WO2014156903A1 - 運搬車両 - Google Patents
運搬車両 Download PDFInfo
- Publication number
- WO2014156903A1 WO2014156903A1 PCT/JP2014/057605 JP2014057605W WO2014156903A1 WO 2014156903 A1 WO2014156903 A1 WO 2014156903A1 JP 2014057605 W JP2014057605 W JP 2014057605W WO 2014156903 A1 WO2014156903 A1 WO 2014156903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- speed
- wheel
- calculated
- vehicle speed
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/50—Devices characterised by the use of electric or magnetic means for measuring linear speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
- G01P21/02—Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
Definitions
- the present invention relates to a transport vehicle used in a mine, a construction site or the like.
- the speed (vehicle speed) of the vehicle may be calculated by multiplying the number of rotations of the wheel by the radius of the wheel.
- the radius of the wheel changes due to loading load, aged deterioration, and the like, and the accuracy of the vehicle speed is degraded.
- a method of correcting the vehicle speed by estimating or measuring the vehicle weight (loading load) and learning the correlation between the vehicle weight and the wheel radius.
- a method of correcting the wheel speed by a secular change of the wheel radius or the like using a sensor such as a GPS receiver may be used.
- Japanese Patent Laid-Open No. 2000-121357 stores correction values due to changes in vehicle weight and wheels when the load is large, calculates the correction values from the vehicle weight, and outputs the vehicle speed accurately Is disclosed.
- Japanese Patent Laid-Open No. Hei 5-119046 also discloses a method of creating map data of a load and a correction coefficient.
- Japanese Patent Application Publication No. 2008-523360 discloses a method of directly calculating the effective radius of a tire from load and tire pressure.
- the correction of the wheel speed by the secular change of a wheel radius etc. is a method of calculating and correcting the movement distance of a vehicle using another sensor, and it is disclosed in JP 2009-210499 A from an on-vehicle camera The movement distance of the feature is calculated to correct the vehicle speed.
- the travel distance of the vehicle can be calculated by receiving a radio signal from a GPS satellite by the GPS receiver, it is possible to correct the wheel speed.
- An object of the present invention is to provide a transport vehicle capable of calculating an accurate vehicle speed even in a situation where positioning by GPS is difficult.
- the present invention in order to achieve the above object, in a transport vehicle having a plurality of wheels, a speed change estimation unit that calculates an estimated value of a time change of the speed of the vehicle, an estimated value of the time change of the vehicle speed And a speed calculation unit that calculates the vehicle speed based on the speed of at least one of the plurality of wheels.
- FIG. 5 is a flowchart of calculating a wheel speed correction coefficient of a target wheel in step 209 of FIG. 3; The figure showing the table of a slip rate and a road surface friction coefficient. The figure showing the road surface pattern and the table of rolling resistance value. The figure showing the table of rolling resistance. The figure which modeled the vehicle body in turning and represented the relationship between steering angle and turning radius.
- the processing flow chart of the vehicle speed operation part concerning a 1st embodiment of the present invention.
- the processing flow chart of the vehicle speed operation part concerning a 2nd embodiment of the present invention.
- FIG. 1 is an entire configuration diagram of a transport vehicle according to an embodiment of the present invention.
- a dump truck which is a large-sized transport vehicle for transporting crushed materials mined in open-air pits, quarries, mines, etc., will be described as an example of the transport vehicle.
- the dump truck (vehicle) 1 shown in FIG. 1 includes a vehicle body 2 formed of a sturdy frame structure, a vessel (carrier) 3 mounted on the vehicle body 2 so as to be able to be undulated, and a front wheel 101 attached to the vehicle body 2
- the rear wheel 104 is mainly provided.
- the vessel 3 is a container provided for loading a load such as crushed stone, and is connected movably to the vehicle body 2 via a pin joint 4 and the like.
- a load such as crushed stone
- two relief cylinders 7 are installed at predetermined intervals in the width direction of the vehicle.
- the pressure oil is supplied to and discharged from the relief cylinder 7, the relief cylinder 7 expands and contracts, and the vessel 3 is raised and lowered.
- a collar 6 is provided on the upper front side of the vessel 3.
- the heel portion 6 has a function of protecting the driver's cab 5 installed on the lower side (that is, the front portion of the vehicle body 2) from scattered objects such as rocks and protecting the driver's cab 5 when the vehicle falls over. There is. Inside the cab 5, a steering wheel, a display device for displaying the speed of the vehicle, an accelerator pedal, a brake pedal (not shown) and the like are installed.
- the front wheels 101 are steered wheels that are steered based on a steering angle input via a steering wheel or the like, and are rotatably mounted on the left and right of the front of the vehicle body 2.
- the front wheel 101 is a driven wheel.
- the rear wheels 104 are drive wheels, and are rotatably mounted on the left and right of the rear of the vehicle body 2 respectively. Although the front wheel 101 and the rear wheel 104 will be described below as being mounted one on each side, two or more wheels may be treated as one set of wheels.
- FIG. 2 is an entire configuration diagram of a vehicle speed calculation system according to the embodiment of the present invention mounted on the vehicle shown in FIG.
- the same reference numerals are given to the same parts as those in the previous drawings, and the description thereof will be omitted (the same applies to the subsequent drawings).
- the vehicle speed calculation system shown in this figure detects a steering angle of the front wheel 101 and a front wheel speed detection unit 102 which is connected to the wheel speed sensor 121 of the left and right front wheels 101 and outputs the number of rotations (wheel speed) of each front wheel 101
- the rear wheel speed detection unit 105 connected to the wheel speed sensors 124 of the left and right rear wheels 104 and outputting the number of rotations (wheel speeds) of each rear wheel 104
- Drive torque detecting unit 106 for detecting each driving torque
- a vehicle weight detecting unit 107 for detecting the weight of the vehicle body (total weight including the load in the vessel 3)
- acceleration connected to an inertial sensor and longitudinal acceleration of the vehicle body
- the inertial measurement unit 108 for detecting the angular velocity
- the vehicle speed change estimation unit (speed change estimation unit) 109 for calculating an estimated value of the temporal change (drive acceleration) of the vehicle speed (vehicle speed)
- Vehicle speed calculating unit that calculates and outputs a vehicle speed based on
- the vehicle speed change estimation unit 109 includes a memory (storage device) 112 for storing various types of information necessary for the vehicle speed calculation processing, including the past information calculated in the detection unit 109. Further, the left and right rear wheels 104 according to the present embodiment are driven by drive torques output from different motors, and the drive torque detection unit 106 detects the drive torque of each motor. Furthermore, the vehicle speed calculation system includes a position detection unit 114 connected to a vehicle position sensor 113 such as a GPS receiver to detect the vehicle position. Note that the units 103, 106, 107, 108, 109, 110, and 114 included in the area surrounded by the broken line may be unitized.
- the vehicle speed calculation unit 110 periodically calculates and outputs the speed of the vehicle.
- the calculation method of the own vehicle speed is shown below.
- the rotational speed of each of the wheels 101 and 104 is periodically output to the CAN 111.
- the wheel speed sensors (rotational speed sensors) 121 and 124 attached to the front wheel 101 and the rear wheel 104 can detect the rotation of the wheel in detail, such as a pulse encoder, and can also detect the rotational speed less than one rotation.
- the front wheel speed detection unit 102 and the rear wheel speed detection unit 105 output the rotational speeds of the left and right wheels.
- the steering angle detection unit 103 the steering angle of the front wheel 101 is detected and periodically output to the CAN 111.
- the steering angle has different outputs at the left and right wheels of the front wheel 101.
- the driving torque detection unit 106 the magnitude of the driving torque applied to the left and right rear wheels 104 is detected, and is periodically output to the CAN 111.
- the vehicle weight detection unit 107 periodically measures the load of the load in the vessel 3 by a known method (see, for example, Japanese Patent No. 4149874), and uses the value obtained by adding the vehicle weight to the load as the vehicle weight. It outputs to CAN111 regularly.
- acceleration Longitudinal acceleration
- lateral acceleration in the lateral direction
- vertical velocity from the angular velocity sensor in three axial directions and the acceleration sensor in three axial directions fixed to the vehicle body
- the acceleration and the angular velocity corresponding to each of the three axes are periodically output to the CAN 111.
