WO2014148870A1 - 선박평형수 처리 시스템 - Google Patents

선박평형수 처리 시스템 Download PDF

Info

Publication number
WO2014148870A1
WO2014148870A1 PCT/KR2014/002418 KR2014002418W WO2014148870A1 WO 2014148870 A1 WO2014148870 A1 WO 2014148870A1 KR 2014002418 W KR2014002418 W KR 2014002418W WO 2014148870 A1 WO2014148870 A1 WO 2014148870A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballast water
unit
filter
electrolysis
sensor unit
Prior art date
Application number
PCT/KR2014/002418
Other languages
English (en)
French (fr)
Inventor
박규원
김성태
이해돈
박용석
이기성
Original Assignee
(주)테크로스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)테크로스 filed Critical (주)테크로스
Publication of WO2014148870A1 publication Critical patent/WO2014148870A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the present invention relates to a ballast water treatment system.
  • the vessel in operation receives ballast water from the outside to maintain the balance of the vessel.
  • the ballast water introduced into the vessel is sterilized and stored in the vessel, and when the ballast water is discharged to the outside, the neutralizing agent is added to neutralize and discharged to the outside.
  • the ballast water introduced into the vessel removes solids or microorganisms contained in the ballast water through any one of mechanical, physical, and chemical methods.
  • the mechanical method may be a method of filtering the ballast water to be treated by microbial killing treatment to the filter.
  • the filter for filtering ballast water may be a filter having an edge wire, a wire mesh, or a disk.
  • the physical method may be a method of irradiating UV light (UV, ultraviolet rays) to the ballast water to be treated by microbial death treatment and an advanced oxidation process (AOP) method of generating OH radicals.
  • UV light UV, ultraviolet rays
  • AOP advanced oxidation process
  • hypochlorous acid H 2O
  • hypochlorite ions HClO
  • a chlorine disinfectant or electrolysis to treat ballast water for microbial killing.
  • a method of adding a chemical substance such as ozone (O 3 ), chlorine dioxide (ClO 2 ), or the like may be used.
  • the physical method has the possibility of regrowth of microorganisms in the ballast water because there is no residual of microbial killing, and the chemical method requires the additional process of neutralizing residual chemicals in the ballast water.
  • the disadvantage is that there is a limit of ability.
  • the present invention is to improve the microbial killing efficiency of ballast water to achieve.
  • ballast water treatment apparatus that the microbial killing standard of ballast water meets the United States Coast Guard (USCG) standard.
  • USCG United States Coast Guard
  • Ballast water treatment system according to a feature of the present invention
  • the ballast water is introduced from the outside, and the filter and electrolysis unit for filtering and electrolyzing the ballast water, measuring the seawater characteristics of the ballast water passed through the filter and the electrolysis unit to output the seawater characteristics measurement value
  • a first sensor unit is located in connection with the first sensor unit, receives the seawater characteristic measurement value from the first sensor unit, and determines the degree of contamination of the ballast water according to the seawater characteristic measurement value to determine the electrolytic strength.
  • UV irradiation unit for killing the residual microorganisms in the ballast water and removing the residual oxide material of the ballast water by irradiating ultraviolet light to the ballast water passing through the control unit, the filter and the electrolysis unit for generating a control signal to control the And a neutralizing agent, and receiving the neutralizing agent discharge signal from the controller, passing through the filter and the electrolytic part.
  • An automatic neutralization treatment device for neutralizing the number of water and a total residual oxidant (TRO) concentration of the ballast water neutralized by the automatic neutralization device are measured.
  • a second sensor unit for transmitting the neutralizing agent discharge control signal for controlling the discharge amount of the neutralizing agent discharged from the automatic neutralization processing device according to the measurement result of the total residual oxide matter concentration received from the second sensor unit. Occurs.
  • the filter and the filter of the electrolysis unit are disk filters.
  • the filter and the electrolysis unit be provided by stacking a plurality of electrode modules having a circular plate shape.
  • the seawater characteristics measured by the sensor unit may be conductivity, temperature or total residual oxide concentration.
  • the filter and the electrolysis unit removes or kills microorganisms and solids contained in the ballast water, and adjusts the electrolysis strength according to the conductivity, temperature and residual oxide concentration values of the ballast water in the ballasting step. It effectively kills microorganisms in ballast water.
  • the UV irradiation unit further kills the remaining microorganisms in the ballast water and neutralizes the ballast water through the automatic neutralization treatment device.
  • the microbial killing efficiency of ballast water in the ballasting stage of ballast water meets USCG standards.
  • the remaining microorganisms in the ballast water is further killed in the deballasting stage of the ballast water, the microbial killing standard of the treated ballast water is more effectively in accordance with USCG standards.
  • FIG. 1 is a block diagram schematically showing the structure of a ballast water treatment system according to an embodiment of the present invention.
  • Figure 2a is an exploded perspective view showing a filter and an electrolysis unit of the ballast water treatment system according to an embodiment of the present invention.
  • Figure 2b is an exploded perspective view showing the filter and the electrolysis of the ballast water treatment system according to an embodiment of the present invention.
  • FIG. 3A is a perspective view showing a part of a filter and an electrolysis part of a ballast water treatment system according to an exemplary embodiment of the present invention.
  • Figure 3b is a cross-sectional view showing a portion of the filter and the electrolysis portion of the ballast water treatment system according to an embodiment of the present invention.
  • 3C is a perspective view showing an electrode that is part of a filter and an electrolysis unit of the ballast water treatment system according to an exemplary embodiment of the present invention.
  • 3D is a perspective view showing an electrode spacer that is part of a filter and an electrolysis unit of the ballast water treatment system according to an exemplary embodiment of the present invention.
  • FIG. 4 is a flow chart showing the operation of the ballast water treatment system according to an embodiment of the present invention.
  • ballast water treatment system according to an embodiment of the present invention will be described in detail.
  • the ballast water treatment system measures the flow rate of the ballast water flowed into the inlet 1, the inlet 1 receiving the ballast water from the outside
  • the first sensor unit for measuring the characteristics of the ballast water passing through the flow measuring unit 20, the filter and electrolysis unit 10, the filter and the electrolysis unit 10 for filtering and electrolyzing the ballast water ( 30), the control unit 100 for controlling the filter and electrolysis unit 10, and the automatic neutralization processing device 40 by monitoring the result of receiving the ballast water measurement results from the first sensor unit 30, Ballast tank 50 for storing the ballast water passed through the first sensor unit 30, UV irradiation unit 60, ballast stored in the ballast tank 50 and discharged to the ballast water discharged to the outside Automatic neutralizer is added to the ballast water stored in the tank 50 and discharged to the outside
  • Ballast water treatment system receives seawater (hereinafter referred to as ballast water) from the outside of the vessel. At this time, the external ballast water flows into the ballast water treatment system through an inlet (sea inlet, sea chest) 1 and piping.
  • ballast water seawater
  • inlet sea inlet, sea chest
  • the flow rate measuring unit 20 measures the flow rate of ballast water introduced through the inlet 2, and transmits the measured flow rate value to the control unit 100.
  • the filter and electrolysis unit 10 sterilizes the ballast water introduced from the outside through mechanical and chemical methods.
  • Electrolysis unit 12 including an inlet and outlet (hereinafter referred to as 'inlet / outlet') 11, a plurality of electrodes 121 for electrolyzing the incoming ballast water, and electricity
  • the cover 13 is positioned to protect the disassembly 12.
  • the inlet / outlet 11 of the filter and the electrolysis unit 10 is filtered at the inlet 112 and the filter and the electrolysis unit 10, which are passages for receiving ballast water from the outside.
  • Outlet 111 for discharging ballast water treated by filtering and electrolysis to the outside is provided.
  • the cover 13 has a structure fixedly connected to one end of the inlet / outlet 11. At this time, when the electrolytic unit cover 13 and the inlet / outlet 11 is fixedly connected, the filter element is located inside the cover 13, the electrolytic unit 12 is located inside the filter element.
  • the filter and electrolysis unit 10 is fixed plate 152, filter pressing cover 132
  • the filter housing 131 located inside the filter pressing cover 132, the electrode module 121, and the electrode module housing 125 and the electrode module housing 125 are positioned to surround the outside of the plurality of electrode modules 121.
  • Filter element 130 located outside of the) the spacer 122 located between the plurality of electrode modules 121, the filter pressing spring 151 wound around the support 150, the flow path located in the support 150
  • An induction part 114 and a rotating derivative 113 located inside the inlet / outlet 11 are provided.
  • the electrolysis unit 12 including the plurality of electrode modules 121 will be described in detail with reference to FIGS. 3A to 3D.
  • the electrode module housing 125 is positioned to surround the outside of the plurality of electrode modules 121, wherein one end of the electrode module housing 125 is an electrode bus bar. 126 is provided.
  • the electrode module housing 125 also serves as a support for supporting the filter element 130.
  • the electrode module housing 125 has a backwash pipe 160 for backwashing the filter element 130.
  • the backwash water pipe 160 is formed to have a plurality of backwash water discharge holes 161.
  • Two electrode busbars 126 may be disposed in the electrode module housing 125 and may be connected to an external rectifier (not shown) to receive current.
  • the electrode busbar 126 transfers the current received from the rectifier (not shown) to each electrode module 121.
  • two electrode busbars 126 are provided, one electrode busbar 126 receives a positive current, and the other electrode busbar 126. ) Is recommended to receive a negative current.
  • the plurality of electrode modules 121 positioned in the electrode module housing 125 may be stacked along the length direction of the support 150, and at this time, an electrode spacer may be disposed between the plurality of electrode modules 121. 122) may be located.
  • the plurality of electrode modules 121 located inside the electrode module housing 125 and receiving current from the electrode busbars 126 flow into the inlet / outlet 11 and flow into the electrolysis unit 12.
  • the water is electrolyzed.
  • the electrode 121 has a disk shape having a third diameter (121c), so as to be drilled by the second diameter (121a) in the center of the disk. Is formed.
  • the electrode module 121 includes two first grooves 121b formed in a semicircular shape along the circumference of the disc.
  • the two first grooves 121b are positions through which the backwash pipe 160 of the electrode module housing 125 passes.
  • the backwash pipe 160 is positioned in the first groove 121b of the electrode module 121.
  • the electrode module 121 is coupled to the inside of the module housing 125.
  • the electrode module 121 further includes a second groove 121d that is a rectangular groove and a third groove 121e positioned to face the second groove 121d.
  • the third groove 121e has a thin rectangular drilled portion in a direction perpendicular to the circumference of the disc, and the third groove 121e further includes a circular drilled portion between the two rectangular drilled portions. At this time, the circular drilled portion is positioned so as not to contact the circumference of the electrode module 121.
  • the electrode busbar 126 may have the second groove 121d and the third groove. It is located to penetrate the groove 121e. Accordingly, the electrode module 121 receives a current from the electrode busbar 126.
  • the electrode gap spacer 122 may be located between the electrode module 121 and the electrode module 121, or may be located between the top (or bottom) of the electrode module housing 125 and the adjacent electrode module 121. .
  • the electrode gap spacer 122 positioned between the electrode modules 121 is a spacer for inducing rotation of water, and has a circular ring having a first diameter 122a and is connected to the circumference of the ring along a predetermined gap. And provided with wings 122b.
  • the distance 122c of the one wing 122b and the other wing 122b positioned on the opposite side, that is, the length 122c of the electrode gap spacer 122 is determined by the length of the electrode 121 shown in FIG. 3D. It has a length shorter than the length (third diameter) 121c.
  • the first diameter 122a of the electrode gap spacer 122 is formed longer than the length of the second diameter 121a formed on the electrode 121 illustrated in FIG. 3D.
  • the electrode spacers 122 include the vanes 122b, the electrode spacers 122 are rotated by ballast water that is filtered by the filter element 130 and moves to the electrolysis unit 12. . Accordingly, as the ballast water around the electrode module 121 is further rotated, the electrolysis treatment efficiency is increased in the electrode module 121, and the residual oxide material generation efficiency of the ballast water is increased.
  • the ballast water electrolytically processed in the electrode module 121 is rotated to remove the scale (impurity, such as metal oxide, etc.) that may accumulate on the filter element 130.
  • the scale impurity, such as metal oxide, etc.
  • the electrode gap spacer 122 may be formed of an insulating material such as plastic.
  • the filter element 130 is located outside the electrode module housing 125.
  • the filter element 130 may be a disk filter having a disk form. When a plurality of disk-shaped filter elements 130 are provided, the plurality of filter elements 130 may be stacked and positioned outside the electrode module housing 125.
  • the filter element 130 When the plurality of filter elements 130 are stacked and positioned, the filter element 130 is fixed at a predetermined pressure by the pressing spring 151, wherein the disk-shaped filter element 130 is in the range of 50 ⁇ m ⁇ 100 ⁇ m It may be formed to have a groove.
  • the filter element 130 primarily filters the ballast water introduced through the inlet / outlet 11 and filters solids or microorganisms in the range of 50 ⁇ m to 100 ⁇ m included in the ballast water.
  • the filter element 130 including the disk filter performs a back flushing process using the backwash pipe 160, so that clogging of dust in the wire of the filter occurs permanently. There is no effect.
  • the rotating derivative 113 positioned in the inflow / outflow port 11 is formed to have a ring shape and rotates in one direction.
