WO2014156464A1 - Method for manufacturing electrode sheet for lithium-ion secondary battery - Google Patents

Method for manufacturing electrode sheet for lithium-ion secondary battery Download PDF

Info

Publication number
WO2014156464A1
WO2014156464A1 PCT/JP2014/055024 JP2014055024W WO2014156464A1 WO 2014156464 A1 WO2014156464 A1 WO 2014156464A1 JP 2014055024 W JP2014055024 W JP 2014055024W WO 2014156464 A1 WO2014156464 A1 WO 2014156464A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
ion secondary
secondary battery
press roll
base material
Prior art date
Application number
PCT/JP2014/055024
Other languages
French (fr)
Japanese (ja)
Inventor
祐二 柴田
和幸 大西
英司 折坂
一裕 鈴木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020157014505A priority Critical patent/KR102227863B1/en
Priority to CN201480014224.6A priority patent/CN105190957B/en
Publication of WO2014156464A1 publication Critical patent/WO2014156464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a sheet for a lithium ion secondary battery electrode in which a powder containing an electrode active material or the like is compression molded to produce a sheet for a lithium ion secondary battery electrode.
  • Lithium ion secondary batteries have a high energy density and are used in the fields of mobile phones and laptop computers. However, with the expansion and development of applications, further improvements in performance, such as lower resistance and higher capacity, have been achieved. It has been demanded.
  • a lithium ion secondary battery electrode can be obtained as an electrode sheet.
  • a powder rolling apparatus is used to compress a powder to produce a rolled sheet such as an electrode sheet from a powder containing an electrode active material. It has been broken.
  • a powder rolling device a rolled sheet is obtained by continuously compression-molding powder supplied between a pair of press rolls on a substrate.
  • it is required to manufacture a highly accurate rolled sheet that is a thin film and has little variation in density distribution and film thickness distribution.
  • Patent Document 1 discloses forming a rolled sheet using a rolling device in which a pre-rolling roll is provided above one of a pair of pressing rolls and a pair of pressing rolls.
  • the thickness of the rolled sheet obtained by adjusting the speed ratio between the press roll on the side provided with the preliminary reduction roll and the preliminary reduction roll is controlled. That is, when the peripheral speed of the press roll is constant, the rolled sheet obtained when the rotational speed of the preliminary reduction roll is slowed down, and the rolled sheet obtained when the peripheral speed of the preliminary reduction roll is increased becomes thick.
  • the thickness of the rolling sheet obtained by changing the rotational speed of a pair of press roll is adjusted.
  • a preliminary reduction roll which is a member for adjusting the film thickness of the rolled sheet, must be provided. Further, when the rotation speed of the pair of press rolls is changed, the speed of the production line is increased. Since it could not be kept constant, production capacity was affected.
  • An object of the present invention is to provide a method for producing a sheet for a lithium ion secondary battery electrode that does not affect the production capacity and can control the basis weight of the powder on the substrate by simple means. is there.
  • a rolling device capable of differentiating the rotational speed of one press roll and the other press roll out of a pair of press rolls arranged in parallel with the rotation axis, A rolling step of forming an electrode composition layer on the substrate by compression-molding the powder on a substrate having a coefficient of friction with the powder within a predetermined range; A measuring step for measuring the basis weight of the powder, and a changing step for changing a speed ratio of the rotational speed of the one press roll to the rotational speed of the other press roll based on the measurement result of the measuring step; A method for producing a sheet for a lithium ion secondary battery electrode, comprising: (2) The lithium ion secondary battery according to (1), wherein a speed ratio of a rotation speed of the one press roll to a rotation speed of the other press roll is changed in a range of 10 to 300%.
  • Manufacturing method of electrode sheet (3) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the substrate has a surface roughness Ra of 0.1 to 5 ⁇ m, (4) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the substrate has an adhesive layer on the surface on which the electrode composition layer is formed, (5) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the surface of the substrate is surface-modified. (6) The lithium ion according to any one of (1) to (5), wherein the powder is composite particles obtained by granulating a component containing an electrode active material and a binder. A method for producing a secondary battery electrode sheet is provided.
  • the amount of powder applied to the base material can be controlled by simple means without affecting the production capacity.
  • FIG. 1 is a diagram showing an outline of a powder rolling apparatus used in a method for producing a sheet for a lithium ion secondary battery electrode according to an embodiment.
  • the powder rolling apparatus 2 includes a press roll 4 including a pair of rolls 4 ⁇ / b> A and 4 ⁇ / b> B in which rotating shafts 14 ⁇ / b> A and 14 ⁇ / b> B are arranged horizontally and in parallel, and a rolling compacted by the press roll 4.
  • a film thickness detection sensor 8 that measures the thickness of the sheet 6, a control unit 10 that controls the entire apparatus, an input of a target film thickness of the obtained sheet-like molded product 28 of the rolled sheet 6 and an instruction to start production of the rolled sheet 6.
  • the rolls 4A and 4B of the press roll 4 each bite the powder 20 stored in the space formed by the press roll 4 and the partition plate 26 by rotating in the arrow direction shown in FIG.
  • the body 20 is compressed to one surface of the backup base material 22 to form a sheet-like molded product 28.
  • the film thickness detection sensor 8 can be a pinching type, a contact type or the like, and the detection method is laser type, X-ray type, infrared type, beta ray type, overcurrent type, electromagnetic type, ultrasonic wave. Formula, optical type, etc. can be used.
  • the control unit 10 controls the rotation driving unit 16A, 16B
  • the rolls 4A and 4B of the press roll 4 are rotated in the direction of the arrow shown in FIG.
  • the speed at which the rotation driving unit 16A rotates the roll 4A is a speed corresponding to the conveyance speed of the backup base material 22. That is, the rotation driving unit 16A rotates the roll 4A at a rotation speed corresponding to the speed of the production line of the rolled sheet 6. Further, the rotation drive unit 16B rotates the roll 4B at a rotation speed corresponding to the input target film thickness. Therefore, the rotational speeds of the roll 4A and the roll 4B may be the same speed or different speeds.
  • the speed ratio of the rotation speed of the one press roll to the rotation speed of the other press roll can be changed in the range of 1 to 500%, preferably 10 to 300%.
  • the relationship between the rotation speed of each of the rolls 4A and 4B and the film thickness of the sheet-like molded product 28 in the obtained rolled sheet 6 is measured in advance and stored in the control unit 10.
  • the relationship between the basis weight and the film thickness of the powder 20 that is compression-molded on the backup base material 22 by the press roll 4 is also stored in the control unit 10 in advance.
  • control unit 10 compares the target film thickness T D input via the operation unit 12 with the film thickness T A of the sheet-like molded product 28 obtained based on the output from the film thickness detection sensor 8. Then, the rotation drive unit 16B is controlled to change the rotation speed of the roll 4B.
  • the higher the rotational speed of the roll 4B the smaller the biting amount of the powder 20, and the thinner the rolled sheet 6 (sheet-like molded product 28) can be made. .
  • the control unit 10 controls the rotation driving unit 16B to decrease the rotation speed of the roll 4B.
  • the control unit 10 controls the rotation driving unit 16B to increase the rotation speed of the roll 4B.
  • the control unit 10 does not change the rotational speed of the rolls 4B which controls the rotation driving unit 16B.
  • the rotation speed of the roll 4B is set to 1 to 500%, preferably 10 to 300% of the rotation speed of the roll 4A. %.
  • the backup substrate 22 may be a thin film substrate, and usually has a thickness of 1 ⁇ m to 1000 ⁇ m, preferably 5 ⁇ m to 100 ⁇ m.
