WO2014156960A1 - Method for manufacturing optical element - Google Patents

Method for manufacturing optical element Download PDF

Info

Publication number
WO2014156960A1
WO2014156960A1 PCT/JP2014/057781 JP2014057781W WO2014156960A1 WO 2014156960 A1 WO2014156960 A1 WO 2014156960A1 JP 2014057781 W JP2014057781 W JP 2014057781W WO 2014156960 A1 WO2014156960 A1 WO 2014156960A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
mold
optical element
region
manufacturing
Prior art date
Application number
PCT/JP2014/057781
Other languages
French (fr)
Japanese (ja)
Inventor
斎藤正
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014156960A1 publication Critical patent/WO2014156960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles

Definitions

  • the present invention relates to a method for manufacturing an optical element having a plurality of optical elements or a plurality of lens elements, and more particularly to a method for manufacturing an optical element including a thermosetting resin.
  • a UV curable resin applied on the front and back sides of a glass substrate is sandwiched between transparent upper and lower stampers, the pattern is transferred to the UV curable resin, and UV curable sandwiched between upper and lower stampers.
  • a resin with ultraviolet rays There is one that irradiates a resin with ultraviolet rays and collectively molds an optical pattern on the front and back of a transparent substrate (Patent Document 1).
  • Another method for manufacturing an optical element is a method for manufacturing a wafer level lens, in which a front-side molded body and a back-side molded body of a glass substrate are individually molded and UV-cured (Patent Document 2).
  • Patent Document 2 a method for manufacturing a wafer level lens, in which a front-side molded body and a back-side molded body of a glass substrate are individually molded and UV-cured.
  • Patent Documents 1 and 2 are basically based on the premise that an ultraviolet curable resin is used.
  • the respective methods are used to suppress the occurrence of decentration, heart thickness, tilt, etc. It is necessary to adjust the positional relationship between the molds transferred to the surface, and to cure the resin while maintaining the positional relationship.
  • thermosetting resin In order to cure the thermosetting resin, a heat treatment of about 100 to 150 ° C. is usually performed, but it is considered that heating in a precise apparatus as described above is not desirable.
  • the choice of the lens material for the molded part is limited to the ultraviolet curable resin, and variations in material properties (refractive index, Abbe number, etc.) are also within the range of the ultraviolet curable resin. .
  • material properties reffractive index, Abbe number, etc.
  • a combination of different material properties is indispensable for correcting chromatic aberration of an imaging lens, but the above method has a problem that the degree of freedom in optical design is limited.
  • the present invention has been made in view of the problems of the background art described above, and it is possible to increase the choice of lens materials, increase the shape accuracy by sufficient curing, and improve the throughput of molding.
  • An object is to provide a manufacturing method.
  • a method for manufacturing an optical element supplies a photocurable resin to a first region between a first transfer mold and a second transfer mold, and performs first and second transfer.
  • a step of supplying a thermosetting resin to the second region between the molds, a step of curing the photocurable resin supplied to the first region between the first and second transfer molds by light, and a photocurable resin After curing, the thermosetting resin supplied to the second region between the first and second transfer molds is cured by heat, and the first and second transfer molds are separated to form the thermosetting resin.
  • a step of releasing the optical element is provided to a first region between a first transfer mold and a second transfer mold, and performs first and second transfer.
  • the photocurable resin supplied to the first region between the first and second transfer molds is cured by light, the first and second transfer molds can be aligned and fixed in a relatively low temperature environment. become. Thereafter, since the thermosetting resin in the second region between the precisely aligned first and second transfer molds is cured by heat, an optical element including the thermosetting resin is molded with high mold alignment accuracy. Can do.
  • An optical element including a thermosetting resin has a relatively wide variation in optical characteristics, and according to this method, the shape accuracy can be increased without increasing process tact by a simple curing process.
  • the material specialized in quick-hardening etc. can be selected, without considering an optical physical property.
  • the first region and the second region are distributed in different ranges along the mold surfaces of the first and second transfer molds.
  • the first region is a support region
  • the second region is a product region.
  • the first region is provided with a transfer surface for molding a plurality of support members
  • the second region is provided with a transfer surface for molding a plurality of optical elements. It has been.
  • a support member dummy lens
  • the first and second transfer molds are relatively supported and fixed by the support member.
  • an optical element as a molded product obtained by curing the thermosetting resin can be obtained.
  • the optical element has a first portion and a second portion at different positions with respect to a direction perpendicular to the mold surfaces of the first and second transfer molds, and the second portion
  • the part is formed of a thermosetting resin.
  • the first portion and the second portion can have different compositions, for example, and the degree of freedom in optical design of the optical element can be increased.
  • the first portion is formed of a photocurable resin.
  • the optical element is a combination of a thermosetting resin portion and a photocurable resin portion.
  • the optical element has a glass substrate between the first portion and the second portion.
  • an optical element having lens portions formed on both surfaces of the glass substrate can be obtained.
  • an aperture pattern is formed on the glass substrate.
  • an optical element having an enhanced function such as stray light prevention by the aperture pattern.
  • the first transfer mold and the second transfer mold are provided by providing a transfer layer formed of a resin on a light-transmitting support plate.
  • a transfer layer formed of a resin on a light-transmitting support plate.
  • the first transfer mold and the second transfer mold each have an alignment mark that enables mutual positioning.
  • only the first region is selectively irradiated with curing light in the step of curing the photocurable resin in the first region.
  • the light source for irradiation can be reduced in size, and the apparatus cost can be reduced.
  • the step of curing the thermosetting resin in the second region is a photocurable resin cured outside the molding apparatus that performed the step of curing the photocurable resin in the first region. This is performed after unloading the first and second transfer molds fixed to each other. In this case, it becomes easy to increase the accuracy of the molding apparatus, and the degree of freedom in setting the curing conditions of the curable resin can be increased.
  • FIG. 3A is a diagram illustrating the mold surface of the upper transfer mold
  • FIG. 3B is a conceptual cross-sectional view of a pair of transfer molds
  • FIG. 3C is a diagram illustrating the mold surface of the lower transfer mold.
  • FIG. 4A to 4C are side sectional views for explaining the fixing process of both transfer molds in the method of manufacturing an optical element.
  • FIG. 5A and 5B are side cross-sectional views for explaining curing and taking out of the optical element in the method for manufacturing the optical element.
  • 6A and 6B are diagrams illustrating a transfer mold used in the manufacturing apparatus of the second embodiment. Specifically, FIG. 6A is a diagram for explaining a mold surface of the upper transfer mold, and FIG. 6B is a conceptual sectional view of a pair of transfer molds and the like.
  • 7A and 7B are diagrams illustrating a transfer mold and the like used in the manufacturing apparatus of the second embodiment. Specifically, FIG. 7A is a plan view of a glass substrate, and FIG. 7B is a diagram illustrating a mold surface of a lower transfer mold. 8A to 8D are side sectional views for explaining the first half of the optical element manufacturing method.
  • FIG. 10A and 10B are diagrams illustrating a transfer mold used in the manufacturing apparatus of the third embodiment. Specifically, FIG. 10A is a diagram illustrating a mold surface of the upper transfer mold, and FIG. 10B is a conceptual cross-sectional view of three transfer molds. It is a figure explaining the type
  • 12A to 12D are side sectional views for explaining an initial stage of the method for manufacturing an optical element.
  • 13A to 13C are side sectional views for explaining an intermediate stage of the method for manufacturing an optical element.
  • 14A and 14B are side sectional views for explaining the final stage of the optical element manufacturing method.
  • a manufacturing apparatus for carrying out an optical element manufacturing method is a combination of a molding apparatus 4, a heating apparatus 6, and the like.
  • the molding apparatus 4 includes a resin application part 4a and a transfer fixing part 4b.
  • the resin application part 4a the photocurable resin RA and the thermosetting resin RB are individually applied to appropriate positions on the mold surface 31f of the lower transfer mold 31 which is the first transfer mold.
  • the transfer fixing portion 4b for example, a lower transfer mold 31 that is a first transfer mold and an upper transfer mold 32 that is a second transfer mold are arranged in alignment with each other.
  • the photocurable resin RA exists in the first area A1 between the transfer molds 31 and 32, and the thermosetting resin RB exists in the second area A2 between the transfer molds 31 and 32.
  • the transfer fixing unit 4b irradiates the photocurable resin RA between the transfer molds 31 and 32 with curing light, for example, ultraviolet rays. That is, the photocurable resin RA between the transfer molds 31 and 32 is cured to fix the transfer molds 31 and 32 to each other.
  • the heating device 6 is an oven and heats the transfer molds 31 and 32 that are unloaded from the transfer fixing unit 4b and fixed to each other from the surroundings.
  • thermosetting resin RB between the transfer molds 31 and 32 can be cured, and the optical element MP formed of the thermosetting resin can be obtained.
  • the lower transfer mold (first transfer mold) 31 and the upper transfer mold (second transfer mold) 32 after the heat treatment are sufficiently cooled and then separated from each other by mold opening. Thereby, the optical elements MP molded between the two transfer dies 31 and 32 can be taken out collectively.
  • the transfer fixing unit 4b shown in FIG. Outside the vacuum chamber 10 are an alignment camera 21 that observes the workpiece from the back side of the lower stage 11 during positioning, and a UV light source that irradiates the curing light KK to an appropriate position of the workpiece from the back side of the lower stage 11 during the curing process. 22 and a main drive unit 23 for raising and lowering the upper drive unit 14 are provided. If the UV light source 22 is a device that locally irradiates the photocurable resin RA that forms the support member SU used to fix the transfer molds 31 and 32 (see FIGS. 4A to 4C), the device can be downsized. , Can reduce costs.
  • the lower stage 11 holds a lower transfer mold (first transfer mold) 31 as a workpiece.
  • the lower drive unit 12 moves the lower stage 11 up and down with an air cylinder 12a and the like.
  • the upper stage 13 holds an upper transfer mold (second transfer mold) 32 (such as a glass substrate 33 if necessary) as a work.
  • the upper drive unit 14 slightly moves the upper stage 13 in the vertical direction by the Z drive unit 14a, the height gauge 14b, and the like.
  • the upper stage 13 is provided with an X drive unit 13a, a Y drive unit 13b, a ⁇ drive unit 13c, a chuck unit 13f, and the like.
  • the upper stage 13 can support the upper transfer mold 32 and can be displaced three-dimensionally in the XYZ directions and can be rotated around the Z axis.
  • the upper drive unit 14 is driven up and down by a drive shaft 23b extending from the main drive unit 23.
  • the transfer fixing portion 4b the three-dimensional translation and rotation of the upper transfer mold 32 and the lower transfer mold 31 can be performed.
  • the alignment mark By using the alignment mark, the upper transfer mold 32 and the lower transfer mold 31 can be aligned.
  • the relative positional relationship can be set precisely.
  • the photocurable resin RA between the transfer molds 31 and 32 can be selectively cured by the curing light KK.
  • the positional relationship between the two transfer molds 31 and 32 is provisionally firmly fixed by the photocurable resin RA.
  • FIG. 3A is a diagram for explaining the mold surface 32f of the upper transfer mold 32
  • FIG. 3B is a conceptual cross-sectional view of the pair of transfer molds 31 and 32
  • FIG. 3C shows the mold surface 31f of the lower transfer mold 31. It is a figure explaining.
  • the upper transfer mold 32 is obtained by providing a transfer layer 32b made of resin on a light-transmitting support plate 32a.
  • the support plate 32a is formed of, for example, a glass plate
  • the transfer layer 32b is formed of, for example, a UV curable resin.
  • the transfer layer 32 b is formed by transfer and molding using a metal master mold or a sub master mold having the same structure as the upper transfer mold 32.
  • a first transfer surface 32g for molding an optical element MP see FIG. 5B
  • both transfer molds 31 and 32 are positioned on the mold surface 32f of the upper transfer mold 32, that is, on the surface of the transfer layer 32b.
  • the second transfer surface 32h for molding the support member SU see FIG.
  • a third transfer surface 32i is provided.
  • These transfer surfaces 32g, 32h, and 32i are formed in different regions on the mold surface 32f. That is, the first transfer surface 32g, the second transfer surface 32h, and the third transfer surface 32i are distributed in different ranges along the mold surface 32f of the upper transfer mold 32.
  • These transfer surfaces 32g, 32h, and 32i are arranged on lattice points in the illustrated example.
  • the second transfer surface 32h is formed at four locations (corresponding to the first region) at equal intervals along the outer circumference having a relatively large radius around the central axis CX parallel to the Z axis, for example.
  • the third transfer surface 32i is formed at four locations at equal intervals along the inner circumference of a relatively small radius around the central axis CX, for example.
  • the first transfer surface 32g is disposed at a location corresponding to the remaining lattice points (corresponding to the second region).
  • An alignment mark 32m is formed on the mold surface 32f so as to avoid the transfer surfaces 32g, 32h and 32i, so that the arrangement of the upper transfer mold 32 can be optically confirmed.
  • the lower transfer mold 31 has the same structure as the upper transfer mold 32. That is, the lower transfer mold 31 is provided with a transfer layer 31b made of resin on a support plate 31a having light transmittance.
  • the support plate 31a is formed of, for example, a glass plate
  • the transfer layer 31b is formed of, for example, a UV curable resin.
  • the transfer layer 31b is formed by transfer and molding using a metal master mold or sub master mold.
  • the first transfer surface 31g for molding the optical element MP as a lens and both the transfer molds 31 and 32 are fixed in a positioned state.
  • a second transfer surface 31h for molding the supporting member SU having a role and a third transfer surface 31i for molding the measuring element TE which is a lens for measuring eccentricity are provided.
  • These transfer surfaces 31g, 31h, and 31i face the transfer surfaces 32g, 32h, and 32i of the upper transfer mold 32, respectively, and as a result, are formed in different regions on the mold surface 31f. That is, the first transfer surface 31g, the second transfer surface 31h, and the third transfer surface 31i are distributed in different ranges along the mold surface 31f of the lower transfer mold 31.
  • An alignment mark 31m is formed on the mold surface 31f so as to avoid the transfer surfaces 32g, 32h, and 32i, so that the arrangement of the lower transfer mold 31 can be optically confirmed.
  • the alignment mark 31m of the lower transfer mold 31 and the alignment mark 32m of the upper transfer mold 32 are arranged in a direction perpendicular to the mold surfaces 31f and 32f in a precisely aligned state. That is, the upper transfer mold 32 fixed to the upper stage 13 by the upper drive unit 14 is perpendicular to the vertical axis AX while observing both alignment marks 31m and 32m with the alignment camera 21 provided in the transfer fixing unit 4b shown in FIG.
  • the two alignment marks 31m and 32m can be made to coincide with each other by being displaced two-dimensionally in a plane, rotated about the vertical axis AX, or tilted with respect to the vertical axis AX. , 32 spacing is achieved.
