JP2012169217A - Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same - Google Patents

Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2012169217A
JP2012169217A JP2011031076A JP2011031076A JP2012169217A JP 2012169217 A JP2012169217 A JP 2012169217A JP 2011031076 A JP2011031076 A JP 2011031076A JP 2011031076 A JP2011031076 A JP 2011031076A JP 2012169217 A JP2012169217 A JP 2012169217A
Authority
JP
Japan
Prior art keywords
composition
lithium
positive electrode
composite oxide
containing composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011031076A
Other languages
Japanese (ja)
Inventor
Kentaro Tsunosaki
健太郎 角崎
Haijiang Zeng
海生 曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011031076A priority Critical patent/JP2012169217A/en
Publication of JP2012169217A publication Critical patent/JP2012169217A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion secondary battery showing excellent cycle characteristics and rate characteristics even if charged at a high voltage, and a method for manufacturing the same.SOLUTION: There is provided a positive electrode active material for a lithium ion secondary battery comprising particles (III) where a carbon material (I), or the carbon material (I) and an oxide (II) cover the surface of a lithium-containing composite oxide containing Li element and at least one kind of transition metal element selected from Ni, Co, and Mn, where the molar amount of Li element is more than 1.2 times of the total molar amount of the transition metal elements. The carbon material (I) is at least one kind of carbon material selected from carbon nanotubes, graphene, and carbon black having an average dispersed-particle size of 0.2 μm or smaller. The oxide (II) is an oxide of at least one kind of metal element selected from Zr, Ti, and Al.

Description

本発明は、リチウムイオン二次電池用の正極活物質およびその製造方法に関する。また、本発明の正極活物質を用いた正極およびリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery and a method for producing the same. The present invention also relates to a positive electrode and a lithium ion secondary battery using the positive electrode active material of the present invention.

リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。リチウムイオン二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMnO等のリチウムと遷移金属等との複合酸化物が用いられている。近年、携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、単位質量あたりの放電容量、または充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、サイクル特性ともいう。)の更なる向上が望まれている。特に車載用の用途においては高い放電レートで放電した際に放電容量が低下しない特性(以下、レート特性ともいう。)のさらなる向上が望まれている。 Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers. As a positive electrode active material for a lithium ion secondary battery, a composite oxide of lithium and a transition metal or the like such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMnO 4 is used. In recent years, there has been a demand for downsizing and weight reduction as portable electronic devices and lithium ion secondary batteries for vehicles, and the discharge capacity per unit mass or the characteristic that the discharge capacity does not decrease after repeated charge / discharge cycles (hereinafter referred to as cycle) Further improvement is also desired. In particular, in a vehicle-mounted application, it is desired to further improve characteristics (hereinafter, also referred to as rate characteristics) in which the discharge capacity does not decrease when discharged at a high discharge rate.

特許文献1には、レート特性の向上のため、リチウムイオン二次電池の正極として正極活物質にLiMn、導電材に長さ1〜10μm、比表面積250m/gのカーボンナノチューブ、およびバインダーを用いることが記載されている。該リチウムイオン二次電池は、放電容量が少なく、カーボンナノチューブを正極作製のペースト化工程でバインダーと共に加える方法により製造されるため、カーボンナノチューブを均一に分散させることが困難であった。 In Patent Document 1, in order to improve rate characteristics, as a positive electrode of a lithium ion secondary battery, LiMn 2 O 4 as a positive electrode active material, a carbon nanotube having a length of 1 to 10 μm and a specific surface area of 250 m 2 / g as a conductive material, and The use of a binder is described. Since the lithium ion secondary battery has a small discharge capacity and is manufactured by a method of adding carbon nanotubes together with a binder in a paste forming step for producing a positive electrode, it is difficult to uniformly disperse the carbon nanotubes.

特許文献2には、Li元素のモル量が遷移金属元素の総モル量に対して0.9−1.1倍モルである式Li(0.9≦p≦1.1、0.965≦x<1.00、0<y≦0.035、1.9≦z≦2.1、x+y=1、0≦a≦0.02)で表わされるリチウム含有複合酸化物と、ジルコニウムを含む水溶液とを撹拌、混合し、酸素雰囲気下450℃以上で高温焼成することにより、酸化ジルコニウムがリチウム含有複合酸化物の表面層に被覆された正極活物質を得る方法が記載されている。該正極活物質は、表面に電気化学的に不活性な酸化ジルコニウムが被覆されているため、表面層の導電性が低く、レート特性の低下の要因となる。 Patent Document 2, the molar amount of Li element is 0.9-1.1 mol per mol of the total molar amount of the transition metal elements formula Li p N x M y O z F a (0.9 ≦ p ≦ 1.1, 0.965 ≦ x <1.00, 0 <y ≦ 0.035, 1.9 ≦ z ≦ 2.1, x + y = 1, 0 ≦ a ≦ 0.02) A method of obtaining a positive electrode active material in which zirconium oxide is coated on a surface layer of a lithium-containing composite oxide by stirring and mixing a composite oxide and an aqueous solution containing zirconium and firing at a high temperature of 450 ° C. or higher in an oxygen atmosphere. Is described. Since the surface of the positive electrode active material is coated with electrochemically inactive zirconium oxide, the conductivity of the surface layer is low, which causes a reduction in rate characteristics.

特許文献3には、レート特性を向上させるため、LiNi0.5Co0.2Mn0.3とポリプロピレン等の熱可塑性樹脂をコートし、700℃で4時間焼成させることで、正極活物質表面に導電性の炭素材料が形成した正極活物質が記載されている。 In Patent Document 3, in order to improve the rate characteristics, LiNi 0.5 Co 0.2 Mn 0.3 O 2 and a thermoplastic resin such as polypropylene are coated and fired at 700 ° C. for 4 hours, whereby positive electrode active A positive electrode active material in which a conductive carbon material is formed on the material surface is described.

特開平11−283629号公報Japanese Patent Laid-Open No. 11-283629 国際公開第2007/102407号International Publication No. 2007/102407 国際公開第2010/027119号International Publication No. 2010/027119

本発明は、高電圧で充電を行ってもサイクル特性、レート特性に優れるリチウムイオン二次電池用の正極活物質、およびその製造方法を提供する。また、該正極活物質を用いた正極、リチウムイオン二次電池を提供する。   The present invention provides a positive electrode active material for a lithium ion secondary battery that is excellent in cycle characteristics and rate characteristics even when charged at a high voltage, and a method for producing the same. In addition, a positive electrode and a lithium ion secondary battery using the positive electrode active material are provided.

本発明は、以下の発明である。
[1]Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、下記炭素材料(I)、または下記炭素材料(I)および下記が被覆している粒子(III)からなることを特徴とするリチウムイオン二次電池用の正極活物質。
炭素材料(I):カーボンナノチューブ、グラフェン、および平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料。
酸化物(II):Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素の酸化物。
[2]炭素材料(I)の質量が、リチウム含有複合酸化物の質量に対して0.0001〜0.05倍である[1]に記載の正極活物質。
[3]Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素のモル量が、前記リチウム含有複合酸化物の遷移金属元素のモル量に対して0.0001〜0.05倍モルである[1]に記載の正極活物質。
[4][1]〜[3]のいずれか一項に記載のリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。
[5][4]に記載の正極と負極と非水電解質とを含むリチウムイオン二次電池。
[6]Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物に、下記組成物(1)、または下記組成物(1)および下記組成物(2)を接触させ、50〜500℃で加熱することを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
組成物(1):カーボンナノチューブ、グラフェン、平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料(I)を溶媒に分散させた組成物。
組成物(2):Zr、Ti、Alから選ばれる少なくとも一種の金属元素を含む化合物を溶媒に溶解または分散させた組成物。
[7]リチウム含有複合酸化物に、前記組成物(1)、または前記組成物(1)および前記組成物(2)を添加して撹拌することにより、リチウム含有複合酸化物と、前記組成物(1)、または前記組成物(1)および前記組成物(2)とを接触させる[6]に記載の製造方法。
[8]リチウム含有複合酸化物に、前記組成物(1)、または前記組成物(1)および前記組成物(2)をスプレーコート法により噴霧することにより、リチウム含有複合酸化物と、前記組成物(1)、または前記組成物(1)および前記組成物(2)とを接触させる[6]に記載の製造方法。
The present invention is the following inventions.
[1] Including Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element) A lithium ion secondary battery comprising the following carbon material (I), or the following carbon material (I) and particles (III) covered by the following, on the surface of the lithium-containing composite oxide: Positive electrode active material.
Carbon material (I): At least one carbon material selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less.
Oxide (II): An oxide of at least one metal element selected from Zr, Ti, and Al.
[2] The positive electrode active material according to [1], wherein the mass of the carbon material (I) is 0.0001 to 0.05 times the mass of the lithium-containing composite oxide.
[3] The molar amount of at least one metal element selected from Zr, Ti, and Al is 0.0001 to 0.05 times the molar amount of the transition metal element of the lithium-containing composite oxide. 1] The positive electrode active material described in 1].
[4] A positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [3], a conductive material, and a binder.
[5] A lithium ion secondary battery including the positive electrode, the negative electrode, and a nonaqueous electrolyte according to [4].
[6] Including Li element and at least one transition metal element selected from Ni, Co, and Mn (however, the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element) The following composition (1), or the following composition (1) and the following composition (2) are brought into contact with the lithium-containing composite oxide and heated at 50 to 500 ° C. A method for producing a positive electrode active material for an ion secondary battery.
Composition (1): A composition in which at least one carbon material (I) selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less is dispersed in a solvent.
Composition (2): A composition in which a compound containing at least one metal element selected from Zr, Ti, and Al is dissolved or dispersed in a solvent.
[7] The lithium-containing composite oxide and the composition are prepared by adding and stirring the composition (1) or the composition (1) and the composition (2) to the lithium-containing composite oxide. (1) or the production method according to [6], wherein the composition (1) and the composition (2) are contacted.
[8] The composition (1) or the composition (1) and the composition (2) are sprayed onto the lithium-containing composite oxide by a spray coating method, so that the lithium-containing composite oxide and the composition The production method according to [6], wherein the product (1) or the composition (1) and the composition (2) are contacted.

本発明の正極活物質は、高電圧で充電を行ってもサイクル特性、レート特性に優れる。本発明の正極、およびリチウムイオン二次電池は、高電圧で充電を行ってもサイクル特性、レート特性に優れる。さらに、本発明の製造方法は、高電圧で充電を行ってもサイクル特性、レート特性に優れる正極活物質を製造することができる。   The positive electrode active material of the present invention is excellent in cycle characteristics and rate characteristics even when charged at a high voltage. The positive electrode and the lithium ion secondary battery of the present invention are excellent in cycle characteristics and rate characteristics even when charged at a high voltage. Furthermore, the production method of the present invention can produce a positive electrode active material that is excellent in cycle characteristics and rate characteristics even when charged at a high voltage.

<正極活物質>
本発明の正極活物質は、Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、炭素材料(I)、または炭素材料(I)および酸化物(II)が被覆している粒子(III)からなることを特徴とする。
<Positive electrode active material>
The positive electrode active material of the present invention contains Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is relative to the total molar amount of the transition metal element). It is more than 1.2 times.) It is characterized by comprising carbon material (I) or particles (III) coated with carbon material (I) and oxide (II) on the surface of the lithium-containing composite oxide. And

(リチウム含有複合酸化物)
本発明におけるリチウム含有複合酸化物は、Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超{(Li元素のモル量/遷移金属元素の総モル量)>1.2}である。)である。遷移金属元素の総モル量に対するLi元素の組成比(モル比)は、1.25〜1.75であることが好ましく、1.25〜1.65であることがより好ましい。該組成比とすることにより、リチウムイオン二次電池の単位質量あたりの放電容量をより一層増加させうる。
(Lithium-containing composite oxide)
The lithium-containing composite oxide in the present invention contains Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is the total molar amount of the transition metal element). On the other hand, it is more than 1.2 times {(molar amount of Li element / total molar amount of transition metal element)> 1.2}. The composition ratio (molar ratio) of Li element to the total molar amount of the transition metal element is preferably 1.25 to 1.75, and more preferably 1.25 to 1.65. By setting the composition ratio, the discharge capacity per unit mass of the lithium ion secondary battery can be further increased.

リチウム含有複合酸化物に含まれる遷移金属元素は、Ni、Co、およびMnから選ばれる少なくとも一種であり、Mnを必須とすることがより好ましく、Ni、Co、およびMnの全ての元素を含んでいることが特に好ましい。遷移金属元素としては、Ni、Co、Mn、およびLi以外の金属元素(以下、他の金属元素という。)を含んでいてもよい。他の金属元素としては、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、およびMgから選ばれる少なくとも一種が挙げられる。他の金属元素の割合は、遷移金属元素の総量(1モル)において、0.001〜0.50モルが好ましく、0.005〜0.05モルがより好ましい。   The transition metal element contained in the lithium-containing composite oxide is at least one selected from Ni, Co, and Mn, more preferably Mn is essential, including all elements of Ni, Co, and Mn. It is particularly preferable. As a transition metal element, metal elements other than Ni, Co, Mn, and Li (hereinafter referred to as other metal elements) may be included. Examples of the other metal elements include at least one selected from Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg. The proportion of the other metal element is preferably 0.001 to 0.50 mol, and more preferably 0.005 to 0.05 mol in the total amount (1 mol) of the transition metal element.

本発明におけるリチウム含有複合酸化物は、下記式(1)で表される化合物であることが好ましい。本発明における式(1)で表される化合物は、充放電や活性化の工程を経る前の組成である。ここで、活性化とは、酸化リチウム(LiO)、または、リチウムおよび酸化リチウムを、リチウム含有複合酸化物から取り除くことをいう。通常の活性化方法としては、4.4Vもしくは4.6V(Li/Liの酸化還元電位との電位差として表される。)より大きな電圧を加える電気化学的な活性化方法が挙げられる。また、硫酸、塩酸もしくは硝酸等の酸を用いた化学反応を行うことにより、化学的な活性化方法が挙げられる。 The lithium-containing composite oxide in the present invention is preferably a compound represented by the following formula (1). The compound represented by Formula (1) in this invention is a composition before passing through the process of charging / discharging or activation. Here, activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide. As a normal activation method, there is an electrochemical activation method in which a voltage larger than 4.4 V or 4.6 V (expressed as a potential difference from the oxidation / reduction potential of Li + / Li) is applied. Moreover, a chemical activation method is mentioned by performing chemical reaction using acids, such as a sulfuric acid, hydrochloric acid, or nitric acid.

Li(LiMnMe)O (1)
式(1)において、Meは、Co、Ni、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、およびMgから選ばれる少なくとも一種の元素である。式(1)においては、0.09<x<0.3、y>0、z>0、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)、1.9<p<2.1、0≦q≦0.1である。Meとしては、Co、Ni、およびCrが好ましく、CoおよびNiが特に好ましい。式(1)においては、0.1<x<0.25が好ましく、0.11<x<0.22がより好ましく、0.5≦y/(y+z)≦0.8が好ましく、0.55≦y/(y+z)≦0.75がより好ましい。
Li (Li x Mn y Me z ) O p F q (1)
In the formula (1), Me is at least one element selected from Co, Ni, Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg. In the formula (1), 0.09 <x <0.3, y> 0, z> 0, 0.4 ≦ y / (y + z) ≦ 0.8, x + y + z = 1, 1.2 <(1 + x) / (Y + z), 1.9 <p <2.1, 0 ≦ q ≦ 0.1. As Me, Co, Ni, and Cr are preferable, and Co and Ni are particularly preferable. In the formula (1), 0.1 <x <0.25 is preferable, 0.11 <x <0.22 is more preferable, 0.5 ≦ y / (y + z) ≦ 0.8 is preferable, and 55 ≦ y / (y + z) ≦ 0.75 is more preferable.