  • metal foil or carbon such as aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, and other alloys, conductive polymer, paper, natural fiber, polymer fiber, fabric, polymer Resin film etc. are mentioned, It can select suitably according to the objective.
  • the polymer resin film include polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, plastic films and sheets including polyimide, polypropylene, polyphenylene sulfide, polyvinyl chloride, aramid film, PEN, PEEK, and the like. It is done.
  • metal foil, carbon, and a conductive polymer can be used as the backup base material 22, and metal is used suitably. Used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the backup base material 22 a base material that has been treated so that the coefficient of friction with the powder 20 such as composite particles described later is within a predetermined range is used.
  • a roughening process of the backup base material 22, a surface modification process of the backup base material 22 by corona discharge, a process of providing an adhesive layer on the surface of the backup base material 22, and the like can be used.
  • such a process should just be performed to the surface by which the sheet-like molding 28 of the backup base material 22 is formed at least.
  • the surface roughness Ra of the roughened surface is preferably 0.1 to 5 ⁇ m from the viewpoint of adhesion between the powder 20 and the backup substrate 22,
  • the range is more preferably 0.2 to 3 ⁇ m, and still more preferably 0.2 to 1 ⁇ m.
  • the surface roughness Ra can be calculated according to the following formula by drawing a roughness curve using, for example, a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation) in accordance with JIS B0601.
  • L is the measurement length
  • x is the deviation from the average line to the measurement curve.
  • the method for roughening the surface of the backup base material 22 is not particularly limited, a method for embossing the surface of the backup base material 22, a method for sandblasting the surface of the backup base material 22, and a material constituting the backup base material 22. And a method of coating the surface of the backup substrate 22 with a layer containing the mat material. Among these, a method of sandblasting the surface of the backup base material 22 from the viewpoint of adhesion with the composite particles used as the powder 20 is preferable.
  • Examples of the powder 20 stored in the space formed by the press roll 4 and the partition plate 26 include composite particles containing an electrode active material.
  • the composite particles include an electrode active material and a binder, and may include other dispersants, conductive materials, and additives as necessary.
  • the obtained rolled sheet 6 can be used as an electrode layer made of an electrode material.
  • examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions.
  • metal oxides include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate.
  • the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • the active material of the negative electrode as the counter electrode of the positive electrode for lithium ion secondary batteries includes low-crystalline carbon (amorphous carbon) such as graphitizable carbon, non-graphitizable carbon, pyrolytic carbon, graphite ( Natural graphite, artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate.
  • low-crystalline carbon amorphous carbon
  • graphitizable carbon such as graphitizable carbon, non-graphitizable carbon, pyrolytic carbon
  • graphite Natural graphite, artificial graphite
  • alloy materials such as tin and silicon
  • oxides such as silicon oxide, tin oxide, and lithium titanate.
  • the electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • the shape of the electrode active material for the lithium ion secondary battery electrode is preferably a granulated particle.
  • the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material for the lithium ion secondary battery electrode is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 0.8 to 30 ⁇ m for both the positive electrode and the negative electrode.
  • the binder used for the composite particles is not particularly limited as long as it is a compound capable of binding the electrode active materials to each other.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include high molecular compounds such as silicon polymers, fluorine-containing polymers, conjugated diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, and preferably fluorine-containing polymers. Polymers, conjugated diene polymers and acrylate polymers, more preferably conjugated diene polymers and acrylate polymers.
  • the shape of the dispersion-type binder is not particularly limited, but is preferably particulate.
  • the binding property is good, and it is possible to suppress deterioration of the capacity of the manufactured electrode and deterioration due to repeated charge and discharge.
  • the particulate binder include those in which the particles of the binder such as latex are dispersed in water, and particulates obtained by drying such a dispersion.
  • the amount of the binder is sufficient with respect to 100 parts by weight of the electrode active material from the viewpoint of ensuring sufficient adhesion between the obtained electrode active material layer and the current collector and reducing the internal resistance.
  • the amount is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight based on the dry weight.
  • a dispersant may be used for the composite particles as necessary.
  • the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium salts or alkali metal salts thereof, polyvinyl alcohol, and the like. These dispersants can be used alone or in combination of two or more.
  • a conductive material may be used for the composite particles as necessary.
  • the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (a registered trademark of Akzo Nobel Chemicals, Besloten, Fennaut Shap). Among these, acetylene black and ketjen black are preferable. These conductive materials can be used alone or in combination of two or more.
  • the composite particles are obtained by granulating using an electrode active material, a binder, and other components such as the conductive material added as necessary, and include at least an electrode active material and a binder, Each of the above does not exist as an independent particle, but forms one particle by two or more components including an electrode active material and a binder as constituent components. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by combining a plurality of individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
  • the production method of the composite particles is not particularly limited, and can be produced by a known granulation method such as a fluidized bed granulation method, a spray drying granulation method, or a rolling bed granulation method.
  • the volume average particle diameter of the composite particles is usually in the range of 0.1 to 1000 ⁇ m, preferably 1 to 500 ⁇ m, more preferably 30 to 250 ⁇ m from the viewpoint of easily obtaining an electrode active material layer having a desired thickness.
  • the average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
  • the basis weight of the powder on the substrate can be controlled by simple means without affecting the production capacity.
  • an electrode sheet with a low basis weight, that is, a thin film electrode sheet can be produced.
  • the slurry for composite particles was obtained by mixing and dispersing.
  • the obtained composite particle slurry was sprayed using a spray dryer (Okawara Chemical Co., Ltd.) and a rotating disk atomizer (diameter 65 mm), rotating at 25,000 rpm, hot air temperature 160 ° C., particle recovery.
  • Spray drying granulation was performed under conditions of an outlet temperature of 90 ° C. to obtain composite particles for a negative electrode.
  • the obtained composite particles had a volume average particle diameter of 70 ⁇ m.
  • a rolled sheet 6 was prepared using composite particles having a particle diameter of 70 ⁇ m as the powder 20 and a roll gap between the rolls 4A and 4B of 0.1 mm. . Further, a PET film having a thickness of 50 ⁇ m and a surface roughness Ra of 0.35 ⁇ m, the surface of which was subjected to sandblasting as the backup base material 22 was used.
  • the rotation speed of the roll 4A of the press roll 4 (conveyance speed of the backup base material 22) is 5 m / min
  • the rotation speed of the roll 4B is 4 m / min, 5 m / min, 6 m / min, 7.5 m / min.
  • Production of the sheet-like molded product 28 was performed at min and 10 m / min, respectively.
  • the composite particles and the aluminum foil (backup base material) are put into the powder rolling device 2, and the amount of the powder (weight per unit weight) applied to the PET film by the press roll 4 Amount, unit: mg / cm 2 ).
  • the results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

