WO2014155540A1 - Inverter device and inverter system - Google Patents

Inverter device and inverter system Download PDF

Info

Publication number
WO2014155540A1
WO2014155540A1 PCT/JP2013/058848 JP2013058848W WO2014155540A1 WO 2014155540 A1 WO2014155540 A1 WO 2014155540A1 JP 2013058848 W JP2013058848 W JP 2013058848W WO 2014155540 A1 WO2014155540 A1 WO 2014155540A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switching
power supply
unit
conversion unit
Prior art date
Application number
PCT/JP2013/058848
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 畠山
篠本 洋介
崇 山川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015507750A priority Critical patent/JP6300785B2/en
Priority to PCT/JP2013/058848 priority patent/WO2014155540A1/en
Publication of WO2014155540A1 publication Critical patent/WO2014155540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters

Definitions

  • the present invention relates to an inverter device and an inverter system including the inverter device.
  • Patent Document 1 discloses a power supply system that supplies power from at least one of a commercial power supply source, a solar power generation unit, a fuel cell power generation unit, and a power storage unit, and a blackout or the like of the commercial power supply source occurs. In such a case, it is disclosed that a commercial power supply source is disconnected by a switch, and the power storage unit starts a self-sustained operation and supplies power to a load via another switch.
  • the present invention has been made in view of the above, and an object thereof is to reduce power loss when an inverter device is operated by a commercial power source and a distributed power source system.
  • the inverter device of the present invention includes an AC / DC converter that converts AC to DC and outputs, and a DC that converts DC to AC and outputs it to an inductive load.
  • the present invention it is possible to reduce the power loss when the inverter device is operated by the commercial power source and the distributed power source system.
  • FIG. 1 is a diagram illustrating an inverter system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a detailed configuration of the inverter device, the AC power source, and the DC power source included in the inverter system according to the first embodiment.
  • FIG. 3A is a diagram for explaining a power supply path during normal operation in the comparative example.
  • FIG. 3B is a diagram for explaining a power supply path during normal operation in the configuration according to the first embodiment.
  • FIG. 4A is a diagram for explaining an emergency power supply path in a comparative example.
  • FIG. 4B is a diagram for explaining an emergency power supply path in the configuration according to the first embodiment.
  • FIG. 5 is a diagram illustrating a power supply path when power is supplied from both the AC power supply and the DC power supply in the configuration according to the first embodiment.
  • FIG. 6 is a diagram illustrating an inverter system according to the second embodiment.
  • FIG. 7 is a diagram illustrating a power supply path during normal operation in the configuration according to the second embodiment.
  • FIG. 8 is a diagram illustrating an emergency power supply path in the configuration according to the second embodiment.
  • FIG. 9 is a diagram illustrating a power supply path when power is supplied from both the AC power supply and the DC power supply in the configuration according to the second embodiment.
  • FIG. 1 is a diagram showing an inverter system according to the present embodiment.
  • a power supply switching inverter system 100 shown in FIG. 1 includes an inverter device 200, an opening / closing unit 300, and an opening / closing control unit 400, and is electrically connected to an AC power source 500 and a DC power source 600.
  • the inverter device 200 includes an AC-DC conversion unit 210 (AC / DC conversion unit), a DC-AC conversion unit 220 (DC / AC conversion unit), an inductive load 230, and a DC switching unit connection terminal 240.
  • An AC-DC converter 210 and an inductive load 230 are electrically connected to the DC-AC converter 220, respectively.
  • the opening / closing part 300 includes an AC opening / closing part 310 and a DC opening / closing part 320.
  • the AC switching unit 310 is electrically connected to the AC power source 500 and the AC-DC conversion unit 210.
  • the direct current switching unit 320 is electrically connected to the direct current power source 600, the AC-DC conversion unit 210, and the DC-AC conversion unit 220.
  • the AC switching unit 310 and the DC switching unit 320 are controlled by the opening / closing control unit 400 so as to be in an open state or a closed state. That is, the wiring system input to the inverter device 200 includes a wiring system to which AC power is supplied and a wiring system to which DC power is supplied. 400 is determined by controlling the opening and closing unit 300.
  • the AC power supply 500 includes a commercial power supply 510 and an AC-DC converter 520.
  • the AC power supply 500 supplies an AC voltage generated by the commercial power supply 510 or an AC voltage obtained by converting the DC voltage of the DC power supply 600 by the AC-DC conversion unit 520 to the AC switching unit 310.
  • the DC power supply 600 includes a DC voltage source 610 (battery or the like) and a DC-DC converter 620.
  • the DC power supply 600 converts the DC voltage of the DC voltage source 610 into a predetermined DC voltage by the DC-DC conversion unit 620 and supplies it to the AC-DC conversion unit 520 and the DC switching unit 320.
  • the DC voltage source 610 may be a storage battery mounted on an electric vehicle.
  • FIG. 2 is a diagram showing a detailed configuration of the inverter device 200, the AC power supply 500, and the DC power supply 600 included in the power supply switching inverter system 100.
  • the AC-DC converter 210 includes a reactor 211, diodes 212a to 212d, and a capacitor 213, and converts an AC voltage supplied from the AC power supply 500 through the AC switching unit 310 into a DC voltage.
  • the AC-DC converter 210 is not limited to the illustrated configuration, and may be any configuration capable of converting from alternating current to direct current.
  • the DC-AC converter 220 converts the direct current from the AC-DC converter 210 into an alternating current having a predetermined voltage value and frequency by using the six switching elements 221a to 221f.
  • the DC-AC converter 220 is not limited to the configuration shown in the figure, and may be any configuration that can convert from direct current to alternating current.
  • the AC-DC converter 210 and the DC-AC converter 220 are electrically connected to the DC switch connection terminal 240 (terminal 241 and terminal 242).
  • the DC switch connection terminal 240 is electrically connected to the DC power supply 600 through the DC switch 320.
  • the DC power supply 600 is not limited to a specific configuration, and may be any one that can supply a DC voltage. Examples of the DC power supply 600 include storage batteries such as nickel metal hydride batteries and lithium ion batteries, solar batteries, and fuel cells.
  • the inductive load 230 is, for example, an electric motor.
  • the inductive load 230 is an electric motor
  • the inductive load 230 includes a stator (stator) 231, a rotor (rotor) 232, and a load 233, and an alternating current from the DC-AC conversion unit 220.
  • the electric motor is illustrated here as the inductive load 230, it is not limited to this.
  • a coil for induction heating can be exemplified.
  • the AC-DC conversion unit 520 of the AC power supply 500 includes four switching elements 521a to 521d and a filter unit 522.
  • the AC-DC converter 520 converts the direct current from the direct-current power supply 600 into alternating current having the same amplitude and the same frequency as the commercial power supply 510 by using the four switching elements 521a to 521d and the filter unit 522.
  • the AC-DC conversion unit 520 can also convert the alternating current of the alternating current power supply 500 into direct current by rectifying with a diode constituted by the four switching elements 521a to 521d.
  • the DC-DC converter 620 of the DC power supply 600 includes four switching elements 621a to 621d, a transformer 622, four switching elements 623a to 623d, and a smoothing capacitor 624.
  • the DC-DC converter 620 converts the direct current of the direct current voltage source 610 into alternating current by controlling the open / closed states of the four switching elements 621a to 621d, and AC power is transferred from the primary side to the secondary side of the transformer 622. Communicated.
  • the transmitted AC power is rectified by a diode constituted by four switching elements 623a to 623d, smoothed by a smoothing capacitor 624, and converted into a DC of a predetermined voltage.
  • the DC-DC converter 620 converts the direct current supplied from the AC-DC converter 520 into an alternating current by controlling the open / closed states of the four switching elements 623 a to 623 d, so that the secondary of the transformer 622 is secondary. It is also possible to transmit AC power from the side to the primary side. The transmitted AC power is rectified by a diode constituted by four switching elements 621 a to 621 d and supplied to a DC voltage source 610.
  • the DC-DC converter 620 can be operated as a bidirectional type, when the DC voltage source 610 is a storage battery, for example, both the AC switch 310 and the DC switch 320 are opened. It is also possible to charge as a state.
  • the DC-DC conversion unit 620 is not limited to the bidirectional type, and may be a step-up type, a step-down type, or a step-up / down type, and the DC-DC conversion unit 620 can adjust a DC voltage. If there is, it is not limited to a specific configuration.
  • inverter device 200 will be described. First, the case where inverter device 200 is operated using AC power supply 500 as a power source will be described by comparing the configuration of the comparative example with the configuration of the present embodiment (during normal operation).
  • FIG. 3A is a diagram for explaining a power supply path during normal operation in the configuration of the comparative example.
  • AC power from the AC power supply 500 is supplied to the inverter device 200 via the AC switching unit 310 (thick arrow in FIG. 3A).
  • the AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the AC-DC converter 210 and the DC-AC converter 220.
  • power loss occurs in the AC-DC converter 210 and the DC-AC converter 220.
  • FIG. 3-2 is a diagram for explaining a power supply path during normal operation in the configuration of the present embodiment.
  • the AC switch 310 is closed and the DC switch 320 is open.
  • the AC power of the AC power source 500 is supplied to the inverter device 200 via the AC switching unit 310 (thick arrow in FIG. 3-2).
  • the AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the AC-DC converter 210 and the DC-AC converter 220.
  • power loss occurs in the AC-DC converter 210 and the DC-AC converter 220.
  • the electric power from the AC power supply 500 follows the same path in both the configuration of the present embodiment and the configuration of the comparative example.
  • FIG. 4A is a diagram for explaining an emergency power supply path in the configuration of the comparative example.
  • the DC power source 600 is used as a power source, and the AC-DC converter 520 converts the direct current into alternating current.
  • power loss from the DC voltage source 610 occurs in the DC-DC converter 620, AC-DC converter 520, AC-DC converter 210, and DC-AC converter 220.
  • power consumption is larger than time.
  • the DC switching unit 320 in the event of an emergency, the DC switching unit 320 is closed, and the DC-DC conversion unit 620 is electrically connected to the DC-AC conversion unit 220 via the DC switching unit 320.