リチウム含有複合酸化物としては、Li(Li0.13Ni0.26Co0.09Mn0.52)O、Li(Li0.13Ni0.22Co0.09Mn0.56)O、Li(Li0.13Ni0.17Co0.17Mn0.53)O、Li(Li0.15Ni0.17Co0.13Mn0.55)O、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、Li(Li0.20Ni0.13Co0.13Mn0.54)O、Li(Li0.22Ni0.12Co0.12Mn0.54)O、Li(Li0.23Ni0.12Co0.08Mn0.57)O、が好ましい。 Examples of the lithium-containing composite oxide include Li (Li 0.13 Ni 0.26 Co 0.09 Mn 0.52 ) O 2 and Li (Li 0.13 Ni 0.22 Co 0.09 Mn 0.56 ) O. 2 , Li (Li 0.13 Ni 0.17 Co 0.17 Mn 0.53 ) O 2 , Li (Li 0.15 Ni 0.17 Co 0.13 Mn 0.55 ) O 2 , Li (Li 0 .16 Ni 0.17 Co 0.08 Mn 0.59 ) O 2 , Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49 ) O 2 , Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54 ) O 2 , Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 , Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0 .58 ) O 2 , Li (Li 0.1 8 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 , Li (Li 0.20 Ni 0.12 Co 0.08 Mn 0.60 ) O 2 , Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 , Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ) O 2 , Li (Li 0.22 Ni 0.12 Co 0.12 Mn 0. 54 ) O 2 and Li (Li 0.23 Ni 0.12 Co 0.08 Mn 0.57 ) O 2 are preferred.

さらにリチウム含有複合酸化物としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、Li(Li0.20Ni0.13Co0.13Mn0.54)O、が特に好ましい。 Still lithium-containing complex oxide, Li (Li 0.16 Ni 0.17 Co 0.08 Mn 0.59) O 2, Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49) O 2 , Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54 ) O 2 , Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 , Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0.58 ) O 2 , Li (Li 0.18 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 , Li (Li 0.20 Ni 0. 12 Co 0.08 Mn 0.60 ) O 2 , Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 , Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54) O 2, it is particularly preferred There.

本発明におけるリチウム含有複合酸化物は、リチウム含有複合酸化物が式(1)で表される化合物である場合、前記遷移金属元素の総モル量に対するLi元素の組成比は、1.2<(1+x)/(y+z)であり、1.25≦(1+x)/(y+z)≦1.75が好ましく、1.25≦(1+x)/(y+z)≦1.65がより好ましい。該組成比が前記の範囲であれば、単位質量あたりの放電容量が高い正極材料が得られる。   When the lithium-containing composite oxide in the present invention is a compound represented by the formula (1), the composition ratio of Li element to the total molar amount of the transition metal element is 1.2 <( 1 + x) / (y + z), preferably 1.25 ≦ (1 + x) / (y + z) ≦ 1.75, and more preferably 1.25 ≦ (1 + x) / (y + z) ≦ 1.65. When the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained.

リチウム含有複合酸化物の形状は、粒子状であることが好ましい。リチウム含有複合酸化物の平均粒子径(D50)は、3〜30μmが好ましく、4〜25μmがより好ましく、5〜20μmが特に好ましい。ここで、平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(例えば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA−950VII、などを用いる)ことで行われる。   The shape of the lithium-containing composite oxide is preferably particulate. 3-30 micrometers is preferable, as for the average particle diameter (D50) of lithium containing complex oxide, 4-25 micrometers is more preferable, and 5-20 micrometers is especially preferable. Here, the average particle size (D50) is a particle size distribution at a point where the cumulative curve is 50% in a cumulative curve obtained by obtaining a particle size distribution on a volume basis and setting the total volume to 100%. It means% diameter. The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).

リチウム含有複合酸化物の比表面積は、0.3〜10m/gが好ましく、0.5〜5m/gが特に好ましい。該比表面積が、0.3〜10m/gであると容量が高く、緻密な正極電極層が形成できる。 The specific surface area of the lithium-containing composite oxide is preferably 0.3~10m 2 / g, 0.5~5m 2 / g is particularly preferred. When the specific surface area is 0.3 to 10 m 2 / g, the capacity is high and a dense positive electrode layer can be formed.

本発明におけるリチウム含有複合酸化物は、層状岩塩型結晶構造(空間群R−3m)であることが好ましい。また、本発明におけるリチウム含有複合酸化物は、遷移金属元素に対するLi元素の比率が高いため、XRD(X線回折)測定では層状LiMnOと同様に2θ=20〜25°の範囲にピークが観察される。 The lithium-containing composite oxide in the present invention preferably has a layered rock salt type crystal structure (space group R-3m). In addition, since the lithium-containing composite oxide in the present invention has a high ratio of Li element to transition metal element, XRD (X-ray diffraction) measurement shows a peak in the range of 2θ = 20 to 25 ° as in the case of layered Li 2 MnO 3. Is observed.

(炭素材料(I))
本発明における炭素材料(I)としては、カーボンナノチューブ、グラフェン、および平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料である。炭素材料(I)は、導電性が高く、形状の少なくとも一次元がナノサイズであることが好ましい。ここで、ナノサイズとは、1マイクロメートル未満であることをいう。炭素材料(I)の導電性を高くすることにより、正極活物質の導電性が向上して初期容量やレート特性の改善が期待できる。また、炭素材料(I)がナノサイズであるとリチウム含有複合酸化物の表面により均一に被覆することができる。炭素材料(I)の形状は、SEM(走査形電子顕微鏡)またはTEM(透過型電子顕微鏡)等の電子顕微鏡を用いて評価することができる。
(Carbon material (I))
The carbon material (I) in the present invention is at least one carbon material selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less. The carbon material (I) preferably has high conductivity and at least one dimension of the shape is nano-sized. Here, nano size means less than 1 micrometer. By increasing the conductivity of the carbon material (I), it is possible to improve the conductivity of the positive electrode active material and improve the initial capacity and rate characteristics. Further, when the carbon material (I) is nano-sized, the surface of the lithium-containing composite oxide can be uniformly coated. The shape of the carbon material (I) can be evaluated using an electron microscope such as SEM (scanning electron microscope) or TEM (transmission electron microscope).

カーボンナノチューブは微細な繊維状であるため、繊維どうしの絡み合いにより少量の被覆で高い導電性が得られる。カーボンナノチューブの平均直径は、0.4〜200nmが好ましく、1〜100nmがより好ましく、5〜50nmが特に好ましい。カーボンナノチューブの平均長さは、0.5〜30μmが好ましく、1〜20μmがより好ましく、1〜10μmが特に好ましい。平均直径と平均長さが前記範囲であると導電性、分散性、リチウム含有複合酸化物面への付着性が良好となる。   Since carbon nanotubes are in the form of fine fibers, high conductivity can be obtained with a small amount of coating due to the entanglement of the fibers. The average diameter of the carbon nanotube is preferably 0.4 to 200 nm, more preferably 1 to 100 nm, and particularly preferably 5 to 50 nm. The average length of the carbon nanotubes is preferably 0.5 to 30 μm, more preferably 1 to 20 μm, and particularly preferably 1 to 10 μm. When the average diameter and the average length are within the above ranges, the conductivity, dispersibility, and adhesion to the lithium-containing composite oxide surface are good.

グラフェンとは、厳密にはグラファイト一層をいうが、本発明におけるグラフェンとは1〜多層のグラファイト層からなる炭素材料をいう。グラフェンは薄い膜状であるため、リチウム含有複合酸化物を効率的に被覆して少量の被覆で高い導電性が得られる。グラフェンの平均の厚さは、0.3〜20nmが好ましく、0.5〜10nmがより好ましく、1〜5nmが特に好ましい。グラフェンの平均円相当径は0.2〜20μmが好ましく、0.5〜10μmがより好ましい。平均の厚さと平均円相当径が前記範囲であると導電性、分散性、リチウム含有複合酸化物面への付着性が良好となる。   Strictly speaking, graphene refers to a single graphite layer, but the graphene in the present invention refers to a carbon material composed of one to multiple graphite layers. Since graphene is a thin film, high conductivity can be obtained with a small amount of coating by efficiently covering the lithium-containing composite oxide. The average thickness of graphene is preferably 0.3 to 20 nm, more preferably 0.5 to 10 nm, and particularly preferably 1 to 5 nm. The average equivalent circle diameter of graphene is preferably 0.2 to 20 μm, and more preferably 0.5 to 10 μm. When the average thickness and the average equivalent circle diameter are within the above ranges, the conductivity, dispersibility, and adhesion to the lithium-containing composite oxide surface are good.

カーボンブラックの平均分散粒子径は、0.2μm以下であり、0.005〜0.2μmが好ましく、0.01〜0.15μmがより好ましく、0.02〜0.10μmが特に好ましい。平均分散粒子径が0.2μm以下のカーボンブラックは粒子径が小さく分散性が良好であるため、リチウム含有複合酸化物の表面を均一に被覆することができる。平均分散粒子径が前記範囲であると導電性、分散性、リチウム含有複合酸化物面への付着性が良好となる。カーボンブラックの平均分散粒子径は動的光散乱法により求めることができる。   The average dispersed particle size of carbon black is 0.2 μm or less, preferably 0.005 to 0.2 μm, more preferably 0.01 to 0.15 μm, and particularly preferably 0.02 to 0.10 μm. Since carbon black having an average dispersed particle size of 0.2 μm or less has a small particle size and good dispersibility, the surface of the lithium-containing composite oxide can be uniformly coated. When the average dispersed particle size is in the above range, the conductivity, dispersibility, and adhesion to the lithium-containing composite oxide surface are improved. The average dispersed particle size of carbon black can be determined by a dynamic light scattering method.

本発明における炭素材料(I)としては、カーボンナノチューブが特に好ましい。カーボンナノチューブはカーボンブラックよりも少量で高い導電性が得られるため、少量でレート特性向上の効果が得られると考えられる。また、カーボンナノチューブはグラフェンよりもLiイオンの拡散を阻害しにくいため、より高容量となると考えられる。   Carbon nanotubes are particularly preferred as the carbon material (I) in the present invention. Since carbon nanotubes can provide higher conductivity in a smaller amount than carbon black, it is considered that the effect of improving the rate characteristics can be obtained in a smaller amount. In addition, carbon nanotubes are considered to have a higher capacity because they are less likely to inhibit the diffusion of Li ions than graphene.

(酸化物(II))
酸化物(II)は、Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素の酸化物である。酸化物(II)としては、ZrO、TiO、およびAlが好ましく、ZrOがより好ましい。これらの化合物によって被覆することで、前記リチウム含有複合酸化物表面から電解液へのマンガン等の遷移金属元素の溶出が抑制され、サイクル特性が向上する。本発明における酸化物(II)は、高電圧での充電(酸化反応)によって生じる電解質の分解物との接触を防ぐため、分解物と不活性な化合物であることが好ましい。
(Oxide (II))
The oxide (II) is an oxide of at least one metal element selected from Zr, Ti, and Al. The oxide (II), ZrO 2, TiO 2, and Al 2 O 3 are preferable, ZrO 2 are more preferable. By covering with these compounds, elution of transition metal elements such as manganese from the surface of the lithium-containing composite oxide into the electrolyte is suppressed, and cycle characteristics are improved. The oxide (II) in the present invention is preferably a compound that is inert to the decomposition product in order to prevent contact with the decomposition product of the electrolyte caused by charging (oxidation reaction) at a high voltage.

酸化物(II)が粒子状である場合、酸化物(II)の平均粒子径は、0.1〜100nmが好ましく、0.1〜50nmがより好ましく、0.1〜30nmが特に好ましい。酸化物(II)の平均粒子径は、SEMまたはTEM等の電子顕微鏡より観察される粒子径である。該平均粒子径は、リチウム含有複合酸化物の表面を被覆している粒子の粒子径の平均として表される。   When oxide (II) is particulate, the average particle size of oxide (II) is preferably 0.1 to 100 nm, more preferably 0.1 to 50 nm, and particularly preferably 0.1 to 30 nm. The average particle size of the oxide (II) is a particle size observed with an electron microscope such as SEM or TEM. The average particle diameter is expressed as an average particle diameter of particles covering the surface of the lithium-containing composite oxide.

(粒子(III))
本発明における粒子(III)は、リチウム含有複合酸化物の表面に前記炭素材料(I)、または前記炭素材料(I)および前記酸化物(II)が被覆した粒子である。ここで、被覆するとは、前記炭素材料(I)、または前記炭素材料(I)および前記酸化物(II)がリチウム含有複合酸化物の表面の一部または全部に、化学吸着、または物理吸着によって付着した状態をいう。
(Particle (III))
The particles (III) in the present invention are particles in which the surface of a lithium-containing composite oxide is coated with the carbon material (I) or the carbon material (I) and the oxide (II). Here, the covering means that the carbon material (I) or the carbon material (I) and the oxide (II) are partially or entirely deposited on the surface of the lithium-containing composite oxide by chemical adsorption or physical adsorption. It means the attached state.

前記粒子(III)において、炭素材料(I)または酸化物(II)がリチウム含有複合酸化物の表面に被覆していることは、例えば、粒子(III)を切断した後に断面を研磨し、X線マイクロアナライザー分析法(EPMA)で元素マッピングを行うことにより評価することができる。該評価方法によって、前記炭素材料(I)または酸化物(II)がリチウム含有複合酸化物の中心(ここで、中心とは、リチウム含有複合酸化物の表面に接していない部分をいい、表面からの平均距離が最長である部分であるのが好ましい。)に対して、表面から30nmの範囲により多く存在することが確認できる。   In the particle (III), the carbon material (I) or the oxide (II) is coated on the surface of the lithium-containing composite oxide. For example, after cutting the particle (III), the cross section is polished, It can be evaluated by performing elemental mapping with a line microanalyzer analysis method (EPMA). According to the evaluation method, the carbon material (I) or the oxide (II) is the center of the lithium-containing composite oxide (here, the center refers to a portion not in contact with the surface of the lithium-containing composite oxide, from the surface). It is preferable that the average distance is the portion with the longest average distance).

粒子(III)における炭素材料(I)の割合は、固体中炭素分析装置によって測定することができる。固体中炭素分析装置とは、試料を高温で燃焼させて発生したガスを定量分析することで、試料中の炭素量を測定する装置である。   The proportion of the carbon material (I) in the particles (III) can be measured by a carbon-in-solid analyzer. A solid carbon analyzer is an apparatus that measures the amount of carbon in a sample by quantitatively analyzing a gas generated by burning the sample at a high temperature.

粒子(III)の表面に前記炭素材料(I)が被覆しており酸化物(II)が被覆していない場合、粒子(III)における炭素材料(I)の割合は、固体中炭素分析装置で測定した粒子(III)に含まれる炭素量と、固体中炭素分析装置で測定したリチウム含有複合酸化物に含まれる炭素量との差から求める。   When the carbon material (I) is coated on the surface of the particle (III) and the oxide (II) is not coated, the ratio of the carbon material (I) in the particle (III) is determined by a solid-state carbon analyzer. It is determined from the difference between the amount of carbon contained in the measured particle (III) and the amount of carbon contained in the lithium-containing composite oxide measured by a solid carbon analyzer.