A method for manufacturing an electrode sheet for a lithium-ion secondary battery comprises: a rolling process for forming an electrode composition layer (28) by compression-molding a powder onto a base material (22) using a rolling device (2) having a pair of press rolls (4A, 4B) with rotary shafts arranged parallel to each other, and capable of rotating one press roll (4B) and the other press roll (4A) at different speeds, where the frictional coefficient between the base material (22) and the powder is within a prescribed range; a measurement process for measuring a powder weight per unit area to the base material during the rolling process; and an alteration process for altering the speed ratio of the one press roll to the other press roll on the basis of the measurement results obtained from the measurement process.

Description

リチウムイオン二次電池電極用シートの製造方法Method for producing sheet for lithium ion secondary battery electrode
 本発明は、電極活物質等を含む粉体を圧縮成形してリチウムイオン二次電池電極用シートを製造するリチウムイオン二次電池電極用シートの製造方法に関するものである。 The present invention relates to a method for producing a sheet for a lithium ion secondary battery electrode in which a powder containing an electrode active material or the like is compression molded to produce a sheet for a lithium ion secondary battery electrode.
 小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン二次電池は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン二次電池は、エネルギー密度が大きく携帯電話やノート型パソコン等の分野で利用されているが、用途の拡大や発展に伴い、低抵抗化、大容量化等、より一層の性能向上が求められている。 Demand for lithium-ion secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged is expected to increase in the future from the environmental viewpoint. Lithium ion secondary batteries have a high energy density and are used in the fields of mobile phones and laptop computers. However, with the expansion and development of applications, further improvements in performance, such as lower resistance and higher capacity, have been achieved. It has been demanded.
 リチウムイオン二次電池電極は電極シートとして得ることができ、例えば、電極活物質を含む粉体から電極シート等の圧延シートを製造するために粉体圧延装置を用いた粉体の圧縮成形が行われている。粉体圧延装置では一対のプレス用ロールのロール間に供給される粉体を基材上に連続的に圧縮成形することにより圧延シートが得られる。ここで、圧延シートを製造する際には、薄膜であり、かつ、密度分布、膜厚分布のばらつきが少ない、精度のよい圧延シートを製造することが求められる。 A lithium ion secondary battery electrode can be obtained as an electrode sheet. For example, a powder rolling apparatus is used to compress a powder to produce a rolled sheet such as an electrode sheet from a powder containing an electrode active material. It has been broken. In a powder rolling device, a rolled sheet is obtained by continuously compression-molding powder supplied between a pair of press rolls on a substrate. Here, when manufacturing a rolled sheet, it is required to manufacture a highly accurate rolled sheet that is a thin film and has little variation in density distribution and film thickness distribution.
 例えば、特許文献1においては、一対のプレス用ロールと一対のプレス用ロールの一方の上方に予備圧下ロールを設けた圧延装置を用いて圧延シートを成形することが開示されている。この圧延装置においては、予備圧下ロールが設けられた側のプレス用ロールと予備圧下ロールの速度比率を調整することで得られる圧延シートの厚さを制御している。即ち、プレス用ロールの周速度が一定である場合に、予備圧下ロールの回転速度を遅くすると得られる圧延シートは薄くなり、予備圧下ロールの周速度を速くすると得られる圧延シートは厚くなる。さらに、特許文献1においては、一対のプレス用ロールの回転速度を変化させることで得られる圧延シートの厚さを調節している。 For example, Patent Document 1 discloses forming a rolled sheet using a rolling device in which a pre-rolling roll is provided above one of a pair of pressing rolls and a pair of pressing rolls. In this rolling apparatus, the thickness of the rolled sheet obtained by adjusting the speed ratio between the press roll on the side provided with the preliminary reduction roll and the preliminary reduction roll is controlled. That is, when the peripheral speed of the press roll is constant, the rolled sheet obtained when the rotational speed of the preliminary reduction roll is slowed down, and the rolled sheet obtained when the peripheral speed of the preliminary reduction roll is increased becomes thick. Furthermore, in patent document 1, the thickness of the rolling sheet obtained by changing the rotational speed of a pair of press roll is adjusted.
特許第3873719号公報Japanese Patent No. 3873719
 しかし、この圧延装置においては、圧延シートの膜厚を調整するための部材である予備圧下ロールを設けなければならず、さらに、一対のプレス用ロールの回転速度を変化させると生産ラインの速度が一定に保てないため生産能力に影響を及ぼしていた。 However, in this rolling apparatus, a preliminary reduction roll, which is a member for adjusting the film thickness of the rolled sheet, must be provided. Further, when the rotation speed of the pair of press rolls is changed, the speed of the production line is increased. Since it could not be kept constant, production capacity was affected.
 本発明の目的は、生産能力に影響を及ぼさず、簡易な手段により基材への粉体の目付け量の制御を行うことができるリチウムイオン二次電池電極用シートの製造方法を提供することである。 An object of the present invention is to provide a method for producing a sheet for a lithium ion secondary battery electrode that does not affect the production capacity and can control the basis weight of the powder on the substrate by simple means. is there.
 本発明者らは、鋭意検討の結果、粉体と基材との摩擦係数を所定範囲とし、また、一方のプレス用ロールの回転速度を他方のプレス用ロールの回転速度に対して変更することにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of diligent study, the inventors set the coefficient of friction between the powder and the base material within a predetermined range, and change the rotation speed of one press roll relative to the rotation speed of the other press roll. Thus, the inventors have found that the above object can be achieved and have completed the present invention.
 即ち、本発明によれば、
(1) 回転軸が平行に配置された一対のプレス用ロールのうちの一方のプレス用ロールの回転速度と他方のプレス用ロールの回転速度とを異ならせることが可能な圧延装置を用いて、粉体との摩擦係数が所定の範囲である基材上に前記粉体を圧縮成形することにより前記基材上に電極組成物層を成形する圧延工程と、前記圧延工程における前記基材に対する前記粉体の目付量を測定する測定工程と、前記測定工程による測定結果に基づいて、前記一方のプレス用ロールの回転速度の前記他方のプレス用ロールの回転速度に対する速度比を変更する変更工程とを含むことを特徴とするリチウムイオン二次電池電極用シートの製造方法、
(2) 前記一方のプレス用ロールの回転速度の前記他方のプレス用ロールの回転速度に対する速度比を10~300%の範囲で変更することを特徴とする(1)記載のリチウムイオン二次電池電極用シートの製造方法、
(3) 前記基材の表面粗度Raが、0.1~5μmであることを特徴とする(1)記載のリチウムイオン二次電池電極用シートの製造方法、
(4) 前記基材は、前記電極組成物層が成形される側の表面に接着剤層を有することを特徴とする(1)記載のリチウムイオン二次電池電極用シートの製造方法、
(5) 前記基材の表面は、表面改質されていることを特徴とする(1)記載のリチウムイオン二次電池電極用シートの製造方法、
(6) 前記粉体は、電極活物質および結着材を含む成分を造粒することにより得られる複合粒子であることを特徴とする(1)~(5)の何れかに記載のリチウムイオン二次電池電極用シートの製造方法
が提供される。
That is, according to the present invention,
(1) Using a rolling device capable of differentiating the rotational speed of one press roll and the other press roll out of a pair of press rolls arranged in parallel with the rotation axis, A rolling step of forming an electrode composition layer on the substrate by compression-molding the powder on a substrate having a coefficient of friction with the powder within a predetermined range; A measuring step for measuring the basis weight of the powder, and a changing step for changing a speed ratio of the rotational speed of the one press roll to the rotational speed of the other press roll based on the measurement result of the measuring step; A method for producing a sheet for a lithium ion secondary battery electrode, comprising:
(2) The lithium ion secondary battery according to (1), wherein a speed ratio of a rotation speed of the one press roll to a rotation speed of the other press roll is changed in a range of 10 to 300%. Manufacturing method of electrode sheet,
(3) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the substrate has a surface roughness Ra of 0.1 to 5 μm,
(4) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the substrate has an adhesive layer on the surface on which the electrode composition layer is formed,
(5) The method for producing a sheet for a lithium ion secondary battery electrode according to (1), wherein the surface of the substrate is surface-modified.
(6) The lithium ion according to any one of (1) to (5), wherein the powder is composite particles obtained by granulating a component containing an electrode active material and a binder. A method for producing a secondary battery electrode sheet is provided.
 本発明に係るリチウムイオン二次電池電極用シートの製造方法によれば、生産能力に影響を及ぼさず、簡易な手段により基材への粉体の目付け量の制御を行うことができる。 According to the method for manufacturing a sheet for a lithium ion secondary battery electrode according to the present invention, the amount of powder applied to the base material can be controlled by simple means without affecting the production capacity.