  • the location can be only the DC-DC converter 620 and the DC-AC converter 220.
  • power consumption can be suppressed, for example, when the DC voltage source 610 is a storage battery, it is possible to suppress a decrease in the remaining battery capacity and to drive the inverter device 200 for a long time. . Moreover, deterioration of the battery can also be suppressed.
  • FIG. 4-2 is a diagram for explaining an emergency power supply path in the configuration of the present embodiment.
  • the AC switch 310 is opened and the DC switch 320 is closed.
  • the DC power of the DC power supply 600 is supplied to the inverter device 200 via the DC switching unit 320 (solid thick arrow in FIG. 4-2).
  • the AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the DC-AC converter 220.
  • power loss from the DC voltage source 610 occurs in the DC-DC converter 620 and the DC-AC converter 220.
  • route in the structure of a comparative example is shown with a dotted line.
  • the DC voltage output from the DC-DC converter 620 is made higher than the DC voltage output from the AC-DC converter 210 and is supplied to the DC-AC converter 220, the DC voltage is supplied to the inductive load 230.
  • the voltage can be increased, and the driving capability of the inductive load 230 can be increased.
  • the inverter device 200 when the inverter device 200 is operated only by the commercial power source 510 of the AC power source 500, the power consumption of the commercial power source 510 increases, and a breaker (not shown) of the switchboard may be cut off due to an increase in current. Further, when the power supply capacity of the commercial power supply 510 is reduced, when large power is consumed at the same time in the surrounding area, the demand power may exceed the supply power and cause a large-scale power outage or the like.
  • the DC power supply 600 may be operated as an auxiliary power supply even in an emergency. That is, power is supplied from both the AC power source 500 and the DC power source 600, the AC voltage of the AC power source 500 is supplied via the AC switching unit 310, and the DC voltage from the DC power source 600 is supplied via the DC switching unit 320.
  • the inductive load 230 is driven, the power consumed by the commercial power supply 510 is suppressed, and the above problem can be solved.
  • FIG. 5 is a diagram illustrating a power supply path when power is supplied from both the AC power supply 500 and the DC power supply 600 as described above.
  • both the AC switching unit 310 and the DC switching unit 320 are closed as shown in FIG.
  • the configuration of FIG. 5 drives the inverter device 200 with the maximum power of the AC power supply 500 and the DC power supply 600 and outputs the inductive load 230. It is possible to operate with an increased capability (such as the number of revolutions).
  • the AC switching unit 310 and the DC switching unit 320 provided in the switching unit 300 of the present embodiment a general unit such as a relay or a contactor may be used.
  • the excitation coil is controlled by the switching control unit 400.
  • the open / close state of the open / close unit 300 can be switched.
  • the opening / closing control unit 400 may be configured by, for example, a microcomputer.
  • the open / close control unit 400 may be configured to be operated by, for example, an external input signal (current, voltage, temperature, etc.) or an external controller (not shown).
  • the opening / closing control unit 400 has a configuration that detects from the voltage value or the like that the supply of power from the AC power supply 500 has stopped due to a power failure or the like, and detects that the supply of power from the AC power supply 500 has stopped.
  • the above-described effect can be obtained by setting the AC switch 310 to the open state and the DC switch 320 to the closed state.
  • the AC power source 500 may be a generator or the like as long as AC power can be supplied, and is not limited to a specific configuration.
  • the DC power supply 600 may be a DC power supply outlet or the like as long as DC power can be supplied, and is not limited to a specific configuration.
  • the power systems of the AC power supply 500 and the DC power supply 600 are different.
  • opening / closing unit 300 and the opening / closing control unit 400 may not be mounted in the same housing as the inverter device 200 as illustrated.
  • the opening / closing unit 300 and the opening / closing control unit 400 may be mounted on, for example, a switchboard or distribution board, or may be mounted on the AC power supply 500 or the DC power supply 600.
  • the four diodes 212a to 212d constituting the AC-DC conversion unit 210, the six switching elements 221a to 221f constituting the DC-AC conversion unit 220, and the four switching elements 521a to constituting the AC-DC conversion unit 520 are provided.
  • 521d, the four switching elements 621a to 621d and the four switching elements 623a to 623d constituting the DC-DC converter 620 are formed of a wide gap semiconductor made of silicon carbide (SiC), gallium nitride (GaN), or diamond. May be.
  • Switching elements and diodes formed of such wide bandgap semiconductors have high voltage resistance and high allowable current density, so that the elements themselves can be miniaturized, and the semiconductor modules incorporating these elements can be miniaturized. It becomes possible.
  • the heat sink fins can be downsized and the water cooling section can be air cooled, so that the semiconductor module can be further downsized.
  • the switching element and the diode can be made highly efficient, and the semiconductor module can be made highly efficient.
  • the same effect can be obtained by using a super junction structure MOSFET known as a highly efficient switching element.
  • FIG. FIG. 6 is a diagram showing an inverter system according to the present embodiment.
  • FIG. 6 shows a plurality of power switching inverter systems 100a (first unit), 100b (second unit), a power switching inverter non-equipment device 700, and an external controller 800.
  • the plurality of power switching inverter systems The devices 100a and 100b and the power supply switching inverter non-mounting device 700 are electrically connected to the AC power source 500 and the DC power source 600.
  • the plurality of power supply switching inverter systems 100a and 100b include inverter devices 200a and 200b, opening and closing units 300a and 300b, and opening and closing control units 400a and 400b, respectively.
  • FIG. 7 is a diagram for explaining a power supply path during normal operation of the configuration shown in FIG.
  • the inverter devices 200a and 200b are electrically connected to the AC power source 500 with the AC switching units 310a and 310b closed, and the DC switching units 320a and 320b are opened and disconnected from the DC power source 600.
  • the inverter devices 200a and 200b are electrically connected to the AC power source 500 with the AC switching units 310a and 310b closed, and the DC switching units 320a and 320b are opened and disconnected from the DC power source 600.
  • AC power from the AC power supply 500 is supplied to the inverter devices 200a and 200b via the AC switching units 310a and 310b along a path indicated by an arrow in FIG. AC power is also supplied from AC power supply 500 to power supply switching inverter non-mounting apparatus 700.
  • FIG. 8 is a diagram for explaining an emergency power supply path having the configuration shown in FIG.
  • the inverter devices 200a and 200b are disconnected from the AC power source 500 with the AC switching units 310a and 310b open, and the DC switching units 320a and 320b are closed. It is electrically connected to the DC power supply 600.
  • the electric power of the DC power supply 600 is supplied to the inverter devices 200a and 200b through the DC-DC conversion unit 620 and the DC switching units 320a and 320b along the path indicated by the arrow in FIG.
  • power is supplied from the DC power supply 600 to the power supply switching inverter non-mounting apparatus 700 via the DC-DC conversion unit 620 and the AC-DC conversion unit 520.
  • a DC voltage can be supplied to the inverter devices 200a and 200b without stopping the operation of the power supply switching inverter non-equipment device 700 even in an emergency.
  • the power loss can be suppressed as in Embodiment 1, and the power consumption of the DC power supplied from DC voltage source 610 can be suppressed.
  • power consumption can be suppressed, for example, when the DC voltage source 610 is a storage battery, it is possible to suppress a decrease in the remaining battery capacity and to perform long-time driving. In addition, it is possible to suppress deterioration of the battery.
  • both the AC power supply 500 and the DC power supply 600 can be used in the configuration of the present embodiment.
  • FIG. 9 is a diagram for explaining a power supply path when power is supplied from both the AC power supply 500 and the DC power supply 600.
  • the external controller 800 includes a configuration (not shown) that detects the power, voltage, and current status of the AC power supply 500, the DC power supply 600, the power supply switching inverter systems 100a and 100b, and the power supply switching inverter non-equipment 700. If the amount of power used by the AC power source 500 is excessively large, one or both of the AC switching units 310a and 310b may be opened to supply power only from the DC power source 600, even in an emergency. May be operated.
  • the DC switching units 320a and 320b are opened to open the AC power source. You may operate
  • the AC switching units 310a and 310b and the DC switching units 320a and 320b may be opened, and the DC voltage source 610 may be charged via the AC-DC conversion unit 520 and the DC-DC conversion unit 620.
  • the inverter devices 200a and 200b of the present embodiment may also be provided with a DC switching unit connection terminal that is electrically connected to the DC switching units 320a and 320b.
  • the inverter systems described in the first and second embodiments can be applied to all inverter devices that convert an AC voltage into a DC voltage and then convert it again into an AC voltage having a different amplitude and frequency.
  • Examples of general household use include air conditioners equipped with inverters, refrigerators, electromagnetic cookers, heat pump water heaters, ventilation and blower fans, and air conditioners and electromagnetics that consume particularly large amounts of power. It is particularly preferable to apply to a cooker.
  • the operating frequency is lowered and a high direct current voltage is not required. Therefore, the voltage output from the DC-DC converter 620 is lowered to switch the switching elements 221a to 221a constituting the DC-AC converter 220. Since power loss due to switching of 221f can be reduced, power consumption can be reduced and energy can be saved.
  • the switching element 221a constituting the DC-AC converter 220 is used. Since power loss due to switching of ⁇ 221f can be suppressed, power consumption can be reduced to save energy.
  • 100 power switching inverter system 200, 200a, 200b inverter device, 210 AC-DC converter, 211 reactor, 212a-212d diode, 213 capacitor, 220 DC-AC converter, 221a-221f switching element, 230 inductive load, 231 stator, 232 rotor, 233 load, 240 DC switch connection terminal, 241, 242 terminal, 300 switch, 310 AC switch, 320 DC switch, 400 switch controller, 500 AC power supply, 510 commercial power supply, 520 AC-DC converter, 521a to 521d switching element, 522 filter, 600 DC power supply, 610 DC voltage source, 620 DC-DC converter, 621a to 621d switching element, 622 Lance, 623a ⁇ 623d switching element, 624 a smoothing capacitor, 700 the power switching inverter non-mounting device, 800 external controller.

