JP5640996B2 - Battery electrode manufacturing method and battery electrode - Google Patents

Battery electrode manufacturing method and battery electrode Download PDF

Info

Publication number
JP5640996B2
JP5640996B2 JP2012003620A JP2012003620A JP5640996B2 JP 5640996 B2 JP5640996 B2 JP 5640996B2 JP 2012003620 A JP2012003620 A JP 2012003620A JP 2012003620 A JP2012003620 A JP 2012003620A JP 5640996 B2 JP5640996 B2 JP 5640996B2
Authority
JP
Japan
Prior art keywords
electrode
electrode mixture
graphite
magnetic field
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012003620A
Other languages
Japanese (ja)
Other versions
JP2013143304A (en
Inventor
陽三 内田
陽三 内田
巧美 三尾
巧美 三尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012003620A priority Critical patent/JP5640996B2/en
Publication of JP2013143304A publication Critical patent/JP2013143304A/en
Application granted granted Critical
Publication of JP5640996B2 publication Critical patent/JP5640996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池用電極の製造方法及び電池用電極に関する。より詳細には、粉体成形により電極を形成する電池用電極の製造方法及び電池用電極に関する。   The present invention relates to a method for manufacturing a battery electrode and a battery electrode. More specifically, the present invention relates to a battery electrode manufacturing method for forming an electrode by powder molding and a battery electrode.

従来、非水電解液二次電池(例えば、リチウムイオン二次電池)の電極を作製するために、集電箔上に造粒した粉体状の電極材料を供給し、ロールプレスにより電極合剤層を形成する方法は公知となっている(例えば、特許文献1参照)。   Conventionally, in order to produce an electrode for a non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), a powdered electrode material granulated on a current collector foil is supplied, and an electrode mixture is prepared by a roll press. A method of forming a layer is known (see, for example, Patent Document 1).

特許文献1には、リチウムイオン二次電池等で用いられる電極の製造方法として、複合粒子(造粒粒子)をシート状に粉体成形する加圧成形法が記載されている。加圧成形法は、複合粒子に圧力を加えることで電極層形成材料の再配列、変形により緻密化を行い、電極層(電極合剤層)を成形する方法である。加圧成形法による加圧成形の例としては、例えば、複合粒子をスクリューフィーダー等の供給装置でロール式加圧成形装置に供給し、電極層を成形するロール加圧成形法などがある。   Patent Document 1 describes a pressure molding method in which composite particles (granulated particles) are powder-molded into a sheet as a method for producing an electrode used in a lithium ion secondary battery or the like. The pressure forming method is a method of forming an electrode layer (electrode mixture layer) by applying pressure to the composite particles to perform densification by rearrangement and deformation of the electrode layer forming material. As an example of pressure molding by the pressure molding method, for example, there is a roll pressure molding method in which composite particles are supplied to a roll-type pressure molding device by a supply device such as a screw feeder to mold an electrode layer.

特開2009−212113号公報JP 2009-212113 A

しかしながら、特許文献1に記載されたように、いわゆるロールプレスよる粉体成形により集電箔上に電極合剤層を形成する場合、電極合剤層の剥離強度を担保するためにはプレス時に高い圧力が必要であるが、その背反として電極合剤層の密度(電極密度)が増加してしまう。電極合剤層の密度が高すぎると、電解液の浸透性及び溶液抵抗が高くなるため、電池性能が低下してしまう。つまり、電池性能を重視して所望の密度になるように電極合剤層を形成した場合、電極合剤層の剥離強度が低くなってしまうという課題がある。このため、高圧プレスを行った場合でも電極合剤層の過度の緻密化を防止して、かつ電極合剤層の剥離強度が向上した電池用電極が望まれている。   However, as described in Patent Document 1, when the electrode mixture layer is formed on the current collector foil by powder forming by so-called roll press, it is high at the time of pressing in order to ensure the peel strength of the electrode mixture layer. Although pressure is required, the density of the electrode mixture layer (electrode density) increases as a contradiction. When the density of the electrode mixture layer is too high, the electrolyte performance and the solution resistance are increased, so that the battery performance is deteriorated. That is, when the electrode mixture layer is formed so as to have a desired density with emphasis on battery performance, there is a problem that the peel strength of the electrode mixture layer is lowered. For this reason, there is a demand for a battery electrode that prevents excessive densification of the electrode mixture layer and improves the peel strength of the electrode mixture layer even when high-pressure pressing is performed.

また、リチウムイオン二次電池で用いられる負極(負極シート)を製造する際、負極活物質として黒鉛を用いた場合、理想的には図10に示すように当該黒鉛を磁場配向させた電極構造とすることで電池性能が向上することは知られている。   When a negative electrode (negative electrode sheet) used in a lithium ion secondary battery is manufactured, when graphite is used as the negative electrode active material, an electrode structure in which the graphite is ideally magnetically oriented as shown in FIG. It is known that the battery performance is improved by doing so.

しかし、特許文献1のように、造粒粒子(黒鉛)を用いて粉体成形(乾式プロセス)で負極(負極シート)を製造した場合、図11に示すように複数の黒鉛粒子がランダムに配向した造粒粒子群からなる電極構造となるため黒鉛の配向が起こりにくい。すなわち、造粒工程により黒鉛が他の電極合剤成分といっしょに造粒粒子(二次粒子)としてランダムに配向した状態で固定されてしまうため、その後、造粒粒子内の黒鉛に対して磁場を印加しても配向が起こらない。つまり、造粒粒子を構成する一次粒子として黒鉛を用いた場合、当該一次粒子の黒鉛を磁場配向させて電池性能を向上させることは困難である。   However, when a negative electrode (negative electrode sheet) is produced by powder molding (dry process) using granulated particles (graphite) as in Patent Document 1, a plurality of graphite particles are randomly oriented as shown in FIG. Since the electrode structure is composed of a group of granulated particles, the orientation of graphite is difficult to occur. That is, because the graphite is fixed in a state of being randomly oriented as granulated particles (secondary particles) together with other electrode mixture components in the granulation step, a magnetic field is then applied to the graphite in the granulated particles. Even if is applied, orientation does not occur. That is, when graphite is used as primary particles constituting the granulated particles, it is difficult to improve battery performance by orienting the graphite of the primary particles in a magnetic field.

そこで、本発明は、上記課題に鑑みてなされたものであり、電極合剤層の剥離強度及び電池性能が向上した電池用電極の製造方法及び電池用電極を提供することを目的とする。   Then, this invention is made | formed in view of the said subject, and it aims at providing the manufacturing method and battery electrode of a battery electrode which the peeling strength of the electrode mixture layer and the battery performance improved.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、
電極合剤を造粒することにより得られた電極合剤粉末を集電箔上に供給して、プレスすることにより電極を形成する電池用電極の製造方法において、
前記電極合剤に黒鉛を含有させ、
前記黒鉛を含有させた電極合剤に対して磁場を印加しながら乾燥させて造粒することにより、前記電極合剤粉末を得る電池用電極の製造方法である。
That is, in claim 1,
In the method for producing an electrode for a battery for forming an electrode by supplying an electrode mixture powder obtained by granulating an electrode mixture onto a current collector foil and pressing it,
Including graphite in the electrode mixture;
It is a manufacturing method of the battery electrode which obtains the electrode mixture powder by drying and granulating the electrode mixture containing the graphite while applying a magnetic field.

請求項2においては、
前記電極合剤粉末を前記集電箔上に供給した後、当該集電箔に対して、前記プレスを行う前に更に磁場を印加することにより前記電極合剤粉末を前記集電箔に対して略垂直に配向制御する電池用電極の製造方法である。
In claim 2,
After supplying the electrode mixture powder onto the current collector foil, the electrode mixture powder is applied to the current collector foil by further applying a magnetic field to the current collector foil before performing the pressing. This is a battery electrode manufacturing method in which the orientation is controlled substantially vertically.

請求項3においては、
請求項1または請求項2に記載の電池用電極の製造方法により製造された電池用電極である。
In claim 3,
It is a battery electrode manufactured by the manufacturing method of the battery electrode of Claim 1 or Claim 2.

本発明によれば、以下に示すような効果を奏する。   The present invention has the following effects.

請求項1においては、磁場を印加しながら造粒することにより、電極合剤粉末を構成する粒子中の黒鉛の配向が揃う(電極合剤粉末を構成する粒子中の空隙が小さくなる)ため、プレス時に配向した黒鉛に優先的に圧力が加わることになり、電極合剤が潰れにくく、電極合剤層を低密度に保つことができる。すなわち、高圧プレスしても所望の電極密度を保持することができ、加えて剥離強度も向上する。   In claim 1, by granulating while applying a magnetic field, the orientation of graphite in the particles constituting the electrode mixture powder is aligned (the voids in the particles constituting the electrode mixture powder are reduced), Pressure is preferentially applied to the graphite oriented at the time of pressing, and the electrode mixture is not easily crushed, and the electrode mixture layer can be kept at a low density. That is, a desired electrode density can be maintained even when high-pressure pressing is performed, and the peel strength is also improved.

