JP4770795B2 - Uninterruptible power system - Google Patents

Uninterruptible power system Download PDF

Info

Publication number
JP4770795B2
JP4770795B2 JP2007136651A JP2007136651A JP4770795B2 JP 4770795 B2 JP4770795 B2 JP 4770795B2 JP 2007136651 A JP2007136651 A JP 2007136651A JP 2007136651 A JP2007136651 A JP 2007136651A JP 4770795 B2 JP4770795 B2 JP 4770795B2
Authority
JP
Japan
Prior art keywords
semiconductor switch
bidirectional converter
power supply
rated value
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136651A
Other languages
Japanese (ja)
Other versions
JP2008295160A (en
Inventor
俊秀 中野
和法 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007136651A priority Critical patent/JP4770795B2/en
Publication of JP2008295160A publication Critical patent/JP2008295160A/en
Application granted granted Critical
Publication of JP4770795B2 publication Critical patent/JP4770795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Description

この発明は、商用電源異常時に負荷に電力を供給する無停電電源装置に関するものである。   The present invention relates to an uninterruptible power supply that supplies power to a load when a commercial power supply is abnormal.

従来の無停電電源装置においては、商用電源が負荷に電力を供給している間に、負荷側に一時的過負荷が発生すると、電圧検出器の検出電圧が低下するために停電検出回路が停電検出信号を出力し、インバータ制御回路はインバータを起動する。このとき、電力方向判定回路は、電圧検出器及び電流検出器からの検出信号に基づき、電力方向が負荷回生方向ではないことを示す電力方向判定信号を切換制御回路に出力する。これにより、切換制御回路は接続状態切換手段の半導体スイッチをオン状態に維持する。商用電源が過負荷以外の原因で異常になった場合は、停電検出回路が停電検出信号を出力し、インバータ制御回路はインバータを起動するとともに、半導体スイッチをオフするものが知られている(例えば、特許文献1参照)。   In the conventional uninterruptible power supply, if a temporary overload occurs on the load side while the commercial power supply is supplying power to the load, the detection voltage of the voltage detector decreases, causing the power failure detection circuit to fail. The detection signal is output, and the inverter control circuit starts the inverter. At this time, the power direction determination circuit outputs a power direction determination signal indicating that the power direction is not the load regeneration direction to the switching control circuit based on the detection signals from the voltage detector and the current detector. As a result, the switching control circuit maintains the semiconductor switch of the connection state switching means in the on state. When the commercial power supply becomes abnormal due to a cause other than overload, the power failure detection circuit outputs a power failure detection signal, and the inverter control circuit activates the inverter and turns off the semiconductor switch (for example, , See Patent Document 1).

特開2002−95183号公報JP 2002-95183 A

従来の無停電電源装置では、以上のように過負荷で電圧異常が発生した場合には商用電源および変換器から負荷へ給電し、電力供給能力が確保できるようになっている。しかし、過負荷で電圧異常となるのは、大容量のモーターを起動した場合や変圧器を投入した場合などの過渡的な状態変化時のみであり、定常的な過負荷状態(負荷が定格容量以上接続された場合など)には電圧異常を検出することはできず、対応することはできなかった。また、一般に半導体スイッチの過電流保護のために、半導体スイッチに流れる電流が一定レベルを超えると強制的に半導体スイッチをOFFする機能があるが、過電流検出と電圧異常検出とでは過電流検出の方が、検出が早いことが多く、先に過電流検出して半導体スイッチをOFFした場合には従来の技術では対応できないという問題があった。   In the conventional uninterruptible power supply, as described above, when a voltage abnormality occurs due to overload, power is supplied from the commercial power supply and the converter to the load, and the power supply capability can be secured. However, voltage abnormalities due to overload occur only during transient state changes such as when a large-capacity motor is started up or when a transformer is turned on. In the case of the above connection or the like), the voltage abnormality cannot be detected and cannot be dealt with. Also, in general, there is a function to forcibly turn off the semiconductor switch when the current flowing through the semiconductor switch exceeds a certain level for overcurrent protection of the semiconductor switch, but overcurrent detection and voltage abnormality detection are overcurrent detection. However, the detection is often faster, and there is a problem that the conventional technique cannot cope with the case where the overcurrent is detected first and the semiconductor switch is turned off.