Abstract

In order to reduce power loss at the time of operating an inverter device by means of a commercial power supply and a distributed power supply system, an inverter device (200) of the present invention is provided with: an AC-DC conversion unit (210) (alternating current-direct current conversion unit) that converts alternating currents into direct currents and outputs the currents; a DC-AC conversion unit (220) (direct current-alternating current conversion unit) that converts direct currents into alternating currents and outputs the currents to an inductive load; and a direct current switch unit connecting terminal (240) that is led out between the AC-DC conversion unit (210) and the DC-AC conversion unit (220). The direct current switch unit connecting terminal (240) is electrically connected to a direct current power supply (600) via a direct current switch unit (320).

Description

インバータ装置及びインバータシステムInverter device and inverter system
 本発明は、インバータ装置及び該インバータ装置を含むインバータシステムに関する。 The present invention relates to an inverter device and an inverter system including the inverter device.
 近年、災害時等の非常時における供給電力量の低下への対策として、分散型の電源システムが検討されている。このような分散型の電源システムは、需用電力量の小さい時間(例えば、夜間等)に直流電力を蓄え、蓄えた直流電力を電力変換装置によって交流電力に変換して使用することが一般的である。例えば、特許文献1には、商用電力供給源、太陽光発電部、燃料電池発電部及び蓄電部の少なくとも一つから電力を供給する電力供給システムであって、商用電力供給源の停電等が発生した場合、スイッチにより商用電力供給源を解列して、蓄電部が自立運転を開始し別スイッチを経由して負荷に電力を供給することが開示されている。 In recent years, a distributed power system has been studied as a countermeasure against a decrease in the amount of power supplied in an emergency such as a disaster. Such a distributed power supply system generally stores DC power when the amount of power required is small (for example, at night) and converts the stored DC power into AC power using a power converter. It is. For example, Patent Document 1 discloses a power supply system that supplies power from at least one of a commercial power supply source, a solar power generation unit, a fuel cell power generation unit, and a power storage unit, and a blackout or the like of the commercial power supply source occurs. In such a case, it is disclosed that a commercial power supply source is disconnected by a switch, and the power storage unit starts a self-sustained operation and supplies power to a load via another switch.
特開2011-188607号公報JP 2011-188607 A
 しかしながら、従来の技術によれば、分散型の電源システムで宅内負荷を動作させる場合には、直流電圧を昇降圧するDC-DC変換器と、直流を交流に変換するDC-AC変換器にて、電力系統と同等の例えば交流100Vなどの電圧を生成した後に、宅内負荷に供給する必要がある。また、冷蔵庫や空気調和機は、近年の消費電力削減の観点からインバータを搭載したものが大多数を占めており、交流を直流に変換するAC-DC変換器及びDC-AC変換器を備えているため、計4つの変換器による電力損失が発生してしまう。 However, according to the prior art, when operating a residential load with a distributed power supply system, a DC-DC converter that steps up and down DC voltage and a DC-AC converter that converts DC to AC, For example, it is necessary to supply a voltage to an in-home load after generating a voltage such as AC 100V equivalent to the power system. Most refrigerators and air conditioners are equipped with inverters from the viewpoint of reducing power consumption in recent years, and include AC-DC converters and DC-AC converters that convert alternating current into direct current. Therefore, power loss due to a total of four converters occurs.
 本発明は、上記に鑑みてなされたものであって、商用電源及び分散電源システムによりインバータ装置を動作させる際の電力損失を低減することを目的とする。 The present invention has been made in view of the above, and an object thereof is to reduce power loss when an inverter device is operated by a commercial power source and a distributed power source system.
 上述した課題を解決し、目的を達成するために、本発明のインバータ装置は、交流を直流に変換して出力する交流直流変換部と、直流を交流に変換して誘導性負荷に出力する直流交流変換部と、前記交流直流変換部と前記直流交流変換部の間から引き出された直流開閉部接続端子と、を備える。 In order to solve the above-described problems and achieve the object, the inverter device of the present invention includes an AC / DC converter that converts AC to DC and outputs, and a DC that converts DC to AC and outputs it to an inductive load. An AC conversion unit, and a DC switching unit connection terminal drawn from between the AC / DC conversion unit and the DC / AC conversion unit.
 本発明によれば、商用電源及び分散電源システムによりインバータ装置を動作させる際の電力損失を低減することができるという効果を奏する。 According to the present invention, it is possible to reduce the power loss when the inverter device is operated by the commercial power source and the distributed power source system.
図1は、実施の形態1に係るインバータシステムを示す図である。FIG. 1 is a diagram illustrating an inverter system according to the first embodiment. 図2は、実施の形態1に係るインバータシステムに含まれるインバータ装置、交流電源及び直流電源の詳細な構成を示す図である。FIG. 2 is a diagram illustrating a detailed configuration of the inverter device, the AC power source, and the DC power source included in the inverter system according to the first embodiment. 図3-1は、比較例における通常運転時の電力の供給経路を説明する図である。FIG. 3A is a diagram for explaining a power supply path during normal operation in the comparative example. 図3-2は、実施の形態1に係る構成における通常運転時の電力の供給経路を説明する図である。FIG. 3B is a diagram for explaining a power supply path during normal operation in the configuration according to the first embodiment. 図4-1は、比較例における非常時の電力の供給経路を説明する図である。FIG. 4A is a diagram for explaining an emergency power supply path in a comparative example. 図4-2は、実施の形態1に係る構成における非常時の電力の供給経路を説明する図である。FIG. 4B is a diagram for explaining an emergency power supply path in the configuration according to the first embodiment. 図5は、実施の形態1に係る構成における交流電源と直流電源の双方から電力を供給する場合の電力の供給経路を説明する図である。FIG. 5 is a diagram illustrating a power supply path when power is supplied from both the AC power supply and the DC power supply in the configuration according to the first embodiment. 図6は、実施の形態2に係るインバータシステムを示す図である。FIG. 6 is a diagram illustrating an inverter system according to the second embodiment. 図7は、実施の形態2に係る構成における通常運転時の電力の供給経路を説明する図である。FIG. 7 is a diagram illustrating a power supply path during normal operation in the configuration according to the second embodiment. 図8は、実施の形態2に係る構成における非常時の電力の供給経路を説明する図である。FIG. 8 is a diagram illustrating an emergency power supply path in the configuration according to the second embodiment. 図9は、実施の形態2に係る構成における交流電源と直流電源の双方から電力を供給する場合の電力の供給経路を説明する図である。FIG. 9 is a diagram illustrating a power supply path when power is supplied from both the AC power supply and the DC power supply in the configuration according to the second embodiment.
 以下に、本発明にかかるインバータ装置及びインバータシステムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of an inverter device and an inverter system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本実施の形態に係るインバータシステムを示す図である。図1に示す電源切替インバータシステム100は、インバータ装置200と、開閉部300と、開閉制御部400と、を備え、交流電源500及び直流電源600に電気的に接続されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an inverter system according to the present embodiment. A power supply switching inverter system 100 shown in FIG. 1 includes an inverter device 200, an opening / closing unit 300, and an opening / closing control unit 400, and is electrically connected to an AC power source 500 and a DC power source 600.
 インバータ装置200は、AC-DC変換部210(交流直流変換部)と、DC-AC変換部220(直流交流変換部)と、誘導性負荷230と、直流開閉部接続端子240と、を備える。DC-AC変換部220には、AC-DC変換部210及び誘導性負荷230が、それぞれ電気的に接続されている。 The inverter device 200 includes an AC-DC conversion unit 210 (AC / DC conversion unit), a DC-AC conversion unit 220 (DC / AC conversion unit), an inductive load 230, and a DC switching unit connection terminal 240. An AC-DC converter 210 and an inductive load 230 are electrically connected to the DC-AC converter 220, respectively.
 開閉部300は、交流開閉部310及び直流開閉部320を備える。交流開閉部310は、交流電源500とAC-DC変換部210に電気的に接続されている。また、直流開閉部320は、直流電源600と、AC-DC変換部210と、DC-AC変換部220と、に電気的に接続されている。 The opening / closing part 300 includes an AC opening / closing part 310 and a DC opening / closing part 320. The AC switching unit 310 is electrically connected to the AC power source 500 and the AC-DC conversion unit 210. Further, the direct current switching unit 320 is electrically connected to the direct current power source 600, the AC-DC conversion unit 210, and the DC-AC conversion unit 220.
 交流開閉部310及び直流開閉部320は、開状態または閉状態のいずれかとなるよう開閉制御部400によって制御される。すなわち、インバータ装置200に入力される配線系統には、交流電力が供給される配線系統と直流電力が供給される配線系統があり、電力の供給に際して、どちらの配線系統を用いるかを開閉制御部400が開閉部300を制御して決定する。 The AC switching unit 310 and the DC switching unit 320 are controlled by the opening / closing control unit 400 so as to be in an open state or a closed state. That is, the wiring system input to the inverter device 200 includes a wiring system to which AC power is supplied and a wiring system to which DC power is supplied. 400 is determined by controlling the opening and closing unit 300.
 交流電源500は、商用電源510及びAC-DC変換部520を備える。交流電源500は、商用電源510による交流電圧、または直流電源600の直流電圧をAC-DC変換部520によって変換した交流電圧を交流開閉部310に供給する。 The AC power supply 500 includes a commercial power supply 510 and an AC-DC converter 520. The AC power supply 500 supplies an AC voltage generated by the commercial power supply 510 or an AC voltage obtained by converting the DC voltage of the DC power supply 600 by the AC-DC conversion unit 520 to the AC switching unit 310.
 直流電源600は、直流電圧源610(バッテリ等)及びDC-DC変換部620を備える。直流電源600は、直流電圧源610の直流電圧をDC-DC変換部620により所定の直流電圧に変換し、AC-DC変換部520及び直流開閉部320に供給する。なお、直流電圧源610は、電気自動車に搭載された蓄電池であってもよい。 The DC power supply 600 includes a DC voltage source 610 (battery or the like) and a DC-DC converter 620. The DC power supply 600 converts the DC voltage of the DC voltage source 610 into a predetermined DC voltage by the DC-DC conversion unit 620 and supplies it to the AC-DC conversion unit 520 and the DC switching unit 320. Note that the DC voltage source 610 may be a storage battery mounted on an electric vehicle.
 図2は、電源切替インバータシステム100に含まれるインバータ装置200、交流電源500及び直流電源600の詳細な構成を示す図である。AC-DC変換部210は、リアクトル211と、ダイオード212a~212dと、コンデンサ213と、を備え、交流電源500から交流開閉部310を介して供給される交流電圧を直流電圧に変換する。ただし、AC-DC変換部210は、図示した構成に限定されず、交流から直流に変換可能な構成であればよい。 FIG. 2 is a diagram showing a detailed configuration of the inverter device 200, the AC power supply 500, and the DC power supply 600 included in the power supply switching inverter system 100. The AC-DC converter 210 includes a reactor 211, diodes 212a to 212d, and a capacitor 213, and converts an AC voltage supplied from the AC power supply 500 through the AC switching unit 310 into a DC voltage. However, the AC-DC converter 210 is not limited to the illustrated configuration, and may be any configuration capable of converting from alternating current to direct current.