  • the interval between the transfer dies 31 and 32 can be checked by the height gauge 14b or the like.
  • thermosetting resin RB is applied on the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and a photocurable resin RA is applied on the second transfer surface 31h.
  • the application amounts of the resins RA and RB are such that the first and second regions A1 and A2 between the transfer dies 31 and 32 are filled and individual lenses are formed independently.
  • the photocurable resin for example, an acrylic resin, an allyl resin, an epoxy resin, a fluorine resin, or the like is used.
  • thermosetting resin for example, a fluorine resin, a silicone resin, or the like is used.
  • the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 4B, the upper transfer mold 32 is moved down by operating the upper drive unit 14, and the upper transfer mold 32 and the lower transfer mold 31 are roughly aligned by operating the upper stage 13. Thereafter, the upper transfer mold 32 is brought closer to the lower transfer mold 31, and the first and second regions A1, A2 between the transfer molds 31, 32 are filled with resin. Thereafter, the upper transfer mold 32 and the lower transfer mold 31 are precisely aligned. The upper transfer mold 32 and the lower transfer mold 31 are fixed in a positional relationship such that the optical element MP has a predetermined thickness (heart thickness).
  • the UV light source 22 is operated to selectively cure the photocurable resin RA between the transfer molds 31 and 32 by the curing light KK. That is, the photocurable resin RA supplied to the first area A1 between the transfer dies 31 and 32 is cured. Thereby, the transfer molds 31 and 32 are fixed to each other by the support member SU.
  • the transfer dies 31, 32 are unloaded from the transfer fixing portion 4b in a state where the transfer dies 31, 32 are fixed to each other, and are conveyed to the heating device 6.
  • the upper transfer mold 32 and the lower transfer mold 31 are fixed by the support member SU, and thus maintain a precisely aligned state.
  • the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded.
  • the transfer dies 31, 32 are sufficiently cooled.
  • the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening.
  • the optical element MP molded by the first transfer surfaces 31g and 32g between the transfer dies 31 and 32 can be taken out.
  • the support member SU formed by the second transfer surfaces 31h and 32h and the measurement element TE formed by the third transfer surfaces 31i and 32i are also taken out.
  • the optical element MP is an integrated lens formed of a single thermosetting resin or plastic material.
  • the photocurable resin RA supplied to the first region A1 between the transfer molds 31 and 32 is cured by light, so that the transfer molds 31 and 32 can be manufactured in a relatively low temperature environment. Alignment and fixation are possible. Thereafter, since the thermosetting resin RB in the second region A2 between the precisely aligned transfer molds 31 and 32 is cured by heat, the optical elements MP including the thermosetting resin RB are collectively processed with high mold alignment accuracy. And can be molded.
  • the optical element MP including the thermosetting resin RB has a relatively wide variation in optical characteristics, and this method can improve the shape accuracy without increasing the process tact by a simple curing process.
  • the material specialized in quick-hardening etc. can be selected, without taking into consideration an optical physical property.
  • optical element manufacturing method according to the second embodiment is a modification of the optical element manufacturing method according to the first embodiment, and items not specifically described are the same as those in the first embodiment.
  • an optical element MP (see FIG. 9D) is manufactured in which a glass substrate 33 shown in FIG. 6B or the like is sandwiched between optical surfaces on the front side. As shown in FIG. 9D, immediately after releasing from the transfer dies 31, 32, the wafer-like member 100 is taken out. In the wafer-like member 100, a plurality of lens portions (first and second portions 34a, 34b) formed of resin on the first surface 33a and the second surface 33b of the glass substrate 33 are two-dimensionally arranged. ing. By cutting the wafer-like member 100, an individual optical element MP can be obtained.
  • the lens portion on the first surface 33a side of the glass substrate 33 is the first portion 34a
  • the lens portion on the second surface 33b side of the glass substrate 33 is the second portion 34b. That is, the optical element MP has the first portion 34a and the second portion 34b at different positions with respect to the optical axis direction perpendicular to the mold surfaces 31f and 32f of the transfer dies 31 and 32 and parallel to the central axis CX.
  • the first portion 34a and the second portion 34b of the optical element MP are both formed of a thermosetting resin.
  • the upper transfer mold 32 and the lower transfer mold 31 used in the manufacturing method of the present embodiment are the same as the upper transfer mold 32 and the lower transfer mold 31 shown in the first embodiment. Therefore, the description is omitted.
  • the glass substrate 33 has an aperture pattern PT.
  • the aperture pattern PT includes a first opening 33c, a second opening 33d, and alignment marks 33m and 33n.
  • the first opening 33c in the aperture pattern PT is an opening provided in the optical element MP.
  • the second opening 33d is an opening for curing the photo-curable resin RA for forming the support member SU, and has substantially the same outline as the shapes of the second transfer surfaces 31h and 32h.
  • the alignment mark 33m is a mark for positioning with the upper transfer mold 32.
  • the alignment mark 33n is a mark for positioning with the lower transfer mold 31.
  • the glass substrate 33 is covered with, for example, a light-shielding resin or metal as a whole, so that light does not enter other than the openings 33c and 33d and the alignment marks 33m and 33n. Therefore, in the manufacturing process of the optical element MP, light selectively enters the second opening 33d, and the photocurable resin RA existing in the first region A1 can be selectively cured.
  • thermosetting resin RB is applied on the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and a photocurable resin RA is applied on the second transfer surface 31h. .
  • the glass substrate 33 is fixed to the upper stage 13.
  • the upper drive unit 14 is operated to lower the glass substrate 33, and the upper stage 13 is operated to roughly align the glass substrate 33 and the lower transfer mold 31.
  • the glass substrate 33 is brought closer to the lower transfer mold 31 and the first and second regions A1 and A2 between the glass substrate 33 and the lower transfer mold 31 are filled with resin.
  • the glass substrate 33 and the lower transfer mold 31 are precisely aligned.
  • the UV light source 22 is operated to selectively cure the photocurable resin RA between the glass substrate 33 and the lower transfer mold 31 with the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the glass substrate 33 and the lower transfer mold 31 is cured. Thereby, the glass substrate 33 and the lower transfer mold 31 are fixed to each other by a part of the support member SU. Thereafter, when the upper stage 13 is retracted upward while removing the glass substrate 33 from the upper stage 13, the glass substrate 33 remains in the lower stage 11 together with the lower transfer mold 31.
  • thermosetting resin RB is applied to a position corresponding to the first and third transfer surfaces 31g and 31i of the lower transfer mold 31 on the glass substrate 33, and the second transfer surface 31h.
  • a photo-curable resin RA is applied to a position corresponding to.
  • the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 9A, the upper transfer mold 32 is lowered, and the upper transfer mold 32 and the glass substrate 33 are roughly aligned. Thereafter, the upper transfer mold 32 is brought closer to the glass substrate 33, and the first and second regions A1, A2 between the upper transfer mold 32 and the glass substrate 33 are filled with resin. Thereafter, the upper transfer mold 32 and the glass substrate 33 are precisely aligned.
  • the photocurable resin RA between the upper transfer mold 32 and the glass substrate 33 is selectively cured by the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the upper transfer mold 32 and the glass substrate 33 is cured. Thereby, the upper transfer mold 32 and the glass substrate 33 are fixed to each other by a part of the support member SU.
  • the transfer dies 31, 32 are unloaded from the transfer fixing portion 4 b with the glass substrate 33 interposed therebetween and are transferred to the heating device 6.
  • the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded. After the heat treatment, the transfer dies 31, 32 are sufficiently cooled.
  • the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening.
  • the wafer-like member 100 in which the optical element MP, the supporting member SU, and the measuring element TE are two-dimensionally arranged on the glass substrate 33 is taken out.
  • the wafer-like member 100 is cut along the cutting line DL to obtain an individual optical element MP, measuring element TE, and the like.
  • thermosetting resin RB is cured while the transfer dies 31 and 32 are securely fixed during the manufacturing process. be able to. Thereby, several optical element MP can be shape
  • the first portion 34a and the second portion 34b of the optical element MP are both formed of the thermosetting resin RB, but either the first portion 34a or the second portion 34b is used. May be formed of a photocurable resin RA. Accordingly, resin materials having different characteristics can be selected with the glass substrate 33 interposed therebetween, and an optical element MP having a high degree of freedom in optical design can be obtained.
  • the optical element manufacturing method of the third embodiment is a modification of the optical element manufacturing method of the first or second embodiment, and items that are not particularly described are the same as those of the first or second embodiment.
  • an optical element MP (see FIG. 14B) in which the first portion 34a and the second portion 34b have different resin compositions is manufactured.
  • the first portion 34a of the optical element MP is made of a photocurable resin RA
  • the second portion 34b is made of a thermosetting resin RB.
  • the upper transfer mold 32 and the lower transfer mold 31 used in the manufacturing method of the present embodiment are the same as the upper transfer mold 32 and the lower transfer mold 31 shown in the first embodiment. Therefore, the description is omitted.
  • a flat plate mold 35 is further used.
  • the flat plate mold 35 is a flat plate-like member that covers the entire mold surface 31 f of the lower transfer mold 31.
  • the end face 35a facing the lower transfer mold 31 of the flat plate mold 35 is a substantially flat plane.
  • a photocurable resin RA is applied on the first, second, and third transfer surfaces 31g, 31h, and 31i of the lower transfer mold 31.
  • the composition of the resin that forms the optical element MP and the support member SU may be different.
  • the flat plate mold 35 is fixed to the upper stage 13.
  • the upper driving unit 14 is operated to lower the flat plate mold 35, and the upper stage 13 is operated to roughly align the flat plate mold 35 and the lower transfer mold 31.
  • the flat plate mold 35 is brought closer to the lower transfer mold 31 so that the first and second regions A1 and A2 between the flat plate mold 35 and the lower transfer mold 31 are filled with resin.
  • the flat plate mold 35 and the lower transfer mold 31 are precisely aligned.
  • the UV light source 22 is operated to cure the photocurable resin RA between the flat plate mold 35 and the lower transfer mold 31 by the curing light KK. That is, the photocurable resin RA supplied to the first and second regions A1 and A2 between the glass substrate 33 and the lower transfer mold 31 is cured.
  • FIG. 12D when the upper stage 13 is operated to raise the flat plate mold 35, the flat plate mold 35 is released, and the first portion 34a of the optical element MP (that is, a half portion of the optical element MP). ) And the like are left on the lower stage 11 together with the lower transfer mold 31.
  • thermosetting resin RB is applied to positions corresponding to the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and light is applied to positions corresponding to the second transfer surface 31h.
  • a curable resin RA is applied.
  • the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 13B, the upper transfer mold 32 is lowered, and the upper transfer mold 32 and the lower transfer mold 31 are roughly aligned. Thereafter, the upper transfer mold 32 is brought closer to the lower transfer mold 31, and the first and second regions A1, A2 between the upper transfer mold 32 and the lower transfer mold 31 are filled with resin. Thereafter, the upper transfer mold 32 and the lower transfer mold 31 are precisely aligned.
  • the photocurable resin RA between the upper transfer mold 32 and the lower transfer mold 31 is selectively cured by the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the upper transfer mold 32 and the lower transfer mold 31 is cured. Thereby, the upper transfer mold 32 and the lower transfer mold 31 are fixed to each other by the support member SU.
  • the transfer molds 31 and 32 are unloaded from the transfer fixing portion 4b in a state where the transfer molds 31 and 32 are fixed to each other, and conveyed to the heating device 6.
  • the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded. After the heat treatment, the transfer dies 31, 32 are sufficiently cooled.
  • the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening. Thereby, the optical element MP, the support member SU, and the measurement element TE can be taken out.
  • a plurality of optical elements MP formed of two kinds of resin materials without having a substrate can be obtained collectively.
  • optical element manufacturing method according to the present embodiment has been described above, but the optical element manufacturing method according to the present invention is not limited to the above.
  • shape, size, and the like of the optical element MP and the like can be changed as appropriate according to the application and function.
  • the shapes of the optical element MP, the support member SU, and the measuring element TE may be shapes that can be distinguished from each other, or may be the same shape as long as mixing can be prevented.
  • the arrangement and number of the first, second, and third transfer surfaces 31g, 32g, 31h, 32h, 31i, and 32i can be changed as appropriate.
  • the arrangement and number of the second transfer surfaces 31h and 32h are arranged and the number that can sufficiently fix the transfer molds 31 and 32.
  • the third transfer surfaces 31i and 32i for forming the measurement element TE on the transfer dies 31 and 32 may not be provided.
  • the resin application part 4 a is provided in the molding apparatus 4, but it may be provided outside the molding apparatus 4.
  • the resin material is individually applied (dropped) to each transfer surface 31g, 32g, 31h, 32h, 31i, 32i.
  • the resin material is applied (dropped) all over the mold surface 31f or the like. ) In this case, after molding, necessary portions are cut to obtain the optical element MP.
  • the optical element MP is likely to remain in the lower transfer mold 31 at the time of releasing. This is particularly effective when releasing the flat plate mold 35 in the third embodiment.
  • the photocurable resin RA that forms the support member SU is selectively irradiated with the curing light KK, but the entire mold surfaces 31f and 32f of the transfer molds 31 and 32 are cured.
  • Light KK may be irradiated.
  • the curing light KK may be locally irradiated using a light shielding member provided with an opening having a contour along the shape of the second transfer surfaces 31h and 32h.
  • the glass substrate 33 may not have the aperture pattern PT.
  • the photocurable resin RA can be applied onto the second surface 33b (surface on the upper transfer mold 32 side) of the glass substrate 33.
  • a glass substrate may be used instead of the flat plate mold 35.
  • the end surface 35a of the flat plate mold 35 is a flat surface, but it may have a transfer surface.
  • the boundary surface between the two types of resins is a surface having a shape such as a curvature and a step.
  • molding using an anaerobic photocurable resin can also be performed in a vacuum or nitrogen purge environment.
  • the second portion 34b of the optical element MP is applied to the second portion 34b.
  • a photo-curable resin RA can be used.
  • the second and third embodiments after the photocurable resin RA between the lower transfer mold 31 and the glass substrate 33 (or the flat plate mold 35) is cured, the second surface 33b (or the glass substrate 33) (or The resin material is applied onto the portions corresponding to the respective transfer surfaces), but the lower transfer mold 31 is removed from the lower stage 11, and then the resin material is placed on the mold surface 32 f of the upper transfer mold 32 attached to the lower stage 11. May be applied. In this case, the lower transfer mold 31 is attached to the upper stage 13 and the upper transfer mold 32 is attached to the lower stage 11.