- the vehicle speed change estimation unit 109 estimates the time change of the vehicle speed to calculate the correction coefficient of the wheel speed and outputs it to the CAN 111.
- FIG. 3 shows a flow of processing for calculating the correction coefficient in the vehicle speed change estimation unit 109.
- step 201 in FIG. 3 the vehicle speed change estimation unit 109 is activated at a regular cycle, and the process proceeds to step 202.
- step 202 the acceleration and angular velocity of the vehicle body measured by the inertia measurement unit 108 are acquired, and the process proceeds to step 203.
- step 203 an average value of the front wheel speeds is obtained, and it is determined whether the absolute value is larger than 0, that is, the vehicle is moving. If it is determined that the vehicle is moving, the process proceeds to step 204, and if it is determined that the vehicle is not moving, the process proceeds to step 206.
- step 206 when it is determined in step 203 that the vehicle is not moving, the vehicle body inclination angle is calculated.
- the vehicle body inclination angle is obtained by calculating how much the vehicle body axis representing the front-rear direction of the vehicle body is inclined with respect to the direction in which the gravitational acceleration is applied.
- the vehicle body inclination angle can be obtained by the following equation (1) based on the longitudinal acceleration among the accelerations obtained in step 202.
- step 204 when it is determined that the vehicle is moving at step 203), the vehicle inclination angle calculated at the previous activation (one activation cycle before) from the memory 112 in the vehicle speed change estimation unit 109 Acquire and move to step 205.
- step 205 the vehicle body tilt angle is calculated according to the following equation from the previous vehicle body tilt angle obtained in step 204 and the pitch angular velocity of the vehicle output from the inertia measurement unit 108 and obtained through the CAN 111.
- the “startup cycle” in the following equation (2) is a fixed time indicating a cycle in which the vehicle speed change estimation unit 109 is started.
- step 207 the vehicle weight output from the vehicle weight detection unit 107 is acquired via the CAN 111, and the process proceeds to step 208.
- the vehicle weight in step 207 is the total weight of the vehicle including the cargo in the vessel 3.
- step 208 the inclination resistance is determined from the vehicle body inclination angle obtained in step 205 and the vehicle weight obtained in step 207, and the process proceeds to step 209.
- the slope resistance can be obtained from the following equation (3).
- step 209 a wheel speed correction coefficient relating to one of the plurality of wheels 101 and 104 mounted on the vehicle 1 is calculated.
- the wheel of the calculation object of a wheel speed correction coefficient may be called an "object wheel.”
- a method of calculating the wheel speed correction coefficient of the target wheel by the vehicle speed change estimation unit 109 in step 209 is shown in the flowchart of FIG.
- the vehicle speed change estimation unit 109 calculates the load applied to the target wheel from the vehicle weight obtained at step 207.
- the load applied to the target wheel is calculated based on the ratio of the vehicle weight (total vehicle weight) acting on each wheel. Next, an example of the calculation procedure will be described.
- the expression to be used is determined according to whether the target wheel is the front wheel 101 or the rear wheel 104, and the load applied to the front wheel side or the rear wheel side of the total vehicle weight ("load applied to left and right front wheels” or Calculate the load applied to the rear wheel. If the target wheel is either the left or right wheel on the front wheel 101, the following equation (4) is used, and if it is the left or right wheel on the rear wheel 104, the following equation (5) is used.
- “ratio of front wheels” and “ratio of rear wheels” are values indicating the ratio of load on front wheels 101 on the left and right and rear wheels 104 on the left and right, It shall use a predetermined value.
- ratio of right wheel or “ratio of left wheel”
- ratio of left wheel the ratio applied to the right or left wheel among the loads applied to the left and right wheels
- one of the following (9) to (12) is selected according to whether the target wheel corresponds to any of the front and rear wheels, and further to either of the left and right wheels, and the selected equation and the previous calculation result Calculate the load applied to the target wheel based on Other than this method, any method may be used as long as the load applied to each wheel is measured and calculated.
- step 302 After the load applied to the target wheel is obtained, next, while acquiring the number of revolutions of the target wheel from the CAN 111, the wheel speed correction coefficient of the target wheel calculated at the previous activation is acquired from the memory 112 (step 302). Move to 303.
- step 303 the air resistance is obtained based on the following equation (13) from the number of revolutions of the target wheel obtained in step 302 and the wheel speed correction coefficient of the previous target wheel, and the process moves to step 304.
- step 304 the road surface friction coefficient ⁇ is determined. Since the road surface friction coefficient ⁇ is determined by the slip ratio, the slip ratio is first calculated.
- the slip ratio can be determined by the following equation (14). It should be noted that “front wheel rotation number” and “rear wheel rotation number” in the following equation (14) are “right wheel front wheel rotation number” and “right wheel rear wheel” when the target wheel is the right wheel. In the case of the left wheel, “wheel rotational speed” is shown, and “front wheel rotational speed of left wheel” and “rear wheel rotational speed of left wheel” are shown. Further, the following equation (14) is an equation when the driving wheel is a rear wheel and the driven wheel is a front wheel, and when the front wheel is a driving wheel and the rear wheel is a driven wheel, it can be said that the front and rear are reversed. Nor.
- the road surface friction coefficient ⁇ is determined from the slip ratio.
- a table defining the relationship between the slip ratio and the road surface friction coefficient ⁇ is stored on the memory 112, and the road surface friction coefficient ⁇ is determined from the slip ratio based on the table.
- FIG. 5 shows a table of the road surface friction coefficient ⁇ and the slip ratio.
- the relationship between the slip ratio 401 and the road surface friction coefficient ⁇ 402 is set for each of a plurality of road surface patterns (road surface state) 403.
- the road surface pattern 403 ie, the road surface A, the road surface B,..., The road surface N in FIG. 5
- the road surface friction coefficient ⁇ for the slip ratio calculated by the above equation (14) is selected from the plurality of road surface patterns 403 as the most appropriate one.
- Specific examples of the method of selecting the road surface pattern 403 include (I) selection based on the vehicle body acceleration at a predetermined slip ratio ⁇ Thhld , and (II) selection by Bayesian estimation. Note that values not included in the table of FIG. 5 may be calculated by linear interpolation.
- the road surface friction coefficient ⁇ can also be calculated by maximum likelihood estimation such as a Kalman filter or an optimum filter.
- the road surface resistance is calculated in step 305.
- the road surface resistance can be obtained from the road surface friction coefficient ⁇ selected in step 304, the rolling resistance coefficient which is a parameter value, and the load applied to the target wheel calculated in step 301 based on the following equation (15).
- the “rolling resistance coefficient” in the following equation (15) is a numerical value selected based on the road surface pattern selected in step 304, and in the present embodiment, based on a table prepared in advance on the memory 112. It is selected.
- FIG. 6 shows an example of a table showing the relationship between the rolling resistance coefficient and the road surface pattern.
- step 306 the drive torque output from the drive torque detection unit 106 and acquired via the CAN 111, the road surface resistance calculated in step 305, the air resistance calculated in step 303, and the slope calculated in step 208
- an estimated value of the drive acceleration of the target wheel is determined by the following equation. Note that “drive torque” in the following formula uses the drive torque applied to the right rear wheel when the target wheel is the right wheel, and uses the drive torque applied to the left rear wheel in the case of the left wheel Do.
- step 307 from the driving acceleration calculated in step 306, the wheel speed of the target wheel acquired in step 302, and the value of the wheel speed of the target wheel one start cycle stored in the memory 112, Determine the wheel speed correction factor of the target wheel.
- step 307 the process returns to the flowchart of FIG. 3 to determine whether the wheel speed correction coefficient has been calculated for all the wheels (step 210). If there is a wheel for which the wheel speed correction coefficient has not been calculated, the process returns to step 301 and is calculated by the processing of step 302 and thereafter. On the other hand, when the wheel speed correction coefficients have been calculated for all the wheels, the wheel speed correction coefficients for each wheel are output to the CAN 111 (step 211), and the processing of the vehicle speed change estimation unit 109 is ended.
- step 601 the vehicle speed calculation unit 110 is activated at a regular cycle (activation cycle), and the process proceeds to step 602.
- step 602 the wheel speed correction coefficient of each of the wheels 101 and 104 output by the vehicle speed change estimation unit 109 is acquired from the CAN 111, and the process proceeds to step 603.