 また、DC-AC変換部220は、6つのスイッチング素子221a~221fによって、AC-DC変換部210からの直流を所定の電圧値及び周波数の交流に変換する。ただし、DC-AC変換部220は、図示した構成に限定されず、直流から交流に変換可能な構成であればよい。 Also, the DC-AC converter 220 converts the direct current from the AC-DC converter 210 into an alternating current having a predetermined voltage value and frequency by using the six switching elements 221a to 221f. However, the DC-AC converter 220 is not limited to the configuration shown in the figure, and may be any configuration that can convert from direct current to alternating current.
 さらに、AC-DC変換部210とDC-AC変換部220の間は、直流開閉部接続端子240(端子241及び端子242)に電気的に接続されている。直流開閉部接続端子240は、直流開閉部320を介して直流電源600に電気的に接続されている。直流電源600は、特定の構成に限定されず、直流電圧を供給可能なものであればよい。直流電源600としては、ニッケル水素電池及びリチウムイオン電池等の蓄電池、太陽電池並びに燃料電池を例示することができる。 Furthermore, the AC-DC converter 210 and the DC-AC converter 220 are electrically connected to the DC switch connection terminal 240 (terminal 241 and terminal 242). The DC switch connection terminal 240 is electrically connected to the DC power supply 600 through the DC switch 320. The DC power supply 600 is not limited to a specific configuration, and may be any one that can supply a DC voltage. Examples of the DC power supply 600 include storage batteries such as nickel metal hydride batteries and lithium ion batteries, solar batteries, and fuel cells.
 また、誘導性負荷230は、例えば電動機である。誘導性負荷230が電動機である場合には、誘導性負荷230は、固定子(ステータ)231と、回転子(ロータ)232と、負荷233と、を備え、DC-AC変換部220からの交流によって固定子231の巻線にて回転磁界を発生させることで、回転子232を回転させて負荷233を駆動する。なお、ここでは、誘導性負荷230として電動機を例示しているが、これに限定されない。誘導性負荷230としては、誘導加熱用のコイルを例示することができる。 Further, the inductive load 230 is, for example, an electric motor. When the inductive load 230 is an electric motor, the inductive load 230 includes a stator (stator) 231, a rotor (rotor) 232, and a load 233, and an alternating current from the DC-AC conversion unit 220. By generating a rotating magnetic field in the winding of the stator 231, the rotor 232 is rotated and the load 233 is driven. In addition, although the electric motor is illustrated here as the inductive load 230, it is not limited to this. As the inductive load 230, a coil for induction heating can be exemplified.
 交流電源500のAC-DC変換部520は、4つのスイッチング素子521a~521dと、フィルタ部522と、を備える。AC-DC変換部520は、直流電源600からの直流を4つのスイッチング素子521a~521dとフィルタ部522によって商用電源510と同等の振幅及び同等の周波数の交流に変換する。 The AC-DC conversion unit 520 of the AC power supply 500 includes four switching elements 521a to 521d and a filter unit 522. The AC-DC converter 520 converts the direct current from the direct-current power supply 600 into alternating current having the same amplitude and the same frequency as the commercial power supply 510 by using the four switching elements 521a to 521d and the filter unit 522.
 なお、AC-DC変換部520は、交流電源500の交流を4つのスイッチング素子521a~521dによって構成されたダイオードにて整流することで、直流に変換することも可能である。 The AC-DC conversion unit 520 can also convert the alternating current of the alternating current power supply 500 into direct current by rectifying with a diode constituted by the four switching elements 521a to 521d.
 直流電源600のDC-DC変換部620は、4つのスイッチング素子621a~621dと、トランス622と、4つのスイッチング素子623a~623dと、平滑コンデンサ624と、を備える。DC-DC変換部620では、4つのスイッチング素子621a~621dの開閉状態を制御することで、直流電圧源610の直流を交流に変換し、トランス622の1次側から2次側に交流電力が伝達される。伝達された交流電力は、4つのスイッチング素子623a~623dによって構成されたダイオードにて整流され、平滑コンデンサ624にて平滑されて所定の電圧の直流に変換される。 The DC-DC converter 620 of the DC power supply 600 includes four switching elements 621a to 621d, a transformer 622, four switching elements 623a to 623d, and a smoothing capacitor 624. The DC-DC converter 620 converts the direct current of the direct current voltage source 610 into alternating current by controlling the open / closed states of the four switching elements 621a to 621d, and AC power is transferred from the primary side to the secondary side of the transformer 622. Communicated. The transmitted AC power is rectified by a diode constituted by four switching elements 623a to 623d, smoothed by a smoothing capacitor 624, and converted into a DC of a predetermined voltage.
 また、逆にDC-DC変換部620では、4つのスイッチング素子623a~623dの開閉状態を制御することで、AC-DC変換部520から供給される直流を交流に変換し、トランス622の2次側から1次側に交流電力を伝達することも可能である。伝達された交流電力は、4つのスイッチング素子621a~621dによって構成されたダイオードにて整流され、直流電圧源610に供給される。このようにして、DC-DC変換部620は、双方向型として動作させることもできるため、直流電圧源610が例えば蓄電池である場合には、交流開閉部310及び直流開閉部320の双方を開状態として充電を行うことも可能である。 Conversely, the DC-DC converter 620 converts the direct current supplied from the AC-DC converter 520 into an alternating current by controlling the open / closed states of the four switching elements 623 a to 623 d, so that the secondary of the transformer 622 is secondary. It is also possible to transmit AC power from the side to the primary side. The transmitted AC power is rectified by a diode constituted by four switching elements 621 a to 621 d and supplied to a DC voltage source 610. Thus, since the DC-DC converter 620 can be operated as a bidirectional type, when the DC voltage source 610 is a storage battery, for example, both the AC switch 310 and the DC switch 320 are opened. It is also possible to charge as a state.
 なお、ここではDC-DC変換部620は双方向型に限定されず、昇圧型、降圧型または昇降圧型であってもよく、DC-DC変換部620は、直流電圧を調整することが可能であれば、特定の構成に限定されない。 Here, the DC-DC conversion unit 620 is not limited to the bidirectional type, and may be a step-up type, a step-down type, or a step-up / down type, and the DC-DC conversion unit 620 can adjust a DC voltage. If there is, it is not limited to a specific configuration.
 ここで、インバータ装置200の動作について説明する。まず、交流電源500を電源としてインバータ装置200を動作させる場合について、比較例の構成と本実施の形態の構成を対比させて説明する(通常運転時)。 Here, the operation of the inverter device 200 will be described. First, the case where inverter device 200 is operated using AC power supply 500 as a power source will be described by comparing the configuration of the comparative example with the configuration of the present embodiment (during normal operation).
 図3-1は、比較例の構成における通常運転時の電力の供給経路を説明する図である。通常運転時には、交流電源500の交流電力は、交流開閉部310を介して、インバータ装置200に供給される(図3-1中の太矢印)。インバータ装置200に供給された交流電力は、AC-DC変換部210及びDC-AC変換部220を介して、誘導性負荷230に供給される。このような経路を辿ることで、AC-DC変換部210及びDC-AC変換部220において電力損失が発生する。 FIG. 3A is a diagram for explaining a power supply path during normal operation in the configuration of the comparative example. During normal operation, AC power from the AC power supply 500 is supplied to the inverter device 200 via the AC switching unit 310 (thick arrow in FIG. 3A). The AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the AC-DC converter 210 and the DC-AC converter 220. By following such a path, power loss occurs in the AC-DC converter 210 and the DC-AC converter 220.
 図3-2は、本実施の形態の構成における通常運転時の電力の供給経路を説明する図である。通常運転時には、交流開閉部310を閉状態とし、直流開閉部320は開状態とする。このとき、交流電源500の交流電力は、交流開閉部310を介して、インバータ装置200に供給される(図3-2中の太矢印)。インバータ装置200に供給された交流電力は、AC-DC変換部210及びDC-AC変換部220を介して、誘導性負荷230に供給される。このような経路を辿ることで、AC-DC変換部210及びDC-AC変換部220において電力損失が発生する。 FIG. 3-2 is a diagram for explaining a power supply path during normal operation in the configuration of the present embodiment. During normal operation, the AC switch 310 is closed and the DC switch 320 is open. At this time, the AC power of the AC power source 500 is supplied to the inverter device 200 via the AC switching unit 310 (thick arrow in FIG. 3-2). The AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the AC-DC converter 210 and the DC-AC converter 220. By following such a path, power loss occurs in the AC-DC converter 210 and the DC-AC converter 220.
 すなわち、交流電源500からの電力は、本実施の形態の構成においても、比較例の構成においても、同じ経路を辿ることになる。 That is, the electric power from the AC power supply 500 follows the same path in both the configuration of the present embodiment and the configuration of the comparative example.
 次に、交流電源500の商用電源510からの電力の供給が停止(停電)した場合について、説明する(非常時)。 Next, the case where the supply of power from the commercial power supply 510 of the AC power supply 500 is stopped (power failure) will be described (emergency).
 図4-1は、比較例の構成における非常時の電力の供給経路について説明する図である。非常時には、直流電源600を電源とし、AC-DC変換部520により直流を交流に変換する。このとき、直流電圧源610からの電力には、DC-DC変換部620、AC-DC変換部520、AC-DC変換部210及びDC-AC変換部220において電力損失が発生するため、通常運転時と比較して消費電力が大きいという問題がある。 FIG. 4A is a diagram for explaining an emergency power supply path in the configuration of the comparative example. In an emergency, the DC power source 600 is used as a power source, and the AC-DC converter 520 converts the direct current into alternating current. At this time, power loss from the DC voltage source 610 occurs in the DC-DC converter 620, AC-DC converter 520, AC-DC converter 210, and DC-AC converter 220. There is a problem that power consumption is larger than time.
 そこで、本実施の形態では、非常時には直流開閉部320を閉じて、DC-DC変換部620が直流開閉部320を介してDC-AC変換部220に電気的に接続されるため、電力損失発生箇所をDC-DC変換部620とDC-AC変換部220のみとすることができる。このように、消費電力を抑えることができるため、例えば、直流電圧源610が蓄電池の場合には、電池残容量の低下を抑制することができ、インバータ装置200の長時間の駆動が可能となる。また、バッテリの劣化も抑制することができる。 Therefore, in this embodiment, in the event of an emergency, the DC switching unit 320 is closed, and the DC-DC conversion unit 620 is electrically connected to the DC-AC conversion unit 220 via the DC switching unit 320. The location can be only the DC-DC converter 620 and the DC-AC converter 220. Thus, since power consumption can be suppressed, for example, when the DC voltage source 610 is a storage battery, it is possible to suppress a decrease in the remaining battery capacity and to drive the inverter device 200 for a long time. . Moreover, deterioration of the battery can also be suppressed.
 図4-2は、本実施の形態の構成における非常時の電力の供給経路について説明する図である。非常時には、交流開閉部310を開状態とし、直流開閉部320は閉状態とする。このとき、直流電源600の直流電力は、直流開閉部320を介して、インバータ装置200に供給される(図4-2中の実線の太矢印)。インバータ装置200に供給された交流電力は、DC-AC変換部220を介して、誘導性負荷230に供給される。このような経路を辿ることで、直流電圧源610からの電力には、DC-DC変換部620及びDC-AC変換部220において電力損失が発生するが、比較例の構成と比較して電力損失が小さく、消費電力を抑えることができる。なお、比較例の構成における経路を点線で示す。 FIG. 4-2 is a diagram for explaining an emergency power supply path in the configuration of the present embodiment. In an emergency, the AC switch 310 is opened and the DC switch 320 is closed. At this time, the DC power of the DC power supply 600 is supplied to the inverter device 200 via the DC switching unit 320 (solid thick arrow in FIG. 4-2). The AC power supplied to the inverter device 200 is supplied to the inductive load 230 via the DC-AC converter 220. By following such a path, power loss from the DC voltage source 610 occurs in the DC-DC converter 620 and the DC-AC converter 220. Compared with the configuration of the comparative example, the power loss The power consumption can be reduced. In addition, the path | route in the structure of a comparative example is shown with a dotted line.