請求項2においては、集電箔に対して黒鉛を略垂直に配向できるため、電極合剤層をより低密度に保つことができ、より剥離強度が向上する。   In Claim 2, since graphite can be oriented substantially perpendicular to the current collector foil, the electrode mixture layer can be kept at a lower density, and the peel strength is further improved.

請求項3においては、磁場を印加しながら造粒することにより、電極合剤粉末を構成する粒子中の黒鉛の配向が揃う(電極合剤粉末を構成する粒子中の空隙が小さくなる)ため、プレス時に配向した黒鉛に優先的に圧力が加わることになり、電極合剤が潰れにくく、電極合剤層を低密度に保つことができる。すなわち、高圧プレスしても所望の電極密度を保持することができ、加えて剥離強度も向上する。   In claim 3, by granulating while applying a magnetic field, the orientation of the graphite in the particles constituting the electrode mixture powder is aligned (the voids in the particles constituting the electrode mixture powder are reduced), Pressure is preferentially applied to the graphite oriented at the time of pressing, and the electrode mixture is not easily crushed, and the electrode mixture layer can be kept at a low density. That is, a desired electrode density can be maintained even when high-pressure pressing is performed, and the peel strength is also improved.

本発明の一実施形態に係る電池用電極の製造装置の構成を示す模式図。The schematic diagram which shows the structure of the manufacturing apparatus of the electrode for batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電池用電極の製造方法のフローを示す図。The figure which shows the flow of the manufacturing method of the battery electrode which concerns on one Embodiment of this invention. 磁場配向させた造粒粒子のイメージ図。The image figure of the granulated particle orientated by the magnetic field. 本発明の一実施形態に係る電極構造を示す模式図。The schematic diagram which shows the electrode structure which concerns on one Embodiment of this invention. 本実施例に係る造粒粒子が配向した状態を示すイメージ図。The image figure which shows the state which the granulated particle which concerns on a present Example orientated. (a)は従来の粉体成形法で作製した負極の電極構造を示すイメージ図、(b)は実施例1に係る負極の電極構造を示すイメージ図。(A) is an image figure which shows the electrode structure of the negative electrode produced with the conventional powder molding method, (b) is an image figure which shows the electrode structure of the negative electrode which concerns on Example 1. FIG. 黒鉛配向度(磁場配向度)とIV抵抗(初期抵抗)の関係を示す図。The figure which shows the relationship between a graphite orientation degree (magnetic field orientation degree) and IV resistance (initial resistance). 黒鉛配向度((110)/(002)強度比)と黒鉛粒子形状の関係を示す図。The figure which shows the relationship between graphite orientation degree ((110) / (002) strength ratio) and graphite particle shape. 実施例及び比較例の各負極の剥離強度を示す図。The figure which shows the peeling strength of each negative electrode of an Example and a comparative example. 理想的な電極構造を示す模式図。The schematic diagram which shows an ideal electrode structure. 従来の粉体成形法で作製した電極の構造を示す模式図。The schematic diagram which shows the structure of the electrode produced with the conventional powder molding method.

次に、発明の実施の形態を説明する。
先ず、本実施形態に係る電池用電極の製造装置1について図1を用いて説明する。
Next, embodiments of the invention will be described.
First, a battery electrode manufacturing apparatus 1 according to this embodiment will be described with reference to FIG.

[電池用電極の製造装置]
電池用電極の製造装置1(以下、電極製造装置1という)は、電極合剤を造粒することにより得られた粉体状の電極合剤(以下、電極合剤粉末7という)を集電箔6上に供給して、電極合剤粉末7が供給された集電箔6をプレス(圧縮成形)することによりシート状の電極を形成する装置である。電極製造装置1は、図1に示すように、粉体成形装置2、搬送手段3、平坦化手段(平坦化ブレード4)、磁場印加手段5、加熱手段(赤外線加熱手段9)、熱プレス手段10、から主に構成される。電極製造装置1は、例えば、リチウムイオン二次電池の製造において、電極基材である集電箔(銅等の金属箔)の表面に電極合剤粉末7を供給して、表面に電極合剤層8が形成された電極(電極シート)を製造する際に適用可能である。
[Battery electrode manufacturing equipment]
Battery electrode manufacturing apparatus 1 (hereinafter referred to as electrode manufacturing apparatus 1) collects a powdered electrode mixture (hereinafter referred to as electrode mixture powder 7) obtained by granulating an electrode mixture. It is an apparatus for forming a sheet-like electrode by pressing (compression molding) the current collector foil 6 supplied on the foil 6 and supplied with the electrode mixture powder 7. As shown in FIG. 1, the electrode manufacturing apparatus 1 includes a powder forming apparatus 2, a conveying means 3, a flattening means (flattening blade 4), a magnetic field applying means 5, a heating means (infrared heating means 9), and a hot press means. 10 is mainly composed. For example, in manufacturing a lithium ion secondary battery, the electrode manufacturing apparatus 1 supplies the electrode mixture powder 7 to the surface of a current collector foil (metal foil such as copper) that is an electrode base material, and the electrode mixture is applied to the surface. It is applicable when manufacturing an electrode (electrode sheet) on which the layer 8 is formed.

粉体成形装置2は、電極合剤粉末7を集電箔6上に供給するともに、電極合剤粉末7を堆積層として集電箔6上に形成する装置である。粉体成形装置2は、電極合剤粉末7を供給するための供給装置(図示せず)を備え、当該供給装置により電極合剤粉末7を集電箔6上に堆積させることができる。   The powder molding apparatus 2 is an apparatus that supplies the electrode mixture powder 7 onto the current collector foil 6 and forms the electrode mixture powder 7 on the current collector foil 6 as a deposited layer. The powder molding apparatus 2 includes a supply device (not shown) for supplying the electrode mixture powder 7, and the electrode mixture powder 7 can be deposited on the current collector foil 6 by the supply device.

搬送手段3は、粉体成形装置2、平坦化ブレード4、磁場印加手段5、加熱手段9、及び熱プレス手段10へと順に、集電箔6を搬送するための手段であり、複数の搬送用ローラ及び当該搬送用ローラを駆動する駆動手段により構成される。搬送手段3は、前記駆動手段を駆動することにより、粉体成形装置2から集電箔6上に供給された電極合剤粉末7を下流側へと搬送することができる。   The conveying means 3 is means for conveying the current collector foil 6 in order to the powder forming apparatus 2, the flattening blade 4, the magnetic field applying means 5, the heating means 9, and the hot press means 10, and a plurality of conveying means. And driving means for driving the conveying roller. The conveying means 3 can convey the electrode mixture powder 7 supplied from the powder forming apparatus 2 onto the current collector foil 6 to the downstream side by driving the driving means.

平坦化ブレード4は、粉体成形装置2の下流側に設けられ、先端が鋭利な角度を有するブレード部材であり、当該先端を下方に向けて、当該先端と集電箔6表面との間を所定の間隔となるように配置固定されている。平坦化ブレード4は、粉体成形装置2により集電箔6上に供給された電極合剤粉末7を平坦化して、前記所定の間隔と同じ厚さ寸法を有する電極合剤粉末7の堆積層を形成するための平坦化手段である。   The flattening blade 4 is a blade member that is provided on the downstream side of the powder molding apparatus 2 and that has a sharp tip at the tip. The tip is directed downward and between the tip and the surface of the current collector foil 6. The arrangement is fixed at a predetermined interval. The flattening blade 4 flattens the electrode mixture powder 7 supplied onto the current collector foil 6 by the powder molding apparatus 2 and deposits the electrode mixture powder 7 having the same thickness as the predetermined interval. It is a planarization means for forming.

磁場印加手段5は、粉体成形装置2の下流側に設けられ、集電箔6を磁場印加手段5の中央に挿通するように配置され、平坦化ブレード4にて平坦化された電極合剤粉末7の堆積層に対して、その厚さ方向(集電箔6に対して垂直方向。図1では上下方向)に沿った磁場(磁力)を所定の磁場印加条件で印加することができる。   The magnetic field applying means 5 is provided on the downstream side of the powder molding apparatus 2 and is arranged so as to pass the current collector foil 6 through the center of the magnetic field applying means 5 and is flattened by the flattening blade 4. A magnetic field (magnetic force) along the thickness direction (perpendicular to the current collector foil 6; vertical direction in FIG. 1) can be applied to the deposited layer of the powder 7 under predetermined magnetic field application conditions.