- step 603 the steering angle detected by the steering angle detection unit 103 is acquired from the CAN 111, and the process proceeds to step 604.
- step 604 it is determined whether the absolute value of the steering angle is equal to or less than the threshold value ⁇ . If the threshold value ⁇ is equal to or less, it is determined that the vehicle body is not turning, and the process proceeds to step 605. If it is larger than the threshold value ⁇ , it is determined that the vehicle body is turning, and the process proceeds to step 609.
- the threshold value ⁇ is a preset value (for example, 15 degrees), and for example, it is preferable to set so as not to be judged to be turning within the range of the play of the steering wheel.
- step 605 the wheel speeds (wheel rotational speeds) of the left and right front wheels 101 output from the front wheel speed detection unit 102 are acquired via the CAN 111, and the process proceeds to step 606.
- step 606 it is determined in step 604 that the vehicle body has not turned, so the front wheel speed (front wheel rotational speed) obtained in step 605 and the wheel speed correction coefficient of each wheel acquired in step 602. Based on the following equation (18), the average value of the front wheel speeds is determined, and the process proceeds to step 607.
- step 607 the average value of the front wheel speeds acquired in step 606 is set as the vehicle speed which is the speed of the vehicle (vehicle body) (the following equation (19)), and the process moves to step 608.
- step 604 If it is determined in step 604 that the vehicle is turning, the yaw angular velocity output from the inertia measurement unit 108 is acquired from the CAN 111 (step 609), and the process proceeds to step 610.
- step 610 the turning radius of the vehicle body is calculated.
- the calculation of the turning radius will be described with reference to FIG.
- FIG. 8 is a diagram modeling a vehicle body which is turning. As shown in this figure, when the steering angles of the left front wheel 101a and the right front wheel 101b are respectively ⁇ l and ⁇ r, the distances (turning radii) Rl and Rr between the turning center 703 and the left and right front wheels 101a and 101b are respectively It is represented by (20).
- (omega) is a yaw angular velocity
- vl and vr are each represented by following formula (21) and (22).
- the left and right “front wheel rotational speeds” in the following equations (21) and (22) are derived from the wheel speeds of the left and right front wheels 101 output from the front wheel speed detection unit 102 acquired through the CAN 111 It goes without saying.
- the distance R (turning radius) between the turning center and the intersection point 705 between the tread axis of the front wheel and the vehicle body axis is expressed by the following equation (23).
- the vehicle speed is calculated in step 611.
- the vehicle speed when the vehicle body is turning can be calculated by the following equation (24) based on the turning radius and the yaw angular velocity ⁇ calculated in step 610.
- the process proceeds to step 608.
- step 608 the vehicle speed calculated in step 607 or step 611 is output to the CAN 111, and the processing of the vehicle speed calculation unit 110 is ended.
- the vehicle speed change estimation unit 109 estimates the time change (drive acceleration) of the speed of the vehicle based on the drive torque and the vehicle weight, and the vehicle speed calculation unit 110 based on the estimated value. Since the vehicle speed is calculated, the vehicle speed can be accurately calculated without measuring the vehicle position. Therefore, even under conditions where it is difficult to measure the position of the vehicle by GPS etc., accurate vehicle speed can be calculated. Further, in the prior art in which the error is corrected based on the change of the wheel radius, Although it was difficult to cope with the cause of the error that does not accompany the change in the wheel radius, according to the present embodiment, the vehicle speed can be accurately calculated without using the wheel radius. It can correspond. That is, it is possible to improve the calculation accuracy of the vehicle speed when the transport vehicle including the dump truck travels off the road.
- the wheel speed correction coefficients of all the wheels are calculated (steps 209 and 210), but as described above, the front wheel speed (follower wheel speed)
- the front wheel speed (follower wheel speed)
- the vehicle speed is calculated based on the wheel speeds of the left and right front wheels, but the vehicle speed may be calculated based on either the left or right wheel speed.
- the speed can be calculated by the following method.
- the rotational speed of the front wheels (following wheels) is output from the front wheel speed detection unit 102 to the CAN 111, and the torque of the drive wheels is output from the drive torque detection unit 106 to the CAN 111. Also, the vehicle weight is output from the vehicle weight detection unit 107 to the CAN 111.
- the vehicle speed calculation unit 110 calculates the vehicle speed by the following method.
- FIG. 9 is a processing flow of the vehicle speed calculation unit 110 in the case where there is no steering on a traveling road which is flat and hardly changes in the road surface state.
- step 801 the vehicle speed calculation unit 110 is periodically activated, and the process proceeds to step 802.
- step 802 the vehicle weight output from the vehicle weight detection unit 107 and the average value of the left and right drive torques output from the drive torque detection unit 106 are acquired via the CAN 111, and the process proceeds to step 803.
- step 803 the drive acceleration is calculated from the drive torque and the vehicle weight obtained in step 802 according to the following equation (25).
- road surface resistance and air resistance in following formula (25) are taken as the value preset by the vehicle.
- step 803 the average value of the left and right front wheel speeds output from the front wheel speed detection unit 102 is acquired (step 804), and the process proceeds to step 805.
- step 805 based on the driving acceleration calculated in step 803 and the average value of the front wheel speeds acquired in step 804, a wheel speed correction coefficient is calculated from the following equation (26).
- step 805 the vehicle speed is calculated according to the following equation (27) (step 806).
- step 807 the vehicle speed calculation unit 110 outputs the vehicle speed calculated in step 806 to the CAN 111, and the process ends.
- the time change (drive acceleration) of the speed of the vehicle is estimated based on the drive torque and the vehicle weight, and the vehicle speed is calculated based on the estimated value,
- the vehicle speed can be accurately calculated without measuring the vehicle position. Therefore, accurate vehicle speed can be calculated even in a situation where measurement of the vehicle position by GPS or the like is difficult.
- the vehicle speed is calculated by obtaining the average value of the front wheel speeds, but as in the previous embodiment, based on the left and right front wheel speeds.
- the vehicle speed may be calculated.
- the drive acceleration is estimated based on the "drive torque" output from the drive torque detection unit 106, but in the present embodiment, instead of the drive torque, “acceleration" is used. It is characterized in that the driving acceleration is estimated based on that.
- FIG. 10 is a processing flow of the vehicle speed calculation unit 110 according to the second embodiment, and is for a running road which is flat and hardly changes in the road surface state.
- step 901 the vehicle speed calculation unit 110 is activated at a regular cycle (activation cycle), and the process proceeds to step 902.
- step 902 the longitudinal acceleration of the vehicle output from the inertia measurement unit 108, the vehicle yaw rate, and the vehicle pitch rate are acquired via the CAN 111, and the process proceeds to step 903.
- step 903 it is determined whether the vehicle is at a stop.
- the initial vehicle body pitch angle is obtained by the following equation (28) based on the longitudinal acceleration output from the inertia measurement unit 108, and the process is ended. And wait for activation until the next cycle.
- step 903 when it is determined in step 903 that the vehicle is not stopped, the process proceeds to step 905, and the vehicle body pitch angle calculated one startup cycle before (one sample time before) and the vehicle body pitch acquired at step 902 Based on the rate, the vehicle body pitch angle is calculated according to the following equation (29). In the case where there is no “vehicle body pitch angle before one activation cycle” in the following equation (29), the initial vehicle body pitch angle calculated in step 904 is used.
- step 905 the drive acceleration is obtained in step 906 based on the following equation.
- the “front-rear direction acceleration” and the “vehicle body yaw rate” in the following equations use those obtained in step 902, and the “vehicle body pitch angle” uses the one calculated in step 905.
- the distance between the rear wheel wheel axis and the inertia measurement unit” in the following equation (30) is a value calculated from the dimensions of the inertia measurement unit 108 and the vehicle 1.
- step 906 After the drive acceleration is calculated in step 906, the same processing as step 804 and subsequent steps in FIG. 9 is performed. That is, when step 906 is completed, the front wheel speed is output from the front wheel speed detection unit 102 (step 804), and the process proceeds to step 805. In step 805, the wheel speed correction coefficient is calculated from the following equation (31) based on the driving acceleration calculated in step 906 and the average value of the left and right front wheel speeds acquired in step 804.
