WO2014148852A1 - Multi-layer structure encapsulating method for optical element - Google Patents

Multi-layer structure encapsulating method for optical element Download PDF

Info

Publication number
WO2014148852A1
WO2014148852A1 PCT/KR2014/002371 KR2014002371W WO2014148852A1 WO 2014148852 A1 WO2014148852 A1 WO 2014148852A1 KR 2014002371 W KR2014002371 W KR 2014002371W WO 2014148852 A1 WO2014148852 A1 WO 2014148852A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
formula
polysilazane
optical device
silicon layer
Prior art date
Application number
PCT/KR2014/002371
Other languages
French (fr)
Korean (ko)
Inventor
주한복
송선식
권혁용
박은주
김재현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140029466A external-priority patent/KR20140115983A/en
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2014148852A1 publication Critical patent/WO2014148852A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a method for encapsulating a multilayer structure of an optical device, and more particularly, to form a separate polysilazane layer on and / or under a silicon layer to minimize out-gas, thereby reducing refractive index and light.
  • the present invention relates to a method for encapsulating a multilayer structure of an optical element capable of improving transmittance, hardness and barrier properties against moisture, and an optical element including a multilayer encapsulant.
  • the present invention is a silicon layer on the surface of the film substrate; And forming a separate polysilazane layer on the top and / or bottom of the silicon layer to improve the refractive index, light transmittance, hardness and barrier properties against moisture, and the like. It relates to a protective film.
  • Organic materials included in optical devices such as OLEDs and LCDs are very vulnerable to oxygen or water vapor in the air, and thus, when exposed to oxygen or water vapor, output reduction or premature performance degradation may occur. Accordingly, a method for extending the life of the device by protecting the devices using metal and glass has been developed, but metals generally have a disadvantage of lack of transparency and glass lack of flexibility.
  • a flexible transparent barrier film or encapsulant composition has been developed for use in encapsulation of other optical devices, including flexible, thin, flexible OLEDs.
  • Japanese Patent Laid-Open No. 2009-146924 discloses a technique in which polysilazane and an inorganic substance are dispersed in a plurality of organic resin layers.
  • organic resin layer epoxy and acrylic resins are generally representative, but in operation, optical devices exhibiting high temperature of junction temperature may cause discoloration such as yellowing when exposed for a long time, and polysilazane is dispersed. When formed from the material, it can be accompanied by various side effects caused by the out-gas of silazane.
  • US Patent Application No. 20020113241 describes a technique for minimizing out-gases by oxidizing polysilazane membranes.
  • -Si-N-Si- bond which is a major factor that can have crosslinking density in polysilazane itself, is already substituted with -Si-O-Si- structure.
  • the crosslinking density may be lowered, in which case the barrier performance and the adhesion may be lowered.
  • Japanese Patent Application Laid-Open No. 08-236274 discloses a technique for forming a polysilazane film as a single film.
  • barrier performance may be deteriorated as compared to a structure when a multilayer is formed. The thicker the coating thickness is, the more it can cause out-gas.
  • the present invention is a polysilazane layer is formed as a separate layer on the top or bottom of the silicon layer to have a multi-layer structure to reduce the outgas by the multilayer structure of the optical device and through
  • An object of the present invention is to provide an optical device including a manufactured multilayer encapsulant.
  • the present invention by forming a silicon layer and a separate polysilazane layer on the surface of the film substrate by the method and the method of manufacturing a protective film that can simultaneously improve the refractive index, light transmittance, hardness and barrier properties against moisture, etc.
  • An object of the present invention is to provide a manufactured protective film.
  • the present invention to achieve the above object
  • a method for encapsulating a multilayer structure of an optical device comprising sequentially forming a silicon layer-polysilazane layer or a polysilazane layer-silicon layer with an encapsulant on the surface of an optical element to be encapsulated.
  • the present invention also provides an optical device that is encapsulated by the encapsulation method and includes a multilayer encapsulation material of a silicon layer-polysilazane layer or a polysilazane layer-silicon layer.
  • the present invention also includes an optical device including the optical element.
  • the present invention provides a method of manufacturing a protective film
  • It provides a method for producing a protective film, characterized in that to form a silicon layer-polysilazane layer or a polysilazane layer-silicon layer sequentially on the surface of the film substrate.
  • the present invention provides a protective film produced by the above method.
  • the encapsulation method of the present invention and the optical device according to the present invention have a multilayer structure in which a polysilazane layer is formed as a separate layer on and / or under the silicon layer, and is formed between the optical device light emitting material (or chip) and the atmospheric layer.
  • Refractive Index matching not only improves light extraction efficiency, but also minimizes out-gas, resulting in a uniform and transparent film on the inside / surface and in terms of hardness and moisture or oxygen. Excellent barrier properties. Therefore, the encapsulation method of the present invention can be usefully applied to the encapsulation of various optical elements, especially high specification or thick film, and can also be usefully applied as a protective film of a display.
  • FIG. 1 is a schematic cross-sectional view of an encapsulant of a single layer structure according to a comparative example.
  • FIG. 2 to 4 is a schematic cross-sectional view of the encapsulant of the multilayer structure according to the present invention.
  • FIG. 5 is a cross-sectional view of an optical device to which an encapsulant according to the present invention is applied.
  • the method for encapsulating the optical element is characterized in that the silicon layer-polysilazane layer or polysilazane layer-silicon layer is sequentially formed of an encapsulant on the surface of the optical element to be encapsulated. .
  • the silicon layer may be formed by coating a composition for forming a silicon layer on a substrate to form a coating layer.
  • the composition for forming the silicon layer may use a known composition, and preferably, the composition for forming the silicon layer may include a polyhedral oligomeric silsesquioxane (POSS) of Formula 1-1 or 1-2. It is good to:
  • Each R is independently a compound of Formula 2-1 or 2-2:
  • R 1 to R 6 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms, preferably hydrogen, methyl, ethyl, vinyl or phenyl, more preferably R 1 is Hydrogen or methyl, R 2 is methyl or phenyl, R 3 is hydrogen, methyl or phenyl, R 4 is hydrogen, methyl or vinyl, R 5 is methyl, vinyl or phenyl, R 6 is methyl, ethyl or methyl ego;
  • Each Ra is independently hydrogen or chlorine
  • z is an integer of 3 to 20, preferably an integer of 5 to 20 ;
  • a and b are each independently an integer of 0 to 20, wherein a + b is an integer of 3 to 20,
  • M, Ma and Mb are each independently methyl or phenyl.
  • the compound of Formula 1-1 or 1-2 is mainly a compound of Formula 2-1, a compound of Formula 2-2, a compound of Formula 2-3, or of Formulas 2-4 and 2-5
  • Compounds can be synthesized via condensation on distilled water with reactants:
  • R 1 to R 6 , z, a and b are as defined above;
  • Ra and R 7 are each independently hydrogen or chlorine
  • x and y are each independently an integer of 1-100.