本発明の実施の形態に係る粉体圧延装置の概略を示す図である。It is a figure which shows the outline of the powder rolling apparatus which concerns on embodiment of this invention.
 以下、図面を参照して本発明の実施の形態に係るリチウムイオン二次電池電極用シートの製造方法について説明する。図1は、実施の形態に係るリチウムイオン二次電池電極用シートの製造方法に用いる粉体圧延装置の概略を示す図である。図1に示すように、粉体圧延装置2は、回転軸14A,14Bが水平かつ平行に配列された一対のロール4A,4Bを含むプレス用ロール4、プレス用ロール4により圧縮成形された圧延シート6の厚さを測定する膜厚検出センサ8、装置全体の制御を行う制御部10、得られる圧延シート6のシート状成形物28の目標膜厚の入力や圧延シート6の製造開始指示を受け付ける操作部12、プレス用ロール4のロール4Aを回転軸14Aを中心に回転させるモータ等を有する回転駆動部16A、ロール4Bを回転軸14Bを中心に回転させるモータ等を有する回転駆動部16Bを備えている。 Hereinafter, a method for producing a sheet for a lithium ion secondary battery electrode according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a powder rolling apparatus used in a method for producing a sheet for a lithium ion secondary battery electrode according to an embodiment. As shown in FIG. 1, the powder rolling apparatus 2 includes a press roll 4 including a pair of rolls 4 </ b> A and 4 </ b> B in which rotating shafts 14 </ b> A and 14 </ b> B are arranged horizontally and in parallel, and a rolling compacted by the press roll 4. A film thickness detection sensor 8 that measures the thickness of the sheet 6, a control unit 10 that controls the entire apparatus, an input of a target film thickness of the obtained sheet-like molded product 28 of the rolled sheet 6 and an instruction to start production of the rolled sheet 6. An operation unit 12 to receive, a rotation drive unit 16A having a motor and the like for rotating the roll 4A of the press roll 4 around the rotation shaft 14A, and a rotation drive unit 16B having a motor and the like for rotating the roll 4B around the rotation shaft 14B. I have.
 ここで、プレス用ロール4のロール4A,4Bはそれぞれ図1に示す矢印方向へ回転することによりプレス用ロール4と仕切板26により形成された空間に貯槽された粉体20を咬み込み、粉体20をバックアップ基材22の一方の面に圧縮してシート状成形物28を成形する。 Here, the rolls 4A and 4B of the press roll 4 each bite the powder 20 stored in the space formed by the press roll 4 and the partition plate 26 by rotating in the arrow direction shown in FIG. The body 20 is compressed to one surface of the backup base material 22 to form a sheet-like molded product 28.
 また、膜厚検出センサ8としては挟み込みタイプ、接触タイプ等のものを用いることができ、検出方式としてはレーザ式、X線式、赤外線式、ベータ線式、過電流式、電磁式、超音波式、光学式等を用いることができる。 Further, the film thickness detection sensor 8 can be a pinching type, a contact type or the like, and the detection method is laser type, X-ray type, infrared type, beta ray type, overcurrent type, electromagnetic type, ultrasonic wave. Formula, optical type, etc. can be used.
 次に、粉体圧延装置2により圧延シート6を製造する手順について説明する。操作部12を介して圧延シート6のシート状成形物28の目標膜厚TDの入力および圧延シート6の製造開始指示が行われると、制御部10は回転駆動部16A,16Bを制御して、プレス用ロール4のロール4A,4Bを図1に示す矢印方向に回転させる。 Next, a procedure for manufacturing the rolled sheet 6 by the powder rolling device 2 will be described. When the input and production start instruction rolled sheet 6 of the target thickness T D of the sheet-like molding 28 of the rolled sheet 6 via the operation unit 12 is performed, the control unit 10 controls the rotation driving unit 16A, 16B The rolls 4A and 4B of the press roll 4 are rotated in the direction of the arrow shown in FIG.
 ここで、回転駆動部16Aがロール4Aを回転させる速度はバックアップ基材22の搬送速度に応じた速度である。即ち、回転駆動部16Aは圧延シート6の生産ラインの速度に応じた回転速度でロール4Aを回転させる。また、回転駆動部16Bは入力された目標膜厚に応じた回転速度でロール4Bを回転させる。従って、ロール4Aとロール4Bの回転速度は、同一の速度であっても、異なる速度であってもよい。前記一方のプレス用ロールの回転速度の前記他方のプレス用ロールの回転速度に対する速度比は、1~500%、好ましくは10~300%の範囲で変更できる。 Here, the speed at which the rotation driving unit 16A rotates the roll 4A is a speed corresponding to the conveyance speed of the backup base material 22. That is, the rotation driving unit 16A rotates the roll 4A at a rotation speed corresponding to the speed of the production line of the rolled sheet 6. Further, the rotation drive unit 16B rotates the roll 4B at a rotation speed corresponding to the input target film thickness. Therefore, the rotational speeds of the roll 4A and the roll 4B may be the same speed or different speeds. The speed ratio of the rotation speed of the one press roll to the rotation speed of the other press roll can be changed in the range of 1 to 500%, preferably 10 to 300%.
 ここで、ロール4A及びロール4Bのそれぞれの回転速度と得られる圧延シート6におけるシート状成形物28の膜厚との関係は、予め測定して制御部10に記憶されている。また、プレス用ロール4によりバックアップ基材22に圧縮成形される粉体20の目付け量と膜厚との関係も予め制御部10に記憶されている。 Here, the relationship between the rotation speed of each of the rolls 4A and 4B and the film thickness of the sheet-like molded product 28 in the obtained rolled sheet 6 is measured in advance and stored in the control unit 10. The relationship between the basis weight and the film thickness of the powder 20 that is compression-molded on the backup base material 22 by the press roll 4 is also stored in the control unit 10 in advance.
 プレス用ロール4を回転させることにより粉体20の圧縮成形を開始すると、プレス用ロール4と仕切板26とにより形成された空間に貯槽された粉体20は、プレス用ロール4に咬み込まれバックアップ基材22の一方の面に圧縮成形される。即ち、シート状成形物28がバックアップ基材22に積層された圧延シート6が得られる。 When the compression molding of the powder 20 is started by rotating the press roll 4, the powder 20 stored in the space formed by the press roll 4 and the partition plate 26 is bitten by the press roll 4. Compression molding is performed on one surface of the backup base material 22. That is, the rolled sheet 6 in which the sheet-like molded product 28 is laminated on the backup base material 22 is obtained.
 次に、制御部10は、操作部12を介して入力された目標膜厚TDと膜厚検出センサ8からの出力に基づいて求められるシート状成形物28の膜厚TAとを比較し、回転駆動部16Bを制御してロール4Bの回転速度を変更させる。ここで、ロール4Bの回転速度が速くなるほど、粉体20の咬み込み量を小さくすることができ、得られる圧延シート6(シート状成形物28)の厚み(膜厚)を薄くすることができる。 Next, the control unit 10 compares the target film thickness T D input via the operation unit 12 with the film thickness T A of the sheet-like molded product 28 obtained based on the output from the film thickness detection sensor 8. Then, the rotation drive unit 16B is controlled to change the rotation speed of the roll 4B. Here, the higher the rotational speed of the roll 4B, the smaller the biting amount of the powder 20, and the thinner the rolled sheet 6 (sheet-like molded product 28) can be made. .
 従って、目標膜厚TDよりもシート状成形物28の膜厚TAの方が薄い場合には、制御部10は回転駆動部16Bを制御して、ロール4Bの回転速度を低下させる。一方、目標膜厚TDよりもシート状成形物28の膜厚TAの方が厚い場合には、制御部10は回転駆動部16Bを制御して、ロール4Bの回転速度を増加させる。また、目標膜厚TDとシート状成形物28の膜厚TAが一致する場合には、制御部10は回転駆動部16Bを制御したロール4Bの回転速度の変更を行わない。ここで、制御部10は回転駆動部16Bを制御してロール4Bの回転速度を変更させる際に、ロール4Bの回転速度を、ロール4Aの回転速度の、1~500%、好ましくは10~300%とする。 Therefore, when the film thickness T A of the sheet-like molded product 28 is smaller than the target film thickness T D , the control unit 10 controls the rotation driving unit 16B to decrease the rotation speed of the roll 4B. On the other hand, when the film thickness T A of the sheet-like molded product 28 is thicker than the target film thickness T D , the control unit 10 controls the rotation driving unit 16B to increase the rotation speed of the roll 4B. Further, when the thickness T A of the target thickness T D and the sheet-shaped molded product 28 match, the control unit 10 does not change the rotational speed of the rolls 4B which controls the rotation driving unit 16B. Here, when the control unit 10 controls the rotation driving unit 16B to change the rotation speed of the roll 4B, the rotation speed of the roll 4B is set to 1 to 500%, preferably 10 to 300% of the rotation speed of the roll 4A. %.
 バックアップ基材22としては、薄いフィルム状の基材であればよく、通常、厚さ1μm~1000μm、好ましくは5μm~100μmである。バックアップ基材22としては、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金などの金属箔または炭素、導電性高分子、紙、天然繊維、高分子繊維、布帛、高分子樹脂フィルムなどが挙げられ、目的に応じて適宜選択することができる。高分子樹脂フィルムとしては、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル樹脂フィルム、ポリイミド、ポリプロピレン、ポリフェニレンサルファイド、ポリ塩化ビニル、アラミドフィルム、PEN、PEEK等を含んで構成されるプラスチックフィルム、シート等が挙げられる。 The backup substrate 22 may be a thin film substrate, and usually has a thickness of 1 μm to 1000 μm, preferably 5 μm to 100 μm. As the backup substrate 22, metal foil or carbon such as aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, and other alloys, conductive polymer, paper, natural fiber, polymer fiber, fabric, polymer Resin film etc. are mentioned, It can select suitably according to the objective. Examples of the polymer resin film include polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, plastic films and sheets including polyimide, polypropylene, polyphenylene sulfide, polyvinyl chloride, aramid film, PEN, PEEK, and the like. It is done.
