WO2014156713A1 - Benzylic ether-type phenolic resin and resin composition containing same, and binder and carbide each produced using said resin or said resin composition - Google Patents

Benzylic ether-type phenolic resin and resin composition containing same, and binder and carbide each produced using said resin or said resin composition Download PDF

Info

Publication number
WO2014156713A1
WO2014156713A1 PCT/JP2014/056852 JP2014056852W WO2014156713A1 WO 2014156713 A1 WO2014156713 A1 WO 2014156713A1 JP 2014056852 W JP2014056852 W JP 2014056852W WO 2014156713 A1 WO2014156713 A1 WO 2014156713A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
benzylic ether
resin
ether type
type phenol
Prior art date
Application number
PCT/JP2014/056852
Other languages
French (fr)
Japanese (ja)
Inventor
聡 竹原
泰裕 糸永
Original Assignee
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材工業株式会社 filed Critical 旭有機材工業株式会社
Priority to JP2015508298A priority Critical patent/JPWO2014156713A1/en
Publication of WO2014156713A1 publication Critical patent/WO2014156713A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Definitions

  • the present invention relates to a benzylic ether type phenolic resin, a resin composition thereof, and a binder and a carbide obtained by using them, and is particularly suitable for use in refractory products, carbon products, grindstones, friction materials, and the like.
  • Benzylic ether type phenol resins and their resin compositions that give a carbide with a high residual carbon ratio, as well as carbides, carbon products or refractory products obtained by using these benzylic ether type phenol resins and their resin compositions It relates to a binder.
  • Patent Document 2 proposes a phenol resin composition having a high residual carbon ratio obtained by blending a predetermined amount of hexamethylenetetramine and phenol into a novolac type phenol resin and / or a resol type phenol resin.
  • the phenol resin composition proposed there has a relatively high residual carbon ratio, it is numerically only having a residual carbon ratio in the range of 50%.
  • the phenol resin compositions with a high residual carbon ratio proposed there are those of semi-cured or cured products, and they are blended with carbon sources and refractory particles in the production process of carbon products and refractory products.
  • the phenol resin composition When melted, the phenol resin composition may not be able to sufficiently exhibit the fluidity required as a binder.
  • such a phenol resin composition contains hexamethylenetetramine, it is generated by decomposition of hexamethylenetetramine when it is used as a binder to produce carbon products and refractory products. Problems such as the need to take measures against the odor of ammonia are also inherent.
  • the carbide of phenol resin has an undesirable property of poor oxidation resistance.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-31079
  • a refractory brick using a novolac type phenolic resin as a binder has poor oxidation resistance, and the brick of the refractory brick is easily oxidized by oxidation of carbon in the refractory brick.
  • the problem of causing a decrease in strength has been pointed out. Therefore, there has been proposed a boric acid-modified phenol novolak resin in which boric acid is used as a reaction catalyst to react phenols and aldehydes and boric acid itself is incorporated into the phenol resin skeleton.
  • the proposed boric acid-modified phenolic resin is a novolak type resin
  • a curing agent such as hexamethylenetetramine must be used, and therefore, measures against the odor of ammonia generated during curing are required.
  • the residual carbon ratio was only about 50%.
  • the present invention has been made in the background of such circumstances, and the problem to be solved is that it has a higher residual carbon ratio than conventional phenol resins, and has a dense and high oxidation resistance. It is to provide a benzylic ether type phenolic resin and a resin composition thereof that can advantageously give a carbide having the same, and excellent obtained by using such a benzylic ether type phenolic resin and the resin composition thereof.
  • the object is to provide a carbide having properties and a binder for producing a carbon product or a refractory product.
  • the present inventors have found that the structure of the phenol resin has a substitution position of the substituent mainly with respect to the phenol skeleton.
  • a so-called high-ortho structure, and a substitution ratio of methylene bond, benzylic ether bond, and methylol group in the phenol resin within a specific region, and a benzylic ether type phenol resin and its resin composition The present inventors have found that a carbide having a high residual carbon ratio, denseness, and good oxidation resistance can be obtained by calcination, and the present invention has been completed.
  • the present invention is required to obtain a benzylic ether type phenol resin having an ortho-conversion rate of 70% or more and a substituent ratio per mole of the phenol nucleus of the resin.
  • the ratio of the benzylic ether bond substitution ratio is 10.0 to 40.0%
  • the methylol group is 10.0 to 40.0%
  • the gist of the present invention is a benzylic ether type phenolic resin characterized by a substitution ratio of 13.0 to 40.0%.
  • the ratio of the benzylic ether bond substitution ratio is 20.0 to 39.5%, and the methylol group substitution is performed.
  • the ratio is 13.5 to 38.0%.
  • the methylene bond substitution ratio is 0.42 to 0.55 mol per mole of the phenol nucleus, and the benzylic ether bond substitution ratio is 0. It is desirable that the methylol group substitution ratio is 0.13 to 0.20 mol.
  • the benzylic ether type phenolic resin according to the present invention is preferably obtained by reacting phenols and aldehydes using a divalent metal salt as a catalyst.
  • a divalent metal salt as the valent metal salt, at least one selected from the group consisting of zinc chloride, zinc acetate, a mixture of boric acid and zinc hydroxide, and zinc borate is in a ratio of 0.1 mol% or more with respect to phenols. It is desirable to be used.
  • An embodiment in which the molar ratio of phenols to aldehydes is within the range of 1.0: 1.0 to 1.0: 2.0 is also advantageously employed.
  • the benzylic ether type phenolic resin according to the present invention preferably has a weight average molecular weight (Mw) of more than 2,000 and less than 30,000, so that it falls within such a molecular weight range.
  • Mw weight average molecular weight
  • the benzylic ether type phenol resin composition which contains the benzylic ether type phenol resin as mentioned above as an essential component also makes the object.
  • the gist of the present invention is a carbide formed by firing the above-mentioned benzylic ether type phenol resin or a resin composition thereof.
  • the above-mentioned benzylic ether type phenolic resin is used as a bonding agent having a high residual carbon ratio that is used for bonding carbon materials or refractory materials to give a target carbon product or refractory product.
  • the gist of the present invention is also a carbon product or a refractory product manufacturing binder comprising the resin composition.
  • the residual carbon ratio is 60% or more and is 300 to 800 ° C. in the baking under a nitrogen atmosphere up to 800 ° C. It has the characteristic that the carbide
  • the benzylic ether type phenol resin according to the present invention has (A) a high-ortho structure, and (B) a methylene bond ratio (methylene bond substitution ratio) per mole of phenol nucleus of the resin,
  • a methylene bond ratio methylene bond substitution ratio per mole of phenol nucleus of the resin
  • the ratio of the benzylic ether bond substitution ratio is 10.0 to 40.0. %
  • the ratio of methylol group substitution ratio in the range of 13.0 to 40.0% is an essential component.
  • the ortho ratio which is the ratio of the substituents bonded to the ortho position of the phenol nucleus of the resin, It should be 70% or more, and preferably 75 to 90%, of the ortho-bonding ratio of normally known high orthoresole.
  • 90% of the upper limit is an assumed numerical value that can be manufactured, and in fact, there is no upper limit of the ortho-ratio, and it can be said that a higher value is desirable.
  • the higher the ratio of such ortho-bonds the more easily a dense carbide is formed in the carbonization step, and the residual carbon ratio is improved.
  • FIG. 1 when the resin has a high-ortho-linear structure, there is no gap between the cyclization and aromatization in the carbonization step and the polycondensation in the solid phase. It is considered that a flat surface is easily formed.
  • the ortho-ratio can be easily determined by performing 13C-NMR measurement on a resin sample using a nuclear magnetic resonance apparatus according to a known method. That is, 13C-NMR chemical shifts of ortho, phenolic methylene bonds, benzylic ether bonds, and methylol groups of phenolic nuclei in benzylic ether type phenol resins are known (Andre Knop., Louis A.to Pilato., Translated by Seto Shoji, “Phenolic Resin”, p. 110), based on their chemical shift information, they are linked to ortho-ortho, ortho-para, para-para position. Obtain the integrated intensity ratio of each carbon peak of the methylene bond, benzylic ether bond and the methylol group bonded to the ortho or para position, and thereby calculate the ratio of the ortho bond when the total bond is 100%. It can be done.
  • the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group respectively obtained as the substituent ratio per mole of phenol nucleus in the resin
  • the ratio of the benzylic ether bond substitution ratio is 10.0.
  • the methylol group substitution ratio needs to be 13.0 to 40.0%.
  • the ratio of the benzylic ether bond substitution ratio is 20.
  • the ratio is 0 to 39.5% and the methylol group substitution ratio is 13.5 to 38.0%.
  • the lower limit of the benzylic ether bond substitution ratio may be 10% or more, preferably 15% or more, more preferably 20% or more, while the upper limit is , 40% or less, preferably 39.5% or less, more preferably 30% or less.
  • the ratio of the methylol group substitution ratio is 13% or more, preferably 13.5% or more, more preferably 15% or more, while the upper limit is 40% or less, preferably 38%. Below, more preferably 30% or less.
  • the ratio of the methylene bond substitution ratio is a value obtained by subtracting the total amount of each ratio of the benzylic ether bond substitution ratio and the methylol group substitution ratio from 100%.
  • the substitution ratio of methylene bond is 0.42 to 0.55 mol with respect to 1 mol of the phenol nucleus of the resin.
  • the constitution in which the substitution ratio of the benzylic ether bond is 0.26 to 0.38 mol and the substitution ratio of the methylol group is 0.13 to 0.20 mol is advantageously employed. .
  • the benzylic ether type phenol resin targeted in the present invention is obtained by reacting phenols and aldehydes
  • the benzylic ether type phenol resin according to the present invention is publicly known. As described above, it is obtained by reacting phenols and aldehydes in the presence of a predetermined catalyst, and the production method is not particularly limited, and there are known materials appropriately selected. Will be used.
  • a benzylic ether type phenol resin is obtained by reacting phenols and aldehydes, generally using a catalyst such as a divalent metal salt.
  • the ratio of the phenols and aldehydes used is preferably 1.0 to 2.0 mol, more preferably 1.1 to 1.6 mol, relative to 1.0 mol of phenol. Used in molar proportions.
  • the use ratio of the aldehydes is less than 1.0 mol, there is a shortage of reactive groups in the resin, and there is a possibility that a sufficient residual carbon ratio cannot be obtained by baking after curing. If it increases, the amount of formaldehyde generated during production and curing will increase, causing problems such as odor and blockage of the decompression line during production, as well as adversely affecting quality and reducing the carbon content. .
  • the weight average molecular weight (Mw) is generally larger than 2,000 and smaller than 30,000, more preferably 3,000 to 20 1,000 is desirable. This is because when the weight average molecular weight is smaller than 2,000, the substitution ratio of the methylol group becomes too large, not only out of the specified range of (B) according to the present invention, but also the resin does not solidify at room temperature. Therefore, it is also disadvantageous from the viewpoint of handling, and when the weight average molecular weight is larger than 30,000, the substitution ratio of the methylene bond becomes too large, which is outside the specified range of (B) according to the present invention, This is because there is a possibility of causing gelation of the resin.
  • the amount of unreacted phenol contained in the benzylic ether type phenolic resin according to the present invention is not limited in any way, but is preferably 5% or less on a mass basis. If a large amount of unreacted phenol is contained, a large amount of phenol evaporates at the time of temperature rise before curing, which may lead to a decrease in the residual carbon ratio and foaming of the resin. From the viewpoint of environmental hygiene, the content of unreacted phenol is preferably 5% or less as described above.
  • phenols for example, phenol; cresols such as m-cresol, p-cresol, o-cresol, 2,3-xylenol, 2,5-xylenol, 3,5-xylenol, Xylenols such as 3,4-xylenol, m-ethylphenol, p-ethylphenol, o-ethylphenol, 2,3,5-trimethylphenol, 2,3,5-triethylphenol, 4-tert-butylphenol, 3 Alkylphenols such as tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-5-methylphenol, 6-tert-butyl-3-methylphenol; p- Methoxyphenol, m-methoxyphenol Alkoxyphenols such as p-ethoxyphenol, m-ethoxyphenol, p-propoxyphenol, m-propoxyphenol;
  • the polynuclear body obtained by reaction of phenol and phenol, and formaldehyde will be used advantageously. Since phenols having other functional groups in the phenol nucleus tend to deteriorate the residual carbon ratio, phenols having no such functional groups are preferably used.
  • the present invention is not limited to such examples, and the above phenols can be used alone or in combination of two or more.
  • any of the general aldehydes conventionally used in the production of phenol resins is targeted.
  • formaldehyde, formalin, paraformaldehyde, acetaldehyde, salicylaldehyde Preferably, formaldehydes such as formalin, paraformaldehyde and polyoxymethylene are used.
  • this invention is not limited to the thing of such an illustration, Of course, those aldehydes will be used individually or in combination of 2 or more types.
  • a formalin aqueous solution and paraformaldehyde are preferably used.
  • paraformaldehyde is more desirable because of the reaction rate during condensation and the decrease in internal temperature due to heat of evaporation during vacuum distillation.
  • a divalent metal salt for example, a form of a divalent metal salt
  • a divalent metal oxide or hydroxide, or both and an acidic compound or a basic compound may be used in combination.
  • the divalent metal salt as such a catalyst is not particularly limited as long as it can realize (A) and (B), which are constituents of the resin structure according to the present invention, and is not limited to anhydrides or hydrates. Any form is acceptable.
  • acidic compounds include boric acid, acetic acid, and paratoluenesulfonic acid.
  • Examples of basic compounds include sodium hydroxide, potassium hydroxide, zinc hydroxide, and triethylamine.
  • this acidic compound or basic compound By using this acidic compound or basic compound, the composition can be easily adjusted.
  • the use of an acidic compound tends to increase the number of methylene bonds, while the use of a basic compound tends to decrease the number of methylene bonds.
  • a zinc compound such as zinc chloride, zinc acetate, zinc borate, or a mixture of boric acid and zinc hydroxide is preferably used.
  • the zinc compound as such a bivalent metal salt may be used independently, and can also be used in combination of 2 or more type.
  • the divalent metal salt composed of a zinc compound is 0.1 mol% or more with respect to phenols, and the number of moles of other divalent metal salts is a zinc compound. It is preferable that the resin is contained in the range of the number of moles or less of the divalent metal salt consisting of
  • the amount of the catalyst used is appropriately determined depending on the kind thereof, and it is difficult to determine it uniquely, but generally it is 0.01 to 100 with respect to 100 parts by mass of phenol. It is used within a range of parts by mass, preferably 0.05 to 20 parts by mass, more preferably 0.1 to 5 parts by mass. If this amount of catalyst becomes too large, the reaction rate increases and it becomes difficult to produce a resin. On the other hand, if the amount of catalyst becomes too small, the residual carbon ratio tends to decrease.
  • water can be appropriately added to the reaction vessel depending on the viscosity in the reaction system and the state of dissolution of the raw materials. In that case, it is desirable to add water at a ratio of 0 to 50 parts by mass with respect to 100 parts by mass of the phenols. When the amount of water added exceeds 50 parts by mass, the condensation time becomes longer due to a decrease in the reaction rate, and it takes time to remove water in the distillation step, resulting in inefficiency.