Abstract

Provided is a method for manufacturing an optical element, which has a plurality of choices for a lens material and is capable of increasing the shape accuracy by means of sufficient curing, thereby being capable of improving the molding throughput. This method for manufacturing an optical element comprises: a step for supplying a photocurable resin (RA) to a first region (A1) between a lower transfer mold (31) and an upper transfer mold (32), while supplying a thermosetting resin (RB) to a second region (A2) between the transfer molds (31, 32); a step for curing the photocurable resin (RA) by means of light, said photocurable resin (RA) having been supplied to the first region (A1) between the transfer molds (31, 32); a step for curing the thermosetting resin (RB) by means of heat after the curing of the photocurable resin (RA), said thermosetting resin (RB) having been supplied to the second region (A2) between the transfer molds (31, 32); and a step for releasing an optical element (MP), which is formed of the thermosetting resin (RB), by separating the transfer molds (31, 32) from each other.

Description

光学素子の製造方法Optical element manufacturing method
 本発明は、複数の光学素子又は複数のレンズ要素を有する光学素子の製造方法に関し、特に熱硬化性樹脂を含む光学素子の製造方法に関する。 The present invention relates to a method for manufacturing an optical element having a plurality of optical elements or a plurality of lens elements, and more particularly to a method for manufacturing an optical element including a thermosetting resin.
 光学素子の製造方法として、ガラス基板の表側と裏側とに塗布した紫外線硬化性樹脂を透明型である上下スタンパーで挟んで紫外線硬化性樹脂にパターンを転写し、上下スタンパーに挟まれた紫外線硬化性樹脂に紫外線を照射して、透明基材の表と裏とに光学パターンを一括成形するものがある(特許文献1)。 As an optical element manufacturing method, a UV curable resin applied on the front and back sides of a glass substrate is sandwiched between transparent upper and lower stampers, the pattern is transferred to the UV curable resin, and UV curable sandwiched between upper and lower stampers. There is one that irradiates a resin with ultraviolet rays and collectively molds an optical pattern on the front and back of a transparent substrate (Patent Document 1).
 光学素子の別の製造方法として、ウェハーレベルレンズの製造方法であって、ガラス基板の表側の成形体と裏側の成形体とを個別に成形し紫外線硬化させるものがある(特許文献2)。この方法では、最初の面の成形が終わって引き続き他方の面を成形するため、他方の面の成形時に最初の面の樹脂型を離型しない。そして、離型前に加熱処理を行い、離型後においてより高温で再度の加熱処理を行っている。 Another method for manufacturing an optical element is a method for manufacturing a wafer level lens, in which a front-side molded body and a back-side molded body of a glass substrate are individually molded and UV-cured (Patent Document 2). In this method, since the molding of the first surface is completed and the other surface is subsequently molded, the resin mold of the first surface is not released during the molding of the other surface. And heat processing is performed before mold release, and heat processing is performed again at a higher temperature after mold release.
 上記特許文献1、2の方法は、基本的に紫外線硬化性樹脂を用いることを前提としており、表裏両面に光学面を持つレンズでは、偏心、心厚、チルト等の発生を抑えるため、それぞれの面に転写する型同士の位置関係を調整し、その位置関係を保ったまま樹脂を硬化させる必要がある。 The methods of Patent Documents 1 and 2 are basically based on the premise that an ultraviolet curable resin is used. In a lens having optical surfaces on both the front and back surfaces, the respective methods are used to suppress the occurrence of decentration, heart thickness, tilt, etc. It is necessary to adjust the positional relationship between the molds transferred to the surface, and to cure the resin while maintaining the positional relationship.
 近年、例えば撮像用のレンズでは、高画素化及び低背化の要求から、サブミクロンの精度が求められている。このため、成形装置に付随させて、半導体製造用のマスクアライナーに匹敵する高精度のアライメントを可能にするステージ等を組み込む必要があり、温度上昇が少ない紫外線硬化方式が採用されている。なお、熱硬化性樹脂を硬化させるには、通常100~150℃程度の加熱処理が行われるが、上記のように精密な装置内での加熱は望ましくないと考えられている。 In recent years, for example, in an imaging lens, submicron accuracy is required due to the demand for higher pixels and lower height. For this reason, it is necessary to incorporate a stage or the like that enables high-accuracy alignment comparable to a mask aligner for semiconductor manufacturing in association with the molding apparatus, and an ultraviolet curing method with a small temperature rise is adopted. In order to cure the thermosetting resin, a heat treatment of about 100 to 150 ° C. is usually performed, but it is considered that heating in a precise apparatus as described above is not desirable.
 上記特許文献1、2の方法では、成形部分のレンズ材料としての選択肢が紫外線硬化性樹脂に限られ、材料の特性(屈折率、アッベ数等)のバリエーションも紫外線硬化性樹脂の範囲内となる。例えば撮像用レンズの色収差補正等には、異なる材料特性の組合せが不可欠であるが、上記方法では、光学設計の自由度が限定されるという問題がある。 In the methods of Patent Documents 1 and 2 above, the choice of the lens material for the molded part is limited to the ultraviolet curable resin, and variations in material properties (refractive index, Abbe number, etc.) are also within the range of the ultraviolet curable resin. . For example, a combination of different material properties is indispensable for correcting chromatic aberration of an imaging lens, but the above method has a problem that the degree of freedom in optical design is limited.
 特に、特許文献1の製造方法の場合、両面を一括で露光するには、紫外線の照射光がレンズ材料に行き渡る必要がある。装置構成上は、片側からの紫外線照射となっており、ガラス基板に特に透過性に影響を与えるパターンが施されていない場合は大きな問題にはならないが、例えば遮光絞り等がガラス基板上にパターンニングされている場合、光源に対して反対側の樹脂の硬化が不十分となると考えられる。また、ガラス基板上に上記のようなパターンがなかったとしても、片側からの照射では、レンズ樹脂自身の紫外光吸収により、やはり光源と反対側の樹脂の硬化が不十分となるおそれがある。 In particular, in the case of the manufacturing method disclosed in Patent Document 1, in order to expose both surfaces at once, it is necessary to irradiate the lens material with ultraviolet irradiation light. In terms of the device configuration, UV irradiation is performed from one side, and this is not a major problem if the glass substrate is not provided with a pattern that particularly affects transparency. In the case where the tempering is performed, it is considered that the resin on the side opposite to the light source is insufficiently cured. Even if there is no pattern as described above on the glass substrate, the irradiation from one side may cause insufficient curing of the resin on the side opposite to the light source due to the ultraviolet light absorption of the lens resin itself.
 また、特許文献2の製造方法の場合、片面ずつ成形するため、ガラス基板上に絞り等のパターンニングがされていても両面の樹脂を均等に露光・硬化することができるが、成形途中、片面の成形が終わった段階で、ワークを取り出し上下反転した後に再び装置にセットする必要がある。また、最終的には加熱工程で硬化を完成させるとしても、反応開始に十分な量の紫外線露光を2回に分けて行う必要があり、工程タクトが長くなってしまう。 In the case of the production method of Patent Document 2, since molding is performed one side at a time, even if patterning such as drawing is performed on the glass substrate, both sides of the resin can be exposed and cured evenly. When the molding is finished, it is necessary to take out the work, turn it upside down, and set it again in the apparatus. In addition, even if the curing is finally completed by the heating process, it is necessary to carry out UV exposure in an amount sufficient for the start of the reaction in two steps, resulting in a long process tact.
特開2000-246810号公報JP 2000-246810 A 国際公開第2009/116448号International Publication No. 2009/116448
 本発明は、上記背景技術の問題に鑑みてなされたものであり、レンズ材料の選択肢を多くでき、十分な硬化によって形状精度を高めることができ、成形のスループットを向上させることができる光学素子の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and it is possible to increase the choice of lens materials, increase the shape accuracy by sufficient curing, and improve the throughput of molding. An object is to provide a manufacturing method.
 上記目的を達成するため、本発明に係る光学素子の製造方法は、第1転写型と第2転写型との間の第1領域に光硬化性樹脂を供給するとともに、第1及び第2転写型間の第2領域に熱硬化性樹脂を供給する工程と、第1及び第2転写型間の第1領域に供給された光硬化性樹脂を光によって硬化させる工程と、光硬化性樹脂の硬化後に、第1及び第2転写型間の第2領域に供給された熱硬化性樹脂を熱によって硬化させる工程と、第1及び第2転写型を離間させることで、熱硬化性樹脂によって形成された光学素子を離型する工程とを備える。 In order to achieve the above object, a method for manufacturing an optical element according to the present invention supplies a photocurable resin to a first region between a first transfer mold and a second transfer mold, and performs first and second transfer. A step of supplying a thermosetting resin to the second region between the molds, a step of curing the photocurable resin supplied to the first region between the first and second transfer molds by light, and a photocurable resin After curing, the thermosetting resin supplied to the second region between the first and second transfer molds is cured by heat, and the first and second transfer molds are separated to form the thermosetting resin. A step of releasing the optical element.
 上記製造方法では、第1及び第2転写型間の第1領域に供給された光硬化性樹脂を光によって硬化させるので、比較的低温環境で第1及び第2転写型のアライメント及び固定が可能になる。その後は、精密にアライメントされた第1及び第2転写型間の第2領域にある熱硬化性樹脂を熱によって硬化させるので、熱硬化性樹脂を含む光学素子を高い型合わせ精度で成形することができる。熱硬化性樹脂を含む光学素子は、光学特性のバリエーションが比較的広く、本手法により、簡単な硬化工程で工程タクトを増加させることなく形状精度を高めることができる。なお、光硬化性樹脂については、光学的物性を参酌することなく速硬性等に特化した材料を選択できる。 In the above manufacturing method, since the photocurable resin supplied to the first region between the first and second transfer molds is cured by light, the first and second transfer molds can be aligned and fixed in a relatively low temperature environment. become. Thereafter, since the thermosetting resin in the second region between the precisely aligned first and second transfer molds is cured by heat, an optical element including the thermosetting resin is molded with high mold alignment accuracy. Can do. An optical element including a thermosetting resin has a relatively wide variation in optical characteristics, and according to this method, the shape accuracy can be increased without increasing process tact by a simple curing process. In addition, about photocurable resin, the material specialized in quick-hardening etc. can be selected, without considering an optical physical property.
 本発明の具体的な側面によれば、上記製造方法において、第1領域と第2領域とは、第1及び第2転写型の型面に沿って異なる範囲に分布する。この場合、第1領域が支持用の領域となり、第2領域が製品用の領域となる。 According to a specific aspect of the present invention, in the manufacturing method, the first region and the second region are distributed in different ranges along the mold surfaces of the first and second transfer molds. In this case, the first region is a support region, and the second region is a product region.
 本発明の別の側面によれば、第1領域には、複数の支持部材を成形するための転写面が設けられ、第2領域には、複数の光学素子を成形するための転写面が設けられている。この場合、第1領域において、光硬化性樹脂を硬化させた成形品としての支持部材(ダミーレンズ)を形成し、この支持部材により第1及び第2転写型を相対的に支持して固定することができ、第2領域において、熱硬化性樹脂を硬化させた成形品としての光学素子を得ることができる。 According to another aspect of the present invention, the first region is provided with a transfer surface for molding a plurality of support members, and the second region is provided with a transfer surface for molding a plurality of optical elements. It has been. In this case, in the first region, a support member (dummy lens) as a molded product obtained by curing the photocurable resin is formed, and the first and second transfer molds are relatively supported and fixed by the support member. In the second region, an optical element as a molded product obtained by curing the thermosetting resin can be obtained.
 本発明のさらに別の側面によれば、光学素子は、第1及び第2転写型の型面に垂直な方向に関して異なる位置に第1の部分と第2の部分とを有し、第2の部分は、熱硬化性樹脂で形成されている。この場合、第1の部分と第2の部分とを例えば異なる組成とすることができ、光学素子の光学設計の自由度を高めることができる。 According to still another aspect of the present invention, the optical element has a first portion and a second portion at different positions with respect to a direction perpendicular to the mold surfaces of the first and second transfer molds, and the second portion The part is formed of a thermosetting resin. In this case, the first portion and the second portion can have different compositions, for example, and the degree of freedom in optical design of the optical element can be increased.
 本発明のさらに別の側面によれば、第1の部分は、光硬化性樹脂で形成されている。この場合、光学素子は、熱硬化性樹脂の部分と光硬化性樹脂の部分とを組み合わせたものとなる。 According to still another aspect of the present invention, the first portion is formed of a photocurable resin. In this case, the optical element is a combination of a thermosetting resin portion and a photocurable resin portion.
 本発明のさらに別の側面によれば、光学素子は、第1の部分と第2の部分との間に、ガラス基板を有する。この場合、ガラス基板の両面にレンズ部を形成した光学素子を得ることができる。 According to still another aspect of the present invention, the optical element has a glass substrate between the first portion and the second portion. In this case, an optical element having lens portions formed on both surfaces of the glass substrate can be obtained.
 本発明のさらに別の側面によれば、ガラス基板上には、絞りパターンが形成されている。この場合、絞りパターンによって迷光防止等の機能を高めた光学素子を簡易に得ることができる。 According to still another aspect of the present invention, an aperture pattern is formed on the glass substrate. In this case, it is possible to easily obtain an optical element having an enhanced function such as stray light prevention by the aperture pattern.
 本発明のさらに別の側面によれば、第1転写型と第2転写型とは、光透過性を有する支持板上に樹脂で形成された転写層を設けたものである。この場合、光硬化性樹脂の硬化が比較的容易になり、工程タクトを短くできる。 According to still another aspect of the present invention, the first transfer mold and the second transfer mold are provided by providing a transfer layer formed of a resin on a light-transmitting support plate. In this case, curing of the photocurable resin becomes relatively easy, and the process tact can be shortened.
 本発明のさらに別の側面によれば、第1転写型と第2転写型とは、相互の位置決めを可能にするアライメントマークをそれぞれ有する。この場合、第1領域に供給された光硬化性樹脂を硬化させる際のアライメント精度を高めることができ、結果的に光学素子の形状精度を高めることができる。 According to still another aspect of the present invention, the first transfer mold and the second transfer mold each have an alignment mark that enables mutual positioning. In this case, it is possible to increase the alignment accuracy when curing the photocurable resin supplied to the first region, and as a result, it is possible to increase the shape accuracy of the optical element.
 本発明のさらに別の側面によれば、第1領域の光硬化性樹脂を硬化させる工程において、第1領域のみに選択的に硬化用の光を照射する。この場合、照射用の光源を小型化することができ、装置コストを抑えることになる。 According to still another aspect of the present invention, only the first region is selectively irradiated with curing light in the step of curing the photocurable resin in the first region. In this case, the light source for irradiation can be reduced in size, and the apparatus cost can be reduced.
 本発明のさらに別の側面によれば、第2領域の熱硬化性樹脂を硬化させる工程は、第1領域の光硬化性樹脂を硬化させる工程を行った成形装置外に硬化した光硬化性樹脂によって相互に固定された第1及び第2転写型を搬出した後に行われる。この場合、成形装置を高精度化することが容易になり、硬化性樹脂の硬化条件の設定の自由度を高めることができる。 According to still another aspect of the present invention, the step of curing the thermosetting resin in the second region is a photocurable resin cured outside the molding apparatus that performed the step of curing the photocurable resin in the first region. This is performed after unloading the first and second transfer molds fixed to each other. In this case, it becomes easy to increase the accuracy of the molding apparatus, and the degree of freedom in setting the curing conditions of the curable resin can be increased.