 これらの中でも、圧延シート6として、リチウムイオン二次電池電極用シートを製造する場合には、バックアップ基材22として、金属箔または炭素、導電性高分子を用いることができ、好適には金属が用いられる。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用することが好ましい。 Among these, when manufacturing the sheet | seat for lithium ion secondary battery electrodes as the rolled sheet 6, metal foil, carbon, and a conductive polymer can be used as the backup base material 22, and metal is used suitably. Used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
 また、バックアップ基材22としては、後述する複合粒子等の粉体20との摩擦係数が所定の範囲となるように処理されている基材を用いる。このような処理としては、バックアップ基材22の粗面化処理、コロナ放電によるバックアップ基材22の表面改質処理、バックアップ基材22の表面に接着剤層を設ける処理等を用いることができる。なお、このような処理は、少なくともバックアップ基材22のシート状成形物28が形成される側の面に行われていればよい。 Further, as the backup base material 22, a base material that has been treated so that the coefficient of friction with the powder 20 such as composite particles described later is within a predetermined range is used. As such a process, a roughening process of the backup base material 22, a surface modification process of the backup base material 22 by corona discharge, a process of providing an adhesive layer on the surface of the backup base material 22, and the like can be used. In addition, such a process should just be performed to the surface by which the sheet-like molding 28 of the backup base material 22 is formed at least.
 バックアップ基材22を粗面化処理する場合において、粗面化された面の表面粗さRaは、粉体20とバックアップ基材22との密着性の観点から、好ましくは0.1~5μm、より好ましくは0.2~3μm、さらに好ましくは0.2~1μmの範囲である。 In the case of roughening the backup substrate 22, the surface roughness Ra of the roughened surface is preferably 0.1 to 5 μm from the viewpoint of adhesion between the powder 20 and the backup substrate 22, The range is more preferably 0.2 to 3 μm, and still more preferably 0.2 to 1 μm.
 表面粗さRaは、JIS B0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN-8010、キーエンス社製)を用いて、粗さ曲線を描き、下式により算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。 The surface roughness Ra can be calculated according to the following formula by drawing a roughness curve using, for example, a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation) in accordance with JIS B0601. In the following formula, L is the measurement length, and x is the deviation from the average line to the measurement curve.
Figure JPOXMLDOC01-appb-M000001
 バックアップ基材22の表面を粗面化する方法は特に制限されず、バックアップ基材22の表面をエンボス処理する方法、バックアップ基材22の表面をサンドブラスト処理する方法、バックアップ基材22を構成する材料にマット材を練り込む方法、マット材を含む層をバックアップ基材22の表面にコーティングする方法などが挙げられる。中でも粉体20として用いられる複合粒子との密着性の観点からバックアップ基材22の表面をサンドブラスト処理する方法が好ましい。
Figure JPOXMLDOC01-appb-M000001
The method for roughening the surface of the backup base material 22 is not particularly limited, a method for embossing the surface of the backup base material 22, a method for sandblasting the surface of the backup base material 22, and a material constituting the backup base material 22. And a method of coating the surface of the backup substrate 22 with a layer containing the mat material. Among these, a method of sandblasting the surface of the backup base material 22 from the viewpoint of adhesion with the composite particles used as the powder 20 is preferable.
 バックアップ基材22として粉体20との摩擦係数が所定の範囲となるように処理されている基材を用いることにより、プレス用ロール4のロール4Aとロール4Bとの回転速度が異なる場合であっても、高速で回転している側のロールへ粉体20の張り付きを防ぐことができる。従って、プレス用ロール4のロール4Aとロール4Bとの回転速度が異なる場合であっても、圧延シート6を得ることができる。 This is the case where the rotation speed of the roll 4A and the roll 4B of the press roll 4 is different by using a base material that has been treated so that the friction coefficient with the powder 20 falls within a predetermined range as the backup base material 22. However, sticking of the powder 20 to the roll on the side rotating at a high speed can be prevented. Therefore, the rolled sheet 6 can be obtained even when the rotational speeds of the roll 4A and the roll 4B of the press roll 4 are different.
 プレス用ロール4と仕切板26とにより形成される空間に貯槽される粉体20としては、例えば電極活物質を含む複合粒子が挙げられる。複合粒子は、電極活物質及び結着材を含み、必要に応じてその他の分散剤、導電材および添加剤を含んでもよい。粉体20として電極活物質を含む複合粒子を用いる場合は、得られる圧延シート6を電極材料から成る電極層として用いることができる。 Examples of the powder 20 stored in the space formed by the press roll 4 and the partition plate 26 include composite particles containing an electrode active material. The composite particles include an electrode active material and a binder, and may include other dispersants, conductive materials, and additives as necessary. When composite particles containing an electrode active material are used as the powder 20, the obtained rolled sheet 6 can be used as an electrode layer made of an electrode material.
 複合粒子をリチウムイオン二次電池の電極材料として用いる場合、正極用活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム、等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。 When the composite particles are used as an electrode material for a lithium ion secondary battery, examples of the positive electrode active material include metal oxides capable of reversibly doping and dedoping lithium ions. Examples of such metal oxides include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. In addition, the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
 なお、リチウムイオン二次電池用正極の対極としての負極の活物質としては、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物等が挙げられる。なお、上記に例示した電極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。 Note that the active material of the negative electrode as the counter electrode of the positive electrode for lithium ion secondary batteries includes low-crystalline carbon (amorphous carbon) such as graphitizable carbon, non-graphitizable carbon, pyrolytic carbon, graphite ( Natural graphite, artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate. In addition, the electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
 リチウムイオン二次電池電極用の電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。 The shape of the electrode active material for the lithium ion secondary battery electrode is preferably a granulated particle. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
 リチウムイオン二次電池電極用の電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは0.5~50μm、より好ましくは0.8~30μmである。 The volume average particle diameter of the electrode active material for the lithium ion secondary battery electrode is usually 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 0.8 to 30 μm for both the positive electrode and the negative electrode.
 複合粒子に用いられる結着材としては、前記電極活物質を相互に結着させることができる化合物であれば特に制限はない。好適な結着材は、溶媒に分散する性質のある分散型結着材である。分散型結着材として、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素系含有重合体、共役系ジエン重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。 The binder used for the composite particles is not particularly limited as long as it is a compound capable of binding the electrode active materials to each other. A suitable binder is a dispersion type binder having a property of being dispersed in a solvent. Examples of the dispersion-type binder include high molecular compounds such as silicon polymers, fluorine-containing polymers, conjugated diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, and preferably fluorine-containing polymers. Polymers, conjugated diene polymers and acrylate polymers, more preferably conjugated diene polymers and acrylate polymers.
 分散型結着材の形状は、特に制限はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着材としては、例えば、ラテックスのごとき結着材の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粒子状のものが挙げられる。 The shape of the dispersion-type binder is not particularly limited, but is preferably particulate. By being particulate, the binding property is good, and it is possible to suppress deterioration of the capacity of the manufactured electrode and deterioration due to repeated charge and discharge. Examples of the particulate binder include those in which the particles of the binder such as latex are dispersed in water, and particulates obtained by drying such a dispersion.