  • antifoaming agent an acid or alkali, a granulating agent, etc.
  • antifoaming agents are used to suppress excessive resin foaming in the distillation process
  • acids and alkalis are used to adjust the reaction rate
  • granulating agents granulate the resulting phenolic resin. And used as a particle.
  • the same manufacturing procedure as the conventional one is adopted. Specifically, a raw material is charged into a reaction vessel, heated and heated, and then refluxed for a predetermined time to perform a condensation reaction, and a reaction product generated in the condensation reaction. Perform distillation under reduced pressure to remove residual phenol and water and increase the molecular weight, and discharge the reaction product (benzylic ether type phenol resin) when the molecular weight reaches a predetermined state (system) The removal process to the outside) is adopted.
  • the phenols, aldehydes, catalyst and water are put into a reaction vessel (container) and mixed, and then heated and heated, preferably at the reflux temperature.
  • the condensation reaction of aldehydes with aldehydes proceeds.
  • the rate of temperature rise at this time is in the range of 0.1 ° C./min to 5.0 ° C./min, more preferably in the range of 0.3 ° C./min to 1.3 ° C./min, starting from room temperature. It is desirable to increase the temperature to 80 to 120 ° C.
  • a resin having a high residual carbon ratio can be advantageously obtained by setting the rate of temperature rise to 0.1 ° C./min to 5.0 ° C./min.
  • the condensation time is appropriately determined in consideration of the condensation temperature, the blending ratio of the raw materials, the viscosity in the system, the degree of condensation, etc. Generally, it is about 1 to 10 hours. desirable.
  • the reaction rate of phenol in such a condensation step is generally desirably 85% or less, preferably 40% to 85%, more preferably 50% to 84%. That is, in the present invention, it is desirable to allow the condensation step to proceed so that the unreacted phenol is 15% or more. This is because when the reaction rate exceeds 85% or more, the viscosity in the system increases, and the viscosity increases during the subsequent distillation step under reduced pressure. This is because it becomes difficult for the resin to be discharged from the reaction can. Further, foaming becomes intense during vacuum distillation, and the reaction product is sucked into the vacuum distillation line and solidifies, thereby causing adverse effects such as the possibility of blocking the vacuum distillation line. Further, when the reaction rate is lower than 40%, there arises a problem that the yield decreases.
  • the removal of unreacted raw materials and water from the reaction product is continued in the reaction kettle without using a special apparatus or steam distillation. This is done by stirring the product with a stirring blade.
  • the distillation temperature is preferably 100 to 150 ° C., more preferably 100 to 120 ° C. under reduced pressure at a pressure of 8.0 kPa or less.
  • the decompression in this distillation step is performed until the required molecular weight is reached.
  • unreacted phenol is removed.
  • the residual amount of unreacted phenol is preferably 5.0% or less, and the residual phenol amount is 5.0%. If it is more, the phenol will evaporate at the time of curing, causing a problem that the residual carbon ratio decreases.
  • the weight average molecular weight of the reaction product is measured at the same time, and the resin (reaction product) in the system reaches a weight average molecular weight of more than 2,000 and less than 30,000. At that time, the vacuum distillation is stopped and the resin (reaction product) in the system is discharged out of the system as it is.
  • the molecular weight of the benzylic ether type resol resin increases rapidly as the molecular weight increases in the latter stage of the distillation process, it becomes gelled. Therefore, it is necessary to pay sufficient attention to end point management.
  • the resin in the system when the resin in the system is formed as a resin that can be solidified by cooling from the heat-melted state, if the molecular weight increases, the viscosity increases, making it difficult to discharge, so the weight average molecular weight is 10 It is preferable to discharge at a stage of 1,000 or less.
  • the resin in the system when the resin in the system is formed as particles, it is not difficult to discharge the resin due to the increase in molecular weight. Therefore, the resin may be discharged in a state where the weight average molecular weight is less than 30,000. In order to discharge the resin in the system earliest, the resin may be discharged from the time when the weight average molecular weight becomes 2,000 or more so as to be within the specified range of (A) of the present invention.
  • the method for measuring the weight average molecular weight at the time of distillation under reduced pressure is not particularly limited as long as it is a method capable of measuring the weight average molecular weight of the resin in the system.
  • the viscosity is correlated with the molecular weight in advance, and the molecular weight is derived from the specified viscosity
  • a preferred method is to immediately shift to the discharging step when the molecular weight is reached.
  • the discharge step when the unreacted phenol is removed in the previous vacuum distillation step, and the resin in the system reaches a predetermined molecular weight, it is discharged out of the system as it is.
  • a solvent in the middle of distillation under reduced pressure to form a solution and discharge it.
  • a granulating agent such as water and gum arabic is added to remove the resin in the system. After granulating, it can be filtered and dried to be discharged as solid particles.
  • the benzylic ether type phenolic resin according to the present invention thus obtained is used as it is for various applications as it is, and as an essential component, other resins such as a high ortho novolac resin and an alkali resol resin are blended therewith, Moreover, various additives etc. can be mix
  • the compounding of a resin composition will not be specifically limited if the resin composition finally completed satisfy
  • the benzylic ether type phenolic resin or the resin composition according to the present invention exhibits a feature that a dense carbide can be formed by firing them in a nitrogen atmosphere.
  • the carbonization of phenolic resin has been studied for a long time (Akio Shindo; “Science and Industry”, Vol. 53, No. 7 (1979), 248), and as shown in FIG. After the curing of is completed, a dehydration reaction occurs between the phenolic hydroxyl group and the methylene chain at 300 to 500 ° C., and then a condensed aromatic ring is formed via a dehydrogenation reaction, and a process toward carbonization is performed.
  • the benzylic ether type phenol resin according to the present invention advantageously gives a dense carbide by such a carbonization process.
  • the carbide obtained by firing the benzylic ether type phenolic resin or the resin composition according to the present invention has a feature that the residual carbon ratio is 60% or more.
  • the residual carbon ratio is less than 60%, it is not desirable in terms of reducing the strength as a binder, and the yield of carbide is small, which is economically disadvantageous.
  • the residual carbon ratio is 60% or more, high strength can be obtained and economic efficiency can be improved by improving the yield.
  • the weight reduction rate in the temperature range of 300 to 800 ° C. is desirably 30% or less. If the weight loss rate in the temperature range of 300 to 800 ° C. is higher than 30%, it becomes difficult to form a dense carbide, and the volume shrinkage after curing is large, which is not preferable as a binder. When the weight reduction rate is 30% or less, a fine carbide having a small volume shrinkage after curing can be advantageously obtained.
  • a refractory material such as natural or artificial refractory particles and such a phenolic resin or resin according to the present invention. After blending and mixing with the composition, the resulting mixture is used to produce a predetermined molded body, and then the molded body is fired to produce the molded body.
  • a carbon product using the benzylic ether type phenol resin or the resin composition according to the present invention as a binder for example, for a carbon material such as a powder (carbon source) such as coke
  • a carbon material such as a powder (carbon source) such as coke
  • a predetermined molded body is produced, and further, the molded body is fired. Will be manufactured.
  • the benzylic ether type phenol resin or composition thereof according to the present invention dissolved in a predetermined solvent is used as a carbon product.
  • the fiber is impregnated, the impregnated carbon fiber is molded in accordance with a predetermined molding method, and the obtained molded body is fired.
  • Mw weight average molecular weight
  • Mw Weight average molecular weight in terms of standard polystyrene (by means of gel filtration chromatograph 8020 series build-up system manufactured by Tosoh Corporation (column: G2000HXL + G4000HXL, detector: UV254 nm, carrier: tetrahydrofuran 1 ml / min, column temperature: 40 ° C.)) Mw).
  • the total of the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio of the substituent ratio per mole of phenol nucleus is 100%, and the methylene bond, benzylic ether bond, and methylol group in the resin composition
  • the ratio (mole) of each is determined.
  • A1 proton bonded to carbon in the benzene ring
  • A3 acetylated methylol group: proton bonded to carbon of Ph—CH 2 OAc
  • A4 Chemical shift 5.18 to 4.91 ppm peak integrated intensity ratio
  • A5 methylene bond: proton bonded to carbon of Ph-CH 2 -Ph
  • the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio which are ratios of the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio, are respectively determined.
  • Methylene bond rate (%) R1 / (R1 + R2 + R3) ⁇ 100
  • a molded body of about 100 mm ⁇ 100 mm ⁇ 2 mm is formed on the carbide with a 20-ton press (load: 15 t, mold temperature condition: 180 ° C., molding time: 10 minutes, during which time gas is released until no gas is emitted).
  • a 20-ton press load: 15 t, mold temperature condition: 180 ° C., molding time: 10 minutes, during which time gas is released until no gas is emitted.
  • Made and again fired up to 900 ° C. under the above-mentioned conditions fired at 2000 ° C. in a firing furnace (manufactured by Fuji Denpa Kogyo Co., Ltd .: High Multi 10000) (temperature rising rate under argon gas atmosphere: up to 2000 ° C. at 300 ° C./hr
  • the mixture was held at 2000 ° C. for 1 hour and then gradually cooled to obtain a carbide.
  • the carbide was cut into a predetermined size, and the specific gravity was measured with
  • P phenol
  • F paraformaldehyde
  • F paraformaldehyde
  • reaction product obtained was concentrated under reduced pressure in a reaction vessel under heating, while the Mw of the reaction product was measured, and the measured Mw was in the range of 5,000 to 8,000. At that time, the reaction product was discharged from the reaction vessel to obtain a benzylic ether type phenol resin.
  • Example 4 A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the discharging was performed when the Mw measured in the vacuum concentration step became 2,000 to 2,500.
  • Example 5 A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that discharging was performed when Mw measured in the vacuum concentration step was in the range of 25,000 to 30,000.
  • Example 6 As catalysts, 0.14 parts by mass of zinc chloride (0.1 mol% with respect to phenol) and 0.13 parts by mass of manganese acetate (tetrahydrate) (0.05 mol% with respect to phenol) were used. Except for the above, condensation and concentration were carried out in the same manner as in Example 1, and when the Mw was in the range of 2,000 to 2,500, the reaction product was discharged, and the benzylic ether type phenol resin was obtained. Obtained.
  • Example 7 As catalysts, 0.14 parts by mass of zinc chloride (0.1 mol% with respect to phenol) and 0.26 parts by mass of manganese acetate (tetrahydrate) (0.1 mol% with respect to phenol) were used. Except for the above, condensation and concentration were carried out in the same manner as in Example 1, and when the Mw was in the range of 4,000 to 5,000, discharging was performed to obtain a benzylic ether type phenol resin.
  • Example 8 A condensation reaction was carried out in the same manner as in Example 1 except that 0.37 parts by mass of zinc acetate (dihydrate) (0.16 mol% based on phenol) was used as the catalyst. Thereafter, 29.8 parts by weight of 1% paratoluenesulfonic acid water was added, followed by concentration under reduced pressure under heating. When the Mw measured in the process was in the range of 5,000 to 8,000, the reaction was performed. The reaction product was discharged from the container to obtain a benzylic ether type phenol resin.
  • Example 10 A benzylic ether type phenol resin was used in the same manner as in Example 1 except that 0.43 parts by mass of zinc borate 3.5 hydrate (0.9 mol% based on phenol) was used as a catalyst. Obtained.
  • Comparative Example 3 A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the reaction product was discharged when the Mw measured in the vacuum concentration step became 1,000 to 1,500. .
  • Comparative Example 5 A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that 0.49 parts by mass of manganese acetate (tetrahydrate) was used as a catalyst.
  • Comparative Example 6 A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that 1.74 parts by mass of 54% lead naphthenate was used as a catalyst.
  • Comparative Example 8 Example 1 except that 0.11 parts by mass of zinc chloride (0.08 mol% with respect to phenol) and 0.28 parts by mass of manganese acetate (0.11 mol% with respect to phenol) were used as catalysts. In the same manner as above, a benzylic ether type phenol resin was obtained.
  • Comparative Example 9 Condensation and concentration were carried out in the same manner as in Example 1 except that 0.11 parts by mass of zinc chloride and 0.28 parts by mass of manganese acetate were used as the catalyst, and the Mw was 25,000 to 30,000. At this point, the reaction product was discharged from the reaction vessel to obtain a benzylic ether type phenol resin.
  • phenol 58.9 parts by mass of 92% paraformaldehyde, and divalent metal salt of the catalyst, lead naphthenate.
  • Comparative Example 11 A commercially available phenolic resin (manufactured by Asahi Organic Materials Co., Ltd .: product name KB5006N) prepared by adding hexamethylenetetramine to a novolak type phenolic resin was prepared.
  • the phenol resins obtained in Comparative Examples 1 to 9 have a methylene bond substitution ratio in (B) a benzylic ether type phenol resin even though they satisfy (A) the high-ortho structure.
  • the ratio of the benzylic ether bond substitution ratio is in the range of 10.0 to 40.0% and the ratio of the methylol group substitution ratio. Does not satisfy the range of 13.0 to 40.0%, the residual carbon ratio is lower than that of the benzylic ether type phenol resin of each example.
  • the residual carbon rate has fallen remarkably compared with an Example.
  • the substitution ratio of methylene bond is 0.42 to 0.55 mol and the substitution ratio of benzylic ether bond is 0.26 to 0.38 mol with respect to 1 mol of phenol nucleus.
  • the methylol group substitution ratio is in the range of 0.13 to 0.20 mol, and therefore the residual carbon ratio is higher than in the other examples.
  • the specific gravity of the novolac type phenol resin carbide using hexamethylenetetramine as the curing agent of Comparative Example 11 is less than 1.0, and the specific weight of the benzic ether type phenol resin carbide of Comparative Example 8 is 1.
  • the carbides of the benzylic ether type phenol resins of Examples 1 and 11 have a specific gravity of 1.2 or more, and it can be seen that a finer carbide is formed than the resin of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The purpose of the present invention is to provide: a benzylic ether-type phenolic resin which has a higher carbon residue content than those in the conventional phenolic resins and enables the advantageous production of a carbide having a high density and high oxidation resistance; a resin composition which contains the benzylic ether-type phenolic resin; and a carbide and a binder for use in the production of a carbon product or a fire-resistant product, each of which is produced using the benzylic ether-type phenolic resin or the resin composition and has excellent properties. A benzylic ether-type phenolic resin having a rate of substitution at ortho-position of 70% or more, wherein the proportion of the ratio of benzylic ether bond substitution is 10.0 to 40.0% and the proportion of the ratio of methylol group substitution is 13.0 to 40.0% when the sum total of the ratio of methylene bond substitution, the ratio of benzylic ether bond substation and the ratio of methylol group substitution, each of which can be determined as a content ratio of a substituent per 1 mole of a phenol core, is 100%.