- step 805 the vehicle speed is calculated according to the following equation (32) (step 806).
- step 807 the vehicle speed calculation unit 110 outputs the vehicle speed calculated in step 806 to the CAN 111, and the process ends.
- the time change (drive acceleration) of the speed of the vehicle is estimated based on the longitudinal acceleration, and the vehicle speed is calculated based on the estimated value.
- the vehicle speed can be accurately calculated without measurement. Therefore, accurate vehicle speed can be calculated even in a situation where measurement of the vehicle position by GPS or the like is difficult.
- the case where the vehicle travels on a flat road with almost no change in road surface condition has been described as an example, but there is a slope as in the case of the first embodiment.
- the estimated value of the driving acceleration can be calculated using the above-mentioned equation in which the estimated value of the driving acceleration is calculated based on the longitudinal acceleration and the like. Therefore, also in this case, it is possible to calculate an accurate vehicle speed under a situation where measurement of the vehicle position by GPS or the like is difficult.
- the left and right front wheel speeds are calculated.
- the vehicle speed may be calculated based on
- the speed of the driven wheel (front wheel 101) (the wheel) is avoided in order to avoid the decrease in the vehicle speed calculation accuracy caused by the increase in slip ratio of the drive wheel (rear wheel 104) at the time of high load torque output.
- the vehicle speed may be calculated based on the wheel speeds of the drive wheels or based on the wheel speeds of the drive wheels and the driven wheels. If a drive wheel is included it is preferable to detect "slip".
- the present invention is not limited to the above-described embodiments, and includes various modifications within the scope of the present invention.
- the present invention is not limited to the one provided with all the configurations described in the above embodiments, but also includes one in which a part of the configuration is deleted.
- a part of the configuration according to an embodiment can be added to or replaced with the configuration according to another embodiment.
- each configuration of the control device described above and the function and execution processing of each configuration are realized by hardware (for example, designing logic for executing each function by an integrated circuit). It is good.
- the configuration related to the control device described above may be a program (software) in which each function related to the configuration of the control device is realized by being read and executed by an arithmetic processing unit (for example, a CPU).
- the information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
- control line and the information line showed what was understood to be required for description of the said embodiment in the description of each said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. Does not necessarily indicate. In practice, it can be considered that almost all configurations are mutually connected.
- Transport vehicle 101 front wheel (following wheel) 102 front wheel speed detection unit 103 steering angle detection unit 104 rear wheel (drive wheel) 105 rear wheel speed detection unit 106 drive torque detection unit 107 vehicle weight detection unit 108 inertia measurement unit 109 vehicle speed change estimation unit 110 vehicle speed calculation unit 111 CAN 112 Memory (storage device)
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
複数の車輪(101,104)を備える運搬車両(1)において、当該車両(1)の速度の時間変化の推定値である駆動加速度を算出する車速変化推定部(109)と、当該駆動加速度と、複数の車輪(101,104)における少なくとも1つの車輪(101)の速度とに基づいて、車両速度を算出する車速演算部(110)とを備えるものとする。これにより、GPSによる位置測定が難しい状況下においても、運搬車両(1)の正確な車両速度を算出できる。
Description
本発明は鉱山や建設現場等で利用される運搬車両に関する。
車輪を有する運搬車両(以下、「車両」と称することがある)では、車輪の回転数に車輪の半径を掛け合わせることで車両の速度(車速)を計算することがある。この方法には、積載荷重や経年劣化等により車輪の半径が変化し、車速の精度が劣化する課題がある。これらの課題の解決のために、自車重量(積載荷重)を推定又は計測し、その自車重量と車輪半径の相関を学習する等して、車速を補正する方法がある。また、GPS受信機等のセンサを用いて車輪半径の経年変化等による車輪速の補正等を行う方法が利用されることもある。
例えば、特開2000-121357号公報には、積載荷重が大きい場合の車重と車輪の変化による補正値を記憶しておいて、車重から補正値を算出し、車速を精度よく出力する方法が開示されている。また、特開平5-119046号公報でも、積載荷重と補正係数のマップデータを作成する方法が開示されている。同様に特表2008-523360号公報には、荷重とタイヤの圧力からタイヤの有効半径を直接計算する方法が開示されている。また、車輪半径の経年変化等による車輪速の補正は、他センサを用いて車両の移動距離を算出し、補正するという方法が開示されており、特開2009-210499号公報では、車載カメラから地物の移動距離を算出し、車速を補正している。
ところで、路面状況が安定した舗装道路の走行を前提とする一般的な車両と異なり、ダンプトラックを含む運搬車両は未舗装の地面を走行することが多く、路面状況が変化し易い環境で使用されることが多い。このように路面状況の変化する場合(特に、摩擦係数や粘性等の変化が大きい場合)には、上記のように積載荷重等で車輪半径が変化しない場合であっても、車輪回転数に基づいて算出される車速の精度が劣化することがある。路面状況の変化は、積載荷重の変化や車輪半径の変化のように検出が容易ではないため、上記各方法と比較して車速の補正が困難になる。