粒子(III)の表面に前記炭素材料(I)および酸化物(II)が被覆している場合、粒子(III)における炭素材料(I)の割合は、固体中炭素分析装置で測定した粒子(III)に含まれる炭素量と、固体中炭素分析装置で測定したリチウム含有複合酸化物の表面に酸化物(II)のみを被覆させた粒子に含まれる炭素量との差から求める。
なお、カーボン分析装置によって炭素材料(I)の割合を求めることができない場合には、リチウム含有複合粒子と炭素材料(I)の仕込み量に基づいて算出してもよい。
When the surface of the particles (III) is coated with the carbon material (I) and the oxide (II), the ratio of the carbon material (I) in the particles (III) is determined by the particle ( It is determined from the difference between the amount of carbon contained in III) and the amount of carbon contained in particles in which only the oxide (II) is coated on the surface of the lithium-containing composite oxide measured with a solid-in-carbon analyzer.
In addition, when the ratio of carbon material (I) cannot be calculated | required with a carbon analyzer, you may calculate based on the preparation amount of lithium containing composite particle and carbon material (I).

炭素材料(I)がカーボンナノチューブおよび/またはグラフェンである場合、少量でも高い導電性が得られることから、炭素材料(I)の割合は、粒子(II)の質量に対して0.0001〜0.02倍が好ましく、0.0003〜0.01倍がより好ましく、0.0005〜0.005倍が特に好ましい。   When the carbon material (I) is a carbon nanotube and / or graphene, high conductivity can be obtained even in a small amount. Therefore, the ratio of the carbon material (I) is 0.0001 to 0 with respect to the mass of the particles (II). 0.02 times is preferable, 0.0003 to 0.01 times is more preferable, and 0.0005 to 0.005 times is particularly preferable.

炭素材料(I)が平均分散粒子径0.2μm以下のカーボンブラックである場合、炭素材料(I)の割合は、粒子(III)の質量に対して0.001〜0.05倍が好ましく、0.003〜0.04倍がより好ましく、0.005〜0.03倍が特に好ましい。炭素材料(I)の割合を前記範囲とすることで、高容量と高レート特性が両立できる。   When the carbon material (I) is carbon black having an average dispersed particle size of 0.2 μm or less, the proportion of the carbon material (I) is preferably 0.001 to 0.05 times the mass of the particles (III), 0.003 to 0.04 times is more preferable, and 0.005 to 0.03 times is particularly preferable. By setting the ratio of the carbon material (I) within the above range, both high capacity and high rate characteristics can be achieved.

リチウム含有複合酸化物上の炭素材料(I)の被覆率は、カーボンナノチューブおよび/またはグラフェンである場合、少量でも高い導電性が得られることから、炭素材料(I)の被覆率は0.00002〜0.02g/mが好ましく、0.0006〜0.01g/mがより好ましく、0.001〜0.005g/mが特に好ましい。カーボンの被覆率は、前記粒子(III)における炭素材料(I)の割合およびリチウム含有複合酸化物の比表面積から求めることができる。 When the coverage of the carbon material (I) on the lithium-containing composite oxide is carbon nanotubes and / or graphene, high conductivity can be obtained even with a small amount. Therefore, the coverage of the carbon material (I) is 0.00002. ˜0.02 g / m 2 is preferable, 0.0006 to 0.01 g / m 2 is more preferable, and 0.001 to 0.005 g / m 2 is particularly preferable. The carbon coverage can be determined from the ratio of the carbon material (I) in the particles (III) and the specific surface area of the lithium-containing composite oxide.

炭素材料(I)が平均分散粒子径0.2μm以下のカーボンブラックである場合、カーボン(I)の被覆率は、0.0002〜0.05g/mが好ましく、0.0006〜0.04g/mがより好ましく、0.001〜0.03g/mが特に好ましい。 When the carbon material (I) is carbon black having an average dispersed particle size of 0.2 μm or less, the coverage of the carbon (I) is preferably 0.0002 to 0.05 g / m 2 , and 0.0006 to 0.04 g. / M 2 is more preferable, and 0.001 to 0.03 g / m 2 is particularly preferable.

粒子(III)における酸化物(II)の割合は、酸化物(II)中のZr、Ti、およびAlから選ばれる少なくとも一種の金属元素のモル量がリチウム含有複合酸化物の遷移金属元素のモル量に対して0.0001〜0.05倍が好ましく、0.0003〜0.04倍がより好ましく、0.0005〜0.03倍が特に好ましい。   The ratio of the oxide (II) in the particles (III) is such that the molar amount of at least one metal element selected from Zr, Ti, and Al in the oxide (II) is the mole of the transition metal element in the lithium-containing composite oxide. 0.0001-0.05 times is preferable with respect to quantity, 0.0003-0.04 times are more preferable, 0.0005-0.03 times are especially preferable.

粒子(III)における酸化物(II)の割合は、正極活物質を酸に溶解してICP(高周波誘導結合プラズマ)測定を行うことによって測定することができる。なお、ICP測定によって酸化物(II)の割合を求めることができない場合には、リチウム含有複合粒子と酸化物(II)の仕込み量に基づいて算出してもよい。   The ratio of the oxide (II) in the particles (III) can be measured by dissolving the positive electrode active material in an acid and performing ICP (high frequency inductively coupled plasma) measurement. In addition, when the ratio of oxide (II) cannot be calculated | required by ICP measurement, you may calculate based on the preparation amount of lithium containing composite particle and oxide (II).

本発明の正極活物質において、リチウム含有複合酸化物の表面に被覆する炭素材料(I)および酸化物(II)の形状は、SEM、TEM等の電子顕微鏡により評価することができる。炭素材料(I)および酸化物(II)の形状は、粒子状、膜状、繊維状、塊状等であってもよい。
炭素材料(I)および酸化物(II)はリチウム含有複合酸化物の表面に少なくとも一部に被覆していればよい。
本発明の正極活物質は、放電容量が大きく、レート特性およびサイクル特性に優れる。
In the positive electrode active material of the present invention, the shape of the carbon material (I) and the oxide (II) coated on the surface of the lithium-containing composite oxide can be evaluated by an electron microscope such as SEM or TEM. The shape of the carbon material (I) and the oxide (II) may be in the form of particles, film, fiber, lump or the like.
The carbon material (I) and the oxide (II) may be at least partially coated on the surface of the lithium-containing composite oxide.
The positive electrode active material of the present invention has a large discharge capacity and is excellent in rate characteristics and cycle characteristics.

<正極活物質の製造方法>
本発明の製造方法は、Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物と、下記組成物(1)、または下記組成物(1)および下記組成物(2)とを接触させ、50〜500℃で加熱することにより前記リチウム含有複合酸化物の表面に炭素材料(I)、または炭素材料(I)および酸化物(II)が被覆している粒子(III)からなることを特徴とするリチウムイオン二次電池用の正極活物質を得る方法である。
組成物(1):カーボンナノチューブ、グラフェン、平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料(I)を溶媒に分散させた組成物。
組成物(2):Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素を含む化合物を溶媒に溶解または分散させた組成物。
<Method for producing positive electrode active material>
The production method of the present invention includes Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is 1 with respect to the total molar amount of the transition metal element). .. More than 2 times.) Lithium-containing composite oxide and the following composition (1) or the following composition (1) and the following composition (2) are brought into contact and heated at 50 to 500 ° C. A lithium ion secondary battery comprising a particle (III) coated with carbon material (I) or carbon material (I) and oxide (II) on the surface of the lithium-containing composite oxide This is a method for obtaining a positive electrode active material.
Composition (1): A composition in which at least one carbon material (I) selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less is dispersed in a solvent.
Composition (2): A composition in which a compound containing at least one metal element selected from Zr, Ti, and Al is dissolved or dispersed in a solvent.

本発明におけるリチウム含有複合酸化物としては、前記リチウム含有複合酸化物を用いることができ、好ましい態様も同様である。
リチウム含有複合酸化物の製造方法としては、共沈法により得られたリチウム含有複合酸化物の前躯体とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法、イオン交換法などが挙げられるが、含有される遷移金属元素が均一に混ざることで放電容量が優れるため、共沈法により得られたリチウム含有複合酸化物の前躯体(共沈組成物)とリチウム化合物を混合して焼成する方法が好ましい。
As the lithium-containing composite oxide in the present invention, the lithium-containing composite oxide can be used, and the preferred embodiments are also the same.
As a method for producing a lithium-containing composite oxide, a method of mixing and baking a precursor of a lithium-containing composite oxide obtained by a coprecipitation method and a lithium compound, a hydrothermal synthesis method, a sol-gel method, a dry mixing method, an ion The exchange method and the like can be mentioned, but since the contained transition metal elements are uniformly mixed, the discharge capacity is excellent, so the precursor (coprecipitation composition) of the lithium-containing composite oxide obtained by the coprecipitation method and the lithium compound The method of mixing and baking is preferable.

組成物(1)は、カーボンナノチューブ、グラフェン、および平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料(I)を溶媒に分散させた組成物である。   The composition (1) is a composition in which at least one carbon material (I) selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less is dispersed in a solvent.

本発明における炭素材料(I)としては、前記炭素材料(I)を用いることができ、好ましい態様も同様である。   As the carbon material (I) in the present invention, the carbon material (I) can be used, and preferred embodiments are also the same.

組成物(1)に用いられる溶媒としては、金属元素を含む化合物の安定性や反応性の点で水を含む溶媒が好ましく、水と水溶性アルコールおよび/またはポリオールとの混合溶媒がより好ましく、水のみが特に好ましい。水溶性アルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノールが挙げられる。ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリンが挙げられる。溶媒中に含まれる水溶性アルコールとポリオールの合計の含有量としては、各溶媒の合計量(溶媒全量)に対して0〜20質量%が好ましく、0〜10質量%がより好ましい。溶媒が水だけの場合は、安全面、環境面、取扱い性、コストの点で優れているため特に好ましい。   As the solvent used in the composition (1), a solvent containing water is preferable in terms of stability and reactivity of the compound containing a metal element, and a mixed solvent of water and a water-soluble alcohol and / or polyol is more preferable. Only water is particularly preferred. Examples of the water-soluble alcohol include methanol, ethanol, 1-propanol, and 2-propanol. Examples of the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, and glycerin. The total content of the water-soluble alcohol and the polyol contained in the solvent is preferably 0 to 20% by mass, more preferably 0 to 10% by mass with respect to the total amount of each solvent (total amount of solvent). When the solvent is only water, it is particularly preferable because it is excellent in terms of safety, environment, handling, and cost.

組成物(1)のpHとしては、3〜12が好ましく、3.5〜12がより好ましく、4〜10が特に好ましい。pHが前記の範囲にあれば、リチウム含有複合酸化物と組成物(1)とを接触させたときのリチウム含有複合酸化物からのLi元素の溶出が少ない。   As pH of composition (1), 3-12 are preferable, 3.5-12 are more preferable, and 4-10 are especially preferable. When the pH is in the above range, there is little elution of Li element from the lithium-containing composite oxide when the lithium-containing composite oxide is brought into contact with the composition (1).

炭素材料(I)の溶媒への分散性を向上させるために、組成物(1)は高分子分散剤や界面活性剤を含んでいてもよい。ただし、高分子分散剤や界面活性剤が正極材に残留すると電池特性に悪影響を及ぼすため、組成物(1)中の高分子分散剤と界面活性剤の合計含有量は、炭素材料(I)に対して3質量%以下が好ましく、1質量%以下がより好ましく、0〜0.1質量%が特に好ましい。   In order to improve the dispersibility of the carbon material (I) in the solvent, the composition (1) may contain a polymer dispersant or a surfactant. However, if the polymer dispersant or the surfactant remains in the positive electrode material, the battery characteristics are adversely affected. Therefore, the total content of the polymer dispersant and the surfactant in the composition (1) is the carbon material (I). Is preferably 3% by mass or less, more preferably 1% by mass or less, and particularly preferably 0 to 0.1% by mass.

組成物(1)中に含まれる炭素材料(I)の濃度は、後の工程で加熱により溶媒を除去する必要があるため高濃度とすることが好ましい。しかし、濃度が高すぎると粘度が高くなり、正極活物質を形成する他の元素源と組成物(1)との均一混合性が低下するため、組成物(1)中に含まれる炭素材料(I)の濃度は0.5〜25質量%が好ましく、2〜15質量%が特に好ましい。   The concentration of the carbon material (I) contained in the composition (1) is preferably high because it is necessary to remove the solvent by heating in a later step. However, if the concentration is too high, the viscosity increases, and the uniform mixing property of the composition (1) with another element source that forms the positive electrode active material is reduced. Therefore, the carbon material contained in the composition (1) ( The concentration of I) is preferably 0.5 to 25% by mass, particularly preferably 2 to 15% by mass.

組成物(2)は、Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素を含む化合物(以下、単に化合物(3)ともいう。)を溶媒に溶解または分散させた組成物である。   The composition (2) is a composition in which a compound containing at least one metal element selected from Zr, Ti, and Al (hereinafter also simply referred to as compound (3)) is dissolved or dispersed in a solvent.

組成物(2)が化合物(3)を溶媒に溶解させた組成物である場合、化合物(3)としては、炭酸ジルコニウムアンモニウム、ハロゲン化ジルコニウムアンモニウム、酢酸ジルコニウム、チタンラクテートアンモニウム塩、チタンラクテート、チタンジイソプロポキシビス(トリエタノールアミネート)、ペルオキソチタン、チタンペルオキソクエン酸錯体、酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、マレイン酸アルミニウムが好ましく、炭酸ジルコニウムアンモニウム、チタンラクテート、チタンラクテートアンモニウム塩、乳酸アルミニウム、塩基性乳酸アルミニウムがより好ましい。   When the composition (2) is a composition obtained by dissolving the compound (3) in a solvent, examples of the compound (3) include ammonium zirconium carbonate, zirconium ammonium halide, zirconium acetate, titanium lactate ammonium salt, titanium lactate, titanium Diisopropoxybis (triethanolaminate), peroxotitanium, titanium peroxocitrate complex, aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate, aluminum maleate are preferred, ammonium zirconium carbonate, titanium Lactate, titanium lactate ammonium salt, aluminum lactate, and basic aluminum lactate are more preferred.

組成物(2)における溶媒が水である場合、化合物(3)としては、炭酸ジルコニウムアンモニウム、ハロゲン化ジルコニウムアンモニウム、チタンラクテート、チタンラクテートアンモニウム塩、乳酸アルミニウム、塩基性乳酸アルミニウムが好ましい。前記の化合物を用いることで水への溶解性が良好であるため、組成物(2)中の金属元素濃度を高くでき、本発明におけるリチウム含有複合酸化物と接触しても沈殿を生じないため、リチウム含有複合酸化物の表面に金属元素の酸化物(II)を均一に被覆できると考えられる。   When the solvent in the composition (2) is water, the compound (3) is preferably zirconium ammonium carbonate, ammonium zirconium halide, titanium lactate, titanium lactate ammonium salt, aluminum lactate, or basic aluminum lactate. Since the solubility in water is good by using the above compound, the metal element concentration in the composition (2) can be increased, and precipitation does not occur even when contacted with the lithium-containing composite oxide in the present invention. It is considered that the metal element oxide (II) can be uniformly coated on the surface of the lithium-containing composite oxide.

組成物(2)が化合物(3)を溶媒に分散させた組成物である場合、化合物(3)としては、酸化ジルコニウム、酸化チタン、酸化アルミニウム、水酸化ジルコニウム、水酸化チタン、水酸化アルミニウムが好ましい。分散させる化合物(3)は微粒子であることが好ましい。該微粒子の平均粒子径は、1〜100nmであることが好ましく、2〜50nmがより好ましく、3〜30nmが特に好ましい。平均粒子径は動的光散乱法により求めることができる。前記の化合物を用いることで組成物(2)を塗布した後、有機物の分解を行わずに酸化物(II)を形成できる。有機物の分解がなければ、本発明における加熱温度を低くでき、不活性雰囲気下で加熱することができる。   When the composition (2) is a composition in which the compound (3) is dispersed in a solvent, the compound (3) includes zirconium oxide, titanium oxide, aluminum oxide, zirconium hydroxide, titanium hydroxide, and aluminum hydroxide. preferable. The compound (3) to be dispersed is preferably fine particles. The average particle diameter of the fine particles is preferably 1 to 100 nm, more preferably 2 to 50 nm, and particularly preferably 3 to 30 nm. The average particle diameter can be determined by a dynamic light scattering method. After applying the composition (2) by using the above compound, the oxide (II) can be formed without decomposing the organic matter. If there is no decomposition of the organic matter, the heating temperature in the present invention can be lowered and the heating can be performed in an inert atmosphere.

本発明における組成物(2)は、Li元素のモル量が該遷移金属元素の総モル量に対して1.2を超えるようなLi過剰なリチウム含有複合酸化物と接触させると該組成物(2)のpHが上がってしまう。化合物(3)としては、pHが上がっても沈殿物を生じない化合物がよく、pHが11以上でも沈殿物を生じない化合物がより好ましい。   When the composition (2) in the present invention is brought into contact with a Li-excess lithium-containing composite oxide such that the molar amount of Li element exceeds 1.2 with respect to the total molar amount of the transition metal element, The pH of 2) will increase. As the compound (3), a compound that does not generate a precipitate even when the pH is increased is preferable, and a compound that does not generate a precipitate even when the pH is 11 or more is more preferable.

組成物(2)で用いられる溶媒としては、前記組成物(1)で用いられる溶媒を同様に用いることができ、好ましい態様も同様である。
組成物(1)と組成物(2)の溶媒は、それぞれ同一であっても、異なっていてもよい。
As a solvent used by the composition (2), the solvent used by the said composition (1) can be used similarly, and its preferable aspect is also the same.
The solvents for the composition (1) and the composition (2) may be the same or different.

本発明の製造方法においては、リチウム含有複合酸化物に組成物(1)、または組成物(1)および組成物(2)を接触させる。組成物(1)および組成物(2)を接触させる場合、それぞれを独立に接触させてもよく、組成物(1)および組成物(2)を混合した後に接触させてもよい。独立に接触させる場合は、組成物の接触させる順序は限定されず、接触回数も限定されない。   In the production method of the present invention, the composition (1), or the composition (1) and the composition (2) are brought into contact with the lithium-containing composite oxide. When the composition (1) and the composition (2) are brought into contact with each other, they may be brought into contact with each other independently, or may be brought into contact after the composition (1) and the composition (2) are mixed. When contacting independently, the order which a composition contacts is not limited, and the frequency | count of contact is also not limited.

組成物(1)および組成物(2)は、それぞれ独立にpH調整剤を含むことができる。pH調整剤としては、加熱時に揮発または分解するものが好ましい。具体的には、酢酸、クエン酸、乳酸、ギ酸などの有機酸やアンモニアが挙げられる。   The composition (1) and the composition (2) can each independently contain a pH adjuster. As the pH adjuster, those that volatilize or decompose upon heating are preferable. Specific examples include organic acids such as acetic acid, citric acid, lactic acid, and formic acid, and ammonia.

組成物(2)のpHとしては、3〜12が好ましく、3.5〜12がより好ましく、4〜10が特に好ましい。pHが前記の範囲にあれば、リチウム含有複合酸化物と接触させた際にリチウム含有複合酸化物からのLi元素の溶出が少なく、pH調整剤等の不純物が少ないため良好な電池特性が得られる。   As pH of a composition (2), 3-12 are preferable, 3.5-12 are more preferable, and 4-10 are especially preferable. If the pH is in the above range, the lithium element is less eluted from the lithium-containing composite oxide when brought into contact with the lithium-containing composite oxide, and good battery characteristics are obtained because there are few impurities such as a pH adjuster. .

組成物(1)を調製する際には、必要に応じて分散処理を行うことが好ましい。分散処理方法としては、ボールミル、ビーズミル、高圧ホモジナイザー、高速ホモジナイザー、超音波分散装置等の公知の手法を用いることができる。分散処理によって、炭素材料(I)を溶媒中に安定して分散させることができる。   When preparing the composition (1), it is preferable to perform a dispersion treatment as necessary. As a dispersion treatment method, a known method such as a ball mill, a bead mill, a high-pressure homogenizer, a high-speed homogenizer, or an ultrasonic dispersion apparatus can be used. By the dispersion treatment, the carbon material (I) can be stably dispersed in the solvent.

組成物(2)における化合物(3)の濃度は、後の工程で加熱により溶媒を除去する必要がある点から高濃度であることが好ましい。しかし、濃度が高すぎると粘度が高くなり、正極活物質および組成物(1)との均一混合性が低下する。組成物(2)における化合物(3)の濃度は、金属元素の酸化物(II)換算で0.5〜30質量%が好ましく、4〜20質量%が特に好ましい。   The concentration of the compound (3) in the composition (2) is preferably high since it is necessary to remove the solvent by heating in the subsequent step. However, when the concentration is too high, the viscosity increases, and the uniform mixing property with the positive electrode active material and the composition (1) decreases. The concentration of the compound (3) in the composition (2) is preferably 0.5 to 30% by mass and particularly preferably 4 to 20% by mass in terms of metal element oxide (II).

リチウム含有複合酸化物と組成物(1)、または組成物(1)および組成物(2)との接触方法としては、スプレーコート法、湿式方法等を適用でき、スプレーコート法によりリチウム含有複合酸化物に噴霧する方法が特に好ましい。湿式方法の場合は、接触後にろ過または蒸発により溶媒を除去する必要があるためプロセスが煩雑になるおそれがある。スプレーコート法の場合は、プロセスが簡便であり、かつ炭素材料(I)、または炭素材料(I)および酸化物(II)をリチウム含有複合酸化物の表面に均一に被覆させることができる。   As a contact method between the lithium-containing composite oxide and the composition (1), or the composition (1) and the composition (2), a spray coating method, a wet method, or the like can be applied. The method of spraying on objects is particularly preferred. In the case of the wet method, since it is necessary to remove the solvent by filtration or evaporation after contact, the process may be complicated. In the case of the spray coating method, the process is simple, and the surface of the lithium-containing composite oxide can be uniformly coated with the carbon material (I) or the carbon material (I) and the oxide (II).

リチウム含有複合酸化物に組成物(1)を接触させる組成物(1)の量は、リチウム含有複合酸化物に対して1〜50質量%が好ましく、2〜40質量%がより好ましく、3〜30質量%が特に好ましい。   The amount of the composition (1) in which the composition (1) is brought into contact with the lithium-containing composite oxide is preferably 1 to 50% by mass, more preferably 2 to 40% by mass with respect to the lithium-containing composite oxide. 30% by mass is particularly preferred.

リチウム含有複合酸化物に組成物(1)および組成物(2)を接触させる場合の組成物(1)および組成物(2)の合計量は、リチウム含有複合酸化物に対して1〜50質量%が好ましく、2〜40質量%がより好ましく、3〜30質量%が特に好ましい。組成物(1)および組成物(2)の合計量の割合が前記の範囲であればリチウム含有複合酸化物の表面に炭素材料(I)および酸化物(II)を均一に被覆させやすい。また、スプレーコート法により接触する際にリチウム含有複合酸化物が塊にならず撹拌しやすい利点がある。   When the composition (1) and the composition (2) are brought into contact with the lithium-containing composite oxide, the total amount of the composition (1) and the composition (2) is 1 to 50 mass with respect to the lithium-containing composite oxide. % Is preferable, 2 to 40% by mass is more preferable, and 3 to 30% by mass is particularly preferable. When the ratio of the total amount of the composition (1) and the composition (2) is in the above range, the surface of the lithium-containing composite oxide can be easily coated with the carbon material (I) and the oxide (II). Further, there is an advantage that the lithium-containing composite oxide is not agglomerated and easily stirred when contacted by a spray coating method.

スプレーコート法、湿式方法のいずれの場合であっても、リチウム含有複合酸化物に、組成物(1)、または組成物(1)および組成物(2)を添加して撹拌することにより、リチウム含有複合酸化物と、組成物(1)、または組成物(1)および組成物(2)とを接触させることが好ましい。撹拌装置としては、ドラムミキサーまたはソリッドエアーの低剪断力の撹拌機を用いることができる。撹拌しながら組成物(1)、または組成物(1)および組成物(2)とリチウム含有複合酸化物を接触させることで、より均一に炭素材料(I)、または炭素材料(I)および酸化物(II)がリチウム含有複合酸化物の表面に被覆した粒子(III)を得ることができる。   In either case of the spray coating method or the wet method, lithium is added to the lithium-containing composite oxide by adding the composition (1) or the composition (1) and the composition (2) and stirring. It is preferable to bring the composite oxide in contact with the composition (1), or the composition (1) and the composition (2). As the stirring device, a drum mixer or a solid-air low shear stirring device can be used. By contacting the composition (1), or the composition (1) and the composition (2) with the lithium-containing composite oxide with stirring, the carbon material (I), or the carbon material (I) and the oxidation are more uniformly obtained. Particles (III) in which the product (II) is coated on the surface of the lithium-containing composite oxide can be obtained.

次に、本発明の製造方法においては加熱を行う。加熱温度は、50℃〜500℃であり、80℃〜450℃がより好ましく、100〜400℃が特に好ましい。加熱することで、Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素を含む化合物から効率的に酸化物(II)を形成させることができ、かつ、水や有機成分等の揮発性の溶媒や不純物を除去することができる。   Next, heating is performed in the production method of the present invention. The heating temperature is 50 ° C to 500 ° C, more preferably 80 ° C to 450 ° C, and particularly preferably 100 to 400 ° C. By heating, oxide (II) can be efficiently formed from a compound containing at least one metal element selected from Zr, Ti, and Al, and volatile solvents such as water and organic components And impurities can be removed.

リチウム含有複合酸化物と組成物(1)を接触させる場合、または組成物(1)および化合物(3)が分散している組成物(2)を接触させる場合、加熱は窒素やアルゴンなど不活性雰囲気下で行うことが好ましい。不活性雰囲気下で加熱することで炭素材料(I)の酸化分解を抑制することができる。加熱温度を50℃以上とすることで、溶媒を効率的に除去することができる。加熱温度を500℃以下とすることで、リチウム含有複合酸化物中の遷移金属が還元されない。   When the lithium-containing composite oxide is brought into contact with the composition (1), or when the composition (1) and the composition (2) in which the compound (3) is dispersed are brought into contact, heating is inert such as nitrogen or argon. It is preferable to carry out in an atmosphere. Oxidative decomposition of the carbon material (I) can be suppressed by heating in an inert atmosphere. By setting the heating temperature to 50 ° C. or higher, the solvent can be efficiently removed. By setting the heating temperature to 500 ° C. or lower, the transition metal in the lithium-containing composite oxide is not reduced.

化合物(3)が分散している組成物(2)を用いる場合、加熱は酸素含有雰囲気下で行うことが好ましい。加熱温度は、200〜500℃が好ましく、250〜450℃がより好ましく、300〜450℃が特に好ましい。加熱温度を200℃以上とすることで、化合物(3)から酸化物(II)を形成させやすく、残留水分等の揮発性の不純物を低減できサイクル特性の低下が抑制できる。加熱温度を500℃以下とすることで炭素材料(I)の酸化熱分解反応が進みにくく、レート特性が向上する。   When using the composition (2) in which the compound (3) is dispersed, the heating is preferably performed in an oxygen-containing atmosphere. The heating temperature is preferably 200 to 500 ° C, more preferably 250 to 450 ° C, and particularly preferably 300 to 450 ° C. By setting the heating temperature to 200 ° C. or higher, the oxide (II) can be easily formed from the compound (3), volatile impurities such as residual moisture can be reduced, and deterioration of cycle characteristics can be suppressed. By setting the heating temperature to 500 ° C. or less, the oxidation thermal decomposition reaction of the carbon material (I) is difficult to proceed, and the rate characteristics are improved.

加熱時間は、0.1〜24時間が好ましく、0.5〜18時間がより好ましく、1〜12時間が特に好ましい。   The heating time is preferably 0.1 to 24 hours, more preferably 0.5 to 18 hours, and particularly preferably 1 to 12 hours.

加熱時の圧力は、特に限定されず、常圧または加圧が好ましく、常圧が特に好ましい。   The pressure at the time of heating is not specifically limited, Normal pressure or pressurization is preferable, and normal pressure is particularly preferable.

本発明の製造方法において、リチウム含有複合酸化物と、組成物(1)、または組成物(1)および組成物(2)との接触させる工程と、加熱させる工程は、接触後に加熱してもよく、接触させながら加熱を行ってもよい。   In the production method of the present invention, the step of bringing the lithium-containing composite oxide into contact with the composition (1) or the composition (1) and the composition (2) and the step of heating may be performed after the contact. Well, you may heat while making it contact.

<正極>
本発明のリチウムイオン二次電池用正極は、前記の正極活物質、導電材、およびバインダーを含む正極活物質層が、正極集電体上(正極表面)に形成されてなる。リチウムイオン二次電池用正極は、例えば、本発明の正極活物質、導電材およびバインダーを、溶媒に溶解させる、分散媒に分散させる、または溶媒と混練することによって、スラリーまたは混錬物を調製し、調製したスラリーまたは混錬物を正極集電板に塗布等により担持させることによって、製造することができる。
<Positive electrode>
The positive electrode for a lithium ion secondary battery of the present invention comprises a positive electrode active material layer containing the positive electrode active material, a conductive material, and a binder formed on a positive electrode current collector (positive electrode surface). The positive electrode for a lithium ion secondary battery is prepared by, for example, preparing a slurry or kneaded material by dissolving the positive electrode active material, the conductive material and the binder of the present invention in a solvent, dispersing in a dispersion medium, or kneading with a solvent. Then, the prepared slurry or kneaded material can be produced by carrying it on the positive electrode current collector plate by coating or the like.

導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。   Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.

バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。   As binders, fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof, Examples thereof include acrylic acid-based polymers such as acrylic acid copolymers and methacrylic acid copolymers, and copolymers thereof.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、前記のリチウムイオン二次電池用正極、負極、および非水電解質を含む。
<Lithium ion secondary battery>
The lithium ion secondary battery of this invention contains the said positive electrode for lithium ion secondary batteries, a negative electrode, and a nonaqueous electrolyte.

負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなる。例えば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって、製造することができる。   The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector. For example, it can be produced by preparing a slurry by kneading a negative electrode active material with an organic solvent, and applying, drying, and pressing the prepared slurry to a negative electrode current collector.

負極集電板としては、例えばニッケル箔、銅箔等の金属箔を用いることができる。   As the negative electrode current collector plate, for example, a metal foil such as a nickel foil or a copper foil can be used.

負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、リチウム化合物、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタンおよび炭化ホウ素化合物等を用いることができる。   The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential, such as lithium metal, lithium alloy, lithium compound, carbon material, periodic table 14 and group 15 metal. Oxides, carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.

