easily obtained.
  • the amount of Mn contained in the sulfate of Mn is preferably 20 to 90 mol%, more preferably 35 to 85 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 40 to 80 mol% is particularly preferable. If the ratio of the amount of Mn is not less than the lower limit value, a positive electrode active material exhibiting a high discharge capacity is easily obtained. If the ratio of the amount of Mn is not more than the upper limit value, a positive electrode active material exhibiting a high discharge voltage is easily obtained.
  • the concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density
  • the concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the concentration of the carbonate (B) is within the above range, the carbonate compound is likely to precipitate. When using 2 or more types of aqueous solution containing a sulfate (B), it is preferable to make the density
  • the solvent of the aqueous solution of the sulfate (A) and the aqueous solution of the carbonate (B) may be water alone as long as the sulfate (A) and the carbonate (B) are dissolved.
  • an aqueous medium containing components other than water examples include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like.
  • the polyol examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
  • the proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is less than or equal to the upper limit, it is excellent in terms of environment, handleability, and cost.
  • stirring blade When mixing a sulfate (A) and carbonate (B) in the state of aqueous solution, it is preferable to carry out stirring in a mixing tank.
  • a stirring apparatus a three-one motor etc. are mentioned, for example.
  • the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
  • the temperature of the mixed solution when mixing the sulfate (A) and the carbonate (B) is preferably 20 to 80 ° C., more preferably 25 to 60 ° C., because the carbonate compound is likely to precipitate. Further, when the sulfate (A) and the carbonate (B) are mixed, it is preferable to perform the mixing under a nitrogen atmosphere or an argon atmosphere from the viewpoint of suppressing the oxidation of the precipitated carbonate compound. From the viewpoint, it is particularly preferable to perform the mixing in a nitrogen atmosphere.
  • ammonia or an ammonium salt may be used in order to adjust the pH and the solubility of the transition metal element (X).
  • ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • Ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of sulfate (A).
  • the preferred ranges of the respective proportions of Ni, Co and Mn in the obtained carbonate compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in all the sulfates (A) used as described above. is there. Thereby, it is easy to obtain a spherical carbonate compound having an appropriate particle size.
  • the particle size (D 50 ) of the carbonate compound is preferably 5 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 7 to 15 ⁇ m. Within D 50 of the scope of the carbonate compound, easily controlled within the preferred range of D 50 of the positive electrode active material obtained in later-described step (IV), the positive electrode active material showing sufficient battery characteristics can not be obtained easily .
  • D 50 means a particle diameter at a point of 50% in a cumulative volume distribution curve with the total volume distribution determined on a volume basis being 100%, that is, a volume-based cumulative 50% diameter. .
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by sonication or the like and measuring the particle size distribution (for example, using a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA). Used).
  • the specific surface area of the carbonate compound is preferably 50 ⁇ 300m 2 / g, more preferably 100 ⁇ 250m 2 / g.
  • the specific surface area of the carbonate compound is within the above range, the aqueous solution (C) in the step (II) described later can easily penetrate into the inside of the particles, and a positive electrode active material exhibiting high discharge capacity and cycle characteristics can be easily obtained.
  • the specific surface area of the carbonate compound can be measured by the BET method. Specifically, it is measured by the method described in the examples.
  • the step (I) preferably includes a step of removing the aqueous solution by filtration or centrifugation after the carbonate compound is precipitated.
  • a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
  • the obtained carbonate compound is preferably washed in order to remove impurity ions.
  • Examples of the method for washing the carbonate compound include a method in which pressure filtration and dispersion in distilled water are repeated.
  • the carbonate compound may be dried as necessary after washing.
  • the drying temperature of the carbonate compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C.
  • the drying time of the carbonate compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
  • step (II) the carbonate compound obtained in step (I) and the aqueous solution (C) are mixed.
  • the method for mixing the carbonate compound and the aqueous solution (C) include a spray coating method and a dipping method.
  • a spray coating method is preferable.
  • the aqueous solution (C) is spray coated on the carbonate compound, the aqueous solution (C) is spray coated on the carbonate compound being stirred, or the aqueous solution (C) is spray coated on the carbonate compound and then they are stirred. It is more preferable.
  • a Ladige mixer for stirring the carbonate compound and the aqueous solution (C), a Ladige mixer, a rocking mixer, a Nauta mixer, a spiral mixer, a spray dryer, a V mixer, or the like can be used.
  • the aqueous solution (C) may be spray coated with the carbonate compound spread thinly.
  • the aqueous solution (C) is an aqueous solution containing at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca.
  • the aqueous solution (C) can be obtained, for example, by dissolving a compound containing the element (Y) in water.
  • the compound containing the element (Y) include basic aluminum lactate, ammonium hydrogen fluoride, colloidal silica, ammonium zirconium carbonate, yttrium nitrate, hexaammonium heptamolybdate, cerium nitrate, and calcium nitrate.
  • the compound containing the element (Y) contained in the aqueous solution (C) may be one type or two or more types.
  • the concentration of the compound containing the element (Y) in the aqueous solution (C) is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, and particularly preferably 1 to 20% by mass. If the said density
  • the ratio of the total molar amount of the element (Y) contained in the aqueous solution (C) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound (Y / X) is preferably 0.01 to 10%, more preferably 0.1 to 5%, and particularly preferably 0.5 to 3%.
  • the Y / X is not less than the lower limit, a positive electrode active material exhibiting excellent cycle characteristics can be easily obtained. If Y / X is less than or equal to the upper limit value, impurities are hardly generated after firing in step (IV), and excellent electrical characteristics are easily obtained.
  • Step (III) In the step (III), the precursor compound is obtained by volatilizing water from the mixture of the carbonate compound and the aqueous solution (C) obtained in the step (II). Step (III) may be performed simultaneously with the above-described step (II), or step (III) may be performed after step (II). When step (III) is not performed, much water remains in the precursor compound. If a large amount of moisture remains in the precursor compound, lithium carbonate is likely to be dissolved in moisture in the step (IV) to be described later. When aggregation of lithium carbonate occurs, the distribution of Li and element (Y) in the positive electrode active material becomes non-uniform, and a positive electrode active material having sufficient cycle characteristics cannot be obtained.
  • the method for volatilizing moisture examples include a method of drying by heating.
  • the heating temperature in step (III) is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If heating temperature is more than a lower limit, the moisture content in the obtained precursor compound will decrease, and the positive electrode active material which shows the outstanding cycling characteristics will be easy to be obtained. When the heating temperature is equal to or lower than the upper limit value, the precursor compound is hardly thermally deteriorated.
  • the heating time varies depending on the heating temperature, it is preferably 1 to 300 hours, more preferably 1 to 120 hours.
  • step (IV) the precursor compound obtained in step (III) and the lithium compound are mixed and fired at 500 to 1000 ° C.
  • the lithium compound at least one selected from the group consisting of lithium carbonate, lithium hydroxide and lithium nitrate is preferable, and lithium carbonate is more preferable because it is inexpensive.
  • the method of mixing the precursor compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
  • the ratio (Li / X) of the total molar amount of Li contained in the lithium compound to the total molar amount of transition metal element (X) contained in the precursor compound is preferably 1.1 or more. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
  • the Li / X is more preferably from 1.1 to 1.6, and particularly preferably from 1.1 to 1.4. When Li / X is not more than the upper limit value, a high discharge capacity is easily obtained.
  • An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the precursor compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
  • the air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per 1 L of the furnace internal volume.
  • the firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
  • the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
  • the firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C.
  • two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
  • the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C.
  • the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
  • the positive electrode active material obtained by the production method of the present invention is a positive electrode active material made of a composite oxide containing Li, a transition metal element (X), and an element (Y).
  • the obtained positive electrode active material is particulate.
  • the particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
  • the D 50 of the positive electrode active material is preferably 4 to 20 ⁇ m, more preferably 5 to 18 ⁇ m, and particularly preferably 6 to 15 ⁇ m. Within D 50 is the range of the positive electrode active material, high discharge capacity can be easily obtained.
  • the positive electrode active material is preferably secondary particles in which primary particles having a particle diameter D 50 of 10 to 500 nm are aggregated. As a result, when a lithium ion secondary battery is manufactured, the electrolyte is easily spread between the positive electrode active materials in the positive electrode. It is preferable that the element (Y) is uniformly distributed in the secondary particles from the viewpoint that the decrease in the discharge voltage can be sufficiently suppressed.
  • the specific surface area of the positive electrode active material is preferably 0.1 ⁇ 15m 2 / g, more preferably 2 ⁇ 10m 2 / g, particularly preferably 4 ⁇ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity is easily obtained. If the specific surface area is not more than the upper limit value, excellent cycle characteristics can be easily obtained.
  • the specific surface area is measured by the method described in Examples.
  • the molar ratio (Li / X) of the Li content to the content of the transition metal element (X) in the positive electrode active material is preferably 1.1 or more, more preferably 1.1 or more and 1.6 or less. 1 or more and 1.4 or less are especially preferable. If Li / X is 1.1 or more and 1.6 or less, a higher discharge capacity can be obtained.
  • the ratio (Y / X) of the content molar amount of the element (Y) to the content (100 mol) of the transition metal element (X) in the positive electrode active material is preferably 0.01 to 10%, preferably 0.1 to 5% Is more preferable, and 0.5 to 3% is particularly preferable. If Y / X is not less than the lower limit, excellent cycle characteristics can be easily obtained. If Y / X is not more than the upper limit value, excellent electrical characteristics can be easily obtained.
  • the compound (1) represented by the following formula (1) is preferable.
  • Y ′ is the element (Y)
  • a to e are 0.1 ⁇ a ⁇ 0.6, 0.0001 ⁇ b ⁇ 0.105, and 0.1 ⁇ c ⁇ , respectively.
  • f is the value of Li, element (Y), Ni, Co, and Mn A numerical value determined by a number.
  • the compound (1) has a high effect of suppressing a decrease in discharge voltage due to the cycle when 0.0001 ⁇ b ⁇ 0.105.
  • the cause of the effect is not clear, but it is presumed that the crystal structure change due to the cycle is suppressed by the element (Y) being precipitated at the crystal interface of the positive electrode active material.
  • a of the compound (1) becomes a positive electrode active material having a high initial discharge capacity and initial discharge voltage, 0.1 ⁇ a ⁇ 0.4 is more preferable.
  • b is preferably 0.001 ⁇ b ⁇ 0.1, and more preferably 0.005 ⁇ b ⁇ 0.03, since both the initial discharge capacity and the cycle characteristics can be achieved.
  • c of the compound (1) is more preferably 0.15 ⁇ c ⁇ 0.45, and particularly preferably 0.2 ⁇ c ⁇ 0.4.
  • d of the compound (1) is more preferably 0 ⁇ d ⁇ 0.2, particularly preferably 0 ⁇ d ⁇ 0.15.
  • e of the compound (1) is more preferably 0.35 ⁇ e ⁇ 0.85, and particularly preferably 0.4 ⁇ e ⁇ 0.8.
  • a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage can be obtained.
  • the factor for obtaining the positive electrode active material by the production method of the present invention is not clear, the specific surface area of the carbonate compound obtained in the step (I) is large, and the carbonate compound and the aqueous solution (C) are used in the step (II).
  • the aqueous solution (C) can penetrate uniformly into the pores of the carbonate compound.
  • the positive electrode active material in which the element (Y) is uniformly diffused and distributed to the inside of the particles is obtained by the firing in the step (IV).
  • the positive electrode for a lithium ion secondary battery of the present invention has a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
  • a well-known aspect can be employ
  • Positive electrode current collector examples include an aluminum foil and a stainless steel foil.
  • the positive electrode active material layer is a layer containing a positive electrode active material obtained by the production method of the present invention, a conductive material, and a binder.
  • the positive electrode active material layer may contain other components such as a thickener as necessary.
  • Examples of the conductive material include carbon materials such as acetylene black, graphite, and ketjen black.
  • the conductive material may be one type or two or more types.
  • binder examples include fluorine-based resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), polymers having unsaturated bonds, and copolymers (styrene-butadiene rubber, isoprene rubber). , Butadiene rubber, etc.), acrylic acid polymers and copolymers (acrylic acid copolymers, methacrylic acid copolymers, etc.).
  • the binder may be one type or two or more types.
  • the positive electrode active material may be one type or two or more types.
  • thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone.
  • One thickener may be used, or two or more thickeners may be used.
  • the manufacturing method of the positive electrode for lithium ion secondary batteries can employ
  • the following method is mentioned as a manufacturing method of the positive electrode for lithium ion secondary batteries.
  • a positive electrode active material, a conductive material and a binder are dissolved or dispersed in a medium to obtain a slurry, or a positive electrode active material, a conductive material and a binder are kneaded with a medium to obtain a kneaded product.
  • the positive electrode active material layer is formed by coating the obtained slurry or kneaded material on the positive electrode current collector.
  • the lithium ion secondary battery of this invention has the above-mentioned positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • the negative electrode current collector include metal foils such as nickel foil and copper foil.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. Silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like.
  • iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used as the negative electrode active material.
  • Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons.
  • Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
  • Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
  • the negative electrode is obtained, for example, by preparing a slurry by mixing a negative electrode active material with an organic solvent, applying the prepared slurry to a negative electrode current collector, drying, and pressing.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
  • organic solvent known organic solvents for non-aqueous electrolytes can be employed, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples thereof include ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, and propionic acid ester.