  • the functional group R of the polyhedral oligomeric silsesquioxane not only has sufficient compatibility with the siloxane resin even without dissolving in an organic solvent, and in the case of the oligomer or copolymer, the resin composition includes a crosslinkable moiety. It can improve the crosslinking density and mechanical properties, and also helps to improve the gas barrier properties.
  • the polyhedral oligomeric silsesquioxane may be used in an amount of 0.01 to 30% by weight, preferably 0.05 to 15% by weight, based on the composition for forming a silicon layer, and when the content exceeds the siloxane resin Compatibility with may be lowered.
  • the silicone layer-forming composition may include a conventionally used siloxane resin, a crosslinked resin, a silane coupling agent, a catalyst, a reaction delaying agent, and the like in addition to the polyhedral oligomeric silsesquioxane. have.
  • the composition is 1 to 30% by weight of polyhedral oligomeric silsesquioxane, 20 to 90% by weight of siloxane resin, 1 to 30% by weight of crosslinking resin, silane coupling agent 0.05 based on the total composition To 20 wt%, 1 to 3000 ppm of catalyst and 1 to 1000 ppm of reaction retardant.
  • the siloxane resins usable in the present invention include polymethylvinyl siloxane, poly (methylphenyl) hydrosiloxane, poly (methylphenyl) siloxane, poly (phenylvinyl) -co- (methylvinyl) silsesquioxane, PDV-1635 from gelest, etc.
  • Examples of the crosslinking resin include silsesquioxane copolymer, phenylhydrosilsesquioxane, dimethylsilylphenyl ether, and the like.
  • the silane coupling agent include methacrylate-based cyclosiloxanes.
  • the catalyst include a platinum catalyst and an ethynyl trimethyl silane or an ethynyl triethyl silane as the reaction retardant, but are not limited thereto. The catalyst may include one or more of them.
  • the polysilazane layer may be prepared by coating on a substrate to be coated with a composition for forming a polysilazane layer and curing it, and preferably, the polysilazane layer-forming composition is an organic polysila of formula 3 It is preferable to include a glass or silazane-based oligomer. In this case, it is better to eliminate the outgas phenomenon which lowers the barrier property of the optical element.
  • R X and R Y are each independently alkyl, alkenyl or aryl having 6 to 50 carbon atoms, preferably methyl, ethyl, vinyl or phenyl, and more preferably R X is methyl, ethyl or Phenyl and R Y is methyl, ethyl or vinyl;
  • n and n are each independently an integer of 1 to 20, wherein m + n is 2 to 21.
  • the content of the silazane compound in the polysilazane layer-forming composition may be arbitrarily controlled, for example, based on 100% by weight of the composition, it may be used alone or a known solvent.
  • the polysilazane layer-forming composition may further include a modified polysilazane compound of the formula (4).
  • Ra is alkyl of 1 to 20 carbon atoms or aryl of 6 to 50 carbon atoms
  • Rb is a hydrocarbon having 1 to 20 carbon atoms, preferably a hydrocarbon having 1 to 5 carbon atoms;
  • p is an integer from 1 to 15.
  • the compound of Formula 4 may be synthesized through solution polymerization around a compound of Formula 4-1 and a compound of Formula 4-2, or a compound of Formula 4-2 and a compound of Formula 4-3 Can:
  • R c is hydrogen or chlorine
  • R d , R e and R f are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms.
  • the modified polysilazane compound may be included in an amount of 1 to 50% by weight of the composition forming the polysilazane layer.
  • the outgas phenomenon may be intensified to reduce the barrier property.
  • the silicon layer and the polysilazane layer may be formed by coating the silicon layer-forming composition or the polysilazane layer-forming composition on a surface to be encapsulated and then forming a silicon layer or a polysilazane layer through a curing process. .
  • the coating method may be arbitrarily selected and applied by those skilled in the art, and the coating thickness may be arbitrarily applied by those skilled in the art.
  • the silicon layer may be 0.5 to 2000 um, preferably 1 to 1. 1000 um
  • the polysilazane layer may be 0.01 to 1000 um, preferably 0.02 to 500 um.
  • the composition prior to coating the composition for forming the polysilazane layer, the composition may be a composition that has been pretreated.
  • the pretreatment is to stir for 3 to 24 hours at a pressure of 10 -1 Torr or less and a temperature of 70 to 120 °C in a reactor capable of vacuum conditions and mixing process.
  • Pretreatment of polysilazane as described above can minimize the factors that cause unreacted monomers and out-gas of the polysilazane material itself, thus suppressing the generation of non-uniform film of encapsulation layer and barrier performance. It can be maximized.
  • the curing of the silicon layer may be performed for 5 minutes to 3 hours at a temperature of 40 to 250 ° C., preferably at least two melting and curing processes, more preferably at least two steps. Curing may proceed by subdividing the curing temperature and curing time up to seven stages, for example, two or more stages including one stage curing at 100 to 170 ° C., two stage curing at a temperature of 130 to 250 ° C. Can be performed by dividing.
  • thermal curing may be performed at a temperature of 30 to 250 ° C. for 5 minutes to 2 hours, and preferably, curing may be performed by dividing into 1 to 3 steps of curing. It can be carried out by dividing into a melting and curing process comprising a one-step curing at 30 to 120 °C, two stage curing at 90 to 170 °C and three stages of curing at a temperature at 130 to 250 °C.
  • thermosetting process By performing the multi-step thermosetting process as described above, it is possible to suppress the generation of pores of the material itself, and to minimize the out-gas generation during the curing process.
  • the present invention also provides an optical element which is encapsulated by the encapsulation method and comprises a multilayer encapsulant of a silicon layer-polysilazane layer or a polysilazane layer-silicon layer.
  • 2 to 4 are schematic cross-sectional views of an optical device including a multilayer encapsulation material of the present invention.
  • the encapsulant 2 is formed of a silicon layer-polysilazane layer, a polysilazane layer-silicon layer, and a polysilazane layer-silicon layer.
  • the optical device according to the present invention has a multilayer structure of a polysilazane layer separate from the silicon layer, and thus has excellent optical properties such as light transmittance and refractive index and excellent barrier performance against external gases (water vapor, oxygen, etc.) Since the adhesion to the substrate or the silicon layer) is improved, it is effective to extend the life of the optical element, and can be particularly useful in the field of high specification optical elements including LEDs, for example, LED outdoor lighting.
  • the optical element encapsulant of the multi-layered structure of the present invention prepared using the composition as described above forms a polysilazane layer on the upper and / or lower portion of the silicon layer, preferably on the upper side, so that the light emitting material or the chip of the optical element and the atmosphere
  • Optical extraction efficiency can be increased by compensating the refractive index difference between the refractive index (for example, the refractive index of the LED is about 2.5 and the atmospheric refractive index is 1.0), thereby increasing the optical extraction efficiency. Applicable also to an element.