この点に関して、GPS受信機でGPS衛星からの電波信号を受信することで車両の移動距離が算出できる環境にあれば、車輪速の補正が可能である。また、GPS衛星からの電波のドップラー周波数から速度を計算して車輪速を直接補正することもできる。
しかし、GPS衛星からの信号の受信が困難な場所を走行している場合には、正確な車速を算出できないため、移動距離が欲しいタイミングで必ず得られるとは限らない。例えば、底部に向かって略階段状(すり鉢状)に鉱山を掘りながら鉱石の発掘を行う露天堀りの現場では、当該底部は地表から数百メートルの深さに達することもあり、当該底部をはじめとして、GPS衛星の電波が届かない領域や電波の補足状況が悪化する領域(例えば、電波を受信できる衛星の個数の少ない領域)が発生することが多い。そのため、当該領域を走行する車両の速度の算出精度は劣化せざるを得ない。
本発明の目的は、GPSによる位置測定が難しい状況下においても、正確な車両速度を算出できる運搬車両を提供することにある。
本発明は、上記目的を達成するために、複数の車輪を備える運搬車両において、前記車両の速度の時間変化の推定値を算出する速度変化推定部と、当該車両速度の時間変化の推定値と、前記複数の車輪における少なくとも1つの車輪の速度とに基づいて、前記車両速度を算出する速度演算部とを備えるものとする。
本発明によれば、GPSによる位置測定が難しい状況下においても、正確な車両速度を算出できる。
以下、本発明の実施の形態について図面を用いて説明する。
図1は本発明の実施の形態に係る運搬車両の全体構成図である。ここでは、運搬車両として、露天の採掘場、石切り場、鉱山等で採掘した砕石物を運搬する大型の運搬車両であるダンプトラック(いわゆる鉱山ダンプ)を例に挙げて説明する。
図1は本発明の実施の形態に係る運搬車両の全体構成図である。ここでは、運搬車両として、露天の採掘場、石切り場、鉱山等で採掘した砕石物を運搬する大型の運搬車両であるダンプトラック(いわゆる鉱山ダンプ)を例に挙げて説明する。
図1に示すダンプトラック(車両)1は、頑丈なフレーム構造で形成された車体2と、車体2上に起伏可能に搭載されたベッセル(荷台)3と、車体2に装着された前輪101及び後輪104を主に備えている。
ベッセル3は、砕石物等の荷物を積載するために設けられた容器であり、ピン結合部4等を介して車体2に対して起伏可能に連結されている。ベッセル3の下部には、車両の幅方向に所定の間隔を介して2つの起伏シリンダ7が設置されている。起伏シリンダ7に圧油が供給・排出されると、起伏シリンダ7が伸長・縮短してベッセル3が起伏される。また、ベッセル3の前側上部には庇部6が設けられている。
庇部6は、その下側(すなわち車体2の前部)に設置された運転室5を岩石等の飛散物から保護するとともに、車両転倒時等に運転室5を保護する機能を有している。運転室5の内部には、操舵用のハンドル、車両の速度が表示される表示装置、アクセルペダル及びブレーキペダル等(図示せず)が設置されている。
前輪101は、ハンドル等介して入力される操舵角に基づいて操舵される操舵輪であり、車体2の前方の左右にそれぞれ回転可能に装着されている。また、前輪101は従動輪である。後輪104は、駆動輪であり、車体2の後方の左右にそれぞれ回転可能に装着されている。以下では、前輪101及び後輪104は左右に1輪ずつ装着されているものとして説明するが、2つ以上の車輪を1組の車輪として扱っても構わない。
図2は、図1に示した車両に搭載された本発明の実施の形態に係る車両速度算出システムの全体構成図である。なお、先の図と同じ部分には同じ符号を付して説明は省略する(後の図も同様とする)。
この図に示す車速算出システムは、左右の前輪101の車輪速センサ121に接続され各前輪101の回転数(車輪速度)を出力する前輪車輪速検出部102と、前輪101の操舵角を検出する操舵角検出部103と、左右の後輪104の車輪速センサ124に接続され各後輪104の回転数(車輪速度)を出力する後輪車輪速検出部105と、左右の後輪104に加えられる駆動トルクをそれぞれ検出する駆動トルク検出部106と、車体の重量(ベッセル3内の積荷を含む総重量)を検出する車重検出部107と、慣性センサに接続され車体の前後方向の加速度や角速度を検出する慣性計測部108と、車両速度(車体の速度)の時間変化(駆動加速度)の推定値を算出する車速変化推定部(速度変化推定部)109と、駆動加速度の推定値と車輪速度に基づいて車体の速度を計算し出力する車速演算部(速度演算部)110を備えている。上記の各部はそれぞれがCAN(Control Area Network)111で繋がっており、各部へのデータの入出力が自在に構成されている。
車速変化推定部109は、当該検出部109内で計算した過去の情報をはじめとして、車速算出処理に必要な各種情報を保存するためのメモリ(記憶装置)112を備える。また、本実施の形態に係る左右の後輪104はそれぞれ異なる電動機の出力する駆動トルクによって駆動されており、駆動トルク検出部106は各電動機の駆動トルクを検出している。さらに、車速算出システムは、GPS受信機等の車両位置センサ113に接続され、車両位置を検出する位置検出部114を備える。なお、破線で囲んだ領域に含まれる各部103,106,107,108,109,110,114はユニット化しても良い。
車速演算部110は定期的に自車の速度を演算し出力している。自車速度の演算方法を以下に示す。
前輪車輪速検出部102および後輪車輪速検出部105からは、各車輪101.104の回転数が定期的にCAN111に出力される。前輪101および後輪104に取り付けられた車輪速センサ(回転数センサ)121,124は、パルスエンコーダ等の車輪の回転を詳細に検知できるものであり、1回転より小さい回転数も検知できる。前輪車輪速検出部102および後輪車輪速検出部105では、左右輪それぞれの車輪の回転数が出力される。
次に、操舵角検出部103からは、前輪101の操舵角が検出され、定期的にCAN111へ出力される。操舵角は前輪101の左右輪で異なる出力を持つ。次に、駆動トルク検出部106からは、左右の後輪104に加えられる駆動トルクの大きさがそれぞれ検出され、定期的にCAN111へ出力されている。
車重検出部107では、公知の方法(例えば、特許第4149874号公報参照)でベッセル3内の積荷の荷重を定期的に計測し、当該荷重に車体重量を足し合わせた値を車重として、定期的にCAN111へ出力する。
慣性計測部108からは、車体に固定された3軸方向の角速度センサおよび3軸方向の加速度センサから、車体の前後方向の加速度(縦加速度)と、左右方向の加速度(横加速度)と、上下加速度と、3軸中の各軸に対応する角速度(ロール角速度、ピッチ角速度、ヨー角速度)を定期的にCAN111へ出力する。
これらCAN111に流れる情報から、車速変化推定部109では車速の時間変化を推定することで、車輪速の補正係数を算出し、CAN111へ出力する。図3に車速変化推定部109における補正係数の算出処理フローを示す。
図3におけるステップ201では、定期的な周期で車速変化推定部109が起動し、ステップ202へ移行する。ステップ202では、慣性計測部108で計測された車体の加速度、角速度を取得し、ステップ203へ移行する。ステップ203では前輪車輪速の平均値を求め、その絶対値が0よりも大きい、すなわち車両が移動しているかどうかを判断する。車両が移動していると判断された場合はステップ204へ移行し、車両が移動していないと判断された場合はステップ206へ移行する。
ステップ206(ステップ203にて車両が移動していないと判断された場合)では、車体傾斜角を計算する。車体傾斜角度は、重力加速度のかかる方向に対して車体の前後方向を表わす車体軸がどれほど傾いているかを計算することで取得される。車体傾斜角は、ステップ202で取得した加速度の内、縦方向加速度に基づいて下記式(1)により求めることができる。ステップ206で車体傾斜角度の計算が終了したら、車速変化推定部109の処理を終了する。
一方、ステップ204(ステップ203にて車両が移動していると判断された場合)では、車速変化推定部109内のメモリ112から前回の起動時(1起動周期前)に計算した車体傾斜角を取得し、ステップ205へ移行する。
ステップ205では、ステップ204で取得した前回の車体傾斜角と、慣性計測部108から出力されCAN111を介して取得した車体のピッチ角速度とから下記式に従い、車体傾斜角を計算する。なお、下記式(2)における「起動周期」は、車速変化推定部109が起動する周期を示す一定の時間とする。車体傾斜角を計算したら、ステップ207へ移行する。
ステップ207では、車重検出部107から出力された車重をCAN111を介して取得し、ステップ208へ移行する。なお、ステップ207における車重は、ベッセル3内の積荷を含む車両の総重量とする。
ステップ208では、ステップ205で得られた車体傾斜角およびステップ207で得られた車重から傾斜抵抗を求め、ステップ209へ移行する。傾斜抵抗は下記式(3)から求めることができる。
次にステップ209では、車両1に装着された複数の車輪101,104のうち1つの車輪に係る車輪速補正係数を算出する。なお、以下では、車輪速補正係数の算出対象の車輪を「対象車輪」と称することがある。ステップ209における車速変化推定部109による対象車輪の車輪速補正係数の算出方法を図4のフローチャートに示す。
図4に示すように、車速変化推定部109は、まずステップ301において、ステップ207で得た車重から対象車輪にかかる荷重を計算する。本実施の形態では、各車輪に作用する車重(総車重)の割合に基づいて対象車輪にかかる荷重を計算している。次にその計算手順の一例について説明する。
まず、対象車輪が前輪101か後輪104かに応じて利用する式を判別し、当該式により総車重のうち前輪側又は後輪側にかかる荷重(「左右前輪にかかる荷重」又は「左右後輪にかかる荷重」)を算出する。対象車輪が前輪101における左右輪のいずれかの場合には下記式(4)を、後輪104における左右輪のいずれかの場合には下記式(5)を利用する。なお、下記式(4)及び(5)における「前輪の割合」及び「後輪の割合」とは、左右の前輪101と左右の後輪104に荷重が掛かる割合を示す値であり、ここでは予め決められた値を用いるものとする。