  • the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate. 1 type may be sufficient as an organic solvent, and 2 or more types may be sufficient as it.
  • any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
  • the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt.
  • the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), cross-linked poly (ethylene oxide), etc.), poly (methacrylate) ester polymer compounds, and acrylate polymer compounds. Etc.
  • the matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used.
  • the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like.
  • high molecular compounds polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.).
  • Examples of the monomer copolymerized with polyethylene oxide include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
  • electrolyte salt known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
  • the shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, and the like can be appropriately selected depending on the application.
  • Examples 1 to 8 are examples, and examples 9 to 18 are comparative examples.
  • SSA Specific surface area
  • the specific surface area of the positive electrode active material was measured by a BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
  • D 50 Average particle diameter
  • the particle size (D 50 ) of the positive electrode active material is determined by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like, and measuring the scattering particle size distribution (HORIBA: laser diffraction / scattering particle size distribution measurement). The measurement was performed using the apparatus Partica LA-950VII. In the cumulative volume distribution curve in which the total volume of the particle size distribution obtained on a volume basis was 100%, 50% was defined as the volume-based cumulative 50% diameter (D 50 ).
  • composition analysis (Ni, Co, Mn)
  • the Ni ratio, the Co ratio, and the Mn ratio with respect to the total of Ni, Co, and Mn were analyzed.
  • the analysis was performed with a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
  • 2 kg of an aqueous sulfate solution was prepared by dissolving in distilled water so that the Mn ratio was 62.9 mol% and the total amount of sulfate was 1.5 mol / kg. Further, 99.1 g of ammonium sulfate was dissolved in 900.9 g of distilled water to prepare a 0.75 mol / kg ammonium sulfate aqueous solution.
  • aqueous carbonate solution pH adjusting solution
  • distilled water is put into a 2 L baffled glass mixing tank, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is 5.0 g / min, and the aqueous ammonium sulfate solution is added. Each was added for 6 hours at a rate of 0.5 g / min.
  • a carbonate aqueous solution (pH adjusting solution) was added so as to keep the pH in the mixing tank at 8.0, thereby precipitating a carbonate compound containing Ni, Co and Mn. Further, during the precipitation reaction, the liquid was continuously extracted using a filter cloth so that the amount of liquid in the mixing tank did not exceed 2 L. In order to remove impurity ions from the obtained carbonate compound, pressure filtration and dispersion in distilled water were repeated to wash the carbonate compound. When the electrical conductivity of the filtrate reached 20 mS / m, the washing was finished and dried at 120 ° C. for 15 hours to obtain a carbonate compound. Table 1 shows the composition analysis results of Ni, Co, and Mn of the obtained carbonate compound.
  • Examples 2 to 17 In the step (II), a positive electrode active material was obtained in the same manner as in Example 1 except that the compound shown in Table 1 was used instead of the basic aluminum lactate salt and the element (Y) shown in Table 1 was doped. Table 1 shows the composition analysis result of the obtained carbonate compound and the specific surface area of the positive electrode active material.
  • Example 18 A positive electrode active material was obtained in the same manner as in Example 1 except that Step (II) and Step (III) were not performed. Table 1 shows the composition analysis result of the obtained carbonate compound and the specific surface area of the positive electrode active material.
  • the raw material compound in Table 1 is a compound used for dope of an element (Y) in process (II).
  • the symbol in Table 1 shows the following meaning.
  • KML16 Trade name “Takiseram KML16”, manufactured by Taki Chemical Co., Ltd.
  • AT50 Product name “Adelite”, manufactured by ADEKA Corporation.
  • Bay coat 20 Trade name “Bay coat 20”, manufactured by Nippon Light Metal Co., Ltd.
  • Ti (OBu) 4 tetra-n-butyl titanate.
  • the obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in a glove box under argon.
  • a stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 ⁇ m was formed on the negative electrode current collector to form a negative electrode.
  • porous polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • a charging / discharging cycle of charging to 4.5 V with 1 C load current per 1 g of the positive electrode active material and discharging to 2.0 V with 1 C load current per 1 g of the positive electrode active material was repeated 100 times.
  • 1C means the amount of current that can discharge the theoretical capacity of the positive electrode in one hour.
  • the discharge capacity at the time of the activation treatment is “initial discharge capacity”
  • the discharge capacity at the third cycle is “pre-cycle discharge capacity”
  • the discharge capacity at the 100th cycle is “post-cycle discharge capacity”
  • the post-cycle discharge capacity is The ratio of discharge capacity was defined as “discharge capacity maintenance ratio”.
  • Table 2 shows the measurement results of the initial discharge capacity, the pre-cycle discharge capacity, the post-cycle discharge capacity, and the discharge capacity retention rate in each example.
  • Table 3 shows the composition represented by the above formula (1) and the particle diameter (D 50 ) ( ⁇ m) of the positive electrode active material obtained in each example.
  • the lithium ion secondary battery has a high discharge capacity retention rate compared to the lithium ion secondary batteries of Examples 9 to 17 doped with an element other than the element (Y) and Example 18 not doped, and the cycle Excellent characteristics.
  • a positive electrode active material for a lithium ion secondary battery having a high discharge capacity and excellent cycle characteristics can be obtained.
  • the positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.

Abstract

To obtain a positive electrode active material which has excellent cycle characteristics, while being suppressed in decrease in the discharge voltage. A method for producing a positive electrode active material, which comprises: a step wherein at least one sulfate (A) selected from the group consisting of sulfates of Ni, sulfates of Co and sulfates of Mn and at least one carbonate (B) selected from the group consisting of carbonates of Na and carbonates of K are mixed with each other in the form of an aqueous solution, so that a carbonate compound is precipitated; a step wherein the carbonate compound and an aqueous solution (C) that contains at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca are mixed with each other; a step wherein the water content is vaporized from the mixture of the carbonate compound and the aqueous solution (C), so that a precursor compound is obtained; and a step wherein the precursor compound and a lithium compound are mixed with each other and fired at 500-1,000°C.

Description

正極活物質の製造方法Method for producing positive electrode active material
 本発明は、正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池に関する。 The present invention relates to a method for producing a positive electrode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
 携帯電話、ノート型パソコン等の携帯型電子機器等には、リチウムイオン二次電池が広く使用されている。リチウムイオン二次電池の正極活物質としては、Liと遷移金属元素を含む複合酸化物からなる正極活物質(LiCoO、LiNiO、LiNi0.8Co0.2、LiMn等。)が知られている。例えば、正極活物質としてLiCoOを用い、負極としてリチウム合金、グラファイト、カーボンファイバー等を用いたリチウムイオン二次電池は、約4Vの高い電圧が得られるため、高エネルギー密度を有する電池として広く使用されている。 Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers. As a positive electrode active material of a lithium ion secondary battery, a positive electrode active material (LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4, etc.) made of a composite oxide containing Li and a transition metal element .)It has been known. For example, a lithium ion secondary battery using LiCoO 2 as a positive electrode active material and using a lithium alloy, graphite, carbon fiber, or the like as a negative electrode can be widely used as a battery having a high energy density because a high voltage of about 4 V can be obtained. Has been.
 携帯型電子機器用、車載用等のリチウムイオン二次電池には、小型化、および軽量化が求められている。そのため、リチウムイオン二次電池は、単位質量あたりの放電容量(以下、単に「放電容量」という。)、および、充放電サイクルを繰り返した後に放電容量および平均放電電圧を低下させ難い特性(以下、「サイクル特性」ともいう。)のさらなる向上が求められている。 リ チ ウ ム Lithium ion secondary batteries for portable electronic devices and in-vehicle use are required to be smaller and lighter. Therefore, the lithium ion secondary battery has a discharge capacity per unit mass (hereinafter simply referred to as “discharge capacity”) and characteristics that make it difficult to reduce the discharge capacity and the average discharge voltage after repeated charge / discharge cycles (hereinafter referred to as “discharge capacity”). It is also called “cycle characteristics”).
 放電容量の高い正極活物質としては、遷移金属元素に対するLiモル比が高い複合酸化物(以下、「Liリッチ系正極活物質」ともいう。)からなる正極活物質が注目されている。
 特許文献1には、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物の固溶体を含み、前記固溶体が含有するLiおよび遷移金属元素の組成比が、組成式Li1+1/3xCo1-x-yNiy/2Mn2x/3+y/2(x+y≦1、0≦y、かつ、1/3<x≦2/3)を満たす正極活物質が記載されている。
 しかし、特許文献1の正極活物質は、高電圧での充電によって電解液から生じた分解物と接触することでMnが電解液中に溶出しやすい。そのため、正極活物質の結晶構造が不安定になりやすく、充分なサイクル特性が得られない。
As a positive electrode active material having a high discharge capacity, a positive electrode active material made of a composite oxide having a high Li molar ratio to a transition metal element (hereinafter also referred to as “Li-rich positive electrode active material”) has attracted attention.
Patent Document 1 includes a solid solution of a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, and the composition ratio of Li and transition metal element contained in the solid solution is expressed by the composition formula Li 1 + 1 / 3x Co 1-1. A positive electrode active material satisfying xy Ni y / 2 Mn 2x / 3 + y / 2 (x + y ≦ 1, 0 ≦ y and 1/3 <x ≦ 2/3) is described.
However, the positive electrode active material of Patent Document 1 is likely to elute Mn into the electrolytic solution by coming into contact with a decomposition product generated from the electrolytic solution by charging at a high voltage. Therefore, the crystal structure of the positive electrode active material tends to become unstable, and sufficient cycle characteristics cannot be obtained.
 特許文献2には、サイクル特性を高めるために、正極活物質と、LiFまたはNHHFを粉末としてブレンドし、加熱することで、フッ素をドープする方法が記載されている。
 しかし、特許文献2の方法ではフッ素を充分に均一にドープできず、充分なサイクル特性を得ることが難しい。
Patent Document 2 describes a method of doping fluorine by blending a positive electrode active material and LiF or NH 4 HF 2 as a powder and heating in order to improve cycle characteristics.
However, in the method of Patent Document 2, fluorine cannot be doped sufficiently uniformly, and it is difficult to obtain sufficient cycle characteristics.
日本特開2009-152114号公報Japanese Unexamined Patent Publication No. 2009-152114 日本特表2012-504316号公報Japanese Special Table 2012-504316
 本発明は、優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質の製造方法を提供する。また、本発明は、前記製造方法で得られた正極活物質を用いたリチウムイオン二次電池用正極、および該リチウムイオン二次電池用正極を有するリチウムイオン二次電池を提供する。 The present invention provides a method for producing a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage. Moreover, this invention provides the lithium ion secondary battery which has a positive electrode for lithium ion secondary batteries using the positive electrode active material obtained by the said manufacturing method, and this positive electrode for lithium ion secondary batteries.
  本発明は以下の構成を要旨とするものである。
(1)下記の工程(I)~(IV)を有することを特徴とする正極活物質の製造方法。
 (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
 Naの炭酸塩およびKの炭酸塩からなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
 水溶液の状態で混合して、
 Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)を含む炭酸塩化合物を析出させる工程。
 (II)前記炭酸塩化合物と、Al、F、Si、Zr、Y、Mo、CeおよびCaからなる群から選ばれる少なくとも1種の元素(Y)を含む水溶液(C)とを混合させる工程。
 (III)前記炭酸塩化合物と前記水溶液(C)との混合物から水分を揮発させ前駆体化合物を得る工程。
 (IV)前記前駆体化合物とリチウム化合物とを混合し、500~1000℃で焼成する工程。
(2)工程(I)において、前記硫酸塩(A)の水溶液が、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩を含む、上記(1)に記載の正極活物質の製造方法。
The gist of the present invention is as follows.
(1) A method for producing a positive electrode active material comprising the following steps (I) to (IV):
(I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate;
At least one carbonate (B) selected from the group consisting of Na carbonate and K carbonate,
Mix in the state of aqueous solution,
Depositing a carbonate compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
(II) A step of mixing the carbonate compound with an aqueous solution (C) containing at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca.
(III) A step of obtaining a precursor compound by volatilizing water from a mixture of the carbonate compound and the aqueous solution (C).
(IV) A step of mixing the precursor compound and the lithium compound and baking at 500 to 1000 ° C.
(2) The method for producing a positive electrode active material according to (1), wherein, in the step (I), the aqueous solution of the sulfate (A) includes a sulfate of Ni, a sulfate of Co, and a sulfate of Mn.
(3)工程(I)において、前記硫酸塩(A)の水溶液中におけるMn、NiおよびCoからなる遷移金属元素遷移金属元素(X)の濃度が0.1~3mol/kgである、上記(1)または(2)に記載の正極活物質の製造方法。
(4)工程(I)において、前記炭酸塩(B)の水溶液中における炭酸塩(B)の濃度が0.1~2mol/kgである、上記(1)~(3)のいずれか一項に記載の正極活物質の製造方法。
(3) In the step (I), the concentration of the transition metal element (X) composed of Mn, Ni and Co in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg, The manufacturing method of the positive electrode active material as described in 1) or (2).