  • the rotating derivative 113 has a portion protruding at a predetermined interval in one cross section. At this time, due to the protruding portion formed in the rotating derivative 113, when the rotating derivative 113 rotates in one direction, the ballast water around the rotating derivative 113 rotates in one direction.
  • the filtering efficiency of the ballast water in the filter element 130 is The effect is to get better.
  • the rotary derivative 113 may rotate by receiving power from an external motor unit (not shown).
  • ballast water positioned around the rotary derivative 113 and rotating in one direction according to the rotation of the rotary derivative 113 may be ballast water introduced from the outside through the inlet 112.
  • the flow path guide part 114 is positioned adjacent to the rotating derivative 113 and is a louver formed of a rubber material. More specifically, the flow path guide part 114 has a shape like a cubicle (suction or sucker), in which the convex portion of the flow path guide part 114 faces the opposite direction of the inflow / outlet port 11 and the flow path guide part 114. The concave portion of) is positioned to face the inlet / outlet 11.
  • the ballast water flowing down from the filter element 130 toward the inlet / outlet 11 is completed by the filtering and electrolysis treatment. It may flow through the inlet / outlet 11 through.
  • the flow path guide part 114 forms a plurality of grooves, and the ballast water filtered and electrolyzed through the groove of the flow path guide part 114 flows to the outlet 111 of the inlet / outlet 11. .
  • the flow path guide part 114 may be positioned to face the electrode module 121 or the opposite direction.
  • the flow path induction unit 114 may be formed as shown in FIG. 2B. 121) to face in the opposite direction.
  • the bin formed in the flow path guide part 114 is positioned to be deflected as shown in FIG. 2B. Water flows into the inlet / outlet 11 through the space.
  • the flow path guide portion 114 when the water flowing in the filter and the electrolysis unit 10 flows in the direction of the filter element 130 from the inlet / outlet 11 for cleaning the filter element 130, the flow path guide portion 114 ), The empty spaces formed in () are attached to each other, and the flow path guide part 114 is in an unfolded state. As a result, a flow path through which water located in the filter and the electrolysis unit 10 flows to the inlet / outlet 11 is blocked. Therefore, the water can move only to the backwash pipe.
  • the filter crimping spring 151 positioned adjacent to the flow path guide part 114 is compressed, and the backwash water is washed out due to the pressure difference caused by the driving of the filter crimping spring 151. It is drawn into the backwash pipe 160.
  • the backwash water introduced into the backwash pipe 160 is discharged toward the filter element 130 from the electrode module housing 125 along the backwash water discharge hole 161.
  • foreign substances such as dust stuck in the filter element 130 are washed.
  • the backwash water discharged from the backwash water pipe 160 to clean the filter element 130 falls in the direction of the flow path guide part 114, and the backwash water flows along the groove formed in the flow path guide part 114 to discharge the outlet 111. Through) is discharged to the outside of the filter and electrolysis unit 10.
  • the filter and the electrolysis unit 10 have the above configuration, the ballast water introduced from the outside is primarily filtered by the filter element 130 and is electrolyzed from the plurality of electrode modules 121. Therefore, the filter and the electrolysis unit 10 has an effect that can effectively remove the solids or microorganisms contained in the ballast water than when using only one of the filter or the electrolysis module.
  • ballast water discharged from the filter and the electrolysis unit 10 as the filter and the electrolysis unit 10 performs electrolysis together with the filter, the ballast water sterilization standard according to the USCG (US Marine Guard) standard Can match.
  • the first sensor unit 30 is located in connection with the filter and the electrolysis unit 10, filter and electrolysis unit In (10), the ballast water filtered and electrolyzed is received, and the conductivity, temperature, and total residual oxidant (TRO) concentration of the ballast water received are measured.
  • TRO total residual oxidant
  • the first sensor unit 30 may bypass and deliver only a part of the ballast water discharged from the filter and the electrolysis unit 10.
  • the first sensor unit 30 is connected to the control unit 100 and transmits the conductivity, temperature, and TRO concentration of ballast water measured by the first sensor unit 30 to the control unit 100.
  • the ballast pipe may be a pipe connecting the filter and the electrolysis unit 10 and the ballast tank 50 or a pipe connecting the filter and the electrolysis unit 10 and the first sensor unit 30.
  • control unit 100 for generating such a control signal will be described in more detail later.
  • the ballast tank 50 is positioned in connection with the first sensor unit 30. In this case, when the first sensor unit 30 is bypassed from the filter and the electrolysis unit 10, the ballast tank 50 is positioned in connection with the filter and the electrolysis unit 10.
  • the ballast tank 50 is a tank for receiving and storing ballast water in which ballasting is completed, which is a process of killing microorganisms from filtering and electrolysis and neutralizing oxides generated during electrolysis.
  • the discharge port 2 is configured to discharge the ballast water stored in the ballast tank 50 to the outside of the ship, and in order to discharge the ballast water stored in the ballast tank 50 to the outside of the ship. It is necessary to neutralize the process.
  • the automatic neutralization apparatus 40 includes a neutralizing agent for neutralizing the ballast water stored in the ballast tank 50, and according to the neutralizing agent input control signal received from the controller 100, the automatic neutralization processing apparatus ( 40) Put the internal neutralizer into the deballasting pipe.
  • the deballasting pipe may be a pipe connecting the ballast tank 50 and the discharge port 2 or a pipe connecting the ballast tank 50 and the second sensor unit 31.
  • UV irradiation unit 60 may be located in connection with the control unit 100 and connected to the deballasting pipe leading from the ballast tank 50 to the outlet 2.
  • the UV irradiator 60 irradiates the ultra-violet ray (UV) light to the ballast water treated with microbial killing stored in the ballast tank 50.
  • the ultraviolet rays irradiated by the UV irradiation unit 60 kills the microorganisms alive or regrowth in the ballast water.
  • the residual oxide material of the ballast water or oxygen (O 2 or residual oxide material) generated in the electrolysis process is reacted with the ultraviolet light by the ultraviolet rays irradiated by the UV irradiation unit 60, and thus the ballast water is irradiated by the ultraviolet light.
  • the remaining oxide of is photolyzed.
  • the microbial killing or residual oxide removal treatment of ballast water using ultraviolet rays irradiated by the UV irradiation unit 60 is a treatment method that does not generate chemical substances and does not change the natural seawater properties, and can be used without IMO approval. There is an advantage.
  • the UV irradiation unit 60 can effectively kill the microorganisms of the deballasting vessel ballast water, and since the residual oxide material is photolyzed, it is possible to minimize the chemicals such as neutralizers required for the neutralization treatment of the deballasting vessel ballast water. It works. This allows the microbial killing efficiency of ballast water to be more consistent with USCG.
  • the second sensor unit 31 is configured to measure the residual oxide (TRO) concentration of the neutralized deballasted ballast water, and the residual ballast water flowing from the ballast tank 50 to the discharge port 2. The oxide concentration is measured and the residual oxide concentration (TRO) of the deballasted ballast water is measured and transmitted to the controller 100.
  • TRO residual oxide
  • the control unit 100 includes a flow rate measuring unit 20, a filter and an electrolysis unit 10, a first sensor unit 30, a second sensor unit 31, a UV irradiation unit 60, and an automatic neutralization processing device. It is located in connection with 40.
  • the control unit 100 receives a measurement value and the like from the flow rate measuring unit 20, the first sensor unit 30, and the second sensor unit 31, generates a control signal according to the measured value, and filters the generated control signal. And it is delivered to any one of the electrolysis unit 10, UV irradiation unit 60 or automatic neutralization treatment device (40).
  • control unit 100 controls the electrolytic strength of the filter and the electrolysis unit 10 according to the flow rate of ballast water received from the flow measuring unit 20. do.
  • the control unit 100 when there is a large flow rate value of ballast water received from the flow rate measuring unit 20, the control unit 100 generates a control signal for controlling to increase the electrolytic strength of the filter and electrolysis unit 10 and On the other hand, when the flow rate of ballast water received from the flow measuring unit 20 is small, the control unit 100 generates a control signal for controlling to lower the electrolytic strength of the filter and electrolysis unit 10.
  • the controller 100 generates a control signal for controlling the electrolytic strength of the filter and the electrolysis unit 10 according to the characteristic measurement result of the ballast water received from the first sensor unit 30.
  • the controller 100 applies a current to reduce the electrolytic strength of the filter and the electrolysis unit 10.
  • the control signal is generated to control the value to be lowered, while the conductivity of the ballast water measured by the first sensor unit 30 has a value lower than the reference value, the control unit 100 filters and the electrolysis unit 10. In order to increase the electrolytic strength of the control signal to control to increase the current applied value is generated.
  • control unit 100 controls the UV irradiation amount of the UV irradiation unit 60 in accordance with the residual TRO (residual oxide material) concentration value of the deballasting vessel ballast water received from the second sensor unit 31.
  • the control unit 100 may irradiate the ballast water with a lot of ultraviolet rays. Is generated, and the control unit 100 generates ultraviolet light to the ballast water when the residual oxide material concentration of the deballasted ballast water measured by the second sensor unit 31 has a low value. Generate a control signal to control the UV irradiator 60 to irradiate less.
  • the control unit 100 controls the amount of neutralizer input of the automatic neutralization treatment device 40 according to the residual TRO (residual oxide quality) concentration value of the deballasting vessel ballast water received from the second sensor unit 31.
  • the controller 100 automatically adds a neutralizer to the ballast water.
  • the controller 100 controls the ballast water. The control signal for controlling the automatic neutralization processing device 40 so that a small amount of neutralizing agent is added thereto is generated.
  • the flow rate measuring unit 20 measures the flow rate of ballast water introduced into the ballast water treatment system from the outside (S201).
  • the flow rate measuring unit 20 bypasses only a portion of the ballast water introduced from the outside to measure the flow rate
  • the flow rate measuring unit 20 transmits the measured flow rate to the filter and the electrolysis unit 10 (S212).
  • the flow rate measuring unit 20 receives the entire ballast water introduced from the outside and measures the flow rate
  • the flow rate measuring unit 20 filters and electrolyzes the ballast water introduced into the flow rate measuring unit 20. Transfer to the unit 10 (S211), and at the same time delivers the flow rate to the filter and the electrolysis unit 10 (S212).
  • the filter and the electrolysis unit 10 receives the ballast water from the outside (or flow rate measuring unit 20), and filters the introduced ballast water (S101). At this time, the solid matter and microorganisms in the ballast water is filtered using the filter element 130 provided in the filter and the electrolysis unit 10, and the dust caught on the filter element 130 through the backwash pipe 160. Clean foreign substances such as
  • the filter and the electrolysis unit 10 electrolyze the ballast water primarily filtered by the filter element 130 using the plurality of electrode modules 121 (S102), and the ballast water that has been electrolyzed. It is delivered to the first sensor unit 30 along the pipe (S111).
  • the ballast water filtered and electrolyzed by the filter and the electrolysis unit 10 is transferred to the ballast tank 50 along the ballast pipe and stored (S112).
  • the first sensor unit 30 measures the conductivity, temperature, and TRO (residual oxide content) concentration of ballast water discharged from the filter and the electrolysis unit 10 (S301), and controls the seawater characteristic measurement value. To be delivered (S3011).
  • TRO residual oxide content
  • the ballast water in which the ballast water characteristic is measured by the first sensor unit 30 is transferred to the ballast tank 50 and stored in the ballast tank 50 (S3012).
  • the controller 100 determines the pollution degree of the ballast water according to the characteristic measurement value of the ballast water received from the first sensor unit 30 (S1001).
  • the controller 100 determines whether the ballast water treatment process is a deballasting step (S1002). At this time, when the ballast water treatment process is not the deballasting step, the control unit 100 does not perform a separate step. On the other hand, if the ballast water treatment process is determined to be the de-ballasting step, the control unit 100 transmits a control signal for controlling the automatic neutralization apparatus 40 to discharge the neutralizing agent to the automatic neutralization apparatus 40 ( S1012).
  • the ballast tank 50 transmits the deballasted ballast water to the automatic neutralization treatment device 40 (S501).
  • the automatic neutralization processing device 40 neutralizes the deballasting vessel ballast water by discharging the neutralizer to the deballasting vessel ballast water discharged from the ballast tank 50 (S401). At this time, the neutralizing agent discharged from the automatic neutralization processing device 40 (S401) is not directly introduced into the ballast tank 50, the deballasted piping positioned to reach the ballast water outlet 2 from the ballast tank 50. It is good to put in.
  • the UV irradiation unit 60 irradiates ultraviolet rays to the deballasted ballast water received from the ballast tank 50 (S501) (S601).
  • the deballasted ballast water in which microorganisms are killed by UV irradiation from the UV irradiation unit 60 is transferred to the automatic neutralization treatment device 40 (S611).
  • the second sensor unit 31 measures the TRO concentration of the deballasted ballast water neutralized by the automatic neutralization processing device 40 (S311), and transmits the measured TRO concentration to the controller 100. (S3111).
  • the control unit 100 receiving the TRO concentration value measured by the second sensor unit 31 determines the measurement result (S1003), and a control signal for controlling the UV irradiation intensity of the UV irradiation unit 60 and an automatic neutralization processing device ( A control signal for controlling the amount of neutralizing agent discharged from 40 is generated (S1013).
  • the ballast water can be efficiently ballasted and deballasted, and the sterilization criteria of the treated ballast water meet USCG standards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