  • the refractive index when the polysilazane layer is formed on top of the silicon layer, the refractive index may be 1.0 to 1.6, and when the polysilazane layer is formed on the bottom of the silicon layer, the refractive index may be 1.4 to 2.5.
  • the out-gas is not trapped inside the silicone layer when the polysilazane is cured. Without being able to obtain an encapsulation film that is uniform and transparent inside and on the surface of the film, two or more films are formed, so that the barrier property against moisture and oxygen is excellent.
  • the present invention provides a method for producing a protective film, the method for producing a protective film, characterized in that to form a silicon layer-polysilazane layer or polysilazane layer-silicon layer sequentially on the surface of the film base material
  • the method for forming the silicon layer and the polysilazane layer in the method of manufacturing a protective film according to the present invention can be used in the encapsulation method, the film base is used in a known protective film
  • the film substrate to be used may be used.
  • the film base material a polyester film (PET, PES, PEN) or a polyolefine film (PE, PP) is suitable, and a polyester film such as PET or PES is particularly suitable for an optical device.
  • the protective film according to the present invention may further include a release film of the adhesive form on the upper surface of the protective film.
  • the protective film including the release film may further facilitate the process by attaching the protective film by laminating after manufacturing the release film when attaching the protective film according to the present invention to the device to be protected.
  • the protective film according to the present invention can improve the refractive index, light transmittance, hardness, and barrier properties against water by simultaneously forming a silicon layer and a polysilazane layer on the surface of the film substrate, which is useful for optical devices or display devices. Can be applied.
  • distilled water was slowly added dropwise at atmospheric pressure and about 30 ° C., followed by additional stirring at 50 ° C. for about 3 hours, and the solvent was removed to remove the polyhedral oligomeric silses.
  • Quioxane was synthesized.
  • HTT-1500 (AZ) and HTT-1800 (AZ) were placed in a reactor capable of vacuum conditions and mixing processes, respectively, and the reactor was converted to vacuum conditions (pressure: 10 ⁇ 1 Torr or less), Pretreatment was carried out by stirring between about 50 to 100 ° C. for about 3 to 24 hours.
  • composition A was prepared by adding C-POSS, siloxane resin 2, crosslinked resins 1 and 2, and silane coupling agent of Synthesis Example 1 in an amount, and siloxane resin 1, catalyst and reaction delaying agent were added to composition B.
  • the mixed solution was prepared in a one-component form using a co-rotating vacuum degassing machine.
  • polysilazane layer-forming composition was pretreated polysilazane.
  • Siloxane Resin 1 Poly (methylphenyl) siloxane
  • Siloxane resin 2 poly (phenylvinyl) -co- (methylvinyl) silsesquioxane
  • Crosslinked resin 2 dimethylsilylphenyl ether
  • Reaction Retardant 1 Ethynyltriethylsilane (gelest)
  • Reaction Retardant 2 Ethynyltrimethylsilane (gelest)
  • Polysilazane 1 pretreated HTT-1500 (AZ)
  • Polysilazane 2 Pretreated HTT-1800 (AZ)
  • the UV-vis spectrophotometer (Mecasys) was used to measure the transmittance of five points of the prepared specimen at a wavelength of 400 to 780 nm, and the light transmittance was evaluated from the average value within the obtained wavelength range. At this time, the light transmittance of the multilayered structure manufactured using the composition of the Example was shown based on the time when the light transmittance of the silicon monolayer film structure manufactured using the composition of the comparative example was 100%.
  • the encapsulant of the present invention having a multilayer structure in which the polysilazane layer is formed as a separate layer on the top and / or bottom of the silicon layer is not only excellent in light transmittance and hardness, but also improves water vapor transmission rate. Indicated.
  • the encapsulation method of the present invention and the optical device according to the present invention have a multilayer structure in which a polysilazane layer is formed as a separate layer on and / or under the silicon layer, and is formed between the optical device light emitting material (or chip) and the atmospheric layer.
  • Refractive Index matching not only improves light extraction efficiency, but also minimizes out-gas, resulting in a uniform and transparent film on the inside / surface and in terms of hardness and moisture or oxygen. Excellent barrier properties. Therefore, the encapsulation method of the present invention can be usefully applied to the encapsulation of various optical elements, especially high specification or thick film, and can also be usefully applied as a protective film of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a multi-layer structure encapsulating method for an optical element and, more particularly, to a multi-layer structure encapsulating method for an optical element having a multi-layer structure in which a polysilazane layer is formed as a separate layer in an upper part or a lower part of a silicon layer, thereby reducing outgassing, and an optical element comprising an encapsulant of a multi-layer structure produced thereby.

Description

광학소자의 다층구조 봉지방법Multi-layered Encapsulation Method of Optical Device
본 발명은 광학소자의 다층구조 봉지방법에 관한 것으로, 더욱 상세하게는 실리콘 층의 상부 및/또는 하부에 별도의 폴리실라잔 층을 형성시켜 아웃-가스(out-gas)를 최소화함으로써 굴절률, 광투과율, 경도 및 수분에 대한 배리어 특성 등을 향상시킬 수 있는 광학소자의 다층구조 봉지방법 및 다층구조의 봉지재를 포함하는 광학소자에 관한 것이다. 또한 본 발명은 필름기재의 표면에 실리콘 층; 및 상기 실리콘 층의 상부 및/또는 하부에 별도의 폴리실라잔 층을 형성시켜 굴절률, 광투과율, 경도 및 수분에 대한 배리어 특성 등을 향상시킬 수 있는 보호필름의 제조방법 및 상기 방법에 의하여 제조된 보호필름에 관한 것이다.The present invention relates to a method for encapsulating a multilayer structure of an optical device, and more particularly, to form a separate polysilazane layer on and / or under a silicon layer to minimize out-gas, thereby reducing refractive index and light. The present invention relates to a method for encapsulating a multilayer structure of an optical element capable of improving transmittance, hardness and barrier properties against moisture, and an optical element including a multilayer encapsulant. In addition, the present invention is a silicon layer on the surface of the film substrate; And forming a separate polysilazane layer on the top and / or bottom of the silicon layer to improve the refractive index, light transmittance, hardness and barrier properties against moisture, and the like. It relates to a protective film.