(4) Any one of the above (1) to (3), wherein the concentration of the carbonate (B) in the aqueous solution of the carbonate (B) is 0.1 to 2 mol / kg in the step (I). The manufacturing method of the positive electrode active material of description.
(5)工程(II)において、炭酸塩化合物に含まれる遷移金属元素(X)の合計量(100mol)に対して、水溶液(C)中に含まれる元素(Y)の合計モル量の割合(Y/X)が、0.01~10%である、上記(1)~(4)のいずれか一項に記載の正極活物質の製造方法。
(6)工程(II)において、水溶液(C)中の元素(Y)を含む化合物の濃度が0.1~50質量%である、上記(1)~(5)のいずれか一項に記載の正極活物質の製造方法。
(7)工程(II)において、元素(Y)を含む化合物が、塩基性乳酸アルミニウム塩、フッ化水素アンモニウム、コロイダルシリカ、炭酸ジルコニウムアンモニウム、硝酸イットリウム、七モリブデン酸六アンモニウム、硝酸セリウム、および硝酸カルシウムからなる群から選らばれる1以上である、上記(6)に記載の正極活物質の製造方法。
(8)工程(II)において、炭酸塩化合物と、水溶液(C)とをスプレーコート法で混合する、上記(1)~(7)のいずれか一項に記載の正極活物質の製造方法。
(5) In the step (II), the ratio of the total molar amount of the element (Y) contained in the aqueous solution (C) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound ( The method for producing a positive electrode active material according to any one of (1) to (4), wherein Y / X) is 0.01 to 10%.
(6) The process according to any one of (1) to (5), wherein the concentration of the compound containing the element (Y) in the aqueous solution (C) is 0.1 to 50% by mass in the step (II). Of manufacturing positive electrode active material.
(7) In step (II), the compound containing element (Y) is a basic aluminum lactate salt, ammonium hydrogen fluoride, colloidal silica, ammonium zirconium carbonate, yttrium nitrate, hexaammonium heptamolybdate, cerium nitrate, and nitric acid The method for producing a positive electrode active material according to (6), wherein the positive electrode active material is one or more selected from the group consisting of calcium.
(8) The method for producing a positive electrode active material according to any one of (1) to (7) above, wherein in step (II), the carbonate compound and the aqueous solution (C) are mixed by a spray coating method.
(9)工程(IV)において、前駆体化合物に含まれる遷移金属元素(X)の合計モル量に対してリチウム化合物に含まれるLiの合計モル量の比(Li/X)が、1.1以上である、上記(1)~(8)のいずれか一項に記載の正極活物質の製造方法。
(10)工程(IV)において、前記前駆体化合物とリチウム化合物とを混合し、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う、上記(1)~(9)のいずれか一項に記載の正極活物質の製造方法。
(11)得られる正極活物質が下式(1)で表される化合物(1)である、上記(1)~(10)のいずれか一項に記載の正極活物質の製造方法。
 Li1+aY’NiCoMn2+f ・・・(1)
 (ただし、前記式(1)中、Y’は元素(Y)であり、a~eはそれぞれ0.1≦a≦0.6、0.0001≦b≦0.105、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05であり、fはLi、元素(Y)、Ni、CoおよびMnの価数によって決定される数値である。)
(9) In step (IV), the ratio (Li / X) of the total molar amount of Li contained in the lithium compound to the total molar amount of transition metal element (X) contained in the precursor compound is 1.1. The method for producing a positive electrode active material according to any one of (1) to (8) above.
(10) In the step (IV), the precursor compound and the lithium compound are mixed, pre-baked at 400 to 700 ° C., and then subjected to main baking at 700 to 1000 ° C. ). The manufacturing method of the positive electrode active material as described in any one of.
(11) The method for producing a positive electrode active material according to any one of (1) to (10), wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
Li 1 + a Y 'b Ni c Co d Mn e O 2 + f ··· (1)
(In the formula (1), Y ′ is the element (Y), and a to e are 0.1 ≦ a ≦ 0.6, 0.0001 ≦ b ≦ 0.105, 0.1 ≦ c, respectively. ≦ 0.5, 0 ≦ d ≦ 0.3, 0.2 ≦ e ≦ 0.9, 0.9 ≦ c + d + e ≦ 1.05, and f is Li, element (Y), Ni, Co, and Mn. (The number is determined by the valence.)
(12)正極集電体と、該正極集電体上に設けられた正極活物質層と、を有し、前記正極活物質層が、上記(1)~(11)のいずれか一項に記載の製造方法で得られた正極活物質と、導電材と、バインダと、を含有する、リチウムイオン二次電池用正極。
(13)上記(12)に記載のリチウムイオン二次電池用正極と、負極と、非水電解質と、を有するリチウムイオン二次電池。
(12) A positive electrode current collector, and a positive electrode active material layer provided on the positive electrode current collector, wherein the positive electrode active material layer is as defined in any one of (1) to (11) above The positive electrode for lithium ion secondary batteries containing the positive electrode active material obtained by the manufacturing method of description, a electrically conductive material, and a binder.
(13) A lithium ion secondary battery comprising the lithium ion secondary battery positive electrode according to (12), a negative electrode, and a nonaqueous electrolyte.
 本発明の正極活物質の製造方法によれば、優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質が得られる。
 本発明のリチウムイオン二次電池用正極を用いれば、優れたサイクル特性を有し、放電電圧の低下が小さいリチウムイオン二次電池が得られる。
 本発明のリチウムイオン二次電池は、優れたサイクル特性を有し、放電電圧の低下が小さい。
According to the method for producing a positive electrode active material of the present invention, a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage can be obtained.
If the positive electrode for lithium ion secondary batteries of the present invention is used, a lithium ion secondary battery having excellent cycle characteristics and a small decrease in discharge voltage can be obtained.
The lithium ion secondary battery of the present invention has excellent cycle characteristics and a small decrease in discharge voltage.
<正極活物質の製造方法>
 本発明の正極活物質の製造方法は、後述の工程(I)~(IV)を有する。
<Method for producing positive electrode active material>
The method for producing a positive electrode active material of the present invention includes the following steps (I) to (IV).
[工程(I)]
 工程(I)では、硫酸塩(A)と炭酸塩(B)とを、水溶液の状態で混合する。必要に応じてさらに添加剤を用いてもよい。これにより、Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)を含む炭酸塩化合物が析出される。
[Step (I)]
In step (I), sulfate (A) and carbonate (B) are mixed in the form of an aqueous solution. You may use an additive further as needed. Thereby, a carbonate compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn is deposited.
 硫酸塩(A)と炭酸塩(B)とを、水溶液の状態で混合する態様は、硫酸塩(A)と炭酸塩(B)とが混合の際に水溶液の状態であれば特に限定されない。
 具体的には、炭酸塩化合物が析出しやすく、かつ粒子径を制御しやすいことから、混合槽に硫酸塩(A)の水溶液と、炭酸塩(B)の水溶液とを共に連続的に添加することが好ましい。混合槽には、予めイオン交換水、純水、蒸留水等を入れておくことが好ましく、さらに炭酸塩(B)や後述する添加剤等を用いてpHを制御しておくことがより好ましい。
 硫酸塩(A)と炭酸塩(B)とを混合する際の混合槽中の混合液のpHは、遷移金属元素(X)を含む炭酸塩化合物が析出しやすいことから、7~12に保持することが好ましく、7.5~10に保持することがより好ましい。
The aspect which mixes sulfate (A) and carbonate (B) in the state of aqueous solution will not be specifically limited if sulfate (A) and carbonate (B) are in the state of aqueous solution at the time of mixing.
Specifically, since the carbonate compound is easily precipitated and the particle diameter is easily controlled, both the aqueous solution of sulfate (A) and the aqueous solution of carbonate (B) are continuously added to the mixing tank. It is preferable. It is preferable to put ion exchange water, pure water, distilled water, etc. in the mixing tank in advance, and it is more preferable to control the pH using a carbonate (B), an additive described later, or the like.
The pH of the mixed solution in the mixing tank when mixing the sulfate (A) and the carbonate (B) is maintained at 7 to 12 because the carbonate compound containing the transition metal element (X) is likely to precipitate. It is preferable to keep it at 7.5-10.
 硫酸塩(A)を2種以上使用する場合、硫酸塩(A)の水溶液としては、それら2種以上の硫酸塩(A)のそれぞれを別々に含む2種以上の水溶液としてもよく、2種以上の硫酸塩(A)を含む1種の水溶液としてもよい。また、1種の硫酸塩(A)を含む水溶液と、2種以上の硫酸塩(A)を含む水溶液とを併用してもよい。2種の炭酸塩(B)を使用する場合も同様である。 When two or more kinds of sulfates (A) are used, the aqueous solution of sulfate (A) may be two or more kinds of aqueous solutions separately containing each of the two or more kinds of sulfates (A). It is good also as 1 type of aqueous solution containing the above sulfate (A). Moreover, you may use together the aqueous solution containing 1 type of sulfates (A), and the aqueous solution containing 2 or more types of sulfates (A). The same applies when two types of carbonate (B) are used.
 硫酸塩(A)は、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩である。
 Niの硫酸塩としては、例えば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
 Coの硫酸塩としては、例えば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
 Mnの硫酸塩としては、例えば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。
The sulfate (A) is at least one sulfate selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate.
Examples of the Ni sulfate include nickel sulfate (II) hexahydrate, nickel sulfate (II) heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
Examples of Co sulfate include cobalt sulfate (II) heptahydrate and cobalt sulfate (II) ammonium hexahydrate.
Examples of the sulfate of Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
 硫酸塩(A)は、1種のみでもよく、2種以上でもよい。
 硫酸塩(A)としては、放電容量が高いリチウムイオン二次電池が得られやすい点から、Niの硫酸塩およびMnの硫酸塩を含むことが好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩の全てを含むことがより好ましい。すなわち、炭酸塩化合物が、遷移金属元素(X)としてNiおよびMnを含む炭酸塩化合物であることが好ましく、遷移金属元素(X)としてNi、CoおよびMnの全てを含む炭酸塩化合物であることがより好ましい。
As for sulfate (A), only 1 type may be sufficient and 2 or more types may be sufficient as it.
The sulfate (A) preferably contains Ni sulfate and Mn sulfate from the viewpoint of easily obtaining a lithium ion secondary battery having a high discharge capacity. Ni sulfate, Co sulfate and Mn More preferably, it contains all of the sulfates. That is, the carbonate compound is preferably a carbonate compound containing Ni and Mn as the transition metal element (X), and is a carbonate compound containing all of Ni, Co and Mn as the transition metal element (X). Is more preferable.
 炭酸塩(B)は、Naの炭酸塩およびKの炭酸塩からなる群から選ばれる少なくとも1種の炭酸塩である。炭酸塩(B)は、遷移金属元素(X)を含む炭酸塩化合物を析出させるためのpH調整剤としての役割も果たす。
 Naの炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。
 Kの炭酸塩としては、炭酸カリウム、炭酸水素カリウムが挙げられる。
 炭酸塩(B)としては、安価かつ炭酸塩化合物の粒子径の制御がしやすい点では、炭酸ナトリウム、または炭酸カリウムが好ましい。一方で炭酸塩(B)としては、炭酸塩化合物のタップ密度を高くしやすい点では、炭酸水素ナトリウム、または炭酸水素カリウムが好ましい。炭酸塩(B)としては、1種のみでもよく、2種以上でもよい。
The carbonate (B) is at least one carbonate selected from the group consisting of Na carbonate and K carbonate. The carbonate (B) also serves as a pH adjuster for precipitating the carbonate compound containing the transition metal element (X).
Examples of the carbonate of Na include sodium carbonate and sodium hydrogen carbonate.
Examples of the carbonate of K include potassium carbonate and potassium hydrogen carbonate.
As the carbonate (B), sodium carbonate or potassium carbonate is preferable because it is inexpensive and allows easy control of the particle diameter of the carbonate compound. On the other hand, as the carbonate (B), sodium hydrogen carbonate or potassium hydrogen carbonate is preferable in terms of easily increasing the tap density of the carbonate compound. As carbonate (B), only 1 type may be sufficient and 2 or more types may be sufficient.
 Niの硫酸塩に含まれるNiの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、10~50mol%が好ましく、15~45mol%がより好ましく、20~45mol%が特に好ましい。前記Niの量の割合が下限値以上であれば、高い放電電圧を示す正極活物質が得られやすい。前記Niの量の割合が上限値以下であれば、高い放電容量を示す正極活物質が得られやすい。 The amount of Ni contained in the sulfate of Ni is preferably 10 to 50 mol% and more preferably 15 to 45 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 20 to 45 mol% is particularly preferable. If the ratio of the amount of Ni is equal to or higher than the lower limit value, a positive electrode active material exhibiting a high discharge voltage is easily obtained. If the ratio of the amount of Ni is not more than the upper limit value, a positive electrode active material exhibiting a high discharge capacity is easily obtained.
 Coの硫酸塩に含まれるCoの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、0~30mol%が好ましく、0~20mol%がより好ましく、0~15mol%が特に好ましい。前記Coの量の割合が上限値以下であれば、優れたサイクル特性を示す正極活物質が得られやすい。 The amount of Co contained in the sulfate of Co is preferably 0 to 30 mol% and more preferably 0 to 20 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 0 to 15 mol% is particularly preferable. If the ratio of the amount of Co is not more than the upper limit value, a positive electrode active material exhibiting excellent cycle characteristics can be easily obtained.