Description

ベンジリックエーテル型フェノール樹脂及びその樹脂組成物並びにそれらを用いて得られた結合剤及び炭化物Benzyl ether type phenolic resin, resin composition thereof, and binder and carbide obtained using the same
 本発明は、ベンジリックエーテル型フェノール樹脂及びその樹脂組成物並びにそれらを用いて得られた結合剤及び炭化物に係り、特に、耐火製品や炭素製品、砥石、摩擦材等の用途に好適に用いられる、残留炭素率の高い炭化物を与えるベンジリックエーテル型フェノール樹脂とその樹脂組成物、更にはそれらベンジリックエーテル型フェノール樹脂及びその樹脂組成物を用いて得られる炭化物や、炭素製品又は耐火製品製造用結合剤に関するものである。 The present invention relates to a benzylic ether type phenolic resin, a resin composition thereof, and a binder and a carbide obtained by using them, and is particularly suitable for use in refractory products, carbon products, grindstones, friction materials, and the like. , Benzylic ether type phenol resins and their resin compositions that give a carbide with a high residual carbon ratio, as well as carbides, carbon products or refractory products obtained by using these benzylic ether type phenol resins and their resin compositions It relates to a binder.
 従来から、炭素製品や耐火製品を製造するに際しては、一般に、それらの原料となる炭素材料や耐火性材料の接合のために、各種の接合剤乃至は結合剤(バインダー)が用いられてきており、例えば、ピッチ類や各種フェノール樹脂等が、そのような結合剤として広く用いられている。そして、結合剤としてフェノール樹脂が用いられる場合にあっては、その配合効果を有利に享受するために、また経済的な観点からして、焼成後の残留炭素率が高いフェノール樹脂を用いることが、好ましいものとなる。例えば、特開平4-367556号公報(特許文献1)においては、フェノール樹脂が、耐火性材料であるマグネシア・カーボンれんがの結合剤として使用され、焼成によって、耐火性材料間にカーボンボンドが形成されるようになっている。このため、フェノール樹脂の残留炭素率が、得られる耐火製品の強度に大きく寄与することが、明らかにされている。しかしながら、「熱硬化性樹脂」,Vol.2,No.4(1981),第36~51頁(非特許文献1)にも示される如く、従来から公知の各種フェノール樹脂にあっては、その炭素化における残留炭素率は、50%程度の比較的低いものであった。 Conventionally, when manufacturing carbon products and refractory products, various bonding agents or binders (binders) have generally been used for bonding carbon materials and refractory materials as raw materials. For example, pitches and various phenol resins are widely used as such binders. And in the case where a phenol resin is used as a binder, in order to enjoy the blending effect advantageously and from an economical viewpoint, it is necessary to use a phenol resin having a high residual carbon ratio after firing. This is preferable. For example, in JP-A-4-367556 (Patent Document 1), a phenol resin is used as a binder for magnesia-carbon brick, which is a refractory material, and a carbon bond is formed between the refractory materials by firing. It has become so. For this reason, it has been clarified that the residual carbon ratio of the phenol resin greatly contributes to the strength of the obtained refractory product. However, “Thermosetting Resin”, Vol. 2, no. 4 (1981), pp. 36-51 (Non-Patent Document 1), in the conventionally known various phenol resins, the residual carbon ratio in carbonization is relatively low of about 50%. It was a thing.
 このため、そのような結合剤として有利に用いられ得る、焼成後の残留炭素率を向上せしめたフェノール樹脂(組成物)についての研究や開発が盛んに行なわれてきており、例えば、特開平9-132696号公報(特許文献2)においては、ノボラック型フェノール樹脂及び/又はレゾール型フェノール樹脂に所定量のヘキサメチレンテトラミンとフェノールを配合してなる、残留炭素率の高いフェノール樹脂組成物が提案されているのであるが、そこで提案されたフェノール樹脂組成物は、その残留炭素率は比較的高いものの、数値的には50%台の残留炭素率のものに過ぎない。また、そこで提案されている残留炭素率の高いフェノール樹脂組成物は、半硬化または硬化物のものであり、それらは、炭素製品や耐火製品の製造工程において、炭素源や耐火物粒子等に配合されて、溶融せしめられると、かかるフェノール樹脂組成物が、結合剤として要求される流動性を十分に発揮し得ない恐れがあった。しかも、そのようなフェノール樹脂組成物は、ヘキサメチレンテトラミンを含有するものであるところから、それを結合剤として用いて、炭素製品や耐火製品を製造する際には、ヘキサメチレンテトラミンの分解により発生するアンモニアの臭気対策を施す必要がある等の問題も内在している。 For this reason, research and development have been actively conducted on a phenol resin (composition) that can be advantageously used as such a binder and has an improved residual carbon ratio after firing. -132696 (Patent Document 2) proposes a phenol resin composition having a high residual carbon ratio obtained by blending a predetermined amount of hexamethylenetetramine and phenol into a novolac type phenol resin and / or a resol type phenol resin. However, although the phenol resin composition proposed there has a relatively high residual carbon ratio, it is numerically only having a residual carbon ratio in the range of 50%. Moreover, the phenol resin compositions with a high residual carbon ratio proposed there are those of semi-cured or cured products, and they are blended with carbon sources and refractory particles in the production process of carbon products and refractory products. When melted, the phenol resin composition may not be able to sufficiently exhibit the fluidity required as a binder. Moreover, since such a phenol resin composition contains hexamethylenetetramine, it is generated by decomposition of hexamethylenetetramine when it is used as a binder to produce carbon products and refractory products. Problems such as the need to take measures against the odor of ammonia are also inherent.
 一方、フェノール樹脂の炭化物は、耐酸化性が悪いという好ましくない性質を有していることが知られている。例えば、特開2010-31079号公報(特許文献3)では、ノボラック型フェノール樹脂を結着剤として使用した耐火煉瓦は、耐酸化性に乏しく、耐火煉瓦中のカーボンの酸化により、容易に煉瓦の強度低下を招くという問題が、指摘されている。そのため、そこでは、硼酸を反応触媒として用いて、フェノール類とアルデヒド類とを反応せしめると共に、硼酸自体がフェノール樹脂骨格に取り込まれるようにした、硼酸変性フェノールノボラック樹脂が、提案されている。しかしながら、そこで提案された硼酸変性フェノール樹脂は、ノボラック型樹脂であるため、必然的にヘキサメチレンテトラミンの如き硬化剤を使用しなければならず、そのために、硬化の際に生じるアンモニアの臭気対策を行う必要がある等の問題があり、また、その残留炭素率も50%台に過ぎないものであった。 On the other hand, it is known that the carbide of phenol resin has an undesirable property of poor oxidation resistance. For example, in Japanese Patent Application Laid-Open No. 2010-31079 (Patent Document 3), a refractory brick using a novolac type phenolic resin as a binder has poor oxidation resistance, and the brick of the refractory brick is easily oxidized by oxidation of carbon in the refractory brick. The problem of causing a decrease in strength has been pointed out. Therefore, there has been proposed a boric acid-modified phenol novolak resin in which boric acid is used as a reaction catalyst to react phenols and aldehydes and boric acid itself is incorporated into the phenol resin skeleton. However, since the proposed boric acid-modified phenolic resin is a novolak type resin, a curing agent such as hexamethylenetetramine must be used, and therefore, measures against the odor of ammonia generated during curing are required. There was a problem that it was necessary to carry out the process, and the residual carbon ratio was only about 50%.
特開平4-367556号公報JP-A-4-367556 特開平9-132696号公報JP-A-9-132696 特開2010-31079号公報JP 2010-31079 A
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、従来のフェノール樹脂よりも高い残留炭素率を有すると共に、緻密で高い耐酸化性を有する炭化物を有利に与えることの出来るベンジリックエーテル型フェノール樹脂及びその樹脂組成物を提供することにあり、また、そのようなベンジリックエーテル型フェノール樹脂やその樹脂組成物を用いて得られる優れた特性を有する炭化物や、炭素製品又は耐火製品製造用結合剤を提供することにある。 Here, the present invention has been made in the background of such circumstances, and the problem to be solved is that it has a higher residual carbon ratio than conventional phenol resins, and has a dense and high oxidation resistance. It is to provide a benzylic ether type phenolic resin and a resin composition thereof that can advantageously give a carbide having the same, and excellent obtained by using such a benzylic ether type phenolic resin and the resin composition thereof The object is to provide a carbide having properties and a binder for producing a carbon product or a refractory product.
 そして、本発明者らが、上記した課題の解決を図るべく、フェノール樹脂及びその樹脂組成物について鋭意検討を重ねた結果、フェノール樹脂の構造が、フェノール骨格に対する置換基の置換位置が主としてオルソ位となる、所謂ハイオルソ構造であって、且つフェノール樹脂中のメチレン結合、ベンジリックエーテル結合、及びメチロール基の置換比率が、特定の領域の中に入るベンジリックエーテル型フェノール樹脂及びその樹脂組成物を見出し、更にそれらの焼成によって、残留炭素率が高く、緻密で耐酸化性が良好な炭化物を得ることが出来ることを見出し、本発明を完成するに至ったのである。 And, as a result of intensive studies on the phenol resin and its resin composition in order to solve the above-mentioned problems, the present inventors have found that the structure of the phenol resin has a substitution position of the substituent mainly with respect to the phenol skeleton. A so-called high-ortho structure, and a substitution ratio of methylene bond, benzylic ether bond, and methylol group in the phenol resin within a specific region, and a benzylic ether type phenol resin and its resin composition The present inventors have found that a carbide having a high residual carbon ratio, denseness, and good oxidation resistance can be obtained by calcination, and the present invention has been completed.
 すなわち、本発明は、前記した課題の解決を図るために、オルソ化率が70%以上であるベンジリックエーテル型フェノール樹脂にして、かかる樹脂のフェノール核1モル当たりの置換基比率としてそれぞれ求められるメチレン結合置換比、ベンジリックエーテル結合置換比及びメチロール基置換比の合計を100%としたとき、前記ベンジリックエーテル結合置換比の割合が10.0~40.0%であり、且つ前記メチロール基置換比の割合が13.0~40.0%であることを特徴とするベンジリックエーテル型フェノール樹脂を、その要旨とするものである。 That is, in order to solve the above-described problems, the present invention is required to obtain a benzylic ether type phenol resin having an ortho-conversion rate of 70% or more and a substituent ratio per mole of the phenol nucleus of the resin. When the total of the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio is 100%, the ratio of the benzylic ether bond substitution ratio is 10.0 to 40.0%, and the methylol group The gist of the present invention is a benzylic ether type phenolic resin characterized by a substitution ratio of 13.0 to 40.0%.
 なお、そのような本発明に従うベンジリックエーテル型フェノール樹脂の好ましい態様の一つによれば、前記ベンジリックエーテル結合置換比の割合が20.0~39.5%であり、且つ前記メチロール基置換比の割合が13.5~38.0%である。 According to one of the preferred embodiments of the benzylic ether type phenol resin according to the present invention, the ratio of the benzylic ether bond substitution ratio is 20.0 to 39.5%, and the methylol group substitution is performed. The ratio is 13.5 to 38.0%.
 また、本発明に従うベンジリックエーテル型フェノール樹脂にあっては、フェノール核1モルに対して、前記メチレン結合置換比が0.42~0.55モルであり、前記ベンジリックエーテル結合置換比が0.26~0.38モルであり、そして前記メチロール基置換比が0.13~0.20モルであることが、望ましい。 In the benzylic ether type phenol resin according to the present invention, the methylene bond substitution ratio is 0.42 to 0.55 mol per mole of the phenol nucleus, and the benzylic ether bond substitution ratio is 0. It is desirable that the methylol group substitution ratio is 0.13 to 0.20 mol.
 さらに、本発明に従うベンジリックエーテル型フェノール樹脂は、有利には、フェノール類とアルデヒド類とを、二価金属塩を触媒として用いて、反応させて得られたものであり、そしてそのような二価金属塩としては、塩化亜鉛、酢酸亜鉛、ホウ酸と水酸化亜鉛の混合物、及びホウ酸亜鉛からなる群より選ばれる少なくとも1種が、フェノール類に対して0.1モル%以上の割合において用いられることが、望ましいのである。また、フェノール類とアルデヒド類とのモル比が、1.0:1.0~1.0:2.0の範囲内である態様も、有利に採用されることとなる。 Furthermore, the benzylic ether type phenolic resin according to the present invention is preferably obtained by reacting phenols and aldehydes using a divalent metal salt as a catalyst. As the valent metal salt, at least one selected from the group consisting of zinc chloride, zinc acetate, a mixture of boric acid and zinc hydroxide, and zinc borate is in a ratio of 0.1 mol% or more with respect to phenols. It is desirable to be used. An embodiment in which the molar ratio of phenols to aldehydes is within the range of 1.0: 1.0 to 1.0: 2.0 is also advantageously employed.
 加えて、本発明に従うベンジリックエーテル型フェノール樹脂は、その重量平均分子量(Mw)が、2,000よりも大きく、30,000よりも小さいことが望ましく、そのような分子量範囲内となるようにベンジリックエーテル型フェノール樹脂を調製することによって、フェノール樹脂中のメチレン結合、ベンジリックエーテル結合及びメチロール基の比率を、有利に、本発明に規定される範囲内とすることが出来るのである。 In addition, the benzylic ether type phenolic resin according to the present invention preferably has a weight average molecular weight (Mw) of more than 2,000 and less than 30,000, so that it falls within such a molecular weight range. By preparing a benzylic ether type phenol resin, the ratio of methylene bond, benzylic ether bond and methylol group in the phenol resin can be advantageously within the range defined in the present invention.
 そして、本発明にあっては、上述せる如きベンジリックエーテル型フェノール樹脂を必須成分として含有するベンジリックエーテル型フェノール樹脂組成物をも、その対象とするものである。 And in this invention, the benzylic ether type phenol resin composition which contains the benzylic ether type phenol resin as mentioned above as an essential component also makes the object.
 また、本発明は、上記したベンジリックエーテル型フェノール樹脂又はその樹脂組成物を焼成してなる炭化物を、その要旨としている。 Further, the gist of the present invention is a carbide formed by firing the above-mentioned benzylic ether type phenol resin or a resin composition thereof.
 さらに、本発明にあっては、炭素材料又は耐火性材料の結合に用いられて、目的とする炭素製品又は耐火製品を与える高残留炭素率の接合剤にして、上記したベンジリックエーテル型フェノール樹脂又はその樹脂組成物からなることを特徴とする炭素製品又は耐火製品製造用結合材をも、その要旨とするものである。 Furthermore, in the present invention, the above-mentioned benzylic ether type phenolic resin is used as a bonding agent having a high residual carbon ratio that is used for bonding carbon materials or refractory materials to give a target carbon product or refractory product. Alternatively, the gist of the present invention is also a carbon product or a refractory product manufacturing binder comprising the resin composition.
 このような本発明に従うベンジリックエーテル型フェノール樹脂及びその樹脂組成物にあっては、800℃までの窒素雰囲気下での焼成において、残留炭素率が60%以上であり、且つ300~800℃までの焼成領域での重量減少率が30%以下となる炭化物を得ることが出来る特徴を有している。また、そのような本発明に従う炭化物は、従来から公知の他のフェノール樹脂よりも、高い耐酸化性を有し、しかも緻密な炭化物である特徴を有するものである。 In such a benzylic ether type phenolic resin and its resin composition according to the present invention, the residual carbon ratio is 60% or more and is 300 to 800 ° C. in the baking under a nitrogen atmosphere up to 800 ° C. It has the characteristic that the carbide | carbonized_material whose weight reduction | decrease rate in the baking area | region becomes 30% or less can be obtained. Moreover, the carbide | carbonized_material according to such this invention has the characteristic that it has higher oxidation resistance than other conventionally well-known phenol resins, and is a dense carbide | carbonized_material.
フェノール樹脂の焼成による炭素化の機構を化学構造の変化の様子において示す説明図である。It is explanatory drawing which shows the mechanism of carbonization by baking of a phenol resin in the mode of a chemical structure change. 実施例1で得られたベンジリックエーテル型フェノール樹脂の炭化物の状態を示す走査型電子顕微鏡(SEM)写真であって、(a)は炭化物粒子の全体像を示し(倍率:50倍)、(b)及び(c)は、それぞれ、そのような炭化物粒子の破断面の状態を異なる倍率(100倍又は1000倍)において示している。It is the scanning electron microscope (SEM) photograph which shows the state of the carbide | carbonized_material of the benzylic ether type phenol resin obtained in Example 1, Comprising: (a) shows the whole image of the carbide particle (magnification: 50 times), ( b) and (c) respectively show the state of the fracture surface of such carbide particles at different magnifications (100 times or 1000 times). 比較例11で準備したノボラック型フェノール樹脂の炭化物についての走査型電子顕微鏡(SEM)写真であって、(a)は、そのような炭化物粒子の全体像を示し(倍率:50倍)、(b)及び(c)は、それぞれ、炭化物粒子の破断面の状態を異なる倍率(100倍又は1000倍)において示している。It is a scanning electron microscope (SEM) photograph about the carbide | carbonized_material of the novolak-type phenol resin prepared in the comparative example 11, Comprising: (a) shows the whole image of such a carbide particle (magnification: 50 times), (b ) And (c) show the state of the fracture surface of the carbide particles at different magnifications (100 times or 1000 times), respectively. 実施例1において得られたベンジリックエーテル型フェノール樹脂の炭化物と、比較例11において準備したノボラック型フェノール樹脂の炭化物についてのTGチャートを示す図である。2 is a diagram showing a TG chart for a carbide of a benzylic ether type phenol resin obtained in Example 1 and a carbide of a novolac type phenol resin prepared in Comparative Example 11. FIG.
 ところで、本発明に従うベンジリックエーテル型フェノール樹脂は、上述せるように、(A)ハイオルソ構造であること、及び(B)樹脂のフェノール核1モルあたりのメチレン結合比率(メチレン結合置換比)、ベンジリックエーテル結合比率(ベンジリックエーテル結合置換比)、メチロール基比率(メチロール基置換比)の合計量を100%としたときに、かかるベンジリックエーテル結合置換比の割合が10.0~40.0%の範囲内にあり、且つメチロール基置換比の割合が13.0~40.0%の範囲内にあることを、必須の構成とするものである。 By the way, as described above, the benzylic ether type phenol resin according to the present invention has (A) a high-ortho structure, and (B) a methylene bond ratio (methylene bond substitution ratio) per mole of phenol nucleus of the resin, When the total amount of rickether bond ratio (benzylic ether bond substitution ratio) and methylol group ratio (methylol group substitution ratio) is 100%, the ratio of the benzylic ether bond substitution ratio is 10.0 to 40.0. % And the ratio of methylol group substitution ratio in the range of 13.0 to 40.0% is an essential component.