OLED, LCD 등의 광학소자에 포함되는 유기 물질은 대기 중의 산소 또는 수증기에 매우 취약하므로, 산소 또는 수증기에 노출되는 경우 출력 감소 또는 조기 성능 저하가 발생할 수 있다. 이에, 금속 및 유리를 사용하여 상기 소자들을 보호함으로써 소자의 수명을 연장시키기 위한 방법이 개발되었으나, 금속은 일반적으로 투명도가 부족하고 유리는 휨성(flexibility)이 부족한 단점이 있었다. Organic materials included in optical devices such as OLEDs and LCDs are very vulnerable to oxygen or water vapor in the air, and thus, when exposed to oxygen or water vapor, output reduction or premature performance degradation may occur. Accordingly, a method for extending the life of the device by protecting the devices using metal and glass has been developed, but metals generally have a disadvantage of lack of transparency and glass lack of flexibility.
이에, 얇고 가볍고 구부러질 수 있는 플렉시블(flexible) OLED를 비롯한 기타 광학소자의 봉지화에 사용되는 휨성이 있는 투명 배리어 필름 또는 봉지재 조성물이 개발되어 왔다.Accordingly, a flexible transparent barrier film or encapsulant composition has been developed for use in encapsulation of other optical devices, including flexible, thin, flexible OLEDs.
이러한 결과로서, 일본특허공개 제2009-146924호에는 복수의 유기계 수지층에 폴리실라잔과 무기물을 분산시킨 기술이 기재되어 있다. 그러나 유기계 수지층의 경우, 일반적으로 에폭시 및 아크릴계 수지가 대표적이나 이는 동작시, 고온 접합온도(Junction Temperature)를 나타내는 광학소자에는 장시간 노출시, 황변 등의 변색 가능성이 있으며, 폴리실라잔이 분산된 재료로 형성시, 실라잔의 아웃-가스에 의한 여러 부작용을 동반할 수 있다.As a result of this, Japanese Patent Laid-Open No. 2009-146924 discloses a technique in which polysilazane and an inorganic substance are dispersed in a plurality of organic resin layers. However, in the case of the organic resin layer, epoxy and acrylic resins are generally representative, but in operation, optical devices exhibiting high temperature of junction temperature may cause discoloration such as yellowing when exposed for a long time, and polysilazane is dispersed. When formed from the material, it can be accompanied by various side effects caused by the out-gas of silazane.
또한, 미국 특허 출원 제20020113241호에는 폴리실라잔 막을 산화처리하여 아웃-가스를 최소화하는 기술이 기재되어 있다. 그러나 폴리실라잔을 산화처리 할 경우, 산화과정에서 폴리실라잔 자체 내에서 가교밀도를 동반할 수 있는 주요인자인 -Si-N-Si- 결합이 이미 -Si-O-Si- 구조로 치환되어 가교밀도가 저하될 수 있으며, 이러한 경우, 배리어 성능 및 접착력이 저하될 수 있다.In addition, US Patent Application No. 20020113241 describes a technique for minimizing out-gases by oxidizing polysilazane membranes. However, when polysilazane is oxidized, -Si-N-Si- bond, which is a major factor that can have crosslinking density in polysilazane itself, is already substituted with -Si-O-Si- structure. The crosslinking density may be lowered, in which case the barrier performance and the adhesion may be lowered.
아울러, 일본특허공개 평08-236274호에는 폴리실라잔 막을 단일막으로 구성하는 기술이 기재되어 있으나, 단일막으로 구성될 경우, 다층일 때의 구조에 비해 배리어 성능이 저하될 수 있으며, 광학소자의 도포 두께가 후막일수록, 아웃-가스의 원인이 될 수 있다.In addition, Japanese Patent Application Laid-Open No. 08-236274 discloses a technique for forming a polysilazane film as a single film. However, when configured as a single film, barrier performance may be deteriorated as compared to a structure when a multilayer is formed. The thicker the coating thickness is, the more it can cause out-gas.
한편 기존의 스마트폰 등 디스플레이의 보호필름의 경우 표면경도가 낮고, 내구성이 떨어지며, 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 낮은 문제점이 있었으며, 이와 같은 문제점을 해결하기 위해여는 3층 이상의 다수개의 기능층을 형성하여 각각의 기능을 형성하여야 하였으나 공정상의 불편함이 커서 적용에 어려움이 따르거나 생산성이 낮아지는 문제점이 있었다. On the other hand, in the case of the conventional protective film of the display, such as smartphones, there was a problem that the surface hardness is low, durability is low, fingerprint resistance, scratch resistance, pollution resistance, heat resistance, transmittance and haze characteristics are low, to solve such problems Each function had to be formed by forming a plurality of functional layers having three or more openings, but there was a problem in that the inconvenience of the process was large and the application was difficult or productivity was lowered.
상기와 같은 문제점을 해결하기 위해, 본 발명은 폴리실라잔층이 실리콘층의 상부 또는 하부에 별도의 층으로 형성되어 다층구조를 가짐으로써 아웃가스를 줄일 수 있는 광학소자의 다층구조 봉지방법 및 이를 통하여 제조된 다층구조의 봉지재를 포함하는 광학소자를 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention is a polysilazane layer is formed as a separate layer on the top or bottom of the silicon layer to have a multi-layer structure to reduce the outgas by the multilayer structure of the optical device and through An object of the present invention is to provide an optical device including a manufactured multilayer encapsulant.
또한 본 발명은 필름기재의 표면에 실리콘 층과 별도의 폴리실라잔 층을 형성시켜 굴절률, 광투과율, 경도 및 수분에 대한 배리어 특성 등을 동시에 향상시킬 수 있는 보호필름의 제조방법 및 상기 방법에 의하여 제조된 보호필름을 제공하는 것을 목적으로 한다.In addition, the present invention by forming a silicon layer and a separate polysilazane layer on the surface of the film substrate by the method and the method of manufacturing a protective film that can simultaneously improve the refractive index, light transmittance, hardness and barrier properties against moisture, etc. An object of the present invention is to provide a manufactured protective film.
상기 목적을 달성하기 위해 본 발명은 The present invention to achieve the above object
광학소자의 봉지방법에 있어서,In the sealing method of an optical element,
봉지하고자 하는 광학소자의 표면에 봉지재로 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 하는 광학소자의 다층구조 봉지방법을 제공한다.Provided is a method for encapsulating a multilayer structure of an optical device, comprising sequentially forming a silicon layer-polysilazane layer or a polysilazane layer-silicon layer with an encapsulant on the surface of an optical element to be encapsulated.
또한 본 발명은 상기 봉지방법에 의하여 봉지되어 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층의 다층 봉지재를 포함하는 광학소자를 제공한다.The present invention also provides an optical device that is encapsulated by the encapsulation method and includes a multilayer encapsulation material of a silicon layer-polysilazane layer or a polysilazane layer-silicon layer.
또한 본 발명은 상기 광학소자를 포함하는 광학기기를 포함한다.The present invention also includes an optical device including the optical element.
또한 본 발명은 보호필름의 제조방법에 있어서,In addition, the present invention provides a method of manufacturing a protective film,
필름기재의 표면에 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 하는 보호필름의 제조방법을 제공한다.It provides a method for producing a protective film, characterized in that to form a silicon layer-polysilazane layer or a polysilazane layer-silicon layer sequentially on the surface of the film substrate.