 Mnの硫酸塩に含まれるMnの量は、硫酸塩(A)に含まれるNi、CoおよびMnの合計量(100mol%)に対して、20~90mol%が好ましく、35~85mol%がより好ましく、40~80mol%が特に好ましい。前記Mnの量の割合が下限値以上であれば、高い放電容量を示す正極活物質が得られやすい。前記Mnの量の割合が上限値以下であれば、高い放電電圧を示す正極活物質が得られやすい。 The amount of Mn contained in the sulfate of Mn is preferably 20 to 90 mol%, more preferably 35 to 85 mol% with respect to the total amount (100 mol%) of Ni, Co and Mn contained in the sulfate (A). 40 to 80 mol% is particularly preferable. If the ratio of the amount of Mn is not less than the lower limit value, a positive electrode active material exhibiting a high discharge capacity is easily obtained. If the ratio of the amount of Mn is not more than the upper limit value, a positive electrode active material exhibiting a high discharge voltage is easily obtained.
 硫酸塩(A)の水溶液中における遷移金属元素(X)の濃度は、0.1~3mol/kgが好ましく、0.5~2.5mol/kgがより好ましい。前記濃度が下限値以上であれば、生産性が高い。前記濃度が上限値以下であれば、硫酸塩(A)を充分に溶解させやすい。
 硫酸塩(A)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について遷移金属元素(X)の濃度を前記範囲内とすることが好ましい。
The concentration of the transition metal element (X) in the aqueous solution of the sulfate (A) is preferably from 0.1 to 3 mol / kg, more preferably from 0.5 to 2.5 mol / kg. If the concentration is equal to or higher than the lower limit, productivity is high. If the said density | concentration is below an upper limit, it will be easy to fully dissolve a sulfate (A).
When using 2 or more types of aqueous solution containing a sulfate (A), it is preferable to make the density | concentration of a transition metal element (X) into the said range about each aqueous solution.
 炭酸塩(B)の水溶液中における炭酸塩(B)の濃度は、0.1~2mol/kgが好ましく、0.5~2mol/kgがより好ましい。前記炭酸塩(B)の濃度が前記範囲内であれば、炭酸塩化合物が析出しやすい。
 硫酸塩(B)を含む水溶液を2種以上使用する場合は、それぞれの水溶液について硫酸塩(B)の濃度を前記範囲内とすることが好ましい。
The concentration of carbonate (B) in the aqueous solution of carbonate (B) is preferably from 0.1 to 2 mol / kg, more preferably from 0.5 to 2 mol / kg. If the concentration of the carbonate (B) is within the above range, the carbonate compound is likely to precipitate.
When using 2 or more types of aqueous solution containing a sulfate (B), it is preferable to make the density | concentration of a sulfate (B) into the said range about each aqueous solution.
 硫酸塩(A)の水溶液および炭酸塩(B)の水溶液の溶媒としては、硫酸塩(A)および炭酸塩(B)が溶解する範囲であれば、水のみであってもよく、水に加えて水以外の成分を含む水性媒体であってもよい。
 水以外の成分としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、ポリオール等が挙げられる。ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
 水性媒体中の水以外の成分の割合は、0~20質量%が好ましく、0~10質量%がより好ましく、0~1質量%が特に好ましく、含まないことが最も好ましい。水以外の成分の割合が上限値以下であれば、環境面、取扱い性、およびコストの点で優れている。
The solvent of the aqueous solution of the sulfate (A) and the aqueous solution of the carbonate (B) may be water alone as long as the sulfate (A) and the carbonate (B) are dissolved. And an aqueous medium containing components other than water.
Examples of components other than water include methanol, ethanol, 1-propanol, 2-propanol, polyol and the like. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
The proportion of components other than water in the aqueous medium is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, particularly preferably 0 to 1% by mass, and most preferably not contained. If the ratio of components other than water is less than or equal to the upper limit, it is excellent in terms of environment, handleability, and cost.
 硫酸塩(A)と炭酸塩(B)とを水溶液の状態で混合する際は、混合槽中で撹拌しながら行うことが好ましい。
 撹拌装置としては、例えば、スリーワンモータ等が挙げられる。撹拌翼としては、例えば、アンカー型、プロペラ型、パドル型等の撹拌翼が挙げられる。
When mixing a sulfate (A) and carbonate (B) in the state of aqueous solution, it is preferable to carry out stirring in a mixing tank.
As a stirring apparatus, a three-one motor etc. are mentioned, for example. Examples of the stirring blade include a stirring blade such as an anchor type, a propeller type, and a paddle type.
 硫酸塩(A)と炭酸塩(B)とを混合する際の混合液の温度は、炭酸塩化合物が析出しやすいことから、20~80℃が好ましく、25~60℃がより好ましい。
 また、硫酸塩(A)と炭酸塩(B)とを混合する際は、析出した炭酸塩化合物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下で混合を行うことが好ましく、コストの面から、窒素雰囲気下で混合を行うことが特に好ましい。
The temperature of the mixed solution when mixing the sulfate (A) and the carbonate (B) is preferably 20 to 80 ° C., more preferably 25 to 60 ° C., because the carbonate compound is likely to precipitate.
Further, when the sulfate (A) and the carbonate (B) are mixed, it is preferable to perform the mixing under a nitrogen atmosphere or an argon atmosphere from the viewpoint of suppressing the oxidation of the precipitated carbonate compound. From the viewpoint, it is particularly preferable to perform the mixing in a nitrogen atmosphere.
 添加剤としては、例えば、pHや遷移金属元素(X)の溶解度を調整するために、アンモニア、またはアンモニウム塩を用いてもよい。アンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等が挙げられる。
 アンモニアまたはアンモニウム塩は、硫酸塩(A)の供給と同時に混合液に供給することが好ましい。
As the additive, for example, ammonia or an ammonium salt may be used in order to adjust the pH and the solubility of the transition metal element (X). Examples of ammonium salts include ammonium chloride, ammonium sulfate, and ammonium nitrate.
Ammonia or ammonium salt is preferably supplied to the mixed solution simultaneously with the supply of sulfate (A).
 得られた炭酸塩化合物中のNi、CoおよびMnのそれぞれの割合の好ましい範囲は、前述した使用する全ての硫酸塩(A)中のNi、CoおよびMnのそれぞれの割合の好ましい範囲と同じである。これにより、適度な粒子径の球形の炭酸塩化合物が得られやすい。 The preferred ranges of the respective proportions of Ni, Co and Mn in the obtained carbonate compound are the same as the preferred ranges of the respective proportions of Ni, Co and Mn in all the sulfates (A) used as described above. is there. Thereby, it is easy to obtain a spherical carbonate compound having an appropriate particle size.
 炭酸塩化合物の粒子径(D50)は、5~20μmが好ましく、5~18μmがより好ましく、7~15μmが特に好ましい。炭酸塩化合物のD50が前記範囲内であれば、後述する工程(IV)において得られる正極活物質のD50を好ましい範囲に制御しやすく、充分な電池特性を示す正極活物質が得られやすい。
 なお、本明細書においてD50とは、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理等で充分に分散させて粒度分布を測定する(例えば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、等を用いる)ことで行われる。
The particle size (D 50 ) of the carbonate compound is preferably 5 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 7 to 15 μm. Within D 50 of the scope of the carbonate compound, easily controlled within the preferred range of D 50 of the positive electrode active material obtained in later-described step (IV), the positive electrode active material showing sufficient battery characteristics can not be obtained easily .
In the present specification, D 50 means a particle diameter at a point of 50% in a cumulative volume distribution curve with the total volume distribution determined on a volume basis being 100%, that is, a volume-based cumulative 50% diameter. . The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the powder in an aqueous medium by sonication or the like and measuring the particle size distribution (for example, using a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA). Used).
 炭酸塩化合物の比表面積は、50~300m/gが好ましく、100~250m/gがより好ましい。炭酸塩化合物の比表面積が前記範囲内であれば、後述する工程(II)における水溶液(C)が粒子内部まで浸透しやすく、高い放電容量およびサイクル特性を示す正極活物質が得られやすい。
 炭酸塩化合物の比表面積は、BET法により測定できる。具体的には、実施例に記載の方法で測定される。
The specific surface area of the carbonate compound is preferably 50 ~ 300m 2 / g, more preferably 100 ~ 250m 2 / g. When the specific surface area of the carbonate compound is within the above range, the aqueous solution (C) in the step (II) described later can easily penetrate into the inside of the particles, and a positive electrode active material exhibiting high discharge capacity and cycle characteristics can be easily obtained.
The specific surface area of the carbonate compound can be measured by the BET method. Specifically, it is measured by the method described in the examples.
 工程(I)は、炭酸塩化合物が析出した後に、ろ過、または遠心分離によって水溶液を取り除く工程を有することが好ましい。ろ過または遠心分離には、加圧ろ過機、減圧ろ過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機等を用いることができる。
 得られた炭酸塩化合物は、不純物イオンを取り除くために、洗浄することが好ましい。炭酸塩化合物の洗浄方法としては、例えば、加圧ろ過と蒸留水への分散を繰り返す方法等が挙げられる。
 炭酸塩化合物は、洗浄後に、必要に応じて乾燥してもよい。
 炭酸塩化合物の乾燥温度は、60~200℃が好ましく、80℃~130℃がより好ましい。前記乾燥温度が下限値以上であれば、炭酸塩化合物を短時間で乾燥できる。前記乾燥温度が上限値以下であれば、炭酸塩化合物の酸化を抑制できる。
 炭酸塩化合物の乾燥時間は、1~300時間が好ましく、5~120時間がより好ましい。
The step (I) preferably includes a step of removing the aqueous solution by filtration or centrifugation after the carbonate compound is precipitated. For filtration or centrifugation, a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
The obtained carbonate compound is preferably washed in order to remove impurity ions. Examples of the method for washing the carbonate compound include a method in which pressure filtration and dispersion in distilled water are repeated.
The carbonate compound may be dried as necessary after washing.
The drying temperature of the carbonate compound is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If the said drying temperature is more than a lower limit, a carbonate compound can be dried in a short time. If the said drying temperature is below an upper limit, the oxidation of a carbonate compound can be suppressed.
The drying time of the carbonate compound is preferably 1 to 300 hours, more preferably 5 to 120 hours.
[工程(II)]
 工程(II)では、工程(I)で得られた炭酸塩化合物と、水溶液(C)とを混合する。
 炭酸塩化合物と、水溶液(C)とを混合する方法としては、例えば、スプレーコート法、浸漬法等が挙げられる。なかでも、炭酸塩化合物に元素(Y)がより均一に付与されることから、スプレーコート法が好ましい。
 炭酸塩化合物に水溶液(C)をスプレーコートする場合、撹拌されている炭酸塩化合物に水溶液(C)をスプレーコートする、または、炭酸塩化合物に水溶液(C)をスプレーコートした後にそれらを撹拌することがより好ましい。
 炭酸塩化合物と水溶液(C)との撹拌には、レーディゲミキサ、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、スプレードライ、Vミキサ等が使用できる。
 なお、炭酸塩化合物を薄く広げた状態にして、水溶液(C)をスプレーコートしてもよい。
[Step (II)]
In step (II), the carbonate compound obtained in step (I) and the aqueous solution (C) are mixed.
Examples of the method for mixing the carbonate compound and the aqueous solution (C) include a spray coating method and a dipping method. Especially, since an element (Y) is provided more uniformly to a carbonate compound, a spray coating method is preferable.
When the aqueous solution (C) is spray coated on the carbonate compound, the aqueous solution (C) is spray coated on the carbonate compound being stirred, or the aqueous solution (C) is spray coated on the carbonate compound and then they are stirred. It is more preferable.
For stirring the carbonate compound and the aqueous solution (C), a Ladige mixer, a rocking mixer, a Nauta mixer, a spiral mixer, a spray dryer, a V mixer, or the like can be used.
The aqueous solution (C) may be spray coated with the carbonate compound spread thinly.
 水溶液(C)は、Al、F、Si、Zr、Y、Mo、CeおよびCaからなる群から選ばれる少なくとも1種の元素(Y)を含む水溶液である。
 水溶液(C)は、例えば、元素(Y)を含む化合物を水に溶解させることで得られる。
 元素(Y)を含む化合物としては、例えば、塩基性乳酸アルミニウム塩、フッ化水素アンモニウム、コロイダルシリカ、炭酸ジルコニウムアンモニウム、硝酸イットリウム、七モリブデン酸六アンモニウム、硝酸セリウム、硝酸カルシウム等が挙げられる。
 水溶液(C)に含まれる元素(Y)を含む化合物は、1種でもよく、2種以上でもよい。
The aqueous solution (C) is an aqueous solution containing at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca.
The aqueous solution (C) can be obtained, for example, by dissolving a compound containing the element (Y) in water.
Examples of the compound containing the element (Y) include basic aluminum lactate, ammonium hydrogen fluoride, colloidal silica, ammonium zirconium carbonate, yttrium nitrate, hexaammonium heptamolybdate, cerium nitrate, and calcium nitrate.
The compound containing the element (Y) contained in the aqueous solution (C) may be one type or two or more types.