次に、対象車輪が左輪と右輪のいずれに該当するかに応じて、左右輪にかかる荷重のうち右輪側又は左輪側にかかる割合(「右輪の割合」又は「左輪の割合」)を算出する。その際、まず、ステップ202で慣性計測部108が出力した横方向加速度出力値に基づいて車体横方向傾斜角を下記式(6)により算出する。次に、対象車輪が左輪か右輪かに応じて下記式(7)及び(8)のいずれかを選択する。そして、先に算出した車体横方向傾斜角と、予め車両ごとに設定されている最大横方向傾斜角とから、「右輪の割合」又は「左輪の割合」を算出する。
そして、対象車輪が前後輪のいずれか、さらに左右輪のいずれかに該当するかに応じて下記(9)~(12)の中から1つを選択し、当該選択した式と先の算出結果に基づいて対象車輪にかかる荷重を算出する。なお、この方法の他でも、各車輪にかかる荷重が計測・算出される同様の方法であれば良い。
対象車輪にかかる荷重を求めたら、次に、対象車輪の回転数をCAN111から取得しつつ、前回の起動時に計算された対象車輪の車輪速補正係数をメモリ112から取得し(ステップ302)、ステップ303へ移行する。ステップ303では、ステップ302で得られた対象車輪の回転数と、前回の対象車輪の車輪速補正係数とから、下記式(13)に基づいて空気抵抗を求め、ステップ304へ移行する。
ステップ304では、路面摩擦係数μを求める。路面摩擦係数μはスリップ率により決定されるため、まずスリップ率を算出する。
スリップ率は次式(14)で求めることができる。なお、下記式(14)における「前輪車輪回転数」及び「後輪車輪回転数」は、対象車輪が右輪だった場合には「右輪の前輪車輪回転数」と「右輪の後輪車輪回転数」を示し、左輪の場合には「左輪の前輪車輪回転数」と「左輪の後輪車輪回転数」を示すものとする。また、下記式(14)は、駆動輪が後輪で、従動輪が前輪の場合の式であり、前輪を駆動輪とし後輪を従動輪とした場合には前後が逆転することはいうまでもない。
次にスリップ率から路面摩擦係数μを決定する。本実施の形態では、スリップ率と路面摩擦係数μの関係を規定したテーブルがメモリ112上に記憶されており、当該テーブルに基づいてスリップ率から路面摩擦係数μが求められる。図5に路面摩擦係数μとスリップ率のテーブルを示す。
図5に示したテーブルには,スリップ率401と路面摩擦係数μ402の関係が、複数の路面パターン(路面状態)403ごとに設定されている。路面パターン403(すなわち、図5中の路面A、路面B、…路面N)の具体例としては、通常の乾いた路面、濡れた路面、表面が砂利からなる路面等がある。上記式(14)で算出したスリップ率についての路面摩擦係数μは、複数の路面パターン403の中から最も適当なものが選択される。路面パターン403の選択方法の具体例としては、(I)所定のスリップ率μThrhldの時の車体加速度に基づいて選択するものや、(II)ベイズ推定により選択するもの等がある。なお、図5のテーブル中に無い値は線形補間して算出しても良い。また、路面摩擦係数μはカルマンフィルタや最適フィルタなどの最尤推定により計算することもできる。
路面摩擦係数μを算出したらステップ305にて路面抵抗を算出する。路面抵抗は、ステップ304で選択した路面摩擦係数μと、パラメータ値である転がり抵抗係数と、ステップ301で算出した対象車輪にかかる荷重とから下記式(15)に基づいて求めることができる。なお、下記式(15)における「転がり抵抗係数」はステップ304で選択した路面パターンに基づいて選択される数値であり、本実施の形態ではメモリ112上に予め用意しておいたテーブルに基づいて選択される。図6に転がり抵抗係数と路面パターンの関係を示すテーブルの一例を示す。
路面抵抗を算出したらステップ306に移行する。ステップ306では、駆動トルク検出部106から出力されCAN111を介して取得される駆動トルクと、ステップ305で算出された路面抵抗と、ステップ303で算出された空気抵抗と、ステップ208で算出された傾斜抵抗と、ステップ301で得た対象車輪にかかる荷重とに基づいて、下記式により対象車輪の駆動加速度(車両速度の時間変化)の推定値を求める。なお、下記式における「駆動トルク」は、対象車輪が右輪の場合には右後輪に加えられる駆動トルクを利用し、左輪の場合には左後輪に加えられる駆動トルクを利用するものとする。
ステップ307では、ステップ306で算出した駆動加速度と、ステップ302で取得された対象車輪の車輪速と、メモリ112に保存された1起動周期前の対象車輪の車輪速の値とから、下記式により対象車輪の車輪速補正係数を求める。
ステップ307で車輪速補正係数を算出したら、図3のフローチャートに戻り、全ての車輪について車輪速補正係数が算出されたか否か判断する(ステップ210)。車輪速補正係数を算出していない車輪が存在する場合にはステップ301に戻り、ステップ302以降の処理によって算出する。一方、全ての車輪について車輪速補正係数が算出されている場合には、各車輪に係る車輪速補正係数をCAN111へ出力し(ステップ211)、車速変化推定部109の処理を終了する。
次に、車速演算部110の処理フローを図7に示す。
図7に示すように、ステップ601では、定期的な周期(起動周期)で車速演算部110が起動し、ステップ602へ移行する。ステップ602では、車速変化推定部109によって出力された各車輪101,104の車輪速補正係数をCAN111から取得し、ステップ603へ移行する。ステップ603では、操舵角検出部103にて検出された操舵角をCAN111から取得し、ステップ604へ移行する。
図7に示すように、ステップ601では、定期的な周期(起動周期)で車速演算部110が起動し、ステップ602へ移行する。ステップ602では、車速変化推定部109によって出力された各車輪101,104の車輪速補正係数をCAN111から取得し、ステップ603へ移行する。ステップ603では、操舵角検出部103にて検出された操舵角をCAN111から取得し、ステップ604へ移行する。
ステップ604では、操舵角の絶対値が閾値α以下であるかどうかを判断し、当該閾値α以下であれば、車体が旋回してないと判断し、ステップ605へ移行する。閾値αよりも大きければ車体が旋回していると判断し、ステップ609へ移行する。なお、閾値αは、予め設定された値(例えば15度)であり、例えばステアリングハンドルの遊びの範囲内では旋回と判断されないように設定することが好ましい。
ステップ605では、前輪車輪速検出部102から出力された左右の前輪101の車輪速(車輪回転数)をCAN111を介して取得し、ステップ606へ移行する。ステップ606では、車体が旋回していないとステップ604で判断されているため、ステップ605で得た前輪車輪速(前輪車輪回転数)と、ステップ602で取得した各車輪の車輪速補正係数とに基づいて、下記式(18)により前輪車輪速の平均値を求め、ステップ607へ移行する。
ステップ607では、ステップ606で取得した前輪車輪速の平均値を車両(車体)の速度である車速とし(下記式(19))、ステップ608へ移行する。
ところで、ステップ604で車体が旋回中であると判断された場合には、慣性計測部108から出力されたヨー角速度をCAN111から取得し(ステップ609)、ステップ610へ移行する。ステップ610では、車体の旋回半径を算出する。ここで旋回半径の算出について図8を用いて説明する。
図8は旋回中の車体をモデル化した図である。この図に示すように、左前輪101aおよび右前輪101bの操舵角がそれぞれδl、δrであったとき、旋回中心703と左右前輪101a、101bとの距離(旋回半径)Rl、Rrはそれぞれ下記式(20)で表わされる。
ただし、上記式(20)において、ωはヨー角速度であり、vl、vrはそれぞれ下記式(21)及び(22)で表わされる。なお、下記式(21)及び(22)における左右の「前輪車輪回転数」は、前輪車輪速検出部102から出力された左右の前輪101の車輪速をCAN111を介して取得したものから導出されることはいうまでもない。
よって、車両のトレッド704をTとすると、前輪のトレッド軸と車体軸との交点705と旋回中心との距離R(旋回半径)は下記式(23)で表わされる。
ステップ610で旋回半径Rを算出したら、ステップ611で車速を算出する。車体が旋回している場合の車速は、ステップ610で算出した旋回半径とヨー角速度ωとに基づいて、下記式(24)で計算できる。ステップ611で車速を算出したら、ステップ608に移行する。
ステップ608では、ステップ607又はステップ611で算出した車速をCAN111へ出力し、車速演算部110の処理を終了する。
以上のように構成した本実施の形態では、車速変化推定部109において駆動トルクと車重に基づいて車両の速度の時間変化(駆動加速度)を推定し、車速演算部110において当該推定値に基づいて車両速度を算出しているので、車両位置を測定することなく車両速度を精度良く算出することができる。したがって、GPS等による車両位置の測定が難しい状況下においても、正確な車両速度を算出できる
また、車輪半径の変化に基づいて誤差を補正していた従来の技術では、路面状況の変化をはじめとした車輪半径の変化を伴わない誤差原因には対応することが難しかったが、本実施の形態によれば、車輪半径を利用することなく車速を精度良く算出することができ、当該誤差原因にも対応できる。すなわち、ダンプトラックをはじめとする運搬車両がオフロード走行する際の車両速度の算出精度を向上できる。
また、車輪半径の変化に基づいて誤差を補正していた従来の技術では、路面状況の変化をはじめとした車輪半径の変化を伴わない誤差原因には対応することが難しかったが、本実施の形態によれば、車輪半径を利用することなく車速を精度良く算出することができ、当該誤差原因にも対応できる。すなわち、ダンプトラックをはじめとする運搬車両がオフロード走行する際の車両速度の算出精度を向上できる。
なお、上記の説明では、全ての車輪(前輪及び後輪)の車輪速補正係数を算出する場合(ステップ209,210)について説明したが、上記のように前輪車輪速(従動輪車輪速)に基づいて車速を算出する場合には当該前輪にかかる車輪速補正係数を算出すれば足りる。また、上記の説明では、左右の前輪の車輪速に基づいて車速を算出したが、左右いずれか一方の車輪速に基づいて車速を算出しても良い。
次に上記の実施の形態の変形例について説明する。平坦かつ路面状態の変化がほとんど無い走行路で操舵が無い場合は、次の方法でも速度の算出が可能である。
前輪車輪速検出部102からは前輪車輪(従動輪)の回転数がCAN111に出力され、駆動トルク検出部106から駆動輪のトルクがCAN111に出力されている。また、車重検出部107から車重がCAN111に出力されている。ここでは、これらの情報に基づいて車速演算部110は次の方法で車速を演算する。図9は、平坦かつ路面状態の変化がほとんど無い走行路で操舵が無い場合における車速演算部110の処理フローである。