第1実施形態の光学素子の製造方法を実施するための製造装置を説明する概念図である。It is a conceptual diagram explaining the manufacturing apparatus for enforcing the manufacturing method of the optical element of 1st Embodiment. 図1の製造装置のうち成形装置を説明する図である。It is a figure explaining a shaping | molding apparatus among the manufacturing apparatuses of FIG. 図3A~3Cは、第1実施形態の製造装置で用いられる転写型について説明する図である。具体的には、図3Aは、上転写型の型面を説明する図であり、図3Bは、一対の転写型の断面概念図であり、図3Cは、下転写型の型面を説明する図である。3A to 3C are views for explaining a transfer mold used in the manufacturing apparatus of the first embodiment. Specifically, FIG. 3A is a diagram illustrating the mold surface of the upper transfer mold, FIG. 3B is a conceptual cross-sectional view of a pair of transfer molds, and FIG. 3C is a diagram illustrating the mold surface of the lower transfer mold. FIG. 図4A~4Cは、光学素子の製造方法のうち両転写型の固定までを説明する側方断面図である。4A to 4C are side sectional views for explaining the fixing process of both transfer molds in the method of manufacturing an optical element. 図5A及び5Bは、光学素子の製造方法のうち光学素子の硬化及び取出しを説明する側方断面図である。5A and 5B are side cross-sectional views for explaining curing and taking out of the optical element in the method for manufacturing the optical element. 図6A及び6Bは、第2実施形態の製造装置で用いられる転写型について説明する図である。具体的には、図6Aは、上転写型の型面を説明する図であり、図6Bは、一対の転写型等の断面概念図である。6A and 6B are diagrams illustrating a transfer mold used in the manufacturing apparatus of the second embodiment. Specifically, FIG. 6A is a diagram for explaining a mold surface of the upper transfer mold, and FIG. 6B is a conceptual sectional view of a pair of transfer molds and the like. 図7A及び7Bは、第2実施形態の製造装置で用いられる転写型等について説明する図である。具体的には、図7Aは、ガラス基板の平面図であり、図7Bは、下転写型の型面を説明する図である。7A and 7B are diagrams illustrating a transfer mold and the like used in the manufacturing apparatus of the second embodiment. Specifically, FIG. 7A is a plan view of a glass substrate, and FIG. 7B is a diagram illustrating a mold surface of a lower transfer mold. 図8A~8Dは、光学素子の製造方法の前半段階を説明する側方断面図である。8A to 8D are side sectional views for explaining the first half of the optical element manufacturing method. 図9A~9Dは、光学素子の製造方法の後半段階を説明する側方断面図である。9A to 9D are side sectional views for explaining the latter half of the optical element manufacturing method. 図10A及び10Bは、第3実施形態の製造装置で用いられる転写型について説明する図である。具体的には、図10Aは、上転写型の型面を説明する図であり、図10Bは、3つの転写型の断面概念図である。10A and 10B are diagrams illustrating a transfer mold used in the manufacturing apparatus of the third embodiment. Specifically, FIG. 10A is a diagram illustrating a mold surface of the upper transfer mold, and FIG. 10B is a conceptual cross-sectional view of three transfer molds. 第3実施形態の製造装置で用いられる下転写型の型面を説明する図である。It is a figure explaining the type | mold surface of the lower transfer type | mold used with the manufacturing apparatus of 3rd Embodiment. 図12A~12Dは、光学素子の製造方法の初期段階を説明する側方断面図である。12A to 12D are side sectional views for explaining an initial stage of the method for manufacturing an optical element. 図13A~13Cは、光学素子の製造方法の中間段階を説明する側方断面図である。13A to 13C are side sectional views for explaining an intermediate stage of the method for manufacturing an optical element. 図14A及び14Bは、光学素子の製造方法の最終段階を説明する側方断面図である。14A and 14B are side sectional views for explaining the final stage of the optical element manufacturing method.
〔第1実施形態〕
 以下、図面を参照して、本発明に係る第1実施形態の光学素子の製造方法について説明する。
[First Embodiment]
Hereinafter, with reference to drawings, the manufacturing method of the optical element of a 1st embodiment concerning the present invention is explained.
 図1に示すように、光学素子の製造方法を実施するための製造装置は、成形装置4、加熱装置6等を組み合わせたものとなっている。成形装置4は、樹脂塗布部4aと転写固定部4bとを有する。樹脂塗布部4aでは、第1転写型である下転写型31の型面31f上の適所に光硬化性樹脂RAと熱硬化性樹脂RBとを個別に塗布する。転写固定部4bでは、例えば第1転写型である下転写型31と第2転写型である上転写型32とを互いにアライメントして配置する。この際、光硬化性樹脂RAは、転写型31,32間の第1領域A1に存在し、熱硬化性樹脂RBは、転写型31,32間の第2領域A2に存在する。転写固定部4bは、転写型31,32間の光硬化性樹脂RAに対して例えば紫外線である硬化光を照射する。つまり、転写型31,32間の光硬化性樹脂RAを硬化させて両転写型31,32を互いに固定する。加熱装置6は、オーブンであり、転写固定部4bから搬出され互いに固定された状態の転写型31,32を周囲から加熱する。これにより、転写型31,32間の熱硬化性樹脂RBを硬化させることができ、熱硬化性樹脂で形成された光学素子MPを得ることができる。なお、図示を省略するが、加熱処理後の下転写型(第1転写型)31と上転写型(第2転写型)32とは十分に冷却された後、型開きによって互いに離間される。これにより、両転写型31,32間で成形された光学素子MPを一括して取り出すことができる。 As shown in FIG. 1, a manufacturing apparatus for carrying out an optical element manufacturing method is a combination of a molding apparatus 4, a heating apparatus 6, and the like. The molding apparatus 4 includes a resin application part 4a and a transfer fixing part 4b. In the resin application part 4a, the photocurable resin RA and the thermosetting resin RB are individually applied to appropriate positions on the mold surface 31f of the lower transfer mold 31 which is the first transfer mold. In the transfer fixing portion 4b, for example, a lower transfer mold 31 that is a first transfer mold and an upper transfer mold 32 that is a second transfer mold are arranged in alignment with each other. At this time, the photocurable resin RA exists in the first area A1 between the transfer molds 31 and 32, and the thermosetting resin RB exists in the second area A2 between the transfer molds 31 and 32. The transfer fixing unit 4b irradiates the photocurable resin RA between the transfer molds 31 and 32 with curing light, for example, ultraviolet rays. That is, the photocurable resin RA between the transfer molds 31 and 32 is cured to fix the transfer molds 31 and 32 to each other. The heating device 6 is an oven and heats the transfer molds 31 and 32 that are unloaded from the transfer fixing unit 4b and fixed to each other from the surroundings. Thereby, the thermosetting resin RB between the transfer molds 31 and 32 can be cured, and the optical element MP formed of the thermosetting resin can be obtained. Although not shown, the lower transfer mold (first transfer mold) 31 and the upper transfer mold (second transfer mold) 32 after the heat treatment are sufficiently cooled and then separated from each other by mold opening. Thereby, the optical elements MP molded between the two transfer dies 31 and 32 can be taken out collectively.
 図2に示す転写固定部4bは、真空チャンバー10中に、下側ステージ11と、下側駆動部12と、上側ステージ13と、上側駆動部14とを収納している。真空チャンバー10の外側には、位置決め時に下側ステージ11の背面側からワークを観察するアライメントカメラ21と、硬化処理時に下側ステージ11の背面側からワークの適所に硬化光KKを照射するUV光源22と、上側駆動部14を昇降させるメイン駆動部23とが設けられている。UV光源22を転写型31,32の固定に用いる支持部材SUを形成する光硬化性樹脂RAを局所的に照射する装置とすれば(図4A~4C参照)、装置を小型化することができ、コストを抑えることができる。 2 accommodates a lower stage 11, a lower drive unit 12, an upper stage 13, and an upper drive unit 14 in a vacuum chamber 10. The transfer fixing unit 4b shown in FIG. Outside the vacuum chamber 10 are an alignment camera 21 that observes the workpiece from the back side of the lower stage 11 during positioning, and a UV light source that irradiates the curing light KK to an appropriate position of the workpiece from the back side of the lower stage 11 during the curing process. 22 and a main drive unit 23 for raising and lowering the upper drive unit 14 are provided. If the UV light source 22 is a device that locally irradiates the photocurable resin RA that forms the support member SU used to fix the transfer molds 31 and 32 (see FIGS. 4A to 4C), the device can be downsized. , Can reduce costs.
 下側ステージ11は、ワークとしての下転写型(第1転写型)31を保持する。下側駆動部12は、エアシリンダー12a等によって下側ステージ11を昇降させる。上側ステージ13は、ワークとしての上転写型(第2転写型)32(必要ならばガラス基板33等)を保持する。上側駆動部14は、Z駆動部14a、ハイトゲージ14b等によって上側ステージ13を上下方向に微動させる。上側ステージ13には、X駆動部13a、Y駆動部13b、θ駆動部13c、チャック部13f等が設けられている。つまり、上側ステージ13は、上転写型32を支持してXYZ方向に3次元的に変位させるとともに、Z軸の周りに回転させることができる。なお、上側駆動部14は、メイン駆動部23から延びる駆動軸23bに駆動されて昇降する。 The lower stage 11 holds a lower transfer mold (first transfer mold) 31 as a workpiece. The lower drive unit 12 moves the lower stage 11 up and down with an air cylinder 12a and the like. The upper stage 13 holds an upper transfer mold (second transfer mold) 32 (such as a glass substrate 33 if necessary) as a work. The upper drive unit 14 slightly moves the upper stage 13 in the vertical direction by the Z drive unit 14a, the height gauge 14b, and the like. The upper stage 13 is provided with an X drive unit 13a, a Y drive unit 13b, a θ drive unit 13c, a chuck unit 13f, and the like. That is, the upper stage 13 can support the upper transfer mold 32 and can be displaced three-dimensionally in the XYZ directions and can be rotated around the Z axis. The upper drive unit 14 is driven up and down by a drive shaft 23b extending from the main drive unit 23.
 上記転写固定部4bにおいて、上転写型32と下転写型31との3次元的な並進及び回転に関するアライメントが可能になり、アライメントマークを利用することで上転写型32と下転写型31との相対的な配置関係を精密に設定できる。その後は、UV光源22を動作させることで、転写型31,32間の光硬化性樹脂RAを硬化光KKによって選択的に硬化させることができる。つまり、両転写型31,32の配置関係が光硬化性樹脂RAによって暫定的にしっかりと固定される。 In the transfer fixing portion 4b, the three-dimensional translation and rotation of the upper transfer mold 32 and the lower transfer mold 31 can be performed. By using the alignment mark, the upper transfer mold 32 and the lower transfer mold 31 can be aligned. The relative positional relationship can be set precisely. Thereafter, by operating the UV light source 22, the photocurable resin RA between the transfer molds 31 and 32 can be selectively cured by the curing light KK. In other words, the positional relationship between the two transfer molds 31 and 32 is provisionally firmly fixed by the photocurable resin RA.
 以下、光学素子MPの具体的な製造工程について説明する。図3Aは、上転写型32の型面32fを説明する図であり、図3Bは、一対の転写型31,32の断面概念図であり、図3Cは、下転写型31の型面31fを説明する図である。 Hereinafter, a specific manufacturing process of the optical element MP will be described. 3A is a diagram for explaining the mold surface 32f of the upper transfer mold 32, FIG. 3B is a conceptual cross-sectional view of the pair of transfer molds 31 and 32, and FIG. 3C shows the mold surface 31f of the lower transfer mold 31. It is a figure explaining.
 上転写型32は、光透過性を有する支持板32a上に樹脂で形成された転写層32bを設けたものである。支持板32aは、例えばガラス板によって形成され、転写層32bは、例えばUV硬化性の樹脂によって形成される。転写層32bは、金属製のマスター型又は上転写型32と同様の構造を有するサブマスター型を利用した転写及び成形によって形成される。上転写型32の型面32f上すなわち転写層32bの表面上には、レンズである光学素子MP(図5B参照)を成形するための第1転写面32gと、両転写型31,32を位置決めした状態で固定する役割を有する支持部材SU(図5B参照)を成形するための第2転写面32hと、偏芯測定用のレンズである測定用素子TE(図5B参照)を成形するための第3転写面32iとが設けられている。これらの転写面32g,32h,32iは、型面32f上において異なる領域に形成されている。つまり、第1転写面32gと第2転写面32hと第3転写面32iとは、上転写型32の型面32fに沿って異なる範囲に分布している。これらの転写面32g,32h,32iは、図示の例では格子点上に配列されている。これらのうち、第2転写面32hは、例えばZ軸に平行な中心軸CXの周りの比較的大半径である外側の円周に沿って等間隔で4箇所(第1領域に相当)に形成され、第3転写面32iは、例えば同中心軸CXの周りの比較的小半径の内側の円周に沿って等間隔で4箇所に形成されている。第1転写面32gは、残りの格子点に対応する箇所(第2領域に相当)に配置されている。なお、型面32f上には、転写面32g,32h,32iを避けてアライメントマーク32mが形成されており、上転写型32の配置を光学的に確認できるようになっている。 The upper transfer mold 32 is obtained by providing a transfer layer 32b made of resin on a light-transmitting support plate 32a. The support plate 32a is formed of, for example, a glass plate, and the transfer layer 32b is formed of, for example, a UV curable resin. The transfer layer 32 b is formed by transfer and molding using a metal master mold or a sub master mold having the same structure as the upper transfer mold 32. On the mold surface 32f of the upper transfer mold 32, that is, on the surface of the transfer layer 32b, a first transfer surface 32g for molding an optical element MP (see FIG. 5B) as a lens and both transfer molds 31 and 32 are positioned. The second transfer surface 32h for molding the support member SU (see FIG. 5B) that has the role of fixing in the finished state, and the measurement element TE (see FIG. 5B) that is a lens for measuring eccentricity A third transfer surface 32i is provided. These transfer surfaces 32g, 32h, and 32i are formed in different regions on the mold surface 32f. That is, the first transfer surface 32g, the second transfer surface 32h, and the third transfer surface 32i are distributed in different ranges along the mold surface 32f of the upper transfer mold 32. These transfer surfaces 32g, 32h, and 32i are arranged on lattice points in the illustrated example. Among these, the second transfer surface 32h is formed at four locations (corresponding to the first region) at equal intervals along the outer circumference having a relatively large radius around the central axis CX parallel to the Z axis, for example. The third transfer surface 32i is formed at four locations at equal intervals along the inner circumference of a relatively small radius around the central axis CX, for example. The first transfer surface 32g is disposed at a location corresponding to the remaining lattice points (corresponding to the second region). An alignment mark 32m is formed on the mold surface 32f so as to avoid the transfer surfaces 32g, 32h and 32i, so that the arrangement of the upper transfer mold 32 can be optically confirmed.
 下転写型31も上転写型32と同様の構造を有する。すなわち、下転写型31は、光透過性を有する支持板31a上に樹脂で形成された転写層31bを設けたものである。支持板31aは、例えばガラス板によって形成され、転写層31bは、例えばUV硬化性の樹脂によって形成される。転写層31bは、金属製のマスター型又はサブマスター型を利用した転写及び成形によって形成される。下転写型31の型面31f上すなわち転写層31bの表面上には、レンズである光学素子MPを成形するための第1転写面31gと、両転写型31,32を位置決めした状態で固定する役割を有する支持部材SUを成形するための第2転写面31hと、偏芯測定用のレンズである測定用素子TEを成形するための第3転写面31iとが設けられている。これらの転写面31g,31h,31iは、上転写型32の転写面32g,32h,32iとそれぞれ対向しており、結果的に型面31f上において異なる領域に形成されている。つまり、第1転写面31gと第2転写面31hと第3転写面31iとは、下転写型31の型面31fに沿って異なる範囲に分布している。なお、型面31f上には、転写面32g,32h,32iを避けてアライメントマーク31mが形成されており、下転写型31の配置を光学的に確認できるようになっている。 The lower transfer mold 31 has the same structure as the upper transfer mold 32. That is, the lower transfer mold 31 is provided with a transfer layer 31b made of resin on a support plate 31a having light transmittance. The support plate 31a is formed of, for example, a glass plate, and the transfer layer 31b is formed of, for example, a UV curable resin. The transfer layer 31b is formed by transfer and molding using a metal master mold or sub master mold. On the mold surface 31f of the lower transfer mold 31, that is, on the surface of the transfer layer 31b, the first transfer surface 31g for molding the optical element MP as a lens and both the transfer molds 31 and 32 are fixed in a positioned state. A second transfer surface 31h for molding the supporting member SU having a role and a third transfer surface 31i for molding the measuring element TE which is a lens for measuring eccentricity are provided. These transfer surfaces 31g, 31h, and 31i face the transfer surfaces 32g, 32h, and 32i of the upper transfer mold 32, respectively, and as a result, are formed in different regions on the mold surface 31f. That is, the first transfer surface 31g, the second transfer surface 31h, and the third transfer surface 31i are distributed in different ranges along the mold surface 31f of the lower transfer mold 31. An alignment mark 31m is formed on the mold surface 31f so as to avoid the transfer surfaces 32g, 32h, and 32i, so that the arrangement of the lower transfer mold 31 can be optically confirmed.