본 발명은 선박평형수 처리 시스템에 관한 것이다. 이러한 선박평형수 처리시스템은 외부로부터 선박평형수를 유입 받고, 선박평형수를 필터링하고 전기분해하는 필터 및 전기분해부, 필터 및 전기분해부를 통과한 선박평형수의 해수 특성을 측정하는 제1센서부, 제1 센서부와 연결되어 위치하고 제1 센서부로부터 해수 특성 측정값을 전달받으며, 해수 특성 측정값에 따라 선박평형수의 오염 정도를 판단하여 전기분해 강도를 판단하는 제어신호를 발생하는 제어부,, 필터 및 전기분해부를 통과한 선박평형수에 자외선을 조사하여 잔류 미생물을 사멸하고 잔류 산화물질을 제거하는 UV 조사부,중화제를 구비하고, 제어부로부터 중화제 토출신호를 전달받아 필터 및 전기분해부를 통과한 선박평형수를 중화하는 자동 중화 처리장치, 그리고 자동 중화 처리장치에서 중화 처리된 선박평형수의 TRO 농도를 측정하고, 측정결과를 제어부로 전달하는 제2 센서부를 포함한다. 이로 인해, 선박평형수의 밸러스팅 단계에서 선박평형수의 살균 효율이 USCG 기준을 만족하게 된다. 또한, 선박평형수의 디밸러스팅 단계에서 선박평형수의 중화 효율이 향상되는 효과가 있다.

Description

선박평형수 처리 시스템
본 발명은 선박평형수 처리 시스템에 관한 것이다.
운행 중인 선박은, 외부로부터 선박평형수(ballast water)를 유입 받아 선박의 균형을 유지한다. 이와 같이, 선박에 유입된 선박평형수는 살균 처리되어 선박에 저장되고, 선박평형수를 외부로 배출할 때는 중화제를 투입하여 중화 처리한 후 외부로 배출한다.
선박에 유입된 선박평형수는 기계적, 물리적, 또는 화학적 방법 중 어느 하나의 방법을 통해, 선박평형수에 포함되어 있는 고형물이나 미생물 등을 제거한다. 이 때, 기계적 방법으로는 미생물 사멸 처리 대상 선박평형수를 필터에 거르는 방법일 수 있다.
선박평형수를 거르는 필터로는 에지 와이어(edged wire), 메시 형상의 와이어(wire mesh), 또는 디스크(disk) 형태를 갖는 필터일 수 있다.
그리고, 물리적 방법으로는 미생물 사멸 처리 대상 선박평형수에 자외선(UV, ultraviolet rays)를 조사하는 방법과 OH 라디칼(radical)을 발생시키는 AOP(advanced oxidation process) 방법일 수 있다.
또한, 화학적 방법으로는 염소계 살균제 또는 전기분해를 이용하여 하이포아염소산(Hypochlorite, HClO), 하이포아염소산 이온(Hypochlorite ion, OCl-)을 생성하여 미생물 사멸 처리 대상 선박평형수를 처리하는 방법이 있다.
화학적 방법의 또 다른 예로서, 오존(O3), 이산화염소(ClO2)와 같은 화학물질을 첨가하는 방법 등을 사용할 수 있다.
그러나, 위와 같은 방법을 이용한 선박평형수의 살균 처리방법들 중 기계적방법은 필터에 끼인 찌꺼기의 세척이 어렵다는 단점과, 이로 인해 에지 와이어 필터 또는 메시 형상의 와이어 필터와 같이 스크린 필터를 사용하는 경우, 고형물에 의해 클로깅(clogging) 현상이 발생하는 단점이 있다.
그리고, 물리적 방법은 미생물 사멸의 잔류성이 없어 선박평형수 내의 미생물이 재성장 할 가능성이 있다는 단점과, 화학적 방법은 선박평형수 내의 잔류 화학물질을 중화시켜야 하는 추가 공정이 필요하다는 단점과 같이 각각 미생물 사멸 능력의 한계가 있다는 단점이 있다.
본 발명이 이루고자 하는 선박평형수의 미생물 사멸 효율을 향상시키기 위한 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는 선박평형수의 미생물 사멸 기준이 USCG(United States Coast Guard) 기준에 부합하는 선박평형수 처리장치를 제공하기 위한 것이다.
본 발명의 한 특징에 따른 선박평형수 처리 시스템은 외부로부터 선박평형수를 유입 받고, 상기 선박평형수를 필터링하고 전기분해하는 필터 및 전기분해부, 상기 필터 및 전기분해부를 통과한 상기 선박평형수의 해수 특성을 측정하여 해수 특성 측정값을 출력하는 제1 센서부, 상기 제1 센서부와 연결되어 위치하고, 상기 제1 센서부로부터 상기 해수 특성 측정값을 전달받으며, 상기 해수 특성 측정값에 따라 상기 선박평형수의 오염 정도를 판단하여 전기분해 강도를 제어하는 제어신호를 발생하는 제어부, 상기 필터 및 전기분해부를 통과한 상기 선박평형수에 자외선을 조사함으로서 상기 선박평형수의 잔류 미생물을 사멸하고 상기 선박평형수의 잔류 산화물질을 제거하는 UV 조사부, 중화제를 구비하고, 상기 제어부로부터 중화제 토출신호를 전달받아 상기 필터 및 전기분해부를 통과한 상기 선박평형수를 중화하는 자동 중화 처리장치, 그리고 상기 자동 중화 처리장치에서 중화 처리된 선박평형수의 총 잔류 산화물질(total residual oxidant, TRO) 농도를 측정하고, 상기 총 잔류 산화물질 농도 측정결과를 상기 제어부로 전달하는 제2 센서부를 포함하고, 상기 제어부는 상기 제2 센서부로부터 전달받은 상기 총 잔류 산화물질 농도 측정결과에 따라 상기 자동 중화처리장치에서 토출되는 상기 중화제 토출량을 제어하는 상기 중화제 토출 제어신호를 발생한다.
상기 필터 및 전기분해부의 상기 필터는 디스크 필터(disk filter)인 것이 좋다.
상기 필터 및 전기분해부는, 원 형태의 판 형상을 갖는 복수개의 전극 모듈을 적층하여 구비하는 것이 좋다.
상기 센서부에서 측정하는 상기 해수 특성은, 전도도, 온도 또는 총 잔류 산화물질 농도인 것이 좋다.
이러한 특징에 따르면, 필터 및 전기분해부가 선박평형수에 포함된 미생물 및 고형물을 제거 또는 사멸 처리하고, 밸러스팅 단계에서 선박평형수의 전도도, 온도 및 잔류산화물질농도 값에 따라 전기분해 강도를 조절하여 효율적으로 선박평형수의 미생물을 사멸 처리한다.
그리고, 디밸러스팅 단계에서 UV 조사부는 선박평형수의 잔류 미생물을 추가적으로 사멸 처리하고, 자동 중화 처리장치를 통해 선박평형수를 중화시킨다.
이로 인해, 선박평형수의 밸러스팅 단계에서 선박평형수의 미생물 사멸 효율이 USCG 기준을 만족하게 된다. 또한, 선박평형수의 디밸러스팅 단계에서 선박평형수의 잔류 미생물을 추가 사멸을 실시하므로 처리된 선박평형수의 미생물 사멸 기준이 USCG 기준에 더욱 부합하게 되는 효과가 있다.
도 1은 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 구조를 개략적으로 나타낸 블록도이다.
도 2a는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부를 나타낸 분해사시도이다.
도 2b는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부를 나타낸 분해사시도이다.
도 3a는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부의 일부를 나타낸 사시도이다.
도 3b는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부의 일부를 나타낸 단면도이다.
도 3c는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부의 일부인 전극을 나타낸 사시도이다.
도 3d는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 필터 및 전기분해부의 일부인 전극 스페이서를 나타낸 사시도이다.
도 4는 본 발명의 한 실시예에 따른 선박평형수 처리 시스템의 동작을 나타낸 흐름도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 선박평형수처리 시스템에 대하여 설명한다.
먼저, 도 1을 참고로 하여, 본 발명의 한 실시예에 따른 선박평형수 처리 시스템에 대하여 상세하게 설명한다.
도 1을 참고로 하면, 본 발명의 한 실시예에 따른 선박평형수 처리 시스템은 외부로부터 선박평형수를 유입받는 유입부(1), 유입부(1)에 유입된 선박평형수의 유량을 측정하는 유량측정부(20), 선박평형수를 필터링하고 전기분해하는 필터 및 전기분해부(10), 필터 및 전기분해부(10)를 통과한 선박평형수의 특징을 측정하는 제1 센서부(30), 제1 센서부(30)로부터 선박평형수 측정 결과를 전달받고 전달받은 결과를 모니터링하여 필터 및 전기분해부(10), 및 자동 중화 처리 장치(40)를 제어하는 제어부(100), 제1 센서부(30) 를 통과한 선박평형수를 저장하는 밸러스트 탱크(50), 밸러스트 탱크(50)에 저장되었다가 외부로 배출되는 선박평형수에 UV를 조사하는 UV 조사부(60), 밸러스트 탱크(50)에 저장되었다가 외부로 배출되는 선박평형수에 중화제를 투입하는 자동 중화 처리 장치(40), 자동 중화 처리 장치(40)에 의해 중화처리된 선박평형수의 잔류 산화물질 농도를 측정하는 제2 센서부(31), 그리고 선박평형수를 외부로 배출하는 배출구(2)를 구비한다.
본 발명의 한 실시예에 따른 선박평형수 처리 시스템은 선박 외부로부터 해수(이하, 선박평형수라 함)를 유입 받는다. 이 때, 유입구(해수 유입구, sea chest)(1) 및 배관을 통해 외부의 선박평형수가 선박평형수 처리 시스템에 유입된다.
그리고, 유량측정부(20)는 유입구(2)를 통해 유입된 선박평형수의 유량을 측정하고, 측정된 유량값을 제어부(100)에 전달한다.
필터 및 전기분해부(10)는 기계적 방법 및 화학적 방법을 통해 외부로부터 유입된 선박평형수를 살균한다.
도 2a 및 도 2b와 도 3a 내지 도3d를 참고로 하여, 본 발명의 한 실시예에 따른 필터 및 전기분해부(10)를 더욱 자세하게 설명하면, 필터 및 전기분해부(10)는 선박평형수를 유입받는 유입 및 유출구(이하 '유입/유출구'라 명기함)(11)와, 유입된 선박평형수를 전기분해 처리하는 복수의 전극(121)을 포함하는 전기분해부(12), 그리고 전기분해부(12)를 보호하도록 위치하는 커버(13)를 구비한다.
도 2a를 참고로 하면, 필터 및 전기분해부(10)의 유입/유출구(11)는 외부로부터 선박평형수를 유입받기 위한 통로인 유입구(112)와 필터 및 전기분해부(10)에서 필터링(filtering) 및 전기분해 처리된 선박평형수를 외부로 배출하기 위한 유출구(111)를 구비한다.
그리고, 커버(13)는 유입/유출구(11)의 한 단부와 고정 연결되는 구조를 갖는다. 이 때, 전기분해부 커버(13)와 유입/유출구(11)가 고정 연결 되는 경우, 커버(13) 내부에는 필터 엘리먼트가 위치하고, 필터 엘리먼트 내부에 전기분해부(12)가 위치하게 된다.
도 2b를 참고로 하여 필터 및 전기분해부(10)의 커버(13) 내부에 위치하는 구성들을 상세하게 설명하면, 필터 및 전기분해부(10)는 고정판(152), 필터 압착 커버(132), 필터 압착 커버(132) 내부에 위치하는 필터 하우징(131), 복수개의 전극 모듈(121), 복수개의 전극 모듈(121) 외부를 감싸도록 위치하는 전극 모듈 하우징(125), 전극 모듈 하우징(125)의 외부에 위치하는 필터 엘리먼트(130), 복수개의 전극 모듈(121) 사이에 위치하는 스페이서(122), 지지대(150)에 감겨있는 필터 압착 스프링(151), 지지대(150)에 위치하는 유로 유도부(114), 그리고 유입/유출구(11) 내부에 위치하는 회전 유도체(113)을 구비한다.
먼저, 복수개의 전극 모듈(121)을 포함하는 전기분해부(12)를 도 3a 내지 도 3d를 참고로 하여 자세하게 설명한다.
도 3a 및 도 3b를 참고로 하면, 전극 모듈 하우징(125)은 복수개의 전극 모듈(121) 외부를 감싸도록 위치하고 있고, 이때, 전극 모듈 하우징(125)의 한 단부는 전극 부스바(bus bar)(126)를 구비한다.
또한, 전극 모듈 하우징(125)은 필터 엘리먼트(130)를 지지하기 위한 서포트(support) 역할도 수행한다.
그리고, 전극 모듈 하우징(125)은 필터 엘리먼트(130)의 역세척을 위한 역세수 파이프(160)를 구비한다. 역세수 파이프(160)는 복수개의 역세수 배출공(161)을 갖도록 형성된다.
전극 부스바(126)는 전극 모듈 하우징(125)에 두 개 위치하고, 외부의 정류기(미도시)와 연결되어 전류를 전달받을 수 있다. 이러한 전극 부스바(126)는 정류기(미도시)로부터 전달받은 전류를 각 전극 모듈(121)에 전달한다.