赤外線加熱手段9は、磁場印加手段5の下流側に設けられ、集電箔6を赤外線加熱手段9の中央に挿通するように配置され、赤外線(IR)照射により電極合剤粉末7の堆積層を加熱するための加熱手段である。   The infrared heating means 9 is provided on the downstream side of the magnetic field applying means 5 and is disposed so as to pass through the current collector foil 6 to the center of the infrared heating means 9, and the deposited layer of the electrode mixture powder 7 by infrared (IR) irradiation. It is a heating means for heating.

熱プレス手段10は、赤外線加熱手段9の下流側に設けられるロール式の加圧成形手段であり、回転可能な複数の加圧ローラ(本実施形態では、上下二つのローラ)を有する。熱プレス手段10は、電極合剤粉末7の堆積層が形成された集電箔6を上下二つの加圧ローラ間に挿入することにより加熱及び厚み方向の加圧が可能であり、いわゆるロールプレス処理が可能である。具体的には、熱プレス手段10は、電極合剤粉末7の堆積層が形成された集電箔6を前記加圧ロール間で挟持しつつ、前記各加圧ロールを互いに反対回りに回転させながら、所定の熱プレス条件(加熱温度・プレス圧)でロールプレス処理を施すことによって、熱プレス手段10下流側から排出される集電箔6上の電極合剤層8の厚みや密度(電極密度)を適宜調整可能である。   The hot press means 10 is a roll-type pressure forming means provided on the downstream side of the infrared heating means 9 and has a plurality of rotatable pressure rollers (in this embodiment, two upper and lower rollers). The hot press means 10 is capable of heating and pressing in the thickness direction by inserting the current collector foil 6 on which the deposited layer of the electrode mixture powder 7 is formed between two upper and lower pressure rollers. Processing is possible. Specifically, the hot press means 10 rotates the pressure rolls in opposite directions while sandwiching the current collector foil 6 on which the deposited layer of the electrode mixture powder 7 is formed between the pressure rolls. However, the thickness and density (electrodes) of the electrode mixture layer 8 on the current collector foil 6 discharged from the downstream side of the hot press means 10 by performing a roll press process under predetermined hot press conditions (heating temperature and press pressure). Density) can be adjusted as appropriate.

次に、上述した電極製造装置1を用いて、本発明の一実施形態に係る電池用電極の製造方法について説明する。
なお、本実施形態で説明する電池用電極の製造方法は、特に限定するものではないが、非水電解液二次電池(例えば、リチウムイオン二次電池)が有する負極(負極シート)を製造する際に適用可能である。
Next, the manufacturing method of the battery electrode which concerns on one Embodiment of this invention using the electrode manufacturing apparatus 1 mentioned above is demonstrated.
In addition, although the manufacturing method of the battery electrode demonstrated in this embodiment is not specifically limited, the negative electrode (negative electrode sheet) which a nonaqueous electrolyte secondary battery (for example, lithium ion secondary battery) has is manufactured. Is applicable.

[電池用電極の製造方法]
本実施形態に係る電池用電極の製造方法は、電極合剤を造粒することにより得られた電極合剤粉末7を集電箔6上に供給して、プレス(圧縮成形)することによりシート状の電極を形成する製造方法であって、図2に示すように、ペースト作製工程S10、造粒工程S20、供給工程S30、平坦化工程S40、磁場印加工程S50、加熱工程S60、及び熱プレス工程S70を主に有し、この順に行われる。以下に、前記各工程について説明する。
なお、磁場印加工程S50は、製造する電池用電極の要求性能に応じて省略することも可能である。
[Method for producing battery electrode]
The manufacturing method of the battery electrode according to the present embodiment supplies the electrode mixture powder 7 obtained by granulating the electrode mixture onto the current collector foil 6 and presses (compression molding) the sheet. As shown in FIG. 2, a paste production step S10, a granulation step S20, a supply step S30, a flattening step S40, a magnetic field application step S50, a heating step S60, and a hot press, as shown in FIG. It mainly has process S70 and is performed in this order. Below, each said process is demonstrated.
The magnetic field application step S50 can be omitted depending on the required performance of the battery electrode to be manufactured.

ペースト作製工程S10は、負極活物質(本実施形態では、黒鉛)、結着剤(バインダ)等を含む電極合剤成分及び当該成分の分散用溶媒を用いて所定の混合比及び固形分率で電極合剤ペーストを作製する工程である。ペースト作製工程S10は、造粒工程S20で使用する電極合剤ペーストを準備するための工程である。   The paste manufacturing step S10 is performed at a predetermined mixing ratio and solid content ratio using an electrode mixture component including a negative electrode active material (in this embodiment, graphite), a binder (binder) and the like and a solvent for dispersing the component. This is a step of producing an electrode mixture paste. Paste preparation process S10 is a process for preparing the electrode mixture paste used by granulation process S20.

負極活物質は、リチウムイオンを充電時には吸蔵し、かつ放電時には放出する特性を有する活物質を用いることができれば、特に限定されるものではない。このような特性を有する材料としては、例えば、リチウム金属や、グラファイト、非晶質炭素等の炭素材料などが挙げられる。その中でも、リチウムイオンの充放電に伴い電圧変化の比較的大きい炭素材料を使用することが好ましい。よく用いられるものとして、黒鉛等から成る粉末状の炭素材料が挙げられる。特に、本実施形態のように黒鉛粒子を好ましく用いることができる。そして、前記結着剤を用いて、負極活物質の粒子は繋ぎとめられる。   The negative electrode active material is not particularly limited as long as it can use an active material having the characteristics of occluding lithium ions during charging and releasing lithium ions during discharging. Examples of the material having such characteristics include lithium metal, carbon materials such as graphite and amorphous carbon, and the like. Among them, it is preferable to use a carbon material having a relatively large voltage change with the charging / discharging of lithium ions. A frequently used material is a powdered carbon material made of graphite or the like. In particular, graphite particles can be preferably used as in this embodiment. And the particle | grains of a negative electrode active material are tied together using the said binder.

結着剤(バインダ)は、前記負極活物質の粒子同士などを繋ぎとめる役割を果たすものであり、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレン−ブタジエン共重合体(SBR)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン等の熱可塑性樹脂を用いることができる。   The binder (binder) plays a role of connecting the particles of the negative electrode active material, and includes polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene copolymer (SBR). Fluorine-containing resins such as fluororubber, and thermoplastic resins such as polypropylene can be used.

造粒工程S20は、ペースト作製工程S10で作製された、黒鉛を含有させた電極合剤ペーストに対して所定の乾燥・磁場印加手段(例えば、磁場印加手段を炉内に備えた熱風乾燥炉等)により所定の乾燥温度及び磁場印加条件で、磁場を印加しながら乾燥(造粒)することにより、造粒粒子20からなる電極合剤粉末7を得るための工程である。すなわち、造粒工程S20では、電極合剤ペーストに対して磁場印加状態で造粒が行われることにより、図3に示すような磁場配向した黒鉛を含有する電極合剤粉末7を得ることができる。具体的には、造粒工程S20は、負極活物質(本実施形態では、黒鉛)、結着剤(バインダ)等の電極合剤成分及び当該成分の分散用溶媒を用いて電極合剤ペーストを作製し、これを乾燥(造粒)して乾燥物とし、当該乾燥物に対して解砕及び分級を行い、造粒粒子20として所定の粒子径や、嵩密度等の性質を有する粉粒体を作製する工程である。
なお、上述したペースト作製工程S10及び造粒工程S20は、電極製造装置1による電池用電極の製造を開始するための前準備工程になる。
In the granulation step S20, a predetermined drying / magnetic field applying means (for example, a hot air drying furnace provided with a magnetic field applying means in the furnace) is applied to the electrode mixture paste containing graphite prepared in the paste preparation step S10. ) To obtain the electrode mixture powder 7 composed of the granulated particles 20 by drying (granulation) while applying a magnetic field at a predetermined drying temperature and magnetic field application conditions. That is, in the granulation step S20, electrode mixture powder 7 containing magnetically oriented graphite as shown in FIG. 3 can be obtained by granulating the electrode mixture paste in a magnetic field applied state. . Specifically, in the granulating step S20, an electrode mixture paste is prepared using an electrode mixture component such as a negative electrode active material (in this embodiment, graphite), a binder (binder), and a solvent for dispersing the component. Prepared, dried (granulated) to obtain a dried product, pulverized and classified to the dried product, and granulated particles 20 having a predetermined particle diameter, bulk density and other properties It is a process of producing.
In addition, the paste preparation process S10 and granulation process S20 mentioned above become a preparatory process for starting manufacture of the electrode for batteries by the electrode manufacturing apparatus 1. FIG.