この発明は上記のような問題を解決するためになされたものであり、半導体スイッチの過電流・過負荷を抑制し、安定的に負荷に電力を供給できる無停電電源装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an uninterruptible power supply that can suppress overcurrent and overload of a semiconductor switch and can stably supply power to the load. To do.

この発明に係る無停電電源装置においては、一端が商用電源に接続され、他端が負荷側に接続された半導体スイッチと、半導体スイッチの負荷側に接続された双方向変換器とを備え、常時は商用電源が負荷に半導体スイッチを介して電力を供給しており、双方向変換器は直流電圧制御状態にあり、直流電源を充電している電力変換回路において、半導体スイッチを流れる電流が定格値を超えた場合に、双方向変換器に定格値を超えた分の電流を流すよう指令を送り、双方向変換器に直流電源を充電しながら、半導体スイッチを流れる電流の定格値を超える分を負担させる制御回路を備えたものである。   The uninterruptible power supply according to the present invention comprises a semiconductor switch having one end connected to a commercial power supply and the other end connected to the load side, and a bidirectional converter connected to the load side of the semiconductor switch, The commercial power supply supplies power to the load via the semiconductor switch, the bidirectional converter is in the DC voltage control state, and the current flowing through the semiconductor switch is the rated value in the power conversion circuit charging the DC power supply. If the current exceeds the rated value of the current flowing through the semiconductor switch, a command is sent to the bidirectional converter to pass the current exceeding the rated value, and the DC power is charged to the bidirectional converter. It is equipped with a control circuit to be borne.

また、制御回路は、双方向変換器が負担する電流に制限を持たせ、双方向変換器が過負荷停止しないようにするリミッタを備えたものである。   In addition, the control circuit includes a limiter that limits the current borne by the bidirectional converter and prevents the bidirectional converter from being overloaded.

また、一端が商用電源に接続され、他端が負荷側に接続された半導体スイッチと、半導体スイッチの負荷側に接続された双方向変換器と、半導体スイッチと並列に接続された機械式スイッチからなるバイパススイッチとを備え、常時は商用電源が負荷に半導体スイッチを介して電力を供給しており、双方向変換器は直流電圧制御状態にあり、直流電源を充電している電力変換回路において、半導体スイッチを流れる電流が定格値を超えた場合に、双方向変換器に定格値を超えた分の電流を流すよう指令を送り、双方向変換器に直流電源を充電しながら、半導体スイッチを流れる電流の定格値を超える分を負担させる制御回路を備え、制御回路は、双方向変換器の直流電源電圧が低下した場合には、バイパススイッチを投入して負荷への給電を継続させるものである。   Also, a semiconductor switch having one end connected to a commercial power source and the other end connected to the load side, a bidirectional converter connected to the load side of the semiconductor switch, and a mechanical switch connected in parallel with the semiconductor switch In a power conversion circuit that normally supplies commercial power to a load via a semiconductor switch, the bidirectional converter is in a DC voltage control state and charges the DC power supply. When the current flowing through the semiconductor switch exceeds the rated value, the bi-directional converter is instructed to pass the current exceeding the rated value, and the bi-directional converter flows through the semiconductor switch while charging the DC power supply. It is equipped with a control circuit that bears the amount exceeding the rated current value. When the DC power supply voltage of the bidirectional converter drops, the control circuit turns on the bypass switch to supply power to the load. It is intended to continue.

この発明によれば、商用電源から負荷へ給電されているときに半導体スイッチに定格を超える電流が流れても、安定して負荷に電力を供給することが可能となる。
また、双方向変換器が半導体スイッチを流れる電流の定格を超える分を負担することで、双方向変換器が過負荷停止することがなくなる。
また、双方向変換器が半導体スイッチを流れる電流の定格を超える分を負担することで、双方向変換器が直流低電圧停止することがなくなる。
According to the present invention, even when a current exceeding the rating flows through the semiconductor switch when power is supplied from the commercial power source to the load, it is possible to stably supply power to the load.
Further, the bidirectional converter bears an amount exceeding the rating of the current flowing through the semiconductor switch, thereby preventing the bidirectional converter from being overloaded.
Further, the bidirectional converter bears an amount exceeding the rating of the current flowing through the semiconductor switch, so that the bidirectional converter does not stop at a low DC voltage.

