WO2014153850A1 - 半透半反式液晶显示面板及应用其的显示器 - Google Patents

半透半反式液晶显示面板及应用其的显示器 Download PDF

Info

Publication number
WO2014153850A1
WO2014153850A1 PCT/CN2013/077182 CN2013077182W WO2014153850A1 WO 2014153850 A1 WO2014153850 A1 WO 2014153850A1 CN 2013077182 W CN2013077182 W CN 2013077182W WO 2014153850 A1 WO2014153850 A1 WO 2014153850A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
electrode
crystal display
substrate
Prior art date
Application number
PCT/CN2013/077182
Other languages
English (en)
French (fr)
Inventor
赵伟利
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/346,524 priority Critical patent/US9547193B2/en
Publication of WO2014153850A1 publication Critical patent/WO2014153850A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • Embodiments of the present invention relate to a transflective liquid crystal display panel and a display using the same. Background technique
  • the transflective liquid crystal display panel has both a transmissive mode and a reflective mode.
  • the transmission mode is mainly used, that is, the backlight of the transflective liquid crystal display itself is used to display an image through the liquid crystal panel; in a bright light environment, for example, in sunlight, mainly relying on In the reflection mode, the external light is reflected by the mirror in the liquid crystal panel, and the image is displayed as a light source. Therefore, the transflective liquid crystal display is suitable for various light intensity environments, especially for excellent outdoor visibility.
  • the brightness of the backlight does not need to be high, and it has low power consumption, so it is widely used in automotive displays, high-end mobile phones, digital cameras, handheld computers, aircraft display instruments and the like.
  • the conventional transflective liquid crystal display panel includes an upper polarizer 11, a first substrate 12, a first insulating layer 13, a liquid crystal layer 14, a pixel electrode layer 15, and a second in order from top to bottom.
  • the upper polarizer 11, the first substrate 12, and the first insulating layer 13 constitute an upper substrate S
  • the pixel electrode layer 15, the second insulating layer 16, the second substrate 17, and the lower polarizer 18 constitute a lower substrate X.
  • the transmission axis of the upper polarizer 11 is perpendicular to the transmission axis of the lower polarizer 18.
  • the liquid crystal panel is divided into a plurality of sub-pixels, each sub-pixel is divided into a transmissive area T and a reflective area R, and a first common is further disposed between the second insulating layer 16 and the second substrate 17 in the transmissive area T: the lower substrate X.
  • the second common electrode layer 101 is further disposed on the first insulating layer 13 in the upper substrate S, and the reflective electrode layer 102 is further disposed on the second insulating layer 16 in the lower substrate X.
  • the projections on the pixel electrode layer 15 in the transmissive region T and the common electrode on the first common electrode layer 19 are arranged on the second substrate 17, and are parallel to each other with the pitches being equal.
  • the initial orientation of the liquid crystal molecules in the transmission region T is parallel to the transmission axis of the lower polarizer 18, and the initial orientation of the liquid crystal molecules in the reflection region R is at an angle of 45 degrees with the transmission axis of the lower polarizer 18.
  • Embodiments of the present invention provide a transflective liquid crystal display panel and a display using the same, which solves the problem that the upper substrate in the conventional transflective display panel is difficult in the process of manufacturing.
  • An embodiment of the present invention provides a transflective liquid crystal display panel comprising, in order from top to bottom, an upper polarizer, a first substrate, a liquid crystal layer, an electrode layer, a second substrate, and a lower polarizer, wherein The transmission axis of the upper polarizer is perpendicular to the transmission axis of the lower polarizer,
  • Each sub-pixel of the liquid crystal display panel is divided into a transmissive area and a reflective area, and the electrode layer of the transmissive area is different in structure, and the electrode layer of the transmissive area includes a plurality of common electrodes and a plurality of pixel electrodes
  • the electrode layer of the reflective region includes a reflective electrode
  • a second common electrode is further disposed between the liquid crystal layer and the first substrate,
  • An initial orientation of the liquid crystal molecules in the transmissive region is perpendicular to the first substrate or the second substrate, and an initial orientation of the liquid crystal molecules in the reflective region is at an angle of 45 degrees with a transmission axis of the lower polarizer,
  • the plurality of common electrodes and the plurality of pixel electrodes of the transmissive area are alternately and spacedly arranged.
  • each of the common electrodes and each of the pixel electrodes have the same shape, and are continuous zigzag shapes formed by a plurality of sawtooth edges, and adjacent two sawtooth edges form a sawtooth angle;
  • the sawtooth angle on the common electrode and the angle bisector of the sawtooth angle on each of the pixel electrodes are parallel or collinear;
  • the common electrode of the bisector of the angle bisector is in the same direction as the sawtooth angle of the pixel electrode.
  • the sawtooth angle has an angle of 90 degrees.
  • the liquid crystal panel further includes a first insulating layer between the first substrate and the liquid crystal layer, and a second insulating layer between the electrode layer and the second substrate.
  • the plurality of common electrodes and the plurality of pixel electrodes in the transmissive region are alternately distributed at equal intervals.
  • the second common electrode and the reflective electrode in the reflective electrode layer are both planar electrodes.
  • the reflective electrode is a metal electrode.
  • the liquid crystal display panel further includes a color film layer between the first substrate and the second common electrode.
  • the color film layer covers the transmissive and reflective regions.
  • Another embodiment of the present invention also provides a display comprising a transflective liquid crystal display panel according to any of the embodiments of the present invention.
  • a second common is provided between the first insulating layer and the first substrate in the transmissive area and the reflective area.
  • the electrode layer, that is, the transmissive region and the reflective region are both covered with the second common electrode layer, such that the transmissive region and the reflective region in the upper substrate have the same structure, so that there is no need to add one more when producing the second common electrode layer in the upper substrate.
  • the mask is reduced, thus reducing the difficulty in manufacturing the process when the upper substrate is fabricated.
  • FIG. 1 is a schematic structural view of a transflective liquid crystal display panel in the prior art
  • FIG. 2 is a schematic cross-sectional view showing a structure of a transflective liquid crystal display panel according to an embodiment of the present invention
  • FIG. 3 is a plan view showing a transmissive area and a reflective area of the liquid crystal display panel shown in FIG. 2 when no power is applied;
  • Fig. 4 is a plan view showing a transmissive area and a reflective area of the liquid crystal display panel shown in Fig. 3 at the time of power-on. detailed description
  • Embodiments of the present invention provide a transflective liquid crystal display panel, as shown in FIGS. 2 and 3.
  • the display panel includes an upper polarizer 21, a first substrate 22, a first insulating layer 23, a liquid crystal layer 24, an electrode layer 203, a second insulating layer 26, and a second substrate 202 in this order from top to bottom.
  • Lower polarizer 29 The transmission axis of the upper polarizer 21 is perpendicular to the transmission axis of the lower polarizer 29.
  • each sub-pixel of the liquid crystal display panel is divided into a transmissive area T and a reflective area R, the electrode layer 203 of the transmissive area T includes a common electrode 27 and a pixel electrode 28, and the electrode layer 203 of the reflective area R includes reflection The electrode 25; a second common electrode layer 201 is disposed between the liquid crystal layer 24 in the transmissive region T and the reflective region R and the first substrate 22.
  • the initial orientation of the liquid crystal molecules in the transmissive region T is perpendicular to the first substrate 22 or the second substrate 202, and the initial orientation of the liquid crystal molecules in the reflective region R is at an angle of 45 degrees with the transmission axis of the lower polarizer 29.
  • the surface of the second insulating layer 26 adjacent to the liquid crystal layer 24 in the transmissive region T is provided with a plurality of common electrodes 27 and a plurality of pixel electrodes 28, and the common electrode 27 and the pixel electrodes 28 are alternately arranged. .
  • the liquid crystal molecules 241 of the transmissive region T are arranged perpendicular to the first substrate 22, and the initial orientation and the liquid crystal molecules 241 in the transmissive region T are initially
  • the transmission axis of the polarizer 29 is perpendicular, and the liquid crystal molecules 241 have no phase delay with respect to light, and thus do not change the polarization direction of the light.
  • the light passes through the upper polarizer 21 and enters the liquid crystal layer 24, and the polarization direction of the light does not change. Since the transmission axis of the upper polarizer 21 is perpendicular to the transmission axis of the lower polarizer 29, the light is deflected by the lower polarizer 29 Absorption, the above liquid crystal panel exhibits a dark state.
  • the initial orientation of the liquid crystal molecules 242 in the reflective region R is at an angle of 45 degrees with the transmission axis of the lower polarizer 29, so that the phase retardation of the liquid crystal molecules 242 to light is ⁇ /4, and the light passes through the liquid crystal molecules 242.
  • the polarized light becomes circularly polarized light, and the light is reflected by the reflective electrode 25 to become another circularly polarized light (left-handed and right-handed, right-handed and left-handed), and the light passes through the liquid crystal molecules 242 of the reflective region R for the second time.
  • the polarized light is again changed back to linearly polarized light, but the phase of the light is changed by 90 degrees, that is, the light is at an angle of 90 degrees with the linearly polarized light of the initial state, and thus is finally absorbed by the upper polarized film 21, and the liquid crystal panel exhibits a dark state.
  • the transflective liquid crystal display panel when manufacturing the upper substrate, Providing a second common electrode layer between the liquid crystal layer of the transmissive region and the reflective region and the first substrate, that is, the transmissive region and the reflective region are both covered with the second common electrode layer, such that the transmissive region in the upper substrate
  • the structure of the reflective regions is the same, so that it is not necessary to add a mask to the second common electrode layer in the upper substrate, thereby reducing the difficulty in manufacturing the process for fabricating the upper substrate.
  • each of the common electrodes 27 and each of the pixel electrodes 28 have the same shape, and each of them has a continuous zigzag shape composed of a plurality of sawtooth edges, and adjacent two sawtooth edges.
  • Forming a sawtooth angle; the sawtooth angle on each common electrode 27 and the angle bisector of the sawtooth angle on each pixel electrode 28 are parallel or collinear; the angle bisector collinear common electrode 27 and the sawtooth angle opening of the pixel electrode 28
  • the directions are uniform, and the angle of the sawtooth angle is 90 degrees; the adjacent common electrodes 27 and the pixel electrodes 28 have opposite polarities.
  • the common electrode 27 and the pixel electrode 28 are shown in Figs. 3 and 4 to have a sawtooth shape.
  • the common electrode 27 and the pixel electrode 28 of the embodiment of the present invention may be in the shape of a continuous plurality of saw teeth.
  • each of the common electrodes 27 and each of the pixel electrodes 28 have the same shape, they are continuous zigzag formed by a plurality of sawtooth edges.
  • the adjacent two sawtooth edges form a sawtooth angle; the sawtooth angle on each common electrode 27 and the angle bisector of the sawtooth angle on each pixel electrode 28 are parallel or collinear; the angle bisector is collinear with the common electrode 27
  • the sawtooth angle opening direction of the pixel electrode 28 is the same, and the sawtooth angle is 90 degrees; the adjacent common electrode 27 and the pixel electrode 28 have opposite polarities, and at a specific voltage, the liquid crystal molecules 241 of the transmissive region T are light.
  • the phase delay is ⁇ /2.
  • the liquid crystal molecules 242 in the liquid crystal layer 24 in the region are arranged in the direction of the electric field under the action of a vertical electric field, the phase retardation of the liquid crystal molecules 242 to the light is 0, and the ambient light is incident from the direction of the upper polarizer 21, After the light passes through the upper polarizer 21, only the polarized light that is consistent with the axial direction of the upper polarizer 21 can be transmitted, and the polarized light does not change the polarization state after passing through the vertically aligned liquid crystal layer 24, and then passes through the reflection of the reflective region R. After the reflection of the electrode 25, the polarization state of the light remains unchanged. Thereafter, the light passes through the liquid crystal layer 24 for the second time, and finally passes through the upper polarizer 21, and the liquid crystal panel is bright. State.
  • the transflective liquid crystal panel provided by the above embodiment may further include a first insulating layer 23 between the first substrate 21 and the liquid crystal layer 24 to insulate the second common electrode layer 201 from the outside.
  • the horizontal distance between the common electrode 27 in the transmissive region T and the adjacent pixel electrode 28 may be equal. That is, a plurality of common electrodes and a plurality of pixel electrodes in the transmissive region are alternately distributed at equal intervals. This causes the electric field strengths of the transmission regions T to be equal, thereby making the state of the liquid crystal molecules 241 of the region more stable.
  • the second common electrode 201 and the reflective electrode 25 in the reflective electrode layer 25 may both be planar electrodes.
  • the planar electrode has a low cost and stable performance.
  • the reflective electrode 25 may be a metal electrode in the planar electrode, and the reflective property of the metal electrode is strong, which is favorable for reflection of incident light.
  • the orientation layer has different orientation directions for different regions of the reflective region and the transmissive region.
  • one region may be first irradiated by a mask to form a first alignment direction, and then the other region may be oriented such that the orientation direction is different from the first alignment direction.
  • the alignment layer of the embodiment of the present invention is not limited to such an alignment method.
  • Embodiments of the present invention also provide a display comprising the above-described transflective liquid crystal display panel.
  • a second common electrode layer is disposed between the first insulating layer and the first substrate in the transmissive area and the reflective area, that is, the transmissive area and the reflective area are both
  • the second common electrode layer is covered, so that the transmissive area and the reflective area in the upper substrate have the same structure, so that no additional mask is needed in the production of the second common electrode layer in the upper substrate, thereby reducing the fabrication of the upper substrate. Difficulties in process manufacturing, thereby reducing the difficulty of making the above display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种半透半反式液晶显示面板及应用其的显示器,用以解决半透半反式显示面板中的上基板在工艺制作方面难度较大的问题。该显示面板在透射区(T)和反射区(R)中的液晶层(24)与第一基板(22)之间设有第二公共电极层(201);反射区(R)中的液晶分子的初始取向与下偏光片(29)的透过轴成45度夹角;透射区(T)中的液晶分子的初始取向与第一基板(22)或第二基板(202)垂直,在透射区(T)中靠近液晶层(24)的第二绝缘层(26)的表面设有多个公共电极(27)和多个像素电极(28),公共电极(27)和像素电极(28)间隔排列。

Description

半透半反式液晶显示面板及应用其的显示器 技术领域
本发明的实施例涉及半透半反式液晶显示面板及应用其的显示器。 背景技术
半透半反式液晶显示面板兼具透射模式和反射模式。 在光线较暗的环境 下, 主要靠透射模式, 也就是用该半透半反式液晶显示器自身的背光源透过 液晶面板显示图像; 在光线较亮的环境下, 例如在阳光下, 主要靠反射模式, 也就是利用液晶面板内的反光镜将外部的光线反射出去, 以此作为光源显示 图像。 因此, 半透半反式液晶显示器适用于各种光线强度的环境, 尤其具有 优秀的户外可视性。 并且, 背光源的亮度不需要很高,还具有功耗低的特点, 所以广泛地应用于车载显示器、 高端手机、 数码相机、 掌上电脑、 航空器显 示器仪表等产品。
现有的半透半反式液晶显示面板如图 1所示, 由上至下依次包括上偏光 片 11、 第一基板 12、 第一绝缘层 13、 液晶层 14、 像素电极层 15、 第二绝缘 层 16、 第二基板 17以及下偏光片 18。 上偏光片 11、 第一基板 12、 第一绝缘 13层构成了上基板 S, 像素电极层 15、 第二绝缘层 16、 第二基板 17、 下偏 光片 18构成了下基板 X。其中,上偏光片 11的透过轴与下偏光片 18的透过 轴垂直。
该液晶面板分为若干个子像素, 每个子像素分为透射区 T和反射区 R, 在透射区 T: 下基板 X中的第二绝缘层 16与第二基板 17之间还设有第一公 共电极层 19; 在反射区 R: 上基板 S中的第一绝缘层 13上还设有第二公共 电极层 101 , 并且, 下基板 X中的第二绝缘层 16上还设有反射电极层 102。 透射区 T中像素电极层 15上的像素电极和第一公共电极层 19上的公共电极 在第二基板 17上的投影相间排布, 且互相平行, 间距处处相等。
透射区 T中的液晶分子的初始取向与下偏光片 18的透过轴平行, 反射 区 R中的液晶分子的初始取向与下偏光片 18的透过轴成 45度夹角。
在制造上述半透半反式显示面板时, 由于上基板 S 中的第一绝缘层 13 上透射区 T所对应的部分不设有第二公共电极层 101 ,而第一绝缘层 13上反 射区 Τ所对应的部分设有第二公共电极层 101 , 导致上基板 S的透射区 Τ和 反射区 R结构不同,使得在生产上基板 S时必须多加一张掩膜板来制作这种 结构, 因此制作上基板 S时在工艺制造方面存在较大的难度。 发明内容
本发明的实施例提供一种半透半反式液晶显示面板及应用其的显示器, 解决了现有的半透半反式显示面板中的上基板在工艺制作方面难度较大的问 题。
本发明的一个实施例提供一种半透半反式液晶显示面板, 由上至下依次 包括上偏光片、 第一基板、 液晶层、 电极层、 第二基板和下偏光片, 其中, 所述上偏光片的透过轴与所述下偏光片的透过轴垂直,
所述液晶显示面板的每个子像素分为透射区和反射区, 所述透射区和所 述反射区的电极层的结构不同, 所述透射区的电极层包括多个公共电极和多 个像素电极, 所述反射区的电极层包括反射电极,
在所述透射区和所述反射区中, 所述液晶层与所述第一基板之间还设有 第二公共电极,
所述透射区中的液晶分子的初始取向与所述第一基板或第二基板垂直, 所述反射区中的液晶分子的初始取向与下偏光片的透过轴成 45度夹角, 所述透射区的多个公共电极和多个像素电极交替地且间隔地排列。 在一个示例中, 每个所述公共电极和每个所述像素电极的形状相同, 都 是由多条锯齿边构成的连续的锯齿形, 相邻的两条锯齿边形成一个锯齿角; 每个所述公共电极上的锯齿角和每个所述像素电极上的锯齿角的角平分线平 行或者共线; 所述角平分线共线的公共电极和像素电极的锯齿角开口方向一 致。
在一个示例中, 所述锯齿角的角度为 90度。
在一个示例中, 该液晶面板还包括第一绝缘层, 位于所述第一基板与所 述液晶层之间; 以及第二绝缘层, 位于所述电极层和所述第二基板之间。
在一个示例中, 所述透射区中所述多个公共电极和所述多个像素电极以 相等间距交替分布。 在一个示例中, 所述第二公共电极和所述反射电极层中的反射电极都是 平面电极。
在一个示例中, 所述反射电极为金属电极。
在一个示例中, 该液晶显示面板还包括彩膜层, 所述彩膜层位于第一基 板与第二公共电极之间。
在一个示例中, 所述彩膜层覆盖透射区和反射区。
本发明的另一个实施例还提供一种显示器, 包括根据本发明任一实施例 的半透半反式液晶显示面板。
本发明实施例提供的半透半反式液晶显示面板及应用其的显示器中, 在 制造上基板时, 由于在透射区和反射区的第一绝缘层与第一基板之间设有第 二公共电极层, 也就是说透射区和反射区均覆盖有第二公共电极层, 这样使 得上基板中的透射区和反射区结构相同, 从而在生产上基板中的第二公共电 极层时无需多加一张掩膜板, 因此降低了制作上基板时在工艺制造方面的难 度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中的半透半反式液晶显示面板的结构示意图;
图 2为本发明实施例提供的一种半透半反式液晶显示面板结构的截面示 意图;
图 3为图 2所示的液晶显示面板在不加电时的透射区和反射区的平面示 意图;
图 4为图 3所示的液晶显示面板在加电时的透射区和反射区的平面示意 图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种半透半反式液晶显示面板, 参见图 2和图 3。 从图 2中可以看出该显示面板由上至下依次包括上偏光片 21、 第一基板 22、 第一绝缘层 23、 液晶层 24、 电极层 203、 第二绝缘层 26、 第二基板 202、 下 偏光片 29。上偏光片 21的透过轴与下偏光片 29的透过轴垂直。按电极层 203 的不同结构, 液晶显示面板的每个子像素分为透射区 T和反射区 R, 透射区 T的电极层 203包括公共电极 27和像素电极 28, 反射区 R的电极层 203包 括反射电极 25; 在透射区 T和反射区 R中的液晶层 24与第一基板 22之间 设有第二公共电极层 201。 透射区 T中的液晶分子的初始取向与第一基板 22 或第二基板 202垂直, 反射区 R中的液晶分子的初始取向与下偏光片 29的 透过轴成 45度夹角。
从图 3中可以看出, 在透射区 T中靠近液晶层 24的第二绝缘层 26的表 面设有多个公共电极 27和多个像素电极 28 , 公共电极 27和像素电极 28交 替地间隔排列。
下面结合图 2和图 3 , 对上述半透半反式液晶显示面板的工作原理, 进 行详细地说明。 上述半透半反式液晶显示面板在不加电时, 如图 4所示, 透 射区 T的液晶分子 241垂直于第一基板 22排列, 在透射区 T中的液晶分子 241的初始取向与下偏光片 29的透过轴垂直,该液晶分子 241对光无相位延 迟, 因此不改变光的偏振方向。 光线透过上偏光片 21后射入液晶层 24, 该 光线的偏振方向不改变, 由于上偏光片 21的透过轴与下偏光片 29的透过轴 垂直, 因此该光被下偏光片 29吸收, 上述液晶面板呈现暗态。
在反射区 R中的液晶分子 242的初始取向与下偏光片 29的透过轴成 45 度夹角, 因此该液晶分子 242对光的相位延迟为 λ /4,光经过该液晶分子 242 后线偏振光变为圓偏振光,光被反射电极 25反射后变为另一种圓偏振光(左 旋变右旋, 右旋变左旋) , 光第二次经过反射区 R的液晶分子 242后, 圓偏 振光再变回线偏振光,但是, 该光的相位改变 90度, 即该光与初始状态的线 偏光成 90度角, 因此最后被上偏光 21片吸收, 上述液晶面板呈现暗态。
本发明实施例提供的半透半反式液晶显示面板中, 在制造上基板时, 由 于在透射区和反射区的液晶层与第一基板之间设有第二公共电极层 , 也就是 说透射区和反射区均覆盖有第二公共电极层, 这样使得上基板中的透射区和 反射区结构相同, 从而在生产上基板中的第二公共电极层时无需多加一张掩 膜板, 因此降低了制作上基板时在工艺制造方面的难度。
上述实施例提供的半透半反式液晶面板中,每个公共电极 27和每个像素 电极 28的形状相同,都是由多条锯齿边构成的连续的锯齿形,相邻的两条锯 齿边形成一个锯齿角; 每个公共电极 27上的锯齿角和每个像素电极 28上的 锯齿角的角平分线平行或者共线; 角平分线共线的公共电极 27 和像素电极 28的锯齿角开口方向一致, 且锯齿角的角度为 90度; 相邻的公共电极 27和 像素电极 28的极性相反。
图 3和图 4中仅显示公共电极 27和像素电极 28具有一个锯齿的形状。 然而, 本发明的实施例的公共电极 27和像素电极 28可以为连续的多个锯齿 的形状。
上述半透半反式液晶显示面板在加电时, 参见图 2和图 4, 由于每个公 共电极 27和每个像素电极 28的形状相同, 都是由多条锯齿边构成的连续的 锯齿形,相邻的两条锯齿边形成一个锯齿角;每个公共电极 27上的锯齿角和 每个像素电极 28上的锯齿角的角平分线平行或者共线;角平分线共线的公共 电极 27和像素电极 28的锯齿角开口方向一致,且锯齿角的角度为 90度;相 邻的公共电极 27和像素电极 28的极性相反, 在特定电压下, 透射区 T的液 晶分子 241对光的相位延迟为 λ /2。 光从下偏光片 29—侧射入, 该光经过下 偏光片 29后, 只有与下偏光片 29透过轴一致的偏振光透过了下偏光片 29, 透过下偏光片 29的光到达液晶层 24, 经过液晶分子 241后的光相位改变 90 度, 而上偏光片 21的透过轴与下偏光片 29的透过轴垂直, 因此该光能够透 过上偏光片 21 , 上述液晶面板呈现亮态。
在反射区 R,该区域液晶层 24中的液晶分子 242在垂直电场的作用下沿 电场方向排布, 该液晶分子 242对光的相位延迟为 0, 环境光从上偏光片 21 方向射入, 光经过上偏光片 21后, 只有与上偏光片 21透过轴方向一致的偏 振光可以透过,该偏振光经过竖直排列的液晶层 24后不改变偏振状态,再经 过反射区 R的反射电极 25反射后, 光的偏振状态依然不发生改变, 之后, 光第二次经过液晶层 24, 最后从上偏光片 21上透过, 上述液晶面板呈现亮 态。
上述实施例提供的半透半反式液晶面板中, 还可以包括第一绝缘层 23, 位于第一基板 21与液晶层 24之间, 使得第二公共电极层 201与外界绝缘。
上述实施例提供的半透半反式液晶面板中, 透射区 T 中的公共电极 27 和相邻的像素电极 28之间的水平距离可以相等。也就是说,所述透射区中多 个公共电极和多个像素电极以相等间距交替分布。 这样使得透射区 T的电场 强度处处相等, 从而使该区域的液晶分子 241状态更稳定。
上述实施例提供的半透半反式液晶面板中, 第二公共电极 201和反射电 极层 25中的反射电极 25都可以是平面电极。平面电极成本较低,性能稳定。
上述实施例提供的半透半反式液晶面板中,反射电极 25可以为平面电极 中的金属电极, 金属电极的反射性能较强, 有利于射入光的反射。
在本发明的实施例中, 由于反射区和透射区的液晶分子初始取向不同, 所以其对应的取向层的取向方向也不同。 因此, 取向层对于反射区和透射区 的不同区域的取向方向不同。 对于具有不同取向方向的取向层的制备方法, 可以通过掩模先对一个区域进行光照而形成第一取向方向, 然后再对另一个 区域进行取向, 使得该取向方向与第一取向方向不同。 然而, 本发明实施例 的取向层并不限定于这样的取向方法。
本发明实施例还提供了一种显示器, 包括上述的半透半反式液晶显示面 板。
本发明实施例提供的显示器中, 在制造上基板时, 由于在透射区和反射 区的第一绝缘层与第一基板之间设有第二公共电极层, 也就是说透射区和反 射区均覆盖有第二公共电极层, 这样使得上基板中的透射区和反射区结构相 同, 从而在生产上基板中的第二公共电极层时无需多加一张掩膜板, 因此降 低了制作上基板时在工艺制造方面的难度, 从而降低了制作上述显示器的难 度。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、一种半透半反式液晶显示面板, 由上至下依次包括上偏光片、 第一基 板、 液晶层、 电极层、 第二基板和下偏光片, 其中,
所述上偏光片的透过轴与所述下偏光片的透过轴垂直,
所述液晶显示面板的每个子像素分为透射区和反射区, 所述透射区和所 述反射区的电极层的结构不同, 所述透射区的电极层包括多个公共电极和多 个像素电极, 所述反射区的电极层包括反射电极,
在所述透射区和所述反射区中, 所述液晶层与所述第一基板之间还设有 第二公共电极,
所述透射区中的液晶分子的初始取向与所述第一基板或第二基板垂直, 所述反射区中的液晶分子的初始取向与下偏光片的透过轴成 45度夹角, 所述透射区的多个公共电极和多个像素电极交替地且间隔地排列。
2、根据权利要求 1所述的半透半反式液晶显示面板, 其中,每个所述公 共电极和每个所述像素电极的形状相同, 都是由多条锯齿边构成的连续的锯 齿形, 相邻的两条锯齿边形成一个锯齿角; 每个所述公共电极上的锯齿角和 每个所述像素电极上的锯齿角的角平分线平行或者共线; 所述角平分线共线 的公共电极和像素电极的锯齿角开口方向一致。
3、根据权利要求 2所述的半透半反式液晶显示面板, 其中, 所述锯齿角 的角度为 90度。
4、根据权利要求 1-3中任一项所述的半透半反式液晶显示面板,还包括 第一绝缘层, 位于所述第一基板与所述液晶层之间; 以及第二绝缘层, 位于 所述电极层和所述第二基板之间。
5、 根据权利要求 1-4中任一项所述的半透半反式液晶显示面板, 其中, 所述透射区中所述多个公共电极和所述多个像素电极以相等间距交替分布。
6、 根据权利要求 1-5中任一项所述的半透半反式液晶显示面板, 其中, 所述第二公共电极和所述反射电极都是平面电极。
7、根据权利要求 5所述的半透半反式液晶显示面板, 其中, 所述反射电 极为金属电极。
8、根据权利要求 1-7中任一项所述的半透半反式液晶显示面板,还包括 彩膜层, 所述彩膜层位于第一基板与第二公共电极之间。
9、根据权利要求 8所述的半透半反式液晶显示面板, 其中, 所述彩膜层 覆盖透射区和反射区。
10、 一种显示器, 包括权利要求 1-9中任一项所述的半透半反式液晶显 示面板。
PCT/CN2013/077182 2013-03-28 2013-06-13 半透半反式液晶显示面板及应用其的显示器 WO2014153850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/346,524 US9547193B2 (en) 2013-03-28 2013-06-13 Transflective type liquid crystal display panel and display using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310104955.7A CN103207474B (zh) 2013-03-28 2013-03-28 半透半反式液晶显示面板及应用其的显示器
CN201310104955.7 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014153850A1 true WO2014153850A1 (zh) 2014-10-02

Family

ID=48754745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077182 WO2014153850A1 (zh) 2013-03-28 2013-06-13 半透半反式液晶显示面板及应用其的显示器

Country Status (3)

Country Link
US (1) US9547193B2 (zh)
CN (1) CN103207474B (zh)
WO (1) WO2014153850A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223725A (zh) 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
CN106444134B (zh) * 2016-09-26 2019-08-30 京东方科技集团股份有限公司 显示面板和显示装置
CN107247357B (zh) 2017-06-06 2021-01-26 京东方科技集团股份有限公司 一种显示面板及其显示方法、显示装置
CN115004095B (zh) * 2020-12-04 2023-11-03 京东方科技集团股份有限公司 镜面切换屏、其制作方法及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466916A (zh) * 2010-11-01 2012-05-23 三星移动显示器株式会社 液晶显示装置及液晶显示装置的制造方法
CN102645796A (zh) * 2011-02-22 2012-08-22 上海天马微电子有限公司 一种液晶显示装置
CN202748579U (zh) * 2012-09-18 2013-02-20 京东方科技集团股份有限公司 一种液晶显示面板和显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689900B2 (ja) * 2001-08-22 2011-05-25 Nec液晶テクノロジー株式会社 液晶表示装置
KR100648223B1 (ko) * 2005-05-11 2006-11-24 비오이 하이디스 테크놀로지 주식회사 반투과형 프린지 필드 스위칭 모드 액정표시장치
TWI311661B (en) * 2005-08-23 2009-07-01 Au Optronics Corporatio A liquid crystal display and a method for manufacturing thereof
JP2007133084A (ja) * 2005-11-09 2007-05-31 Sharp Corp 液晶表示装置
EP1958019B1 (en) * 2005-12-05 2017-04-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8279382B2 (en) * 2006-08-02 2012-10-02 Sharp Kabushiki Kaisha Display device
TW200815859A (en) * 2006-09-19 2008-04-01 Epson Imaging Devices Corp Liquid crystal display device
CN101231397B (zh) * 2007-01-24 2011-06-01 奇美电子股份有限公司 影像显示系统
CN101393335B (zh) * 2007-09-21 2011-09-28 群康科技(深圳)有限公司 半穿透半反射液晶显示器
JP5301251B2 (ja) * 2008-11-27 2013-09-25 株式会社ジャパンディスプレイウェスト 液晶表示装置
JP5299777B2 (ja) * 2009-07-01 2013-09-25 Nltテクノロジー株式会社 半透過型液晶表示装置
CN102955304B (zh) * 2012-11-08 2015-11-25 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
CN102937762B (zh) * 2012-11-15 2015-01-07 京东方科技集团股份有限公司 一种半透半反液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466916A (zh) * 2010-11-01 2012-05-23 三星移动显示器株式会社 液晶显示装置及液晶显示装置的制造方法
CN102645796A (zh) * 2011-02-22 2012-08-22 上海天马微电子有限公司 一种液晶显示装置
CN202748579U (zh) * 2012-09-18 2013-02-20 京东方科技集团股份有限公司 一种液晶显示面板和显示装置

Also Published As

Publication number Publication date
US20150212369A1 (en) 2015-07-30
US9547193B2 (en) 2017-01-17
CN103207474A (zh) 2013-07-17
CN103207474B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
KR101299575B1 (ko) 트랜스플렉티브 액정 디스플레이와 그 제조방법, 컴퓨터
WO2017020518A1 (zh) 阵列基板、液晶显示面板及显示装置
KR101051200B1 (ko) 액정 표시 장치
US20090201449A1 (en) Display device
US9477016B2 (en) Display and tiled display
CN102981324B (zh) 一种半透半反蓝相液晶显示面板及液晶显示装置
US10451931B2 (en) Transflective display panel and transflective display device
TW200540473A (en) Liquid crystal display device and electronic apparatus
JP2014095902A (ja) 表示パネル及び表示装置
US8139185B2 (en) Display device
WO2014153885A1 (zh) 半透半反液晶显示面板以及液晶显示装置
WO2014153850A1 (zh) 半透半反式液晶显示面板及应用其的显示器
JP2019003181A (ja) 偏光型視野角制御素子、偏光型視野角制御表示モジュール及び偏光型視野角制御光源モジュール
KR20110007735A (ko) 양면 액정표시장치
WO2014190730A1 (zh) 半透半反式液晶面板、显示装置、阵列基板、彩膜基板及制作方法
US9164315B2 (en) Transflective display and manufacturing method thereof
WO2014153874A1 (zh) 半透半反液晶显示面板及液晶显示装置
JP2002169155A (ja) 液晶表示素子
JP2006317940A (ja) 表示パネルと液晶表示装置
KR101420829B1 (ko) 표시 장치
WO2017219419A1 (zh) 液晶显示装置
KR101527257B1 (ko) 반투과형 액정표시장치
CN109597238B (zh) 光学膜层和显示装置
JP2008083388A (ja) 液晶表示素子
KR100300434B1 (ko) 반사형 액정표시소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14346524

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13880500

Country of ref document: EP

Kind code of ref document: A1