また、造粒工程S20にて電極合剤粉末7を構成する造粒粒子20に含有させる黒鉛は、細長い形状の黒鉛を用いる。より具体的には、使用する黒鉛としては、黒鉛粒子であって、当該黒鉛粒子形状が球状ではなく楕円状、鱗片状といった細長い形状であることが好ましい。また、楕円状黒鉛、鱗片状黒鉛においても、大粒径の黒鉛粒子が好ましく、具体的には、当該黒鉛粒子の長手方向の粒径がプレス後の電極合剤層8の膜厚以下のものを用いるのが好ましい。黒鉛の粒子形状の詳細については後述する。   In addition, as the graphite contained in the granulated particles 20 constituting the electrode mixture powder 7 in the granulating step S20, elongated graphite is used. More specifically, the graphite to be used is preferably graphite particles, and the shape of the graphite particles is not a spherical shape but an elongated shape such as an ellipse or a scale. Further, in the case of elliptical graphite and scaly graphite, graphite particles having a large particle size are preferable. Specifically, the particle size in the longitudinal direction of the graphite particles is equal to or less than the film thickness of the electrode mixture layer 8 after pressing. Is preferably used. Details of the graphite particle shape will be described later.

供給工程S30は、前記造粒工程S20で得られた電極合剤粉末7、すなわち、前記黒鉛が一次粒子として構成された造粒粒子20を粉体成形装置2により集電箔6上に供給するともに、電極合剤粉末7を堆積層として集電箔6上に形成する工程である。   In the supplying step S30, the electrode mixture powder 7 obtained in the granulating step S20, that is, the granulated particles 20 in which the graphite is constituted as primary particles is supplied onto the current collector foil 6 by the powder molding apparatus 2. In both cases, the electrode mixture powder 7 is formed as a deposited layer on the current collector foil 6.

平坦化工程S40は、平坦化ブレード4を用いて粉体成形装置2により集電箔6上に供給された電極合剤粉末7を表面が均一になるように平坦化して、平坦化ブレード4先端と集電箔6表面との間と同じ厚さ寸法を有する電極合剤粉末7の堆積層を形成する工程である。   In the flattening step S40, the electrode mixture powder 7 supplied onto the current collector foil 6 by the powder molding apparatus 2 is flattened using the flattening blade 4 so that the surface is uniform, and the tip of the flattening blade 4 is obtained. And a deposited layer of the electrode mixture powder 7 having the same thickness as that between the surface of the current collector foil 6 and the surface of the current collector foil 6.

磁場印加工程S50は、平坦化ブレード4により平坦化された電極合剤粉末7の堆積層に対して、磁場印加手段5により、電極合剤粉末7の堆積層の厚さ方向(集電箔6に対して垂直方向。図1では上下方向)に沿った磁場(磁力)を所定の磁場印加条件で印加する工程である。具体的には、磁場印加工程S50では、集電箔6上に形成された電極合剤粉末7の堆積層に対して、当該磁場印加工程S50の後工程である熱プレス工程前に更に磁場を印加することにより電極合剤粉末7(黒鉛が磁場配向された造粒粒子20)を前記集電箔6に対して略垂直に配向制御する工程である。より具体的には、図4に示すように、磁場印加工程S50は、電極合剤粉末7の堆積層を構成している、黒鉛が磁場配向された造粒粒子20のそれぞれを、再度磁場を印加することで集電箔6表面に対して略垂直に立設する工程である。
なお、磁場印加工程S50は、製造する電池用電極の要求性能に応じて省略することも可能であるが、磁場印加工程S50を介することで集電箔6に対して黒鉛を略垂直に配向することができるため、熱プレス工程S70のプレス時に配向した黒鉛に優先的に圧力が加わることになり、電極合剤が潰れにくく、電極合剤層8をより低密度に保つことができ、より剥離強度が向上する。
In the magnetic field application step S50, the magnetic layer applying means 5 applies the deposited layer of the electrode mixture powder 7 flattened by the flattening blade 4 to the thickness direction of the deposited layer of the electrode mixture powder 7 (current collecting foil 6). This is a step of applying a magnetic field (magnetic force) along a direction perpendicular to the vertical direction in FIG. Specifically, in the magnetic field application step S50, a magnetic field is further applied to the deposited layer of the electrode mixture powder 7 formed on the current collector foil 6 before the hot pressing step that is a subsequent step of the magnetic field application step S50. This is a step of controlling the orientation of the electrode mixture powder 7 (granulated particles 20 in which graphite is magnetically oriented) substantially perpendicularly to the current collector foil 6 by application. More specifically, as shown in FIG. 4, in the magnetic field application step S50, each of the granulated particles 20 constituting the deposited layer of the electrode mixture powder 7 and in which the graphite is magnetically oriented is subjected to a magnetic field again. This is a step of standing substantially perpendicular to the surface of the current collector foil 6 by applying.
The magnetic field application step S50 can be omitted depending on the required performance of the battery electrode to be manufactured, but the graphite is oriented substantially perpendicular to the current collector foil 6 through the magnetic field application step S50. Therefore, pressure is preferentially applied to the graphite oriented at the time of pressing in the hot press step S70, the electrode mixture is not easily crushed, the electrode mixture layer 8 can be kept at a lower density, and more exfoliated. Strength is improved.

加熱工程S60は、赤外線加熱手段9により電極合剤粉末7の堆積層を赤外線(IR)照射により所定温度で加熱する工程である。加熱工程S60では、電極合剤粉末7を構成する造粒粒子20内の結着剤(バインダ)に熱が加わることで、造粒粒子20同士の接着性を増し、造粒粒子20の流動性を抑えることができる。   The heating step S60 is a step of heating the deposited layer of the electrode mixture powder 7 at a predetermined temperature by infrared (IR) irradiation by the infrared heating means 9. In heating process S60, the heat | fever is added to the binder (binder) in the granulated particle 20 which comprises the electrode mixture powder 7, thereby increasing the adhesiveness of the granulated particles 20 and the fluidity of the granulated particles 20. Can be suppressed.

熱プレス工程S70は、赤外線加熱手段9により加熱後、電極合剤粉末7の堆積層が表面に堆積した集電箔6に対して、熱プレス手段10により所定の熱プレス条件(加熱温度・プレス圧)で熱プレスして、電極合剤粉末7の堆積層より薄い電極合剤層8を形成する工程である。このようにして、粉体成形により電極合剤層8が集電箔6上に形成された負極(負極シート)が作製される。
次に、上記電池用電極の製造方法の各工程に従うとともに、上述した電極製造装置1を用いて、電池用電極として負極(負極シート)を製造した実施例及び比較例を挙げて、本発明を説明する。
In the heat press step S70, after heating by the infrared heating means 9, a predetermined hot press condition (heating temperature and press) is applied to the current collector foil 6 on which the deposited layer of the electrode mixture powder 7 is deposited on the surface. This is a step of forming an electrode mixture layer 8 that is thinner than the deposited layer of the electrode mixture powder 7 by hot pressing under pressure. In this way, a negative electrode (negative electrode sheet) in which the electrode mixture layer 8 is formed on the current collector foil 6 by powder molding is produced.
Next, while following each process of the manufacturing method of the said battery electrode, the Example which manufactured the negative electrode (negative electrode sheet) as a battery electrode using the electrode manufacturing apparatus 1 mentioned above, and a comparative example are given, and this invention is given. explain.

[実施例1]
(ペースト作製工程S10)
先ず、負極活物質(本実施例では、黒鉛)と、スチレン−ブタジエン共重合体(SBR)よりなる結着剤(バインダ)と、カルボキシメチルセルロース(CMC)よりなる結着剤(バインダ)との3種の電極合剤成分を、96:3.3:0.7の混合比で混合し、所定の分散媒体(本実施例では、N−メチル−2−ピロリドン(NMP))に分散させ、固定分率が50%となるように電極合剤ペーストを作製した。
[Example 1]
(Paste making process S10)
First, a negative electrode active material (in this example, graphite), a binder (binder) made of styrene-butadiene copolymer (SBR), and a binder (binder) made of carboxymethylcellulose (CMC). Various electrode mixture components were mixed at a mixing ratio of 96: 3.3: 0.7, dispersed in a predetermined dispersion medium (N-methyl-2-pyrrolidone (NMP) in this example), and fixed. An electrode mixture paste was prepared so that the fraction was 50%.