実施の形態1.
以下、この発明の実施の形態1における無停電電源装置を図面に基づいて説明する。
図1はこの発明の実施の形態1における無停電電源装置の概略構成を示す回路構成図、図2は同じく制御回路の詳細構成を示す回路構成図である。
Embodiment 1 FIG.
Hereinafter, the uninterruptible power supply in Embodiment 1 of this invention is demonstrated based on drawing.
1 is a circuit configuration diagram showing a schematic configuration of an uninterruptible power supply according to Embodiment 1 of the present invention, and FIG. 2 is a circuit configuration diagram showing a detailed configuration of a control circuit.

図1において、1は商用電源、2は負荷、3は一端が商用電源1に接続され、他端が負荷2側に接続された半導体スイッチ、4は半導体スイッチ3の負荷2側に接続された双方向変換器、5は双方向変換器4が直流電圧制御状態にあるとき充電される直流電源、6は半導体スイッチ3と並列に接続された機械的スイッチからなるバイパススイッチ、7は半導体スイッチ3を流れる電流を検出する半導体スイッチ電流センサ、8は負荷2に流れる電流を検出する負荷電流センサ、9は双方向変換器4を流れる電流を検出する変換器電流センサ、10は直流電源5の電圧を検出する直流電圧センサ、11は制御回路である。
常時は商用電源1が負荷2に半導体スイッチ3を介して電力を供給している。また、双方向変換器4は直流電圧制御状態にあり、直流電源5を充電している。図1ではIGBTの半導体スイッチ3としているが、サイリスタなど他の素子を用いてもよい。また直流電源5も蓄電池としているが、コンデンサなどの別の蓄電デバイスを用いてもよい。
半導体スイッチ電流センサ7、負荷電流センサ8、変換器電流センサ9、直流電圧センサ10の出力を制御回路11にそれぞれ入力し、状況に応じて制御回路11から半導体スイッチ3へのON/OFF指令、バイパススイッチ6へのON/OFF指令、双方向変換器4への指令が出力される。なお、図1では半導体スイッチ3の上位に半導体スイッチ電流センサ7を置いているが、下位に置いてもよい。
In FIG. 1, 1 is a commercial power source, 2 is a load, 3 is a semiconductor switch having one end connected to the commercial power source 1 and the other end connected to the load 2 side, and 4 is connected to the load 2 side of the semiconductor switch 3. Bidirectional converter 5 is a DC power source charged when bidirectional converter 4 is in a DC voltage control state, 6 is a bypass switch composed of a mechanical switch connected in parallel with semiconductor switch 3, and 7 is semiconductor switch 3 A switch current sensor for detecting a current flowing through the load 2, a converter current sensor for detecting a current flowing through the bidirectional converter 4, and a voltage of the DC power source 5. A direct-current voltage sensor 11 for detecting the control signal 11 is a control circuit.
At all times, the commercial power supply 1 supplies power to the load 2 via the semiconductor switch 3. The bidirectional converter 4 is in a DC voltage control state and charges the DC power supply 5. In FIG. 1, the IGBT semiconductor switch 3 is used, but other elements such as a thyristor may be used. The DC power supply 5 is also a storage battery, but another power storage device such as a capacitor may be used.
The outputs of the semiconductor switch current sensor 7, the load current sensor 8, the converter current sensor 9, and the DC voltage sensor 10 are respectively input to the control circuit 11, and an ON / OFF command from the control circuit 11 to the semiconductor switch 3 according to the situation, An ON / OFF command to the bypass switch 6 and a command to the bidirectional converter 4 are output. In FIG. 1, the semiconductor switch current sensor 7 is placed above the semiconductor switch 3, but may be placed below the semiconductor switch 3.