 結着材の量は、得られる電極活物質層と集電体との密着性が充分に確保でき、かつ、内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~15重量部である。 The amount of the binder is sufficient with respect to 100 parts by weight of the electrode active material from the viewpoint of ensuring sufficient adhesion between the obtained electrode active material layer and the current collector and reducing the internal resistance. The amount is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight based on the dry weight.
 複合粒子には、前述のように必要に応じて分散剤を用いてもよい。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、ポリビニルアルコールなどが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。 As described above, a dispersant may be used for the composite particles as necessary. Specific examples of the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium salts or alkali metal salts thereof, polyvinyl alcohol, and the like. These dispersants can be used alone or in combination of two or more.
 複合粒子には、前述のように必要に応じて導電材を用いてもよい。導電材の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。 As described above, a conductive material may be used for the composite particles as necessary. Specific examples of the conductive material include conductive carbon black such as furnace black, acetylene black, and ketjen black (a registered trademark of Akzo Nobel Chemicals, Besloten, Fennaut Shap). Among these, acetylene black and ketjen black are preferable. These conductive materials can be used alone or in combination of two or more.
 複合粒子は、電極活物質、結着材および必要に応じ添加される前記導電材等他の成分を用いて造粒することにより得られ、少なくとも電極活物質、結着材を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着材を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の電極活物質が、結着材によって結着されて粒子を形成しているものが好ましい。 The composite particles are obtained by granulating using an electrode active material, a binder, and other components such as the conductive material added as necessary, and include at least an electrode active material and a binder, Each of the above does not exist as an independent particle, but forms one particle by two or more components including an electrode active material and a binder as constituent components. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by combining a plurality of individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
 複合粒子の製造方法は特に制限されず、流動層造粒法、噴霧乾燥造粒法、転動層造粒法などの公知の造粒法により製造することができる。 The production method of the composite particles is not particularly limited, and can be produced by a known granulation method such as a fluidized bed granulation method, a spray drying granulation method, or a rolling bed granulation method.
 複合粒子の体積平均粒子径は、所望の厚みの電極活物質層を容易に得る観点から、通常0.1~1000μm、好ましくは1~500μm、より好ましくは30~250μmの範囲である。 The volume average particle diameter of the composite particles is usually in the range of 0.1 to 1000 μm, preferably 1 to 500 μm, more preferably 30 to 250 μm from the viewpoint of easily obtaining an electrode active material layer having a desired thickness.
 なお、複合粒子の平均粒子径は、レーザ回折式粒度分布測定装置(たとえば、SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。 The average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
 本実施の形態に係るリチウムイオン二次電池電極用シートの製造方法によれば、生産能力に影響を及ぼさず、簡易な手段により基材への粉体の目付け量の制御を行うことができる。また、低目付け量の電極用シート、即ち、薄膜の電極用シートを製造することができる。 According to the method for manufacturing a sheet for a lithium ion secondary battery electrode according to the present embodiment, the basis weight of the powder on the substrate can be controlled by simple means without affecting the production capacity. In addition, an electrode sheet with a low basis weight, that is, a thin film electrode sheet can be produced.
 また、得られる圧延シートの膜厚の測定結果に基づいてロール4Bの回転速度を制御するフィードバック制御を行うことができるため、所望の膜厚の電極用シートを製造することができる。 Further, since feedback control for controlling the rotation speed of the roll 4B can be performed based on the measurement result of the film thickness of the obtained rolled sheet, an electrode sheet having a desired film thickness can be manufactured.
 以下、実施例及び比較例を示し、本発明を更に具体的に説明するが、本発明は下記の実施例に制限されるものではない。また、部および%は、特に記載の無い限り重量基準である。
(造粒粒子の製造)
 負極活物質として人造黒鉛(体積平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)を97部、カルボキシメチルセルロースナトリウム塩を1.5部、結着材としてBM-400B(日本ゼオン社製)を固形分換算量で1.5部を混合し、さらにイオン交換水を固形分濃度が20%となるように加え、混合分散して複合粒子用スラリーを得た。そして、得られた複合粒子用スラリーを、スプレー乾燥機(大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)を用い、回転数25,000rpm、熱風温度160℃、粒子回収出口の温度90℃の条件にて、噴霧乾燥造粒を行い、負極電極用複合粒子を得た。得られた複合粒子の体積平均粒子径は70μmであった。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not restrict | limited to the following Example. Parts and% are based on weight unless otherwise specified.
(Manufacture of granulated particles)
Artificial graphite (volume average particle size: 24.5 μm, graphite interlayer distance (interval of (002) plane by X-ray diffraction (d value)): 0.354 nm as negative electrode active material, 97 parts, carboxymethylcellulose sodium salt 1.5 parts of BM-400B (manufactured by Nippon Zeon Co., Ltd.) as a binder and 1.5 parts in terms of solid content, and ion-exchanged water is added so that the solid content concentration is 20%. The slurry for composite particles was obtained by mixing and dispersing. The obtained composite particle slurry was sprayed using a spray dryer (Okawara Chemical Co., Ltd.) and a rotating disk atomizer (diameter 65 mm), rotating at 25,000 rpm, hot air temperature 160 ° C., particle recovery. Spray drying granulation was performed under conditions of an outlet temperature of 90 ° C. to obtain composite particles for a negative electrode. The obtained composite particles had a volume average particle diameter of 70 μm.
 (目付け量の測定)
 図1に示す装置構成の粉体圧延装置2において、粉体20として粒子径が70μmの複合粒子を用い、ロール4Aとロール4Bとのロール間隙を0.1mmとして圧延シート6の作製を行った。また、バックアップ基材22としての表面がサンドブラスト処理された厚さ50μm表面粗度Raが0.35μmのPETフィルムを用いた。ここで、プレス用ロール4のロール4Aの回転速度(バックアップ基材22の搬送速度)を5m/minとし、ロール4Bの回転速度を4m/min、5m/min、6m/min、7.5m/min、10m/minとしてそれぞれシート状成形物28の製造を行った。また、シート状成形物28の製造の際に、複合粒子及びアルミニウム箔(バックアップ基材)を粉体圧延装置2に投入し、プレス用ロール4によりPETフィルムに目付けされる粉体の量(目付け量、単位:mg/cm2)を測定した。結果を表1に示す。
(Measurement of basis weight)
In the powder rolling apparatus 2 having the apparatus configuration shown in FIG. 1, a rolled sheet 6 was prepared using composite particles having a particle diameter of 70 μm as the powder 20 and a roll gap between the rolls 4A and 4B of 0.1 mm. . Further, a PET film having a thickness of 50 μm and a surface roughness Ra of 0.35 μm, the surface of which was subjected to sandblasting as the backup base material 22 was used. Here, the rotation speed of the roll 4A of the press roll 4 (conveyance speed of the backup base material 22) is 5 m / min, and the rotation speed of the roll 4B is 4 m / min, 5 m / min, 6 m / min, 7.5 m / min. Production of the sheet-like molded product 28 was performed at min and 10 m / min, respectively. Further, when the sheet-like molded product 28 is manufactured, the composite particles and the aluminum foil (backup base material) are put into the powder rolling device 2, and the amount of the powder (weight per unit weight) applied to the PET film by the press roll 4 Amount, unit: mg / cm 2 ). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、ロール4Aの回転速度が一定の場合、ロール4Bの回転速度が速くなるほど、目付け量が減少することが示された。また、目付け量が少ないほど得られるシート状成形物28の膜厚が薄くなるため、ロール4Aの回転速度に対するロール4Bの回転速度が速くなるほど、得られる圧延シート6及びシート状成形物28の膜厚が薄くなることが示された。
Figure JPOXMLDOC01-appb-T000002
From the results in Table 1, it was shown that when the rotation speed of the roll 4A is constant, the basis weight decreases as the rotation speed of the roll 4B increases. Moreover, since the film thickness of the obtained sheet-like molded product 28 becomes thinner as the basis weight becomes smaller, the film of the rolled sheet 6 and the sheet-like molded product 28 obtained as the rotational speed of the roll 4B with respect to the rotational speed of the roll 4A increases. It was shown that the thickness was reduced.