(造粒工程S20)
次に、ペースト作製工程S10で得られた電極合剤ペーストを、乾燥・磁場印加手段(本実施例では、磁場印加手段を炉内に備えた熱風乾燥炉)により乾燥温度(熱風温度)110℃、磁力1.2Tの条件で所定時間磁場を印加しながら乾燥(造粒)して乾燥物(未処理造粒粒子)を得た(図5参照)。図5では、複数の黒鉛粒子が同方向(図5では上下方向)に配向していることが確認できる。そして、当該乾燥物を所定の適当な手段で解砕及び分級の処理を行うことにより、造粒粒子20を作製し、所望する平均粒径(本実施例における造粒後の粒径D50=15μm)や粒径分布を有する二次粒子として造粒粒子20を作製した。
なお、加熱(焼成)する方法としては、上記熱風乾燥炉に限定するものではなく、電極合剤に熱を加えて造粒粒子20を作製することができる公知の方法が適用できる。また、解砕する方法としては、ボールミル等の公知の方法が適用できる。
また、上記乾燥温度(熱風温度)としては、造粒粒子20のガラス転移温度より小さく、かつガラス転移温度により近い温度で乾燥することが乾燥効率を考慮する上で好ましい。本実施例では、80〜130℃の温度範囲で乾燥することが好適である。
(Granulation step S20)
Next, the electrode mixture paste obtained in the paste preparation step S10 is dried at a drying temperature (hot air temperature) of 110 ° C. by means of drying / magnetic field applying means (in this embodiment, a hot air drying furnace provided with a magnetic field applying means in the furnace). Then, drying (granulation) was performed while applying a magnetic field for a predetermined time under a magnetic force of 1.2 T to obtain a dried product (untreated granulated particles) (see FIG. 5). In FIG. 5, it can be confirmed that the plurality of graphite particles are oriented in the same direction (vertical direction in FIG. 5). Then, the granulated particles 20 are produced by crushing and classifying the dried product by a predetermined appropriate means, and a desired average particle size (particle size D50 after granulation in this example D15 = 15 μm). And granulated particles 20 were produced as secondary particles having a particle size distribution.
In addition, as a method of heating (baking), it is not limited to the said hot air drying furnace, The well-known method which can apply the heat to electrode mixture and can produce the granulated particle 20 is applicable. Moreover, as a method for crushing, a known method such as a ball mill can be applied.
The drying temperature (hot air temperature) is preferably lower than the glass transition temperature of the granulated particles 20 and close to the glass transition temperature in view of drying efficiency. In this embodiment, it is preferable to dry in the temperature range of 80 to 130 ° C.

(供給工程S30)
造粒工程S20で得られた造粒粒子20からなる電極合剤粉末7を粉体成形装置2の供給装置にフィードし、当該粉体成形装置2の供給口より、搬送手段3により搬送される集電箔6上に電極合剤粉末7を供給する。
(Supply process S30)
The electrode mixture powder 7 composed of the granulated particles 20 obtained in the granulation step S20 is fed to the supply device of the powder molding apparatus 2, and is conveyed by the conveying means 3 from the supply port of the powder molding apparatus 2. An electrode mixture powder 7 is supplied onto the current collector foil 6.

(平坦化工程S40)
次に、平坦化ブレード4を用いて粉体成形装置2により集電箔6上に供給された電極合剤粉末7を表面が均一になるように平坦化して、平坦化ブレード4先端と集電箔6表面との間と同じ厚さ寸法を有する電極合剤粉末7の堆積層を形成した。
(Planarization step S40)
Next, the electrode mixture powder 7 supplied onto the current collector foil 6 by the powder molding apparatus 2 is flattened using the flattening blade 4 so that the surface is uniform, and the tip of the flattening blade 4 and the current collector are collected. A deposited layer of the electrode mixture powder 7 having the same thickness as that between the surfaces of the foil 6 was formed.

(磁場印加工程S50)
次に、平坦化ブレード4により平坦化された電極合剤粉末7の堆積層に対して、磁場印加手段5により、電極合剤粉末7の堆積層の厚さ方向(集電箔6に対して垂直方向。図1では上下方向)に沿った磁場(磁力)を印加した。磁場(磁力)の印加条件としては、磁場強度を0.25T、磁場印加時間を0.5sec以上とした。
(Magnetic field application step S50)
Next, with respect to the deposited layer of the electrode mixture powder 7 flattened by the planarizing blade 4, the magnetic field applying means 5 applies the thickness direction of the deposited layer of the electrode mixture powder 7 (with respect to the current collector foil 6). A magnetic field (magnetic force) along the vertical direction (vertical direction in FIG. 1) was applied. As application conditions of the magnetic field (magnetic force), the magnetic field intensity was 0.25 T, and the magnetic field application time was 0.5 sec or more.

(加熱工程S60)
続いて、赤外線加熱手段9により電極合剤粉末7の堆積層を赤外線(IR)加熱(加熱温度:200℃)した。
(Heating step S60)
Subsequently, the deposited layer of the electrode mixture powder 7 was infrared (IR) heated (heating temperature: 200 ° C.) by the infrared heating means 9.

(熱プレス工程S70)
続いて、赤外線加熱手段9により加熱後、電極合剤粉末7の堆積層が表面に堆積した集電箔6に対して、熱プレス手段10により熱プレスして、電極合剤粉末7の堆積層より薄い電極合剤層8を形成した。このようにして、粉体成形により造粒粒子20からなる電極合剤層8が集電箔6上に形成された負極(負極シート)を作製した。
そして、前述した負極(負極シート)と予め準備した所定の正極(正極シート)を、電池の設計容量が所定の値となるように電極のサイズを調整した後、セパレータを介して対向させて電極体を形成し、電解液と共にラミネートで封止することで、ラミネートセル型のリチウムイオン二次電池とし、実施例1の評価電池を作製した。
なお、前記所定の正極(正極シート)は、公知の製造方法で作製したものであり、正極活物質(本実施例では、ニッケルリチウム複合酸化物(LiNiO2)、マンガンリチウム複合酸化物(LiMnO2)、コバルトリチウム複合酸化物(LiCoO2)の三元系リチウム含有複合酸化物)と、アセチレンブラック(AB)からなる導電材と、ポリフッ化ビニリデン(PVDF)よりなる結着剤(バインダ)の3種の電極合剤成分を、所定の重量割合で混合し、所定の分散媒体(本実施例では、N−メチル−2−ピロリドン(NMP))に分散させて電極合剤ペーストを作製し、電極合剤ペーストを集電箔(アルミニウム箔)に塗布乾燥して作製した。
(Hot press process S70)
Subsequently, after heating by the infrared heating means 9, the current collector foil 6 on which the deposited layer of the electrode mixture powder 7 is deposited is hot-pressed by the hot press means 10 to deposit the electrode mixture powder 7. A thinner electrode mixture layer 8 was formed. In this manner, a negative electrode (negative electrode sheet) in which the electrode mixture layer 8 composed of the granulated particles 20 was formed on the current collector foil 6 by powder molding was produced.
Then, after adjusting the size of the electrode so that the design capacity of the battery becomes a predetermined value, the negative electrode (negative electrode sheet) described above and a predetermined positive electrode (positive electrode sheet) prepared in advance are made to face each other via a separator. The evaluation battery of Example 1 was produced as a laminated cell type lithium ion secondary battery by forming a body and sealing the laminate together with the electrolyte.
Incidentally, the predetermined positive (positive electrode sheet), which was prepared by a known production method, the positive electrode active material (the present embodiment, lithium nickel composite oxide (LiNiO 2), lithium manganese composite oxide (LiMnO 2 ), Cobalt lithium composite oxide (LiCoO 2 ) ternary lithium-containing composite oxide), conductive material made of acetylene black (AB), and binder (binder) made of polyvinylidene fluoride (PVDF) 3 An electrode mixture component is mixed in a predetermined weight ratio and dispersed in a predetermined dispersion medium (N-methyl-2-pyrrolidone (NMP) in this embodiment) to prepare an electrode mixture paste, and an electrode The mixture paste was applied to a current collector foil (aluminum foil) and dried.

[実施例2]
実施例1の製造工程で、磁場印加工程S50を省略した(磁場印加手段5により磁場を印加しなかった)以外は、実施例1と同様の手順で比較評価用の負極(負極シート)を作製した。また、当該負極(負極シート)を用いて実施例1と同様の手順で実施例2の評価電池を作製した。
[Example 2]
A negative electrode (negative electrode sheet) for comparative evaluation was produced in the same procedure as in Example 1 except that the magnetic field applying step S50 was omitted in the manufacturing process of Example 1 (no magnetic field was applied by the magnetic field applying means 5). did. Moreover, the evaluation battery of Example 2 was produced in the same procedure as Example 1 using the said negative electrode (negative electrode sheet).