 以上説明したように、本実施の形態の構成によれば、非常時において比較例よりも電力損失を抑えることができる。 As described above, according to the configuration of the present embodiment, power loss can be suppressed more than in the comparative example in an emergency.
 なお、DC-DC変換部620が出力する直流の電圧を、AC-DC変換部210が出力する直流の電圧よりも高くしてDC-AC変換部220に供給すると、誘導性負荷230に供給する電圧を高くすることができ、誘導性負荷230の駆動能力を高くすることもできる。 When the DC voltage output from the DC-DC converter 620 is made higher than the DC voltage output from the AC-DC converter 210 and is supplied to the DC-AC converter 220, the DC voltage is supplied to the inductive load 230. The voltage can be increased, and the driving capability of the inductive load 230 can be increased.
 また、交流電源500の商用電源510のみによってインバータ装置200を動作させると、商用電源510の消費電力が増大し、電流の増加により配電盤のブレーカ(図示せず)が遮断されることがある。また、商用電源510の電力供給能力が低下した場合には、周辺地域において同時に大電力を消費した場合に、需用電力が供給電力を上回り、大規模な停電等を引き起こす恐れがある。 In addition, when the inverter device 200 is operated only by the commercial power source 510 of the AC power source 500, the power consumption of the commercial power source 510 increases, and a breaker (not shown) of the switchboard may be cut off due to an increase in current. Further, when the power supply capacity of the commercial power supply 510 is reduced, when large power is consumed at the same time in the surrounding area, the demand power may exceed the supply power and cause a large-scale power outage or the like.
 そこで、本実施の形態の構成のインバータシステムでは、非常時でなくとも、直流電源600を補助電源として動作させてもよい。すなわち、交流電源500と直流電源600の双方から給電し、交流電源500の交流電圧は交流開閉部310を介して供給するとともに、直流電源600からの直流電圧は直流開閉部320を介して供給して誘導性負荷230を駆動すると、商用電源510で消費する電力が抑えられ、上記の問題を解決することが可能となる。 Therefore, in the inverter system having the configuration of the present embodiment, the DC power supply 600 may be operated as an auxiliary power supply even in an emergency. That is, power is supplied from both the AC power source 500 and the DC power source 600, the AC voltage of the AC power source 500 is supplied via the AC switching unit 310, and the DC voltage from the DC power source 600 is supplied via the DC switching unit 320. When the inductive load 230 is driven, the power consumed by the commercial power supply 510 is suppressed, and the above problem can be solved.
 図5は、このように、交流電源500と直流電源600の双方から給電する場合の電力の供給経路について説明する図である。交流電源500と直流電源600の双方から給電する場合には、図5に示すように交流開閉部310及び直流開閉部320の双方が閉状態となる。 FIG. 5 is a diagram illustrating a power supply path when power is supplied from both the AC power supply 500 and the DC power supply 600 as described above. When power is supplied from both the AC power source 500 and the DC power source 600, both the AC switching unit 310 and the DC switching unit 320 are closed as shown in FIG.
 なお、商用電源510の電力供給能力が低下した場合でなくとも、図5の構成とすると、交流電源500と直流電源600の最大電力でインバータ装置200を駆動して、誘導性負荷230が出力する能力(回転数等)を高くして動作させることが可能である。 Even if the power supply capability of the commercial power supply 510 is not reduced, the configuration of FIG. 5 drives the inverter device 200 with the maximum power of the AC power supply 500 and the DC power supply 600 and outputs the inductive load 230. It is possible to operate with an increased capability (such as the number of revolutions).
 なお、図5のように動作させる場合にも、直流電圧源610からの電力損失は図4-2と同様に低く抑えられる。 Even when the operation is performed as shown in FIG. 5, the power loss from the DC voltage source 610 can be kept low as in FIG.
 以上説明したように、本実施の形態の構成によれば、非常時でなくても、補助電源として動作する直流電源の電力損失を抑えることができる。 As described above, according to the configuration of the present embodiment, it is possible to suppress the power loss of the DC power supply that operates as an auxiliary power supply even in an emergency.
 なお、本実施の形態の開閉部300が備える交流開閉部310及び直流開閉部320としては、リレーまたはコンタクタなどの一般的なものを用いればよく、例えば開閉制御部400により励磁コイルを制御して開閉部300の開閉状態を切り替えることが可能である。 In addition, as the AC switching unit 310 and the DC switching unit 320 provided in the switching unit 300 of the present embodiment, a general unit such as a relay or a contactor may be used. For example, the excitation coil is controlled by the switching control unit 400. The open / close state of the open / close unit 300 can be switched.
 開閉制御部400は、例えばマイクロコンピュータ(マイコン)などで構成すればよい。開閉制御部400は、例えば外部からの入力信号(電流、電圧または温度等)や外部コントローラ(図示せず)によって動作させる構成とすればよい。 The opening / closing control unit 400 may be configured by, for example, a microcomputer. The open / close control unit 400 may be configured to be operated by, for example, an external input signal (current, voltage, temperature, etc.) or an external controller (not shown).
 また、開閉制御部400は、停電等によって交流電源500からの電力の供給が停止したことを電圧値等から検知する構成を備え、交流電源500からの電力の供給が停止したことを検知した場合には、交流開閉部310を開状態とし、直流開閉部320を閉状態とすることで、上記の効果を得ることが可能となる。 In addition, the opening / closing control unit 400 has a configuration that detects from the voltage value or the like that the supply of power from the AC power supply 500 has stopped due to a power failure or the like, and detects that the supply of power from the AC power supply 500 has stopped In this case, the above-described effect can be obtained by setting the AC switch 310 to the open state and the DC switch 320 to the closed state.
 なお、交流電源500は、交流電力を供給可能であれば発電機等であってもよく、特定の構成に限定されない。また、直流電源600についても、直流電力を供給可能であれば直流給電コンセント等であってもよく、特定の構成に限定されない。ただし、交流電源500と直流電源600の電力系統は異なるものとする。 The AC power source 500 may be a generator or the like as long as AC power can be supplied, and is not limited to a specific configuration. Also, the DC power supply 600 may be a DC power supply outlet or the like as long as DC power can be supplied, and is not limited to a specific configuration. However, the power systems of the AC power supply 500 and the DC power supply 600 are different.
 また、開閉部300及び開閉制御部400は、図示したようにインバータ装置200と同一の筐体内に搭載されていなくてもよい。開閉部300及び開閉制御部400は、例えば配電盤や分電盤に搭載されていてもよいし、交流電源500または直流電源600に搭載されていてもよい。 Further, the opening / closing unit 300 and the opening / closing control unit 400 may not be mounted in the same housing as the inverter device 200 as illustrated. The opening / closing unit 300 and the opening / closing control unit 400 may be mounted on, for example, a switchboard or distribution board, or may be mounted on the AC power supply 500 or the DC power supply 600.
 なお、AC-DC変換部210を構成する4つのダイオード212a~212d、DC-AC変換部220を構成する6つのスイッチング素子221a~221f、AC-DC変換部520を構成する4つのスイッチング素子521a~521d、DC-DC変換部620を構成する4つのスイッチング素子621a~621d及び4つのスイッチング素子623a~623dは、炭化珪素(SiC)、窒化ガリウム(GaN)またはダイヤモンドを材料とするワイドギャップ半導体によって形成されていてもよい。 Note that the four diodes 212a to 212d constituting the AC-DC conversion unit 210, the six switching elements 221a to 221f constituting the DC-AC conversion unit 220, and the four switching elements 521a to constituting the AC-DC conversion unit 520 are provided. 521d, the four switching elements 621a to 621d and the four switching elements 623a to 623d constituting the DC-DC converter 620 are formed of a wide gap semiconductor made of silicon carbide (SiC), gallium nitride (GaN), or diamond. May be.
 このようなワイドバンドギャップ半導体によって形成されたスイッチング素子及びダイオードは、耐電圧性が高く、許容電流密度も高いため、素子自体の小型化が可能であり、これらの素子を組み込んだ半導体モジュールの小型化も可能となる。 Switching elements and diodes formed of such wide bandgap semiconductors have high voltage resistance and high allowable current density, so that the elements themselves can be miniaturized, and the semiconductor modules incorporating these elements can be miniaturized. It becomes possible.
 また、耐熱性も高いため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるため、半導体モジュールのさらなる小型化が可能となる。 Also, since the heat resistance is high, the heat sink fins can be downsized and the water cooling section can be air cooled, so that the semiconductor module can be further downsized.
 さらに、電力損失が低いため、スイッチング素子及びダイオードの高効率化が可能であり、半導体モジュールの高効率化も可能になる。 Furthermore, since the power loss is low, the switching element and the diode can be made highly efficient, and the semiconductor module can be made highly efficient.
 または、高効率なスイッチング素子として知られているスーパージャンクション構造のMOSFETを用いることでも同様の効果を得ることが可能である。 Alternatively, the same effect can be obtained by using a super junction structure MOSFET known as a highly efficient switching element.
実施の形態2.
 図6は、本実施の形態に係るインバータシステムを示す図である。図6には、複数台の電源切替インバータシステム100a(1台目),100b(2台目)、電源切替インバータ非搭載装置700及び外部コントローラ800が示されており、複数台の電源切替インバータシステム100a,100b及び電源切替インバータ非搭載装置700は、交流電源500及び直流電源600に電気的に接続されている。複数台の電源切替インバータシステム100a,100bは、それぞれインバータ装置200a,200b、開閉部300a,300b、及び開閉制御部400a,400bを備える。
Embodiment 2. FIG.
FIG. 6 is a diagram showing an inverter system according to the present embodiment. FIG. 6 shows a plurality of power switching inverter systems 100a (first unit), 100b (second unit), a power switching inverter non-equipment device 700, and an external controller 800. The plurality of power switching inverter systems The devices 100a and 100b and the power supply switching inverter non-mounting device 700 are electrically connected to the AC power source 500 and the DC power source 600. The plurality of power supply switching inverter systems 100a and 100b include inverter devices 200a and 200b, opening and closing units 300a and 300b, and opening and closing control units 400a and 400b, respectively.
 まず、図6に示す構成において、交流電源500を電源としてインバータ装置200a,200bを動作させる場合について説明する(通常運転時)。 First, the case where the inverter devices 200a and 200b are operated using the AC power source 500 as a power source in the configuration shown in FIG.
 図7は、図6に示す構成の通常運転時の電力の供給経路について説明する図である。通常運転時には、インバータ装置200a,200bは、交流開閉部310a,310bを閉状態として交流電源500と電気的に接続され、直流開閉部320a,320bは開状態として直流電源600とは非接続とされる。 FIG. 7 is a diagram for explaining a power supply path during normal operation of the configuration shown in FIG. During normal operation, the inverter devices 200a and 200b are electrically connected to the AC power source 500 with the AC switching units 310a and 310b closed, and the DC switching units 320a and 320b are opened and disconnected from the DC power source 600. The