 下転写型31のアライメントマーク31mと、上転写型32のアライメントマーク32mとは、精密にアライメントされた状態で型面31f,32fに垂直な方向に配列される。つまり、両アライメントマーク31m,32mを図2に示す転写固定部4bに設けたアライメントカメラ21によって観察しつつ、上側駆動部14によって上側ステージ13に固定された上転写型32を鉛直軸AXに垂直な面内で2次元的に変位、鉛直軸AXの周りに回転、又は鉛直軸AXに対してチルトさせることで、両アライメントマーク31m,32mを合致させることができ、これにより、両転写型31,32の間隔を除いた位置合わせが達成される。なお、転写型31,32の間隔は、ハイトゲージ14b等によってチェックすることができる。 The alignment mark 31m of the lower transfer mold 31 and the alignment mark 32m of the upper transfer mold 32 are arranged in a direction perpendicular to the mold surfaces 31f and 32f in a precisely aligned state. That is, the upper transfer mold 32 fixed to the upper stage 13 by the upper drive unit 14 is perpendicular to the vertical axis AX while observing both alignment marks 31m and 32m with the alignment camera 21 provided in the transfer fixing unit 4b shown in FIG. The two alignment marks 31m and 32m can be made to coincide with each other by being displaced two-dimensionally in a plane, rotated about the vertical axis AX, or tilted with respect to the vertical axis AX. , 32 spacing is achieved. The interval between the transfer dies 31 and 32 can be checked by the height gauge 14b or the like.
 以下、図4A~4C及び図5A、5Bを参照しつつ、光学素子の製造工程について説明する。
 まず、下転写型31を下側ステージ11に固定する。次に、図4Aに示すように、下転写型31の第1及び第3転写面31g,31i上に熱硬化性樹脂RBを塗布し、第2転写面31h上に光硬化性樹脂RAを塗布する。樹脂RA,RBの塗布量は、転写型31,32間の第1及び第2領域A1,A2を満たし、個々のレンズが独立して形成される程度となっている。光硬化性樹脂として、例えばアクリル樹脂、アリル樹脂、エポキシ系樹脂、フッ素系樹脂等を用いる。また、熱硬化性樹脂として、例えばフッ素系樹脂、シリコーン系樹脂等を用いる。
The optical element manufacturing process will be described below with reference to FIGS. 4A to 4C and FIGS. 5A and 5B.
First, the lower transfer mold 31 is fixed to the lower stage 11. Next, as shown in FIG. 4A, a thermosetting resin RB is applied on the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and a photocurable resin RA is applied on the second transfer surface 31h. To do. The application amounts of the resins RA and RB are such that the first and second regions A1 and A2 between the transfer dies 31 and 32 are filled and individual lenses are formed independently. As the photocurable resin, for example, an acrylic resin, an allyl resin, an epoxy resin, a fluorine resin, or the like is used. In addition, as the thermosetting resin, for example, a fluorine resin, a silicone resin, or the like is used.
 次に、上転写型32を上側ステージ13に固定する。図4Bに示すように、上側駆動部14を動作させて上転写型32を降下させ、上側ステージ13を動作させて上転写型32と下転写型31とを大まかにアライメントする。その後、上転写型32を下転写型31にさらに近づけ、転写型31,32間の第1及び第2領域A1,A2を樹脂で満たした状態とする。その後、上転写型32と下転写型31とを精密にアライメントする。上転写型32と下転写型31とは、光学素子MPが所定の肉厚(心厚)となるような位置関係で固定される。 Next, the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 4B, the upper transfer mold 32 is moved down by operating the upper drive unit 14, and the upper transfer mold 32 and the lower transfer mold 31 are roughly aligned by operating the upper stage 13. Thereafter, the upper transfer mold 32 is brought closer to the lower transfer mold 31, and the first and second regions A1, A2 between the transfer molds 31, 32 are filled with resin. Thereafter, the upper transfer mold 32 and the lower transfer mold 31 are precisely aligned. The upper transfer mold 32 and the lower transfer mold 31 are fixed in a positional relationship such that the optical element MP has a predetermined thickness (heart thickness).
 その後、図4Cに示すように、UV光源22を動作させて転写型31,32間の光硬化性樹脂RAを硬化光KKによって選択的に硬化させる。つまり、転写型31,32間の第1領域A1に供給された光硬化性樹脂RAが硬化する。これにより、支持部材SUによって転写型31,32が互いに固定される。 Thereafter, as shown in FIG. 4C, the UV light source 22 is operated to selectively cure the photocurable resin RA between the transfer molds 31 and 32 by the curing light KK. That is, the photocurable resin RA supplied to the first area A1 between the transfer dies 31 and 32 is cured. Thereby, the transfer molds 31 and 32 are fixed to each other by the support member SU.
 次に、図5Aに示すように、転写型31,32が互いに固定された状態で転写型31,32を転写固定部4bから搬出し、加熱装置6に搬送する。この際、上転写型32と下転写型31とは、支持部材SUによって固定されているため、精密にアライメントされた状態を維持している。加熱装置6において、転写型31,32を加熱し、転写型31,32間に存在する熱硬化性樹脂RBを硬化させる。つまり、転写型31,32間の第2領域A2に供給された熱硬化性樹脂RBが硬化する。これにより、光学素子MP及び測定用素子TEが成形される。加熱処理後、転写型31,32を十分に冷却する。 Next, as shown in FIG. 5A, the transfer dies 31, 32 are unloaded from the transfer fixing portion 4b in a state where the transfer dies 31, 32 are fixed to each other, and are conveyed to the heating device 6. At this time, the upper transfer mold 32 and the lower transfer mold 31 are fixed by the support member SU, and thus maintain a precisely aligned state. In the heating device 6, the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded. After the heat treatment, the transfer dies 31, 32 are sufficiently cooled.
 その後、図5Bに示すように、型開きによって上転写型32と下転写型31とを互いに離間させる。これにより、転写型31,32間の第1転写面31g,32gによって成形された光学素子MPを取り出すことができる。また、離型の際に、第2転写面31h,32hによって成形された支持部材SU、及び第3転写面31i,32iによって成形された測定用素子TEも取り出される。光学素子MPは、単一の熱硬化性の樹脂又はプラスチック材料で形成された一体型のレンズである。 Thereafter, as shown in FIG. 5B, the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening. Thereby, the optical element MP molded by the first transfer surfaces 31g and 32g between the transfer dies 31 and 32 can be taken out. At the time of mold release, the support member SU formed by the second transfer surfaces 31h and 32h and the measurement element TE formed by the third transfer surfaces 31i and 32i are also taken out. The optical element MP is an integrated lens formed of a single thermosetting resin or plastic material.
 以上説明した光学素子の製造方法によれば、転写型31,32間の第1領域A1に供給された光硬化性樹脂RAを光によって硬化させるので、比較的低温環境で転写型31,32のアライメント及び固定が可能になる。その後は、精密にアライメントされた転写型31,32間の第2領域A2にある熱硬化性樹脂RBを熱によって硬化させるので、熱硬化性樹脂RBを含む光学素子MPを高い型合わせ精度で一括して成形することができる。熱硬化性樹脂RBを含む光学素子MPは、光学特性のバリエーションが比較的広く、本手法により、簡単な硬化工程で工程タクトを増加させることなく形状精度を高めることができる。なお、光硬化性樹脂RAについては、光学的物性を参酌することなく速硬性等に特化した材料を選択できる。 According to the optical element manufacturing method described above, the photocurable resin RA supplied to the first region A1 between the transfer molds 31 and 32 is cured by light, so that the transfer molds 31 and 32 can be manufactured in a relatively low temperature environment. Alignment and fixation are possible. Thereafter, since the thermosetting resin RB in the second region A2 between the precisely aligned transfer molds 31 and 32 is cured by heat, the optical elements MP including the thermosetting resin RB are collectively processed with high mold alignment accuracy. And can be molded. The optical element MP including the thermosetting resin RB has a relatively wide variation in optical characteristics, and this method can improve the shape accuracy without increasing the process tact by a simple curing process. In addition, about photocurable resin RA, the material specialized in quick-hardening etc. can be selected, without taking into consideration an optical physical property.
〔第2実施形態〕
 以下、第2実施形態に係る光学素子の製造方法について説明する。なお、第2実施形態の光学素子の製造方法は第1実施形態の光学素子の製造方法を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
Hereinafter, a method for manufacturing an optical element according to the second embodiment will be described. The optical element manufacturing method according to the second embodiment is a modification of the optical element manufacturing method according to the first embodiment, and items not specifically described are the same as those in the first embodiment.
 本実施形態において、図6B等に示すガラス基板33を表側の光学面間に挟んだ光学素子MP(図9D参照)を製造する。図9Dに示すように、転写型31,32から離型した直後では、ウェハー状部材100として取り出される。ウェハー状部材100には、ガラス基板33の第1面33a及び第2面33bに樹脂で形成された複数のレンズ部(第1及び第2の部分34a,34b)が2次元的にそれぞれ配置されている。ウェハー状部材100を切断することによって個片化された光学素子MPを得ることができる。光学素子MPにおいて、ガラス基板33の第1面33a側のレンズ部が第1の部分34aであり、ガラス基板33の第2面33b側のレンズ部が第2の部分34bである。すなわち、光学素子MPは、転写型31,32の型面31f,32fに垂直で中心軸CXに平行な光軸方向に関して異なる位置に第1の部分34aと第2の部分34bとを有する。本実施形態において、光学素子MPの第1の部分34a及び第2の部分34bはいずれも熱硬化性樹脂で形成されている。 In this embodiment, an optical element MP (see FIG. 9D) is manufactured in which a glass substrate 33 shown in FIG. 6B or the like is sandwiched between optical surfaces on the front side. As shown in FIG. 9D, immediately after releasing from the transfer dies 31, 32, the wafer-like member 100 is taken out. In the wafer-like member 100, a plurality of lens portions (first and second portions 34a, 34b) formed of resin on the first surface 33a and the second surface 33b of the glass substrate 33 are two-dimensionally arranged. ing. By cutting the wafer-like member 100, an individual optical element MP can be obtained. In the optical element MP, the lens portion on the first surface 33a side of the glass substrate 33 is the first portion 34a, and the lens portion on the second surface 33b side of the glass substrate 33 is the second portion 34b. That is, the optical element MP has the first portion 34a and the second portion 34b at different positions with respect to the optical axis direction perpendicular to the mold surfaces 31f and 32f of the transfer dies 31 and 32 and parallel to the central axis CX. In the present embodiment, the first portion 34a and the second portion 34b of the optical element MP are both formed of a thermosetting resin.
 図6A、6B、及び図7Bに示すように、本実施形態の製造方法で用いる上転写型32及び下転写型31は、第1実施形態に示す上転写型32及び下転写型31と同様であるため、説明を省略する。 As shown in FIGS. 6A, 6B, and 7B, the upper transfer mold 32 and the lower transfer mold 31 used in the manufacturing method of the present embodiment are the same as the upper transfer mold 32 and the lower transfer mold 31 shown in the first embodiment. Therefore, the description is omitted.
 図7Aに示すように、ガラス基板33は、絞りパターンPTを有する。絞りパターンPTは、第1開口部33cと、第2開口部33dと、アライメントマーク33m,33nとで構成されている。絞りパターンPTのうち第1開口部33cは、光学素子MPに設けられる開口部である。また、第2開口部33dは、支持部材SUを形成するための光硬化性樹脂RAを硬化させるための開口部であり、第2転写面31h,32hの形状と略同様の輪郭を有する。また、アライメントマーク33mは、上転写型32との位置決め用のマークである。また、アライメントマーク33nは、下転写型31との位置決め用のマークである。ガラス基板33は、例えば全体として遮光性の樹脂や金属等で表面を覆われており、開口部33c,33d及びアライメントマーク33m,33n以外に光が入射しないようになっている。そのため、光学素子MPの製造工程において、第2開口部33dに光が選択的に入射し、第1領域A1に存在する光硬化性樹脂RAを選択的に硬化させることができる。 As shown in FIG. 7A, the glass substrate 33 has an aperture pattern PT. The aperture pattern PT includes a first opening 33c, a second opening 33d, and alignment marks 33m and 33n. The first opening 33c in the aperture pattern PT is an opening provided in the optical element MP. The second opening 33d is an opening for curing the photo-curable resin RA for forming the support member SU, and has substantially the same outline as the shapes of the second transfer surfaces 31h and 32h. The alignment mark 33m is a mark for positioning with the upper transfer mold 32. The alignment mark 33n is a mark for positioning with the lower transfer mold 31. The glass substrate 33 is covered with, for example, a light-shielding resin or metal as a whole, so that light does not enter other than the openings 33c and 33d and the alignment marks 33m and 33n. Therefore, in the manufacturing process of the optical element MP, light selectively enters the second opening 33d, and the photocurable resin RA existing in the first region A1 can be selectively cured.
 以下、図8A~8D及び図9A~9Dを参照しつつ、本実施形態の製造工程について説明する。
 まず、図8Aに示すように、下転写型31の第1及び第3転写面31g,31i上に熱硬化性樹脂RBを塗布し、第2転写面31h上に光硬化性樹脂RAを塗布する。
Hereinafter, the manufacturing process of this embodiment will be described with reference to FIGS. 8A to 8D and FIGS. 9A to 9D.
First, as shown in FIG. 8A, a thermosetting resin RB is applied on the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and a photocurable resin RA is applied on the second transfer surface 31h. .
 次に、ガラス基板33を上側ステージ13に固定する。図8Bに示すように、上側駆動部14を動作させてガラス基板33を降下させ、上側ステージ13を動作させてガラス基板33と下転写型31とを大まかにアライメントする。その後、ガラス基板33を下転写型31にさらに近づけ、ガラス基板33と下転写型31と間の第1及び第2領域A1,A2を樹脂で満たした状態とする。その後、ガラス基板33と下転写型31とを精密にアライメントする。 Next, the glass substrate 33 is fixed to the upper stage 13. As shown in FIG. 8B, the upper drive unit 14 is operated to lower the glass substrate 33, and the upper stage 13 is operated to roughly align the glass substrate 33 and the lower transfer mold 31. Thereafter, the glass substrate 33 is brought closer to the lower transfer mold 31 and the first and second regions A1 and A2 between the glass substrate 33 and the lower transfer mold 31 are filled with resin. Thereafter, the glass substrate 33 and the lower transfer mold 31 are precisely aligned.
 その後、図8Cに示すように、UV光源22を動作させてガラス基板33と下転写型31との間の光硬化性樹脂RAを硬化光KKによって選択的に硬化させる。つまり、ガラス基板33と下転写型31との間の第1領域A1に供給された光硬化性樹脂RAが硬化する。これにより、支持部材SUの一部によってガラス基板33と下転写型31とが互いに固定される。その後、上側ステージ13からガラス基板33を外しつつ上側ステージ13を上方に後退させると、ガラス基板33が下転写型31とともに下側ステージ11に残された状態となる。 Thereafter, as shown in FIG. 8C, the UV light source 22 is operated to selectively cure the photocurable resin RA between the glass substrate 33 and the lower transfer mold 31 with the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the glass substrate 33 and the lower transfer mold 31 is cured. Thereby, the glass substrate 33 and the lower transfer mold 31 are fixed to each other by a part of the support member SU. Thereafter, when the upper stage 13 is retracted upward while removing the glass substrate 33 from the upper stage 13, the glass substrate 33 remains in the lower stage 11 together with the lower transfer mold 31.
 次に、図8Dに示すように、ガラス基板33上において、下転写型31の第1及び第3転写面31g,31iに対応する位置に熱硬化性樹脂RBを塗布し、第2転写面31hに対応する位置に光硬化性樹脂RAを塗布する。 Next, as shown in FIG. 8D, a thermosetting resin RB is applied to a position corresponding to the first and third transfer surfaces 31g and 31i of the lower transfer mold 31 on the glass substrate 33, and the second transfer surface 31h. A photo-curable resin RA is applied to a position corresponding to.
 その後、上転写型32を上側ステージ13に固定する。図9Aに示すように、上転写型32を降下させ、上転写型32とガラス基板33とを大まかにアライメントする。その後、上転写型32をガラス基板33にさらに近づけ、上転写型32とガラス基板33と間の第1及び第2領域A1,A2を樹脂で満たした状態とする。その後、上転写型32とガラス基板33とを精密にアライメントする。 Thereafter, the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 9A, the upper transfer mold 32 is lowered, and the upper transfer mold 32 and the glass substrate 33 are roughly aligned. Thereafter, the upper transfer mold 32 is brought closer to the glass substrate 33, and the first and second regions A1, A2 between the upper transfer mold 32 and the glass substrate 33 are filled with resin. Thereafter, the upper transfer mold 32 and the glass substrate 33 are precisely aligned.
 その後、図9Bに示すように、上転写型32とガラス基板33との間の光硬化性樹脂RAを硬化光KKによって選択的に硬化させる。つまり、上転写型32とガラス基板33との間の第1領域A1に供給された光硬化性樹脂RAが硬化する。これにより、支持部材SUの一部によって上転写型32とガラス基板33とが互いに固定される。 Thereafter, as shown in FIG. 9B, the photocurable resin RA between the upper transfer mold 32 and the glass substrate 33 is selectively cured by the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the upper transfer mold 32 and the glass substrate 33 is cured. Thereby, the upper transfer mold 32 and the glass substrate 33 are fixed to each other by a part of the support member SU.
 次に、図9Cに示すように、ガラス基板33を挟んで転写型31,32が互いに固定された状態で転写型31,32を転写固定部4bから搬出し、加熱装置6に搬送する。加熱装置6において、転写型31,32を加熱し、転写型31,32間に存在する熱硬化性樹脂RBを硬化させる。つまり、転写型31,32間の第2領域A2に供給された熱硬化性樹脂RBが硬化する。これにより、光学素子MP及び測定用素子TEが成形される。加熱処理後、転写型31,32を十分に冷却する。 Next, as shown in FIG. 9C, the transfer dies 31, 32 are unloaded from the transfer fixing portion 4 b with the glass substrate 33 interposed therebetween and are transferred to the heating device 6. In the heating device 6, the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded. After the heat treatment, the transfer dies 31, 32 are sufficiently cooled.