リチウム合金およびリチウム化合物としては、リチウムと、リチウムと合金あるいは化合物を形成可能な金属とにより構成されるリチウム合金およびリチウム化合物を用いることができる。   As the lithium alloy and the lithium compound, lithium alloys and lithium compounds composed of lithium and a metal capable of forming an alloy or compound with lithium can be used.

負極活物質の炭素材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂やフラン樹脂等を適当な温度で焼成し炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等を用いることができる。
周期表14族の金属としては、ケイ素あるいはスズであり、ケイ素が好ましい。
その他に負極活物質として用いることができる材料としては酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物やLi2.6Co0.4N等の窒化物が挙げられる。
Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
The group 14 metal of the periodic table is silicon or tin, with silicon being preferred.
Other materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.

非水電解質としては、非水溶媒に電解質塩を溶解させた非水電解液を用いることが好ましい。
非水電解液としては、有機溶媒と電解質とを適宜組み合わせて調製されたものを用いることができる。有機溶媒としては、電解液用の有機溶媒として公知のものが使用でき、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等を用いることができる。特に、電圧安定性の点からは、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類を使用することが好ましい。有機溶媒は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
非水電解質としては、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物などに電解質を混合または溶解させた固体状もしくはゲル状電解質等を用いることができる。
As the nonaqueous electrolyte, it is preferable to use a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent.
As the non-aqueous electrolyte, one prepared by appropriately combining an organic solvent and an electrolyte can be used. As the organic solvent, those known as an organic solvent for an electrolytic solution can be used, and propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, propionic acid ester and the like can be used. In particular, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate and chain carbonates such as dimethyl carbonate and diethyl carbonate. An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
As the nonaqueous electrolyte, a solid electrolyte containing an electrolyte salt, a polymer electrolyte, a solid electrolyte or a gel electrolyte in which an electrolyte is mixed or dissolved, and the like can be used.

固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質を用いることができる。
無機固体電解質としては、窒化リチウム、ヨウ化リチウム等を用いることができる。
高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物等を用いることができる。高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどやこれらの誘導体、混合物、複合体が挙げられる。
The solid electrolyte may be any material having lithium ion conductivity, and an inorganic solid electrolyte and a polymer solid electrolyte can be used.
As the inorganic solid electrolyte, lithium nitride, lithium iodide, or the like can be used.
As the polymer solid electrolyte, an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used. Examples of the polymer compound include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, and their derivatives, mixtures, and composites.

ゲル状電解質等としては、前記の非水電解液を吸収してゲル化する種々の高分子化合物を用いることができる。ゲル状電解質に用いられる高分子化合物としては、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド−co−ヘキサフルオロプロピレン)などのフッ素系高分子等を用いることができる。また、ゲル状電解質に用いられる高分子化合物としては、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、同架橋体などのエーテル系高分子を用いることができる。前記共重合体に用いるモノマーとしては、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等を挙げることができる。
ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、特にフッ素系高分子が好ましい。
As the gel electrolyte or the like, various polymer compounds that absorb the nonaqueous electrolyte and gelate can be used. As the polymer compound used for the gel electrolyte, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used. As the polymer compound used in the gel electrolyte, an ether polymer such as polyacrylonitrile, a polyacrylonitrile copolymer, polyethylene oxide, a polyethylene oxide copolymer, and a crosslinked product thereof can be used. Examples of the monomer used in the copolymer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
As the matrix of the gel electrolyte, a fluorine-based polymer is particularly preferable from the viewpoint of stability against redox reaction.

前記の電解質中で用いられる電解質塩としては、LiClO、LiPF、LiBF、CHSOLi、LiCl、LiBr等を用いることができる。 Examples of the electrolyte salt used in the electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , CH 3 SO 3 Li, LiCl, and LiBr.

本発明のリチウムイオン二次電池の形状は、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択することができる。   The shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like according to applications. .

<リチウム含有複合酸化物の合成>
硫酸ニッケル(II)六水和物(140.6g)、硫酸コバルト(II)七水和物(131.4g)、硫酸マンガン(II)五水和物(482.2g)に蒸留水(1245.9g)を加えて均一に溶解させて原料溶液とした。硫酸アンモニウム(79.2g)に蒸留水(320.8g)を加えて均一に溶解させてアンモニア源溶液とした。硫酸アンモニウム(79.2g)に蒸留水(1920.8g)を加えて均一に溶解させて母液とした。水酸化ナトリウム(400g)に蒸留水(600g)を加えて均一に溶解させてpH調整液とした。
2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の撹拌翼で撹拌しながら原料溶液を5.0g/分、アンモニア源溶液を1.0g/分の速度で添加し、ニッケル、コバルト、マンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。
<Synthesis of lithium-containing composite oxide>
Nickel (II) sulfate hexahydrate (140.6 g), cobalt sulfate (II) heptahydrate (131.4 g), manganese (II) sulfate pentahydrate (482.2 g) and distilled water (1245. 9 g) was added and dissolved uniformly to obtain a raw material solution. Distilled water (320.8 g) was added to ammonium sulfate (79.2 g) and dissolved uniformly to obtain an ammonia source solution. Distilled water (1920.8 g) was added to ammonium sulfate (79.2 g) and dissolved uniformly to obtain a mother liquor. Distilled water (600 g) was added to sodium hydroxide (400 g) and dissolved uniformly to obtain a pH adjusting solution.
The mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0. While stirring the solution in the reaction vessel with an anchor type stirring blade, the raw material solution was added at a rate of 5.0 g / min, and the ammonia source solution was added at a rate of 1.0 g / min, and a composite hydroxide of nickel, cobalt, and manganese was added. Precipitated. During the addition of the raw material solution, the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0. Moreover, nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.

得られたニッケル、コバルト、マンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて前駆体とした。
ICPで前駆体のニッケル、コバルト、マンガンの含有量を測定したところ、それぞれ11.6質量%、10.5質量%、42.3質量%であった(モル比でニッケル:コバルト:マンガン=0.172:0.156:0.672)。
前駆体(20g)とリチウム含有量が26.9mol/kgの炭酸リチウム(12.6g)を混合して酸素含有雰囲気下800℃で12時間焼成し、実施例のリチウム含有複合酸化物を得た。得られた実施例のリチウム含有複合酸化物の組成はLi(Li0.2Ni0.137Co0.125Mn0.538)Oとなる。実施例のリチウム含有複合酸化物の平均粒子径D50は5.3μmであり、BET(Brunauer,Emmett,Teller)法を用いて測定した比表面積は4.4m/gであった。
In order to remove impurity ions from the obtained composite hydroxide of nickel, cobalt, and manganese, washing was repeated by pressure filtration and dispersion in distilled water. When the electrical conductivity of the filtrate reached 25 μS / cm, the washing was finished and dried at 120 ° C. for 15 hours to obtain a precursor.
When the contents of the precursors nickel, cobalt, and manganese were measured by ICP, they were 11.6% by mass, 10.5% by mass, and 42.3% by mass, respectively (in terms of molar ratio, nickel: cobalt: manganese = 0). 172: 0.156: 0.672).
A precursor (20 g) and lithium carbonate (12.6 g) having a lithium content of 26.9 mol / kg were mixed and baked at 800 ° C. for 12 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide of the example. . The composition of the lithium-containing composite oxide of the obtained example is Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 . The average particle diameter D50 of the lithium-containing composite oxide of the example was 5.3 μm, and the specific surface area measured using the BET (Brunauer, Emmett, Teller) method was 4.4 m 2 / g.

<TG(
熱重量)測定>
TG測定装置(商品名:TG−DTA2000SA、Bruker AXS 社製)を用いて、カーボンナノチューブのTG測定を大気雰囲気下で行った。また、TG測定においては、昇温速度10℃/分で室温から800℃まで昇温して測定した。
カーボンナノチューブの重量減少は400℃で1.5%、500℃で4.4%、550℃で16.1%、600℃で70.2%であった。カーボンナノチューブは大気雰囲気中において500℃以下では熱分解が起きにくく重量減少が少ないが、500℃を超えると急激に重量減少が進むことが確認できた。グラフェンとカーボンブラックについてもTG測定を行う。500℃以下では熱分解が起きにくいことが確認できる。
従って500℃以下の加熱温度では炭素材料(I)の仕込み比をもって粒子(III)における炭素材料(I)の割合とする。
<TG (
Thermogravimetric) measurement>
Using a TG measuring device (trade name: TG-DTA2000SA, manufactured by Bruker AXS), TG measurement of carbon nanotubes was performed in an air atmosphere. Moreover, in TG measurement, it heated up from room temperature to 800 degreeC with the temperature increase rate of 10 degree-C / min, and measured.
The weight loss of the carbon nanotubes was 1.5% at 400 ° C, 4.4% at 500 ° C, 16.1% at 550 ° C, and 70.2% at 600 ° C. The carbon nanotubes were less likely to undergo thermal decomposition at 500 ° C. or less in the air atmosphere, and the weight loss was small. However, it was confirmed that the weight reduction rapidly progressed above 500 ° C. TG measurement is also performed on graphene and carbon black. It can be confirmed that thermal decomposition hardly occurs at 500 ° C. or lower.
Therefore, at a heating temperature of 500 ° C. or less, the charging ratio of the carbon material (I) is set as the ratio of the carbon material (I) in the particles (III).

(実施例1)<リチウム含有複合酸化物へのカーボンナノチューブ被覆>
カーボンナノチューブ(平均直径10nm、平均長さ5μm)を1質量%含むpH8.2の水分散液(組成物(1))を調製する。
次に、撹拌している実施例のリチウム含有複合酸化物(15g)に対して、調製した組成物(1)(3g)を噴霧して添加し、実施例のリチウム含有複合酸化物と組成物(1)とを混合させながら接触させる。次いで、得られた混合物を、窒素雰囲気下300℃で1時間加熱し、リチウム含有複合酸化物の表面に炭素材料(I)が被覆する粒子(III)からなる実施例1の正極活物質(A)を得る。
(Example 1) <Carbon nanotube coating on lithium-containing composite oxide>
A pH 8.2 aqueous dispersion (composition (1)) containing 1% by mass of carbon nanotubes (average diameter 10 nm, average length 5 μm) is prepared.
Next, the prepared composition (1) (3 g) was sprayed and added to the stirred lithium-containing composite oxide (15 g), and the lithium-containing composite oxide and composition of the example were added. (1) is brought into contact with mixing. Subsequently, the obtained mixture was heated at 300 ° C. for 1 hour in a nitrogen atmosphere, and the positive electrode active material (A) of Example 1 comprising particles (III) covered with the carbon material (I) on the surface of the lithium-containing composite oxide. )

(実施例2)<リチウム含有複合酸化物へのカーボンナノチューブ被覆>
組成物(1)としてカーボンナノチューブ(平均直径10nm、平均長さ5μm)を0.1質量%含む水分散液(pH8.0)を用いる以外は実施例1と同様に行い、実施例2の正極活物質(B)を得る。
(Example 2) <Carbon nanotube coating on lithium-containing composite oxide>
The positive electrode of Example 2 was prepared in the same manner as in Example 1 except that an aqueous dispersion (pH 8.0) containing 0.1% by mass of carbon nanotubes (average diameter 10 nm, average length 5 μm) was used as composition (1). An active material (B) is obtained.

(実施例3)<リチウム含有複合酸化物へのグラフェン被覆>
組成物(1)としてグラフェン(平均膜厚3nm、平均円相当径3μm)を1質量%含む水分散液(pH8.5)を用いる以外は実施例1と同様に行い、実施例3の正極活物質(C)を得る。
(Example 3) <Graphene coating on lithium-containing composite oxide>
The same procedure as in Example 1 was carried out except that an aqueous dispersion (pH 8.5) containing 1% by mass of graphene (average film thickness 3 nm, average equivalent circle diameter 3 μm) was used as the composition (1). Material (C) is obtained.

(実施例4)<リチウム含有複合酸化物へのカーボンブラック被覆>
組成物(1)としてカーボンブラック(平均分散粒子径100nm)を5質量%含む水分散液(pH6.5)を用いる以外は実施例1と同様に行い、実施例4の正極活物質(D)を得る。
(Example 4) <Carbon black coating on lithium-containing composite oxide>
The positive electrode active material (D) of Example 4 was prepared in the same manner as in Example 1 except that an aqueous dispersion (pH 6.5) containing 5% by mass of carbon black (average dispersed particle size 100 nm) was used as the composition (1). Get.

(実施例5)<リチウム含有複合酸化物へのカーボンブラック被覆>
組成物(1)としてカーボンブラック(平均分散粒子径100nm)を20質量%含む水分散液(pH7・0)を用いる以外は実施例1と同様に行い、実施例5の正極活物質(E)を得る。
(Example 5) <Carbon black coating on lithium-containing composite oxide>
The positive electrode active material (E) of Example 5 was prepared in the same manner as in Example 1 except that an aqueous dispersion (pH 7.0) containing 20% by mass of carbon black (average dispersed particle size 100 nm) was used as the composition (1). Get.

(実施例6)<リチウム含有複合酸化物へのカーボンナノチューブとZr被覆>
カーボンナノチューブ(平均直径10nm、平均長さ5μm)を1.5質量%含むpH8.1の水分散液(組成物(1))を調製する。次いでジルコニウム含量がZrO換算で20.7質量%の炭酸ジルコニウムアンモニウム(化学式:(NH[Zr(CO(OH)])水溶液(2.18g)に、蒸留水(22.82)gを加えて、pH6.0のZr水溶液(組成物(2))を調製する。
次に、撹拌している実施例のリチウム含有複合酸化物(15g)に対して、調製した組成物(1)(2g)を噴霧して添加し、実施例のリチウム含有複合酸化物とカーボンナノチューブ分散液とを混合させながら接触させる。次いで、調製した組成物(2)(1.85g)を噴霧して添加して、混合させながら接触させる。得られた混合物を、大気雰囲気下400℃で1時間加熱し、リチウム含有複合酸化物の表面に炭素材料(I)とZrを含む酸化物(II)が被覆する粒子(III)からなる実施例6の正極活物質(F)を得る。
(Example 6) <Carbon nanotube and Zr coating on lithium-containing composite oxide>
A pH 8.1 aqueous dispersion (composition (1)) containing 1.5% by mass of carbon nanotubes (average diameter 10 nm, average length 5 μm) is prepared. Subsequently, zirconium ammonium carbonate (chemical formula: (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]) aqueous solution (2.18 g) having a zirconium content of 20.7 mass% in terms of ZrO 2 was added to distilled water (22 .82) g is added to prepare a pH 6.0 aqueous solution of Zr (composition (2)).
Next, the prepared composition (1) (2 g) was sprayed and added to the stirred lithium-containing composite oxide (15 g), and the lithium-containing composite oxide and carbon nanotube of the example were added. Contact with the dispersion while mixing. The prepared composition (2) (1.85 g) is then added by spraying and brought into contact with mixing. The obtained mixture was heated at 400 ° C. for 1 hour in an air atmosphere, and the surface of the lithium-containing composite oxide was composed of particles (III) covered with the carbon material (I) and the oxide (II) containing Zr. 6 positive electrode active material (F) is obtained.