도 3a 및 도 3b에 도시된 것과 같이, 전극 부스바(126)는 두 개 구비되는데, 하나의 전극 부스바(126)는 양(+)의 전류를 전달받고, 다른 하나의 전극 부스바(126)는 음(-)의 전류를 전달받는 것이 좋다.
그리고, 전극 모듈 하우징(125) 내부에 위치하는 복수개의 전극 모듈(121)은 지지대(150)의 길이 방향을 따라 적층되어 위치하고, 이때 복수의 전극 모듈(121) 사이에 전극 간격 스페이서(spacer)(122)가 위치할 수 있다.
이와 같이, 전극 모듈 하우징(125) 내부에 위치하고 전극 부스바(126)로부터전류를 전달받는 복수개의 전극 모듈(121)은 유입/유출구(11)에 유입되어 전기분해부(12)로 흐르는 선박평형수를 전기분해 처리한다.
이러한 전극 모듈(121)을 도 3c를 참고로 하여 더욱 자세하게 설명하면, 전극(121)은 제3 지름(121c)을 갖는 원판 형상을 갖고 있고, 원판의 가운데에 제2 지름(121a)만큼 뚫려 있도록 형성된다.
그리고, 전극 모듈(121)은 원판의 둘레를 따라 반원 형상으로 뚫려 있는 제1 홈(121b)을 두 개 구비한다. 두 개의 제1 홈(121b)은 전극 모듈 하우징(125)의 역세수 파이프(160)가 지나가는 자리이다. 이로 인해, 전극 모듈 하우징(125) 내부에 복수개의 전극 모듈(121)이 적층하여 위치할 때, 전극 모듈(121)의 제1 홈(121b)에 역세수 파이프(160)가 위치하게 되므로, 전극 모듈 하우징(125) 내부에 전극 모듈(121)이 결합되게 된다.
또한, 전극 모듈(121)은 사각 형상의 홈인 제2 홈(121d)과, 제2 홈(121d)과 마주보도록 위치하는 제3 홈(121e)을 더 구비한다.
제3 홈(121e)은 원판의 둘레에 수직하는 방향으로 얇은 사각 형상의 뚫린 부분을 구비하고, 제3홈(121e)은 두 개의 사각 형상의 뚫린 부분의 사이에 원 형상의 뚫린 부분을 더 포함하며, 이 때, 원 형상의 뚫린 부분은 전극 모듈(121)의 둘레에 접하지 않도록 위치한다.
이러한 제2 홈(121d) 및 제3홈(121e)을 갖는 전극 모듈(121)이 전극 모듈 하우징(125) 내부에 결합되었을 때, 전극 부스바(126)는 제2 홈(121d) 및 제3 홈(121e)을 관통하도록 위치한다. 이에 따라, 전극 모듈(121)은 전극 부스바(126)로부터 전류를 인가받게 된다.
다음으로, 도 3d를 참고로 하여 전극 간격 스페이서(122)에 대해서 상세하게 설명한다. 전극 간격 스페이서(122)는 전극 모듈(121)과 전극 모듈(121) 사이에 위치하거나, 또는 전극 모듈 하우징(125)의 윗면(또는 밑면)과 인접하는 전극 모듈(121) 사이에 위치할 수 있다.
이와 같이 전극 모듈(121) 사이에 위치하는 전극 간격 스페이서(122)는 물의 회전을 유도하는 스페이서로서, 제1 지름(122a)을 갖는 원 형상의 고리를 갖고, 일정 간격을 따라 고리의 둘레에 연결되어 형성된 날개(122b)를 구비한다.
이 때, 하나의 날개(122b) 및 반대 쪽에 위치하는 다른 하나의 날개(122b)의 거리(122c), 즉 전극 간격 스페이서(122)의 길이(122c)는 도 3d에 도시된 전극(121)의 길이(제3 지름)(121c)보다 짧은 길이를 갖는다.
그리고, 전극 간격 스페이서(122)의 제1 지름(122a)은 도 3d에 도시된 전극(121)에 형성된 제2 지름(121a)의 길이보다 길게 형성된다.
이와 같이, 전극 간격 스페이서(122)가 날개(122b)를 구비함으로서, 필터 엘리먼트(130)에서 필터링되어 전기분해부(12)로 이동하는 선박평형수에 의해 전극 간격 스페이서(122)가 회전하게 된다. 이에 따라, 전극 모듈(121) 주변의 선박평형수가 더욱 회전하면서 전극 모듈(121)에서 전기분해 처리 효율이 높아지게 되고, 선박평형수의 잔류 산화물질 발생효율이 증대된다.
또한, 전극 간격 스페이서(122)을 구비함으로서, 전극 모듈(121)에서 전기분해 처리되는 선박평형수가 회전하게 되어, 필터 엘리먼트(130)에 쌓일 수 있는 스케일(금속 산화물 등의 불순물, scale)을 제거할 수 있다는 효과가 있다.
이러한 전극 간격 스페이서(122)는 플라스틱과 같은 절연물질로 형성되는 것이 좋다.
다시 도 2b를 참고로 하여 필터 및 전기분해부(10)를 계속해서 설명하면, 필터 엘리먼트(130)는 전극 모듈 하우징(125)의 외부에 위치한다.
필터 엘리먼트(130)는 디스크(disk) 형태를 갖는 디스크 필터일 수 있다. 이러한 디스크 형태의 필터 엘리먼트(130)가 복수개 구비되는 경우, 복수개의 필터 엘리먼트(130)는 전극 모듈 하우징(125)의 외부에 적층되어 위치할 수 있다.
복수개의 필터 엘리먼트(130)가 적층되어 위치하는 경우, 필터 엘리먼트(130)는 압착 스프링(151)에 의해 일정 압력으로 고정되고, 이때, 디스크 형태의 필터 엘리먼트(130)는 50㎛ ~ 100㎛ 범위의 홈을 갖도록 형성될 수 있다.
이러한 필터 엘리먼트(130)는 유입/유출구(11)를 통해 유입된 선박평형수를 1차적으로 필터링(filtering)하며 선박평형수에 포함되어 있는 50㎛ ~ 100㎛ 범위의 고형물 또는 미생물을 필터링한다.
이와 같이, 디스크 필터로 구성되는 필터 엘리먼트(130)는 역세수 파이프(160)를 이용한 백 플러싱(back flushing) 과정을 수행하므로, 필터의 와이어에 먼지가 끼는 클로깅(clogging) 현상이 영구적으로 발생하지 않는다는 효과가 있다.
그리고, 유입/유출구(11) 내부에 위치하는 회전 유도체(113)는 고리 형상을 갖도록 형성되고, 한 방향으로 회전한다.
도 2b에 도시된 것과 같이, 회전 유도체(113)는 한 단면에 일정 간격으로 돌출된 부분을 구비한다. 이때, 회전 유도체(113)에 형성된 돌출된 부분으로 인해, 회전 유도체(113)가 한 방향으로 회전할 때 회전 유도체(113) 주변의 선박평형수가 한 방향으로 회전하게 된다.
이때, 회전 유도체(113)의 회전으로 인해 한 방향으로 회전하는 선박평형수에 포함되어 있는 고형물 및 미생물 등이 선박평형수에 고르게 분포하게 되어, 필터 엘리먼트(130)에서 선박평형수의 필터링 효율이 좋아지게 된다는 효과가 있다.
이러한 회전 유도체(113)는 외부의 모터부(미도시)로부터 동력을 전달받아 회전할 수 있다.
그리고, 회전 유도체(113) 주변에 위치하여 회전 유도체(113)의 회전에 따라 한 방향으로 회전하는 선박평형수는 유입구(112)를 통해 외부로부터 유입된 선박평형수일 수 있다.
유로 유도부(114)는 회전 유도체(113)와 인접하여 위치하고 있고, 고무 재질으로 형성되는 루버(rubber)이다. 더욱 상세하게는, 유로 유도부(114)는 큐방(흡방 또는 빨판)과 같은 형상을 갖고, 이때, 유로 유도부(114)의 볼록한 부분은 유입/유출구(11)의 반대방향을 향하고, 유로 유도부(114)의 오목한 부분은 유입/유출구(11)를 향하도록 위치한다.
유로 유도부(114)가 이와 같이 한 방향으로 볼록한 형상을 가짐으로서, 필터링 및 전기분해 처리가 완료되어 필터 엘리먼트(130)로부터 유입/유출구(11) 방향으로 내려오는 선박평형수가 용이하게 유로 유도부(114)를 통과하여 유입/유출구(11)로 흐를 수 있다.
또한, 유로 유도부(114)는 복수개의 홈(slit)을 형성하고 있고, 유로 유도부(114)의 홈을 통해 필터링 및 전기분해 완료된 선박평형수가 유입/유출구(11)의 유출구(111)로 흐르게 된다.
유로 유도부(114)는 전극 모듈(121) 방향 또는 그 반대방향을 향하도록 위치할 수 있다.
한 예로서, 필터 및 전기분해부(10) 내부를 흐르는 물이 필터 엘리먼트(130)로부터 유입/유출구(11) 방향으로 흐르는 경우, 유로 유도부(114)는 도 2b에 도시된 것과 같이 전극 모듈(121)의 반대 방향을 향하도록 위치한다.
이와 같이, 유로 유도부(114)가 전극 모듈(121)의 반대 방향을 향하도록 위치하는 경우, 유로 유도부(114)가 도 2b에 도시된 것과 같이 오무려지도록 위치함으로서 유로 유도부(114)에 형성된 빈 공간을 통해 물이 유입/유출구(11)로 흐른다.
그러나, 다른 한 예로서, 필터 엘리먼트(130)의 세척을 위해서 필터 및 전기분해부(10) 내부를 흐르는 물이 유입/유출구(11)로부터 필터 엘리먼트(130) 방향으로 흐르는 경우, 유로 유도부(114)에 형성된 빈 공간이 서로 붙게 되어 유로 유도부(114)는 펼쳐진 상태가 된다. 이로 인해 필터 및 전기분해부(10) 내부에 위치하는 물이 유입/유출구(11)로 흐를 수 있는 유로가 차단된다. 따라서, 역세수 파이프로만 물이 이동할 수 있게 된다.
이와 같이 유로 유도부(114)가 펴지도록 위치할 때, 유로 유도부(114)와 인접하여 위치하는 필터 압착 스프링(151)이 압착되고, 필터 압착 스프링(151)의 구동에 따른 압력차이로 인해 역세수가 역세수 파이프(160)로 인입된다.
이때, 역세수 파이프(160)에 인입된 역세수는 역세수 배출공(161)을 따라 전극 모듈 하우징(125)에서 필터 엘리먼트(130) 방향으로 배출된다. 이로 인해, 필터 엘리먼트(130)에 끼어있던 먼지 등의 이물질 등이 세척되게 된다.
그리고, 역세수 파이프(160)로부터 배출되어 필터 엘리먼트(130)를 세척한 역세수는 유로 유도부(114) 방향으로 떨어지게 되고, 역세수는 유로 유도부(114)에 형성된 홈을 따라 흘러들어 유출구(111)를 통해 필터 및 전기분해부(10) 외부로 배출된다.
필터 및 전기분해부(10)이 위와 같은 구성을 가짐에 따라, 외부로부터 유입된 선박평형수는 필터 엘리먼트(130)에서 1차적으로 필터링되고, 복수개의 전극 모듈(121)으로부터 전기분해 처리된다. 따라서, 필터 및 전기분해부(10)는 필터 또는 전기분해모듈 중 어느 하나만을 이용할 때보다 선박평형수에 포함된 고형물 또는 미생물을 효과적으로 제거할 수 있다는 효과가 있다.
또한, 필터 및 전기분해부(10)이 필터와 전기분해를 함께 수행함에 따라 필터 및 전기분해부(10)에서 배출되는 선박평형수는 USCG(미국 해양 경비대)의 기준에 따른 선박평형수 살균 기준에 부합할 수 있다.
다시 도 1을 참고로 하여 본 발명의 한 실시예에 따른 선박평형수 처리 시스템을 설명하면, 제1 센서부(30)는 필터 및 전기분해부(10)와 연결되어 위치하고, 필터 및 전기분해부(10)에서 필터링 및 전기분해 처리된 선박평형수를 전달받고, 전달받은 선박평형수의 전도도, 온도, 및 TRO(total residual oxidant)(잔류 산화물질) 농도를 측정한다.
이때, 제1 센서부(30)는 필터 및 전기분해부(10)에서 배출된 선박평형수의 일부만을 바이패스(bypass)하여 전달받을 수 있다.
이러한 제1 센서부(30)는 제어부(100)와 연결되어 위치하여, 제1 센서부(30)에서 측정한 선박평형수의 전도도, 온도 및 TRO 농도를 제어부(100)에 전달한다.
밸러스트 배관은 필터 및 전기분해부(10)와 밸러스트 탱크(50)를 연결하는 배관 또는 필터 및 전기분해부(10)와 제1 센서부(30)를 연결하는 배관일 수 있다.
이러한 제어신호를 발생하는 제어부(100)는 이후에서 더욱 자세하게 설명하도록 한다.
계속해서 도 1을 참고로 하여 설명하면, 밸러스트 탱크(50)는 제1 센서부(30)와 연결되어 위치한다. 이때, 제1 센서부(30)가 필터 및 전기분해부(10)로부터 바이패스되는 구성인 경우, 밸러스트 탱크(50)는 필터 및 전기분해부(10)와 연결되어 위치한다.
이러한 밸러스트 탱크(50)는 필터링 및 전기분해로부터 미생물을 사멸 처리하고 전기분해 과정에서 발생한 산화물질을 중화 처리하는 과정인 밸러스팅(ballasting) 과정이 완료된 선박평형수를 전달받아 이를 저장하는 탱크이다.
그리고, 배출구(2)는 밸러스트 탱크(50)에 저장되어 있던 선박평형수를 선박 외부로 배출하는 구성으로서, 밸러스트 탱크(50)에 저장되어 있는 선박평형수를 선박 외부로 배출하기 위해서는 선박평형수를 중화하는 과정이 필요하다.
따라서, 자동 중화 처리 장치(40)는 밸러스트 탱크(50)에 저장되어 있는 선박평형수를 중화시키기 위한 중화제를 포함하고 있고, 제어부(100)로부터 전달받은 중화제 투입 제어신호에 따라 자동 중화 처리 장치(40) 내부의 중화제를 디밸러스팅 배관에 투입한다.
이에 따라, 밸러스트 탱크(50)에 저장되어 있는 선박평형수에 잔류하던 ClO2(이산화염소)또는 Br2(브롬)이 중화된다.
이때, 디밸러스팅 배관은 밸러스트 탱크(50)와 배출구(2)를 연결하는 배관이거나 밸러스트 탱크(50)와 제2 센서부(31)를 연결하는 배관일 수 있다.
그리고, UV 조사부(60)는 제어부(100)와 연결되어 위치하고 있고, 밸러스트 탱크(50)에서 유출구(2)로 이어지는 디밸러스팅 배관에 연결되어 위치할 수 있다.
UV 조사부(60)는 밸러스트 탱크(50)에 저장되어 있는 미생물 사멸 처리된 선박평형수에 자외선(UV, ultra violet ray)를 조사한다.
이때, UV 조사부(60)가 조사하는 자외선에 의해, 선박평형수에 생존하고 있거나 재성장(regrowth)한 미생물이 사멸된다.
또한, UV 조사부(60)가 조사하는 자외선에 의해 선박평형수의 잔류 산화물질 또는 전기분해 과정에서 발생한 산소(O2 또는 잔류 산화물질)가 자외선과 반응하게 되며, 이에 따라 자외선에 의해 선박평형수의 잔류 산화물질이 광분해된다.
이와 같이 UV 조사부(60)가 조사하는 자외선을 이용한 선박평형수의 미생물 사멸 또는 잔류 산화물질 제거 처리는, 화학물질을 발생하지 않고 자연 해수 수성을 변화시키지 않는 처리방식으로서, IMO 승인 없이도 사용할 수 있다는 장점이 있다.
따라서, UV 조사부(60)로 인해 디밸러스팅 선박평형수의 미생물을 효과적으로 사멸할 수 있고, 잔류 산화물질이 광분해되므로 디밸러스팅 선박평형수의 중화 처리에 필요한 중화제와 같은 약품을 최소화 할 수 있다는 효과가 있다. 이로 인해 선박평형수의 미생물 사멸 효율이 USCG에 더욱 부합할 수 있게 된다.
그리고, 제2 센서부(31)는 중화 처리된 디밸러스팅 선박평형수의 잔류 산화물질(TRO) 농도를 측정하는 구성으로서, 밸러스트 탱크(50)에서 배출구(2)로 흐르는 선박평형수의 잔류 산화물질 농도를 측정하고, 측정된 디밸러스팅 선박평형수의 잔류 산화물질(TRO) 농도값을 제어부(100)로 전달한다.
그리고, 제어부(100)는 유량측정부(20), 필터 및 전기분해부(10), 제1 센서부(30), 제2 센서부(31), UV 조사부(60), 그리고 자동 중화처리장치(40)와 연결되어 위치한다. 제어부(100)는 유량측정부(20), 제1 센서부(30) 및 제2 센서부(31)로부터 측정값 등을 전달받고, 측정값에 따라 제어신호를 발생하며, 발생한 제어신호를 필터 및 전기분해부(10), UV 조사부(60) 또는 자동 중화처리장치(40) 중 어느 하나로 전달한다.
제어부(100)의 제어신호 발생을 좀더 자세하게 설명하면, 제어부(100)는 유량측정부(20)로부터 전달받은 선박평형수의 유량값에 따라 필터 및 전기분해부(10)의 전기분해 강도를 제어한다.
한 예로서, 유량측정부(20)로부터 전달받은 선박평형수의 유량값이 많은 경우, 제어부(100)는 필터 및 전기분해부(10)의 전기분해 강도를 높이도록 제어하는 제어신호를 발생하고, 반면 유량측정부(20)로부터 전달받은 선박평형수의 유량값이 적은 경우, 제어부(100)는 필터 및 전기분해부(10)의 전기분해 강도를 낮추도록 제어하는 제어신호를 발생한다.
그리고, 제어부(100)는 제1 센서부(30)로부터 전달받은 선박평형수의 특성 측정결과값에 따라 필터 및 전기분해부(10)의 전기분해 강도를 제어하는 제어신호를 발생한다.
한 예로서, 제1 센서부(30)에서 측정한 선박평형수의 전도도가 기준값보다 높은 값을 갖는 경우, 제어부(100)는 필터 및 전기분해부(10)의 전기분해 강도를 낮추기 위해 전류 인가값을 낮추도록 제어하는 제어신호를 발생하고, 반면 제1 센서부(30)에서 측정한 선박평형수의 전도도가 기준값보다 낮은 값을 갖는 경우, 제어부(100)는 필터 및 전기분해부(10)의 전기분해 강도를 높이기 위해 전류 인가값을 높이도록 제어하는 제어신호를 발생한다.
또한, 제어부(100)는 제2 센서부(31)로부터 전달받은 디밸러스팅 선박평형수의 잔류 TRO(잔류 산화물질) 농도값에 따라서, UV 조사부(60)의 UV 조사량을 제어한다. 한 예로서, 제2 센서부(31)에서 측정한 디밸러스팅 선박평형수의 잔류 산화물질 농도가 높은 값을 갖는 경우, 제어부(100)는 선박평형수에 자외선을 많이 조사하도록 UV 조사부(60)를 제어하는 제어신호를 발생하고, 반면 제2 센서부(31)에서 측정한 디밸러스팅 선박평형수의 잔류 산화물질 농도가 낮은 값을 갖는 경우, 제어부(100)는 선박평형수에 자외선을 적게 조사하도록 UV 조사부(60)를 제어하는 제어신호를 발생한다.
그리고, 제어부(100)는 제2 센서부(31)로부터 전달받은 디밸러스팅 선박평형수의 잔류 TRO(잔류 산화물질) 농도값에 따라서, 자동 중화처리장치(40)의 중화제 투입량을 제어한다. 한 예로서, 제2 센서부(31)에서 측정한 디밸러스팅 선박평형수의 잔류 산화물질 농도가 높은 값을 갖는 경우, 제어부(100)는 선박평형수에 중화제를 많이 투입하도록 자동 중화처리장치(40)를 제어하는 제어신호를 발생하고, 반면, 제2 센서부(31)에서 측정한 디밸러스팅 선박평형수의 잔류 산화물질 농도가 낮은 값을 갖는 경우, 제어부(100)는 선박평형수에 중화제를 적게 투입하도록 자동 중화처리장치(40)를 제어하는 제어신호를 발생한다.
다음으로, 도 4를 참고로 하여 본 발명의 선박평형수 처리 시스템의 동작을 설명한다.
도 4에 도시한 것과 같이, 먼저, 유량 측정부(20)는 외부로부터 선박평형수 처리 시스템에 유입된 선박평형수의 유량을 측정한다(S201). 유량측정부(20)가 외부로부터 유입된 선박평형수의 일부만을 바이패스 하여 유량을 측정하는 경우, 유량측정부(20)는 측정유량을 필터 및 전기분해부(10)로 전달하고(S212), 유량측정부(20)가 외부로부터 유입된 선박평형수의 전체를 전달받아 유량을 측정하는 경우, 유량측정부(20)는 유량측정부(20)에 유입된 선박평형수를 필터 및 전기분해부(10)에 전달하고(S211), 동시에 측정유량을 필터 및 전기분해부(10)로 전달한다(S212).
필터 및 전기분해부(10)는 외부(또는 유량측정부(20))로부터 선박평형수를 유입받고, 유입된 선박평형수를 필터링한다(S101). 이 때, 필터 및 전기분해부(10)에 구비되는 필터 엘리먼트(130)를 이용하여 선박평형수의 고형물 이물질 및 미생물을 필터링하고, 역세수 파이프(160)를 통해 필터 엘리먼트(130)에 낀 먼지 등의 이물질을 세척한다.
그리고, 필터 및 전기분해부(10)는 복수개의 전극 모듈(121)을 이용하여 필터 엘리먼트(130)에서 1차적으로 걸러진 선박평형수를 전기분해 처리하고(S102), 전기분해 처리된 선박평형수를 배관을 따라 제1 센서부(30)로 전달한다(S111).
이때, 필터 및 전기분해부(10)에서 필터링 및 전기분해 처리된 선박평형수는 밸러스트 배관을 따라 밸러스트 탱크(50)로 전달하여 저장한다(S112).
제1 센서부(30)는 필터 및 전기분해부(10)으로부터 배출된 선박평형수의 전도도, 온도, 및 TRO(잔류 산화물질) 농도를 측정하고(S301), 해수 특성 측정값을 제어부(100)로 전달한다(S3011).
이 때, 제1 센서부(30)에서 선박평형수 특성이 측정된 선박평형수는 밸러스트 탱크(50)로 전달되어 밸러스트 탱크(50)에 저장된다(S3012).
다음으로, 제어부(100)는 제1 센서부(30)로부터 전달받은 선박평형수의 특성 측정값에 따라, 선박평형수의 오염정도를 판단한다(S1001).
그리고, 제어부(100)는 선박평형수 처리 과정이 디밸러스팅 단계인지를 판단한다(S1002). 이때, 선박평형수 처리 과정이 디밸러스팅 단계가 아닌 경우, 제어부(100)는 별도의 단계를 수행하지 않는다. 반면, 선박평형수 처리 과정이 디밸러스팅 단계로 판단되는 경우, 제어부(100)는 자동 중화처리장치(40)가 중화제를 토출하도록 제어하는 제어신호를 자동 중화처리장치(40)로 전달한다(S1012).
이때, 선박평형수 처리장치가 디밸러스팅 단계인 경우, 밸러스트 탱크(50)는디밸러스팅 선박평형수를 자동 중화처리장치(40)로 전달한다(S501).
이에 따라, 자동 중화 처리장치(40)는 밸러스트 탱크(50)에서 배출된 디밸러스팅 선박평형수로 중화제를 토출하여 디밸러스팅 선박평형수를 중화한다(S401). 이 때, 자동 중화 처리장치(40)에서 토출되는 (S401) 중화제는 밸러스트 탱크(50)로 직접 투입되지 않고, 밸러스트 탱크(50)에서 밸러스트수 유출구(2)에 이르도록 위치하는 디밸러스팅 배관으로 투입하는 것이 좋다.
그리고, UV 조사부(60)는 밸러스트 탱크(50)로부터 전달받은(S501) 디밸러스팅 선박평형수에 자외선을 조사한다(S601).
UV 조사부(60)의 자외선 조사로 미생물이 사멸된 디밸러스팅 선박평형수는 자동 중화처리장치(40)로 전달된다(S611).
그런 다음, 제2 센서부(31)는 자동 중화처리장치(40)에서 중화 처리된 디밸러스팅 선박평형수의 TRO 농도를 측정하고(S311), 측정된 TRO 농도를 제어부(100)로 전달한다(S3111).
제2 센서부(31)에서 측정된 TRO 농도값을 전달받은 제어부(100)는 측정결과를 판단하여(S1003), UV 조사부(60)의 자외선 조사 강도를 제어하는 제어신호 및 자동 중화 처리장치(40)에서 토출되는 중화제의 양을 제어하는 제어신호를 발생한다(S1013).
이러한 과정에 따라, 선박평형수를 효율적으로 밸러스팅 및 디밸러스팅 처리 할 수 있고, 처리된 선박평형수의 살균 기준이 USCG 기준을 만족하게 된다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (4)

  1. 외부로부터 선박평형수를 유입 받고, 상기 선박평형수를 필터링하고 전기분해하는 필터 및 전기분해부,
    상기 필터 및 전기분해부를 통과한 상기 선박평형수의 해수 특성을 측정하여 해수 특성 측정값을 출력하는 제1 센서부,
    상기 제1 센서부와 연결되어 위치하고, 상기 제1 센서부로부터 상기 해수 특성 측정값을 전달받으며, 상기 해수 특성 측정값에 따라 상기 선박평형수의 오염 정도를 판단하여 전기분해 강도를 제어하는 제어신호를 발생하는 제어부,
    상기 필터 및 전기분해부를 통과한 상기 선박평형수에 자외선을 조사함으로서 상기 선박평형수의 잔류 미생물을 사멸하고 상기 선박평형수의 잔류 산화물질을 제거하는 UV 조사부,
    중화제를 구비하고, 상기 제어부로부터 중화제 토출신호를 전달받아 상기 필터 및 전기분해부를 통과한 상기 선박평형수를 중화하는 자동 중화 처리장치, 그리고
    상기 자동 중화 처리장치에서 중화 처리된 선박평형수의 총 잔류 산화물질(total residual oxidant, TRO) 농도를 측정하고, 상기 총 잔류 산화물질 농도 측정결과를 상기 제어부로 전달하는 제2 센서부
    를 포함하고,
    상기 제어부는 상기 제2 센서부로부터 전달받은 상기 총 잔류 산화물질 농도 측정결과에 따라 상기 자동 중화처리장치에서 토출되는 상기 중화제 토출량을 제어하는 상기 중화제 토출 제어신호를 발생하는 선박평형수 처리 시스템.
  2. 제1항에서,
    상기 필터 및 전기분해부의 상기 필터는 디스크 필터(disk filter)인 선박평형수 처리 시스템.
  3. 제1항에서,
    상기 필터 및 전기분해부는 원 형태의 판 형상을 갖는 복수개의 전극 모듈을 적층하여 구비하는 선박평형수 처리 시스템.
  4. 제1항에서,
    상기 센서부에서 측정하는 상기 해수 특성은 전도도, 온도 또는 총 잔류 산화물질 농도인 선박평형수 처리 시스템.
PCT/KR2014/002418 2013-03-22 2014-03-21 선박평형수 처리 시스템 WO2014148870A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130031165A KR101486503B1 (ko) 2013-03-22 2013-03-22 선박평형수 처리 시스템
KR10-2013-0031165 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148870A1 true WO2014148870A1 (ko) 2014-09-25

Family

ID=51580451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002418 WO2014148870A1 (ko) 2013-03-22 2014-03-21 선박평형수 처리 시스템

Country Status (2)

Country Link
KR (1) KR101486503B1 (ko)
WO (1) WO2014148870A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107640840A (zh) * 2017-09-10 2018-01-30 绵阳西真科技有限公司 一种多功能净水设备
WO2019061700A1 (zh) * 2017-09-27 2019-04-04 广船国际有限公司 一种海水处理系统及海水处理控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987508B1 (ko) * 2014-12-29 2019-06-10 현대중공업 주식회사 평형수 서비스 전용 선박
KR102122351B1 (ko) * 2018-12-06 2020-06-12 (주) 우연기전 평형수 처리장치 제어방법 및 이를 이용한 제어 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691380B1 (ko) * 2005-09-23 2007-03-09 박호원 전해 살균 정수기 필터모듈
KR100776205B1 (ko) * 2007-02-14 2007-11-28 주식회사 엔케이 여과 및 전기분해 방식의 밸러스트수 처리 시스템 및 그의구동방법
JP2012217966A (ja) * 2011-04-13 2012-11-12 Miura Co Ltd 水無害化処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100059089A (ko) * 2008-11-25 2010-06-04 한국과학기술연구원 해수 살균처리방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691380B1 (ko) * 2005-09-23 2007-03-09 박호원 전해 살균 정수기 필터모듈
KR100776205B1 (ko) * 2007-02-14 2007-11-28 주식회사 엔케이 여과 및 전기분해 방식의 밸러스트수 처리 시스템 및 그의구동방법
JP2012217966A (ja) * 2011-04-13 2012-11-12 Miura Co Ltd 水無害化処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107640840A (zh) * 2017-09-10 2018-01-30 绵阳西真科技有限公司 一种多功能净水设备
WO2019061700A1 (zh) * 2017-09-27 2019-04-04 广船国际有限公司 一种海水处理系统及海水处理控制方法

Also Published As

Publication number Publication date
KR101486503B1 (ko) 2015-01-26
KR20140115884A (ko) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2014148867A1 (ko) 선박평형수 처리 시스템
WO2014148869A1 (ko) 선박평형수 처리 시스템
WO2014148870A1 (ko) 선박평형수 처리 시스템
WO2014163270A1 (ko) 축사의 대기처리장치
WO2018093179A1 (ko) 막 결합형 고도전기산화법 및 이를 위한 수처리 장치 그리고, 이를 이용하는 수처리 시스템
WO2011126205A2 (ko) 고효율 전기분해장치를 이용한 밸러스트수 처리 시스템
KR101486502B1 (ko) 선박평형수 처리 시스템
WO2019103554A1 (ko) 수처리 장치
WO2015016556A1 (ko) 스컴 제거를 위한 고전압 방전 시스템
KR101486499B1 (ko) 선박평형수 처리 시스템
KR100636292B1 (ko) 테프론튜브를 이용한 살균정화장치
KR101468928B1 (ko) 밸러스트수 처리 시스템
WO2017175998A1 (ko) 광촉매 살균정수기
WO2014148868A1 (ko) 필터 및 전기분해장치
KR101567441B1 (ko) 선박평형수 처리장치
KR101318604B1 (ko) 마이크로 버블 살균장치
KR102120078B1 (ko) 선체 외면의 수중생물 청소/사멸 장치 및 이를 포함하는 선체 외면 청소 로봇
KR100534416B1 (ko) 평판형 전극을 사용한 직병렬혼합결선방식의 복극식 전기분해살균장치
CN203754552U (zh) 一种水净化消毒机
KR200366505Y1 (ko) 살균장치가 장치된 정수기 필터
WO2022075511A1 (ko) 물리적 정수 시스템
WO2022169203A1 (ko) 자외선 소독 장치 및 방법
KR20090104572A (ko) 살균처리부를 구비한 가정용 냉온수 정수기
KR100943429B1 (ko) 밸러스트 수 분산 처리 시스템
CN212151972U (zh) 一种医院污水消毒设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767318

Country of ref document: EP

Kind code of ref document: A1