 交流電源500の交流電力は、図7中の矢印に示す経路で交流開閉部310a,310bを介して、インバータ装置200a,200bに供給される。また、交流電源500から電源切替インバータ非搭載装置700にも交流電力が供給される。 AC power from the AC power supply 500 is supplied to the inverter devices 200a and 200b via the AC switching units 310a and 310b along a path indicated by an arrow in FIG. AC power is also supplied from AC power supply 500 to power supply switching inverter non-mounting apparatus 700.
 次に、非常時について説明する。図8は、図6に示す構成の非常時の電力の供給経路について説明する図である。商用電源510から電力の供給が行われない非常時には、インバータ装置200a,200bは、交流開閉部310a,310bを開状態として交流電源500と非接続とされ、直流開閉部320a,320bは閉状態として直流電源600と電気的に接続される。 Next, an emergency will be explained. FIG. 8 is a diagram for explaining an emergency power supply path having the configuration shown in FIG. In an emergency in which power is not supplied from the commercial power source 510, the inverter devices 200a and 200b are disconnected from the AC power source 500 with the AC switching units 310a and 310b open, and the DC switching units 320a and 320b are closed. It is electrically connected to the DC power supply 600.
 直流電源600の電力は、図8中の矢印に示す経路で、DC-DC変換部620及び直流開閉部320a,320bを介して、インバータ装置200a,200bに供給される。また、電源切替インバータ非搭載装置700には、DC-DC変換部620及びAC-DC変換部520を介して直流電源600から電力が供給される。 The electric power of the DC power supply 600 is supplied to the inverter devices 200a and 200b through the DC-DC conversion unit 620 and the DC switching units 320a and 320b along the path indicated by the arrow in FIG. In addition, power is supplied from the DC power supply 600 to the power supply switching inverter non-mounting apparatus 700 via the DC-DC conversion unit 620 and the AC-DC conversion unit 520.
 図8に示すように、非常時にも電源切替インバータ非搭載装置700の動作を停止することなく、インバータ装置200a,200bに直流電圧を供給可能である。図8に示す構成においても、実施の形態1と同様に電力損失を抑制することが可能であり、直流電圧源610から供給される直流電力の消費電力を抑えることができる。このように、消費電力を抑えることができるため、例えば、直流電圧源610が蓄電池の場合には、電池残容量の低下を抑制することができ、長時間の駆動を行うことが可能となるだけでなく、バッテリの劣化も抑制することが可能となる。 As shown in FIG. 8, a DC voltage can be supplied to the inverter devices 200a and 200b without stopping the operation of the power supply switching inverter non-equipment device 700 even in an emergency. In the configuration shown in FIG. 8 as well, the power loss can be suppressed as in Embodiment 1, and the power consumption of the DC power supplied from DC voltage source 610 can be suppressed. Thus, since power consumption can be suppressed, for example, when the DC voltage source 610 is a storage battery, it is possible to suppress a decrease in the remaining battery capacity and to perform long-time driving. In addition, it is possible to suppress deterioration of the battery.
 また、実施の形態1の図5と同様に、本実施の形態の構成においても交流電源500と直流電源600の双方を用いることが可能である。 Further, similarly to FIG. 5 of the first embodiment, both the AC power supply 500 and the DC power supply 600 can be used in the configuration of the present embodiment.
 図9は、交流電源500と直流電源600の双方から給電する場合の電力の供給経路について説明する図である。 FIG. 9 is a diagram for explaining a power supply path when power is supplied from both the AC power supply 500 and the DC power supply 600.
 図9において、交流開閉部310a,310b及び直流開閉部320a,320bの双方を閉状態とすると、交流電源500及び直流電源600の双方より給電が可能となる。ただし、直流電源600の直流をAC-DC変換部520で交流に変換すると、交流開閉部310a,310bから電力が供給されるため、AC-DC変換部520による電力損失が発生する。そのため、AC-DC変換部520のスイッチング素子521a~521dの動作を停止させると、AC-DC変換部520による電力損失を抑制することができる。 In FIG. 9, when both of the AC switching units 310a and 310b and the DC switching units 320a and 320b are closed, power can be supplied from both the AC power source 500 and the DC power source 600. However, when the direct current of the direct current power source 600 is converted into alternating current by the AC-DC conversion unit 520, power is supplied from the AC switching units 310a and 310b, and thus power loss by the AC-DC conversion unit 520 occurs. Therefore, when the operation of the switching elements 521a to 521d of the AC-DC converter 520 is stopped, power loss due to the AC-DC converter 520 can be suppressed.
 図9において、インバータ装置200a,200bは、交流電源500及び直流電源600の双方から電力供給されるため、実施の形態1にて説明したように、交流電源500の負担が抑えられ、交流電源500を構成する商用電源510の需用電力を低下させることができ、電力不足による大規模停電などを回避することが可能である。 In FIG. 9, since the inverter devices 200a and 200b are supplied with power from both the AC power supply 500 and the DC power supply 600, as described in the first embodiment, the burden on the AC power supply 500 is suppressed, and the AC power supply 500 is reduced. It is possible to reduce the power demand for the commercial power supply 510 that constitutes a large-scale power outage due to power shortage.
 また、外部コントローラ800は、交流電源500、直流電源600、電源切替インバータシステム100a,100b及び電源切替インバータ非搭載装置700の電力、電圧、電流の状況を検出する構成(図示せず)を備えているとよく、交流電源500の電力使用量が過度に多い場合には、非常時でなくとも、交流開閉部310a,310bの一方または双方を開状態として、直流電源600のみから電力を供給するように動作させてもよい。 In addition, the external controller 800 includes a configuration (not shown) that detects the power, voltage, and current status of the AC power supply 500, the DC power supply 600, the power supply switching inverter systems 100a and 100b, and the power supply switching inverter non-equipment 700. If the amount of power used by the AC power source 500 is excessively large, one or both of the AC switching units 310a and 310b may be opened to supply power only from the DC power source 600, even in an emergency. May be operated.
 また、逆に、直流電源600の電力使用量が多く、例えば直流電圧源610を構成する蓄電池の残容量が少ない場合には、直流開閉部320a,320bの一方または双方を開状態として、交流電源500のみから電力を供給するように動作させてもよい。 Conversely, when the amount of power used by the DC power source 600 is large, for example, when the remaining capacity of the storage battery constituting the DC voltage source 610 is small, one or both of the DC switching units 320a and 320b are opened to open the AC power source. You may operate | move so that electric power may be supplied only from 500.
 さらには、交流開閉部310a,310b及び直流開閉部320a,320bを開状態とし、AC-DC変換部520及びDC-DC変換部620を介して、直流電圧源610を充電してもよい。 Furthermore, the AC switching units 310a and 310b and the DC switching units 320a and 320b may be opened, and the DC voltage source 610 may be charged via the AC-DC conversion unit 520 and the DC-DC conversion unit 620.
 なお、図示していないが、本実施の形態のインバータ装置200a,200bにも、直流開閉部320a,320bに電気的に接続される直流開閉部接続端子が設けられていてもよい。 Although not shown, the inverter devices 200a and 200b of the present embodiment may also be provided with a DC switching unit connection terminal that is electrically connected to the DC switching units 320a and 320b.
 以上、実施の形態1,2で説明したインバータシステムは、交流電圧を直流電圧に変換し、再度振幅及び周波数の異なる交流電圧に変換するインバータ装置全般に適用することができる。一般家庭用としては、インバータを搭載している空気調和機、冷蔵庫、電磁調理器、ヒートポンプ式の給湯器、換気及び送風ファン等を例示することができ、消費電力が特に大きい空気調和機や電磁調理器に適用することが特に好ましい。 As described above, the inverter systems described in the first and second embodiments can be applied to all inverter devices that convert an AC voltage into a DC voltage and then convert it again into an AC voltage having a different amplitude and frequency. Examples of general household use include air conditioners equipped with inverters, refrigerators, electromagnetic cookers, heat pump water heaters, ventilation and blower fans, and air conditioners and electromagnetics that consume particularly large amounts of power. It is particularly preferable to apply to a cooker.
 なお、空気調和機に適用する場合には、直流電源600のDC-DC変換部620の出力電圧を高めて供給すると、空気調和機内の誘導性負荷230である圧縮機モータの運転周波数を高めることができ、短時間で冷房や暖房効果を得ることも可能となる。 When applied to an air conditioner, when the output voltage of the DC-DC converter 620 of the DC power supply 600 is increased and supplied, the operating frequency of the compressor motor, which is the inductive load 230 in the air conditioner, is increased. It is possible to obtain a cooling or heating effect in a short time.
 また、室内温度が安定すると運転周波数が低下して高い直流電圧が不要となるため、DC-DC変換部620が出力する電圧を低下させて、DC-AC変換部220を構成するスイッチング素子221a~221fのスイッチングによる電力損失を低下させることが可能となるため、消費電力を削減して省エネルギー化が可能となる。 Further, when the room temperature is stabilized, the operating frequency is lowered and a high direct current voltage is not required. Therefore, the voltage output from the DC-DC converter 620 is lowered to switch the switching elements 221a to 221a constituting the DC-AC converter 220. Since power loss due to switching of 221f can be reduced, power consumption can be reduced and energy can be saved.
 また、IHクッキングヒータなどの電磁調理器に適用する場合には、直流電源600のDC-DC変換部620の出力電圧を高めて供給すると、電磁調理器内の誘導性負荷である加熱用コイルによる鍋等の発熱量が増加し、調理時間の短縮をすることも可能となる。 In addition, when applied to an electromagnetic cooker such as an IH cooking heater, when the output voltage of the DC-DC conversion unit 620 of the DC power supply 600 is increased and supplied, a pot using a heating coil that is an inductive load in the electromagnetic cooker. As a result, the cooking time can be shortened.
 また、保温時や低温での調理の場合には、高い直流電圧が不要であるため、DC-DC変換部620が出力する電圧を低下させると、DC-AC変換部220を構成するスイッチング素子221a~221fのスイッチングによる電力損失を抑制することができるため、消費電力を削減して省エネルギー化が可能となる。 In addition, since a high DC voltage is not required when keeping warm or cooking at a low temperature, if the voltage output from the DC-DC converter 620 is lowered, the switching element 221a constituting the DC-AC converter 220 is used. Since power loss due to switching of ˜221f can be suppressed, power consumption can be reduced to save energy.
 100 電源切替インバータシステム、200,200a,200b インバータ装置、210 AC-DC変換部、211 リアクトル、212a~212d ダイオード、213 コンデンサ、220 DC-AC変換部、221a~221f スイッチング素子、230 誘導性負荷、231 固定子、232 回転子、233 負荷、240 直流開閉部接続端子、241,242 端子、300 開閉部、310 交流開閉部、320 直流開閉部、400 開閉制御部、500 交流電源、510 商用電源、520 AC-DC変換部、521a~521d スイッチング素子、522 フィルタ部、600 直流電源、610 直流電圧源、620 DC-DC変換部、621a~621d スイッチング素子、622 トランス、623a~623d スイッチング素子、624 平滑コンデンサ、700 電源切替インバータ非搭載装置、800 外部コントローラ。 100 power switching inverter system, 200, 200a, 200b inverter device, 210 AC-DC converter, 211 reactor, 212a-212d diode, 213 capacitor, 220 DC-AC converter, 221a-221f switching element, 230 inductive load, 231 stator, 232 rotor, 233 load, 240 DC switch connection terminal, 241, 242 terminal, 300 switch, 310 AC switch, 320 DC switch, 400 switch controller, 500 AC power supply, 510 commercial power supply, 520 AC-DC converter, 521a to 521d switching element, 522 filter, 600 DC power supply, 610 DC voltage source, 620 DC-DC converter, 621a to 621d switching element, 622 Lance, 623a ~ 623d switching element, 624 a smoothing capacitor, 700 the power switching inverter non-mounting device, 800 external controller.