図9に示すように、ステップ801では、周期的に車速演算部110が起動し、ステップ802に移行する。ステップ802では、車重検出部107から出力された車重と、駆動トルク検出部106から出力される左右の駆動トルクの平均値とを、CAN111を介して取得し、ステップ803へ移行する。ステップ803では、下記式(25)に従ってステップ802で取得した駆動トルクと車重から駆動加速度を計算する。なお、下記式(25)における路面抵抗及び空気抵抗は車両によって予め設定されている値とする。
ステップ803が終了したら、前輪車輪速検出部102から出力される左右の前輪車輪速の平均値を取得し(ステップ804)、ステップ805へ移行する。ステップ805では、ステップ803で算出した駆動加速度と、ステップ804で取得した前輪車輪速の平均値とに基づいて、下記式(26)より車輪速補正係数を算出する。
ステップ805が終了したら、下記式(27)に従って車速を計算する(ステップ806)。
ステップ807では、車速演算部110は、ステップ806で算出された車速をCAN111に出力し、処理を終了する。
以上のように構成された実施の形態においても、駆動トルクと車重に基づいて車両の速度の時間変化(駆動加速度)を推定し、当該推定値に基づいて車両速度を算出しているので、車両位置を測定することなく車両速度を精度良く算出することができる。したがって、GPS等による車両位置の測定が難しい状況下においても、正確な車両速度を算出できる。
なお、上記の変形例では、処理を簡略化するために、前輪車輪速の平均値を求めて車速を算出する場合について説明したが、先の実施の形態のように左右の前輪車輪速に基づいて車速を算出しても良い。
次に本発明の第2の実施の形態について説明する。第1の実施の形態及びその変形例では、駆動トルク検出部106から出力された「駆動トルク」に基づいて駆動加速度を推定したが、本実施の形態では、駆動トルクに代えて「加速度」に基づいて駆動加速度を推定している点に特徴がある。
本実施の形態に係るシステムのハードウェア構成は図2に示したものと同じである。また、ここでは説明を簡略化するために、平坦かつ路面状態の変化がほとんど無い走行路を走行するときを例に挙げて説明する。図10は、第2の実施の形態に係る車速演算部110の処理フローであって、平坦かつ路面状態の変化がほとんど無い走行路の場合のものである。
図10に示した処理フローにおいて、ステップ901では、定期的な周期(起動周期)で車速演算部110が起動し、ステップ902に移行する。ステップ902では、慣性計測部108からの出力される車両の前後方向加速度、車体ヨーレート及び車体ピッチレートをCAN111を介して取得し、ステップ903に移行する。
ステップ903では、車両が停止しているか否かを判断する。ここで車両が停止していると判断された場合には、ステップ904において、慣性計測部108から出力される前後方向加速度に基づいて初期車体ピッチ角を下記式(28)により求め、処理を終了し、次の周期まで起動を待機する。
一方、ステップ903で車両が停止していないと判断された場合には、ステップ905に移行し、1起動周期前(1サンプル時間前)に算出した車体ピッチ角と、ステップ902で取得した車体ピッチレートとに基づいて、下記式(29)に従って車体ピッチ角を計算する。なお、下記式(29)における「1起動周期前の車体ピッチ角」が存在しない場合は、ステップ904で算出した初期車体ピッチ角を用いるものとする。
ステップ905が終了したら、ステップ906において駆動加速度を下記式に基づいて求める。なお、下記式における「前後方向加速度」と「車体ヨーレート」はステップ902で取得したものを利用し、「車体ピッチ角」はステップ905で算出したものを利用するものとする。なお、下記式(30)における「後輪車輪軸と慣性計測部との距離」は、慣性計測部108と車両1の寸法から算出される値である。
ステップ906で駆動加速度を算出した以降は、図9のステップ804以降と同じ処理を実行する。すなわち、ステップ906が終了したら、前輪車輪速検出部102から出力される前輪車輪速を取得し(ステップ804)、ステップ805へ移行する。ステップ805では、ステップ906で算出した駆動加速度と、ステップ804で取得した左右の前輪車輪速の平均値とに基づいて、下記式(31)より車輪速補正係数を算出する。
ステップ805が終了したら、下記式(32)に従って車速を計算する(ステップ806)。
ステップ807では、車速演算部110は、ステップ806で算出された車速をCAN111に出力し、処理を終了する。
以上のように構成した本実施の形態では、前後方向加速度に基づいて車両の速度の時間変化(駆動加速度)を推定し、当該推定値に基づいて車両速度を算出しているので、車両位置を測定することなく車両速度を精度良く算出することができる。したがって、GPS等による車両位置の測定が難しい状況下においても、正確な車両速度を算出できる。
なお、上記の実施の形態では、平坦かつ路面状態の変化がほとんど無い走行路を走行する場合を例に挙げて説明したが、第1の実施の形態の場合のように傾斜があり路面状態の変化がある走行路を走行するときについても、前後方向加速度等に基づいて駆動加速度の推定値を算出した上記式を利用すれば駆動加速度の推定値が算出可能である。したがって、この場合についても、GPS等による車両位置の測定が難しい状況下での正確な車両速度が算出できる。
また、上記の実施の形態では、処理を簡略化するために、前輪車輪速の平均値を求めて車速を算出する場合について説明したが、第1の実施の形態のように左右の前輪車輪速に基づいて車速を算出しても良い。
ところで、上記の各実施の形態では、高負荷トルク出力時の駆動輪(後輪104)のスリップ率増加に起因した車速算出精度の低下を避けるために、従動輪(前輪101)の速度(車輪速)に基づいて車速を算出する場合について説明したが、駆動輪の車輪速に基づいて又は駆動輪及び従動輪の車輪速に基づいて車速を算出しても良い。駆動輪を含む場合には「滑り」を検出することが好ましい。
また、本発明は、上記の各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の各実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
また、上記の制御装置に係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の制御装置に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
1 運搬車両(ダンプトラック)
101 前輪(従動輪)
102 前輪車輪速検出部
103 操舵角検出部
104 後輪(駆動輪)
105 後輪車輪速検出部
106 駆動トルク検出部
107 車重検出部
108 慣性計測部
109 車速変化推定部
110 車速演算部
111 CAN
112 メモリ(記憶装置)
101 前輪(従動輪)
102 前輪車輪速検出部
103 操舵角検出部
104 後輪(駆動輪)
105 後輪車輪速検出部
106 駆動トルク検出部
107 車重検出部
108 慣性計測部
109 車速変化推定部
110 車速演算部
111 CAN
112 メモリ(記憶装置)
Claims (10)
- 複数の車輪を備える運搬車両において、
前記車両の速度の時間変化の推定値を算出する速度変化推定部と、
当該車両速度の時間変化の推定値と、前記複数の車輪における少なくとも1つの車輪の速度とに基づいて、前記車両速度を算出する速度演算部とを備えることを特徴とする運搬車両。 - 請求項1に記載の運搬車両において、
前記速度変化推定部は、前記車両に加えられる駆動トルクと、前記少なくとも1つの車輪に加えられる荷重とに基づいて、前記車両速度の時間変化の推定値を算出することを特徴とする運搬車両。 - 請求項1に記載の運搬車両において、
前記速度変化推定部は、前記車両の前後方向加速度に基づいて前記車両速度の時間変化の推定値を算出することを特徴とする運搬車両。 - 請求項2又は3に記載の運搬車両において、
前記速度変化推定部は、前記車両速度の時間変化の推定値と、前記少なくとも1つの車輪速度の時間変化とに基づいて、当該少なくとも1つの車輪の速度補正係数を算出しており、
前記速度演算部は、前記少なくとも1つの車輪速度を前記速度補正係数で補正することで前記車両速度を算出していることを特徴とする運搬車両。 - 請求項2に記載の運搬車両において、
前記速度変化推定部は、路面抵抗および傾斜抵抗を用いて、前記車両速度の時間変化の推定値を算出していることを特徴とする運搬車両。 - 請求項5に記載の運搬車両において、
前記速度変化推定部は、前記少なくとも1つの車輪に加えられる荷重に基づいて、前記路面抵抗を算出していることを特徴とする運搬車両。 - 請求項4に記載の運搬車両において、
前記速度変化推定部は、前記少なくとも1つの車輪に加えられる荷重と路面摩擦係数を参酌して、前記少なくとも1つの車輪の速度補正係数を算出していることを特徴とする建設機械。 - 請求項1に記載の運搬車両において、
前記速度演算部は、前記運搬車両の操舵角を参酌して前記車両速度を算出していることを特徴とする運搬車両。 - 請求項1に記載の運搬車両において、
前記速度演算部は、前記運搬車両の旋回半径を参酌して前記車両速度を算出していることを特徴とする運搬車両。 - 請求項1に記載の運搬車両において、
前記速度演算部が前記車両速度を算出する際に利用する前記少なくとも1つの車輪速度は従動輪のものであることを特徴とする運搬車両。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013062376A JP6012523B2 (ja) | 2013-03-25 | 2013-03-25 | 建設車両 |
JP2013-062376 | 2013-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156903A1 true WO2014156903A1 (ja) | 2014-10-02 |
Family
ID=51623882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057605 WO2014156903A1 (ja) | 2013-03-25 | 2014-03-19 | 運搬車両 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6012523B2 (ja) |