[比較例]
特許文献1に示すように、造粒時に磁場配向させなかった造粒粒子を用いて従来の粉体成形法(黒鉛の磁場配向なし)により負極(負極シート)を作製した。すなわち、実施例1の製造工程の造粒工程S20と磁場印加工程S50で磁場を印加しなかった以外は、実施例1と同様の手順で比較評価用の負極(負極シート)を作製した。また、当該負極(負極シート)を用いて実施例1と同様の手順で比較例の評価電池を作製した。
[Comparative example]
As shown in Patent Document 1, a negative electrode (negative electrode sheet) was produced by a conventional powder molding method (without magnetic field orientation of graphite) using granulated particles that were not magnetically oriented during granulation. That is, a negative electrode (negative electrode sheet) for comparative evaluation was produced in the same procedure as in Example 1 except that the magnetic field was not applied in the granulating step S20 and the magnetic field applying step S50 in the manufacturing process of Example 1. Moreover, the evaluation battery of the comparative example was produced in the same procedure as Example 1 using the said negative electrode (negative electrode sheet).

[IV抵抗(初期抵抗)の測定]
上記各評価電池について、放電後の状態から初期容量の60%に相当する電気容量を、1/5Cの電流値で定電流充電することで、各評価電池のSOC(State of Charge)を60%に調製した。SOC60%において、1/3C、1C、3Cの定電流を5秒間流すことで充電時及び放電時の過電圧を測定し、それらの値を電流値で除することで算出した抵抗の平均値を初期の直流抵抗とした。前述した操作は全て25℃の環境下で行った。
[Measurement of IV resistance (initial resistance)]
About each said evaluation battery, the SOC (State of Charge) of each evaluation battery is 60% by carrying out constant current charge with the electric current value equivalent to 60% of initial capacity from the state after discharge at the electric current value of 1 / 5C. Prepared. In SOC 60%, the constant voltage of 1 / 3C, 1C, 3C is flowed for 5 seconds to measure the overvoltage during charging and discharging, and the average value of resistance calculated by dividing those values by the current value is the initial value DC resistance of All the operations described above were performed in an environment of 25 ° C.

<本発明の効果について>
図6に、実施例1及び比較例(黒鉛の磁場配向なし)における各負極の電極構造を示す。(a)は比較例として作製した負極を示し、(b)は実施例1で作製した負極である。実施例1及び比較例とは熱プレスを同一の熱プレス条件で熱プレスを行ったにもかかわらず、比較例よりも実施例1の方が低密度の電極合剤層を得ることができた。これは、電極合剤粉末を構成する各造粒粒子中の黒鉛の配向が揃う(電極合剤粉末を構成する各造粒粒子中の空隙が小さくなる)ため、プレス時には配向した黒鉛に優先的に圧力が加わることになり、電極合剤が潰れにくく、電極合剤層8を低密度に保つことができるからである。すなわち、高圧プレスしても所望の電極密度を保持することができ、加えて高い剥離強度も得られる。さらに、実施例1では、実施例2よりも剥離強度が向上している(後述する剥離強度試験の結果及び図9を参照)。これは、実施例1は磁場印加工程S50において電極合剤粉末7を構成する造粒粒子20に磁場が印加されたことにより集電箔6に対して略垂直に配向したため(図4参照)、磁場印加工程S50を省略した実施例2よりも熱プレスによる過度の潰れや緻密化をさらに防止ができたためである。また、当該配向した造粒粒子20が膜構造(電極合剤層構造)を安定に保持するため、強固な膜構造となり、高い剥離強度を得ることができる。特に、実施例1のように、集電箔6に対して略垂直に配向した造粒粒子20は、電極合剤層8の厚さ方向の導電パスの確保することになり、電極の導電性を向上することができる。このため、電池性能として抵抗低減効果も得られる。
<About the effect of the present invention>
In FIG. 6, the electrode structure of each negative electrode in Example 1 and a comparative example (without magnetic field orientation of graphite) is shown. (A) shows the negative electrode produced as a comparative example, (b) is the negative electrode produced in Example 1. Although Example 1 and Comparative Example were hot pressed under the same hot press conditions, Example 1 was able to obtain a lower density electrode mixture layer than Comparative Example. . This is because the orientation of graphite in each granulated particle constituting the electrode mixture powder is uniform (the void in each granulated particle constituting the electrode mixture powder is reduced), so that it is preferential to the oriented graphite during pressing. This is because pressure is applied to the electrode mixture, the electrode mixture is not easily crushed, and the electrode mixture layer 8 can be kept at a low density. In other words, a desired electrode density can be maintained even with high-pressure pressing, and in addition, a high peel strength can be obtained. Furthermore, in Example 1, the peel strength is improved compared to Example 2 (see the results of a peel strength test described later and FIG. 9). This is because Example 1 was oriented substantially perpendicular to the current collector foil 6 by applying a magnetic field to the granulated particles 20 constituting the electrode mixture powder 7 in the magnetic field application step S50 (see FIG. 4). This is because excessive crushing and densification by hot pressing can be further prevented as compared with Example 2 in which the magnetic field application step S50 is omitted. Moreover, since the oriented granulated particles 20 stably maintain the film structure (electrode mixture layer structure), the film structure becomes strong and high peel strength can be obtained. In particular, as in Example 1, the granulated particles 20 oriented substantially perpendicular to the current collector foil 6 ensure a conductive path in the thickness direction of the electrode mixture layer 8, and thus the conductivity of the electrode. Can be improved. For this reason, the resistance reduction effect is also acquired as battery performance.

<黒鉛配向度とIV抵抗の関係>
実施例1、2及び比較例の各評価電池のそれぞれについて、IV抵抗を測定した。
図7に、黒鉛配向度(磁場配向度)とIV抵抗(リチウム二次電池の初期抵抗)の関係を示す。
なお、図7中の「塗布電極」とは、実施例1と同じ電極材料組成であるが電極合剤ペーストを塗布乾燥して負極(負極シート)を作製し、これを用いて実施例1と同様の手順で評価電池を作製したものである。また、図7中の比較例及び塗布電極の下に記載したかっこ内の数値は黒鉛配向度の値である。
<Relationship between graphite orientation and IV resistance>
The IV resistance was measured for each of the evaluation batteries of Examples 1 and 2 and the comparative example.
FIG. 7 shows the relationship between the degree of graphite orientation (degree of magnetic field orientation) and IV resistance (initial resistance of a lithium secondary battery).
The “applied electrode” in FIG. 7 has the same electrode material composition as in Example 1, but an electrode mixture paste was applied and dried to produce a negative electrode (negative electrode sheet). An evaluation battery was produced in the same procedure. Moreover, the numerical value in the parenthesis described under the comparative example and coating electrode in FIG. 7 is a value of the degree of graphite orientation.

図7において、縦軸は粉末X線回折測定による、結晶面(110)のピーク強度と結晶面(002)のピーク強度を用いた、(110)/(002)強度比であり、横軸はIV抵抗(初期抵抗)[Ω]である。(110)/(002)強度比は、高い値になる程(図7の上向き方向に向かう程)、高配向(本実施例おいて、造粒工程S20では造粒粒子20内で同一方向に沿って黒鉛が配向すること、及び磁場印加工程S50では集電箔6に対して略垂直方向に沿って配向すること)となる。より具体的には、(110)/(002)強度比が約0.02以上でも、高配向状態であるといえる。また、本発明は、本実施例の上記製造条件に限定するものではなく、使用する電極材料(電極合剤成分)、黒鉛の大きさ・形状(アスペクト比等)や種々の製造条件等に応じて、磁場強度及び磁場印加時間を適宜設定すればよい。図7から明らかなように、比較例の評価電池や塗布電極における各IV抵抗よりも、実施例1、2の評価電池における各IV抵抗の方が小さくなった。これは、実施例1、2で作製した負極(負極シート)の電極構造が図4に示す理想的な電極構造に近づいたことを意味している。以上のように図7に示す結果から、上記実施形態の製造方法により製造した負極(負極シート)を用いたリチウムイオン二次電池では、IV抵抗を低減可能であることが確認できた。   In FIG. 7, the vertical axis is the (110) / (002) intensity ratio using the peak intensity of the crystal plane (110) and the peak intensity of the crystal plane (002), as measured by powder X-ray diffraction measurement, and the horizontal axis is IV resistance (initial resistance) [Ω]. The higher the (110) / (002) strength ratio (the more it goes in the upward direction in FIG. 7), the higher the orientation (in this embodiment, in the granulating step 20 in the same direction in the granulated particles 20). The graphite is aligned along the magnetic field application step S50 and is aligned along the substantially vertical direction with respect to the current collector foil 6). More specifically, even if the (110) / (002) intensity ratio is about 0.02 or more, it can be said that the film is in a highly oriented state. Further, the present invention is not limited to the above production conditions of the present embodiment, but depends on the electrode material (electrode mixture component) to be used, the size / shape of graphite (aspect ratio, etc.), various production conditions, etc. Thus, the magnetic field strength and the magnetic field application time may be set as appropriate. As is clear from FIG. 7, each IV resistance in the evaluation batteries of Examples 1 and 2 was smaller than each IV resistance in the evaluation battery and the coated electrode of the comparative example. This means that the electrode structure of the negative electrode (negative electrode sheet) produced in Examples 1 and 2 has approached the ideal electrode structure shown in FIG. From the results shown in FIG. 7 as described above, it was confirmed that the IV resistance could be reduced in the lithium ion secondary battery using the negative electrode (negative electrode sheet) manufactured by the manufacturing method of the above embodiment.