 そして、そのような本発明に従うベンジリックエーテル型フェノール樹脂における構成要件(A)に係るハイオルソ構造に関しては、樹脂のフェノール核のオルソ位に置換基が結合している割合であるオルソ化率は、通常知られているハイオルソレゾールが有するオルソ結合の比率の70%以上である必要があり、好ましくは75~90%であることが望ましい。なお、かかる上限の90%は、製造し得る想定の数値であり、実際には、オルソ化率の上限はなく、高いほど望ましいと言うことが出来る。また、そのようなオルソ結合の比率が高くなるほど、炭素化工程において緻密な炭化物が形成され易くなるため、残留炭素率が向上するようになるのである。これは、樹脂がハイオルソで、リニアな構造であると、図1に示される如く、炭素化工程における環化・芳香族化から、固相における重縮合化に至るときに、隙間のない芳香族平面が形成され易くなるものと考えられる。 And, regarding the high ortho structure according to the structural requirement (A) in such a benzylic ether type phenol resin according to the present invention, the ortho ratio, which is the ratio of the substituents bonded to the ortho position of the phenol nucleus of the resin, It should be 70% or more, and preferably 75 to 90%, of the ortho-bonding ratio of normally known high orthoresole. Note that 90% of the upper limit is an assumed numerical value that can be manufactured, and in fact, there is no upper limit of the ortho-ratio, and it can be said that a higher value is desirable. Further, the higher the ratio of such ortho-bonds, the more easily a dense carbide is formed in the carbonization step, and the residual carbon ratio is improved. As shown in FIG. 1, when the resin has a high-ortho-linear structure, there is no gap between the cyclization and aromatization in the carbonization step and the polycondensation in the solid phase. It is considered that a flat surface is easily formed.
 ここで、オルソ化率は、公知の手法に従って、核磁気共鳴装置を用いて、樹脂サンプルを13C-NMR測定することにより、容易に求めることが出来る。即ち、ベンジリックエーテル型フェノール樹脂におけるフェノール核の各オルソ、パラ位に結合しているメチレン結合、ベンジリックエーテル結合及びメチロール基の13C-NMRのケミカルシフトは、公知となっているところから(Andre Knop., Louis A. Pilato.著,瀬戸正二監訳,『フェノール樹脂』,第110頁)、それらのケミカルシフト情報に基づいて、オルソ-オルソ、オルソ-パラ、パラ-パラ位に結合しているメチレン結合、ベンジリックエーテル結合及びオルソまたはパラ位に結合しているメチロール基の各炭素のピークの積分強度比を求め、それにより、全結合を100%としたときのオルソ結合の比率を算出することが出来るのである。 Here, the ortho-ratio can be easily determined by performing 13C-NMR measurement on a resin sample using a nuclear magnetic resonance apparatus according to a known method. That is, 13C-NMR chemical shifts of ortho, phenolic methylene bonds, benzylic ether bonds, and methylol groups of phenolic nuclei in benzylic ether type phenol resins are known (Andre Knop., Louis A.to Pilato., Translated by Seto Shoji, “Phenolic Resin”, p. 110), based on their chemical shift information, they are linked to ortho-ortho, ortho-para, para-para position. Obtain the integrated intensity ratio of each carbon peak of the methylene bond, benzylic ether bond and the methylol group bonded to the ortho or para position, and thereby calculate the ratio of the ortho bond when the total bond is 100%. It can be done.
 また、本発明に従うベンジリックエーテル型フェノール樹脂に係る構成要件(B)に関して、樹脂中のフェノール核1モルあたりの置換基比率としてそれぞれ求められるメチレン結合置換比、ベンジリックエーテル結合置換比及びメチロール基置換比の合計を100%としたベンジリックエーテル型フェノール樹脂において、高い残留炭素率を得るためには、上記した(A)の条件に加えて、ベンジリックエーテル結合置換比の割合が10.0~40.0%であり、且つメチロール基置換比の割合が13.0~40.0%である必要がある。中でも、縮合工程~蒸留減圧濃縮工程~排出工程の1サイクルのみで容易に製造することが出来、且つ残留炭素率のより一層の向上のために、ベンジリックエーテル結合置換比の割合は、20.0~39.5%であり、且つメチロール基置換比の割合が13.5~38.0%であることが、望ましい。なお、それら結合成分の個々の割合に関して、ベンジリックエーテル結合置換比の割合は、その下限を10%以上、好ましくは15%以上、より好ましくは20%以上とするのが良い一方、その上限は、40%以下、好ましくは39.5%以下、より好ましくは30%以下とするのが良い。また、メチロール基置換比の割合は、その下限を13%以上、好ましくは13.5%以上、より好ましくは15%以上とするのが良い一方、その上限は、40%以下、好ましくは38%以下、より好ましくは30%以下とするのが良い。そして、メチレン結合置換比の割合は、それらベンジリックエーテル結合置換比及びメチロール基置換比の各割合の合計量を、100%から減じた値となるのである。 In addition, regarding the structural requirement (B) relating to the benzylic ether type phenol resin according to the present invention, the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group respectively obtained as the substituent ratio per mole of phenol nucleus in the resin In order to obtain a high residual carbon ratio in a benzylic ether type phenol resin with a total substitution ratio of 100%, in addition to the above-mentioned condition (A), the ratio of the benzylic ether bond substitution ratio is 10.0. To 40.0%, and the methylol group substitution ratio needs to be 13.0 to 40.0%. Among them, the ratio of the benzylic ether bond substitution ratio is 20. In order to facilitate the production in only one cycle of the condensation step, the distillation / concentration step and the discharge step, and to further improve the residual carbon ratio. It is desirable that the ratio is 0 to 39.5% and the methylol group substitution ratio is 13.5 to 38.0%. Regarding the individual proportions of these binding components, the lower limit of the benzylic ether bond substitution ratio may be 10% or more, preferably 15% or more, more preferably 20% or more, while the upper limit is , 40% or less, preferably 39.5% or less, more preferably 30% or less. The ratio of the methylol group substitution ratio is 13% or more, preferably 13.5% or more, more preferably 15% or more, while the upper limit is 40% or less, preferably 38%. Below, more preferably 30% or less. The ratio of the methylene bond substitution ratio is a value obtained by subtracting the total amount of each ratio of the benzylic ether bond substitution ratio and the methylol group substitution ratio from 100%.
 なお、本発明における上記(B)の規定範囲から外れた場合、例えば、(B)の範囲よりベンジリックエーテル結合の割合が多くなると、残留炭素率が低くなるが、これは、ベンジリックエーテル結合を加熱すると、ホルムアルデヒドが外れて、メチレン結合が生じるようになるが、その際に架橋構造が緻密になるのを阻害したり、または脱離する大量のホルムアルデヒドにより、炭化物の緻密化が阻害されるためであると思われる。また、(B)の範囲よりメチロール基の割合が多くなると、そのような組成のベンジリックエーテル型レゾール樹脂を製造することが困難になる。更に、かかる(B)の規定範囲より、ベンジリックエーテル結合やメチロール基、或いはその両方が低下すると、相対的にメチレン結合の割合が多くなり、そのため反応基の不足により架橋密度が低くなって、残留炭素率が低下するようになる。 In addition, when it deviates from the regulation range of the above (B) in the present invention, for example, when the proportion of benzylic ether bonds is larger than the range of (B), the residual carbon ratio is lowered. Is heated, the formaldehyde is removed and a methylene bond is formed. At this time, the cross-linked structure is inhibited from becoming dense, or the densification of the carbide is inhibited by a large amount of formaldehyde that is eliminated. It seems to be because. Moreover, when the ratio of a methylol group increases from the range of (B), it will become difficult to manufacture the benzylic ether type | mold resol resin of such a composition. Furthermore, from the specified range of (B), when the benzylic ether bond and the methylol group, or both are lowered, the proportion of methylene bonds is relatively increased, and therefore the crosslinking density is lowered due to the lack of reactive groups, Residual carbon ratio will decrease.
 また、本発明に従うベンジリックエーテル型フェノール樹脂においては、その残留炭素率を優位に高める上において、樹脂のフェノール核の1モルに対して、メチレン結合の置換比率が0.42~0.55モルであり、ベンジリックエーテル結合の置換比率が0.26~0.38モルであり、更にメチロール基の置換比率が0.13~0.20モルである構成が、有利に採用されることとなる。 Further, in the benzylic ether type phenol resin according to the present invention, in order to increase the residual carbon ratio, the substitution ratio of methylene bond is 0.42 to 0.55 mol with respect to 1 mol of the phenol nucleus of the resin. The constitution in which the substitution ratio of the benzylic ether bond is 0.26 to 0.38 mol and the substitution ratio of the methylol group is 0.13 to 0.20 mol is advantageously employed. .
 ここにおいて、本発明にて対象とするベンジリックエーテル型フェノール樹脂は、フェノール類とアルデヒド類とを反応させて得られるものであって、そこにおいて、本発明に従うベンジリックエーテル型フェノール樹脂は、公知の如く、フェノール類とアルデヒド類とを所定の触媒の存在下において反応させて得られるものであり、その製法については、特に限定されるものではなく、またそこでは、公知の材料が適宜に選択されて用いられることとなる。 Here, the benzylic ether type phenol resin targeted in the present invention is obtained by reacting phenols and aldehydes, and the benzylic ether type phenol resin according to the present invention is publicly known. As described above, it is obtained by reacting phenols and aldehydes in the presence of a predetermined catalyst, and the production method is not particularly limited, and there are known materials appropriately selected. Will be used.
 具体的には、ベンジリックエーテル型フェノール樹脂は、よく知られているように、フェノール類とアルデヒド類とを、一般に、二価金属塩等の触媒を用いて、反応させて得られるものである。なお、そこにおいて、フェノール類とアルデヒド類の使用割合については、フェノール1.0モルに対して、アルデヒド類が、好ましくは1.0~2.0モル、より好ましくは1.1~1.6モルの割合で使用される。このアルデヒド類の使用割合が1.0モル未満となると、樹脂中の反応基が足りず、硬化後の焼成で充分な残留炭素率を得られない可能性がある一方、2.0モルよりも多くなると、製造時や硬化時におけるホルムアルデヒドの発生量が多くなって、臭気、製造時の減圧ラインの閉塞等の問題に加えて、品質にも悪影響を及ぼし、残留炭素率も減少する問題を生じる。 Specifically, as is well known, a benzylic ether type phenol resin is obtained by reacting phenols and aldehydes, generally using a catalyst such as a divalent metal salt. . In this connection, the ratio of the phenols and aldehydes used is preferably 1.0 to 2.0 mol, more preferably 1.1 to 1.6 mol, relative to 1.0 mol of phenol. Used in molar proportions. When the use ratio of the aldehydes is less than 1.0 mol, there is a shortage of reactive groups in the resin, and there is a possibility that a sufficient residual carbon ratio cannot be obtained by baking after curing. If it increases, the amount of formaldehyde generated during production and curing will increase, causing problems such as odor and blockage of the decompression line during production, as well as adversely affecting quality and reducing the carbon content. .
 また、本発明に従うベンジリックエーテル型フェノール樹脂において、その重量平均分子量(Mw)は、一般に、2,000よりも大きく、30,000よりも小さいものであって、より好ましくは3,000~20,000であることが、望ましい。これは、かかる重量平均分子量が2,000よりも小さくなると、メチロール基の置換比率が大きくなり過ぎて、本発明に係る(B)の規定範囲を外れるだけでなく、樹脂が常温下で固化しないために、取り回しの観点からも不利であり、また重量平均分子量が30,000よりも大きくなると、メチレン結合の置換比率が大きくなり過ぎて、本発明に係る(B)の規定範囲を外れると共に、樹脂のゲル化を惹起する可能性があるからである。 In the benzylic ether type phenol resin according to the present invention, the weight average molecular weight (Mw) is generally larger than 2,000 and smaller than 30,000, more preferably 3,000 to 20 1,000 is desirable. This is because when the weight average molecular weight is smaller than 2,000, the substitution ratio of the methylol group becomes too large, not only out of the specified range of (B) according to the present invention, but also the resin does not solidify at room temperature. Therefore, it is also disadvantageous from the viewpoint of handling, and when the weight average molecular weight is larger than 30,000, the substitution ratio of the methylene bond becomes too large, which is outside the specified range of (B) according to the present invention, This is because there is a possibility of causing gelation of the resin.
 さらに、本発明に従うベンジリックエーテル型フェノール樹脂中に含まれる未反応フェノールの量については、何等限定されるものではないが、質量基準で5%以下であることが、好ましい。未反応フェノールが多く含まれると、硬化前の昇温時に、大量にフェノールが蒸発して、残留炭素率の低下や、樹脂の発泡を招く恐れがある。また、環境衛生上の観点からしても、未反応フェノールの含有量は、上述の如く、5%以下であることが好ましいのである。 Furthermore, the amount of unreacted phenol contained in the benzylic ether type phenolic resin according to the present invention is not limited in any way, but is preferably 5% or less on a mass basis. If a large amount of unreacted phenol is contained, a large amount of phenol evaporates at the time of temperature rise before curing, which may lead to a decrease in the residual carbon ratio and foaming of the resin. From the viewpoint of environmental hygiene, the content of unreacted phenol is preferably 5% or less as described above.
 ところで、目的とするベンジリックエーテル型フェノール樹脂の製造に用いられるフェノール類としては、従来からフェノール樹脂の製造に用いられている一般的な各種のフェノール類を挙げることが出来る。 By the way, as the phenols used for the production of the target benzylic ether type phenol resin, various general phenols conventionally used for the production of phenol resins can be exemplified.
 具体的には、そのようなフェノール類として、例えば、フェノール;m-クレゾール、p-クレゾール、o-クレゾール等のクレゾール類、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、3,4-キシレノール等のキシレノール類、m-エチルフェノール、p-エチルフェノール、o-エチルフェノール、2,3,5-トリメチルフェノール、2,3,5-トリエチルフェノール、4-tert-ブチルフェノール、3-tert-ブチルフェノール、2-tert-ブチルフェノール、2-tert-ブチル-4-メチルフェノール、2-tert-ブチル-5-メチルフェノール、6-tert-ブチル-3-メチルフェノール等のアルキルフェノール類;p-メトキシフェノール、m-メトキシフェノール、p-エトキシフェノール、m-エトキシフェノール、p-プロポキシフェノール、m-プロポキシフェノール等のアルコキシフェノール類;o-イソプロペニルフェノール、p-イソプロペニルフェノール、2-メチル-4-イソプロペニルフェノール、2-エチル-4-イソプロペニルフェノール等のイソプロペニルフェノール類;4,4′-ジヒドロキシビフェニル、ビスフェノールA、レゾルシノール、ヒドロキノン、ピロガロール等のポリヒドロキシフェノール類;フェニルフェノール、α-ナフトール、β-ナフトール、ナフタレンジオール類等を挙げることが出来る。中でも、本発明にあっては、好ましくは、フェノール及びフェノールとホルムアルデヒドとの反応によって得られる多核体が、有利に用いられることとなる。フェノール核に他の官能基がついたフェノール類は、残留炭素率を悪くする傾向にあるために、そのような官能基のつかないフェノール類が、好適に用いられるのである。勿論、本発明が、かかる例示に限定されるものでないことは言うまでもないところであり、また、上記のフェノール類は、単独で用いられる他、2種以上を併用することも可能である。 Specifically, as such phenols, for example, phenol; cresols such as m-cresol, p-cresol, o-cresol, 2,3-xylenol, 2,5-xylenol, 3,5-xylenol, Xylenols such as 3,4-xylenol, m-ethylphenol, p-ethylphenol, o-ethylphenol, 2,3,5-trimethylphenol, 2,3,5-triethylphenol, 4-tert-butylphenol, 3 Alkylphenols such as tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-4-methylphenol, 2-tert-butyl-5-methylphenol, 6-tert-butyl-3-methylphenol; p- Methoxyphenol, m-methoxyphenol Alkoxyphenols such as p-ethoxyphenol, m-ethoxyphenol, p-propoxyphenol, m-propoxyphenol; o-isopropenylphenol, p-isopropenylphenol, 2-methyl-4-isopropenylphenol, 2-ethyl Isopropenylphenols such as -4-isopropenylphenol; polyhydroxyphenols such as 4,4'-dihydroxybiphenyl, bisphenol A, resorcinol, hydroquinone, pyrogallol; phenylphenol, α-naphthol, β-naphthol, naphthalenediol Etc. can be mentioned. Especially, in this invention, Preferably, the polynuclear body obtained by reaction of phenol and phenol, and formaldehyde will be used advantageously. Since phenols having other functional groups in the phenol nucleus tend to deteriorate the residual carbon ratio, phenols having no such functional groups are preferably used. Of course, it goes without saying that the present invention is not limited to such examples, and the above phenols can be used alone or in combination of two or more.
 また、本発明で用いられるアルデヒド類としては、従来からフェノール樹脂の製造に用いられている、一般的なアルデヒド類の何れもが対象とされ、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、アセトアルデヒド、サリチルアルデヒド等が挙げられ、好ましくはホルマリン、パラホルムアルデヒド、ポリオキシメチレン等のホルムアルデヒド類が用いられる。なお、本発明が、そのような例示のものに限定されるものでないことは勿論、それらアルデヒド類は、単独で、又は2種以上を組み合わせて、用いられることとなる。特に、ホルムアルデヒド類の中では、ホルマリン水溶液やパラホルムアルデヒドが好適に用いられるが、縮合時の反応速度や減圧蒸留時の蒸発熱による内温低下の関係から、パラホルムアルデヒドの使用が、より望ましい。 In addition, as the aldehydes used in the present invention, any of the general aldehydes conventionally used in the production of phenol resins is targeted. For example, formaldehyde, formalin, paraformaldehyde, acetaldehyde, salicylaldehyde Preferably, formaldehydes such as formalin, paraformaldehyde and polyoxymethylene are used. In addition, this invention is not limited to the thing of such an illustration, Of course, those aldehydes will be used individually or in combination of 2 or more types. In particular, among formaldehydes, a formalin aqueous solution and paraformaldehyde are preferably used. However, the use of paraformaldehyde is more desirable because of the reaction rate during condensation and the decrease in internal temperature due to heat of evaporation during vacuum distillation.
 そして、上記したフェノール類とアルデヒド類とを反応せしめて、本発明に従うベンジリックエーテル型フェノール樹脂を得るための触媒としては、二価金属塩を用いることが望ましく、例えば、二価金属塩の形態においての使用の他、二価金属の酸化物若しくは水酸化物、或いはその両方と、酸性化合物若しくは塩基性化合物とを組み合わせて、使用することも出来る。そのような触媒としての二価金属塩は、本発明に従う樹脂構造の構成要件である(A)及び(B)を実現し得るものであれば、特に限定されず、無水物や水和物の何れの形態であっても、何等差し支えない。また、酸性化合物としては、例えばホウ酸、酢酸、パラトルエンスルホン酸等があり、塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化亜鉛、トリエチルアミン等が挙げられる。この酸性化合物や塩基性化合物を用いることで、組成の調整が容易となる。また、酸性化合物の使用により、メチレン結合が多くなる傾向を生じさせる一方、塩基性化合物の使用は、メチレン結合を少なくする傾向を生じさせることとなる。 And as a catalyst for reacting the above phenols and aldehydes to obtain a benzylic ether type phenol resin according to the present invention, it is desirable to use a divalent metal salt, for example, a form of a divalent metal salt In addition to the use in, a divalent metal oxide or hydroxide, or both, and an acidic compound or a basic compound may be used in combination. The divalent metal salt as such a catalyst is not particularly limited as long as it can realize (A) and (B), which are constituents of the resin structure according to the present invention, and is not limited to anhydrides or hydrates. Any form is acceptable. Examples of acidic compounds include boric acid, acetic acid, and paratoluenesulfonic acid. Examples of basic compounds include sodium hydroxide, potassium hydroxide, zinc hydroxide, and triethylamine. By using this acidic compound or basic compound, the composition can be easily adjusted. In addition, the use of an acidic compound tends to increase the number of methylene bonds, while the use of a basic compound tends to decrease the number of methylene bonds.