 その後、図9Dに示すように、型開きによって上転写型32と下転写型31とを互いに離間させる。これにより、光学素子MP、支持部材SU、及び測定用素子TEがガラス基板33上に2次元的に配列されたウェハー状部材100が取り出される。このウェハー状部材100を切断線DLに沿って切断することによって個片化された光学素子MP、測定用素子TE等を得る。 Thereafter, as shown in FIG. 9D, the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening. Thereby, the wafer-like member 100 in which the optical element MP, the supporting member SU, and the measuring element TE are two-dimensionally arranged on the glass substrate 33 is taken out. The wafer-like member 100 is cut along the cutting line DL to obtain an individual optical element MP, measuring element TE, and the like.
 本実施形態の光学素子の製造方法によれば、絞りパターンPTを有するガラス基板33を用いても、製造工程中に転写型31,32を確実に固定した状態で熱硬化性樹脂RBを硬化させることができる。これにより、複数の光学素子MPを一括して成形することができる。 According to the method for manufacturing an optical element of the present embodiment, even when the glass substrate 33 having the aperture pattern PT is used, the thermosetting resin RB is cured while the transfer dies 31 and 32 are securely fixed during the manufacturing process. be able to. Thereby, several optical element MP can be shape | molded collectively.
 なお、本実施形態では、光学素子MPの第1の部分34a及び第2の部分34bをいずれも熱硬化性樹脂RBで形成したが、第1の部分34a及び第2の部分34bのいずれか一方を光硬化性樹脂RAで形成してもよい。これにより、ガラス基板33を挟んで異なる特性の樹脂材料を選択することができ、光学設計自由度の高い光学素子MPを得ることができる。 In the present embodiment, the first portion 34a and the second portion 34b of the optical element MP are both formed of the thermosetting resin RB, but either the first portion 34a or the second portion 34b is used. May be formed of a photocurable resin RA. Accordingly, resin materials having different characteristics can be selected with the glass substrate 33 interposed therebetween, and an optical element MP having a high degree of freedom in optical design can be obtained.
〔第3実施形態〕
 以下、第3実施形態に係る光学素子の製造方法について説明する。なお、第3実施形態の光学素子の製造方法は第1又は第2実施形態の光学素子の製造方法を変形したものであり、特に説明しない事項は第1又は第2実施形態と同様である。
[Third Embodiment]
Hereinafter, a method for manufacturing an optical element according to the third embodiment will be described. Note that the optical element manufacturing method of the third embodiment is a modification of the optical element manufacturing method of the first or second embodiment, and items that are not particularly described are the same as those of the first or second embodiment.
 本実施形態において、第1の部分34aと第2の部分34bとで樹脂の組成が異なる光学素子MP(図14B参照)を製造する。具体的には、光学素子MPのうち第1の部分34aは、光硬化性樹脂RAで形成されており、第2の部分34bは、熱硬化性樹脂RBで形成されている。 In this embodiment, an optical element MP (see FIG. 14B) in which the first portion 34a and the second portion 34b have different resin compositions is manufactured. Specifically, the first portion 34a of the optical element MP is made of a photocurable resin RA, and the second portion 34b is made of a thermosetting resin RB.
 図10A、10B、及び図11に示すように、本実施形態の製造方法で用いる上転写型32及び下転写型31は、第1実施形態に示す上転写型32及び下転写型31と同様であるため、説明を省略する。本実施形態では、平板型35をさらに用いる。図10Bに示すように、平板型35は、下転写型31の型面31fを全体的に覆うような平坦な板状の部材である。平板型35の下転写型31に対向する端面35aは、略平坦な平面となっている。 As shown in FIGS. 10A, 10B, and 11, the upper transfer mold 32 and the lower transfer mold 31 used in the manufacturing method of the present embodiment are the same as the upper transfer mold 32 and the lower transfer mold 31 shown in the first embodiment. Therefore, the description is omitted. In the present embodiment, a flat plate mold 35 is further used. As shown in FIG. 10B, the flat plate mold 35 is a flat plate-like member that covers the entire mold surface 31 f of the lower transfer mold 31. The end face 35a facing the lower transfer mold 31 of the flat plate mold 35 is a substantially flat plane.
 以下、図12A~12D、図13A~13C、及び図14A、14Bを参照しつつ、本実施形態の製造工程について説明する。
 まず、図12Aに示すように、下転写型31の第1、第2、及び第3転写面31g,31h,31i上に光硬化性樹脂RAを塗布する。なお、光学素子MPや支持部材SUを形成する樹脂の組成は異なっていてもよい。
Hereinafter, the manufacturing process of this embodiment will be described with reference to FIGS. 12A to 12D, FIGS. 13A to 13C, and FIGS. 14A and 14B.
First, as shown in FIG. 12A, a photocurable resin RA is applied on the first, second, and third transfer surfaces 31g, 31h, and 31i of the lower transfer mold 31. The composition of the resin that forms the optical element MP and the support member SU may be different.
 次に、平板型35を上側ステージ13に固定する。図12Bに示すように、上側駆動部14を動作させて平板型35を降下させ、上側ステージ13を動作させて平板型35と下転写型31とを大まかにアライメントする。その後、平板型35を下転写型31にさらに近づけ、平板型35と下転写型31と間の第1及び第2領域A1,A2を樹脂で満たした状態とする。その後、平板型35と下転写型31とを精密にアライメントする。 Next, the flat plate mold 35 is fixed to the upper stage 13. As shown in FIG. 12B, the upper driving unit 14 is operated to lower the flat plate mold 35, and the upper stage 13 is operated to roughly align the flat plate mold 35 and the lower transfer mold 31. Thereafter, the flat plate mold 35 is brought closer to the lower transfer mold 31 so that the first and second regions A1 and A2 between the flat plate mold 35 and the lower transfer mold 31 are filled with resin. Thereafter, the flat plate mold 35 and the lower transfer mold 31 are precisely aligned.
 その後、図12Cに示すように、UV光源22を動作させて平板型35と下転写型31との間の光硬化性樹脂RAを硬化光KKによって硬化させる。つまり、ガラス基板33と下転写型31との間の第1及び第2領域A1,A2に供給された光硬化性樹脂RAが硬化する。その後、図12Dに示すように、上側ステージ13を動作させて平板型35を上昇させると、平板型35が離型され、光学素子MPの第1の部分34a(つまり、光学素子MPの半分部分)等が下転写型31とともに下側ステージ11に残された状態となる。 Thereafter, as shown in FIG. 12C, the UV light source 22 is operated to cure the photocurable resin RA between the flat plate mold 35 and the lower transfer mold 31 by the curing light KK. That is, the photocurable resin RA supplied to the first and second regions A1 and A2 between the glass substrate 33 and the lower transfer mold 31 is cured. Thereafter, as shown in FIG. 12D, when the upper stage 13 is operated to raise the flat plate mold 35, the flat plate mold 35 is released, and the first portion 34a of the optical element MP (that is, a half portion of the optical element MP). ) And the like are left on the lower stage 11 together with the lower transfer mold 31.
 次に、図13Aに示すように、下転写型31の第1及び第3転写面31g,31iに対応する位置に熱硬化性樹脂RBを塗布し、第2転写面31hに対応する位置に光硬化性樹脂RAを塗布する。 Next, as shown in FIG. 13A, a thermosetting resin RB is applied to positions corresponding to the first and third transfer surfaces 31g and 31i of the lower transfer mold 31, and light is applied to positions corresponding to the second transfer surface 31h. A curable resin RA is applied.
 次に、上転写型32を上側ステージ13に固定する。図13Bに示すように、上転写型32を降下させ、上転写型32と下転写型31とを大まかにアライメントする。その後、上転写型32を下転写型31にさらに近づけ、上転写型32と下転写型31と間の第1及び第2領域A1,A2を樹脂で満たした状態とする。その後、上転写型32と下転写型31とを精密にアライメントする。 Next, the upper transfer mold 32 is fixed to the upper stage 13. As shown in FIG. 13B, the upper transfer mold 32 is lowered, and the upper transfer mold 32 and the lower transfer mold 31 are roughly aligned. Thereafter, the upper transfer mold 32 is brought closer to the lower transfer mold 31, and the first and second regions A1, A2 between the upper transfer mold 32 and the lower transfer mold 31 are filled with resin. Thereafter, the upper transfer mold 32 and the lower transfer mold 31 are precisely aligned.
 その後、図13Cに示すように、上転写型32と下転写型31との間の光硬化性樹脂RAを硬化光KKによって選択的に硬化させる。つまり、上転写型32と下転写型31との間の第1領域A1に供給された光硬化性樹脂RAが硬化する。これにより、支持部材SUによって上転写型32と下転写型31とが互いに固定される。 Thereafter, as shown in FIG. 13C, the photocurable resin RA between the upper transfer mold 32 and the lower transfer mold 31 is selectively cured by the curing light KK. That is, the photocurable resin RA supplied to the first region A1 between the upper transfer mold 32 and the lower transfer mold 31 is cured. Thereby, the upper transfer mold 32 and the lower transfer mold 31 are fixed to each other by the support member SU.
 次に、図14Aに示すように、転写型31,32が互いに固定された状態で転写型31,32を転写固定部4bから搬出し、加熱装置6に搬送する。加熱装置6において、転写型31,32を加熱し、転写型31,32間に存在する熱硬化性樹脂RBを硬化させる。つまり、転写型31,32間の第2領域A2に供給された熱硬化性樹脂RBが硬化する。これにより、光学素子MP及び測定用素子TEが成形される。加熱処理後、転写型31,32を十分に冷却する。 Next, as shown in FIG. 14A, the transfer molds 31 and 32 are unloaded from the transfer fixing portion 4b in a state where the transfer molds 31 and 32 are fixed to each other, and conveyed to the heating device 6. In the heating device 6, the transfer molds 31 and 32 are heated to cure the thermosetting resin RB existing between the transfer molds 31 and 32. That is, the thermosetting resin RB supplied to the second region A2 between the transfer dies 31 and 32 is cured. Thereby, the optical element MP and the measuring element TE are molded. After the heat treatment, the transfer dies 31, 32 are sufficiently cooled.
 その後、図14Bに示すように、型開きによって上転写型32と下転写型31とを互いに離間させる。これにより、光学素子MP、支持部材SU、及び測定用素子TEを取り出すことができる。 Thereafter, as shown in FIG. 14B, the upper transfer mold 32 and the lower transfer mold 31 are separated from each other by mold opening. Thereby, the optical element MP, the support member SU, and the measurement element TE can be taken out.
 本実施形態の光学素子の製造方法によれば、基板を有さずに2種の樹脂材料で形成された複数の光学素子MPを一括して得ることができる。 According to the method for manufacturing an optical element of the present embodiment, a plurality of optical elements MP formed of two kinds of resin materials without having a substrate can be obtained collectively.
 以上、本実施形態に係る光学素子の製造方法について説明したが、本発明に係る光学素子の製造方法は上記のものには限られない。例えば、上記実施形態において、光学素子MP等の形状、大きさ等は、用途や機能に応じて適宜変更することができる。光学素子MP、支持部材SU、及び測定用素子TEの形状は、互いが区別できる形状であってもよいし、混在を防げるのであれば、同じ形状であってもよい。 The optical element manufacturing method according to the present embodiment has been described above, but the optical element manufacturing method according to the present invention is not limited to the above. For example, in the above embodiment, the shape, size, and the like of the optical element MP and the like can be changed as appropriate according to the application and function. The shapes of the optical element MP, the support member SU, and the measuring element TE may be shapes that can be distinguished from each other, or may be the same shape as long as mixing can be prevented.
 また、上記実施形態において、第1、第2、及び第3転写面31g,32g,31h,32h,31i,32iの配置や数は、適宜変更することができる。ただし、第2転写面31h,32hの配置や数は、転写型31,32を十分に固定できる配置や数にする。 In the above embodiment, the arrangement and number of the first, second, and third transfer surfaces 31g, 32g, 31h, 32h, 31i, and 32i can be changed as appropriate. However, the arrangement and number of the second transfer surfaces 31h and 32h are arranged and the number that can sufficiently fix the transfer molds 31 and 32.
 また、上記実施形態において、転写型31,32に測定用素子TEを形成するための第3転写面31i,32iを設けなくてもよい。 In the above embodiment, the third transfer surfaces 31i and 32i for forming the measurement element TE on the transfer dies 31 and 32 may not be provided.
 また、上記実施形態において、樹脂塗布部4aを成形装置4内に設けたが、成形装置4外に設けてもよい。 In the above embodiment, the resin application part 4 a is provided in the molding apparatus 4, but it may be provided outside the molding apparatus 4.
 また、上記実施形態において、樹脂材料を各転写面31g,32g,31h,32h,31i,32iに個別に塗布(滴下)したが、型面31f等の全体又は数か所にまとめて塗布(滴下)してもよい。この場合、成形後に必要箇所を切断して光学素子MPを得る。 In the above embodiment, the resin material is individually applied (dropped) to each transfer surface 31g, 32g, 31h, 32h, 31i, 32i. However, the resin material is applied (dropped) all over the mold surface 31f or the like. ) In this case, after molding, necessary portions are cut to obtain the optical element MP.
 また、上記実施形態において、下転写型31の型面31fに光学素子MPにフランジ部を転写する面を設ければ、離型時に光学素子MPが下転写型31に残りやすくなる。これは、特に、第3実施形態において、平板型35を離型する際に有効である。 In the above embodiment, if a surface for transferring the flange portion to the optical element MP is provided on the mold surface 31f of the lower transfer mold 31, the optical element MP is likely to remain in the lower transfer mold 31 at the time of releasing. This is particularly effective when releasing the flat plate mold 35 in the third embodiment.
 また、第1及び第2実施形態において、支持部材SUを形成する光硬化性樹脂RAに対して選択的に硬化光KKを照射したが、転写型31,32の型面31f,32f全体に硬化光KKを照射してもよい。また、第2転写面31h,32hの形状に沿った輪郭を有する開口部を設けた遮光部材を用いて硬化光KKを局所的に照射してもよい。 In the first and second embodiments, the photocurable resin RA that forms the support member SU is selectively irradiated with the curing light KK, but the entire mold surfaces 31f and 32f of the transfer molds 31 and 32 are cured. Light KK may be irradiated. Alternatively, the curing light KK may be locally irradiated using a light shielding member provided with an opening having a contour along the shape of the second transfer surfaces 31h and 32h.
 また、第2実施形態において、ガラス基板33は、絞りパターンPTを有していなくてもよい。この場合、ガラス基板33の第2面33b(上転写型32側の面)上に光硬化性樹脂RAを塗布することができる。 In the second embodiment, the glass substrate 33 may not have the aperture pattern PT. In this case, the photocurable resin RA can be applied onto the second surface 33b (surface on the upper transfer mold 32 side) of the glass substrate 33.
 また、第3実施形態において、平板型35の代わりにガラス基板を用いてもよい。 Further, in the third embodiment, a glass substrate may be used instead of the flat plate mold 35.
 また、第3実施形態において、平板型35の端面35aを平坦な面としたが、転写面を有してもよい。この場合、光学素子MPにおいて、2種の樹脂の境界面は曲率、段差等の形状を持った面となる。 In the third embodiment, the end surface 35a of the flat plate mold 35 is a flat surface, but it may have a transfer surface. In this case, in the optical element MP, the boundary surface between the two types of resins is a surface having a shape such as a curvature and a step.
 また、上記実施形態において、真空や窒素パージの環境下で嫌気性のある光硬化性樹脂を用いた成形を行うこともできる。 In the above embodiment, molding using an anaerobic photocurable resin can also be performed in a vacuum or nitrogen purge environment.
 また、第2及び第3実施形態において、転写型31,32を転写固定部4bから搬出した後、真空や窒素パージの環境下でも光硬化を行う場合、光学素子MPの第2の部分34bに光硬化性樹脂RAを用いることができる。 In the second and third embodiments, when photocuring is performed in a vacuum or nitrogen purge environment after the transfer dies 31 and 32 are unloaded from the transfer fixing portion 4b, the second portion 34b of the optical element MP is applied to the second portion 34b. A photo-curable resin RA can be used.
 また、第2及び第3実施形態において、下転写型31とガラス基板33(又は平板型35)との間の光硬化性樹脂RAを硬化させた後、ガラス基板33の第2面33b(又は各転写面に対応する部分)上に樹脂材料を塗布したが、下転写型31を下側ステージ11から取り外し、その後、下側ステージ11に取り付けた上転写型32の型面32f上に樹脂材料を塗布してもよい。この場合、上側ステージ13に下転写型31を取り付け、下側ステージ11に上転写型32を取り付けた状態となる。 In the second and third embodiments, after the photocurable resin RA between the lower transfer mold 31 and the glass substrate 33 (or the flat plate mold 35) is cured, the second surface 33b (or the glass substrate 33) (or The resin material is applied onto the portions corresponding to the respective transfer surfaces), but the lower transfer mold 31 is removed from the lower stage 11, and then the resin material is placed on the mold surface 32 f of the upper transfer mold 32 attached to the lower stage 11. May be applied. In this case, the lower transfer mold 31 is attached to the upper stage 13 and the upper transfer mold 32 is attached to the lower stage 11.