Claims (6)

  1.  回転軸が平行に配置された一対のプレス用ロールのうちの一方のプレス用ロールの回転速度と他方のプレス用ロールの回転速度とを異ならせることが可能な圧延装置を用いて、粉体との摩擦係数が所定の範囲である基材上に前記粉体を圧縮成形することにより前記基材上に電極組成物層を成形する圧延工程と、
     前記圧延工程における前記基材に対する前記粉体の目付量を測定する測定工程と、
     前記測定工程による測定結果に基づいて、前記一方のプレス用ロールの回転速度の前記他方のプレス用ロールの回転速度に対する速度比を変更する変更工程と
    を含むことを特徴とするリチウムイオン二次電池電極用シートの製造方法。
    Using a rolling device capable of differentiating the rotational speed of one of the press rolls of the pair of press rolls arranged in parallel with each other and the rotational speed of the other press roll, A rolling step of forming an electrode composition layer on the base material by compression molding the powder on the base material having a friction coefficient within a predetermined range;
    A measuring step of measuring the basis weight of the powder with respect to the base material in the rolling step;
    A lithium ion secondary battery comprising: a changing step of changing a speed ratio of the rotation speed of the one press roll to the rotation speed of the other press roll based on a measurement result of the measurement step. A method for producing an electrode sheet.
  2.  前記一方のプレス用ロールの回転速度の前記他方のプレス用ロールの回転速度に対する速度比を10~300%の範囲で変更することを特徴とする請求項1記載のリチウムイオン二次電池電極用シートの製造方法。 2. The lithium ion secondary battery electrode sheet according to claim 1, wherein a speed ratio of the rotation speed of the one press roll to the rotation speed of the other press roll is changed within a range of 10 to 300%. Manufacturing method.
  3.  前記基材の表面粗度Raが、0.1~5μmであることを特徴とする請求項1記載のリチウムイオン二次電池電極用シートの製造方法。 2. The method for producing a sheet for a lithium ion secondary battery electrode according to claim 1, wherein the substrate has a surface roughness Ra of 0.1 to 5 μm.
  4.  前記基材は、前記電極組成物層が成形される側の表面に接着剤層を有することを特徴とする請求項1記載のリチウムイオン二次電池電極用シートの製造方法。 The method for producing a sheet for a lithium ion secondary battery electrode according to claim 1, wherein the base material has an adhesive layer on the surface on the side on which the electrode composition layer is formed.
  5.  前記基材の表面は、表面改質されていることを特徴とする請求項1記載のリチウムイオン二次電池電極用シートの製造方法。 2. The method for producing a sheet for a lithium ion secondary battery electrode according to claim 1, wherein the surface of the substrate is surface-modified.
  6.  前記粉体は、電極活物質および結着材を含む成分を造粒することにより得られる複合粒子であることを特徴とする請求項1~5の何れか一項に記載のリチウムイオン二次電池電極用シートの製造方法。 The lithium ion secondary battery according to any one of claims 1 to 5, wherein the powder is a composite particle obtained by granulating a component including an electrode active material and a binder. A method for producing an electrode sheet.
PCT/JP2014/055024 2013-03-26 2014-02-28 Method for manufacturing electrode sheet for lithium-ion secondary battery WO2014156464A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157014505A KR102227863B1 (en) 2013-03-26 2014-02-28 Method for manufacturing electrode sheet for lithium-ion secondary battery
CN201480014224.6A CN105190957B (en) 2013-03-26 2014-02-28 The manufacture method of lithium ion secondary battery electrode piece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063975 2013-03-26
JP2013063975A JP6086384B2 (en) 2013-03-26 2013-03-26 Method for producing sheet for lithium ion secondary battery electrode

Publications (1)

Publication Number Publication Date
WO2014156464A1 true WO2014156464A1 (en) 2014-10-02