또한 본 발명은 상기 방법에 의하여 제조된 보호필름을 제공한다.In another aspect, the present invention provides a protective film produced by the above method.
본 발명의 봉지방법 및 본 발명에 따른 광학소자는 폴리실라잔층이 실리콘 층의 상부 및/또는 하부에 별도의 층으로 형성되는 다층구조를 가져 광학소자 발광물질(또는 칩)과 대기층 사이에 형성되어 굴절률 차이를 보상(Refractive Index matching)함으로써 광추출 효율을 증대시킬 수 있을 뿐 아니라, 아웃-가스(out-gas)를 최소화함으로써 내부/표면이 고르고 투명한 막을 형성할 수 있고, 경도 및 수분 또는 산소에 대한 배리어 특성 등이 우수하다. 따라서 본 발명의 봉지방법은 다양한 광학소자의 봉지, 특히 고사양 또는 후막의 봉지에 유용하게 적용할 수 있으며, 디스플레이의 보호필름으로도 유용하게 적용될 수 있다.The encapsulation method of the present invention and the optical device according to the present invention have a multilayer structure in which a polysilazane layer is formed as a separate layer on and / or under the silicon layer, and is formed between the optical device light emitting material (or chip) and the atmospheric layer. Refractive Index matching not only improves light extraction efficiency, but also minimizes out-gas, resulting in a uniform and transparent film on the inside / surface and in terms of hardness and moisture or oxygen. Excellent barrier properties. Therefore, the encapsulation method of the present invention can be usefully applied to the encapsulation of various optical elements, especially high specification or thick film, and can also be usefully applied as a protective film of a display.
도 1은 비교예에 따른 단층구조의 봉지재의 단면 개략도이다.1 is a schematic cross-sectional view of an encapsulant of a single layer structure according to a comparative example.
도 2 내지 4는 본 발명에 따른 다층구조의 봉지재의 단면 개략도이다.2 to 4 is a schematic cross-sectional view of the encapsulant of the multilayer structure according to the present invention.
도 5는 본 발명에 따른 봉지재를 적용한 광학소자의 단면도이다.5 is a cross-sectional view of an optical device to which an encapsulant according to the present invention is applied.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1: 렌즈1: lens
2: 봉지재2: encapsulant
3: 골드 와이어(Gold Wire)3: Gold Wire
4: 반사판4: reflector
5: 다이 부착 접착제(Die Attach Adhesive)5: Die Attach Adhesive
6: 리드 프레임(Lead Frame)6: Lead Frame
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 광학소자의 봉지방법은 광학소자의 봉지방법에 있어서, 봉지하고자 하는 광학소자의 표면에 봉지재로 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 한다.In the method of encapsulating an optical element of the present invention, the method for encapsulating the optical element is characterized in that the silicon layer-polysilazane layer or polysilazane layer-silicon layer is sequentially formed of an encapsulant on the surface of the optical element to be encapsulated. .
본 발명에 있어서 상기 실리콘층은 실리콘층 형성용 조성물을 코팅층을 형성하고자 하는 기재 위에 코팅하여 형성시킬 수 있다. 상기 실리콘층 형성용 조성물은 공지의 조성물을 사용할 수도 있으며, 바람직하기로 상기 실리콘층 형성용 조성물은 하기 화학식 1-1 또는 1-2의 폴리헤드랄 올리고머릭 실세스퀴옥산(POSS)을 포함하는 것이 좋다:In the present invention, the silicon layer may be formed by coating a composition for forming a silicon layer on a substrate to form a coating layer. The composition for forming the silicon layer may use a known composition, and preferably, the composition for forming the silicon layer may include a polyhedral oligomeric silsesquioxane (POSS) of Formula 1-1 or 1-2. It is good to:
[화학식 1-1][Formula 1-1]
Figure PCTKR2014002371-appb-I000001
Figure PCTKR2014002371-appb-I000001
[화학식 1-2] [Formula 1-2]
Figure PCTKR2014002371-appb-I000002
Figure PCTKR2014002371-appb-I000002
상기 식들에서, In the above formulas,
R은 각각 독립적으로 하기 화학식 2-1 또는 2-2의 화합물이고:Each R is independently a compound of Formula 2-1 or 2-2:
[화학식 2-1][Formula 2-1]
Figure PCTKR2014002371-appb-I000003
Figure PCTKR2014002371-appb-I000003
[화학식 2-2][Formula 2-2]
Figure PCTKR2014002371-appb-I000004
Figure PCTKR2014002371-appb-I000004
상기 식들에서, In the above formulas,
R1 내지 R6는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고, 바람직하게는 수소, 메틸, 에틸, 비닐 또는 페닐이며, 더욱 바람직하게는 R1은 수소 또는 메틸, R2는 메틸 또는 페닐이고, R3는 수소, 메틸 또는 페닐이고, R4는 수소, 메틸 또는 비닐이고, R5는 메틸, 비닐 또는 페닐이며, R6는 메틸, 에틸 또는 메틸이고;R 1 to R 6 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms, preferably hydrogen, methyl, ethyl, vinyl or phenyl, more preferably R 1 is Hydrogen or methyl, R 2 is methyl or phenyl, R 3 is hydrogen, methyl or phenyl, R 4 is hydrogen, methyl or vinyl, R 5 is methyl, vinyl or phenyl, R 6 is methyl, ethyl or methyl ego;
Ra는 각각 독립적으로 수소 또는 염소 이고;Each Ra is independently hydrogen or chlorine;
z는 3 내지 20의 정수, 바람직하게는 5 내지 20의 정수이고; z is an integer of 3 to 20, preferably an integer of 5 to 20 ;
a 및 b는 각각 독립적으로 0 내지 20의 정수이며, 이때 a+b는 3 내지 20의 정수이며,a and b are each independently an integer of 0 to 20, wherein a + b is an integer of 3 to 20,
M, Ma 및 Mb는 각각 독립적으로 메틸 또는 페닐이다.M, Ma and Mb are each independently methyl or phenyl.