 水溶液(C)中の元素(Y)を含む化合物の濃度は、0.1~50質量%が好ましく、1~30質量%がより好ましく、1~20質量%が特に好ましい。前記濃度が下限値以上であれば、炭酸塩化合物に元素(Y)を均一に付与しやすい。前記濃度が上限値以下であれば、元素(Y)を含む化合物を充分に溶解させやすい。 The concentration of the compound containing the element (Y) in the aqueous solution (C) is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, and particularly preferably 1 to 20% by mass. If the said density | concentration is more than a lower limit, it will be easy to provide an element (Y) to a carbonate compound uniformly. If the said density | concentration is below an upper limit, it will be easy to melt | dissolve the compound containing an element (Y) fully.
 工程(II)においては、炭酸塩化合物に含まれる遷移金属元素(X)の合計量(100mol)に対して、水溶液(C)中に含まれる元素(Y)の合計モル量の割合(Y/X)は、0.01~10%が好ましく、0.1~5%がより好ましく、0.5~3%が特に好ましい。前記Y/Xが下限値以上であれば、優れたサイクル特性を示す正極活物質が得られやすい。前記Y/Xが上限値以下であれば、工程(IV)の焼成後に不純物が発生し難く、優れた電気特性が得られやすい。 In the step (II), the ratio of the total molar amount of the element (Y) contained in the aqueous solution (C) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound (Y / X) is preferably 0.01 to 10%, more preferably 0.1 to 5%, and particularly preferably 0.5 to 3%. When the Y / X is not less than the lower limit, a positive electrode active material exhibiting excellent cycle characteristics can be easily obtained. If Y / X is less than or equal to the upper limit value, impurities are hardly generated after firing in step (IV), and excellent electrical characteristics are easily obtained.
[工程(III)]
 工程(III)では、工程(II)で得られる、炭酸塩化合物と水溶液(C)との混合物から水分を揮発させて前駆体化合物を得る。
 工程(III)は、前述の工程(II)と同時に実施してもよく、工程(II)の後に工程(III)を実施してもよい。工程(III)を実施しない場合、前駆体化合物には水分が多く残存してしまう。前駆体化合物に水分が多く残存してしまうと、後述する工程(IV)において炭酸リチウムが水分に溶解しやすいことから、焼成によって炭酸リチウムの凝集が生じやすくなる。炭酸リチウムの凝集が生じると、正極活物質中のLiおよび元素(Y)の分布が不均一になり、充分なサイクル特性を有する正極活物質が得られなくなる。
 なお、前記した悪影響が小さいことから、工程(III)で得られた前駆体化合物に残存する水分量は、前駆体化合物の全質量に対して30質量%以下が好ましく、15質量%以下がより好ましく、5質量%以下が特に好ましい。
 残存する水分量は、カールフィッシャー法によって測定できる。
[Step (III)]
In the step (III), the precursor compound is obtained by volatilizing water from the mixture of the carbonate compound and the aqueous solution (C) obtained in the step (II).
Step (III) may be performed simultaneously with the above-described step (II), or step (III) may be performed after step (II). When step (III) is not performed, much water remains in the precursor compound. If a large amount of moisture remains in the precursor compound, lithium carbonate is likely to be dissolved in moisture in the step (IV) to be described later. When aggregation of lithium carbonate occurs, the distribution of Li and element (Y) in the positive electrode active material becomes non-uniform, and a positive electrode active material having sufficient cycle characteristics cannot be obtained.
In addition, since the above-mentioned bad influence is small, 30 mass% or less is preferable with respect to the total mass of a precursor compound, and, as for the moisture content which remains in the precursor compound obtained by process (III), 15 mass% or less is more. Preferably, 5 mass% or less is especially preferable.
The amount of water remaining can be measured by the Karl Fischer method.
 水分を揮発させる方法は、例えば、加熱によって乾燥する方法が挙げられる。
 工程(III)における加熱温度は、60~200℃が好ましく、80~130℃がより好ましい。加熱温度が下限値以上であれば、得られた前駆体化合物中の水分量が少なくなり、優れたサイクル特性を示す正極活物質が得られやすい。加熱温度が上限値以下であれば、前駆体化合物が熱劣化し難い。
 加熱時間は、加熱温度によっても異なるが、1~300時間が好ましく、1~120時間がより好ましい。
Examples of the method for volatilizing moisture include a method of drying by heating.
The heating temperature in step (III) is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If heating temperature is more than a lower limit, the moisture content in the obtained precursor compound will decrease, and the positive electrode active material which shows the outstanding cycling characteristics will be easy to be obtained. When the heating temperature is equal to or lower than the upper limit value, the precursor compound is hardly thermally deteriorated.
Although the heating time varies depending on the heating temperature, it is preferably 1 to 300 hours, more preferably 1 to 120 hours.
[工程(IV)]
 工程(IV)では、工程(III)で得られた前駆体化合物と、リチウム化合物とを混合し、500~1000℃で焼成する。
 リチウム化合物としては、炭酸リチウム、水酸化リチウムおよび硝酸リチウムからなる群から選ばれる少なくとも1種が好ましく、安価であることから炭酸リチウムがより好ましい。
 前駆体化合物と炭酸リチウムとを混合する方法は、例えば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。
[Step (IV)]
In step (IV), the precursor compound obtained in step (III) and the lithium compound are mixed and fired at 500 to 1000 ° C.
As the lithium compound, at least one selected from the group consisting of lithium carbonate, lithium hydroxide and lithium nitrate is preferable, and lithium carbonate is more preferable because it is inexpensive.
Examples of the method of mixing the precursor compound and lithium carbonate include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
 工程(IV)においては、前駆体化合物に含まれる遷移金属元素(X)の合計モル量に対するリチウム化合物に含まれるLiの合計モル量の比(Li/X)は、1.1以上が好ましい。前記割合が下限値以上であれば、高い放電容量が得られる。
 前記Li/Xは、1.1以上1.6以下がより好ましく、1.1以上1.4以下が特に好ましい。前記Li/Xが上限値以下であれば、高い放電容量が得られやすい。
In step (IV), the ratio (Li / X) of the total molar amount of Li contained in the lithium compound to the total molar amount of transition metal element (X) contained in the precursor compound is preferably 1.1 or more. If the said ratio is more than a lower limit, a high discharge capacity will be obtained.
The Li / X is more preferably from 1.1 to 1.6, and particularly preferably from 1.1 to 1.4. When Li / X is not more than the upper limit value, a high discharge capacity is easily obtained.
 焼成装置には、電気炉、連続焼成炉、ロータリーキルン等を使用できる。焼成時に前駆体化合物は酸化されることから、焼成は大気下で行うことが好ましく、空気を供給しながら行うことが特に好ましい。
 空気の供給速度は、炉の内容積1Lあたりに対して10~200mL/分が好ましく、40~150mL/分がより好ましい。
 焼成時に空気を供給することで、前駆体化合物中の遷移金属元素(X)が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有する正極活物質が得られる。
An electric furnace, a continuous firing furnace, a rotary kiln or the like can be used for the firing apparatus. Since the precursor compound is oxidized during firing, the firing is preferably performed in the air, and particularly preferably performed while supplying air.
The air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per 1 L of the furnace internal volume.
By supplying air at the time of firing, the transition metal element (X) in the precursor compound is sufficiently oxidized, and a positive electrode active material having high crystallinity and a target crystal phase is obtained.
 焼成温度は、500~1000℃であり、600~1000℃が好ましく、800~950℃が特に好ましい。焼成温度が、前記範囲内であれば、結晶性の高い正極活物質が得られる。
 焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。
The firing temperature is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C. When the firing temperature is within the above range, a positive electrode active material with high crystallinity can be obtained.
The firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
 焼成は、500~1000℃での1段焼成でもよく、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う2段焼成でもよい。なかでも、Liが正極活物質中に均一に拡散しやすいことから2段焼成が好ましい。
 2段焼成の場合の仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。また、2段焼成の場合の本焼成の温度は、700~1000℃が好ましく、800~950℃がより好ましい。
The firing may be one-stage firing at 500 to 1000 ° C., or two-stage firing in which main firing is performed at 700 to 1000 ° C. after preliminary firing at 400 to 700 ° C. Among these, two-stage firing is preferable because Li easily diffuses uniformly into the positive electrode active material.
In the case of the two-stage firing, the temperature for temporary firing is preferably 400 to 700 ° C, more preferably 500 to 650 ° C. Further, the temperature of the main firing in the case of two-stage firing is preferably 700 to 1000 ° C., and more preferably 800 to 950 ° C.
 本発明の製造方法により得られる正極活物質は、Liと、遷移金属元素(X)と、元素(Y)とを含む複合酸化物からなる正極活物質である。
 得られる正極活物質は粒子状である。正極活物質の粒子形状は、特に限定されず、例えば、球状、針状、板状等が挙げられる。なかでも、正極の製造時に正極活物質の充填性が高くなることから、正極活物質の粒子形状は球状がより好ましい。
The positive electrode active material obtained by the production method of the present invention is a positive electrode active material made of a composite oxide containing Li, a transition metal element (X), and an element (Y).
The obtained positive electrode active material is particulate. The particle shape of the positive electrode active material is not particularly limited, and examples thereof include a spherical shape, a needle shape, and a plate shape. Especially, since the filling property of a positive electrode active material becomes high at the time of manufacture of a positive electrode, the particle shape of a positive electrode active material has a more preferable spherical shape.
 正極活物質のD50は、4~20μmが好ましく、5~18μmがより好ましく、6~15μmが特に好ましい。正極活物質のD50が前記範囲内であれば、高い放電容量が得られやすい。
 正極活物質は、粒子径D50が10~500nmの一次粒子が凝集した二次粒子であることが好ましい。これにより、リチウムイオン二次電池を製造したときに、電解液が正極における正極活物質間に充分に行き渡りやすくなる。放電電圧の低下を充分に抑制できる点から、元素(Y)は二次粒子内に均一に分布していることが好ましい。
The D 50 of the positive electrode active material is preferably 4 to 20 μm, more preferably 5 to 18 μm, and particularly preferably 6 to 15 μm. Within D 50 is the range of the positive electrode active material, high discharge capacity can be easily obtained.
The positive electrode active material is preferably secondary particles in which primary particles having a particle diameter D 50 of 10 to 500 nm are aggregated. As a result, when a lithium ion secondary battery is manufactured, the electrolyte is easily spread between the positive electrode active materials in the positive electrode. It is preferable that the element (Y) is uniformly distributed in the secondary particles from the viewpoint that the decrease in the discharge voltage can be sufficiently suppressed.
 正極活物質の比表面積は、0.1~15m/gが好ましく、2~10m/gがより好ましく、4~8m/gが特に好ましい。比表面積が下限値以上であれば、高い放電容量が得られやすい。前記比表面積が上限値以下であれば、優れたサイクル特性が得られやすい。
 前記比表面積は、実施例に記載の方法で測定される。
The specific surface area of the positive electrode active material is preferably 0.1 ~ 15m 2 / g, more preferably 2 ~ 10m 2 / g, particularly preferably 4 ~ 8m 2 / g. If the specific surface area is not less than the lower limit, a high discharge capacity is easily obtained. If the specific surface area is not more than the upper limit value, excellent cycle characteristics can be easily obtained.
The specific surface area is measured by the method described in Examples.
 正極活物質における、遷移金属元素(X)の含有量に対するLiの含有量のモル比(Li/X)は、1.1以上が好ましく、1.1以上1.6以下がより好ましく、1.1以上1.4以下が特に好ましい。前記Li/Xが1.1以上1.6以下であれば、より高い放電容量が得られる。 The molar ratio (Li / X) of the Li content to the content of the transition metal element (X) in the positive electrode active material is preferably 1.1 or more, more preferably 1.1 or more and 1.6 or less. 1 or more and 1.4 or less are especially preferable. If Li / X is 1.1 or more and 1.6 or less, a higher discharge capacity can be obtained.
 正極活物質における、遷移金属元素(X)の含有量(100mol)に対する元素(Y)の含有モル量の割合(Y/X)は、0.01~10%が好ましく、0.1~5%がより好ましく、0.5~3%が特に好ましい。前記Y/Xが下限値以上であれば、優れたサイクル特性が得られやすい。前記Y/Xが上限値以下であれば、優れた電気特性が得られやすい。 The ratio (Y / X) of the content molar amount of the element (Y) to the content (100 mol) of the transition metal element (X) in the positive electrode active material is preferably 0.01 to 10%, preferably 0.1 to 5% Is more preferable, and 0.5 to 3% is particularly preferable. If Y / X is not less than the lower limit, excellent cycle characteristics can be easily obtained. If Y / X is not more than the upper limit value, excellent electrical characteristics can be easily obtained.
 本発明の正極活物質としては、下式(1)で表される化合物(1)が好ましい。
 Li1+aY’NiCoMn2+f ・・・(1)
 ただし、前記式(1)中、Y’は元素(Y)であり、a~eはそれぞれ0.1≦a≦0.6、0.0001≦b≦0.105、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05であり、fはLi、元素(Y)、Ni、CoおよびMnの価数によって決定される数値である。
 化合物(1)は、0.0001≦b≦0.105であることで、サイクルによる放電電圧の低下が抑制される効果が高い。該効果が得られる要因は明確ではないが、元素(Y)が正極活物質の結晶界面に析出することで、サイクルによる結晶構造変化が抑制されているためと推察される。
As the positive electrode active material of the present invention, the compound (1) represented by the following formula (1) is preferable.