Family

ID=51623458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055024 WO2014156464A1 (en) 2013-03-26 2014-02-28 Method for manufacturing electrode sheet for lithium-ion secondary battery

Country Status (4)

Country Link
JP (1) JP6086384B2 (en)
KR (1) KR102227863B1 (en)
CN (1) CN105190957B (en)
WO (1) WO2014156464A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552309A (en) * 2014-10-22 2016-05-04 丰田自动车株式会社 Method for manufacturing electrode and electrode manufacturing apparatus
US20190296322A1 (en) * 2018-03-20 2019-09-26 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing an electrode sheet
WO2020150254A1 (en) * 2019-01-16 2020-07-23 Maxwell Technologies, Inc. System and methods for manufacturing a dry electrode
EP4002511A1 (en) * 2020-11-18 2022-05-25 Prime Planet Energy & Solutions, Inc. Method for manufacturing electrode and electrode paste coating device
CN115000336A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Method for manufacturing electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673455B2 (en) 2012-09-19 2017-06-06 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JP6142884B2 (en) 2015-02-16 2017-06-07 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6354698B2 (en) 2015-08-05 2018-07-11 トヨタ自動車株式会社 Electrode plate manufacturing method
JP6455498B2 (en) 2016-11-16 2019-01-23 トヨタ自動車株式会社 Electrode plate manufacturing apparatus, positive electrode plate manufacturing method, and negative electrode plate manufacturing method
CN111156853B (en) * 2019-09-23 2021-07-09 李居强 Heat transfer plate filling port
KR20220113110A (en) * 2021-02-05 2022-08-12 주식회사 엘지에너지솔루션 Lamination Device Comprising Lamination Roll Capable of Adjusting Pressing Force and Electrode Assembly Manufactured Using the Same
KR102624435B1 (en) * 2023-04-21 2024-01-16 주식회사 하이리온 Method of Manufacturing Electrode of Battery and Battery Electrode Manufacturing Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229223A (en) * 1983-06-13 1984-12-22 Hitachi Ltd Control device of sheet thickness
JPS6333502A (en) * 1986-07-29 1988-02-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for rolling powder
JPS63307204A (en) * 1987-06-04 1988-12-14 Ishikawajima Harima Heavy Ind Co Ltd Powder rolling method and apparatus thereof
JP2000306574A (en) * 1999-04-23 2000-11-02 Sumitomo Metal Ind Ltd Manufacture of battery electrode
JP2008202085A (en) * 2007-02-19 2008-09-04 Ihi Corp Method for controlling layer thickness of powder on roll face in material compression working equipment, and device therefor
WO2013031854A1 (en) * 2011-08-31 2013-03-07 日本ゼオン株式会社 Powder molding device and production method for powder molded product
JP2013051323A (en) * 2011-08-31 2013-03-14 Nippon Zeon Co Ltd Powder molding device and process of producing powder molding sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236120A (en) * 1995-03-01 1996-09-13 Furukawa Electric Co Ltd:The Manufacture of porous electrolytic metal foil and secondary battery electrode using this electrolytic metal foil
JP3873719B2 (en) 2000-11-10 2007-01-24 石川島播磨重工業株式会社 Powder rolling apparatus and powder rolling method
CN101197444B (en) * 2006-12-08 2010-06-16 比亚迪股份有限公司 Air electrode, and method and device for producing the same
JP5408504B2 (en) * 2008-09-02 2014-02-05 トヨタ自動車株式会社 Electrode sheet manufacturing method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229223A (en) * 1983-06-13 1984-12-22 Hitachi Ltd Control device of sheet thickness
JPS6333502A (en) * 1986-07-29 1988-02-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for rolling powder
JPS63307204A (en) * 1987-06-04 1988-12-14 Ishikawajima Harima Heavy Ind Co Ltd Powder rolling method and apparatus thereof
JP2000306574A (en) * 1999-04-23 2000-11-02 Sumitomo Metal Ind Ltd Manufacture of battery electrode
JP2008202085A (en) * 2007-02-19 2008-09-04 Ihi Corp Method for controlling layer thickness of powder on roll face in material compression working equipment, and device therefor
WO2013031854A1 (en) * 2011-08-31 2013-03-07 日本ゼオン株式会社 Powder molding device and production method for powder molded product
JP2013051323A (en) * 2011-08-31 2013-03-14 Nippon Zeon Co Ltd Powder molding device and process of producing powder molding sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552309A (en) * 2014-10-22 2016-05-04 丰田自动车株式会社 Method for manufacturing electrode and electrode manufacturing apparatus
US20190296322A1 (en) * 2018-03-20 2019-09-26 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing an electrode sheet
US10998541B2 (en) * 2018-03-20 2021-05-04 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing an electrode sheet
WO2020150254A1 (en) * 2019-01-16 2020-07-23 Maxwell Technologies, Inc. System and methods for manufacturing a dry electrode
CN114207864A (en) * 2019-01-16 2022-03-18 麦斯韦尔技术股份有限公司 System and method for manufacturing dry electrodes
EP4002511A1 (en) * 2020-11-18 2022-05-25 Prime Planet Energy & Solutions, Inc. Method for manufacturing electrode and electrode paste coating device
CN115000336A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Method for manufacturing electrode
CN115000336B (en) * 2021-03-01 2024-05-10 泰星能源解决方案有限公司 Method for manufacturing electrode

Also Published As

Publication number Publication date
KR20150134310A (en) 2015-12-01
JP2014191880A (en) 2014-10-06
CN105190957A (en) 2015-12-23
CN105190957B (en) 2017-09-29
JP6086384B2 (en) 2017-03-01
KR102227863B1 (en) 2021-03-12

Similar Documents

Publication Publication Date Title
JP6086384B2 (en) Method for producing sheet for lithium ion secondary battery electrode
JP5640996B2 (en) Battery electrode manufacturing method and battery electrode
JP6211429B2 (en) Method for producing electrode for lithium ion battery
JP6020452B2 (en) Powder molding apparatus and method for manufacturing powder molded product
CN107112509B (en) Method for manufacturing electrode for lithium ion battery
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP6327249B2 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
JP2021132047A (en) All-solid lithium ion secondary battery
CN110521026B (en) All-solid lithium ion secondary battery
JPWO2014192652A6 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
WO2014208684A1 (en) Method for producing electrode for lithium ion batteries
JP5944853B2 (en) Lithium ion secondary battery electrode sheet manufacturing apparatus and lithium ion secondary battery electrode sheet manufacturing method
JP5999237B2 (en) Powder rolling apparatus and rolled sheet manufacturing method
JP2016115569A (en) Method of manufacturing electrode for lithium ion battery
JP6209457B2 (en) Method for producing electrode for lithium ion battery
JP2016115603A (en) Method of manufacturing electrode for lithium ion battery
JP2016100067A (en) Method of manufacturing electrode for lithium ion battery
JP6090032B2 (en) Method for forming electrode layer for secondary battery
JP6274935B2 (en) Method for producing electrode for lithium ion battery
JP2009253168A (en) Method of manufacturing electrochemical device electrode
JP2015130279A (en) Method of manufacturing electrode for lithium ion battery
JP5790353B2 (en) Powder rolling apparatus and rolled sheet manufacturing method
JP2016115568A (en) Method of manufacturing electrode for lithium ion battery
JP5845748B2 (en) Powder rolling apparatus and rolled sheet manufacturing method
JP2016115432A (en) Method of manufacturing electrode for lithium ion battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014224.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157014505

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773804

Country of ref document: EP

Kind code of ref document: A1