Claims (11)

  1.  第1転写型と第2転写型との間の第1領域に光硬化性樹脂を供給するとともに、前記第1及び第2転写型間の第2領域に熱硬化性樹脂を供給する工程と、
     前記第1及び第2転写型間の前記第1領域に供給された光硬化性樹脂を光によって硬化させる工程と、
     光硬化性樹脂の硬化後に、前記第1及び第2転写型間の前記第2領域に供給された熱硬化性樹脂を熱によって硬化させる工程と、
     前記第1及び第2転写型を離間させることで、熱硬化性樹脂によって形成された光学素子を離型する工程と、
    を備える、光学素子の製造方法。
    Supplying a photocurable resin to a first region between the first transfer mold and the second transfer mold and supplying a thermosetting resin to a second region between the first and second transfer molds;
    Curing the photocurable resin supplied to the first region between the first and second transfer molds with light;
    A step of curing the thermosetting resin supplied to the second region between the first and second transfer molds by heat after curing the photocurable resin;
    Separating the first and second transfer molds to release the optical element formed of a thermosetting resin;
    A method for manufacturing an optical element.
  2.  前記第1領域と前記第2領域とは、前記第1及び第2転写型の型面に沿って異なる範囲に分布する、請求項1に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, wherein the first region and the second region are distributed in different ranges along the mold surfaces of the first and second transfer molds.
  3.  前記第1領域には、複数の支持部材を成形するための転写面が設けられ、前記第2領域には、複数の光学素子を成形するための転写面が設けられている、請求項2に記載の光学素子の製造方法。 The transfer region for forming a plurality of support members is provided in the first region, and the transfer surface for forming a plurality of optical elements is provided in the second region. The manufacturing method of the optical element of description.
  4.  前記光学素子は、前記第1及び第2転写型の型面に垂直な方向に関して異なる位置に第1の部分と第2の部分とを有し、
     前記第2の部分は、熱硬化性樹脂で形成されている、請求項1に記載の光学素子の製造方法。
    The optical element has a first portion and a second portion at different positions with respect to a direction perpendicular to the mold surfaces of the first and second transfer molds,
    The method for manufacturing an optical element according to claim 1, wherein the second portion is formed of a thermosetting resin.
  5.  前記第1の部分は、光硬化性樹脂で形成されている、請求項4に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 4, wherein the first portion is formed of a photocurable resin.
  6.  前記光学素子は、前記第1の部分と前記第2の部分との間に、ガラス基板を有する、請求項4に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 4, wherein the optical element has a glass substrate between the first part and the second part.
  7.  前記ガラス基板上には、絞りパターンが形成されている、請求項6に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 6, wherein a diaphragm pattern is formed on the glass substrate.
  8.  前記第1転写型と前記第2転写型とは、光透過性を有する支持板上に樹脂で形成された転写層を設けたものである、請求項1に記載の光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1, wherein the first transfer mold and the second transfer mold are provided with a transfer layer formed of a resin on a light-transmitting support plate.
  9.  前記第1転写型と前記第2転写型とは、相互の位置決めを可能にするアライメントマークをそれぞれ有する、請求項8に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 8, wherein the first transfer mold and the second transfer mold each have an alignment mark that enables mutual positioning.
  10.  前記第1領域の光硬化性樹脂を硬化させる工程において、前記第1領域のみに選択的に硬化用の光を照射する、請求項1に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, wherein, in the step of curing the photocurable resin in the first region, only the first region is irradiated with light for curing.
  11.  前記第2領域の熱硬化性樹脂を硬化させる工程は、前記第1領域の光硬化性樹脂を硬化させる工程を行った成形装置外に硬化した光硬化性樹脂によって相互に固定された前記第1及び第2転写型を搬出した後に行われる、請求項1に記載の光学素子の製造方法。 The step of curing the thermosetting resin in the second region includes the first fixed to each other by the cured photocurable resin outside the molding apparatus that performed the step of curing the photocurable resin in the first region. The method for producing an optical element according to claim 1, which is performed after unloading the second transfer mold.
PCT/JP2014/057781 2013-03-29 2014-03-20 Method for manufacturing optical element WO2014156960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-074797 2013-03-29
JP2013074797 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156960A1 true WO2014156960A1 (en) 2014-10-02