상기 화학식 1-1 또는 1-2의 화합물은 하기 화학식 2-1의 화합물을 중심으로, 하기 화학식 2-2의 화합물, 하기 화학식 2-3의 화합물, 또는 하기 화학식 2-4 및 2-5의 화합물들을 반응물로 하여 증류수 상에서 축합반응을 통해 합성될 수 있다:The compound of Formula 1-1 or 1-2 is mainly a compound of Formula 2-1, a compound of Formula 2-2, a compound of Formula 2-3, or of Formulas 2-4 and 2-5 Compounds can be synthesized via condensation on distilled water with reactants:
[화학식 2-1][Formula 2-1]
Figure PCTKR2014002371-appb-I000005
Figure PCTKR2014002371-appb-I000005
[화학식 2-2][Formula 2-2]
Figure PCTKR2014002371-appb-I000006
Figure PCTKR2014002371-appb-I000006
[화학식 2-3][Formula 2-3]
Figure PCTKR2014002371-appb-I000007
Figure PCTKR2014002371-appb-I000007
[화학식 2-4][Formula 2-4]
Figure PCTKR2014002371-appb-I000008
Figure PCTKR2014002371-appb-I000008
[화학식 2-5][Formula 2-5]
Figure PCTKR2014002371-appb-I000009
Figure PCTKR2014002371-appb-I000009
상기 식에서,Where
R1 내지 R6, z, a 및 b는 상기에서 정의한 바와 같고;R 1 to R 6 , z, a and b are as defined above;
Ra와 R7은 각각 독립적으로 수소 또는 염소이며;Ra and R 7 are each independently hydrogen or chlorine;
x 및 y는 각각 독립적으로 1 내지 100의 정수이다.x and y are each independently an integer of 1-100.
본 발명에서 상기 폴리헤드랄 올리고머릭 실세스퀴옥산의 작용기 R은 유기용제에 녹이는 과정이 없어도 실록산 수지와 충분한 상용성을 가질 뿐 아니라, 올리고머 또는 공중합체의 경우 가교 가능한 부위를 포함하고 있어서 수지 조성물의 가교밀도 및 기계적 특성을 향상시킬 수 있으며, 가스 배리어 특성의 향상에도 도움을 준다.In the present invention, the functional group R of the polyhedral oligomeric silsesquioxane not only has sufficient compatibility with the siloxane resin even without dissolving in an organic solvent, and in the case of the oligomer or copolymer, the resin composition includes a crosslinkable moiety. It can improve the crosslinking density and mechanical properties, and also helps to improve the gas barrier properties.
본 발명에서 상기 폴리헤드랄 올리고머릭 실세스퀴옥산은 실리콘층 형성용 조성물에 대하여 0.01 내지 30 중량%, 바람직하게는 0.05 내지 15 중량의 양으로 사용할 수 있으며, 상기 함량을 초과하는 경우에는 실록산 수지와의 상용성이 저하될 수 있다.In the present invention, the polyhedral oligomeric silsesquioxane may be used in an amount of 0.01 to 30% by weight, preferably 0.05 to 15% by weight, based on the composition for forming a silicon layer, and when the content exceeds the siloxane resin Compatibility with may be lowered.
본 발명에 있어서 상기 실리콘층 형성용 조성물은 상기 폴리헤드랄 올리고머릭 실세스퀴옥산 이외에도 통상적으로 사용되는 실록산 수지, 가교수지, 실란 커플링제, 촉매 및 반응 지연제 등을 통상적인 양으로 포함할 수 있다.In the present invention, the silicone layer-forming composition may include a conventionally used siloxane resin, a crosslinked resin, a silane coupling agent, a catalyst, a reaction delaying agent, and the like in addition to the polyhedral oligomeric silsesquioxane. have.
본 발명의 일 양태에 따르면, 상기 조성물은 전체 조성물에 대하여 폴리헤드랄 올리고머릭 실세스퀴옥산 1 내지 30 중량%, 실록산 수지 20 내지 90 중량%, 가교수지 1 내지 30 중량%, 실란 커플링제 0.05 내지 20 중량%, 촉매 1 내지 3000 ppm 및 반응 지연제 1 내지 1000 ppm을 포함할 수 있다.According to one aspect of the invention, the composition is 1 to 30% by weight of polyhedral oligomeric silsesquioxane, 20 to 90% by weight of siloxane resin, 1 to 30% by weight of crosslinking resin, silane coupling agent 0.05 based on the total composition To 20 wt%, 1 to 3000 ppm of catalyst and 1 to 1000 ppm of reaction retardant.
본 발명에서 사용가능한 실록산 수지로는 폴리메틸비닐 실록산, 폴리(메틸페닐)하이드로실록산, 폴리(메틸페닐)실록산, 폴리(페닐비닐)-코-(메틸비닐)실세스퀴옥산, gelest사의 PDV-1635 등을 들 수 있고, 가교수지로는 실세스퀴옥산 공중합체, 페닐하이드로실세스퀴옥산 또는 디메틸실릴페닐에테르 등을 들 수 있고, 실란 커플링제로는 메타크릴레이트계 시클로실록산 등을 들 수 있고, 촉매로는 백금 촉매, 반응 지연제로는 에티닐트리메틸실란 또는 에티닐트리에틸실란 등을 들 수 있으나 이에 한정되는 것은 아니며, 이들을 각각 1종 이상 포함할 수 있다.The siloxane resins usable in the present invention include polymethylvinyl siloxane, poly (methylphenyl) hydrosiloxane, poly (methylphenyl) siloxane, poly (phenylvinyl) -co- (methylvinyl) silsesquioxane, PDV-1635 from gelest, etc. Examples of the crosslinking resin include silsesquioxane copolymer, phenylhydrosilsesquioxane, dimethylsilylphenyl ether, and the like. Examples of the silane coupling agent include methacrylate-based cyclosiloxanes. Examples of the catalyst include a platinum catalyst and an ethynyl trimethyl silane or an ethynyl triethyl silane as the reaction retardant, but are not limited thereto. The catalyst may include one or more of them.
또한, 본 발명에 있어서 상기 폴리실라잔층은 폴리실라잔층 형성용 조성물로 코팅하고자 하는 기재 위에 코팅하고, 경화시켜 제조할 수 있으며, 바람직하게는 폴리실라잔층 형성용 조성물은 하기 화학식 3의 유기 폴리실라잔 또는 실라잔계 올리고머를 포함하는 것이 좋다. 이 경우 광학소자의 배리어 특성을 저하시키는 아웃가스 현상을 제거하는데 더욱 좋다.In addition, in the present invention, the polysilazane layer may be prepared by coating on a substrate to be coated with a composition for forming a polysilazane layer and curing it, and preferably, the polysilazane layer-forming composition is an organic polysila of formula 3 It is preferable to include a glass or silazane-based oligomer. In this case, it is better to eliminate the outgas phenomenon which lowers the barrier property of the optical element.
[화학식 3][Formula 3]
Figure PCTKR2014002371-appb-I000010
Figure PCTKR2014002371-appb-I000010
상기 식에서, Where
RX 및 RY는 각각 독립적으로 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고, 바람직하게는 메틸, 에틸, 비닐 또는 페닐이며, 더욱 바람직하게는 RX는 메틸, 에틸 또는 페닐이고, RY는 메틸, 에틸 또는 비닐이고;R X and R Y are each independently alkyl, alkenyl or aryl having 6 to 50 carbon atoms, preferably methyl, ethyl, vinyl or phenyl, and more preferably R X is methyl, ethyl or Phenyl and R Y is methyl, ethyl or vinyl;
m 및 n은 각각 독립적으로 1 내지 20의 정수이며, 이때 m+n은 2 내지 21이다.m and n are each independently an integer of 1 to 20, wherein m + n is 2 to 21.