Li 1 + a Y 'b Ni c Co d Mn e O 2 + f ··· (1)
In the above formula (1), Y ′ is the element (Y), and a to e are 0.1 ≦ a ≦ 0.6, 0.0001 ≦ b ≦ 0.105, and 0.1 ≦ c ≦, respectively. 0.5, 0 ≦ d ≦ 0.3, 0.2 ≦ e ≦ 0.9, 0.9 ≦ c + d + e ≦ 1.05, and f is the value of Li, element (Y), Ni, Co, and Mn A numerical value determined by a number.
The compound (1) has a high effect of suppressing a decrease in discharge voltage due to the cycle when 0.0001 ≦ b ≦ 0.105. The cause of the effect is not clear, but it is presumed that the crystal structure change due to the cycle is suppressed by the element (Y) being precipitated at the crystal interface of the positive electrode active material.
 化合物(1)のaは、初期放電容量および初期放電電圧が高い正極活物質となることから、0.1≦a≦0.4がより好ましい。
 化合物(1)のbは、初期放電容量とサイクル特性を両立できることから、0.001≦b≦0.1がより好ましく、0.005≦b≦0.03がさらに好ましい。
 化合物(1)のcは、aと同様の理由で、0.15≦c≦0.45がより好ましく、0.2≦c≦0.4が特に好ましい。
 化合物(1)のdは、aと同様の理由で、0≦d≦0.2がより好ましく、0≦d≦0.15が特に好ましい。
 化合物(1)のeは、aと同様の理由で、0.35≦e≦0.85がより好ましく、0.4≦e≦0.8が特に好ましい。
Since a of the compound (1) becomes a positive electrode active material having a high initial discharge capacity and initial discharge voltage, 0.1 ≦ a ≦ 0.4 is more preferable.
In the compound (1), b is preferably 0.001 ≦ b ≦ 0.1, and more preferably 0.005 ≦ b ≦ 0.03, since both the initial discharge capacity and the cycle characteristics can be achieved.
For the same reason as a, c of the compound (1) is more preferably 0.15 ≦ c ≦ 0.45, and particularly preferably 0.2 ≦ c ≦ 0.4.
For the same reason as a, d of the compound (1) is more preferably 0 ≦ d ≦ 0.2, particularly preferably 0 ≦ d ≦ 0.15.
For the same reason as a, e of the compound (1) is more preferably 0.35 ≦ e ≦ 0.85, and particularly preferably 0.4 ≦ e ≦ 0.8.
 以上説明した本発明の製造方法によれば、優れたサイクル特性を有し、放電電圧の低下が小さい正極活物質が得られる。本発明の製造方法によって該正極活物質が得られる要因は明確ではないが、工程(I)で得られる炭酸塩化合物の比表面積が大きく、工程(II)において炭酸塩化合物と水溶液(C)を混合させる際に、炭酸塩化合物の細孔の内部まで均一に水溶液(C)が浸透できるものと考えられる。これにより、工程(IV)における焼成によって、粒子内部まで元素(Y)が均一に拡散・分布された正極活物質が得られるためと考えられる。 According to the production method of the present invention described above, a positive electrode active material having excellent cycle characteristics and a small decrease in discharge voltage can be obtained. Although the factor for obtaining the positive electrode active material by the production method of the present invention is not clear, the specific surface area of the carbonate compound obtained in the step (I) is large, and the carbonate compound and the aqueous solution (C) are used in the step (II). When mixing, it is considered that the aqueous solution (C) can penetrate uniformly into the pores of the carbonate compound. Thereby, it is considered that the positive electrode active material in which the element (Y) is uniformly diffused and distributed to the inside of the particles is obtained by the firing in the step (IV).
<リチウムイオン二次電池用正極>
 本発明のリチウムイオン二次電池用正極は、正極集電体と、該正極集電体上に設けられた正極活物質層と、を有する。本発明のリチウムイオン二次電池用正極は、本発明の製造方法で得られた正極活物質を用いる以外は、公知の態様を採用できる。
<Positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery of the present invention has a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector. A well-known aspect can be employ | adopted for the positive electrode for lithium ion secondary batteries of this invention except using the positive electrode active material obtained with the manufacturing method of this invention.
[正極集電体]
 正極集電体としては、例えば、アルミニウム箔、ステンレス鋼箔等が挙げられる。
[Positive electrode current collector]
Examples of the positive electrode current collector include an aluminum foil and a stainless steel foil.
[正極活物質層]
 正極活物質層は、本発明の製造方法により得られた正極活物質と、導電材と、バインダと、を含む層である。正極活物質層には、必要に応じて増粘剤等の他の成分が含まれていてもよい。
 導電材としては、例えば、アセチレンブラック、黒鉛、ケッチェンブラック等の炭素材料等が挙げられる。導電材は、1種でもよく、2種以上でもよい。
 バインダとしては、例えば、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等。)、ポリオレフィン(ポリエチレン、ポリプロピレン等。)、不飽和結合を有する重合体および共重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等。)、アクリル酸系重合体および共重合体(アクリル酸共重合体、メタクリル酸共重合体等。)等が挙げられる。バインダは、1種でもよく、2種以上でもよい。
 正極活物質は、1種でもよく、2種以上でもよい。
[Positive electrode active material layer]
The positive electrode active material layer is a layer containing a positive electrode active material obtained by the production method of the present invention, a conductive material, and a binder. The positive electrode active material layer may contain other components such as a thickener as necessary.
Examples of the conductive material include carbon materials such as acetylene black, graphite, and ketjen black. The conductive material may be one type or two or more types.
Examples of the binder include fluorine-based resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), polymers having unsaturated bonds, and copolymers (styrene-butadiene rubber, isoprene rubber). , Butadiene rubber, etc.), acrylic acid polymers and copolymers (acrylic acid copolymers, methacrylic acid copolymers, etc.). The binder may be one type or two or more types.
The positive electrode active material may be one type or two or more types.
 増粘剤としては、例えば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドン等が挙げられる。増粘剤は1種でもよく、2種以上でもよい。 Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. One thickener may be used, or two or more thickeners may be used.
[リチウムイオン二次電池用正極の製造方法]
 リチウムイオン二次電池用正極の製造方法は、本発明の製造方法により得られた正極活物質を用いる以外は、公知の製造方法を採用できる。例えば、リチウムイオン二次電池用正極の製造方法としては、以下の方法が挙げられる。
 正極活物質、導電材およびバインダを、媒体に溶解もしくは分散させてスラリを得る、または正極活物質、導電材およびバインダを、媒体と混錬して混錬物を得る。次いで、得られたスラリまたは混錬物を正極集電体上に塗工することによって正極活物質層を形成させる。
[Method for producing positive electrode for lithium ion secondary battery]
The manufacturing method of the positive electrode for lithium ion secondary batteries can employ | adopt a well-known manufacturing method except using the positive electrode active material obtained by the manufacturing method of this invention. For example, the following method is mentioned as a manufacturing method of the positive electrode for lithium ion secondary batteries.
A positive electrode active material, a conductive material and a binder are dissolved or dispersed in a medium to obtain a slurry, or a positive electrode active material, a conductive material and a binder are kneaded with a medium to obtain a kneaded product. Subsequently, the positive electrode active material layer is formed by coating the obtained slurry or kneaded material on the positive electrode current collector.
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、前記した本発明のリチウムイオン二次電池用正極と、負極と、非水電解質とを有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of this invention has the above-mentioned positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a non-aqueous electrolyte.
[負極]
 負極は、負極集電体上に、負極活物質を含む負極活物質層が形成されてなる。
 負極集電体としては、例えばニッケル箔、銅箔等の金属箔が挙げられる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。また、負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物およびその他の窒化物等を使用してもよい。
[Negative electrode]
The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
Examples of the negative electrode current collector include metal foils such as nickel foil and copper foil.
The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential. For example, an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. , Silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds and the like. Further, as the negative electrode active material, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, and other oxides and other nitrides may be used.
 負極活物質の炭素材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等。)、グラファイト類、ガラス状炭素類、有機高分子化合物(フェノール樹脂、フラン樹脂等。)を適当な温度で焼成して炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等が挙げられる。
 周期表14族の金属としては、例えば、Si、Sn等が挙げられる。なかでも、周期表14族の金属としては、Siが好ましい。
Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and glassy carbons. Organic polymer compound fired bodies obtained by firing and polymerizing organic polymer compounds (phenol resin, furan resin, etc.) at an appropriate temperature, carbon fibers, activated carbon, carbon blacks and the like.
Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
 負極は、例えば、負極活物質を有機溶媒と混合することによってスラリを調製し、調製したスラリを負極集電体に塗布、乾燥、プレスすることによって得られる。 The negative electrode is obtained, for example, by preparing a slurry by mixing a negative electrode active material with an organic solvent, applying the prepared slurry to a negative electrode current collector, drying, and pressing.
 非水電解質としては、例えば、有機溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等が挙げられる。 Examples of the non-aqueous electrolyte include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
 有機溶媒としては、非水電解液用の有機溶媒として公知のものを採用でき、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。なかでも、電圧安定性の点からは、有機溶媒としては、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類が好ましい。有機溶媒は、1種でもよく、2種以上でもよい。 As the organic solvent, known organic solvents for non-aqueous electrolytes can be employed, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Examples thereof include γ-butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, and propionic acid ester. Among these, from the viewpoint of voltage stability, the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate. 1 type may be sufficient as an organic solvent, and 2 or more types may be sufficient as it.
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質のいずれを使用してもよい。
 無機固体電解質としては、例えば、窒化リチウム、ヨウ化リチウム等が挙げられる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を含む電解質が挙げられる。電解質塩を溶解する高分子化合物としては、エーテル系高分子化合物(ポリ(エチレンオキサイド)、ポリ(エチレンオキサイド)の架橋体等。)、ポリ(メタクリレート)エステル系高分子化合物、アクリレート系高分子化合物等が挙げられる。
As the solid electrolyte, any material having lithium ion conductivity may be used, and either an inorganic solid electrolyte or a polymer solid electrolyte may be used.
Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
Examples of the polymer solid electrolyte include an electrolyte containing an electrolyte salt and a polymer compound that dissolves the electrolyte salt. Examples of the polymer compound that dissolves the electrolyte salt include ether polymer compounds (poly (ethylene oxide), cross-linked poly (ethylene oxide), etc.), poly (methacrylate) ester polymer compounds, and acrylate polymer compounds. Etc.
 ゲル状電解質のマトリックスとしては、前記非水電解液を吸収してゲル化するものであればよく、種々の高分子化合物を使用できる。前記高分子化合物としては、例えば、フッ素系高分子化合物(ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)等。)、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、エーテル系高分子化合物(ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、ならびに該共重合体の架橋体等。)等が挙げられる。ポリエチレンオキサイドに共重合させるモノマーとしては、例えば、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等が挙げられる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の点から、前記高分子化合物のうち、特にフッ素系高分子化合物が好ましい。
The matrix of the gel electrolyte may be any matrix that absorbs the non-aqueous electrolyte and gels, and various polymer compounds can be used. Examples of the polymer compound include fluorine-based polymer compounds (poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), etc.), polyacrylonitrile, a copolymer of polyacrylonitrile, an ether-based compound, and the like. And high molecular compounds (polyethylene oxide, polyethylene oxide copolymers, and crosslinked products of the copolymers, etc.). Examples of the monomer copolymerized with polyethylene oxide include methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
As the matrix of the gel electrolyte, a fluorine-based polymer compound is particularly preferable among the polymer compounds from the viewpoint of stability against redox reaction.
 電解質塩は、リチウムイオン二次電池に使用されている公知のものが使用でき、例えば、LiClO、LiPF、LiBF、CFSOLi等が挙げられる。 As the electrolyte salt, known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
 リチウムイオン二次電池の形状は、特に限定されず、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。 The shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, and the like can be appropriately selected depending on the application.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~8が実施例、例9~18が比較例である。
[比表面積(SSA)]
 正極活物質の比表面積は、マウンテック社製比表面積測定装置(装置名;HM model-1208)によりBET(Brunauer,Emmett,Teller)法を用いて測定した。
[平均粒径(D50)]
 正極活物質の粒子径(D50)は、粉末を水媒体中に超音波処理等で充分に分散させて、散乱式粒子径分布測定装置(HORIBA社製:レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII)を用いて測定した。体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%を体積基準累積50%径(D50)とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description. Examples 1 to 8 are examples, and examples 9 to 18 are comparative examples.
[Specific surface area (SSA)]
The specific surface area of the positive electrode active material was measured by a BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device (device name: HM model-1208) manufactured by Mountec.
[Average particle diameter (D 50 )]
The particle size (D 50 ) of the positive electrode active material is determined by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like, and measuring the scattering particle size distribution (HORIBA: laser diffraction / scattering particle size distribution measurement). The measurement was performed using the apparatus Partica LA-950VII. In the cumulative volume distribution curve in which the total volume of the particle size distribution obtained on a volume basis was 100%, 50% was defined as the volume-based cumulative 50% diameter (D 50 ).