Claims (8)

  1.  交流を直流に変換して出力する交流直流変換部と、
     直流を交流に変換して誘導性負荷に出力する直流交流変換部と、
     前記交流直流変換部と前記直流交流変換部の間から引き出された直流開閉部接続端子と、を備えるインバータ装置。
    An AC / DC converter that converts AC to DC and outputs the output;
    A direct current to alternating current converter that converts direct current to alternating current and outputs the inductive load
    An inverter device comprising: the AC / DC conversion unit and a DC switching unit connection terminal drawn from between the DC / AC conversion unit.
  2.  交流を直流に変換して出力する交流直流変換部と、直流を交流に変換して誘導性負荷に出力する直流交流変換部と、を備えるインバータシステムであって、
     前記交流直流変換部は、開閉制御部に制御される交流開閉部を介して交流電源に電気的に接続され、
     前記直流交流変換部は、前記開閉制御部に制御される直流開閉部を介して直流電源に電気的に接続され、
     前記交流直流変換部は、前記直流交流変換部を介して前記誘導性負荷に電気的に接続されている電源切替インバータシステム。
    An inverter system comprising: an AC to DC converter that converts AC to DC and outputs; and a DC to AC converter that converts DC to AC and outputs it to an inductive load,
    The AC / DC conversion unit is electrically connected to an AC power source via an AC switching unit controlled by the switching control unit,
    The DC / AC conversion unit is electrically connected to a DC power source via a DC switching unit controlled by the switching control unit,
    The AC / DC converter is a power supply switching inverter system electrically connected to the inductive load via the DC / AC converter.
  3.  前記交流電源から電力が供給されている場合には、
     前記開閉制御部が、前記交流開閉部を閉状態とし、前記直流開閉部を開状態とし、前記交流電源から前記交流直流変換部に電力を供給し、
     前記交流電源から電力が供給されていない場合には、
     前記開閉制御部が、前記交流開閉部を開状態とし、前記直流開閉部を閉状態とし、前記直流電源から前記直流交流変換部に電力を供給することを特徴とする請求項2に記載の電源切替インバータシステム。
    When power is supplied from the AC power source,
    The open / close control unit closes the AC open / close unit, sets the DC open / close unit to an open state, and supplies power from the AC power source to the AC / DC conversion unit,
    When power is not supplied from the AC power source,
    3. The power supply according to claim 2, wherein the open / close control unit supplies the electric power from the DC power source to the DC / AC conversion unit by setting the AC switch unit to an open state and the DC switch unit to a closed state. Switching inverter system.
  4.  前記開閉制御部が、前記交流開閉部及び前記直流開閉部の双方を閉状態として、前記交流電源から前記交流直流変換部に電力を供給し、前記直流電源から前記直流交流変換部に電力を供給し、前記誘導性負荷に供給される電力が制限値を超えないように制御することを特徴とする請求項2に記載の電源切替インバータシステム。 The open / close control unit supplies power from the AC power source to the AC / DC conversion unit, and supplies power from the DC power source to the DC / AC conversion unit with both the AC switching unit and the DC switching unit closed. The power supply switching inverter system according to claim 2, wherein the power supplied to the inductive load is controlled so as not to exceed a limit value.
  5.  前記開閉制御部は、外部コントローラにより操作されることを特徴とする請求項2乃至請求項4のいずれか一項に記載の電源切替インバータシステム。 The power switching inverter system according to any one of claims 2 to 4, wherein the open / close control unit is operated by an external controller.
  6.  前記直流電源は、蓄電池または蓄電池を搭載した電気自動車であることを特徴とする請求項2乃至請求項5のいずれか一項に記載の電源切替インバータシステム。 The power supply switching inverter system according to any one of claims 2 to 5, wherein the DC power supply is a storage battery or an electric vehicle equipped with a storage battery.
  7.  前記開閉制御部は、前記交流開閉部及び前記直流開閉部の双方を開状態として前記蓄電池を充電することを特徴とする請求項6に記載の電源切替インバータシステム。 The power switching inverter system according to claim 6, wherein the switching control unit charges the storage battery with both the AC switching unit and the DC switching unit open.
  8.  前記交流直流変換部と前記直流交流変換部を構成する半導体素子はワイドバンドギャップ半導体により形成されていることを特徴とする請求項2乃至請求項7のいずれか一項に記載の電源切替インバータシステム。 The power supply switching inverter system according to any one of claims 2 to 7, wherein the AC / DC conversion unit and the semiconductor element constituting the DC / AC conversion unit are formed of a wide band gap semiconductor. .
PCT/JP2013/058848 2013-03-26 2013-03-26 Inverter device and inverter system WO2014155540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015507750A JP6300785B2 (en) 2013-03-26 2013-03-26 Inverter system
PCT/JP2013/058848 WO2014155540A1 (en) 2013-03-26 2013-03-26 Inverter device and inverter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058848 WO2014155540A1 (en) 2013-03-26 2013-03-26 Inverter device and inverter system

Publications (1)

Publication Number Publication Date
WO2014155540A1 true WO2014155540A1 (en) 2014-10-02

Family

ID=51622620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058848 WO2014155540A1 (en) 2013-03-26 2013-03-26 Inverter device and inverter system

Country Status (2)

Country Link
JP (1) JP6300785B2 (en)
WO (1) WO2014155540A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006877A (en) * 2015-04-27 2015-10-28 深圳市美贝壳科技有限公司 Electric quantity real-time monitoring system of adapter and electric quantity real-time monitoring method of adapter
WO2017176666A1 (en) * 2016-04-07 2017-10-12 Eaton Corporation Power distribution system using ac/dc ring configuration
WO2018214764A1 (en) * 2017-05-22 2018-11-29 青岛海尔空调器有限总公司 Adaptive control device for power source of air conditioner, and air conditioner
WO2018214767A1 (en) * 2017-05-22 2018-11-29 青岛海尔空调器有限总公司 Control method for constant-speed air conditioner, and constant-speed air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969584A (en) * 2020-09-09 2020-11-20 广东电网有限责任公司 Double-direct-current power supply device and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332124A (en) * 1998-05-14 1999-11-30 Ntt Power And Building Facilities Inc Power system
JP2001298864A (en) * 2000-04-11 2001-10-26 Kansai Electric Power Co Inc:The Power storage device and method for supplying power storage type power
JP2004312939A (en) * 2003-04-09 2004-11-04 Mitsubishi Electric Corp Controller for electric vehicle
JP2011193593A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Ac-dc converter and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592578B2 (en) * 1999-05-14 2004-11-24 株式会社三社電機製作所 Uninterruptible power system
JP2007124864A (en) * 2005-10-31 2007-05-17 Sharp Corp Power conversion system
JP4770795B2 (en) * 2007-05-23 2011-09-14 東芝三菱電機産業システム株式会社 Uninterruptible power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332124A (en) * 1998-05-14 1999-11-30 Ntt Power And Building Facilities Inc Power system
JP2001298864A (en) * 2000-04-11 2001-10-26 Kansai Electric Power Co Inc:The Power storage device and method for supplying power storage type power
JP2004312939A (en) * 2003-04-09 2004-11-04 Mitsubishi Electric Corp Controller for electric vehicle
JP2011193593A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Ac-dc converter and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006877A (en) * 2015-04-27 2015-10-28 深圳市美贝壳科技有限公司 Electric quantity real-time monitoring system of adapter and electric quantity real-time monitoring method of adapter
WO2017176666A1 (en) * 2016-04-07 2017-10-12 Eaton Corporation Power distribution system using ac/dc ring configuration
US11271407B2 (en) 2016-04-07 2022-03-08 Eaton Intelligent Power Limited Power distribution system using AC/DC ring configuration
WO2018214764A1 (en) * 2017-05-22 2018-11-29 青岛海尔空调器有限总公司 Adaptive control device for power source of air conditioner, and air conditioner
WO2018214767A1 (en) * 2017-05-22 2018-11-29 青岛海尔空调器有限总公司 Control method for constant-speed air conditioner, and constant-speed air conditioner

Also Published As

Publication number Publication date
JP6300785B2 (en) 2018-03-28
JPWO2014155540A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US11374406B2 (en) Grid-tied electric meter adapter and systems for automated power resilience and on-demand grid balancing
WO2003012966A1 (en) Fuel cell inverter
JP6300785B2 (en) Inverter system
US11791635B2 (en) Microgrid system controller for creating and maintaining a microgrid
JP2008283841A (en) Dc voltage power supply system for residence
JP2017184607A (en) Power distribution system and power combination circuit
JP6568243B2 (en) Air conditioner
JP2015122841A (en) Power storage system and power generation system
JP2012120364A (en) Power supply system
JP6027147B2 (en) Power conditioner and control method of power conditioner
JP6165191B2 (en) Power supply system
JP2012083063A (en) Dc drive air conditioner
EP3301800A1 (en) A power converter system for connection to an electric power distribution grid
JP5721558B2 (en) Inverter
KR101255470B1 (en) Battery Energy Storage System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880086

Country of ref document: EP

Kind code of ref document: A1