(実施例7)<リチウム含有複合酸化物へのカーボンナノチューブとAl被覆>
組成物(2)としてアルニウム含量がAl換算で8.5質量%の塩基性乳酸アルミニウム水溶液(2.20g)に蒸留水(22.80g)を加えた、pH5.5のAl水溶液を用いる以外は実施例6と同様に行い、実施例7の正極活物質(G)を得る。
(Example 7) <Carbon nanotube and Al coating on lithium-containing composite oxide>
An aqueous Al solution having a pH of 5.5 was prepared by adding distilled water (22.80 g) to a basic aluminum lactate aqueous solution (2.20 g) having an aluminum content of 8.5% by mass in terms of Al 2 O 3 as the composition (2). The positive electrode active material (G) of Example 7 is obtained in the same manner as in Example 6 except that it is used.

(実施例8)<リチウム含有複合酸化物へのカーボンナノチューブとTi被覆>
組成物(2)としてチタン含量がTiO換算で13.5質量%の乳酸チタン水溶液(3.34g)に蒸留水(21.66g)を加えた、pH4.5のTi水溶液を用いる以外は実施例6と同様に行い、実施例8の正極活物質(H)を得る。
(Example 8) <Carbon nanotube and Ti coating on lithium-containing composite oxide>
The composition (2) was carried out except that a titanium aqueous solution having a titanium content of 13.5% by mass in terms of TiO 2 (3.34 g) and distilled water (21.66 g) added thereto and a pH 4.5 aqueous solution of Ti was used. In the same manner as in Example 6, the positive electrode active material (H) of Example 8 is obtained.

(実施例9)<リチウム含有複合酸化物へのカーボンナノチューブとZr粒子被覆>
カーボンナノチューブ(平均直径10nm、平均長さ5μm)を1.5質量%含むpH8.1の水分散液(組成物(1))を調製する。次いでジルコニウム含量がZrO換算で30質量%の酸性ジルコニア分散液(堺化学工業社製、SZRジルコニア水分散液、平均粒子径3.9nm)(1.5g)に、蒸留水(23.5g)を加えて、pH3.8のZrO分散液(組成物(2))を調製する。
次に、撹拌している実施例のリチウム含有複合酸化物(15g)に対して、調製したカーボンナノチューブ分散液(2g)を噴霧して添加し、実施例のリチウム含有複合酸化物とカーボンナノチューブ分散液とを混合させながら接触させる。次いで、調製したZrO分散液(1.85g)を噴霧して添加して、混合させながら接触させる。得られた混合物を、窒素雰囲気下300℃で1時間加熱し、リチウム含有複合酸化物の表面に炭素材料(I)とZr元素を含む酸化物(II)が被覆する粒子(III)からなる実施例9の正極活物質(I)を得る。
Example 9 <Carbon nanotube and Zr particle coating on lithium-containing composite oxide>
A pH 8.1 aqueous dispersion (composition (1)) containing 1.5% by mass of carbon nanotubes (average diameter 10 nm, average length 5 μm) is prepared. Next, an acidic zirconia dispersion having a zirconium content of 30% by mass in terms of ZrO 2 (manufactured by Sakai Chemical Industry Co., Ltd., SZR zirconia aqueous dispersion, average particle size 3.9 nm) (1.5 g), distilled water (23.5 g) Is added to prepare a ZrO 2 dispersion (composition (2)) having a pH of 3.8.
Next, the prepared carbon nanotube dispersion (2 g) is sprayed and added to the lithium-containing composite oxide (15 g) of the stirring example, and the lithium-containing composite oxide and carbon nanotube dispersion of the example are added. Contact with mixing with liquid. The prepared ZrO 2 dispersion (1.85 g) is then added by spraying and contacted with mixing. The obtained mixture was heated at 300 ° C. for 1 hour in a nitrogen atmosphere, and the surface of the lithium-containing composite oxide was composed of particles (III) covered with the carbon material (I) and the oxide (II) containing the Zr element. The positive electrode active material (I) of Example 9 is obtained.

(実施例10)<リチウム含有複合酸化物へのカーボンナノチューブとZr粒子被覆>
組成物(1)としてグラフェン(平均膜厚3nm、平均円相当径3μm)を1.5質量%含む水分散液(pH8.6)を用いる以外は実施例9と同様に行い、実施例10の正極活物質(J)を得る。
(Example 10) <Carbon nanotube and Zr particle coating on lithium-containing composite oxide>
The same procedure as in Example 9 was performed except that an aqueous dispersion (pH 8.6) containing 1.5% by mass of graphene (average film thickness 3 nm, average equivalent circle diameter 3 μm) was used as the composition (1). A positive electrode active material (J) is obtained.

(実施例11)<リチウム含有複合酸化物へのカーボンナノチューブとZr粒子被覆>
組成物(1)としてカーボンブラック(平均分散粒子径100nm)を7.5質量%含む水分散液(pH6.5)を用いる以外は実施例9と同様に行い、実施例11の正極活物質(K)を得る。
(Example 11) <Carbon nanotube and Zr particle coating on lithium-containing composite oxide>
The same procedure as in Example 9 was used except that an aqueous dispersion (pH 6.5) containing 7.5% by mass of carbon black (average dispersed particle size 100 nm) was used as the composition (1). K) is obtained.

(実施例12)<リチウム含有複合酸化物へのカーボンナノチューブ被覆>
加熱温度を150℃とする以外は実施例1と同様に行い、実施例12の正極活物質(L)を得る。
(Example 12) <Coating of carbon nanotubes to lithium-containing composite oxide>
The positive electrode active material (L) of Example 12 is obtained in the same manner as in Example 1 except that the heating temperature is 150 ° C.

(実施例13)<リチウム含有複合酸化物へのカーボンナノチューブとZr粒子被覆>
加熱温度を150℃とする以外は実施例9と同様に行い、実施例12の正極活物質(M)を得る。
(Example 13) <Carbon nanotube and Zr particle coating on lithium-containing composite oxide>
The positive electrode active material (M) of Example 12 is obtained in the same manner as in Example 9 except that the heating temperature is 150 ° C.

(比較例1)
実施例のリチウム含有複合酸化物に対して被覆処理は行わず、比較例1の正極活物質(N)とした。
(Comparative Example 1)
The lithium-containing composite oxide of the example was not subjected to coating treatment, and the positive electrode active material (N) of Comparative Example 1 was used.

(比較例2)<リチウム含有複合酸化物へのZr被覆>
ジルコニウム含量がZrO換算で20.7質量%の炭酸ジルコニウムアンモニウム(化学式:(NH[Zr(CO(OH)])水溶液(2.18g)に、蒸留水(22.82)gを加えて、pH6.0のZr水溶液(組成物(2))を調製する。
次に、撹拌している実施例のリチウム含有複合酸化物(15g)に対して、組成物(2)(1.85g)を噴霧して添加して、混合させながら接触させる。得られた混合物を、大気雰囲気下400℃で1時間加熱し、リチウム含有複合酸化物の表面にZrを含む酸化物(II)が被覆する粒子からなる比較例2の正極活物質(O)を得る。
(Comparative Example 2) <Zr coating on lithium-containing composite oxide>
Zirconium ammonium carbonate (chemical formula: (NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]) aqueous solution (2.18 g) having a zirconium content of 20.7 mass% in terms of ZrO 2 was added to distilled water (22. 82) g is added to prepare a pH 6.0 aqueous solution of Zr (composition (2)).
Next, the composition (2) (1.85 g) is sprayed and added to the lithium-containing composite oxide (15 g) of the stirring example, and brought into contact with mixing. The obtained mixture was heated at 400 ° C. for 1 hour in an air atmosphere, and the positive electrode active material (O) of Comparative Example 2 consisting of particles coated with oxide (II) containing Zr on the surface of the lithium-containing composite oxide was obtained. obtain.

(比較例3)<リチウム含有複合酸化物へのカーボンブラック被覆>
組成物(1)としてカーボンブラック(平均分散粒子径600nm)を5質量%含む水分散液(pH6.2)を用いる以外は実施例1と同様に行い、比較例3の正極活物質(P)を得る。
(Comparative Example 3) <Carbon black coating on lithium-containing composite oxide>
The positive electrode active material (P) of Comparative Example 3 was prepared in the same manner as in Example 1 except that an aqueous dispersion (pH 6.2) containing 5% by mass of carbon black (average dispersed particle size 600 nm) was used as the composition (1). Get.

(比較例4)
D50が5μmであり、比表面積が4m/gであるLiMnを比較例4の正極活物質(Q)とする。
(Comparative Example 4)
LiMn 2 O 4 having a D50 of 5 μm and a specific surface area of 4 m 2 / g is used as the positive electrode active material (Q) of Comparative Example 4.

(比較例5)<LiMnへのカーボンナノチューブ被覆>
実施例のリチウム含有複合酸化物の代わりにD50が5μmであり、比表面積が4m/gであるLiMnを用いる以外は実施例1と同様に行い、比較例5の正極活物質(R)を得る。
(Comparative Example 5) <Carbon nanotube coating on LiMn 2 O 4 >
The positive electrode active material of Comparative Example 5 was prepared in the same manner as in Example 1 except that LiMn 2 O 4 having a D50 of 5 μm and a specific surface area of 4 m 2 / g was used instead of the lithium-containing composite oxide of Example. R) is obtained.

(比較例6)<LiMnへのカーボンナノチューブとZr被覆>
実施例のリチウム含有複合酸化物の代わりにD50が5μmであり、比表面積が4m/gであるLiMnを用いる以外は実施例6と同様に行い、比較例6の正極活物質(S)を得る。
(Comparative Example 6) <Carbon nanotube and Zr coating on LiMn 2 O 4 >
The positive electrode active material of Comparative Example 6 was prepared in the same manner as in Example 6 except that LiMn 2 O 4 having a D50 of 5 μm and a specific surface area of 4 m 2 / g was used instead of the lithium-containing composite oxide of Example. S) is obtained.

<正極体シートの作製>
正極活物質として、実施例1〜実施例13、比較例1〜比較例6の正極活物質(A)〜(S)をそれぞれ用い、正極活物質とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N−メチルピロリドン)を混合し、さらにN−メチルピロリドンを添加してスラリーを作製する。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンは質量比で82/10/8とする。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工する。120℃で乾燥し、ロールプレス圧延を2回行うことによりリチウム電池用の正極となる実施例1〜実施例13、比較例1〜比較例6の正極体シートを作製する。
<Preparation of positive electrode sheet>
As the positive electrode active material, the positive electrode active materials (A) to (S) of Examples 1 to 13 and Comparative Examples 1 to 6 were used, respectively, and the positive electrode active material, acetylene black (conductive material), and polyvinylidene fluoride ( A polyvinylidene fluoride solution (solvent N-methylpyrrolidone) containing 12.1% by mass of a binder is mixed, and N-methylpyrrolidone is further added to prepare a slurry. The positive electrode active material, acetylene black, and polyvinylidene fluoride are in a mass ratio of 82/10/8. One side of the slurry is applied to a 20 μm thick aluminum foil (positive electrode current collector) using a doctor blade. The positive electrode sheet of Examples 1 to 13 and Comparative Examples 1 to 6 to be a positive electrode for a lithium battery is prepared by drying at 120 ° C. and performing roll press rolling twice.

(比較例7)
正極活物質として、比較例1の正極活物質(N)を用い、正極活物質とカーボンナノチューブ(平均直径10nm、平均長さ5μm)とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N−メチルピロリドン)を混合し、さらにN−メチルピロリドンを添加してスラリーを作製する。正極活物質と、カーボンナノチューブと、アセチレンブラックと、ポリフッ化ビニリデンは質量比で81.8/0.164/10/8とする。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工した。120℃で乾燥し、ロールプレス圧延を2回行うことによりリチウム電池用の正極となる比較例7の正極体シートを作製する。
(Comparative Example 7)
As the positive electrode active material, the positive electrode active material (N) of Comparative Example 1 was used, and the positive electrode active material, carbon nanotubes (average diameter 10 nm, average length 5 μm), acetylene black (conductive material), and polyvinylidene fluoride (binder) 12 A polyvinylidene fluoride solution containing 1% by mass (solvent N-methylpyrrolidone) is mixed, and further N-methylpyrrolidone is added to prepare a slurry. The positive electrode active material, carbon nanotube, acetylene black, and polyvinylidene fluoride are 81.8 / 0.164 / 10/8 in mass ratio. One side of the slurry was applied to a 20 μm thick aluminum foil (positive electrode current collector) using a doctor blade. The positive electrode body sheet of the comparative example 7 used as the positive electrode for lithium batteries is produced by drying at 120 degreeC and performing roll press rolling twice.

(比較例8)
正極活物質として、比較例1の正極活物質(N)を用い、正極活物質とグラフェン(平均膜厚さ3nm、平均円相当径5μm)とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N−メチルピロリドン)を混合し、さらにN−メチルピロリドンを添加してスラリーを作製する。正極活物質と、グラフェンと、アセチレンブラックと、ポリフッ化ビニリデンは質量比で81.8/0.164/10/8とする。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工する。120℃で乾燥し、ロールプレス圧延を2回行うことによりリチウム電池用の正極となる比較例8の正極体シートを作製する。
(Comparative Example 8)
As the positive electrode active material, the positive electrode active material (N) of Comparative Example 1 was used, and the positive electrode active material, graphene (average film thickness 3 nm, average equivalent circle diameter 5 μm), acetylene black (conductive material), and polyvinylidene fluoride (binder) Is mixed with a polyvinylidene fluoride solution containing 12.1% by mass (solvent N-methylpyrrolidone), and N-methylpyrrolidone is further added to prepare a slurry. The positive electrode active material, graphene, acetylene black, and polyvinylidene fluoride have a mass ratio of 81.8 / 0.164 / 10/8. One side of the slurry is applied to a 20 μm thick aluminum foil (positive electrode current collector) using a doctor blade. The positive electrode sheet of Comparative Example 8 which becomes a positive electrode for a lithium battery is prepared by drying at 120 ° C. and performing roll press rolling twice.

(比較例9)
正極活物質として、比較例1の正極活物質(N)を用い、正極活物質とカーボンブラック(平均分散粒子径100nm)とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N−メチルピロリドン)を混合し、さらにN−メチルピロリドンを添加してスラリーを作製する。正極活物質と、カーボンブラックと、アセチレンブラックと、ポリフッ化ビニリデンは質量比で81.2/0.82/10/8とする。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工する。120℃で乾燥し、ロールプレス圧延を2回行うことによりリチウム電池用の正極となる比較例9の正極体シートを作製する。
(Comparative Example 9)
The positive electrode active material (N) of Comparative Example 1 was used as the positive electrode active material, and 12.1 mass of the positive electrode active material, carbon black (average dispersed particle size 100 nm), acetylene black (conductive material), and polyvinylidene fluoride (binder). A polyvinylidene fluoride solution containing 1% (solvent N-methylpyrrolidone) is mixed, and N-methylpyrrolidone is further added to prepare a slurry. The positive electrode active material, carbon black, acetylene black, and polyvinylidene fluoride have a mass ratio of 81.2 / 0.82 / 10/8. One side of the slurry is applied to a 20 μm thick aluminum foil (positive electrode current collector) using a doctor blade. The positive electrode body sheet of the comparative example 9 used as the positive electrode for lithium batteries is produced by drying at 120 degreeC and performing roll press rolling twice.