WO (1) | WO2014156903A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107407591A (zh) * | 2015-05-13 | 2017-11-28 | 日立建机株式会社 | 作业机械的荷载计测装置 |
EP3309024A1 (en) * | 2016-10-13 | 2018-04-18 | Volvo Car Corporation | Method and system for determining friction between the ground and a tire of a vehicle |
CN114423661A (zh) * | 2019-09-17 | 2022-04-29 | 日立建机株式会社 | 搬运车辆 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6581519B2 (ja) * | 2016-02-09 | 2019-09-25 | 日立建機株式会社 | 建設機械の周囲障害物検知システム |
CN111752254A (zh) * | 2019-03-28 | 2020-10-09 | 深圳市商汤科技有限公司 | 轨迹跟踪控制器的测试方法、装置、介质及设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218519A (ja) * | 1994-02-07 | 1995-08-18 | Toyota Motor Corp | 車輪速度の補正値計算装置 |
JP2001514992A (ja) * | 1997-08-16 | 2001-09-18 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 自動車の基準速度を決定する方法と装置 |
JP2002027610A (ja) * | 2000-07-10 | 2002-01-25 | Toyota Industries Corp | 産業車両の走行制御装置 |
JP2012192920A (ja) * | 2009-01-08 | 2012-10-11 | Komatsu Ltd | 車両速度推定装置及びトラクションコントロール装置 |
-
2013
- 2013-03-25 JP JP2013062376A patent/JP6012523B2/ja not_active Expired - Fee Related
-
2014
- 2014-03-19 WO PCT/JP2014/057605 patent/WO2014156903A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218519A (ja) * | 1994-02-07 | 1995-08-18 | Toyota Motor Corp | 車輪速度の補正値計算装置 |
JP2001514992A (ja) * | 1997-08-16 | 2001-09-18 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 自動車の基準速度を決定する方法と装置 |
JP2002027610A (ja) * | 2000-07-10 | 2002-01-25 | Toyota Industries Corp | 産業車両の走行制御装置 |
JP2012192920A (ja) * | 2009-01-08 | 2012-10-11 | Komatsu Ltd | 車両速度推定装置及びトラクションコントロール装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107407591A (zh) * | 2015-05-13 | 2017-11-28 | 日立建机株式会社 | 作业机械的荷载计测装置 |
EP3296706A4 (en) * | 2015-05-13 | 2019-01-02 | Hitachi Construction Machinery Co., Ltd. | Work-machine load measuring device |
US10337909B2 (en) | 2015-05-13 | 2019-07-02 | Hitachi Construction Machinery Co., Ltd. | Load measuring apparatus for a working machine |
EP3309024A1 (en) * | 2016-10-13 | 2018-04-18 | Volvo Car Corporation | Method and system for determining friction between the ground and a tire of a vehicle |
CN107933563A (zh) * | 2016-10-13 | 2018-04-20 | 沃尔沃汽车公司 | 用于确定地面与车辆轮胎之间摩擦的方法和系统 |
US10632978B2 (en) | 2016-10-13 | 2020-04-28 | Volvo Car Corporation | Method and system for determining friction between the ground and a tire of a vehicle |
CN114423661A (zh) * | 2019-09-17 | 2022-04-29 | 日立建机株式会社 | 搬运车辆 |
US11834041B2 (en) | 2019-09-17 | 2023-12-05 | Hitachi Construction Machinery Co., Ltd. | Conveying vehicle |
CN114423661B (zh) * | 2019-09-17 | 2023-12-08 | 日立建机株式会社 | 搬运车辆 |
Also Published As
Publication number | Publication date |
---|---|
JP2014185988A (ja) | 2014-10-02 |
JP6012523B2 (ja) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11845446B2 (en) | Method and system for predicting a risk for rollover of a working machine | |
US10539451B2 (en) | Load weighing method and system for wheel loader | |
JP6122916B2 (ja) | タイヤ摩耗を決定するためのシステムおよび方法 | |
US9598823B2 (en) | Stop position determining device for transport vehicle and transport vehicle with the same | |
CA2786594C (en) | Mass, drag coefficient and inclination determination using accelerometer sensor | |
JP6194247B2 (ja) | 完全性検査を有する機械航法システム | |
WO2014156903A1 (ja) | 運搬車両 | |
JP5604591B2 (ja) | 車両ナビゲーションシステムの動的パラメータを較正するための装置および方法 | |
CN108791298A (zh) | 用于计算道路摩擦估计值的方法和系统 | |
US20140371990A1 (en) | Sensor system comprising a vehicle model unit | |
FI120061B (fi) | Menetelmä tiedon keräämiseksi tien pinnan liukkaudesta | |
US20140309803A1 (en) | System for estimating road slope | |
US10532741B2 (en) | Method of using predicted vehicle accelerations to improve roll and pitch measurement accuracy in a tracked machine | |
JP4854778B2 (ja) | 車両用推定航法装置、車両用推定航法及び車両用推定航法のプログラム | |
CN106029477A (zh) | 行走车辆及行走车辆的控制方法 | |
JP2008074392A (ja) | 自動車の運転状態を制御するための方法 | |
US20200026305A1 (en) | Haul vehicle control system and haul vehicle management method | |
US20220189215A1 (en) | Condition monitoring of a vehicle | |
US20150298666A1 (en) | Engine Assisted Brake Control on Wheel Slip | |
JP7084244B2 (ja) | 作業機械の制御システム、作業機械、及び作業機械の制御方法 | |
JP5206490B2 (ja) | 車両接地面摩擦状態推定装置及びその方法 | |
ES2909575T3 (es) | Estimación de los radios de rodadura de ruedas absolutos y estimación del valor de compresión vertical | |
US11780424B2 (en) | Vehicle control device and vehicle control method | |
US10442463B2 (en) | Method and device for ascertaining the steering angle of a one-track vehicle | |
JP4028842B2 (ja) | タイヤ空気圧低下検出方法および装置、ならびにタイヤ減圧判定のプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14775792 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14775792 Country of ref document: EP Kind code of ref document: A1 |