[組成分析(Ni、Co、Mn)]
 炭酸塩化合物の組成として、Ni、CoおよびMnの合計に対するNi比率、Co比率、Mn比率を分析した。分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、型式名:SPS3100H)により行った。
[Composition analysis (Ni, Co, Mn)]
As the composition of the carbonate compound, the Ni ratio, the Co ratio, and the Mn ratio with respect to the total of Ni, Co, and Mn were analyzed. The analysis was performed with a plasma emission analyzer (manufactured by SII Nanotechnology, model name: SPS3100H).
[例1]
 工程(I):
 硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、および硫酸マンガン(II)・五水和物を、Ni比率が33モル%、Co比率が4.1モル%、Mn比率が62.9モル%となるように、かつ硫酸塩の合計量が1.5mol/kgとなるように蒸留水に溶解させて、硫酸塩水溶液を2kg調製した。また、硫酸アンモニウム99.1gを蒸留水900.9gに溶解させ、0.75mol/kgの硫酸アンモニウム水溶液を調製した。また、炭酸ナトリウム381.2gを蒸留水2018.8gに溶解させ、炭酸塩水溶液(pH調整液)を調製した。
 次いで、2Lのバッフル付きガラス製混合槽に蒸留水を入れ、マントルヒータで50℃に加熱し、パドル型の撹拌翼で撹拌しながら、前記硫酸塩水溶液を5.0g/分、前記硫酸アンモニウム水溶液を0.5g/分の速度でそれぞれ6時間添加した。前記硫酸塩水溶液の添加中は、混合槽内のpHを8.0に保つように炭酸塩水溶液(pH調整液)を添加し、Ni、CoおよびMnを含む炭酸塩化合物を析出させた。また、析出反応中は、混合槽内の液量が2Lを超えないように、ろ布を用いて連続的に液の抜き出しを行った。
 得られた炭酸塩化合物から不純物イオンを取り除くために、加圧ろ過と蒸留水への分散を繰り返し、炭酸塩化合物の洗浄を行った。ろ液の電気伝導度が20mS/mとなった時点で洗浄を終了し、120℃で15時間乾燥させて炭酸塩化合物を得た。得られた炭酸塩化合物のNi、CoおよびMnの組成分析結果を表1に示す。
[Example 1]
Step (I):
Nickel sulfate (II) hexahydrate, cobalt sulfate (II) heptahydrate, and manganese sulfate (II) pentahydrate, the Ni ratio is 33 mol% and the Co ratio is 4.1 mol% Then, 2 kg of an aqueous sulfate solution was prepared by dissolving in distilled water so that the Mn ratio was 62.9 mol% and the total amount of sulfate was 1.5 mol / kg. Further, 99.1 g of ammonium sulfate was dissolved in 900.9 g of distilled water to prepare a 0.75 mol / kg ammonium sulfate aqueous solution. Moreover, 381.2 g of sodium carbonate was dissolved in 2018.8 g of distilled water to prepare an aqueous carbonate solution (pH adjusting solution).
Subsequently, distilled water is put into a 2 L baffled glass mixing tank, heated to 50 ° C. with a mantle heater, and stirred with a paddle type stirring blade, the aqueous sulfate solution is 5.0 g / min, and the aqueous ammonium sulfate solution is added. Each was added for 6 hours at a rate of 0.5 g / min. During the addition of the sulfate aqueous solution, a carbonate aqueous solution (pH adjusting solution) was added so as to keep the pH in the mixing tank at 8.0, thereby precipitating a carbonate compound containing Ni, Co and Mn. Further, during the precipitation reaction, the liquid was continuously extracted using a filter cloth so that the amount of liquid in the mixing tank did not exceed 2 L.
In order to remove impurity ions from the obtained carbonate compound, pressure filtration and dispersion in distilled water were repeated to wash the carbonate compound. When the electrical conductivity of the filtrate reached 20 mS / m, the washing was finished and dried at 120 ° C. for 15 hours to obtain a carbonate compound. Table 1 shows the composition analysis results of Ni, Co, and Mn of the obtained carbonate compound.
 工程(II)および工程(III):
 得られた炭酸塩化合物18gに、該炭酸塩化合物に含まれる遷移金属元素(X)の合計量(100mol)に対して元素(Y)の合計モル量の割合(Y/X)が1mol%になるように、塩基性乳酸アルミニウム塩(商品名「タキセラムKML16」、多木化学株式会社製)0.077gを蒸留水3.6gに溶解させた水溶液をスプレーコートした。その後、90℃で3時間乾燥して前駆体化合物を得た。
Step (II) and step (III):
In 18 g of the obtained carbonate compound, the ratio (Y / X) of the total molar amount of the element (Y) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound is 1 mol%. Thus, an aqueous solution in which 0.077 g of a basic aluminum lactate salt (trade name “Taxelum KML16”, manufactured by Taki Chemical Co., Ltd.) was dissolved in 3.6 g of distilled water was spray-coated. Then, it dried at 90 degreeC for 3 hours, and obtained the precursor compound.
 工程(IV):
 前記前駆体化合物に含まれる遷移金属元素(X)の合計量に対して、炭酸リチウムに含まれるLiの合計量のモル比(Li/X)が1.275になるように、前記前駆体化合物と炭酸リチウム7.15gとを混合した。さらに、電気炉(FO510、ヤマト科学社製)を用いて、大気を内容積1Lあたり133mL/分でフローしながら、600℃で5時間仮焼成し、ついで850℃で16時間本焼成して正極活物質を得た。
 得られた正極活物質の比表面積を表1に示す。
Process (IV):
The precursor compound so that the molar ratio (Li / X) of the total amount of Li contained in lithium carbonate is 1.275 with respect to the total amount of the transition metal element (X) contained in the precursor compound. And 7.15 g of lithium carbonate were mixed. Further, using an electric furnace (FO510, manufactured by Yamato Scientific Co., Ltd.), while the atmosphere is flowing at 133 mL / min per 1 L of internal volume, pre-baking is performed at 600 ° C. for 5 hours, followed by main baking at 850 ° C. for 16 hours. An active material was obtained.
The specific surface area of the obtained positive electrode active material is shown in Table 1.
[例2~17]
 工程(II)において、塩基性乳酸アルミニウム塩の代わりに表1に示す化合物を用いて、表1に示す元素(Y)をドープした以外は、例1と同様にして正極活物質を得た。
 得られた炭酸塩化合物の組成分析結果と、正極活物質の比表面積を表1に示す。
[Examples 2 to 17]
In the step (II), a positive electrode active material was obtained in the same manner as in Example 1 except that the compound shown in Table 1 was used instead of the basic aluminum lactate salt and the element (Y) shown in Table 1 was doped.
Table 1 shows the composition analysis result of the obtained carbonate compound and the specific surface area of the positive electrode active material.
[例18]
 工程(II)および工程(III)を行わなかった以外は、例1と同様にして正極活物質を得た。
 得られた炭酸塩化合物の組成分析結果と、正極活物質の比表面積を表1に示す。
[Example 18]
A positive electrode active material was obtained in the same manner as in Example 1 except that Step (II) and Step (III) were not performed.
Table 1 shows the composition analysis result of the obtained carbonate compound and the specific surface area of the positive electrode active material.
 なお、表1における原料化合物は、工程(II)において元素(Y)のドープに用いた化合物である。また、表1における略号は以下の意味を示す。
 KML16:商品名「タキセラムKML16」、多木化学株式会社製。
 AT50:商品名「アデライト」、株式会社ADEKA製。
 ベイコート20:商品名「ベイコート20」、日本軽金属株式会社製。
 Ti(OBu):チタン酸テトラ-n-ブチル。
In addition, the raw material compound in Table 1 is a compound used for dope of an element (Y) in process (II). Moreover, the symbol in Table 1 shows the following meaning.
KML16: Trade name “Takiseram KML16”, manufactured by Taki Chemical Co., Ltd.
AT50: Product name “Adelite”, manufactured by ADEKA Corporation.
Bay coat 20: Trade name “Bay coat 20”, manufactured by Nippon Light Metal Co., Ltd.
Ti (OBu) 4 : tetra-n-butyl titanate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[サイクル特性の評価]
(正極体シートの製造)
 各例で得られた正極活物質と、導電材であるアセチレンブラックと、ポリフッ化ビニリデン(バインダ)とを、質量比が80:10:10でN-メチルピロリドンに加え、スラリを調製した。
 次いで、該スラリを、厚さ20μmのアルミニウム箔(正極集電体)の片面上にドクターブレードにより塗工し、120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
(リチウムイオン二次電池の製造)
 得られた正極体シートを直径18mmの円形に打ち抜いたものを正極とし、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴン下のグローブボックス内で組み立てた。なお、負極集電体として厚さ1mmのステンレス鋼板を使用し、該負極集電体上に厚さ500μmの金属リチウム箔を形成して負極とした。セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の質量比1:1の混合溶媒に、濃度が1mol/dmとなるようにLiPFを溶解させた液を電解液として使用した。
(放電容量維持率の測定)
 得られたリチウムイオン二次電池を、充放電評価装置(東洋システム社製、装置名:TOSCAT-3000)に接続し、正極活物質1gにつき0.1Cの負荷電流で充放電を行い、活性化処理をした。その後、正極活物質1gにつき1Cの負荷電流で4.5Vまで充電し、正極活物質1gにつき1Cの負荷電流にて2.0Vまで放電する充放電サイクルを100回繰り返した。なお、1Cとは、正極の理論容量を1時間で放電できる電流量を意味する。
 活性化処理時の放電容量を「初期放電容量」、3サイクル目の放電容量を「サイクル前放電容量」、100サイクル目の放電容量を「サイクル後放電容量」とし、サイクル前放電容量に対するサイクル後放電容量の割合を「放電容量維持率」とした。
 各例における初期放電容量、サイクル前放電容量、サイクル後放電容量および放電容量維持率の測定結果を表2に示す。
 各例で得られた正極活物質の上記式(1)で表される組成と粒子径(D50)(μm)を表3に示す。
[Evaluation of cycle characteristics]
(Manufacture of positive electrode sheet)
A positive electrode active material obtained in each example, acetylene black as a conductive material, and polyvinylidene fluoride (binder) were added to N-methylpyrrolidone at a mass ratio of 80:10:10 to prepare a slurry.
Next, the slurry was coated on one side of an aluminum foil (positive electrode current collector) having a thickness of 20 μm with a doctor blade, dried at 120 ° C., and then subjected to roll press rolling twice to produce a positive electrode sheet. .
(Manufacture of lithium ion secondary batteries)
The obtained positive electrode sheet was punched into a circular shape with a diameter of 18 mm as a positive electrode, and a stainless steel simple sealed cell type lithium ion secondary battery was assembled in a glove box under argon. A stainless steel plate having a thickness of 1 mm was used as the negative electrode current collector, and a metal lithium foil having a thickness of 500 μm was formed on the negative electrode current collector to form a negative electrode. As the separator, porous polypropylene having a thickness of 25 μm was used. In addition, a solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a mass ratio of 1: 1 so that the concentration was 1 mol / dm 3 was used as an electrolytic solution.
(Measurement of discharge capacity maintenance rate)
The obtained lithium ion secondary battery was connected to a charge / discharge evaluation apparatus (manufactured by Toyo System Co., Ltd., apparatus name: TOSCAT-3000), and charged / discharged at a load current of 0.1 C per 1 g of the positive electrode active material to activate. Processed. Thereafter, a charging / discharging cycle of charging to 4.5 V with 1 C load current per 1 g of the positive electrode active material and discharging to 2.0 V with 1 C load current per 1 g of the positive electrode active material was repeated 100 times. In addition, 1C means the amount of current that can discharge the theoretical capacity of the positive electrode in one hour.
The discharge capacity at the time of the activation treatment is “initial discharge capacity”, the discharge capacity at the third cycle is “pre-cycle discharge capacity”, the discharge capacity at the 100th cycle is “post-cycle discharge capacity”, and the post-cycle discharge capacity is The ratio of discharge capacity was defined as “discharge capacity maintenance ratio”.
Table 2 shows the measurement results of the initial discharge capacity, the pre-cycle discharge capacity, the post-cycle discharge capacity, and the discharge capacity retention rate in each example.
Table 3 shows the composition represented by the above formula (1) and the particle diameter (D 50 ) (μm) of the positive electrode active material obtained in each example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、元素(Y)であるAl、F、Si、Zr、Y、Mo、CeおよびCaからなる群から選ばれる少なくとも1種をドープした正極活物質を用いた例1~8のリチウムイオン二次電池は、元素(Y)以外の元素をドープした例9~17、およびドープを行っていない例18のリチウムイオン二次電池と比較して、放電容量維持率が高く、サイクル特性に優れていた。 As shown in Table 2, Examples 1 to 8 using positive electrode active materials doped with at least one selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce, and Ca as elements (Y) The lithium ion secondary battery has a high discharge capacity retention rate compared to the lithium ion secondary batteries of Examples 9 to 17 doped with an element other than the element (Y) and Example 18 not doped, and the cycle Excellent characteristics.