<電池の組み立て>
前記の実施例1〜実施例13、比較例1〜比較例9の正極体シートを打ち抜いたものを正極に用い、厚さ500μmの金属リチウム箔を負極に用い、負極集電体に厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1(mol/dm)のLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)を用いてステンレス製簡易密閉セル型の実施例1〜実施例13、比較例1〜比較例9のリチウム電池をアルゴングローブボックス内で組み立てる。
<Battery assembly>
A punched positive electrode sheet of Examples 1 to 13 and Comparative Examples 1 to 9 is used for the positive electrode, a metal lithium foil having a thickness of 500 μm is used for the negative electrode, and the negative electrode current collector is 1 mm thick. The separator is made of 25 μm-thick porous polypropylene, and the electrolyte is LiPF 6 / EC (ethylene carbonate) + DEC (diethyl carbonate) (1) with a concentration of 1 (mol / dm 3 ). : 1) solution (volume ratio of the LiPF 6 EC and DEC to solute (EC: DEC = 1: 1). which means mixed solution) example 1 to the stainless steel simple closed cell type with The lithium batteries of Example 13 and Comparative Examples 1 to 9 are assembled in an argon glove box.

<初期容量の評価><レート特性の評価><サイクル特性の評価>
前記実施例1〜実施例13、比較例1〜比較例9のリチウム電池について、25℃にて電池評価を行う。
正極活物質1gにつき150mAの負荷電流で4.8Vまで充電し、正極活物質1gにつき37.5mAの負荷電流にて2.5Vまで放電する。続いて正極活物質1gにつき150mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき37.5mAの負荷電流にて2.5Vまで放電する。
このような充放電を行った実施例1〜実施例13、比較例1〜比較例9のリチウム電池について引き続き充放電正極活物質1gにつき200mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する。4.5〜2.5Vにおける正極活物質の放電容量を4.5V初期容量とする。
<Evaluation of initial capacity><Evaluation of rate characteristics><Evaluation of cycle characteristics>
The lithium batteries of Examples 1 to 13 and Comparative Examples 1 to 9 are evaluated at 25 ° C.
Charge to 4.8 V with a load current of 150 mA per 1 g of the positive electrode active material, and discharge to 2.5 V with a load current of 37.5 mA per 1 g of the positive electrode active material. Subsequently, the battery is charged to 4.3 V at a load current of 150 mA per 1 g of the positive electrode active material, and discharged to 2.5 V at a load current of 37.5 mA per 1 g of the positive electrode active material.
The lithium batteries of Examples 1 to 13 and Comparative Examples 1 to 9 that were charged and discharged in this manner were subsequently charged to 4.5 V with a load current of 200 mA per 1 g of the charge / discharge positive electrode active material, and the positive electrode active material Discharge to 2.5 V at a load current of 100 mA per gram. The discharge capacity of the positive electrode active material at 4.5 to 2.5 V is set to 4.5 V initial capacity.

次いで充放電正極活物質1gにつき200mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき2000mAの負荷電流にて2.5Vまで高レート放電する。高レート放電での4.5〜2.5Vにおける正極活物質の放電容量を4.5V初期容量で割った値をレート維持率とする。
次いで充放電正極活物質1gにつき200mAの負荷電流で4.5Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで高レート放電する充放電サイクルを100回繰返す。4.5V充放電サイクル100回目の放電容量を4.5V初期容量で割った値をサイクル維持率とする。
Subsequently, it charges to 4.5V with a load current of 200 mA per 1 g of charge / discharge positive electrode active material, and discharges at a high rate to 2.5 V with a load current of 2000 mA per 1 g of positive electrode active material. The value obtained by dividing the discharge capacity of the positive electrode active material at 4.5 to 2.5 V in the high rate discharge by the 4.5 V initial capacity is defined as the rate maintenance rate.
Next, a charge / discharge cycle of charging to 4.5 V with a load current of 200 mA per 1 g of charge / discharge positive electrode active material and discharging at a high rate to 2.5 V with a load current of 100 mA per 1 g of positive electrode active material is repeated 100 times. The value obtained by dividing the discharge capacity at the 100th 4.5V charge / discharge cycle by the 4.5V initial capacity is defined as the cycle maintenance ratio.

実施例1〜実施例13、比較例1〜比較例9のリチウム電池について、4.8V初期容量、4.5V初期容量、レート維持率、サイクル維持率について表1にまとめる。
なお、表1において4.5V初期容量が200mAh/gより大きい場合を○、180〜200mAh/gである場合を△、180mAh/g未満である場合を×と評価する。また、レート維持率は80%より大きい場合を○、70〜80%の場合を△、70%未満である場合を×と評価する。また、サイクル維持率は80%より大きい場合を○、70〜80%の場合を△、70%未満である場合を×と評価する。
Table 1 summarizes the 4.8V initial capacity, 4.5V initial capacity, rate maintenance rate, and cycle maintenance rate of the lithium batteries of Examples 1 to 13 and Comparative Examples 1 to 9.
In Table 1, a case where the 4.5 V initial capacity is larger than 200 mAh / g is evaluated as “◯”, a case where it is 180 to 200 mAh / g is evaluated as “Δ”, and a case where it is less than 180 mAh / g is evaluated as “X”. The rate maintenance rate is evaluated as ◯ when the rate is greater than 80%, Δ when the rate is 70 to 80%, and × when the rate is less than 70%. Moreover, the case where the cycle maintenance ratio is greater than 80% is evaluated as ◯, the case where it is 70 to 80% is evaluated as Δ, and the case where it is less than 70% is evaluated as ×.

Figure 2012169217
Figure 2012169217

実施例1〜13は、正極活物質表面に炭素材料(I)が被覆しているため、リチウム含有複合酸化物のみである比較例1に比べ、レート維持率およびサイクル維持率に優れる。
さらに、実施例1〜13は、炭素材料(I)がナノサイズであることからリチウム含有複合酸化物の表面に均一に被覆することができるため、比較例3に比べレート維持率が優れ、Li元素の比率が高いリチウム含有酸化物を用いることで、比較例4〜6に対して初期容量に優れる。
実施例9〜11、12、および13は、炭素材料(I)および酸化物(II)を有するため、比較例2に比べサイクル維持率だけでなく、レート維持率にも優れる。
In Examples 1 to 13, since the surface of the positive electrode active material is coated with the carbon material (I), the rate maintenance rate and the cycle maintenance rate are excellent as compared with Comparative Example 1 that is only the lithium-containing composite oxide.
Furthermore, since Examples 1-13 can coat | cover uniformly on the surface of lithium containing complex oxide since carbon material (I) is nano size, compared with the comparative example 3, the rate maintenance factor is excellent, Li By using a lithium-containing oxide having a high element ratio, the initial capacity is superior to Comparative Examples 4 to 6.
Since Examples 9 to 11, 12, and 13 have the carbon material (I) and the oxide (II), not only the cycle maintenance rate but also the rate maintenance rate are excellent as compared with Comparative Example 2.

本発明によれば、単位質量あたりの放電容量が高く、かつレート特性とサイクル特性に優れるリチウムイオン二次電池用の正極活物質が得られる。該正極活物質は、小型・軽量な携帯電話等の電子機器、車載用のバッテリー等へのリチウムイオン二次電池に利用することができる。   According to the present invention, a positive electrode active material for a lithium ion secondary battery having a high discharge capacity per unit mass and excellent rate characteristics and cycle characteristics can be obtained. The positive electrode active material can be used for lithium-ion secondary batteries for electronic devices such as small and light mobile phones, in-vehicle batteries, and the like.

Claims (8)

Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物の表面に、下記炭素材料(I)、または下記炭素材料(I)および下記酸化物(II)が被覆している粒子(III)からなることを特徴とするリチウムイオン二次電池用の正極活物質。
炭素材料(I):カーボンナノチューブ、グラフェン、および平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料。
酸化物(II):Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素の酸化物。
Li element and at least one transition metal element selected from Ni, Co, and Mn are included (however, the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element). ) The lithium ion-containing composite oxide is composed of the following carbon material (I) or particles (III) coated with the following carbon material (I) and the following oxide (II). Positive electrode active material for secondary batteries.
Carbon material (I): At least one carbon material selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less.
Oxide (II): An oxide of at least one metal element selected from Zr, Ti, and Al.
炭素材料(I)の質量が、リチウム含有複合酸化物の質量に対して0.0001〜0.05倍である請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the mass of the carbon material (I) is 0.0001 to 0.05 times the mass of the lithium-containing composite oxide. Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素のモル量が、前記リチウム含有複合酸化物の遷移金属元素のモル量に対して0.0001〜0.05倍モルである請求項1に記載の正極活物質。   The molar amount of at least one metal element selected from Zr, Ti, and Al is 0.0001 to 0.05 times the molar amount of the transition metal element of the lithium-containing composite oxide. The positive electrode active material as described. 請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用正極活物質と導電材とバインダーとを含むリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries containing the positive electrode active material for lithium ion secondary batteries as described in any one of Claims 1-3, a electrically conductive material, and a binder. 請求項4に記載の正極と負極と非水電解質とを含むリチウムイオン二次電池。   The lithium ion secondary battery containing the positive electrode of Claim 4, a negative electrode, and a nonaqueous electrolyte. Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物に、下記組成物(1)、または下記組成物(1)および下記組成物(2)を接触させ、50〜500℃で加熱することを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
組成物(1):カーボンナノチューブ、グラフェン、平均分散粒子径が0.2μm以下のカーボンブラックから選ばれる少なくとも一種の炭素材料(I)を溶媒に分散させた組成物。
組成物(2):Zr、Ti、およびAlから選ばれる少なくとも一種の金属元素を含む化合物を溶媒に溶解または分散させた組成物。
Li element and at least one transition metal element selected from Ni, Co, and Mn are included (however, the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element). Lithium ion secondary characterized in that the following composition (1) or the following composition (1) and the following composition (2) are brought into contact with the lithium-containing composite oxide and heated at 50 to 500 ° C. A method for producing a positive electrode active material for a battery.
Composition (1): A composition in which at least one carbon material (I) selected from carbon nanotubes, graphene, and carbon black having an average dispersed particle size of 0.2 μm or less is dispersed in a solvent.
Composition (2): A composition in which a compound containing at least one metal element selected from Zr, Ti, and Al is dissolved or dispersed in a solvent.
リチウム含有複合酸化物に、前記組成物(1)、または前記組成物(1)および前記組成物(2)を添加して撹拌することにより、リチウム含有複合酸化物と、前記組成物(1)、または前記組成物(1)および前記組成物(2)とを接触させる請求項6に記載の製造方法。   The composition (1) or the composition (1) and the composition (2) are added to the lithium-containing composite oxide and stirred to obtain a lithium-containing composite oxide and the composition (1). Or the method according to claim 6, wherein the composition (1) and the composition (2) are contacted. リチウム含有複合酸化物に、前記組成物(1)、または前記組成物(1)および前記組成物(2)をスプレーコート法により噴霧することにより、リチウム含有複合酸化物と、前記組成物(1)、または前記組成物(1)および前記組成物(2)とを接触させる請求項6に記載の製造方法。   The composition (1), or the composition (1) and the composition (2) are sprayed onto the lithium-containing composite oxide by a spray coating method, so that the lithium-containing composite oxide and the composition (1) are sprayed. ), Or the composition (1) and the composition (2) are brought into contact with each other.
JP2011031076A 2011-02-16 2011-02-16 Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same Withdrawn JP2012169217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031076A JP2012169217A (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031076A JP2012169217A (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012169217A true JP2012169217A (en) 2012-09-06