次に動作について説明する。図1において、常時は商用電源1が負荷2に半導体スイッチ3を介して電力を供給している。また、双方向変換器4は直流電圧制御状態にあり、直流電源5を充電している。
半導体スイッチ3を流れる電流が定格値を超えると、制御回路11から双方向変換器4に定格値を超えた分の電流を流すよう指令を送る。半導体スイッチ3を流れる電流が定格値を超える状態が一定時間を越えるとバイパススイッチ6を投入する。このとき半導体スイッチ3よりも機械的スイッチであるバイパススイッチ6の方が低インピーダンスなので、電流はバイパススイッチ6に流れる。
負荷機器の投入などで、半導体スイッチ3を流れる電流が定格値を超える状態が短時間の場合には、その期間だけ双方向変換器4が定格値を超える分を流し、負荷電流センサ8の出力が定格値以下に下がると、双方向変換器4はもとの直流電源5を充電する状態に戻る。
Next, the operation will be described. In FIG. 1, the commercial power source 1 normally supplies power to the load 2 via the semiconductor switch 3. The bidirectional converter 4 is in a DC voltage control state and charges the DC power supply 5.
When the current flowing through the semiconductor switch 3 exceeds the rated value, a command is sent from the control circuit 11 to the bidirectional converter 4 so that a current exceeding the rated value flows. When the state in which the current flowing through the semiconductor switch 3 exceeds the rated value exceeds a certain time, the bypass switch 6 is turned on. At this time, since the bypass switch 6, which is a mechanical switch, has a lower impedance than the semiconductor switch 3, a current flows through the bypass switch 6.
When the current flowing through the semiconductor switch 3 exceeds the rated value for a short time, such as when a load device is turned on, the bidirectional converter 4 flows over the rated value only during that period, and the output of the load current sensor 8 Falls below the rated value, the bidirectional converter 4 returns to the state of charging the original DC power supply 5.

次に、制御回路11の詳細について、図2により説明する。
図2において、101は半導体スイッチ過電流遮断回路、102は直流電源電圧制御回路、103はバイパススイッチ投入タイミング調整回路、104は変換器電流制御回路、201はコンパレータ、202、204は加算回路、203はリミッタである。
半導体スイッチ過電流遮断回路101は、半導体スイッチ電流センサ7で検出した電流と過電流値として予め設定した値とをコンパレータ201で比較し、半導体スイッチ電流センサ7で検出した電流の方が大きい場合には、半導体スイッチ3にOFF指令を出す。
直流電源電圧制御回路102は直流電圧センサ10の出力をフィードバックとして、直流電源5の電圧を目標値に制御する回路である。
変換器電流制御回路104は、加算回路204の出力を指令とし、変換器電流センサ9の出力をフィードバックとして、変換器電流を制御する回路である。
加算回路202、リミッタ203、加算回路204で構成される回路が、半導体スイッチ3を流れる電流が定格値を超えたときに、双方向変換器4にその分の電流を負担させる指令を出す回路である。半導体スイッチ3を流れる電流が定格値を超えると、加算回路202の出力が正になる。リミッタ203は最小0のリミッタであり、入力が0以下、すなわち半導体スイッチ3を流れる電流が定格値以下の場合は0を出力し、定格値を超えた場合は超えた分の値を出力する。リミッタ203の出力がバイパススイッチ投入タイミング調整回路103に入力されると、バイパススイッチ投入タイミング調整回路103は入力の値によって予め設定された時間経過後にバイパススイッチ6を投入する。例えば定格の10%が入力された場合は60秒後、20%が入力された場合は10秒後などである。設定時間よりも前に入力が0になればバイパススイッチ6は投入されない。
一方、リミッタ203の出力と直流電源電圧制御回路102との和を加算回路204で計算し、変換器電流制御回路104に指令として入力することで、双方向変換器4に直流電源5を充電しながら、半導体スイッチ3を流れる電流の定格値を超える分を負担させることができる。
Next, details of the control circuit 11 will be described with reference to FIG.
In FIG. 2, 101 is a semiconductor switch overcurrent cutoff circuit, 102 is a DC power supply voltage control circuit, 103 is a bypass switch input timing adjustment circuit, 104 is a converter current control circuit, 201 is a comparator, 202 and 204 are addition circuits, 203 Is a limiter.
The semiconductor switch overcurrent cutoff circuit 101 compares the current detected by the semiconductor switch current sensor 7 with a value set in advance as an overcurrent value by the comparator 201, and when the current detected by the semiconductor switch current sensor 7 is larger. Issues an OFF command to the semiconductor switch 3.
The DC power supply voltage control circuit 102 is a circuit that controls the voltage of the DC power supply 5 to a target value by using the output of the DC voltage sensor 10 as feedback.
The converter current control circuit 104 is a circuit that controls the converter current using the output of the adder circuit 204 as a command and the output of the converter current sensor 9 as a feedback.
When the current flowing through the semiconductor switch 3 exceeds the rated value, the circuit constituted by the adder circuit 202, the limiter 203, and the adder circuit 204 is a circuit that issues a command for causing the bidirectional converter 4 to bear the corresponding current. is there. When the current flowing through the semiconductor switch 3 exceeds the rated value, the output of the adder circuit 202 becomes positive. The limiter 203 is a minimum zero limiter. When the input is 0 or less, that is, when the current flowing through the semiconductor switch 3 is less than the rated value, 0 is output, and when the rated value is exceeded, the excess value is output. When the output of the limiter 203 is input to the bypass switch input timing adjustment circuit 103, the bypass switch input timing adjustment circuit 103 turns on the bypass switch 6 after elapse of a preset time according to the input value. For example, when 10% of the rating is input, it is 60 seconds later, and when 20% is input, it is 10 seconds later. If the input becomes 0 before the set time, the bypass switch 6 is not turned on.
On the other hand, the sum of the output of the limiter 203 and the DC power supply voltage control circuit 102 is calculated by the adder circuit 204 and is input as a command to the converter current control circuit 104 to charge the DC power supply 5 to the bidirectional converter 4. However, an amount exceeding the rated value of the current flowing through the semiconductor switch 3 can be borne.

この実施の形態1によれば、商用電源から負荷へ給電されているときに半導体スイッチに定格を超える電流が流れても、安定して負荷に電力を供給することができる。   According to the first embodiment, even when a current exceeding the rating flows through the semiconductor switch when power is supplied from the commercial power source to the load, power can be stably supplied to the load.

実施の形態2.
図3はこの発明の実施の形態2における無停電電源装置の詳細構成を示す回路構成図である。なお、図中、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 3 is a circuit configuration diagram showing a detailed configuration of the uninterruptible power supply according to Embodiment 2 of the present invention. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図3において、205はリミッタである。上記実施の形態1では、半導体スイッチ3を流れる電流のうち定格値を超える分をすべて双方向変換器4に負担させると説明したが、負荷側の短絡などの場合は双方向変換器4では負担しきれず、半導体スイッチ3は過電流遮断、双方向変換器4は過負荷停止となり、負荷給電ができなくなる可能性がある。そこで、この実施の形態2においては、リミッタ205を追加して双方向変換器4が過負荷停止しないようにするとともに、バイパススイッチ投入タイミング調整回路103で、双方向変換器4で負担しきれないような電流が半導体スイッチ3に流れたときは、瞬時にバイパススイッチ6を投入するように制御するものである。
上記により、半導体スイッチ3と双方向変換器4が共倒れし、負荷2への給電がなくなることはない。
In FIG. 3, reference numeral 205 denotes a limiter. In the first embodiment, it has been explained that the current flowing through the semiconductor switch 3 exceeds the rated value by the bidirectional converter 4, but in the case of a short circuit on the load side, the bidirectional converter 4 is burdened. There is a possibility that the semiconductor switch 3 is overcurrent interrupted and the bidirectional converter 4 is overloaded and the load power cannot be supplied. Therefore, in the second embodiment, the limiter 205 is added to prevent the bidirectional converter 4 from being overloaded, and the bypass switch input timing adjustment circuit 103 cannot be fully borne by the bidirectional converter 4. When such a current flows through the semiconductor switch 3, control is performed so that the bypass switch 6 is instantaneously turned on.
As a result, the semiconductor switch 3 and the bidirectional converter 4 do not collide and power supply to the load 2 is not lost.

この実施の形態2によれば、商用電源から負荷へ給電されているときに半導体スイッチに定格を超える電流が流れても、安定して負荷に電力を供給することができるとともに、双方向変換器が半導体スイッチを流れる電流の定格を超える分を負担することで、双方向変換器が過負荷停止することがない。   According to the second embodiment, even when a current exceeding the rating flows through the semiconductor switch when power is supplied from a commercial power source to the load, power can be stably supplied to the load, and the bidirectional converter By bearing an amount exceeding the rating of the current flowing through the semiconductor switch, the bidirectional converter will not be overloaded.

実施の形態3.
図4はこの発明の実施の形態3における無停電電源装置の詳細構成を示す回路構成図である。なお、図中、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 4 is a circuit configuration diagram showing a detailed configuration of the uninterruptible power supply according to Embodiment 3 of the present invention. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

上記実施の形態2では、半導体スイッチ3に流れる電流が大きく、双方向変換器4の定格を超える場合の対策について述べたが、直流電源5の充電が不十分な場合は、バイパススイッチ投入タイミング調整回路103がバイパススイッチ6を投入する前に、双方向変換器4が直流低電圧で停止する可能性がある。そこで、この実施の形態3においては、直流電圧センサ10の出力をバイパススイッチ投入タイミング調整回路103に入力し、直流電源5の電圧が下がってくると、半導体スイッチ3に流れる電流の大きさ・時間に関わらずバイパススイッチ6を投入し、双方向変換器4が直流電源5を充電できる状態にする。
上記により不要に双方向変換器が停止することがなくなる。
In the second embodiment, the countermeasure when the current flowing through the semiconductor switch 3 is large and exceeds the rating of the bidirectional converter 4 is described. However, when the DC power supply 5 is insufficiently charged, the bypass switch input timing adjustment is performed. Before the circuit 103 turns on the bypass switch 6, the bidirectional converter 4 may stop at a low DC voltage. Therefore, in the third embodiment, when the output of the DC voltage sensor 10 is input to the bypass switch input timing adjustment circuit 103 and the voltage of the DC power supply 5 decreases, the magnitude / time of the current flowing through the semiconductor switch 3 is reduced. Regardless, the bypass switch 6 is turned on so that the bidirectional converter 4 can charge the DC power supply 5.
As a result, the bidirectional converter is not unnecessarily stopped.

この実施の形態3によれば、商用電源から負荷へ給電されているときに半導体スイッチに定格を超える電流が流れても、安定して負荷に電力を供給することができるとともに、双方向変換器が半導体スイッチを流れる電流の定格を超える分を負担することで、双方向変換器が直流低電圧停止することがなくなる。   According to the third embodiment, even when a current exceeding the rating flows through the semiconductor switch when power is supplied from the commercial power source to the load, power can be stably supplied to the load, and the bidirectional converter By bearing the amount exceeding the rating of the current flowing through the semiconductor switch, the bidirectional converter will not stop the DC low voltage.

この発明の実施の形態1における無停電電源装置の概略構成を示す回路構成図である。It is a circuit block diagram which shows schematic structure of the uninterruptible power supply in Embodiment 1 of this invention. この発明の実施の形態1における無停電電源装置の制御回路の詳細構成を示す回路構成図である。It is a circuit block diagram which shows the detailed structure of the control circuit of the uninterruptible power supply in Embodiment 1 of this invention. この発明の実施の形態2における無停電電源装置の詳細構成を示す回路構成図である。It is a circuit block diagram which shows the detailed structure of the uninterruptible power supply in Embodiment 2 of this invention. この発明の実施の形態3における無停電電源装置の詳細構成を示す回路構成図である。It is a circuit block diagram which shows the detailed structure of the uninterruptible power supply in Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 商用電源
2 負荷
3 半導体スイッチ
4 双方向変換器
5 直流電源
6 バイパススッチ(機械的スイッチ)
7 半導体スイッチ電流センサ
8 負荷電流センサ
9 変換器電流センサ
10 直流電圧センサ
11 制御回路
101 半導体スイッチ過電流遮断回路
102 直流電源電圧制御回路
103 バイパススイッチ投入タイミング調整回路
104 変換器電流制御回路
201 コンパレータ
202、204 加算回路
203、205 リミッタ
1 Commercial Power Supply 2 Load 3 Semiconductor Switch 4 Bidirectional Converter 5 DC Power Supply 6 Bypass Switch (Mechanical Switch)
DESCRIPTION OF SYMBOLS 7 Semiconductor switch current sensor 8 Load current sensor 9 Converter current sensor 10 DC voltage sensor 11 Control circuit 101 Semiconductor switch overcurrent interruption circuit 102 DC power supply voltage control circuit 103 Bypass switch input timing adjustment circuit 104 Converter current control circuit 201 Comparator 202 , 204 Adder circuit 203, 205 Limiter