 本発明によれば、放電容量が高く、かつサイクル特性に優れるリチウムイオン二次電池用の正極活物質が得られる。該正極活物質は、携帯電話等の電子機器、車載用の小型・軽量なリチウムイオン二次電池に用いるリチウムイオン二次電池用正極の形成に好適に利用できる。
 なお、2013年3月25日に出願された日本特許出願2013-061398号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, a positive electrode active material for a lithium ion secondary battery having a high discharge capacity and excellent cycle characteristics can be obtained. The positive electrode active material can be suitably used for forming a positive electrode for a lithium ion secondary battery used for electronic devices such as mobile phones and small and light lithium ion secondary batteries for vehicles.
It should be noted that the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2013-061398 filed on March 25, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (13)

  1.  下記の工程(I)~(IV)を有することを特徴とする正極活物質の製造方法。
     (I)Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる群から選ばれる少なくとも1種の硫酸塩(A)と、
     Naの炭酸塩およびKの炭酸塩からなる群から選ばれる少なくとも1種の炭酸塩(B)とを、
     水溶液の状態で混合して、
     Ni、CoおよびMnからなる群から選ばれる少なくとも1種の遷移金属元素(X)を含む炭酸塩化合物を析出させる工程。
     (II)前記炭酸塩化合物と、Al、F、Si、Zr、Y、Mo、CeおよびCaからなる群から選ばれる少なくとも1種の元素(Y)を含む水溶液(C)とを混合させる工程。
     (III)前記炭酸塩化合物と前記水溶液(C)との混合物から水分を揮発させ前駆体化合物を得る工程。
     (IV)前記前駆体化合物とリチウム化合物とを混合し、500~1000℃で焼成する工程。
    A method for producing a positive electrode active material, comprising the following steps (I) to (IV):
    (I) at least one sulfate (A) selected from the group consisting of Ni sulfate, Co sulfate and Mn sulfate;
    At least one carbonate (B) selected from the group consisting of Na carbonate and K carbonate,
    Mix in the state of aqueous solution,
    Depositing a carbonate compound containing at least one transition metal element (X) selected from the group consisting of Ni, Co and Mn.
    (II) A step of mixing the carbonate compound with an aqueous solution (C) containing at least one element (Y) selected from the group consisting of Al, F, Si, Zr, Y, Mo, Ce and Ca.
    (III) A step of obtaining a precursor compound by volatilizing water from a mixture of the carbonate compound and the aqueous solution (C).
    (IV) A step of mixing the precursor compound and the lithium compound and baking at 500 to 1000 ° C.
  2.  工程(I)において、前記硫酸塩(A)の水溶液が、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩を含む、請求項1に記載の正極活物質の製造方法。 2. The method for producing a positive electrode active material according to claim 1, wherein in step (I), the aqueous solution of the sulfate (A) contains Ni sulfate, Co sulfate, and Mn sulfate. 3.
  3.  工程(I)において、前記硫酸塩(A)の水溶液中におけるMn、NiおよびCoからなる遷移金属元素遷移金属元素(X)の濃度が0.1~3mol/kgである、請求項1または2に記載の正極活物質の製造方法。 The concentration of the transition metal element (X) composed of Mn, Ni and Co in the aqueous solution of the sulfate (A) in the aqueous solution of the sulfate (A) is 0.1 to 3 mol / kg in the step (I). The manufacturing method of the positive electrode active material of description.
  4.  工程(I)において、前記炭酸塩(B)の水溶液中における炭酸塩(B)の濃度が0.1~2mol/kgである、請求項1~3のいずれか一項に記載の正極活物質の製造方法。 The positive electrode active material according to any one of claims 1 to 3, wherein in step (I), the concentration of the carbonate (B) in the aqueous solution of the carbonate (B) is 0.1 to 2 mol / kg. Manufacturing method.
  5.  工程(II)において、炭酸塩化合物に含まれる遷移金属元素(X)の合計量(100mol)に対して、水溶液(C)中に含まれる元素(Y)の合計モル量の割合(Y/X)が、0.01~10%である、請求項1~4のいずれか一項に記載の正極活物質の製造方法。 In the step (II), the ratio of the total molar amount of the element (Y) contained in the aqueous solution (C) to the total amount (100 mol) of the transition metal element (X) contained in the carbonate compound (Y / X The method for producing a positive electrode active material according to any one of claims 1 to 4, wherein 0.01) to 10% is 0.01 to 10%.
  6.  工程(II)において、水溶液(C)中の元素(Y)を含む化合物の濃度が0.1~50質量%である、請求項1~5のいずれか一項に記載の正極活物質の製造方法。 6. The production of a positive electrode active material according to claim 1, wherein the concentration of the compound containing the element (Y) in the aqueous solution (C) is 0.1 to 50% by mass in the step (II). Method.
  7.  工程(II)において、元素(Y)を含む化合物が、塩基性乳酸アルミニウム塩、フッ化水素アンモニウム、コロイダルシリカ、炭酸ジルコニウムアンモニウム、硝酸イットリウム、七モリブデン酸六アンモニウム、硝酸セリウム、および硝酸カルシウムからなる群から選らばれる1以上である、請求項6に記載の正極活物質の製造方法。 In the step (II), the compound containing the element (Y) is composed of a basic aluminum lactate salt, ammonium hydrogen fluoride, colloidal silica, ammonium zirconium carbonate, yttrium nitrate, hexaammonium heptamolybdate, cerium nitrate, and calcium nitrate. The method for producing a positive electrode active material according to claim 6, wherein the positive electrode active material is one or more selected from the group.
  8.  工程(II)において、炭酸塩化合物と、水溶液(C)とをスプレーコート法で混合する、請求項1~7のいずれか一項に記載の正極活物質の製造方法。 The method for producing a positive electrode active material according to any one of claims 1 to 7, wherein in step (II), the carbonate compound and the aqueous solution (C) are mixed by a spray coating method.
  9.  工程(IV)において、前駆体化合物に含まれる遷移金属元素(X)の合計モル量に対してリチウム化合物に含まれるLiの合計モル量の比(Li/X)が、1.1以上である、請求項1~8のいずれか一項に記載の正極活物質の製造方法。 In step (IV), the ratio (Li / X) of the total molar amount of Li contained in the lithium compound to the total molar amount of the transition metal element (X) contained in the precursor compound is 1.1 or more. The method for producing a positive electrode active material according to any one of claims 1 to 8.
  10.  工程(IV)において、前記前駆体化合物とリチウム化合物とを混合し、400~700℃の仮焼成を行った後に、700~1000℃で本焼成を行う、請求項1~9のいずれか一項に記載の正極活物質の製造方法。 The process according to any one of claims 1 to 9, wherein in the step (IV), the precursor compound and the lithium compound are mixed and pre-baked at 400 to 700 ° C, followed by main baking at 700 to 1000 ° C. The manufacturing method of the positive electrode active material of description.
  11.  得られる正極活物質が下式(1)で表される化合物(1)である、請求項1~10のいずれか一項に記載の正極活物質の製造方法。
     Li1+aY’NiCoMn2+f ・・・(1)
     (ただし、前記式(1)中、Y’は元素(Y)であり、a~eはそれぞれ0.1≦a≦0.6、0.0001≦b≦0.105、0.1≦c≦0.5、0≦d≦0.3、0.2≦e≦0.9、0.9≦c+d+e≦1.05であり、fはLi、元素(Y)、Ni、CoおよびMnの価数によって決定される数値である。)
    The method for producing a positive electrode active material according to any one of claims 1 to 10, wherein the obtained positive electrode active material is a compound (1) represented by the following formula (1).
    Li 1 + a Y 'b Ni c Co d Mn e O 2 + f ··· (1)
    (In the formula (1), Y ′ is the element (Y), and a to e are 0.1 ≦ a ≦ 0.6, 0.0001 ≦ b ≦ 0.105, 0.1 ≦ c, respectively. ≦ 0.5, 0 ≦ d ≦ 0.3, 0.2 ≦ e ≦ 0.9, 0.9 ≦ c + d + e ≦ 1.05, and f is Li, element (Y), Ni, Co, and Mn. (The number is determined by the valence.)
  12.  正極集電体と、該正極集電体上に設けられた正極活物質層と、を有し、前記正極活物質層が、請求項1~11のいずれか一項に記載の製造方法で得られた正極活物質と、導電材と、バインダと、を含有する、リチウムイオン二次電池用正極。 A positive electrode current collector, and a positive electrode active material layer provided on the positive electrode current collector, wherein the positive electrode active material layer is obtained by the production method according to any one of claims 1 to 11. The positive electrode for lithium ion secondary batteries containing the obtained positive electrode active material, the electrically conductive material, and the binder.
  13.  請求項12に記載のリチウムイオン二次電池用正極と、負極と、非水電解質と、を有するリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 12, a negative electrode, and a nonaqueous electrolyte.
PCT/JP2014/057856 2013-03-25 2014-03-20 Method for producing positive electrode active material WO2014156992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508428A JP6388573B2 (en) 2013-03-25 2014-03-20 Method for producing positive electrode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061398 2013-03-25
JP2013061398 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156992A1 true WO2014156992A1 (en) 2014-10-02

Family

ID=51623969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057856 WO2014156992A1 (en) 2013-03-25 2014-03-20 Method for producing positive electrode active material

Country Status (2)

Country Link
JP (1) JP6388573B2 (en)
WO (1) WO2014156992A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229550A (en) * 2013-05-24 2014-12-08 旭化成株式会社 Positive electrode active material and method for producing the same, positive electrode, and nonaqueous secondary battery
US10355276B2 (en) 2015-06-10 2019-07-16 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023181992A1 (en) * 2022-03-24 2023-09-28 住友化学株式会社 Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
JP2006202702A (en) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2008155989A1 (en) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Lithium containing composite oxide powder and process for production of the same
JP2009009753A (en) * 2007-06-26 2009-01-15 Nissan Motor Co Ltd Lithium ion battery
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2012138313A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and vehicle and power storage system mounting the lithium ion secondary battery
JP2012201539A (en) * 2011-03-24 2012-10-22 Agc Seimi Chemical Co Ltd Method for producing lithium-containing compound oxide
WO2012176902A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium-ion rechargeable batteries, positive electrode for lithium-ion rechargeable batteries, and lithium-ion rechargeable battery
JP2012256624A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Lithium ion battery
WO2013021955A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460456B (en) * 2011-03-30 2016-12-14 户田工业株式会社 Positive active material particle powder and manufacture method thereof and rechargeable nonaqueous electrolytic battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041419A1 (en) * 2000-11-20 2002-05-23 Chuo Denki Kogyo Co., Ltd. Nonaqueous electrolyte secondary cell and positive electrode active material
JP2006202702A (en) * 2005-01-24 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2008155989A1 (en) * 2007-06-21 2008-12-24 Agc Seimi Chemical Co., Ltd. Lithium containing composite oxide powder and process for production of the same
JP2009009753A (en) * 2007-06-26 2009-01-15 Nissan Motor Co Ltd Lithium ion battery
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2012138313A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and vehicle and power storage system mounting the lithium ion secondary battery
JP2012201539A (en) * 2011-03-24 2012-10-22 Agc Seimi Chemical Co Ltd Method for producing lithium-containing compound oxide
WO2012176902A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium-ion rechargeable batteries, positive electrode for lithium-ion rechargeable batteries, and lithium-ion rechargeable battery
WO2013021955A1 (en) * 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery
JP2012256624A (en) * 2012-10-04 2012-12-27 Nissan Motor Co Ltd Lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229550A (en) * 2013-05-24 2014-12-08 旭化成株式会社 Positive electrode active material and method for producing the same, positive electrode, and nonaqueous secondary battery
US10355276B2 (en) 2015-06-10 2019-07-16 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US10964944B2 (en) 2015-06-10 2021-03-30 Sumitomo Chemical Co., Ltd. Lithium-containing composite oxide, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023181992A1 (en) * 2022-03-24 2023-09-28 住友化学株式会社 Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material

Also Published As

Publication number Publication date
JPWO2014156992A1 (en) 2017-02-16
JP6388573B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP5928445B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP6587804B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6089701B2 (en) Positive electrode active material and method for producing the same
WO2014192759A1 (en) Positive electrode active material
WO2012176904A1 (en) Method for manufacturing positive-electrode active material for lithium ion secondary cell
WO2012108513A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
JP2012169217A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
JP6600136B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2012057289A1 (en) Positive electrode active material, positive electrode, battery, and production method for lithium ion secondary battery
JP5621600B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP2012138197A (en) Positive electrode active material for lithium ion secondary battery, positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
JP6745929B2 (en) Method for producing lithium-containing composite oxide, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2012169066A (en) Method for producing cathode active material for lithium ion secondary battery
JP6929793B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014116162A (en) Positive electrode active material
WO2013154142A1 (en) Positive electrode active material for lithium-ion secondary cell
JP6328096B2 (en) Method for producing carbonate compound and positive electrode active material
JP6345118B2 (en) Positive electrode active material and method for producing the same
JP6388573B2 (en) Method for producing positive electrode active material
JP6259771B2 (en) Method for producing positive electrode active material
JP2014089848A (en) Positive electrode active material and method for producing the same
JP6378676B2 (en) Carbonate compound, method for producing the same, and method for producing positive electrode active material for lithium ion secondary battery
JP2014222583A (en) Method of producing cathode active material
JP2014222582A (en) Positive electrode active material and lithium ion secondary battery
JP2014089826A (en) Positive electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773297

Country of ref document: EP

Kind code of ref document: A1