Family

ID=51623939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057781 WO2014156960A1 (en) 2013-03-29 2014-03-20 Method for manufacturing optical element

Country Status (1)

Country Link
WO (1) WO2014156960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557372A1 (en) * 2018-04-17 2019-10-23 Samsung Electronics Co., Ltd. Electronic device including multiple fixing members to fix biometric sensor to display and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106002A (en) * 2005-10-13 2007-04-26 Matsushita Electric Works Ltd Method for molding minute shape
JP2008152038A (en) * 2006-12-18 2008-07-03 Seiko Epson Corp Method of manufacturing microlens array, microlens array, organic electroluminescence line head and image forming apparatus using the microlens array
WO2010119726A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens
WO2011132520A1 (en) * 2010-04-22 2011-10-27 コニカミノルタオプト株式会社 Lens array production method and laminated lens array production method
JP2013001091A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106002A (en) * 2005-10-13 2007-04-26 Matsushita Electric Works Ltd Method for molding minute shape
JP2008152038A (en) * 2006-12-18 2008-07-03 Seiko Epson Corp Method of manufacturing microlens array, microlens array, organic electroluminescence line head and image forming apparatus using the microlens array
WO2010119726A1 (en) * 2009-04-13 2010-10-21 コニカミノルタオプト株式会社 Method for manufacturing wafer lens
WO2011132520A1 (en) * 2010-04-22 2011-10-27 コニカミノルタオプト株式会社 Lens array production method and laminated lens array production method
JP2013001091A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557372A1 (en) * 2018-04-17 2019-10-23 Samsung Electronics Co., Ltd. Electronic device including multiple fixing members to fix biometric sensor to display and method for manufacturing the same
EP3940504A1 (en) * 2018-04-17 2022-01-19 Samsung Electronics Co., Ltd. Electronic device including multiple fixing members to fix biometric sensor to display and method for manufacturing the same
US11410450B2 (en) 2018-04-17 2022-08-09 Samsung Electronics Co., Ltd. Method for manufacturing an electronic device including multiple fixing members to fix a biometric sensor to a display

Similar Documents

Publication Publication Date Title
KR101656161B1 (en) Imprint apparatus and article manufacturing method using same
JP4827513B2 (en) Processing method
KR101625706B1 (en) Imprint apparatus, manufacturing method for article using the same, and imprint method
KR101634353B1 (en) Micro lens, method for manufacturing the micro lens, apparatus for manufacturing the micro lens, camera module including the micro lens
CN105372932B (en) Imprinting apparatus, lamp optical system and article manufacturing method
JP5932286B2 (en) Imprint apparatus and article manufacturing method using the same
JP5754965B2 (en) Imprint apparatus and article manufacturing method
JP5868215B2 (en) Imprint apparatus, imprint method, and article manufacturing method using the same
JP6029495B2 (en) Imprint method, imprint apparatus, and article manufacturing method using the same
JP6029494B2 (en) Imprint method, imprint apparatus, and article manufacturing method using the same
KR102074088B1 (en) Imprint apparatus, imprint method, and product manufacturing method
KR101777905B1 (en) Imprint apparatus, and method of manufacturing article
CN103048879A (en) Imprint apparatus,device manufacturing method, and imprint method
JP2013098291A (en) Imprint device, imprint method, and object manufacturing method using the same
JP2013038365A (en) Imprinting device and method of manufacturing article using the same
JP2016018824A (en) Imprint device and method of manufacturing article
JP2009018578A (en) Shaping method, lens manufacturing method and shaping device
JP2013125817A (en) Imprint device, imprint method, and article manufacturing method using the device or the method
JP4725280B2 (en) Fine shape molding method
US20210096462A1 (en) Imprint method, imprint apparatus, and article manufacturing method
WO2014156960A1 (en) Method for manufacturing optical element
KR102600293B1 (en) Imprint apparatus and method of manufacturing article
KR20130055638A (en) Method and device for producing a lens wafer
JP2020167345A (en) Forming apparatus and method for manufacturing article by using the forming apparatus
JP6513125B2 (en) Stage apparatus, lithographic apparatus, and method of manufacturing article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP