WO2014153883A1 - 一种背光驱动电路及其驱动方法和一种液晶显示装置 - Google Patents

一种背光驱动电路及其驱动方法和一种液晶显示装置 Download PDF

Info

Publication number
WO2014153883A1
WO2014153883A1 PCT/CN2013/078132 CN2013078132W WO2014153883A1 WO 2014153883 A1 WO2014153883 A1 WO 2014153883A1 CN 2013078132 W CN2013078132 W CN 2013078132W WO 2014153883 A1 WO2014153883 A1 WO 2014153883A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
coupled
drive circuit
led light
light bar
Prior art date
Application number
PCT/CN2013/078132
Other languages
English (en)
French (fr)
Inventor
张华�
黎飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/984,529 priority Critical patent/US9269306B2/en
Publication of WO2014153883A1 publication Critical patent/WO2014153883A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a backlight driving circuit and a driving method thereof, and a liquid crystal display device.
  • the liquid crystal display device comprises a liquid crystal panel and a backlight module
  • the backlight module comprises an LED light bar and a backlight driving circuit thereof.
  • the drain carries a relatively high voltage.
  • the MOS transistor Q1 is turned on again, the power loss on the MOS transistor Q1 is large, and the temperature of the MOS transistor Q1 rises, which affects the life of the component.
  • the technical problem to be solved by the present invention is to provide a backlight driving circuit and a driving method thereof, and a liquid crystal display device which can improve the service life of a controllable switch.
  • a backlight driving circuit comprises a transformer, a controllable switch connected in series with a primary side of the transformer, the backlight driving circuit further comprising a voltage collecting module for collecting a primary side voltage of the transformer, and a comparison module coupled with the voltage collecting module;
  • the comparison module drives the controllable switch to be turned on when the output voltage of the voltage collection module is lower than a preset reference voltage.
  • the voltage collecting module includes a detecting winding coupled to the primary side of the transformer and having a smaller number of turns than the detecting side of the transformer, and a first resistor connected in parallel with the detecting winding, the first resistor being adjacent to the first resistor
  • One end of the sense winding is coupled to the comparison module.
  • the detection winding is used to collect the voltage of the primary side of the transformer by electromagnetic coupling.
  • no additional load is connected in the primary circuit of the transformer, and the isolation between the acquisition circuit and the main circuit is realized, that is, the damage of the acquisition circuit does not affect the main circuit.
  • the comparison module includes a comparator, the comparator input terminal is connected to the preset reference voltage, and the reverse input terminal is coupled to the voltage collection module;
  • the comparator drives the controllable switch to be turned on when an output voltage of the voltage acquisition module is lower than the reference voltage. This is the circuit structure of a specific comparison module.
  • the comparison module further includes a second resistor and a filter capacitor, and an inverting input end of the comparator is coupled to the voltage collecting module through the second resistor, and the filter capacitor is connected to the comparator Between the inverting input and the ground of the backlight drive circuit.
  • the voltage collecting module includes a detecting winding coupled to the primary side of the transformer and having a smaller number of turns than the detecting side of the transformer, and a first resistor connected in parallel with the detecting winding
  • the comparing module includes a comparator and a second a resistor and a filter capacitor, wherein the comparator has a predetermined reference voltage connected to the same input terminal, and the opposite input terminal of the comparator is coupled to the end of the sense winding current through the second resistor;
  • the filter capacitor is connected to the inverting input of the comparator and the backlight driving circuit Between the ground terminals. This is a specific backlight driving circuit.
  • the detection winding is used to collect the voltage of the primary side of the transformer through electromagnetic coupling.
  • the highest value of the primary voltage of the transformer and the lowest value of the oscillation waveform of the controllable switch drain voltage have a certain delay in time.
  • the oscillation is eliminated as much as possible, and the electromagnetic is further reduced.
  • Interference adding an RC filter circuit between the opposite end of the comparator and the acquisition module, so that the delay time can be adjusted by adjusting the parameters of the second resistor and the filter capacitor, so that the first resonance of the controllable switch drain voltage is minimized.
  • the comparator outputs a high level, and the controllable switch is turned on again, and the controllable switching source and drain are turned on instantaneously.
  • the interelectrode voltage is small, the loss is reduced, and the drain voltage quickly becomes zero, no longer oscillating, which can improve electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • the backlight driving circuit includes an LED strip that is coupled to both ends of the secondary side of the transformer. This is a backlight driving circuit using an LED as a light source.
  • the backlight driving circuit further includes a rectifying diode serially connected between the secondary side of the transformer and the LED strip, the negative pole of the rectifying diode is coupled to the input end of the LED strip, and the anode is coupled to the anode The secondary side of the transformer.
  • the rectifier diode controls the direction of current flow and prevents current from flowing back to the secondary side of the transformer.
  • the backlight driving circuit further includes an electrolytic capacitor, and the electrolytic capacitor is disposed in parallel with the LED light bar.
  • the electrolytic capacitor can output the stored energy to the LED strip when the output current of the secondary side of the transformer is insufficient, maintaining the brightness of the LED strip.
  • a driving method of a backlight driving circuit of the present invention comprising the steps of:
  • A preset a reference voltage
  • B. Collect the output voltage of the primary side of the transformer; c. Compare the output voltage of the primary side of the transformer with the reference voltage; when the output voltage is less than the reference voltage, control the controllable switch to conduct; otherwise, control the controllable switch to turn off.
  • a liquid crystal display device comprising the backlight driving circuit of the present invention.
  • the invention adopts a voltage collecting module and a comparison module, and sets a reference voltage with a small voltage.
  • the controllable switch When comparing the output voltage of the primary side of the transformer to be less than the preset reference voltage, the controllable switch is turned on, and at this time, the voltage is compared. Small or even zero, the current flowing through the controllable switch is also small, reducing the power loss when the controllable switch is turned on, and improving the service life of the controllable switch.
  • the source and drain of the controllable switch have parasitic capacitance (as shown by C1 in Figure 1A).
  • C1 parasitic capacitance
  • the controllable switch is turned off, the input voltage will continue to charge the parasitic capacitance, storing energy, and completely releasing the energy in the primary winding of the transformer. After that, the parasitic capacitance releases the energy to the primary line. In this way, the primary line ⁇ and the parasitic capacitance C1 resonate, causing the sinusoidal oscillation of the drain voltage of the controllable switch Q1, which affects the electromagnetic interference (EMI) index.
  • EMI electromagnetic interference
  • the controllable switch is turned on when the voltage is close to zero, and the controllable switch drain voltage no longer oscillates, thereby improving electromagnetic interference.
  • 1A is a schematic diagram of a conventional backlight driving circuit
  • 1B is a schematic diagram of the principle of a conventional backlight driving circuit
  • FIG. 2 is a schematic diagram of the principle of the backlight driving circuit of the present invention.
  • 3A is a schematic diagram of the principle of a backlight driving circuit according to an embodiment of the present invention.
  • 3B is a schematic diagram showing the waveform of a backlight driving circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a driving method of a backlight driving circuit according to Embodiment 2 of the present invention.
  • a liquid crystal display device includes a backlight driving circuit, and the backlight driving circuit includes a transformer 10, and a controllable switch 20 connected in series with the primary side 11 of the transformer 10.
  • the backlight driving circuit further includes a voltage of the primary side of the collecting transformer. Voltage collecting module 30, a comparison module 40 coupled to the voltage collecting module 30;
  • the secondary side 12 of the transformer 10 is coupled to the LED strip 50;
  • the comparison module 40 drives the controllable switch 20 to be turned on.
  • the controllable switch 20 can select a semiconductor power device such as a MOS transistor.
  • the invention adopts a voltage collecting module and a comparison module, and sets a reference voltage with a small voltage.
  • the controllable switch When comparing the output voltage of the primary side of the transformer to be less than the preset reference voltage, the controllable switch is turned on, and at this time, the voltage is compared. Small or even zero, the current flowing through the controllable switch is also small, reducing the power loss when the controllable switch is turned on, and improving the service life of the controllable switch.
  • the source and drain of the controllable switch have parasitic capacitance (as shown by C1 in Figure 1A).
  • C1 parasitic capacitance
  • the controllable switch is turned off, the input voltage will continue to charge the parasitic capacitance, storing energy, and completely releasing the energy in the primary winding of the transformer. After that, the parasitic capacitance releases the energy to the primary line. In this way, the primary line ⁇ and the parasitic capacitance C1 resonate, causing the sinusoidal oscillation of the drain voltage of the controllable switch Q1, which affects the electromagnetic interference (EMI) index.
  • EMI electromagnetic interference
  • the controllable switch is turned on when the voltage is close to zero, and the controllable switch drain voltage no longer oscillates, thereby improving electromagnetic interference.
  • the backlight driving circuit of the embodiment includes a transformer T1 and a controllable switch Q1 connected in series with the primary side 11 of the transformer T1.
  • the backlight driving circuit further includes voltage collection for collecting the voltage of the primary side 11 of the transformer T1.
  • a secondary side 12 of the transformer T1 is coupled to the LED strip 50;
  • the comparison module drives the controllable switch Q1 to be turned on.
  • the voltage collecting module includes a detecting winding T2 coupled to the primary side 11 of the transformer T1 and having a smaller number of turns than the primary side 11 of the transformer T1, and a first resistor R1 connected in parallel with the detecting winding T2, the comparing module including comparison Device ⁇ 1, second resistor R2 and filter capacitor C.
  • the comparator input voltage of the comparator OP1 is connected to the preset reference voltage V.
  • the inverting input terminal of the comparator OP1 is coupled to one end of the current flowing out of the detecting winding T2 through the second resistor R2; the filtering capacitor C. Connected in Between the inverting input of the comparator OP1 and the ground of the backlight driving circuit.
  • the backlight driving circuit further includes an electrolytic capacitor C2, and a rectifier diode D1 connected in series between the secondary side 12 of the transformer T1 and the LED strip 50, and a cathode of the rectifier diode D1 is coupled to the LED strip 50.
  • the input terminal has its anode coupled to the secondary side 12 of the transformer T1.
  • the electrolytic capacitor C2 is disposed in parallel with the LED strip 50.
  • the rectifier diode D1 can control the flow direction of the current to prevent the current from flowing back to the secondary side 12 of the transformer T1; the electrolytic capacitor C2 can output the stored amount of electricity to the LED strip 50 when the output current of the secondary side 12 of the transformer T1 is insufficient, maintaining The brightness of the LED strip 50.
  • the method of the present invention collects the voltage of the primary side 11 of the transformer T1 by means of electromagnetic coupling.
  • To the normal operation of the main circuit improve the reliability of the main circuit; on the other hand, by detecting the winding T2, the high voltage of the primary side 11 of the transformer T1 is proportionally reduced, and then divided by the first resistor R1 to obtain a smaller acquisition voltage.
  • the small voltage is relatively safe, and the voltage withstand requirements of the device is relatively low, which is beneficial to reducing the hardware cost of the acquisition circuit and the comparison circuit behind.
  • the lowest voltage of the primary side 11 of the transformer T1 and the lowest value of the oscillation waveform of the drain voltage of the controllable switch Q1 have a certain delay in time, so in order to reduce the loss of the controllable switch Q1, the oscillation is eliminated as much as possible.
  • the parameter is used to adjust the delay time, so that when the first resonance of the drain voltage of the controllable switch Q1 reaches the minimum value, the zero voltage signal detected in the third winding line is sent to the inverting input terminal of the comparator OP1, the comparator OP1 output high level (logic 1), control the controllable switch Q1 is turned on again, the on-time controllable switch Q1 source and drain voltage are small, the loss is reduced, and the drain voltage quickly becomes zero, no longer oscillate , that is, electromagnetic interference (EMI) can be improved.
  • EMI electromagnetic interference
  • this embodiment discloses a driving method of a backlight driving circuit according to the present invention, which includes the following steps:

Landscapes

  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种背光驱动电路包括变压器,与变压器原边串接的可控开关,所述背光驱动电路还包括采集变压器原边电压的电压采集模块,与电压采集模块耦合的比较模块;当所述电压采集模块的输出电压低于预设的基准电压时,所述比较模块驱动所述可控开关导通。

Description

一种背光驱动电路及其驱动方法和一种液晶显示装置
【技术领域】
本发明涉及液晶显示领域, 更具体的说, 涉及一种背光驱动电路及其驱动 方法和一种液晶显示装置。
【背景技术】
液晶显示装置包括液晶面板和背光模组, 背光模组包括 LED灯条及其背光 驱动电路。 当每串 LED的颗数较多时, 背光驱动电路所要提供的输出电压就很 大, 通常都是在 100V以上, 需要使用图 1A、 IB所示的隔离式升压电路。 驱动 信号控制可控开关 MOS管 Q1的导通与关断, 选取变压器 T的初、 次级线圏匝 比数(1: N )来提升输出电压值, 假设变压器 T的输入电压是 Vin, 输出电压 是 Vo, 贝' J Vo=Vin*N*D/ ( 1-D )。
MOS管 Ql关断后, 漏极承载着较高的电压, 当 MOS管 Q1再次导通时, MOS管 Q1上损耗的功率较大, MOS管 Q1温度上升, 影响元器件寿命。
【发明内容】
本发明所要解决的技术问题是提供一种能提高可控开关使用寿命的背光驱 动电路及其驱动方法和一种液晶显示装置。
本发明的目的是通过以下技术方案来实现的:
一种背光驱动电路, 包括变压器, 与变压器原边串接的可控开关, 所述背 光驱动电路还包括采集变压器原边电压的电压采集模块, 与电压采集模块耦合 的比较模块;
当所述电压采集模块的输出电压低于预设的基准电压时, 所述比较模块驱 动所述可控开关导通。
进一步的, 所述电压采集模块包括与所述变压器原边耦合的线圏匝数小于 所述变压器原边的检测绕组, 与检测绕组并联的第一电阻, 所述第一电阻邻近 检测绕组的一端耦合到所述比较模块。 采用检测绕组, 通过电磁耦合的方式采 集变压器原边的电压, 一方面不需要在变压器原边电路串接额外的负载, 实现 采集电路和主电路的隔离, 即采集电路损坏不会影响到主电路的正常运行, 提 高主电路的可靠性; 另一方面通过检测绕组将变压器原边的高电压等比例缩小, 然后再通过第一电阻分压后得到较小的采集电压, 小电压相对安全, 对器件的 耐压要求也比较低, 有利于降低采集电路及后面的比较电路的硬件成本。
进一步的, 所述比较模块包括比较器, 所述比较器的同向输入端连接有所 述预设的基准电压, 其反向输入端耦合到所述电压采集模块;
当所述电压采集模块的输出电压低于所述基准电压时, 所述比较器驱动所 述可控开关导通。 此为一种具体的比较模块的电路结构。
进一步的, 所述比较模块还包括第二电阻和滤波电容, 所述比较器的反向 输入端通过所述第二电阻耦合到所述电压采集模块, 所述滤波电容连接在所述 比较器的反向输入端和背光驱动电路的接地端之间。 经研究, 变压器原边电压 最低点和可控开关漏极电压振荡波形的最低值在时间上有一定的延迟, 因此为 了在降低可控开关的损耗的同时, 尽可能的消除振荡, 进一步降低电磁干扰, 在比较器的反向端和采集模块之间增加 RC滤波电路,这样就可以通过调节第二 电阻和滤波电容的参数来调整延迟时间, 使可控开关漏极电压第一次谐振达到 最低值时, 将第三绕组线路中侦测到的零电压信号输送到比较器的反向输入端, 比较器输出高电平, 控制可控开关再次导通, 导通瞬间可控开关源、 漏极间电 压较小, 损耗降低, 同时漏极电压迅速变为零, 不再振荡, 即可以改善电磁干 扰(EMI )。
进一步的, 所述电压采集模块包括与所述变压器原边耦合的线圏匝数小于 所述变压器原边的检测绕组, 与检测绕组并联的第一电阻, 所述比较模块包括 比较器、 第二电阻和滤波电容, 所述比较器的同向输入端连接有所述预设的基 准电压, 所述比较器的反向输入端通过所述第二电阻耦合到所述检测绕组电流 流出的一端; 所述滤波电容连接在所述比较器的反向输入端和背光驱动电路的 接地端之间。 此为一种具体的背光驱动电路, 采用检测绕组, 通过电磁耦合的 方式采集变压器原边的电压, 一方面不需要在变压器原边电路串接额外的负载, 实现采集电路和主电路的隔离, 即采集电路损坏不会影响到主电路的正常运行, 提高主电路的可靠性; 另一方面通过检测绕组将变压器原边的高电压等比例缩 小, 然后再通过第一电阻分压后得到较小的采集电压, 小电压相对安全, 对器 件的耐压要求也比较低, 有利于降低采集电路及后面的比较电路的硬件成本。 经研究, 变压器原边电压最低点和可控开关漏极电压振荡波形的最低值在时间 上有一定的延迟, 因此为了在降低可控开关的损耗的同时, 尽可能的消除振荡, 进一步降低电磁干扰,在比较器的反向端和采集模块之间增加 RC滤波电路, 这 样就可以通过调节第二电阻和滤波电容的参数来调整延迟时间, 使可控开关漏 极电压第一次谐振达到最低值时, 将第三绕组线路中侦测到的零电压信号输送 到比较器的反向输入端, 比较器输出高电平, 控制可控开关再次导通, 导通瞬 间可控开关源、 漏极间电压较小, 损耗降低, 同时漏极电压迅速变为零, 不再 振荡, 即可以改善电磁干扰( EMI )。
进一步的,所述背光驱动电路包括 LED灯条,所述 LED灯条耦合到所述变 压器副边的两端。 此为一种采用 LED作为光源的背光驱动电路。
进一步的, 所述背光驱动电路还包括串接在所述变压器副边和 LED灯条之 间的整流二极管, 所述整流二极管的负极耦合到所述 LED灯条的输入端, 其正 极耦合到所述变压器的副边。 整流二极管可以控制电流的流动方向, 避免电流 返灌回变压器的副边。
进一步的, 所述背光驱动电路还包括电解电容, 所述电解电容与所述 LED 灯条并联设置。 电解电容可以在变压器的副边输出电流不足的时候将储存的电 量输出到 LED灯条, 维持 LED灯条的亮度。
一种本发明所述背光驱动电路的驱动方法, 包括步骤:
A、 预设一基准电压;
B、 采集变压器原边的输出电压; c、 比较变压器原边的输出电压和基准电压; 当输出电压小于基准电压时, 控制可控开关导通; 否则, 控制可控开关关断。
一种液晶显示装置, 包括本发明所述的背光驱动电路。
本发明由于采用了电压采集模块和比较模块, 并设立一个电压较小的基准 电压, 当比较变压器原边的输出电压小于预设的基准电压时, 控制可控开关导 通, 此时由于电压较小甚至为零, 流经可控开关的电流也很小, 减少了可控开 关导通时损耗的功率, 提高可控开关的使用寿命。 另外,
可控开关的源、 漏极存在寄生电容(如图 1A的 C1所示), 当可控开关关断 时, 输入电压会继续给寄生电容充电, 储存能量, 当变压器初级线圏中能量释 放完全后, 寄生电容又将能量释放给初级线圏, 如此反复, 初级线圏和寄生电 容 C1产生谐振, 导致可控开关 Q1漏极电压正弦振荡, 会影响电磁干扰(EMI ) 指标。 而采用本发明的技术方案, 可控开关在电压接近为零的时候导通, 可控 开关漏极电压不再产生振荡, 从而改善电磁干扰。
【附图说明】
图 1A是现有的背光驱动电路的原理示意图;
图 1B是现有的背光驱动电路的原理示意图;
图 2是本发明背光驱动电路的原理示意图;
图 3A是本发明实施例一背光驱动电路的原理示意图;
图 3B是本发明实施例一背光驱动电路的波形示意图;
图 4是本发明实施例二背光驱动电路的驱动方法示意图。
【具体实施方式】
如图 2所示, 一种液晶显示装置, 包括背光驱动电路, 背光驱动电路包括变 压器 10, 与变压器 10原边 11串接的可控开关 20, 所述背光驱动电路还包括采 集变压器原边电压的电压采集模块 30, 与电压采集模块 30耦合的比较模块 40; 变压器 10的副边 12耦合到 LED灯条 50;
当所述电压采集模块 30 的输出电压低于预设的基准电压时, 所述比较模块 40驱动所述可控开关 20导通。可控开关 20可以选择 MOS管等半导体功率器件。
本发明由于采用了电压采集模块和比较模块, 并设立一个电压较小的基准电 压, 当比较变压器原边的输出电压小于预设的基准电压时, 控制可控开关导通, 此时由于电压较小甚至为零, 流经可控开关的电流也很小, 减少了可控开关导 通时损耗的功率, 提高可控开关的使用寿命。 另外,
可控开关的源、 漏极存在寄生电容(如图 1A的 C1所示), 当可控开关关断 时, 输入电压会继续给寄生电容充电, 储存能量, 当变压器初级线圏中能量释 放完全后, 寄生电容又将能量释放给初级线圏, 如此反复, 初级线圏和寄生电 容 C1产生谐振, 导致可控开关 Q1漏极电压正弦振荡, 会影响电磁干扰(EMI ) 指标。 而采用本发明的技术方案, 可控开关在电压接近为零的时候导通, 可控 开关漏极电压不再产生振荡, 从而改善电磁干扰。
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图 3A、 3B所示, 本实施例的背光驱动电路包括变压器 T1 , 与变压器 T1 原边 11 串接的可控开关 Q1 , 所述背光驱动电路还包括采集变压器 T1原边 11 电压的电压采集模块, 与电压采集模块耦合的比较模块; 变压器 T1 的副边 12 耦合到 LED灯条 50;
当所述电压采集模块的输出电压低于预设的基准电压时, 所述比较模块驱动 所述可控开关 Q1导通。
所述电压采集模块包括与所述变压器 T1原边 11耦合的线圏匝数小于所述变 压器 T1原边 11的检测绕组 T2, 与检测绕组 T2并联的第一电阻 R1 , 所述比较 模块包括比较器 ΟΡ1、 第二电阻 R2和滤波电容 C。, 所述比较器 OP1的同向输 入端连接有所述预设的基准电压 V。, 所述比较器 OP1的反向输入端通过所述第 二电阻 R2耦合到所述检测绕组 T2电流流出的一端;所述滤波电容 C。连接在所 述比较器 OP1的反向输入端和背光驱动电路的接地端之间。
所述背光驱动电路还包括电解电容 C2 , 以及串接在所述变压器 T1 副边 12 和 LED灯条 50之间的整流二极管 D1 , 所述整流二极管 D1的负极耦合到所述 LED灯条 50的输入端, 其正极耦合到所述变压器 T1的副边 12。 所述电解电容 C2与所述 LED灯条 50并联设置。 整流二极管 D1可以控制电流的流动方向, 避免电流返灌回变压器 T1的副边 12; 电解电容 C2可以在变压器 T1的副边 12 输出电流不足的时候将储存的电量输出到 LED灯条 50 , 维持 LED灯条 50的亮 度。
本实施方法通过电磁耦合的方式采集变压器 T1原边 11的电压, 一方面不需 要在变压器 T1原边 11 电路串接额外的负载, 实现采集电路和主电路的隔离, 即采集电路损坏不会影响到主电路的正常运行, 提高主电路的可靠性; 另一方 面通过检测绕组 T2将变压器 T1原边 11的高电压等比例缩小,然后再通过第一 电阻 R1分压后得到较小的采集电压, 小电压相对安全, 对器件的耐压要求也比 较低, 有利于降低采集电路及后面的比较电路的硬件成本。 经研究, 变压器 T1 原边 11电压最低点和可控开关 Q1漏极电压振荡波形的最低值在时间上有一定 的延迟, 因此为了在降低可控开关 Q1的损耗的同时, 尽可能的消除振荡, 进一 步降低电磁干扰, 在比较器 OP1的反向端和采集模块之间增加 RC滤波电路, 这样就可以通过调节第二电阻 R2和滤波电容 C。的参数来调整延迟时间, 使可 控开关 Q1漏极电压第一次谐振达到最低值时,将第三绕组线路中侦测到的零电 压信号输送到比较器 OP1的反向输入端, 比较器 OP1输出高电平 (logic 1) , 控 制可控开关 Q1再次导通, 导通瞬间可控开关 Q1源、 漏极间电压较小, 损耗降 低, 同时漏极电压迅速变为零, 不再振荡, 即可以改善电磁干扰(EMI )。
实施例二
如图 4所示, 本实施方式公开了一种本发明所述背光驱动电路的驱动方法, 包括步骤:
A、 预设一基准电压 V0; B、 采集变压器原边的输出电压 VI;
C、 比较变压器原边的输出电压和基准电压; 当输出电压小于基准电压时, 控制可控开关导通; 否则, 控制可控开关关断。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技 术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干筒单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1、 一种背光驱动电路, 包括变压器, 与变压器原边串接的可控开关, 所述 背光驱动电路还包括采集变压器原边电压的电压采集模块, 与电压采集模块耦 合的比较模块;
当所述电压采集模块的输出电压低于预设的基准电压时, 所述比较模块驱 动所述可控开关导通。
2、 如权利要求 1所述的背光驱动电路, 其中, 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端。
3、 如权利要求 2所述的背光驱动电路, 其中, 所述背光驱动电路还包括串 接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极耦 合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边。
4、 如权利要求 1所述的背光驱动电路, 其中, 所述电压采集模块包括与所 述变压器原边耦合的线圏匝数小于所述变压器原边的检测绕组, 与检测绕组并 联的第一电阻, 所述第一电阻邻近检测绕组的一端耦合到所述比较模块。
5、 如权利要求 4所述的背光驱动电路, 其中, 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端, 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边, 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
6、 如权利要求 1所述的背光驱动电路, 其中, 所述比较模块包括比较器, 所述比较器的同向输入端连接有所述预设的基准电压, 其反向输入端耦合到所 述电压采集模块;
当所述电压采集模块的输出电压低于所述基准电压时, 所述比较器驱动所 述可控开关导通。
7、 如权利要求 6所述的背光驱动电路, 其中, 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端, 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边, 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
8、 如权利要求 6所述的背光驱动电路, 其中, 所述比较模块还包括第二电 阻和滤波电容, 所述比较器的反向输入端通过所述第二电阻耦合到所述电压采 集模块, 所述滤波电容连接在所述比较器的反向输入端和背光驱动电路的接地 端之间。
9、 如权利要求 8所述的背光驱动电路, 其中, 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端, 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边, 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
10、 如权利要求 1 所述的背光驱动电路, 其中, 所述电压采集模块包括与 所述变压器原边耦合的线圏匝数小于所述变压器原边的检测绕组, 与检测绕组 并联的第一电阻, 所述比较模块包括比较器、 第二电阻和滤波电容, 所述比较 器的同向输入端连接有所述预设的基准电压, 所述比较器的反向输入端通过所 述第二电阻耦合到所述检测绕组电流流出的一端; 所述滤波电容连接在所述比 较器的反向输入端和背光驱动电路的接地端之间; 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端; 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边; 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
11、 一种背光驱动电路的驱动方法, 所述背光驱动电路包括变压器, 与变 压器原边串接的可控开关, 所述背光驱动电路还包括采集变压器原边电压的电 压采集模块, 与电压采集模块耦合的比较模块; 所述驱动方法包括步骤: A、 预设一基准电压;
B、 采集变压器原边的输出电压;
C、 比较变压器原边的输出电压和基准电压; 当输出电压小于基准电压时, 控制可控开关导通; 否则, 控制可控开关关断。
12、 一种液晶显示装置, 包括背光驱动电路, 所述背光驱动电路, 包括变 压器, 与变压器原边串接的可控开关, 所述背光驱动电路还包括采集变压器原 边电压的电压采集模块, 与电压采集模块耦合的比较模块;
当所述电压采集模块的输出电压低于预设的基准电压时, 所述比较模块驱 动所述可控开关导通。
13、如权利要求 12所述的液晶显示装置,其中,所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端。
14、 如权利要求 13所述的液晶显示装置, 其中, 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边。
15、 如权利要求 12所述的液晶显示装置, 其中, 所述电压采集模块包括与 所述变压器原边耦合的线圏匝数小于所述变压器原边的检测绕组, 与检测绕组 并联的第一电阻, 所述第一电阻邻近检测绕组的一端耦合到所述比较模块。
16、如权利要求 15所述的液晶显示装置,其中,所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端, 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边, 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
17、如权利要求 16所述的液晶显示装置, 其中, 所述比较模块包括比较器, 所述比较器的同向输入端连接有所述预设的基准电压, 其反向输入端耦合到所 述电压采集模块;
当所述电压采集模块的输出电压低于所述基准电压时, 所述比较器驱动所 述可控开关导通。
18、 如权利要求 17所述的液晶显示装置, 其中, 所述比较模块还包括第二 电阻和滤波电容, 所述比较器的反向输入端通过所述第二电阻耦合到所述电压 采集模块, 所述滤波电容连接在所述比较器的反向输入端和背光驱动电路的接 地端之间。
19、 如权利要求 12所述的液晶显示装置, 其中, 所述电压采集模块包括与 所述变压器原边耦合的线圏匝数小于所述变压器原边的检测绕组, 与检测绕组 并联的第一电阻, 所述比较模块包括比较器、 第二电阻和滤波电容, 所述比较 器的同向输入端连接有所述预设的基准电压, 所述比较器的反向输入端通过所 述第二电阻耦合到所述检测绕组电流流出的一端; 所述滤波电容连接在所述比 较器的反向输入端和背光驱动电路的接地端之间; 所述背光驱动电路包括 LED 灯条, 所述 LED灯条耦合到所述变压器副边的两端; 所述背光驱动电路还包括 串接在所述变压器副边和 LED灯条之间的整流二极管, 所述整流二极管的负极 耦合到所述 LED灯条的输入端, 其正极耦合到所述变压器的副边; 所述背光驱 动电路还包括电解电容, 所述电解电容与所述 LED灯条并联设置。
PCT/CN2013/078132 2013-03-29 2013-06-27 一种背光驱动电路及其驱动方法和一种液晶显示装置 WO2014153883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/984,529 US9269306B2 (en) 2013-03-29 2013-06-27 Backlight driving circuit, LCD device, and method for driving the backlight driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310110132.5 2013-03-29
CN201310110132.5A CN103151000B (zh) 2013-03-29 2013-03-29 一种背光驱动电路及其驱动方法和一种液晶显示装置

Publications (1)

Publication Number Publication Date
WO2014153883A1 true WO2014153883A1 (zh) 2014-10-02

Family

ID=48549029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078132 WO2014153883A1 (zh) 2013-03-29 2013-06-27 一种背光驱动电路及其驱动方法和一种液晶显示装置

Country Status (2)

Country Link
CN (1) CN103151000B (zh)
WO (1) WO2014153883A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544453A (zh) * 2019-09-03 2019-12-06 青岛海信电器股份有限公司 一种显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269306B2 (en) 2013-03-29 2016-02-23 Shenzhen China Star Optoelectronics Technology Co., Ltd Backlight driving circuit, LCD device, and method for driving the backlight driving circuit
CN103151000B (zh) * 2013-03-29 2015-04-22 深圳市华星光电技术有限公司 一种背光驱动电路及其驱动方法和一种液晶显示装置
CN110867169B (zh) * 2019-10-28 2022-04-26 昆山龙腾光电股份有限公司 显示装置及显示驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251880A (ja) * 1993-02-26 1994-09-09 Casio Comput Co Ltd 平面蛍光管駆動回路及び平面蛍光管を備えたバックライト装置
KR20080079775A (ko) * 2007-02-28 2008-09-02 엘지이노텍 주식회사 엘이디 백라이트 구동회로
CN202178046U (zh) * 2011-07-26 2012-03-28 青岛海信电器股份有限公司 背光源驱动电路及电视机
CN202759643U (zh) * 2012-08-10 2013-02-27 深圳Tcl新技术有限公司 Led电视及其背光驱动电路
CN103151000A (zh) * 2013-03-29 2013-06-12 深圳市华星光电技术有限公司 一种背光驱动电路及其驱动方法和一种液晶显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665614B2 (en) * 2007-09-28 2014-03-04 Stmicroelectronics S.R.L. Control method and device for switching power supplies having more than one control mode
CN201733500U (zh) * 2010-08-20 2011-02-02 杭州电子科技大学 隔离型反激式led驱动器的原边恒流控制装置
US8477516B2 (en) * 2011-04-18 2013-07-02 Noveltek Semiconductor Corp. Low cost high power factor LED driver
CN102185466B (zh) * 2011-05-24 2013-03-27 矽力杰半导体技术(杭州)有限公司 一种驱动电路、驱动方法以及应用其的反激式变换器
CN102711342B (zh) * 2012-06-25 2014-04-30 矽力杰半导体技术(杭州)有限公司 一种led驱动器的控制电路及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251880A (ja) * 1993-02-26 1994-09-09 Casio Comput Co Ltd 平面蛍光管駆動回路及び平面蛍光管を備えたバックライト装置
KR20080079775A (ko) * 2007-02-28 2008-09-02 엘지이노텍 주식회사 엘이디 백라이트 구동회로
CN202178046U (zh) * 2011-07-26 2012-03-28 青岛海信电器股份有限公司 背光源驱动电路及电视机
CN202759643U (zh) * 2012-08-10 2013-02-27 深圳Tcl新技术有限公司 Led电视及其背光驱动电路
CN103151000A (zh) * 2013-03-29 2013-06-12 深圳市华星光电技术有限公司 一种背光驱动电路及其驱动方法和一种液晶显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544453A (zh) * 2019-09-03 2019-12-06 青岛海信电器股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN103151000A (zh) 2013-06-12
CN103151000B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
TWI491153B (zh) 電容放電電路及變換器
CN104008735B (zh) Led背光驱动电路以及液晶显示器
CN113141118B (zh) 控制电路以及应用其的开关变换器
TWI458146B (zh) Piezoelectric drive circuit with zero voltage switching
KR101900577B1 (ko) 공진 정류 장치, 공진 정류 제어 방법, 장치, 프로그램 및 컴퓨터 판독가능한 기록매체
CN103917028B (zh) 一种led恒流源及其控制方法
WO2012009998A1 (zh) Llc串联谐振变换器及其驱动方法
TWI513164B (zh) 返馳式主動箝位電源轉換器
CN203632933U (zh) 一种采用数控芯片的led灯驱动电源
WO2014153883A1 (zh) 一种背光驱动电路及其驱动方法和一种液晶显示装置
CN104602390A (zh) 双绕组单级原边反馈的led灯驱动电路
CN105529912A (zh) 转换器
CN114884356A (zh) 反激变换器及电源系统
CN103415120A (zh) 一种电源管理驱动芯片及该芯片的应用电路
CN205213121U (zh) 控制电路、led驱动芯片及led恒流驱动控制电路
CN202759634U (zh) 无需辅助绕组的led驱动电路
CN103683239A (zh) 一种浪涌保护电路
CN203504839U (zh) 一种采用初级检测和调控的led灯驱动电源
CN217590603U (zh) 一种谐振取电电路
EP2892135B1 (en) Power Supply and energy efficient Gate Driver
CN203352913U (zh) 外围电路无需变压器辅助绕组的隔离式恒流led驱动芯片
CN107484305B (zh) 开关装置、开关控制方法及所适用的led驱动系统
US20130234614A1 (en) Replaceable electrical ballast tube
CN108990205A (zh) 一种调光控制方法及调光控制电路
CN203827572U (zh) 一种led恒流源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13984529

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880630

Country of ref document: EP

Kind code of ref document: A1