Claims (4)

一端が商用電源に接続され、他端が負荷側に接続された半導体スイッチと、前記半導体スイッチの負荷側に接続された双方向変換器とを備え、常時は商用電源が負荷に前記半導体スイッチを介して電力を供給しており、前記双方向変換器は直流電圧制御状態にあり、直流電源を充電している電力変換回路において、
前記半導体スイッチを流れる電流が定格値を超えた場合に、前記双方向変換器に定格値を超えた分の電流を流すよう指令を送り、前記双方向変換器に直流電源を充電しながら、前記半導体スイッチを流れる電流の定格値を超える分を負担させる制御回路を備えたことを特徴とする無停電電源装置。
A semiconductor switch having one end connected to the commercial power supply and the other end connected to the load side; and a bidirectional converter connected to the load side of the semiconductor switch. In the power conversion circuit charging the DC power source, the bidirectional converter is in a DC voltage control state,
When the current flowing through the semiconductor switch exceeds a rated value, a command is sent to the bidirectional converter to pass an amount of current exceeding the rated value, while charging the DC power source to the bidirectional converter, An uninterruptible power supply comprising a control circuit that bears an amount exceeding a rated value of a current flowing through a semiconductor switch.
制御回路は、半導体スイッチを流れる電流が定格値を超える状態が短時間の場合には、その期間だけ双方向変換器が定格値を超える分を流し、負荷電流出力が定格値以下に下がると、双方向変換器はもとの直流電源を充電する状態に戻ることを特徴とする請求項1記載の無停電電源装置。   When the current flowing through the semiconductor switch exceeds the rated value for a short period of time, the control circuit passes the amount that the bidirectional converter exceeds the rated value only during that period, and the load current output falls below the rated value. The uninterruptible power supply according to claim 1, wherein the bidirectional converter returns to a state in which the original DC power supply is charged. 制御回路は、双方向変換器が負担する電流に制限を持たせ、双方向変換器が過負荷停止しないようにするリミッタを備えたことを特徴とする請求項1記載の無停電電源装置。   2. The uninterruptible power supply according to claim 1, wherein the control circuit includes a limiter for limiting a current borne by the bidirectional converter and preventing the bidirectional converter from being overloaded. 一端が商用電源に接続され、他端が負荷側に接続された半導体スイッチと、前記半導体スイッチの負荷側に接続された双方向変換器と、前記半導体スイッチと並列に接続された機械式スイッチからなるバイパススイッチとを備え、常時は商用電源が負荷に前記半導体スイッチを介して電力を供給しており、前記双方向変換器は直流電圧制御状態にあり、直流電源を充電している電力変換回路において、
前記半導体スイッチを流れる電流が定格値を超えた場合に、前記双方向変換器に定格値を超えた分の電流を流すよう指令を送り、前記双方向変換器に直流電源を充電しながら、前記半導体スイッチを流れる電流の定格値を超える分を負担させる制御回路を備え、前記制御回路は、前記双方向変換器の直流電源電圧が低下した場合には、前記バイパススイッチを投入して負荷への給電を継続させることを特徴とする無停電電源装置。
A semiconductor switch having one end connected to a commercial power supply and the other end connected to the load side, a bidirectional converter connected to the load side of the semiconductor switch, and a mechanical switch connected in parallel to the semiconductor switch A power conversion circuit that normally supplies a power to a load via the semiconductor switch, and the bidirectional converter is in a DC voltage control state and charges the DC power supply. In
When the current flowing through the semiconductor switch exceeds a rated value, a command is sent to the bidirectional converter to pass an amount of current exceeding the rated value, while charging the DC power source to the bidirectional converter, A control circuit that bears an amount exceeding the rated value of the current flowing through the semiconductor switch, and when the DC power supply voltage of the bidirectional converter decreases, the control circuit switches on the load by turning on the bypass switch; An uninterruptible power supply characterized by continuing power supply.
JP2007136651A 2007-05-23 2007-05-23 Uninterruptible power system Active JP4770795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136651A JP4770795B2 (en) 2007-05-23 2007-05-23 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136651A JP4770795B2 (en) 2007-05-23 2007-05-23 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2008295160A JP2008295160A (en) 2008-12-04
JP4770795B2 true JP4770795B2 (en) 2011-09-14