 なお、かかる二価金属塩としては、好ましくは、亜鉛化合物、例えば塩化亜鉛、酢酸亜鉛、ホウ酸亜鉛、又はホウ酸と水酸化亜鉛の混合物等が有利に用いられることとなる。また、そのような二価金属塩としての亜鉛化合物は、単独で用いてもよく、また2種以上を組み合わせて用いることも、可能である。複数の二価金属塩を組み合わせて用いる場合には、亜鉛化合物からなる二価金属塩が、フェノール類に対して0.1モル%以上で、且つ他の二価金属塩のモル数が亜鉛化合物からなる二価金属塩のモル数以下の範囲で、含有されていることが、樹脂を(B)の規定範囲になるようにする上において、好ましい。 As such a divalent metal salt, a zinc compound such as zinc chloride, zinc acetate, zinc borate, or a mixture of boric acid and zinc hydroxide is preferably used. Moreover, the zinc compound as such a bivalent metal salt may be used independently, and can also be used in combination of 2 or more type. When a plurality of divalent metal salts are used in combination, the divalent metal salt composed of a zinc compound is 0.1 mol% or more with respect to phenols, and the number of moles of other divalent metal salts is a zinc compound. It is preferable that the resin is contained in the range of the number of moles or less of the divalent metal salt consisting of
 また、触媒の使用量は、その種類により適宜に決定されるところであって、一義的に決めることは困難であるが、一般的には、フェノールの100質量部に対して、0.01~100質量部、好ましくは0.05~20質量部、より好ましくは0.1~5質量部の範囲内で、用いられることとなる。この触媒量が多くなり過ぎると、反応速度が増大して、樹脂の製造が難しくなり、一方、触媒量が少なくなり過ぎると、残留炭素率は低下する傾向となる。 Further, the amount of the catalyst used is appropriately determined depending on the kind thereof, and it is difficult to determine it uniquely, but generally it is 0.01 to 100 with respect to 100 parts by mass of phenol. It is used within a range of parts by mass, preferably 0.05 to 20 parts by mass, more preferably 0.1 to 5 parts by mass. If this amount of catalyst becomes too large, the reaction rate increases and it becomes difficult to produce a resin. On the other hand, if the amount of catalyst becomes too small, the residual carbon ratio tends to decrease.
 さらに、本発明においては、反応系内の粘度や、原料の溶解の状態に応じて、適宜、反応容器内に水を添加することが出来る。その場合において、水は、フェノール類の100質量部に対して、0~50質量部の割合で添加することが、望ましい。水の添加量が50質量部を超えるようになると、反応速度の低下により、縮合時間が長時間となり、蒸留工程において水の除去に手間がかかって、非効率となる。 Furthermore, in the present invention, water can be appropriately added to the reaction vessel depending on the viscosity in the reaction system and the state of dissolution of the raw materials. In that case, it is desirable to add water at a ratio of 0 to 50 parts by mass with respect to 100 parts by mass of the phenols. When the amount of water added exceeds 50 parts by mass, the condensation time becomes longer due to a decrease in the reaction rate, and it takes time to remove water in the distillation step, resulting in inefficiency.
 加えて、反応系への他の添加剤として、消泡剤、酸やアルカリ、造粒剤等を用いることも可能である。そこで、消泡剤は、蒸留工程における過剰な樹脂の発泡を抑制させるために使用され、また酸やアルカリは反応速度調整のために使用され、更に造粒剤は、生じるフェノール樹脂を造粒して、粒子として取り出すのに使用される。 In addition, it is also possible to use an antifoaming agent, an acid or alkali, a granulating agent, etc. as other additives to the reaction system. Therefore, antifoaming agents are used to suppress excessive resin foaming in the distillation process, acids and alkalis are used to adjust the reaction rate, and granulating agents granulate the resulting phenolic resin. And used as a particle.
 ところで、本発明に従うベンジリックエーテル型レゾール樹脂を製造するに際しては、従来と同様な製造手順が採用されることとなる。具体的には、原料を反応容器内に投入して、加熱昇温した後、所定の時間の間、還流させて、縮合反応を行う縮合工程と、かかる縮合反応にて生じた反応生成物の減圧蒸留を行うことで、残留フェノールや水分等の除去と高分子量化を行う蒸留工程と、分子量が所定の状態に達したら、反応生成物(ベンジリックエーテル型フェノール樹脂)の排出を行う(系外への取出し)排出工程とが、採用されるのである。 By the way, when manufacturing the benzylic ether type resole resin according to the present invention, the same manufacturing procedure as the conventional one is adopted. Specifically, a raw material is charged into a reaction vessel, heated and heated, and then refluxed for a predetermined time to perform a condensation reaction, and a reaction product generated in the condensation reaction. Perform distillation under reduced pressure to remove residual phenol and water and increase the molecular weight, and discharge the reaction product (benzylic ether type phenol resin) when the molecular weight reaches a predetermined state (system) The removal process to the outside) is adopted.
 そこにおいて、先ず、縮合工程においては、フェノール類とアルデヒド類と触媒と水とを反応缶(容器)内に投入して混合した後、加熱昇温させて、好ましくは還流温度にて、それらフェノール類とアルデヒド類との縮合反応が進行せしめられる。このときの昇温速度としては、常温から加熱し始めて、0.1℃/min~5.0℃/minの範囲、より好ましくは0.3℃/min~1.3℃/minの範囲が採用され、80~120℃まで昇温することが望ましい。これは、5.0℃/minより昇温速度が早くなり過ぎると、反応初期の反応熱が大きくなり、ゲル化を伴う危険性や、系内のアルデヒド類が系外に排出されることや、急激な反応によるメチロール基の消費によって、所定の樹脂中のベンジリックエーテル結合率、メチロール基率が得られず、残留炭素率の低下を招くようになるからである。また、0.1℃/minよりも遅くなり過ぎると、製造効率が悪くなり、縮合工程に時間が掛かり、経済的な面から不利になるためである。以上のことから、昇温速度を0.1℃/min~5.0℃/minの範囲にすることにより、残留炭素率の高い樹脂を有利に得ることが出来るのである。また、縮合時間は、縮合温度、原料の配合比率、系内の粘度や、縮合の度合い等を考慮しながら、適宜に決定されることとなるが、一般に、1~10時間程度であることが望ましい。 First, in the condensation step, the phenols, aldehydes, catalyst and water are put into a reaction vessel (container) and mixed, and then heated and heated, preferably at the reflux temperature. The condensation reaction of aldehydes with aldehydes proceeds. The rate of temperature rise at this time is in the range of 0.1 ° C./min to 5.0 ° C./min, more preferably in the range of 0.3 ° C./min to 1.3 ° C./min, starting from room temperature. It is desirable to increase the temperature to 80 to 120 ° C. This is because if the rate of temperature rise is too fast than 5.0 ° C./min, the reaction heat at the initial stage of the reaction increases, and there is a risk of gelation and aldehydes in the system are discharged out of the system. This is because, due to consumption of methylol groups due to a rapid reaction, the benzylic ether bond ratio and methylol group ratio in a predetermined resin cannot be obtained, leading to a decrease in the residual carbon ratio. On the other hand, if it is slower than 0.1 ° C./min, the production efficiency is deteriorated, and the condensation process takes time, which is disadvantageous from an economical viewpoint. From the above, a resin having a high residual carbon ratio can be advantageously obtained by setting the rate of temperature rise to 0.1 ° C./min to 5.0 ° C./min. The condensation time is appropriately determined in consideration of the condensation temperature, the blending ratio of the raw materials, the viscosity in the system, the degree of condensation, etc. Generally, it is about 1 to 10 hours. desirable.
 また、かかる縮合工程でのフェノールの反応率は、一般に、85%以下であることが望ましく、好ましくは40%~85%、より好ましくは50%~84%であることが望ましい。つまり、本発明においては、未反応フェノールが15%以上となるようにして、縮合工程を進行せしめることが、望ましいのである。これは、反応率が85%以上を超えるようになると、系内の粘度が上昇し、その後の減圧下での蒸留工程時に粘度が上昇することによって、撹拌装置に高負荷がかかったり、排出時に、樹脂が反応缶内から排出しづらくなったりするためである。また、減圧蒸留時に発泡が激しくなり、反応生成物が減圧蒸留ラインに吸い込まれて、固化し、減圧蒸留ラインを閉塞してしまう恐れがある等の悪影響を惹起するようになるからである。また、反応率が40%よりも低くなると、収率が低下する問題を生じるようになる。 Further, the reaction rate of phenol in such a condensation step is generally desirably 85% or less, preferably 40% to 85%, more preferably 50% to 84%. That is, in the present invention, it is desirable to allow the condensation step to proceed so that the unreacted phenol is 15% or more. This is because when the reaction rate exceeds 85% or more, the viscosity in the system increases, and the viscosity increases during the subsequent distillation step under reduced pressure. This is because it becomes difficult for the resin to be discharged from the reaction can. Further, foaming becomes intense during vacuum distillation, and the reaction product is sucked into the vacuum distillation line and solidifies, thereby causing adverse effects such as the possibility of blocking the vacuum distillation line. Further, when the reaction rate is lower than 40%, there arises a problem that the yield decreases.
 次いで、上記した縮合工程の終了後に採用される蒸留工程においては、反応生成物からの未反応原料や水等の除去が、特別な装置や水蒸気蒸留等を行わず、引き続き反応釜内にて反応生成物を攪拌翼により攪拌することによって、行われることとなる。なお、蒸留温度には、8.0kPa以下の圧力となる減圧下において、好ましくは100~150℃、より好ましくは100~120℃が採用される。この蒸留工程における減圧は、必要な分子量になるまで行われることとなる。この蒸留工程においては、未反応フェノールの除去が行なわれるが、その場合において、未反応フェノールの残留量が5.0%以下となるようにすることが好ましく、その残留フェノール量が5.0%より多くなると、硬化時にフェノールが蒸発して、残留炭素率が低下する問題を生じる。 Next, in the distillation step adopted after the completion of the above condensation step, the removal of unreacted raw materials and water from the reaction product is continued in the reaction kettle without using a special apparatus or steam distillation. This is done by stirring the product with a stirring blade. The distillation temperature is preferably 100 to 150 ° C., more preferably 100 to 120 ° C. under reduced pressure at a pressure of 8.0 kPa or less. The decompression in this distillation step is performed until the required molecular weight is reached. In this distillation step, unreacted phenol is removed. In that case, the residual amount of unreacted phenol is preferably 5.0% or less, and the residual phenol amount is 5.0%. If it is more, the phenol will evaporate at the time of curing, causing a problem that the residual carbon ratio decreases.
 また、この減圧蒸留工程においては、同時に、反応生成物の重量平均分子量の測定が行われて、系内の樹脂(反応生成物)が2,000超、30,000未満の重量平均分子量に達した時点で、減圧蒸留を停止して、そのまま、系内の樹脂(反応生成物)を系外に排出するようにするのである。なお、ベンジリックエーテル型レゾール樹脂は、蒸留工程後期において分子量が大きくなるにつれて、急激に分子量が増大して、ゲル化するようになるため、終点管理には、充分に注意する必要がある。更に、系内の樹脂が、加熱溶融状態から、冷却により固化し得る形態の樹脂として形成される場合には、分子量が増大すると、粘度が上昇し、排出しづらくなるため、重量平均分子量が10,000以下の段階で、排出することが好ましい。また、系内の樹脂を粒子として形成する場合には、分子量の上昇によって排出しづらくなることはないので、重量平均分子量が30,000未満の状態で排出すれば良い。なお、系内の樹脂を最も早く排出するには、本発明の(A)の規定範囲になるように、重量平均分子量が2,000以上になった時点から、排出するようにすれば良い。 In the vacuum distillation step, the weight average molecular weight of the reaction product is measured at the same time, and the resin (reaction product) in the system reaches a weight average molecular weight of more than 2,000 and less than 30,000. At that time, the vacuum distillation is stopped and the resin (reaction product) in the system is discharged out of the system as it is. In addition, since the molecular weight of the benzylic ether type resol resin increases rapidly as the molecular weight increases in the latter stage of the distillation process, it becomes gelled. Therefore, it is necessary to pay sufficient attention to end point management. Further, when the resin in the system is formed as a resin that can be solidified by cooling from the heat-melted state, if the molecular weight increases, the viscosity increases, making it difficult to discharge, so the weight average molecular weight is 10 It is preferable to discharge at a stage of 1,000 or less. In addition, when the resin in the system is formed as particles, it is not difficult to discharge the resin due to the increase in molecular weight. Therefore, the resin may be discharged in a state where the weight average molecular weight is less than 30,000. In order to discharge the resin in the system earliest, the resin may be discharged from the time when the weight average molecular weight becomes 2,000 or more so as to be within the specified range of (A) of the present invention.
 ここで、かかる減圧蒸留時の重量平均分子量の測定方法としては、系内の樹脂の重量平均分子量を測定できる手法であるなら、特に限定されるものではないが、分子量を測定した時点から減圧蒸留を停止して分子量の増大を阻止するまでのタイムラグを短くするため、例えば、コーンプレートなどにより粘度測定しながら、予め粘度と分子量との相関を取っておいて、その規定粘度から分子量を導き出し、所定の分子量になったときに、直ちに排出工程に移行するようにすることが、好適な方法として挙げられる。なお、この時点で、樹脂組成等を調整するために、反応系にハイオルソノボラック樹脂やアルカリレゾール樹脂等を投入して、混合することが、可能である。 Here, the method for measuring the weight average molecular weight at the time of distillation under reduced pressure is not particularly limited as long as it is a method capable of measuring the weight average molecular weight of the resin in the system. In order to shorten the time lag until the molecular weight is increased by stopping the process, for example, while measuring the viscosity with a cone plate or the like, the viscosity is correlated with the molecular weight in advance, and the molecular weight is derived from the specified viscosity, A preferred method is to immediately shift to the discharging step when the molecular weight is reached. At this time, in order to adjust the resin composition or the like, it is possible to add a high ortho novolak resin, an alkali resole resin or the like to the reaction system and mix them.
 そして、排出工程においては、先の減圧蒸留工程で未反応フェノールが除去され、且つ系内の樹脂が所定の分子量に達した時点で、そのまま、系外への排出が行われることとなるのであるが、それとは別に、減圧蒸留途中で溶剤を加えて溶液化して、排出するようにすることも可能であり、また、水とアラビアガム等の造粒剤を投入して、系内の樹脂を造粒させた後、ろ過・乾燥を行って、固形粒子として、排出することも出来る。また、樹脂組成の調整を行うために、排出の後、他のハイオルソノボラック樹脂やアルカリレゾール樹脂を混合せしめることも可能である。 In the discharge step, when the unreacted phenol is removed in the previous vacuum distillation step, and the resin in the system reaches a predetermined molecular weight, it is discharged out of the system as it is. However, it is also possible to add a solvent in the middle of distillation under reduced pressure to form a solution and discharge it. In addition, a granulating agent such as water and gum arabic is added to remove the resin in the system. After granulating, it can be filtered and dried to be discharged as solid particles. In addition, in order to adjust the resin composition, it is possible to mix other high-ortho novolak resins or alkali resole resins after discharge.
 かくして得られる本発明に従うベンジリックエーテル型フェノール樹脂は、そのまま各種の用途に用いられる他、それを必須成分として、これに、ハイオルソノボラック樹脂やアルカリレゾール樹脂等の他の樹脂を配合したり、また各種添加剤等を配合して、ベンジリックエーテル型フェノール樹脂組成物を形成して、用いるようにすることが出来る。なお、樹脂組成物の配合は、最終的に出来上がった樹脂組成物が、本発明の構成要件である(A)及び(B)を満たすものであれば、特に限定されるものではない。 The benzylic ether type phenolic resin according to the present invention thus obtained is used as it is for various applications as it is, and as an essential component, other resins such as a high ortho novolac resin and an alkali resol resin are blended therewith, Moreover, various additives etc. can be mix | blended and a benzylic ether type phenol resin composition can be formed and used. In addition, the compounding of a resin composition will not be specifically limited if the resin composition finally completed satisfy | fills (A) and (B) which are the structural requirements of this invention.
 そして、かかる本発明に従うベンジリックエーテル型フェノール樹脂またはその樹脂組成物は、それらを、窒素雰囲気下で焼成することにより、緻密な炭化物を形成することができる特徴を発揮する。なお、フェノール樹脂の炭素化については、以前から研究が行われており(進藤昭男;「科学と工業」,Vol.53,No.7(1979),248)、図1に示される如く、フェノールの硬化が終わった後、300~500℃の間でフェノール性水酸基とメチレン鎖の間で脱水反応が起こり、次いで脱水素反応を経由して縮合芳香環が生成し、炭化に向かう過程を経由することが知られているが、本発明に従うベンジリックエーテル型フェノール樹脂は、そのような炭素化過程により、緻密な炭化物を有利に与えることとなるのである。 The benzylic ether type phenolic resin or the resin composition according to the present invention exhibits a feature that a dense carbide can be formed by firing them in a nitrogen atmosphere. The carbonization of phenolic resin has been studied for a long time (Akio Shindo; “Science and Industry”, Vol. 53, No. 7 (1979), 248), and as shown in FIG. After the curing of is completed, a dehydration reaction occurs between the phenolic hydroxyl group and the methylene chain at 300 to 500 ° C., and then a condensed aromatic ring is formed via a dehydrogenation reaction, and a process toward carbonization is performed. However, it is known that the benzylic ether type phenol resin according to the present invention advantageously gives a dense carbide by such a carbonization process.
 また、本発明に従うベンジリックエーテル型フェノール樹脂または樹脂組成物を焼成してなる炭化物は、その残留炭素率が60%以上となる特徴を有している。この残留炭素率が60%未満となると、結合剤としての強度を低下させる点で望ましくなく、且つ炭化物の収量が少なく、経済的にも不利である。残留炭素率が60%以上であることにより、高強度が得られると共に、収率の向上による経済的な効率化が可能となる。また、300~800℃の温度領域における重量減少率は、30%以下であることが望ましい。この300~800℃の温度領域における重量減少率が30%よりも高くなると、緻密な炭化物を形成し難くなり、また硬化後の体積収縮が大きく、結合剤として好ましくないのである。かかる重量減少率が30%以下であることにより、緻密で、硬化後の体積収縮が小さい炭化物を有利に得ることができる。 Further, the carbide obtained by firing the benzylic ether type phenolic resin or the resin composition according to the present invention has a feature that the residual carbon ratio is 60% or more. When the residual carbon ratio is less than 60%, it is not desirable in terms of reducing the strength as a binder, and the yield of carbide is small, which is economically disadvantageous. When the residual carbon ratio is 60% or more, high strength can be obtained and economic efficiency can be improved by improving the yield. The weight reduction rate in the temperature range of 300 to 800 ° C. is desirably 30% or less. If the weight loss rate in the temperature range of 300 to 800 ° C. is higher than 30%, it becomes difficult to form a dense carbide, and the volume shrinkage after curing is large, which is not preferable as a binder. When the weight reduction rate is 30% or less, a fine carbide having a small volume shrinkage after curing can be advantageously obtained.
 ところで、本発明においては、上記(A)と(B)の条件を満たすことで、フェノール性水酸基とメチレン鎖の脱水反応において、図1に示される様な規則正しい連続した環構造を、効率よく形成することが出来、緻密な縮合芳香環が出来上がるものと考えられる。即ち、そのような(A)、(B)の条件を満たす、本発明に従うベンジリックエーテル型フェノール樹脂及びその樹脂組成物にあっては、その溶融時においては、十分な流動性が確保されると共に、その焼成後には、高い残留炭素率と緻密で耐酸化性のある炭化物を与えることとなり、以て、炭素製品や耐火製品を製造する際の結合剤として、また、炭化物を直接に製造する際の原料として、好適に用いられ得るものとなるのである。 By the way, in the present invention, by satisfying the above conditions (A) and (B), a regular continuous ring structure as shown in FIG. 1 is efficiently formed in the dehydration reaction of the phenolic hydroxyl group and the methylene chain. It is thought that a dense condensed aromatic ring can be completed. That is, in the benzylic ether type phenolic resin and the resin composition according to the present invention that satisfy the conditions (A) and (B), sufficient fluidity is ensured when melted. At the same time, after the firing, it will give a high residual carbon ratio and a dense and oxidation-resistant carbide, so as to produce a carbon product and a refractory product, and also directly produce the carbide. As a raw material at that time, it can be suitably used.
 例えば、本発明に従うベンジリックエーテル型フェノール樹脂または樹脂組成物を結合剤として用いて、耐火製品を製造するに際しては、天然又は人工の耐火性粒子の如き耐火材料とかかる本発明に従うフェノール樹脂又は樹脂組成物とを配合して、混合した後、その得られた混合物を用いて、所定の成形体を作製し、更に、その後、かかる成形体を焼成することにより、製造されることとなる。
 同様に、本発明に従うベンジリックエーテル型フェノール樹脂又はその樹脂組成物を結合剤として用いて、炭素製品を製造するに際しては、例えば、コークス等の粉末(炭素源)の如き炭素材料に対して、本発明に係るベンジリックエーテル型フェノール樹脂又はその組成物を配合せしめて、混合した後、その得られた混合物を用いて、所定の成形体を作製し、更に、かかる成形体を焼成することにより、製造されることとなる。また、炭素繊維を炭素源として用いて、特に炭素-炭素複合材料と称される炭素製品にあっても、所定の溶媒に溶解せしめた本発明に従うベンジリックエーテル型フェノール樹脂又はその組成物を炭素繊維に含浸せしめ、その含浸した炭素繊維を所定の成形法に従って成形し、更にその得られた成形体を焼成することにより、製造されることとなる。
For example, when producing a refractory product using the benzylic ether type phenolic resin or resin composition according to the present invention as a binder, a refractory material such as natural or artificial refractory particles and such a phenolic resin or resin according to the present invention. After blending and mixing with the composition, the resulting mixture is used to produce a predetermined molded body, and then the molded body is fired to produce the molded body.
Similarly, when producing a carbon product using the benzylic ether type phenol resin or the resin composition according to the present invention as a binder, for example, for a carbon material such as a powder (carbon source) such as coke, By blending and mixing the benzylic ether type phenolic resin or the composition thereof according to the present invention, using the resulting mixture, a predetermined molded body is produced, and further, the molded body is fired. Will be manufactured. Further, even in a carbon product called carbon-carbon composite material using carbon fiber as a carbon source, the benzylic ether type phenol resin or composition thereof according to the present invention dissolved in a predetermined solvent is used as a carbon product. The fiber is impregnated, the impregnated carbon fiber is molded in accordance with a predetermined molding method, and the obtained molded body is fired.
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。
 なお、以下の実施例及び比較例において得られたベンジリックエーテル型フェノール樹脂の重量平均分子量(Mw)、未反応フェノールの含有量、オルソ化率、樹脂組成、残留炭素率、樹脂の緻密化及び耐酸化性(TGチャート)については、それぞれ、以下の手法に従って測定乃至は評価した。
Some examples of the present invention will be shown below to clarify the present invention more specifically. However, the present invention is not limited by the description of such examples. Needless to say. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements can be made.
In addition, the weight average molecular weight (Mw) of the benzylic ether type phenol resin obtained in the following Examples and Comparative Examples, the content of unreacted phenol, the orthorization rate, the resin composition, the residual carbon rate, the densification of the resin, and The oxidation resistance (TG chart) was measured or evaluated according to the following methods.
-重量平均分子量(Mw)の測定-
 東ソー株式会社製ゲル濾過クロマトグラフ8020シリーズビルドアップシステム(カラム:G2000HXL+G4000HXL、検出器:UV254nm、キャリヤー:テトラヒドロフラン1ml/min、カラム温度:40℃)を用いた測定により、標準ポリスチレン換算の重量平均分子量(Mw)を求める。
-Measurement of weight average molecular weight (Mw)-
Weight average molecular weight in terms of standard polystyrene (by means of gel filtration chromatograph 8020 series build-up system manufactured by Tosoh Corporation (column: G2000HXL + G4000HXL, detector: UV254 nm, carrier: tetrahydrofuran 1 ml / min, column temperature: 40 ° C.)) Mw).
-未反応フェノールの含有量の測定-
 東ソー株式会社製ゲル濾過クロマトグラフ8020シリーズビルドアップシステム(カラム:G1000HL+G2000HL、検出器:UV254nm、キャリヤー:テトラヒドロフラン1ml/min、カラム温度:40℃)を用いて、検量線法により、未反応フェノールの含有量(質量基準)を測定する。
-Measurement of unreacted phenol content-
Contains unreacted phenol by a calibration curve method using a gel filtration chromatograph 8020 series build-up system (column: G1000HL + G2000HL, detector: UV254 nm, carrier: tetrahydrofuran 1 ml / min, column temperature: 40 ° C.) manufactured by Tosoh Corporation Measure the amount (mass basis).
-オルソ化率の測定-
 核磁気共鳴装置(バリアン社製:INOVA400)を用いて、それぞれの樹脂サンプルについて、13C-NMR(100MHz、溶媒:重ピリジン)測定を行い、その測定値から、オルソ-オルソ位、オルソ-パラ位、又はパラ-パラ位に結合しているメチレン結合、オルソ-オルソ位に結合しているベンジリックエーテル結合、及びオルソ又はパラ位に結合しているメチロール基の各炭素のピークの積分強度比を求め、それにより、全結合を100%としたときのオルソ結合の比率を、次式により算出する。
  C1(オルソ-オルソ位に結合しているメチレン結合の炭素)
    =ケミカルシフト33.0~28.0ppmのピーク積分強度比
  C2(オルソ-パラ位に結合しているメチレン結合の炭素)
    =ケミカルシフト38.0~33.0ppmのピーク積分強度比
  C3(パラ-パラ位に結合しているメチレン結合の炭素)
    =ケミカルシフト42.0~38.0ppmのピーク積分強度比
  C4(パラ位に結合しているメチロール基の炭素)
    =ケミカルシフト63.2~60.6ppmのピーク積分強度比
  C5(オルソ位に結合しているメチロール基の炭素)
    =ケミカルシフト66.8~64.2ppmのピーク積分強度比
  C6(オルソ-オルソ位に結合しているベンジリックエーテル結合の炭素
    )
    =ケミカルシフト71.0~66.8ppmのピーク積分強度比
 オルソ化率(%)
 (OR)=(C1×2+C2+C5+C6)/
      (C1×2+C2×2+C3×2+C4+C5+C6)×10
      0
-Measurement of ortho ratio-
Using a nuclear magnetic resonance apparatus (manufactured by Varian: INOVA400), 13C-NMR (100 MHz, solvent: heavy pyridine) was measured for each resin sample, and the ortho-ortho position and ortho-para position were determined from the measured values. Or the integrated intensity ratio of each carbon peak of the methylene bond bonded to the para-para position, the benzylic ether bond bonded to the ortho-ortho position, and the methylol group bonded to the ortho or para position. Thus, the ratio of the ortho bond when the total bond is 100% is calculated by the following formula.
C1 (carbon of methylene bond bonded to ortho-ortho position)
= Chemical shift 33.0 to 28.0 ppm peak integrated intensity ratio C2 (methylene-bonded carbon bonded to ortho-para position)
= Chemical shift 38.0-33.0 ppm peak integrated intensity ratio C3 (methylene-bonded carbon bonded to para-para position)
= Chemical shift 42.0 to 38.0 ppm peak integrated intensity ratio C4 (carbon of methylol group bonded to para position)
= Chemical shift 63.2 to 60.6 ppm peak integrated intensity ratio C5 (carbon of methylol group bonded to ortho position)
= Chemical shift 66.8 to 64.2 ppm peak integrated intensity ratio C6 (carbon of benzylic ether bond bonded to ortho-ortho position)
= Chemical shift 71.0-66.8ppm peak integrated intensity ratio Ortho ratio (%)
(OR) = (C1 × 2 + C2 + C5 + C6) /
(C1 × 2 + C2 × 2 + C3 × 2 + C4 + C5 + C6) × 10
0
-樹脂組成の測定-
 核磁気共鳴装置(バリアン社製:INOVA400)を用いて、常法によりアセチル化した樹脂サンプルについて、1H-NMR(400MHz、溶媒:重アセトン)測定を行い、ベンゼン環、メチレン結合、ベンジリックエーテル結合、メチロール基中の炭素に結合しているプロトンの各ピーク積分強度比を求めて、次式により、フェノール核総数を求めた後、フェノール核1モル当たりの置換基比率を計算する。
 その後、フェノール核1モル当たりの置換基比率のメチレン結合置換比、ベンジリックエーテル結合置換比、及びメチロール基置換比の合計を100%として、樹脂組成におけるメチレン結合、ベンジリックエーテル結合、及びメチロール基の比率(モル)を、それぞれ求める。
  A1(ベンゼン環中の炭素に結合しているプロトン)
    =ケミカルシフト7.70~6.50ppmのピーク積分強度比
  A2[アセチル化されたヘミホルマール基:Ph-CHOCHOAc
          の炭素(-OCHO-)に結合しているプロトン]
    =ケミカルシフト5.42~5.18ppmのピーク積分強度比
  A3(アセチル化されたメチロール基:Ph-CHOAcの炭素に結合
     しているプロトン)
    =ケミカルシフト5.18~4.91ppmのピーク積分強度比
  A4[ベンジリックエーテル結合:Ph-CHOCH-Phの炭素に
     結合しているプロトンとヘミホルマール基:Ph-CHOCH
     OAcの炭素(Ph-CHO-)に結合しているプロトン]
    =ケミカルシフト4.91~4.17ppmのピーク積分強度比
  A5(メチレン結合:Ph-CH-Phの炭素に結合しているプロトン
     )
    =ケミカルシフト4.17~3.44ppmのピーク積分強度比
 上記の積分強度比を求めた後、次式により、フェノール核総数(P)を算出する。
  P(フェノール核総数)={A1+A2/2+A3/2+(A4-A2
               )/4+A5/2}/5
 続いて、次式により、フェノール核1モル当たりの各置換基の置換比率(モル)を求める。
  メチレン結合置換比       R1=A5/(2×P)
  ベンジリックエーテル結合置換比 R2=(A4-A2)/(4×P)
  メチロール基置換比       R3=A5/(2×P)
 そして、次式により、樹脂組成におけるメチレン結合、ベンジリックエーテル結合、及びメチロール基の比率を求める。即ち、メチレン結合置換比、ベンジリックエーテル結合置換比及びメチロール基置換比の割合であるメチレン結合率、ベンジリックエーテル結合率及びメチロール基率を、それぞれ求めるのである。
  メチレン結合率(%)      =R1/(R1+R2+R3)×100
  ベンジリックエーテル結合率(%)=R2/(R1+R2+R3)×100
  メチロール基率(%)      =R3/(R1+R2+R3)×100
参考文献:J.C.Woodbrey, H.P.Higginbottom, H.M.Culbertson, J.Polym.Sci
     ., PART A,Vol.3, 1079-1106(1965)
-Measurement of resin composition-
Using a nuclear magnetic resonance apparatus (manufactured by Varian: INOVA400), 1H-NMR (400 MHz, solvent: heavy acetone) is measured on a resin sample acetylated by a conventional method, and a benzene ring, a methylene bond, and a benzylic ether bond. Then, each peak integral intensity ratio of protons bonded to carbon in the methylol group is obtained, and the total number of phenol nuclei is obtained by the following formula, and then the ratio of substituents per mole of phenol nuclei is calculated.
Thereafter, the total of the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio of the substituent ratio per mole of phenol nucleus is 100%, and the methylene bond, benzylic ether bond, and methylol group in the resin composition The ratio (mole) of each is determined.
A1 (proton bonded to carbon in the benzene ring)
= Chemical shift peak integrated intensity ratio of 7.70 to 6.50 ppm A2 [acetylated hemiformal group: Ph-CH 2 OCH 2 OAc
Proton bonded to carbon (—OCH 2 O—)]
= Chemical shift 5.42 to 5.18 ppm peak integrated intensity ratio A3 (acetylated methylol group: proton bonded to carbon of Ph—CH 2 OAc)
= Chemical shift 5.18 to 4.91 ppm peak integrated intensity ratio A4 [Benzyl ether bond: Ph—CH 2 OCH 2 —Ph bonded to carbon of carbon and hemi-formal group: Ph—CH 2 OCH 2
Proton bonded to carbon of OAc (Ph—CH 2 O—)]
= Chemical shift 4.91-4.17 ppm peak integrated intensity ratio A5 (methylene bond: proton bonded to carbon of Ph-CH 2 -Ph)
= Chemical shift 4.17 to 3.44 ppm peak integrated intensity ratio After obtaining the above integrated intensity ratio, the total number of phenol nuclei (P) is calculated by the following equation.
P (total number of phenol nuclei) = {A1 + A2 / 2 + A3 / 2 + (A4-A2
) / 4 + A5 / 2} / 5
Subsequently, the substitution ratio (mol) of each substituent per mole of phenol nucleus is determined by the following formula.
Methylene bond substitution ratio R1 = A5 / (2 × P)
Benzyl ether bond substitution ratio R2 = (A4-A2) / (4 × P)
Methylol group substitution ratio R3 = A5 / (2 × P)
And the ratio of the methylene bond in a resin composition, a benzylic ether bond, and a methylol group is calculated | required by following Formula. That is, the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio, which are ratios of the methylene bond substitution ratio, the benzylic ether bond substitution ratio, and the methylol group substitution ratio, are respectively determined.
Methylene bond rate (%) = R1 / (R1 + R2 + R3) × 100
Benzyl ether bond percentage (%) = R2 / (R1 + R2 + R3) × 100
Methylol group ratio (%) = R3 / (R1 + R2 + R3) × 100
References: JCWoodbrey, HPHigginbottom, HMCulbertson, J.Polym.Sci
., PART A, Vol. 3, 1079-1106 (1965)
-残留炭素率の測定-
 差動型示差熱天秤(株式会社リガク製Tg-DTA Thermoplus2 TG8120;N2 流量:500ml/min、昇温速度:10℃/min、Ptパン:φ5×5使用)を用い、それぞれの樹脂サンプルを室温~830℃まで加熱昇温して、測定を行う。室温~800℃までの重量減少率:W1(%)から、以下の式により残留炭素率を求める。
残留炭素率(%)=100-W1
 なお、ここでは、室温~300℃までの重量減少率を硬化時までの重量減少率とし、300~800℃までの重量減少率を硬化後の重量減少率とする。
-Measurement of residual carbon ratio-
Using a differential type differential thermal balance (Tg-DTA Thermoplus2 TG8120, manufactured by Rigaku Corporation; N 2 flow rate: 500 ml / min, heating rate: 10 ° C./min, Pt pan: φ5 × 5 used) Measurement is performed by heating to room temperature to 830 ° C. From the weight reduction rate from room temperature to 800 ° C .: W1 (%), the residual carbon rate is obtained by the following formula.
Residual carbon ratio (%) = 100−W1
Here, the weight reduction rate from room temperature to 300 ° C. is the weight reduction rate until curing, and the weight reduction rate from 300 to 800 ° C. is the weight reduction rate after curing.
-樹脂炭化物の緻密化の評価-
 差動型示差熱天秤(株式会社リガク製Tg-DTA Thermoplus2 TG8120;N2 流量:500ml/min、昇温速度:10℃/min、Ptパン:φ5×5使用)中において、昇温速度:2℃/min程度で、200℃まで昇温して、硬化物を作製する。その後、昇温速度:10℃/minとして、830℃まで加熱昇温して焼成することにより、炭化物を得る。次いで、その得られた炭化物を、走査型電子顕微鏡(日本電子株式会社製JEM-6700F)にて、倍率を50倍から1000倍まで拡大して、炭化物の状態を観察する。
-Evaluation of densification of resin carbide-
In a differential type differential thermal balance (Tg-DTA Thermoplus2 TG8120, manufactured by Rigaku Corporation; N 2 flow rate: 500 ml / min, heating rate: 10 ° C./min, Pt pan: φ5 × 5 used), heating rate: 2 The temperature is raised to 200 ° C. at a rate of about ° C./min to produce a cured product. Thereafter, the carbide is obtained by heating and heating to 830 ° C. at a rate of temperature increase of 10 ° C./min. Next, the obtained carbide is observed with a scanning electron microscope (JEM-6700F manufactured by JEOL Ltd.) at a magnification of 50 to 1000 times to observe the state of the carbide.
-樹脂炭化物の緻密化(密度)の評価-
 樹脂を乾燥機にて200℃で5時間程度加熱して硬化させた後、焼成炉(光洋サーモシステム株式会社製真空パージ式ボックス炉:μBF-WVP)にて900℃(窒素置換、昇温条件:40℃で15分保持後、昇温速度:2℃/minで900℃まで昇温。その後、900℃で3時間保持した後、徐冷)で焼成を行い、炭化物を得た。その炭化物と炭化物を得るために使用した樹脂とを7:3の重量比でコーヒーミルにて共粉砕を行い、炭化物と樹脂の混合粉末を得た。その後、炭化物を20tプレス機(荷重:15t、金型温度条件:180℃、成形時間:10分間、その間、ガス抜きをガスが出なくなるまで行う)にて100mm×100mm×2mm程度の成形体を作り、再び前述の条件で900℃まで焼成、焼成炉(富士電波工業株式会社製:ハイマルチ10000)にて2000℃で焼成(アルゴンガス雰囲気下で昇温速度:300℃/hrで2000℃まで昇温後、2000℃で1時間保持し、その後徐冷)を行い、炭化物を得た。その炭化物を所定の大きさに切断し、比重計(アルファミラージュ株式会社製電子比重計:MD-200S)にて比重を測定した。
-Evaluation of densification (density) of resin carbide-
After the resin is cured by heating at 200 ° C. for about 5 hours in a dryer, it is 900 ° C. (nitrogen replacement, temperature rising condition in a baking furnace (vacuum purge type box furnace manufactured by Koyo Thermo Systems Co., Ltd .: μBF-WVP). After holding at 40 ° C. for 15 minutes, the heating rate was raised to 900 ° C. at a rate of 2 ° C./min. The carbide and the resin used to obtain the carbide were co-ground in a coffee mill at a weight ratio of 7: 3 to obtain a mixed powder of carbide and resin. Thereafter, a molded body of about 100 mm × 100 mm × 2 mm is formed on the carbide with a 20-ton press (load: 15 t, mold temperature condition: 180 ° C., molding time: 10 minutes, during which time gas is released until no gas is emitted). Made and again fired up to 900 ° C. under the above-mentioned conditions, fired at 2000 ° C. in a firing furnace (manufactured by Fuji Denpa Kogyo Co., Ltd .: High Multi 10000) (temperature rising rate under argon gas atmosphere: up to 2000 ° C. at 300 ° C./hr After raising the temperature, the mixture was held at 2000 ° C. for 1 hour and then gradually cooled to obtain a carbide. The carbide was cut into a predetermined size, and the specific gravity was measured with a hydrometer (Electron hydrometer: MD-200S manufactured by Alpha Mirage Co., Ltd.).