<ピーク強度比と黒鉛粒子形状の関係>
図8に、黒鉛配向度((110)/(002)強度比)と黒鉛粒子形状の関係を示す。図8において、横軸は粉末X線回折測定による、結晶面(110)のピーク強度と結晶面(002)のピーク強度を用いた、(110)/(002)強度比であり、横軸右側に向かう程配向性が小さく、横軸左側に向かう程配向性が大きいことを示している。上述したように、本発明で使用する黒鉛としては、黒鉛粒子であって、当該黒鉛粒子形状が球状ではなく楕円状、鱗片状といった細長い形状である黒鉛が好ましい。また、楕円状黒鉛、鱗片状黒鉛においても、大粒径の黒鉛粒子が好ましく、具体的には、当該黒鉛粒子の長手方向の粒径がプレス後の電極合剤層8の膜厚以下のものを用いるのが好ましい。すなわち、本発明で使用する黒鉛としては、図8の右側に示す球状黒鉛(人造黒鉛、カーボン)は不適である。これに対して、黒鉛粒子の長手方向の粒径と、それに垂直な短手方向の粒径(又は、粒子厚さ)のアスペクト比(長手方向の粒径/短手方向の粒径(粒子厚さ))が1より大きい細長い粒子形状(つまり形状異方性を有する粒子形状)である球形黒鉛(図8中央)や鱗片状黒鉛(図8左側)等は、形状異方性を有する粒子形状であるため磁場の印加により粒子の長手方向を磁場印加方向と平行となるように配向する配向性を有する。そのため、これら形状異方性を有する粒子形状である球形黒鉛や鱗片状黒鉛は、本発明で使用する黒鉛として好適である。一方、黒鉛配向度((110)/(002)強度比)でみた場合、本発明に用いる黒鉛としては、粉体の状態で0.25Tで1sec以上の磁場に晒して磁場配向させた際、その際のX線解析のピーク強度比(110)/(002)が0
.0006以上となる黒鉛が好ましく、さらに、ピーク強度比(110)/(002)が0.07以上となる黒鉛が好ましい。
<Relationship between peak intensity ratio and graphite particle shape>
FIG. 8 shows the relationship between the degree of graphite orientation ((110) / (002) strength ratio) and the shape of graphite particles. In FIG. 8, the horizontal axis represents the (110) / (002) intensity ratio using the peak intensity of the crystal plane (110) and the peak intensity of the crystal plane (002) as measured by powder X-ray diffraction measurement. It is shown that the orientation is smaller as it goes to the left and the orientation is larger as it goes to the left side of the horizontal axis. As described above, the graphite used in the present invention is preferably graphite particles, and the graphite particles have an elongated shape such as an elliptical shape or a scale shape instead of a spherical shape. Further, in the case of elliptical graphite and scaly graphite, graphite particles having a large particle size are preferable. Specifically, the particle size in the longitudinal direction of the graphite particles is equal to or less than the film thickness of the electrode mixture layer 8 after pressing. Is preferably used. That is, as graphite used in the present invention, spherical graphite (artificial graphite, carbon) shown on the right side of FIG. 8 is not suitable. On the other hand, the aspect ratio of the particle size in the longitudinal direction of the graphite particles and the particle size (or particle thickness) in the short direction perpendicular thereto (longitudinal particle size / short particle size (particle thickness) S)) is a long and narrow particle shape (that is, a particle shape having shape anisotropy) larger than 1, such as spherical graphite (center of FIG. 8), scale-like graphite (left side of FIG. 8), etc. Therefore, it has the orientation which orients so that the longitudinal direction of particle | grains may become in parallel with a magnetic field application direction by application of a magnetic field. Therefore, spherical graphite and scaly graphite having particle shapes having shape anisotropy are suitable as graphite used in the present invention. On the other hand, when viewed in terms of the degree of graphite orientation ((110) / (002) strength ratio), the graphite used in the present invention is in a powder state when subjected to a magnetic field orientation at 0.25 T for 1 sec or more, The peak intensity ratio (110) / (002) of the X-ray analysis at that time is 0
. Graphite having a peak strength ratio (110) / (002) of 0.07 or more is preferable.

<剥離強度試験>
市販の引張試験機を用いて、実施例1、2及び比較例の各電極合剤層の剥離強度について評価した。この評価結果について図9に示す。
なお、剥離強度試験で用いる実施例1、2及び比較例の試験片については、上記で示した実施例1、2及び比較例のそれぞれの電池用電極の製造方法で作製したものであるが、熱プレス条件を調整して、同じ所定の電極密度(電極合剤層の密度)となるように作製した。
上記作製した実施例1、2及び比較例の負極シートを所定形状に切り抜きし、試験片をそれぞれ3片づつ用意した。そして、引張試験機の架台に該試験片を固定した。このとき、該試験片は電極合剤層が鉛直方向上側になるように集電箔を架台に固定した。それから、引張治具の下端部に両面テープの片面を貼付し、もう一方の面を電極合剤層に貼り付け、鉛直方向上側に所定の速度で引張治具を引っ張りあげて、電極合剤層が集電箔から剥がれたときの剥離強度(引張強度)[N/m]を測定した。そして、実施例1、2及び比較例のそれぞれ3片づつの試験片の測定値を用いて、実施例1、2及び比較例の剥離強度の平均値を求めた。測定結果を図9に示す。図9では、剥離強度を厳密に比較するため、上述したように、実施例1、2及び比較例の各電極密度を同一になるように作製している。図9から明らかなように、黒鉛を磁場配向させた実施例1、2は、比較例に対して格段に剥離強度が向上していることがわかる。また、実施例1と実施例2を比較すると、造粒工程S20時に1度のみ磁場を印加した実施例2よりも、造粒工程S20の際に1回磁場を印加し、さらに磁場印加工程S50の際に2回目の磁場を印加した実施例1の方が、さらに剥離強度が向上していることが確認できた。
<Peel strength test>
The peel strength of each electrode mixture layer of Examples 1 and 2 and Comparative Example was evaluated using a commercially available tensile tester. The evaluation results are shown in FIG.
In addition, about the test piece of Examples 1, 2 and the comparative example used in the peel strength test, it was produced by the method for manufacturing each battery electrode of Examples 1, 2 and Comparative Example shown above, The hot press conditions were adjusted to produce the same predetermined electrode density (the density of the electrode mixture layer).
The negative electrode sheets of Examples 1 and 2 and Comparative Example prepared above were cut into a predetermined shape, and three test pieces were prepared. And this test piece was fixed to the mount frame of the tensile tester. At this time, the current collector foil was fixed to the mount so that the electrode mixture layer was on the upper side in the vertical direction. Then, attach one side of the double-sided tape to the lower end of the tension jig, attach the other side to the electrode mixture layer, and pull the tension jig upward at a predetermined speed to the electrode mixture layer. Was peel strength (tensile strength) [N / m] when peeled from the current collector foil. And the average value of peeling strength of Example 1, 2 and a comparative example was calculated | required using the measured value of the test piece of 3 pieces each of Example 1, 2 and a comparative example. The measurement results are shown in FIG. In FIG. 9, in order to strictly compare the peel strength, the electrode densities of Examples 1 and 2 and the comparative example are made to be the same as described above. As can be seen from FIG. 9, in Examples 1 and 2 in which graphite is magnetically oriented, the peel strength is markedly improved compared to the comparative example. Moreover, when Example 1 and Example 2 are compared, compared with Example 2 which applied the magnetic field only once at the time of granulation process S20, a magnetic field is applied once in the granulation process S20, and also magnetic field application process S50. In this case, it was confirmed that the peel strength was further improved in Example 1 in which the second magnetic field was applied.