Family

ID=40169339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136651A Active JP4770795B2 (en) 2007-05-23 2007-05-23 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP4770795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224478A (en) * 2016-06-15 2017-12-21 東芝三菱電機産業システム株式会社 Switch device and uninterruptible power system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003409A (en) * 2009-06-18 2011-01-06 Panasonic Electric Works Co Ltd Dc outlet
JP5497397B2 (en) * 2009-10-05 2014-05-21 パナソニック株式会社 Power supply system
US8896151B2 (en) 2010-05-31 2014-11-25 Shimizu Corporation Electric power system
JP5614626B2 (en) * 2010-05-31 2014-10-29 清水建設株式会社 Power system
JP5626563B2 (en) * 2010-05-31 2014-11-19 清水建設株式会社 Power system
JP5649485B2 (en) * 2011-03-08 2015-01-07 東芝三菱電機産業システム株式会社 Uninterruptible power system
JP6338641B2 (en) * 2013-03-26 2018-06-06 三菱電機株式会社 Air conditioner
WO2014155540A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Inverter device and inverter system
JPWO2017090099A1 (en) * 2015-11-25 2018-05-10 三菱電機株式会社 Power supply control device and power supply control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2947372B2 (en) * 1991-04-25 1999-09-13 株式会社関電工 Multifunction power converting system
JP3139193B2 (en) * 1993-02-02 2001-02-26 三菱電機株式会社 Power supply
JPH07163066A (en) * 1993-12-08 1995-06-23 Fuji Electric Co Ltd Usual commercial feeding system uninterruptible power supply equipment
JPH08172734A (en) * 1994-12-20 1996-07-02 Fuji Electric Co Ltd Method of controlling uninterruptible power-supply apparatus
JP2002095183A (en) * 2000-09-13 2002-03-29 Toshiba Corp Uninterruptible power source
JP2003052134A (en) * 2001-08-07 2003-02-21 Mitsubishi Electric Corp Control method for uninterruptible power supply apparatus, and the uninterruptible power supply apparatus employing the method
JP4428049B2 (en) * 2003-12-25 2010-03-10 株式会社明電舎 Backup method and apparatus for DC power supply for inverter in elevator
JP2008148505A (en) * 2006-12-12 2008-06-26 Chugoku Electric Power Co Inc:The Power compensator to prevent overload

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224478A (en) * 2016-06-15 2017-12-21 東芝三菱電機産業システム株式会社 Switch device and uninterruptible power system

Also Published As

Publication number Publication date
JP2008295160A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP4770795B2 (en) Uninterruptible power system
US10811898B2 (en) Uninterruptible power supply device
KR101684840B1 (en) Converter unit system and converter unit
JP5082450B2 (en) Power supply equipment
JP5464851B2 (en) Inverter device
JP5561071B2 (en) Uninterruptible power system
JP6183460B2 (en) Inverter device
JP2010016996A (en) Uninterruptible power supply unit
JP2007074884A (en) Converter apparatus (low voltage detecting method)
JP2011160517A (en) Overcurrent protection circuit, and switching power supply device
JP2007215378A (en) Uninterruptible power unit
JP4527064B2 (en) Uninterruptible power supply system
CN110739765B (en) DC power supply system
JP4639961B2 (en) Inverter device for electric vehicles
JP6033043B2 (en) Power converter
KR102566563B1 (en) power supply system
CN113169563A (en) Vehicle-mounted standby power supply control device and vehicle-mounted standby power supply
JP6595438B2 (en) Uninterruptible power system
JP2016214001A (en) Uninterruptible power supply system
JP2007259564A (en) Distributed power supply system
JP2012065513A (en) Electric power conversion system and direct-current power supply system
JP6202896B2 (en) Power converter
US11824466B2 (en) Instantaneous line swell protection for UPS
JP3958964B2 (en) Power converter
KR101740944B1 (en) Uninterrutible power supply equipped with zero-phase harmonic reduction function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250