상기 폴리실라잔층 형성용 조성물에서 실라잔 화합물의 함량은 임의로 조절가능하며, 예를 들어, 조성물의 함량 100 중량%를 기준으로, 단독 또는 공지의 용매를 사용할 수도 있다.The content of the silazane compound in the polysilazane layer-forming composition may be arbitrarily controlled, for example, based on 100% by weight of the composition, it may be used alone or a known solvent.
바람직하기로 상기 폴리실라잔층 형성용 조성물은 하기 화학식 4의 변성 폴리실라잔 화합물을 추가로 포함할 수 있다.Preferably, the polysilazane layer-forming composition may further include a modified polysilazane compound of the formula (4).
[화학식 4][Formula 4]
Figure PCTKR2014002371-appb-I000011
Figure PCTKR2014002371-appb-I000011
상기 식에서,Where
Ra는 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 50의 아릴이고;Ra is alkyl of 1 to 20 carbon atoms or aryl of 6 to 50 carbon atoms;
Rb는 탄소수 1 내지 20의 탄화수소、바람직하게는 탄소수 1 내지 5의 탄화수소이며;Rb is a hydrocarbon having 1 to 20 carbon atoms, preferably a hydrocarbon having 1 to 5 carbon atoms;
p는 1 내지 15의 정수이다.p is an integer from 1 to 15.
상기 화학식 4의 화합물은 하기 화학식 4-1의 화합물과 하기 화학식 4-2의 화합물, 또는 하기 화학식 4-2의 화합물과 하기 화학식 4-3의 화합물을 중심으로 용액(solution) 중합을 통해 합성될 수 있다:The compound of Formula 4 may be synthesized through solution polymerization around a compound of Formula 4-1 and a compound of Formula 4-2, or a compound of Formula 4-2 and a compound of Formula 4-3 Can:
[화학식 4-1][Formula 4-1]
Figure PCTKR2014002371-appb-I000012
Figure PCTKR2014002371-appb-I000012
[화학식 4-2][Formula 4-2]
Figure PCTKR2014002371-appb-I000013
Figure PCTKR2014002371-appb-I000013
[화학식 4-3][Formula 4-3]
Figure PCTKR2014002371-appb-I000014
Figure PCTKR2014002371-appb-I000014
상기 식들에서,In the above formulas,
Rc는 수소 또는 염소이고;R c is hydrogen or chlorine;
Rd, Re 및 Rf는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이다.R d , R e and R f are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms.
상기 변성 폴리실라잔 화합물은 폴리실라잔층을 형성하는 조성물의 1 내지 50 중량%로 포함될 수 있으며, 상기 함량을 초과하는 경우에는 아웃가스 현상이 심화되어 배리어 특성이 저하될 수 있다.The modified polysilazane compound may be included in an amount of 1 to 50% by weight of the composition forming the polysilazane layer. When the modified polysilazane compound exceeds the content, the outgas phenomenon may be intensified to reduce the barrier property.
본 발명에서 상기 실리콘층 및 폴리실라잔층의 형성은 봉지하고자 하는 표면 위에 상기 실리콘층 형성용 조성물 또는 폴리실라잔층 형성용 조성물을 코팅한 후 경화과정을 통하여 실리콘층 또는 폴리실라잔층을 형성시킬 수 있다.In the present invention, the silicon layer and the polysilazane layer may be formed by coating the silicon layer-forming composition or the polysilazane layer-forming composition on a surface to be encapsulated and then forming a silicon layer or a polysilazane layer through a curing process. .
상기 코팅방법은 당업자가 임의로 선택하여 적용할 수 있음은 물론이며, 코팅두께 또한 당업자가 각 층의 두께를 임의로 적용할 수 있으며, 예를 들어, 실리콘층은 0.5 내지 2000 um, 바람직하게는 1 내지 1000 um일 수 있고, 폴리실라잔층은 0.01 내지 1000 um, 바람직하게는 0.02 내지 500 um일 수 있다.Of course, the coating method may be arbitrarily selected and applied by those skilled in the art, and the coating thickness may be arbitrarily applied by those skilled in the art. For example, the silicon layer may be 0.5 to 2000 um, preferably 1 to 1. 1000 um, the polysilazane layer may be 0.01 to 1000 um, preferably 0.02 to 500 um.
바람직하기로는 상기 폴리실라잔층의 형성을 위한 조성물의 코팅에 앞서서 상기 조성물은 전처리 과정을 거친 조성물을 사용하는 것이 좋다.Preferably, prior to coating the composition for forming the polysilazane layer, the composition may be a composition that has been pretreated.
상기 전처리는 진공조건 및 혼합공정이 가능한 반응기 내에서 10-1 Torr 이하의 압력, 70 내지 120 ℃의 온도에서 3 내지 24시간 동안 교반하는 것이다.The pretreatment is to stir for 3 to 24 hours at a pressure of 10 -1 Torr or less and a temperature of 70 to 120 ℃ in a reactor capable of vacuum conditions and mixing process.
상기와 같이 폴리실라잔을 전처리하면 폴리실라잔 재료 자체의 미반응 단량체 및 아웃-가스를 유발하는 인자를 최소화시킬 수 있으며, 따라서 이로 인해 발생할 수 있는 봉지층의 불균일 막의 생성을 억제하고 배리어 성능을 극대화시킬 수 있다.Pretreatment of polysilazane as described above can minimize the factors that cause unreacted monomers and out-gas of the polysilazane material itself, thus suppressing the generation of non-uniform film of encapsulation layer and barrier performance. It can be maximized.
본 발명에 있어서 상기 실리콘층의 형성시 열경화는 40 내지 250 ℃의 온도에서 5분 내지 3시간 동안 수행될 수 있고, 바람직하게는 2단계 이상의 용융 및 경화 공정, 더욱 바람직하게는 최소 2단계에서 최대 7단계까지 경화온도 및 경화시간을 세분화하여 경화를 진행할 수 있으며, 예를 들어, 100 내지 170 ℃에서의 1단계 경화, 130 내지 250 ℃의 온도에서 이루어지는 2단계의 경화를 포함하는 두 단계 이상으로 나누어서 수행될 수 있다.In the present invention, the curing of the silicon layer may be performed for 5 minutes to 3 hours at a temperature of 40 to 250 ° C., preferably at least two melting and curing processes, more preferably at least two steps. Curing may proceed by subdividing the curing temperature and curing time up to seven stages, for example, two or more stages including one stage curing at 100 to 170 ° C., two stage curing at a temperature of 130 to 250 ° C. Can be performed by dividing.