Family

ID=46973178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031076A Withdrawn JP2012169217A (en) 2011-02-16 2011-02-16 Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012169217A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099368A (en) * 2012-11-15 2014-05-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery use, and manufacturing method thereof
KR101460414B1 (en) 2012-12-06 2014-11-10 삼성정밀화학 주식회사 Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
WO2014196615A1 (en) * 2013-06-06 2014-12-11 日本電気株式会社 Positive electrode material for lithium ion secondary batteries, and method for producing same
KR20150017012A (en) * 2013-07-31 2015-02-16 삼성전자주식회사 Composite cathode active material, lithium battery comprising the same, and preparation method thereof
JP2015037067A (en) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 Lithium nickel cobalt manganese positive electrode material powder
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same
WO2015050176A1 (en) * 2013-10-04 2015-04-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, electronic device, and method for forming layer
JP2015109154A (en) * 2013-12-03 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode for secondary batteries, and secondary battery
WO2015108056A1 (en) * 2014-01-14 2015-07-23 昭和電工株式会社 Lithium secondary battery and conductive assistant used in same
JP2015195227A (en) * 2015-08-04 2015-11-05 住友大阪セメント株式会社 Electrode material for lithium ion secondary batteries
CN105185953A (en) * 2014-05-12 2015-12-23 旭硝子株式会社 Cathode Active Material, Process For Its Production, Cathode And Lithium Ion Secondary Battery
WO2016067142A1 (en) * 2014-10-27 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
JP2016076471A (en) * 2014-05-09 2016-05-12 株式会社半導体エネルギー研究所 Lithium ion secondary battery and electronic device
JP2016192414A (en) * 2011-06-24 2016-11-10 株式会社半導体エネルギー研究所 Method of manufacturing positive electrode
WO2017054670A1 (en) * 2015-09-28 2017-04-06 深圳市贝特瑞新能源材料股份有限公司 Modified super-hydrophobic material-coated high-nickel cathode material for lithium ion battery and preparation method therefor
WO2017099001A1 (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 Secondary cell
US9716269B2 (en) 2013-11-28 2017-07-25 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing same
JP2017135105A (en) * 2016-01-27 2017-08-03 東レ株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
KR20170094123A (en) 2014-12-16 2017-08-17 니폰 케미콘 가부시키가이샤 Method for producing metal compound particle group, metal compound particle group, and electrode for electricity storage device containing metal compound particle group
JP2017526117A (en) * 2014-09-30 2017-09-07 エルジー・ケム・リミテッド Positive electrode active material and manufacturing method thereof
KR20170133323A (en) 2015-03-31 2017-12-05 니폰 케미콘 가부시키가이샤 Title: METHOD FOR MANUFACTURING TITANIUM OXIDE PARTICLES, METHOD OF MANUFACTURING TITANIUM OXIDE PARTICLES, ELECTRODE FOR ELECTRIC DEVICE COMPRISING TITANIUM OXIDE PARTICLES,
KR20170133326A (en) 2015-03-31 2017-12-05 니폰 케미콘 가부시키가이샤 An electrode for a power storage device comprising a titanium oxide crystal and a titanium oxide crystal
WO2017221830A1 (en) 2016-06-22 2017-12-28 日本ケミコン株式会社 Hybrid capacitor and manufacturing method thereof
WO2018203168A1 (en) * 2017-05-03 2018-11-08 株式会社半導体エネルギー研究所 Manufacturing method for positive electrode active material particles, and secondary battery
US10367188B2 (en) 2015-01-09 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
WO2019193873A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2020024959A (en) * 2012-11-07 2020-02-13 株式会社半導体エネルギー研究所 Positive electrode
CN110870113A (en) * 2017-04-10 2020-03-06 氢氦锂有限公司 Battery with novel components
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
WO2021014257A1 (en) * 2019-07-19 2021-01-28 株式会社半導体エネルギー研究所 Method for creating electrode slurry, method for creating electrode, method for creating positive electrode, electrode for secondary battery, and positive electrode for secondary battery
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
JP2021190430A (en) * 2020-06-01 2021-12-13 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composite positive electrode active material, positive electrode including the same, lithium battery, and manufacturing method for the same
JP2021190431A (en) * 2020-06-01 2021-12-13 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composite positive electrode active material, positive electrode including the same, lithium battery, and manufacturing method for the same
CN114284465A (en) * 2021-12-22 2022-04-05 蜂巢能源科技股份有限公司 Preparation method of positive electrode slurry, positive electrode plate and lithium ion battery
CN114300683A (en) * 2021-12-03 2022-04-08 宜宾锂宝新材料有限公司 Coating method for prolonging cycle life of high-nickel ternary positive electrode material
JP2022104913A (en) * 2020-12-30 2022-07-12 三星エスディアイ株式会社 Electrode, lithium battery including the same, and electrode manufacturing method
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
KR20220127002A (en) * 2021-03-10 2022-09-19 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
JP2022553657A (en) * 2020-07-14 2022-12-26 蜂巣能源科技股▲ふん▼有限公司 Cobalt-Free Cathode Materials and Preparation Methods Thereof, and Lithium Ion Battery Cathodes and Lithium Batteries
US11581536B2 (en) 2017-05-17 2023-02-14 HHeLI, LLC Battery with acidified cathode and lithium anode
US11641014B2 (en) 2017-05-17 2023-05-02 HHeLI, LLC Battery cell with anode or cathode with nanomaterial including acidic surface
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
JP2023079218A (en) * 2021-11-26 2023-06-07 三星エスディアイ株式会社 Composite cathode active material, cathode and lithium secondary battery including the composite cathode active material, and method of preparing cathode active material
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
WO2024144231A1 (en) * 2022-12-27 2024-07-04 삼성에스디아이주식회사 Dry electrode film, and dry electrode and lithium battery comprising same
WO2024195981A1 (en) * 2023-03-17 2024-09-26 주식회사 엘지에너지솔루션 Positive electrode active material, positive electrode and lithum secondary battery comprising same, and method for manufacturing same
US12126012B2 (en) 2018-04-06 2024-10-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192414A (en) * 2011-06-24 2016-11-10 株式会社半導体エネルギー研究所 Method of manufacturing positive electrode
JP2018160463A (en) * 2011-06-24 2018-10-11 株式会社半導体エネルギー研究所 Method of manufacturing negative electrode active material layer
JP2017168456A (en) * 2011-06-24 2017-09-21 株式会社半導体エネルギー研究所 Manufacturing method for positive electrode active material layer
JP2020024958A (en) * 2012-11-07 2020-02-13 株式会社半導体エネルギー研究所 Positive electrode
US11515517B2 (en) 2012-11-07 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device
JP2020024959A (en) * 2012-11-07 2020-02-13 株式会社半導体エネルギー研究所 Positive electrode
JP2014099368A (en) * 2012-11-15 2014-05-29 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolytic secondary battery use, and manufacturing method thereof
KR101460414B1 (en) 2012-12-06 2014-11-10 삼성정밀화학 주식회사 Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
JPWO2014196615A1 (en) * 2013-06-06 2017-02-23 日本電気株式会社 Positive electrode material for lithium ion secondary battery and manufacturing method thereof
WO2014196615A1 (en) * 2013-06-06 2014-12-11 日本電気株式会社 Positive electrode material for lithium ion secondary batteries, and method for producing same
US10637054B2 (en) 2013-06-06 2020-04-28 Nec Corporation Positive electrode material for lithium ion secondary batteries, and method for producing same
KR20150017012A (en) * 2013-07-31 2015-02-16 삼성전자주식회사 Composite cathode active material, lithium battery comprising the same, and preparation method thereof
KR102214826B1 (en) * 2013-07-31 2021-02-10 삼성전자주식회사 Composite cathode active material, lithium battery comprising the same, and preparation method thereof
JP2015037067A (en) * 2013-08-16 2015-02-23 輔仁大學學校財團法人輔仁大學 Lithium nickel cobalt manganese positive electrode material powder
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same
WO2015050176A1 (en) * 2013-10-04 2015-04-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, electronic device, and method for forming layer
US10454102B2 (en) 2013-10-04 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, electronic device, and method for forming layer
US9716269B2 (en) 2013-11-28 2017-07-25 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing same
KR20150064697A (en) * 2013-12-03 2015-06-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR102273647B1 (en) * 2013-12-03 2021-07-06 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2015109154A (en) * 2013-12-03 2015-06-11 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode for secondary batteries, and secondary battery
WO2015108056A1 (en) * 2014-01-14 2015-07-23 昭和電工株式会社 Lithium secondary battery and conductive assistant used in same
US10084190B2 (en) 2014-01-14 2018-09-25 Showa Denko K.K. Lithium secondary battery and conductive assistant used in same
JPWO2015108056A1 (en) * 2014-01-14 2017-03-23 昭和電工株式会社 Lithium secondary battery and conductive aid used therefor
JP7039641B2 (en) 2014-05-09 2022-03-22 株式会社半導体エネルギー研究所 Lithium ion secondary battery
KR20210138798A (en) * 2014-05-09 2021-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
JP2020107614A (en) * 2014-05-09 2020-07-09 株式会社半導体エネルギー研究所 Lithium ion secondary battery
KR102327071B1 (en) * 2014-05-09 2021-11-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
KR102700568B1 (en) * 2014-05-09 2024-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
KR102458150B1 (en) * 2014-05-09 2022-10-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
KR20220148309A (en) * 2014-05-09 2022-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
JP2016076471A (en) * 2014-05-09 2016-05-12 株式会社半導体エネルギー研究所 Lithium ion secondary battery and electronic device
KR20170003543A (en) * 2014-05-09 2017-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery and electronic device
JP2015232996A (en) * 2014-05-12 2015-12-24 旭硝子株式会社 Positive electrode active material, method for manufacturing the same, positive electrode and lithium ion secondary battery
US10038188B2 (en) 2014-05-12 2018-07-31 Sumitomo Chemical Co., Ltd. Cathode active material, process for its production, cathode and lithium ion secondary battery
CN105185953A (en) * 2014-05-12 2015-12-23 旭硝子株式会社 Cathode Active Material, Process For Its Production, Cathode And Lithium Ion Secondary Battery
JP2017526117A (en) * 2014-09-30 2017-09-07 エルジー・ケム・リミテッド Positive electrode active material and manufacturing method thereof
US9972841B2 (en) 2014-09-30 2018-05-15 Lg Chem, Ltd. Positive electrode active material and preparation method thereof
US11394025B2 (en) 2014-10-27 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
WO2016067142A1 (en) * 2014-10-27 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR20230077753A (en) * 2014-10-27 2023-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US10749174B2 (en) 2014-10-27 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR102535985B1 (en) * 2014-10-27 2023-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
JP2016094332A (en) * 2014-10-27 2016-05-26 株式会社半導体エネルギー研究所 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US10084186B2 (en) 2014-10-27 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR102682732B1 (en) * 2014-10-27 2024-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US11710823B2 (en) 2014-10-27 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR20170078709A (en) * 2014-10-27 2017-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
KR20170094123A (en) 2014-12-16 2017-08-17 니폰 케미콘 가부시키가이샤 Method for producing metal compound particle group, metal compound particle group, and electrode for electricity storage device containing metal compound particle group
US10505187B2 (en) 2014-12-16 2019-12-10 Nippon Chemi-Con Corporation Method of producing metal compound particle group, metal compound particle group, and electricity storage device electrode containing metal compound particle group
US11398626B2 (en) 2014-12-16 2022-07-26 Nippon Chemi-Con Corporation Method of producing metal compound particle group, metal compound particle group, and electricity storage device electrode containing metal compound particle group
US11881578B2 (en) 2015-01-09 2024-01-23 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
US11545655B2 (en) 2015-01-09 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
US10367188B2 (en) 2015-01-09 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
US10923706B2 (en) 2015-01-09 2021-02-16 Semiconductor Energy Laboratory Co., Ltd. Storage battery electrode, manufacturing method thereof, storage battery, and electronic device
KR20170133323A (en) 2015-03-31 2017-12-05 니폰 케미콘 가부시키가이샤 Title: METHOD FOR MANUFACTURING TITANIUM OXIDE PARTICLES, METHOD OF MANUFACTURING TITANIUM OXIDE PARTICLES, ELECTRODE FOR ELECTRIC DEVICE COMPRISING TITANIUM OXIDE PARTICLES,
US10438751B2 (en) 2015-03-31 2019-10-08 Nippon Chemi-Con Corporation Titanium oxide crystal body and power storage device electrode including titanium oxide crystalline body
KR20170133326A (en) 2015-03-31 2017-12-05 니폰 케미콘 가부시키가이샤 An electrode for a power storage device comprising a titanium oxide crystal and a titanium oxide crystal
US10490316B2 (en) 2015-03-31 2019-11-26 Nippon Chemi-Con Corporation Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles
JP2015195227A (en) * 2015-08-04 2015-11-05 住友大阪セメント株式会社 Electrode material for lithium ion secondary batteries
WO2017054670A1 (en) * 2015-09-28 2017-04-06 深圳市贝特瑞新能源材料股份有限公司 Modified super-hydrophobic material-coated high-nickel cathode material for lithium ion battery and preparation method therefor
WO2017099001A1 (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズ株式会社 Secondary cell
JP2017135105A (en) * 2016-01-27 2017-08-03 東レ株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
US11152159B2 (en) 2016-06-22 2021-10-19 Nippon Chemi-Con Corporation Hybrid capacitor and manufacturing method thereof
KR20190020647A (en) 2016-06-22 2019-03-04 니폰 케미콘 가부시키가이샤 Hybrid capacitor and method of manufacturing the same
WO2017221830A1 (en) 2016-06-22 2017-12-28 日本ケミコン株式会社 Hybrid capacitor and manufacturing method thereof
JP2020191303A (en) * 2016-07-05 2020-11-26 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2020129564A (en) * 2016-07-05 2020-08-27 株式会社半導体エネルギー研究所 Lithium ion secondary battery
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US12009508B2 (en) 2017-04-10 2024-06-11 HHeLI, LLC Battery with novel components
CN110870113A (en) * 2017-04-10 2020-03-06 氢氦锂有限公司 Battery with novel components
JP7237062B2 (en) 2017-04-10 2023-03-10 ヒーリー,エルエルシー Batteries containing novel components
JP2020517084A (en) * 2017-04-10 2020-06-11 ヒーリー,エルエルシー Batteries with new components
CN110870113B (en) * 2017-04-10 2023-12-01 氢氦锂有限公司 Battery with novel composition
US11302912B2 (en) 2017-04-10 2022-04-12 HHeLI, LLC Battery with novel components
JPWO2018203168A1 (en) * 2017-05-03 2020-03-26 株式会社半導体エネルギー研究所 Method for producing positive electrode active material particles, and secondary battery
WO2018203168A1 (en) * 2017-05-03 2018-11-08 株式会社半導体エネルギー研究所 Manufacturing method for positive electrode active material particles, and secondary battery
JP7092752B2 (en) 2017-05-03 2022-06-28 株式会社半導体エネルギー研究所 Method for producing positive electrode active material particles
JP2022113870A (en) * 2017-05-03 2022-08-04 株式会社半導体エネルギー研究所 secondary battery
CN110603673A (en) * 2017-05-03 2019-12-20 株式会社半导体能源研究所 Method for producing positive electrode active material and secondary battery
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11973224B2 (en) 2017-05-17 2024-04-30 HHeLI, LLC Battery with acidified cathode and lithium anode
JP2023075310A (en) * 2017-05-17 2023-05-30 ヒーリー,エルエルシー Battery cell with novel construction
JP7429321B2 (en) 2017-05-17 2024-02-07 ヒーリー,エルエルシー Battery cell with new structure
US11581536B2 (en) 2017-05-17 2023-02-14 HHeLI, LLC Battery with acidified cathode and lithium anode
US11641014B2 (en) 2017-05-17 2023-05-02 HHeLI, LLC Battery cell with anode or cathode with nanomaterial including acidic surface
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
CN111971826B (en) * 2018-04-06 2023-10-24 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2019193873A1 (en) * 2018-04-06 2021-04-08 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
WO2019193873A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN111971826A (en) * 2018-04-06 2020-11-20 松下知识产权经营株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US12126012B2 (en) 2018-04-06 2024-10-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021014257A1 (en) * 2019-07-19 2021-01-28 株式会社半導体エネルギー研究所 Method for creating electrode slurry, method for creating electrode, method for creating positive electrode, electrode for secondary battery, and positive electrode for secondary battery
JP7143478B2 (en) 2020-06-01 2022-09-28 三星エスディアイ株式会社 Composite positive electrode active material, positive electrode employing the same, lithium battery and manufacturing method thereof
JP7348231B2 (en) 2020-06-01 2023-09-20 三星エスディアイ株式会社 Composite positive electrode active material, positive electrode using the same, lithium battery, and manufacturing method thereof
JP2021190430A (en) * 2020-06-01 2021-12-13 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composite positive electrode active material, positive electrode including the same, lithium battery, and manufacturing method for the same
JP2021190431A (en) * 2020-06-01 2021-12-13 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composite positive electrode active material, positive electrode including the same, lithium battery, and manufacturing method for the same
JP7392132B2 (en) 2020-07-14 2023-12-05 蜂巣能源科技股▲ふん▼有限公司 Cobalt-free cathode material and its preparation method
JP2022553657A (en) * 2020-07-14 2022-12-26 蜂巣能源科技股▲ふん▼有限公司 Cobalt-Free Cathode Materials and Preparation Methods Thereof, and Lithium Ion Battery Cathodes and Lithium Batteries
JP2022104913A (en) * 2020-12-30 2022-07-12 三星エスディアイ株式会社 Electrode, lithium battery including the same, and electrode manufacturing method
JP7448570B2 (en) 2020-12-30 2024-03-12 三星エスディアイ株式会社 Electrode, lithium battery including the same, and manufacturing method thereof
CN114765251A (en) * 2020-12-30 2022-07-19 三星Sdi株式会社 Electrode, lithium battery including the same, and method of manufacturing the same
KR20220127002A (en) * 2021-03-10 2022-09-19 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR102701085B1 (en) 2021-03-10 2024-08-30 삼성에스디아이 주식회사 Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
JP2023079218A (en) * 2021-11-26 2023-06-07 三星エスディアイ株式会社 Composite cathode active material, cathode and lithium secondary battery including the composite cathode active material, and method of preparing cathode active material
CN114300683A (en) * 2021-12-03 2022-04-08 宜宾锂宝新材料有限公司 Coating method for prolonging cycle life of high-nickel ternary positive electrode material
CN114284465A (en) * 2021-12-22 2022-04-05 蜂巢能源科技股份有限公司 Preparation method of positive electrode slurry, positive electrode plate and lithium ion battery
WO2024144231A1 (en) * 2022-12-27 2024-07-04 삼성에스디아이주식회사 Dry electrode film, and dry electrode and lithium battery comprising same
WO2024195981A1 (en) * 2023-03-17 2024-09-26 주식회사 엘지에너지솔루션 Positive electrode active material, positive electrode and lithum secondary battery comprising same, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5831457B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode, battery, and manufacturing method
JP2012169217A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
JP5928445B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP6052176B2 (en) Positive electrode active material for lithium ion secondary battery
JP6064909B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2012138197A (en) Positive electrode active material for lithium ion secondary battery, positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
WO2012108513A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
WO2012102354A1 (en) Cathode active material for lithium ion secondary battery, and method for producing same
JP6089701B2 (en) Positive electrode active material and method for producing the same
JP5621600B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
WO2012176903A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
JP6600136B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012169066A (en) Method for producing cathode active material for lithium ion secondary battery
JP6929793B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014116162A (en) Positive electrode active material
WO2013154142A1 (en) Positive electrode active material for lithium-ion secondary cell
JP6328096B2 (en) Method for producing carbonate compound and positive electrode active material
WO2014069466A1 (en) Positive electrode active material and production method therefor
JP6388573B2 (en) Method for producing positive electrode active material
JP2014089826A (en) Positive electrode active material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513