-樹脂の耐酸化性の評価(TGチャートの測定)-
 上記した樹脂の緻密化評価で作製された樹脂の炭化物サンプルを、差動型示差熱天秤(株式会社リガク製Tg-DTA Thermoplus2 TG8120;空気流量:500ml/min、昇温速度:10℃/min、Ptパン:φ5×5使用)を用いて、空気雰囲気下で室温~830℃まで加熱昇温して、TGチャート測定を行う。
-Evaluation of oxidation resistance of resin (measurement of TG chart)-
Resin carbide samples prepared by the above-described densification evaluation of the resin were subjected to differential differential thermal balance (Tg-DTA Thermoplus2 TG8120, manufactured by Rigaku Corporation; air flow rate: 500 ml / min, heating rate: 10 ° C./min, TG chart measurement is performed by heating from room temperature to 830 ° C. in an air atmosphere using a Pt pan: φ5 × 5 used.
 実施例1
 温度計、攪拌装置、還流冷却器を備えた反応容器内に、フェノール(P)の100質量部、92%パラホルムアルデヒド(F)の52質量部(モル基準でのF/P=1.5)、水の7.8質量部、触媒として塩化亜鉛の0.28質量部(フェノールに対して0.19mol%)、及び消泡剤(信越化学工業株式会社製:KM-73E)の0.011質量部を仕込んだ後、撹拌混合しながら、還流温度まで0.6℃/minの昇温速度で昇温して、4時間縮合反応を行った。その後、得られた反応生成物を、反応容器内において、加熱下で減圧濃縮を行う一方、反応生成物のMwを測定し、その測定したMwが5,000~8,000の範囲となった時点で、反応容器内からの反応生成物の排出を行って、ベンジリックエーテル型フェノール樹脂を得た。
Example 1
In a reaction vessel equipped with a thermometer, a stirrer and a reflux condenser, 100 parts by mass of phenol (P), 52 parts by mass of 92% paraformaldehyde (F) (F / P = 1.5 on a molar basis) , 7.8 parts by weight of water, 0.28 parts by weight of zinc chloride as a catalyst (0.19 mol% relative to phenol), and 0.011 of an antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KM-73E) After charging the parts by mass, the mixture was heated to a reflux temperature of 0.6 ° C./min while stirring and mixing, and a condensation reaction was carried out for 4 hours. Thereafter, the reaction product obtained was concentrated under reduced pressure in a reaction vessel under heating, while the Mw of the reaction product was measured, and the measured Mw was in the range of 5,000 to 8,000. At that time, the reaction product was discharged from the reaction vessel to obtain a benzylic ether type phenol resin.
 実施例2
 92%パラホルムアルデヒドの使用量を42質量部(モル基準でのF/P=1.2)に変更したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 2
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the amount of 92% paraformaldehyde used was changed to 42 parts by mass (F / P = 1.2 on a molar basis).
 実施例3
 92%パラホルムアルデヒドの使用量を69質量部(モル基準でのF/P=2.0)に変更したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 3
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the amount of 92% paraformaldehyde used was changed to 69 parts by mass (F / P = 2.0 on a molar basis).
 実施例4
 減圧濃縮工程で測定したMwが2,000~2,500となった時点で排出を行ったこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 4
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the discharging was performed when the Mw measured in the vacuum concentration step became 2,000 to 2,500.
 実施例5
 減圧濃縮工程で測定したMwが25,000~30,000の範囲となった時点で排出を行ったこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 5
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that discharging was performed when Mw measured in the vacuum concentration step was in the range of 25,000 to 30,000.
 実施例6
 触媒として、塩化亜鉛の0.14質量部(フェノールに対して0.1mol%)と酢酸マンガン(4水和物)の0.13質量部(フェノールに対して0.05mol%)を使用したこと以外は、実施例1と同様にして、縮合・濃縮を行い、Mwが2,000~2,500の範囲になった時点で、反応生成物の排出を行って、ベンジリックエーテル型フェノール樹脂を得た。
Example 6
As catalysts, 0.14 parts by mass of zinc chloride (0.1 mol% with respect to phenol) and 0.13 parts by mass of manganese acetate (tetrahydrate) (0.05 mol% with respect to phenol) were used. Except for the above, condensation and concentration were carried out in the same manner as in Example 1, and when the Mw was in the range of 2,000 to 2,500, the reaction product was discharged, and the benzylic ether type phenol resin was obtained. Obtained.
 実施例7
 触媒として、塩化亜鉛の0.14質量部(フェノールに対して0.1mol%)と酢酸マンガン(4水和物)の0.26質量部(フェノールに対して0.1mol%)を使用したこと以外は、実施例1と同様にして、縮合・濃縮を行い、Mwが4,000~5,000の範囲になった時点で排出を行うことによって、ベンジリックエーテル型フェノール樹脂を得た。
Example 7
As catalysts, 0.14 parts by mass of zinc chloride (0.1 mol% with respect to phenol) and 0.26 parts by mass of manganese acetate (tetrahydrate) (0.1 mol% with respect to phenol) were used. Except for the above, condensation and concentration were carried out in the same manner as in Example 1, and when the Mw was in the range of 4,000 to 5,000, discharging was performed to obtain a benzylic ether type phenol resin.
 実施例8
 触媒として、酢酸亜鉛(2水和物)の0.37質量部(フェノールに対して0.16mol%)を使用したこと以外は、実施例1と同様にして、縮合反応を行った。その後、1%パラトルエンスルホン酸水29.8質量部を投入した後、加熱下で減圧濃縮を行い、その工程で測定したMwが5,000~8,000の範囲となった時点で、反応容器からの反応生成物の排出を行って、ベンジリックエーテル型フェノール樹脂を得た。
Example 8
A condensation reaction was carried out in the same manner as in Example 1 except that 0.37 parts by mass of zinc acetate (dihydrate) (0.16 mol% based on phenol) was used as the catalyst. Thereafter, 29.8 parts by weight of 1% paratoluenesulfonic acid water was added, followed by concentration under reduced pressure under heating. When the Mw measured in the process was in the range of 5,000 to 8,000, the reaction was performed. The reaction product was discharged from the container to obtain a benzylic ether type phenol resin.
 実施例9
 触媒として、モル比で、ホウ酸:水酸化亜鉛=2:1として混合したものを、0.24質量部(ホウ酸:フェノールに対して0.2mol%、水酸化亜鉛:フェノールに対して0.1mol%)の割合で用いたこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 9
As a catalyst, a mixture of boric acid: zinc hydroxide = 2: 1 in a molar ratio was 0.24 parts by mass (0.2 mol% with respect to boric acid: phenol, 0 with respect to zinc hydroxide: phenol). 0.1 mol%), except that it was used in the same manner as in Example 1, to obtain a benzylic ether type phenol resin.
 実施例10
 触媒として、ホウ酸亜鉛3.5水和物の0.43質量部(フェノールに対して0.9mol%)を使用したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 10
A benzylic ether type phenol resin was used in the same manner as in Example 1 except that 0.43 parts by mass of zinc borate 3.5 hydrate (0.9 mol% based on phenol) was used as a catalyst. Obtained.
 実施例11
 92%パラホルムアルデヒドの使用量を49質量部(モル基準でのF/P=1.4)に変更し、減圧濃縮工程時の内温を常時95~105℃に保ったこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Example 11
Example except that the amount of 92% paraformaldehyde used was changed to 49 parts by mass (F / P = 1.4 on a molar basis) and the internal temperature during the vacuum concentration step was always kept at 95-105 ° C. In the same manner as in No. 1, a benzylic ether type phenol resin was obtained.
 比較例1
 92%パラホルムアルデヒドの使用量を28質量部(モル基準でのF/P=0.8)に変更したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 1
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the amount of 92% paraformaldehyde used was changed to 28 parts by mass (F / P = 0.8 on a molar basis).
 比較例2
 92%パラホルムアルデヒドの使用量を73質量部(モル基準でのF/P=2.1)に変更したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 2
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the amount of 92% paraformaldehyde used was changed to 73 parts by mass (F / P = 2.1 on a molar basis).
 比較例3
 減圧濃縮工程で測定したMwが1,000~1,500となった時点で、反応生成物の排出を行ったこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 3
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that the reaction product was discharged when the Mw measured in the vacuum concentration step became 1,000 to 1,500. .
 比較例4
 減圧濃縮工程で測定したMwが30,000を超えた時点で、反応生成物の排出を行ったこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を製造しようとしたが、ゲル化して、目的とする樹脂は得られなかった。
Comparative Example 4
Although the reaction product was discharged when Mw measured in the vacuum concentration step exceeded 30,000, an attempt was made to produce a benzylic ether type phenol resin in the same manner as in Example 1, The target resin was not obtained due to gelation.
 比較例5
 触媒として、酢酸マンガン(4水和物)の0.49質量部を使用したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 5
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that 0.49 parts by mass of manganese acetate (tetrahydrate) was used as a catalyst.
 比較例6
 触媒として、54%ナフテン酸鉛の1.74質量部を使用したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 6
A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that 1.74 parts by mass of 54% lead naphthenate was used as a catalyst.
 比較例7
 触媒として、モル比で、無水マレイン酸:酸化亜鉛=4:1(無水マレイン酸:フェノールに対して0.32mol%、酸化亜鉛:フェノールに対して0.08mol%)の割合で混合したものを、0.4質量部使用したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 7
As a catalyst, a mixture of maleic anhydride: zinc oxide = 4: 1 (maleic anhydride: 0.32 mol% with respect to phenol, zinc oxide: 0.08 mol% with respect to phenol) in a molar ratio. A benzylic ether type phenol resin was obtained in the same manner as in Example 1 except that 0.4 part by mass was used.
 比較例8
 触媒として、塩化亜鉛の0.11質量部(フェノールに対して0.08mol%)と酢酸マンガンの0.28質量部(フェノールに対して0.11mol%)を使用したこと以外は、実施例1と同様にして、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 8
Example 1 except that 0.11 parts by mass of zinc chloride (0.08 mol% with respect to phenol) and 0.28 parts by mass of manganese acetate (0.11 mol% with respect to phenol) were used as catalysts. In the same manner as above, a benzylic ether type phenol resin was obtained.
 比較例9
 触媒として、塩化亜鉛の0.11質量部と酢酸マンガンの0.28質量部を使用したこと以外は、実施例1と同様にして縮合・濃縮を行い、そしてMwが25,000~30,000の範囲となった時点で、反応容器からの反応生成物の排出を行うことによって、ベンジリックエーテル型フェノール樹脂を得た。
Comparative Example 9
Condensation and concentration were carried out in the same manner as in Example 1 except that 0.11 parts by mass of zinc chloride and 0.28 parts by mass of manganese acetate were used as the catalyst, and the Mw was 25,000 to 30,000. At this point, the reaction product was discharged from the reaction vessel to obtain a benzylic ether type phenol resin.
 比較例10
 還流器、温度計、及び撹拌機を備えた三つ口反応フラスコ内に、フェノールの100質量部、92%パラホルムアルデヒドの58.9質量部、及び触媒の二価金属塩として、ナフテン酸鉛の0.32質量部を仕込み、還流温度で90分間反応を行った後、加熱下に減圧濃縮して、水分含有量が1質量%以下のベンジリックエーテル型フェノール樹脂Aを得た。次いで、その得られたフェノール樹脂Aとノボラック型フェノール樹脂B(旭有機材工業(株):製品名PAPS-PN4)とを、質量比でのA:B=7:3なる割合で、130℃の熱板上で溶融混合して、フェノール樹脂組成物を得た。
Comparative Example 10
In a three-necked reaction flask equipped with a reflux, a thermometer, and a stirrer, 100 parts by mass of phenol, 58.9 parts by mass of 92% paraformaldehyde, and divalent metal salt of the catalyst, lead naphthenate. After charging 0.32 parts by mass and reacting at reflux temperature for 90 minutes, the mixture was concentrated under reduced pressure under heating to obtain a benzylic ether type phenolic resin A having a water content of 1% by mass or less. Subsequently, the obtained phenol resin A and novolak type phenol resin B (Asahi Organic Materials Co., Ltd .: product name PAPS-PN4) were mixed at 130 ° C. at a mass ratio of A: B = 7: 3. The mixture was melted and mixed on a hot plate to obtain a phenol resin composition.
 比較例11
 ノボラック型フェノール樹脂にヘキサメチレンテトラミンを添加してなる市販のフェノール樹脂(旭有機材工業(株)製:製品名KB5006N)を準備した。
Comparative Example 11
A commercially available phenolic resin (manufactured by Asahi Organic Materials Co., Ltd .: product name KB5006N) prepared by adding hexamethylenetetramine to a novolak type phenolic resin was prepared.
-実験1-
 上記の実施例及び比較例で得た各種ベンジリックエーテル型フェノール樹脂について、それぞれ、オルソ化率と、樹脂組成に係るメチレン結合率、ベンジリックエーテル結合率、及びメチロール基率とを測定すると共に、各種特性の評価試験を行った。そして、その得られた結果を、下記表1及び表2に示す。
-Experiment 1
For the various benzylic ether type phenol resins obtained in the above examples and comparative examples, respectively, the orthorization rate and the methylene bond rate, benzylic ether bond rate, and methylol group rate according to the resin composition were measured, Various characteristics were evaluated. The obtained results are shown in Table 1 and Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 かかる表1及び表2の結果より明らかな如く、比較例1~9で得たフェノール樹脂は、(A)ハイオルソ構造を満たしていても、(B)ベンジリックエーテル型フェノール樹脂におけるメチレン結合置換比、ベンジリックエーテル結合置換比、及びメチロール基置換比の合計を100%としたときに、ベンジリックエーテル結合置換比の割合が10.0~40.0%の範囲、且つメチロール基置換比の割合が13.0~40.0%の範囲を満たしていないため、各実施例のベンジリックエーテル型フェノール樹脂に比して、残留炭素率は低くなっている。しかも、実施例1~10は、何れも、残留炭素率60%以上をクリアしていることが認められる。また、比較例10は、(B)の範囲を満たしていても、(A)ハイオルソ構造を満たしていないため、実施例に比べて、残留炭素率は著しく低下している。更に、実施例1、2、5は、フェノール核1モルに対して、メチレン結合の置換比が0.42~0.55モル、ベンジリックエーテル結合の置換比が0.26~0.38モルの範囲内、メチロール基の置換比が0.13~0.20モルの範囲内にあり、このため、他の実施例に比べても、残留炭素率がより高くなっている。 As is clear from the results of Tables 1 and 2, the phenol resins obtained in Comparative Examples 1 to 9 have a methylene bond substitution ratio in (B) a benzylic ether type phenol resin even though they satisfy (A) the high-ortho structure. When the total of the benzylic ether bond substitution ratio and the methylol group substitution ratio is 100%, the ratio of the benzylic ether bond substitution ratio is in the range of 10.0 to 40.0% and the ratio of the methylol group substitution ratio. Does not satisfy the range of 13.0 to 40.0%, the residual carbon ratio is lower than that of the benzylic ether type phenol resin of each example. Moreover, it is recognized that all of Examples 1 to 10 cleared the residual carbon ratio of 60% or more. Moreover, even if the comparative example 10 satisfy | fills the range of (B), since it does not satisfy | fill the (A) high ortho structure, the residual carbon rate has fallen remarkably compared with an Example. Further, in Examples 1, 2, and 5, the substitution ratio of methylene bond is 0.42 to 0.55 mol and the substitution ratio of benzylic ether bond is 0.26 to 0.38 mol with respect to 1 mol of phenol nucleus. In this range, the methylol group substitution ratio is in the range of 0.13 to 0.20 mol, and therefore the residual carbon ratio is higher than in the other examples.
-実験2-
 実施例1のベンジリックエーテル型フェノール樹脂の炭化物と、比較例11のノボラック型フェノール樹脂の炭化物とを製造し、それら炭化物を走査型電子顕微鏡(SEM)にて所定の倍率下で写真撮影して、それぞれの樹脂の緻密化の評価を行った。その結果を、図2及び図3に示す。
-Experiment 2-
The carbide of the benzylic ether type phenolic resin of Example 1 and the carbide of the novolak type phenolic resin of Comparative Example 11 were produced, and these carbides were photographed with a scanning electron microscope (SEM) at a predetermined magnification. The densification of each resin was evaluated. The results are shown in FIGS.
 かかる図2及び図3より、比較例11のノボラック型フェノール樹脂の炭化物には、気泡が多いのに対し、実施例1のベンジリックエーテル型フェノール樹脂の炭化物には、気泡が少なく、緻密な構造を有していることが分かる。 2 and 3, the carbide of the novolac type phenol resin of Comparative Example 11 has many bubbles, whereas the carbide of the benzylic ether type phenol resin of Example 1 has few bubbles and a dense structure. It can be seen that
-実験3-
 実施例1、11、比較例8、11の樹脂を使用して、炭化物を製造した後、電子比重計で炭化物の比重を測定し、それぞれの樹脂炭化物の緻密化(密度)の評価を行った。その結果を下記表3に示す。
-Experiment 3
After producing carbides using the resins of Examples 1 and 11 and Comparative Examples 8 and 11, the specific gravity of the carbides was measured with an electronic hydrometer, and the densification (density) of each resin carbide was evaluated. . The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 かかる表3より、比較例11の硬化剤としてヘキサメチレンテトラミンを使用したノボラック型フェノール樹脂の炭化物は比重が1.0より軽く、比較例8のベンジリックエーテル型フェノール樹脂の炭化物も比重が1.1未満なのに対し、実施例1、11のベンジリックエーテル型フェノール樹脂の炭化物は比重が1.2以上となり、比較例の樹脂よりも緻密な炭化物を形成していることがわかる。 From Table 3, the specific gravity of the novolac type phenol resin carbide using hexamethylenetetramine as the curing agent of Comparative Example 11 is less than 1.0, and the specific weight of the benzic ether type phenol resin carbide of Comparative Example 8 is 1. On the other hand, the carbides of the benzylic ether type phenol resins of Examples 1 and 11 have a specific gravity of 1.2 or more, and it can be seen that a finer carbide is formed than the resin of the comparative example.
-実験4-
 実施例1のベンジリックエーテル型フェノール樹脂の炭化物と、比較例11のフェノールノボラック樹脂の炭化物とを用い、それらのTGチャートを測定し、樹脂の耐酸化性を比較した。その結果を図4に示す。
-Experiment 4
Using the carbide of the benzylic ether type phenolic resin of Example 1 and the carbide of the phenol novolac resin of Comparative Example 11, the TG charts were measured to compare the oxidation resistance of the resins. The result is shown in FIG.
 かかる図4より明らかな如く、炭化物が酸化によって減衰し始める温度は、比較例11のものが554.0℃であるのに対し、実施例1のものは603.7℃となっていることから、本発明に従うベンジリックエーテル型フェノール樹脂では、耐酸化性の向上が認められるのである。
                                                                                