以上のように、本発明は、電極合剤を造粒することにより得られた粉体状の電極合剤を集電箔上に供給して、プレスすることにより電極を形成する電池用電極の製造方法において、前記電極合剤に黒鉛を含有させ、前記黒鉛を含有させた電極合剤に対して磁場を印加しながら造粒することにより、電極合剤粉末を得て、当該電極合剤粉末を前記集電箔上に供給して、前記プレスすることにより電極を形成することを特徴とする。これにより、電極合剤粉末を構成する各造粒粒子中の黒鉛の配向が揃う(電極合剤粉末を構成する各造粒粒子中の空隙が小さくなる)ため、プレス時に配向した黒鉛に優先的に圧力が加わることになり、電極合剤が潰れにくく、電極合剤層を低密度に保つことができる。すなわち、高圧プレスしても所望の電極密度を保持することができ、加えて剥離強度も向上する。   As described above, the present invention provides a battery electrode for forming an electrode by supplying and pressing a powdered electrode mixture obtained by granulating an electrode mixture onto a current collector foil. In the manufacturing method, an electrode mixture powder is obtained by granulating the electrode mixture containing graphite and applying a magnetic field to the electrode mixture containing the graphite. Is formed on the current collector foil, and the electrode is formed by the pressing. As a result, the orientation of graphite in each granulated particle constituting the electrode mixture powder is uniform (the void in each granulated particle constituting the electrode mixture powder is reduced), so it is preferential to the graphite oriented during pressing. Pressure is applied to the electrode mixture, and the electrode mixture is not easily crushed, and the electrode mixture layer can be kept at a low density. That is, a desired electrode density can be maintained even when high-pressure pressing is performed, and the peel strength is also improved.

本発明は、造粒時に磁場配向させることで配向性を有する二次粒子である造粒粒子を作製し、造粒粒子からなる粉末をプレス成形前に再度磁場配向させることでより集電箔表面に対して略垂直に配向された造粒粒子からなる電極を得ることができる。   The present invention produces granulated particles which are secondary particles having orientation by orienting the magnetic field during granulation, and the current of the current collector foil is obtained by reorienting the powder comprising the granulated particles again before press molding. It is possible to obtain an electrode made of granulated particles oriented substantially perpendicular to the above.

1 電極製造装置
5 磁場印加手段
6 集団箔
7 電極合剤粉末
8 電極合剤層
10 熱プレス手段
20 造粒粒子
DESCRIPTION OF SYMBOLS 1 Electrode manufacturing apparatus 5 Magnetic field application means 6 Collective foil 7 Electrode mixture powder 8 Electrode mixture layer 10 Hot press means 20 Granulated particle

Claims (3)

電極合剤を造粒することにより得られた電極合剤粉末を集電箔上に供給して、プレスすることにより電極を形成する電池用電極の製造方法において、
前記電極合剤に黒鉛を含有させ、
前記黒鉛を含有させた電極合剤に対して磁場を印加しながら乾燥させて造粒することにより、前記電極合剤粉末を得ることを特徴とする電池用電極の製造方法。
In the method for producing an electrode for a battery for forming an electrode by supplying an electrode mixture powder obtained by granulating an electrode mixture onto a current collector foil and pressing it,
Including graphite in the electrode mixture;
A method for producing a battery electrode, wherein the electrode mixture powder is obtained by drying and granulating the electrode mixture containing graphite while applying a magnetic field.
前記電極合剤粉末を前記集電箔上に供給した後、当該集電箔に対して、前記プレスを行う前に更に磁場を印加することにより前記電極合剤粉末を前記集電箔に対して略垂直に配向制御することを特徴とする請求項1に記載の電池用電極の製造方法。   After supplying the electrode mixture powder onto the current collector foil, the electrode mixture powder is applied to the current collector foil by further applying a magnetic field to the current collector foil before performing the pressing. The method for producing a battery electrode according to claim 1, wherein the orientation is controlled substantially vertically. 請求項1または請求項2に記載の電池用電極の製造方法により製造されたことを特徴とする電池用電極。   A battery electrode manufactured by the method for manufacturing a battery electrode according to claim 1.
JP2012003620A 2012-01-11 2012-01-11 Battery electrode manufacturing method and battery electrode Active JP5640996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003620A JP5640996B2 (en) 2012-01-11 2012-01-11 Battery electrode manufacturing method and battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003620A JP5640996B2 (en) 2012-01-11 2012-01-11 Battery electrode manufacturing method and battery electrode

Publications (2)

Publication Number Publication Date
JP2013143304A JP2013143304A (en) 2013-07-22
JP5640996B2 true JP5640996B2 (en) 2014-12-17

Family

ID=49039764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003620A Active JP5640996B2 (en) 2012-01-11 2012-01-11 Battery electrode manufacturing method and battery electrode

Country Status (1)

Country Link
JP (1) JP5640996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960572B2 (en) * 2014-03-11 2018-05-01 Furukawa Electric Co., Ltd. Semiconductor device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100681B2 (en) * 2013-12-19 2017-03-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery electrode manufacturing method and non-aqueous electrolyte secondary battery manufacturing method
JP6211429B2 (en) * 2014-02-03 2017-10-11 日本ゼオン株式会社 Method for producing electrode for lithium ion battery
JP6077495B2 (en) 2014-07-11 2017-02-08 トヨタ自動車株式会社 Method for producing electrode for lithium ion secondary battery
JP2016051586A (en) * 2014-08-29 2016-04-11 トヨタ自動車株式会社 Manufacturing method of electrode for lithium ion secondary battery
JP6154369B2 (en) * 2014-12-19 2017-06-28 トヨタ自動車株式会社 Lithium ion secondary battery electrode manufacturing equipment
KR101917625B1 (en) * 2015-01-05 2018-11-13 니폰 제온 가부시키가이샤 Method for manufacturing electrode for lithium ion battery
JP6323405B2 (en) * 2015-07-13 2018-05-16 トヨタ自動車株式会社 Electrode sheet manufacturing method and electrode sheet
JP6848657B2 (en) * 2017-05-01 2021-03-24 トヨタ自動車株式会社 Non-aqueous batteries and their manufacturing methods
JP2022015478A (en) * 2020-07-09 2022-01-21 トヨタ自動車株式会社 All-solid battery manufacturing apparatus and all-solid battery manufacturing method
CN112614984B (en) * 2020-12-25 2022-11-11 湖州凯金新能源科技有限公司 Graphite negative electrode material of low-magnetism substance for lithium battery and preparation method thereof
JP7410074B2 (en) 2021-03-26 2024-01-09 プライムアースEvエナジー株式会社 Method for manufacturing electrodes for secondary batteries
JP7402838B2 (en) * 2021-03-30 2023-12-21 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of negative electrode plate
CN115036500A (en) * 2022-06-24 2022-09-09 广东邦普循环科技有限公司 Cathode material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261407A (en) * 1997-03-18 1998-09-29 Sony Corp Manufacture of battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960572B2 (en) * 2014-03-11 2018-05-01 Furukawa Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2013143304A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5640996B2 (en) Battery electrode manufacturing method and battery electrode
CN106804115B (en) Method for manufacturing electrode of lithium ion secondary battery
CN110537270B (en) All-solid lithium ion secondary battery
US10727489B2 (en) Anode slurry for lithium ion battery
JP6108166B2 (en) Secondary battery electrode
US20170092987A1 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
JP7075726B2 (en) Manufacturing method of all-solid-state secondary battery and all-solid-state secondary battery
JPWO2005117169A1 (en) Winding type non-aqueous secondary battery and electrode plate used therefor
US20170092988A1 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
CN110521026B (en) All-solid lithium ion secondary battery
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP6981868B2 (en) All-solid-state secondary battery
US20160118642A1 (en) Method for manufacturing electrode and electrode manufacturing apparatus
WO2015173623A1 (en) Method of manufacturing secondary battery
JP6453532B2 (en) Non-aqueous secondary battery electrode
US20170170452A1 (en) Method of manufacturing a lithium-ion secondary battery electrode sheet based on an active material dry powder
JP2015011896A (en) Method for manufacturing secondary battery electrode
JP6705400B2 (en) Method for manufacturing secondary battery electrode
JP2014192029A (en) Manufacturing device for lithium ion battery and manufacturing method of lithium ion battery
CN115050919B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP7006590B2 (en) A battery electrode, a battery provided with the electrode, and a method for manufacturing the electrode.
JP2013131379A (en) Manufacturing method of battery electrode and battery electrode
CN106663778B (en) Method for manufacturing electrode plate of lithium ion secondary battery
US20220278305A1 (en) Secondary battery electrode and method for producing the electrode
WO2023145655A1 (en) Composite particles for electrochemical element positive electrode, production method for same, positive electrode for electrochemical element, and electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151