As apparent from FIG. 4, the temperature at which the carbide starts to decay due to oxidation is 554.0 ° C. in Comparative Example 11, whereas that in Example 1 is 603.7 ° C. In the benzylic ether type phenol resin according to the present invention, an improvement in oxidation resistance is observed.

Claims (10)

  1.  オルソ化率が70%以上であるベンジリックエーテル型フェノール樹脂にして、かかる樹脂のフェノール核1モル当たりの置換基比率としてそれぞれ求められるメチレン結合置換比、ベンジリックエーテル結合置換比及びメチロール基置換比の合計を100%としたとき、前記ベンジリックエーテル結合置換比の割合が10.0~40.0%であり、且つ前記メチロール基置換比の割合が13.0~40.0%であることを特徴とするベンジリックエーテル型フェノール樹脂。 A methylene bond substitution ratio, a benzylic ether bond substitution ratio, and a methylol group substitution ratio, each of which is obtained as a ratio of substituents per mole of phenolic nuclei of the resin, with an ortho-conversion rate of 70% or more. The ratio of the benzylic ether bond substitution ratio is 10.0 to 40.0%, and the percentage of the methylol group substitution ratio is 13.0 to 40.0%, where A benzylic ether type phenolic resin.
  2.  前記ベンジリックエーテル結合置換比の割合が20.0~39.5%であり、且つ前記メチロール基置換比の割合が13.5~38.0%であることを特徴とする請求項1に記載のベンジリックエーテル型フェノール樹脂。 The ratio of the benzylic ether bond substitution ratio is 20.0 to 39.5%, and the ratio of the methylol group substitution ratio is 13.5 to 38.0%. Benzyl ether type phenolic resin.
  3.  フェノール核1モルに対して、前記メチレン結合置換比が0.42~0.55モル、前記ベンジリックエーテル結合置換比が0.26~0.38モル及び前記メチロール基置換比が0.13~0.20モルであることを特徴とする請求項1または請求項2に記載のベンジリックエーテル型フェノール樹脂。 The methylene bond substitution ratio is 0.42 to 0.55 mole, the benzylic ether bond substitution ratio is 0.26 to 0.38 mole, and the methylol group substitution ratio is 0.13 to 1 mole of phenol nucleus. The benzylic ether type phenol resin according to claim 1 or 2, wherein the amount is 0.20 mol.
  4.  フェノール類とアルデヒド類とを、二価金属塩を触媒として用いて、反応させて得られたことを特徴とする請求項1乃至請求項3の何れか1項に記載のベンジリックエーテル型フェノール樹脂。 The benzylic ether type phenol resin according to any one of claims 1 to 3, which is obtained by reacting phenols and aldehydes using a divalent metal salt as a catalyst. .
  5.  前記二価金属塩として、塩化亜鉛、酢酸亜鉛、ホウ酸と水酸化亜鉛の混合物、及びホウ酸亜鉛からなる群より選ばれる少なくとも1種が、フェノール類に対して0.1モル%以上の割合で用いられることを特徴とする請求項4に記載のベンジリックエーテル型フェノール樹脂。 As the divalent metal salt, at least one selected from the group consisting of zinc chloride, zinc acetate, a mixture of boric acid and zinc hydroxide, and zinc borate is a ratio of 0.1 mol% or more based on phenols The benzylic ether type phenol resin according to claim 4, which is used in the above.
  6.  前記フェノール類と前記アルデヒド類とのモル比が、1.0:1.0~1.0:2.0であることを特徴とする請求項4または請求項5に記載のベンジリックエーテル型フェノール樹脂。 The benzylic ether type phenol according to claim 4 or 5, wherein a molar ratio of the phenols to the aldehydes is 1.0: 1.0 to 1.0: 2.0. resin.
  7.  重量平均分子量(Mw)が、2,000よりも大きく、30,000よりも小さいことを特徴とする請求項4乃至請求項6の何れか1項に記載のベンジリックエーテル型フェノール樹脂。 The benzylic ether type phenol resin according to any one of claims 4 to 6, wherein the weight average molecular weight (Mw) is larger than 2,000 and smaller than 30,000.
  8.  請求項1乃至請求項7の何れか1項に記載のベンジリックエーテル型フェノール樹脂を必須成分として含有するベンジリックエーテル型フェノール樹脂組成物。 A benzylic ether type phenol resin composition comprising the benzylic ether type phenol resin according to any one of claims 1 to 7 as an essential component.
  9.  請求項1乃至請求項8の何れか1項に記載のベンジリックエーテル型フェノール樹脂又はその樹脂組成物を焼成してなる炭化物。 A carbide formed by firing the benzylic ether type phenolic resin or the resin composition thereof according to any one of claims 1 to 8.
  10.  炭素材料又は耐火性材料の結合に用いられて、目的とする炭素製品又は耐火製品を与える高残留炭素率の結合剤にして、請求項1乃至請求項8の何れか1項に記載のベンジリックエーテル型フェノール樹脂又はその樹脂組成物からなることを特徴とする炭素製品又は耐火製品製造用結合剤。
                                                                                    
    The benzylic resin according to any one of claims 1 to 8, wherein the binder is used for bonding a carbon material or a refractory material to form a binder having a high residual carbon ratio that gives a target carbon product or refractory product. A binder for producing a carbon product or a refractory product, comprising an ether type phenol resin or a resin composition thereof.
PCT/JP2014/056852 2013-03-23 2014-03-14 Benzylic ether-type phenolic resin and resin composition containing same, and binder and carbide each produced using said resin or said resin composition WO2014156713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508298A JPWO2014156713A1 (en) 2013-03-23 2014-03-14 Benzyl ether type phenolic resin, resin composition thereof, and binder and carbide obtained using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-061182 2013-03-23
JP2013061182 2013-03-23

Publications (1)

Publication Number Publication Date
WO2014156713A1 true WO2014156713A1 (en) 2014-10-02

Family

ID=51623695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056852 WO2014156713A1 (en) 2013-03-23 2014-03-14 Benzylic ether-type phenolic resin and resin composition containing same, and binder and carbide each produced using said resin or said resin composition

Country Status (2)

Country Link
JP (1) JPWO2014156713A1 (en)
WO (1) WO2014156713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060874A (en) * 2014-09-19 2016-04-25 旭有機材工業株式会社 Phenol resin molding material
JP2016150975A (en) * 2015-02-17 2016-08-22 アイカSdkフェノール株式会社 Phenol resin, manufacturing method of phenol resin, resin composition and polyurethane foam
CN110606925A (en) * 2014-04-10 2019-12-24 Dic株式会社 Process for producing alkoxylated resol-type phenol resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180745A (en) * 1988-12-28 1990-07-13 Nippon Steel Corp Production of refractory brick bonded with carbon
JPH0531550A (en) * 1991-07-30 1993-02-09 Sumitomo Durez Co Ltd Production of casting mold
JPH07179544A (en) * 1993-12-22 1995-07-18 Asahi Organic Chem Ind Co Ltd Production of solid benzylic ether type phenolic resin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228439A (en) * 1985-04-01 1986-10-11 Fuji Photo Film Co Ltd Photosensitive composition and photosensitive material
JP2006273899A (en) * 2005-03-28 2006-10-12 Sumitomo Bakelite Co Ltd Phenol resin and method for producing the same
JP2007224152A (en) * 2006-02-23 2007-09-06 Sumitomo Bakelite Co Ltd Two-pack type phenolic resin composition
JP2007258107A (en) * 2006-03-24 2007-10-04 Asahi Organic Chem Ind Co Ltd Carbonaceous molding material capable of providing excellent molding characteristic, and separator for polymer electrolyte fuel cell provided by using it
JP2009227817A (en) * 2008-03-24 2009-10-08 Sumitomo Bakelite Co Ltd Phenol resin composition, its manufacturing method, and friction material
US8742056B2 (en) * 2010-03-25 2014-06-03 Sumitomo Bakelite Co., Ltd. Solid resol-type phenolic resin and method of manufacturing the same
WO2011118469A1 (en) * 2010-03-26 2011-09-29 日本碍子株式会社 Carbon film and method for pervaporation separation
JP2013249402A (en) * 2012-06-01 2013-12-12 Sumitomo Bakelite Co Ltd Rubber composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180745A (en) * 1988-12-28 1990-07-13 Nippon Steel Corp Production of refractory brick bonded with carbon
JPH0531550A (en) * 1991-07-30 1993-02-09 Sumitomo Durez Co Ltd Production of casting mold
JPH07179544A (en) * 1993-12-22 1995-07-18 Asahi Organic Chem Ind Co Ltd Production of solid benzylic ether type phenolic resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606925A (en) * 2014-04-10 2019-12-24 Dic株式会社 Process for producing alkoxylated resol-type phenol resin
JP2016060874A (en) * 2014-09-19 2016-04-25 旭有機材工業株式会社 Phenol resin molding material
JP2016150975A (en) * 2015-02-17 2016-08-22 アイカSdkフェノール株式会社 Phenol resin, manufacturing method of phenol resin, resin composition and polyurethane foam

Also Published As

Publication number Publication date
JPWO2014156713A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JPWO2014069124A1 (en) Resin composition and precursor of carbon fiber reinforced composite material, carbon fiber reinforced composite material, and carbon fiber reinforced carbon material obtained using the same
JP5208676B2 (en) Refractory composition
WO2014156713A1 (en) Benzylic ether-type phenolic resin and resin composition containing same, and binder and carbide each produced using said resin or said resin composition
JPH02182744A (en) Binder composition containing both low-molecular weight poly(orthomethylol) phenolic compound and novolak resin
JP6631755B2 (en) Phenolic resin composition for forming resin-coated sand, resin-coated sand, core for casting, and method for producing phenolic resin / resin-coated sand / casting / casting product
JP5938037B2 (en) Process for producing urea-modified novolak-type phenolic resin, urea-modified novolak-type phenolic resin obtained thereby, and resin-coated sand obtained using the same
JP3518610B2 (en) Phenolic resin composition for refractories
JP2021187979A (en) Phenol resin composition for monolithic refractory
JP7236218B2 (en) Binder composition for mold making
JP2019094397A (en) Phenol resin composition and refractory
WO2019202914A1 (en) Titanate-modified phenolic resin composition production method, titanate-modified phenolic resin composition, phenolic resin composition for friction material, and friction material
JP2017071517A (en) Refractory composition and refractory
JP2013170171A (en) Thermosetting resin composition and friction material
JP2013046919A (en) Phenolic resin binder for shell mold and resin-coated sand for shell mold
JP4337431B2 (en) Binder composition for amorphous refractories
JP2005240026A (en) Resin composition for molding, and molding material containing the same
RU2337926C2 (en) Polycondensation products, method of their production and their application
JP2006083318A (en) Phenol resin composition and method for producing the same
JP2006089662A (en) Resin composition for binding of refractory material and refractory product
JP2016060874A (en) Phenol resin molding material
US20230303821A1 (en) Phenolic resin compositions as binders in refractory articles
JP2019094396A (en) Phenol resin composition and refractory
JP2006193538A (en) Phenol resin composition for friction material and method for producing the same
JP4706166B2 (en) Regular refractory composition and regular refractory
JP2021031590A (en) Phenol resin molding material and sliding component using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773210

Country of ref document: EP

Kind code of ref document: A1