또한, 상기 폴리실라잔층의 형성시 열경화는 30 내지 250 ℃의 온도에서 5분 내지 2시간 동안 수행될 수 있으며, 바람직하게는 1 내지 3단계의 경화로 나누어서 경화를 진행할 수 있으며, 예를 들어, 30 내지 120 ℃에서의 1단계 경화, 90 내지 170 ℃에서의 2단계 경화 및 130 내지 250 ℃에서의 온도에서 이루어지는 3단계의 경화를 포함하는 용융 및 경화 공정으로 나누어서 수행될 수 있다.In addition, when the polysilazane layer is formed, thermal curing may be performed at a temperature of 30 to 250 ° C. for 5 minutes to 2 hours, and preferably, curing may be performed by dividing into 1 to 3 steps of curing. It can be carried out by dividing into a melting and curing process comprising a one-step curing at 30 to 120 ℃, two stage curing at 90 to 170 ℃ and three stages of curing at a temperature at 130 to 250 ℃.
상기와 같이 다단계의 열경화 공정을 수행하면 재료 자체의 포어 생성을 억제할 수 있고, 경화과정에서의 아웃-가스 생성을 최소화할 수 있다.By performing the multi-step thermosetting process as described above, it is possible to suppress the generation of pores of the material itself, and to minimize the out-gas generation during the curing process.
본 발명은 또한 상기 봉지방법에 의하여 봉지되어 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층의 다층 봉지재를 포함하는 광학소자를 제공한다. 도 2 내지 4는 본 발명의 다층 봉지재를 포함하는 광학소자의 단면 개략도이며, 도 5에서 봉지재(2)를 실리콘층-폴리실라잔층, 폴리실라잔층-실리콘층, 폴리실라잔층-실리콘층-폴리실라잔층, 또는 실리콘층-폴리실라잔층(1)-폴리실라잔층(2)으로 구성할 수 있다. The present invention also provides an optical element which is encapsulated by the encapsulation method and comprises a multilayer encapsulant of a silicon layer-polysilazane layer or a polysilazane layer-silicon layer. 2 to 4 are schematic cross-sectional views of an optical device including a multilayer encapsulation material of the present invention. In FIG. 5, the encapsulant 2 is formed of a silicon layer-polysilazane layer, a polysilazane layer-silicon layer, and a polysilazane layer-silicon layer. -Polysilazane layer or silicone layer-polysilazane layer (1)-polysilazane layer (2).
본 발명에 따른 광학소자는 실리콘층과 별도의 폴리실라잔층의 다층구조를 가짐으로써 광투과율 및 굴절률 등의 광학특성 및 외부 기체(수증기, 산소 등)에 대한 배리어 성능이 매우 우수하고, 하부 기재(기판 또는 실리콘 층)에 대한 접착력을 향상시키므로, 광학소자의 수명을 연장시키는데 효과적이며, 특히 LED를 포함하는 고사양의 광학소자, 예를 들어 LED 실외 조명 분야에 유용하게 사용될 수 있다.The optical device according to the present invention has a multilayer structure of a polysilazane layer separate from the silicon layer, and thus has excellent optical properties such as light transmittance and refractive index and excellent barrier performance against external gases (water vapor, oxygen, etc.) Since the adhesion to the substrate or the silicon layer) is improved, it is effective to extend the life of the optical element, and can be particularly useful in the field of high specification optical elements including LEDs, for example, LED outdoor lighting.
상기와 같은 조성물을 이용하여 제조된 본 발명의 다층구조의 광학소자 봉지재는 폴리실라잔 층을 실리콘 층의 상부 및/또는 하부, 바람직하게는 상부에 형성함으로써, 광학소자의 발광물질 또는 칩과 대기 사이의 굴절률(refractive index) 차이(예를 들어, LED의 굴절률은 약 2.5이고, 대기의 굴절률은 1.0)를 보상(Refractive Index matching)함으로써 광학 추출효율을 증대시킬 수 있으므로, LED를 이용하는 고사양의 광학소자에도 적용할 수 있다.The optical element encapsulant of the multi-layered structure of the present invention prepared using the composition as described above forms a polysilazane layer on the upper and / or lower portion of the silicon layer, preferably on the upper side, so that the light emitting material or the chip of the optical element and the atmosphere Optical extraction efficiency can be increased by compensating the refractive index difference between the refractive index (for example, the refractive index of the LED is about 2.5 and the atmospheric refractive index is 1.0), thereby increasing the optical extraction efficiency. Applicable also to an element.
본 발명에 따르면, 폴리실라잔 층이 실리콘 층의 상부에 형성될 경우, 굴절률은 1.0 내지 1.6이고, 폴리실라잔 층이 실리콘 층의 하부에 형성될 경우, 굴절률은 1.4 내지 2.5일 수 있다.According to the present invention, when the polysilazane layer is formed on top of the silicon layer, the refractive index may be 1.0 to 1.6, and when the polysilazane layer is formed on the bottom of the silicon layer, the refractive index may be 1.4 to 2.5.
또한, 실리콘 조성물 내에 폴리실라잔을 분산시켜 단층으로 제조된 기술(도 1)과 달리, 별도의 폴리실라잔 층을 형성함으로써, 폴리실라잔의 경화시 아웃-가스가 실리콘 층 내부에 갇히지 않아 포어 없이 막의 내부 및 표면이 균일하고 투명한 봉지막을 얻을 수 있을 뿐 아니라, 이층 이상의 막이 형성되므로, 수분 및 산소 등에 대한 배리어 특성도 우수하다.In addition, unlike the technique prepared by dispersing polysilazane in the silicone composition as a single layer (FIG. 1), by forming a separate polysilazane layer, the out-gas is not trapped inside the silicone layer when the polysilazane is cured. Without being able to obtain an encapsulation film that is uniform and transparent inside and on the surface of the film, two or more films are formed, so that the barrier property against moisture and oxygen is excellent.
또한 본 발명은 보호필름의 제조방법에 있어서, 필름기재의 표면에 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 하는 보호필름의 제조방법 및 상기 방법에 의하여 제조된 보호필름을 제공하는 바, 본 발명에 따른 보호필름의 제조방법에서 실리콘층 및 폴리실라잔층을 형성하는 방법은 상기 봉지방법에서 적용되는 방법이 사용될 수 있으며, 필름기재는 공지의 보호필름에 사용되는 필름기재가 사용될 수 있다. 상기 필름기재의 일예로는 Polyester계 필름(PET, PES, PEN)이나 Polyolefine계 필름(PE, PP)이 적합하며, 특히 광학소자용으로는 PET 또는 PES 등의 polyester계 필름이 적합하다. 또한 본 발명에 따른 보호필름은 보호필름의 상면에 점착형태의 이형필름을 더욱 포함할 수 있다. 이형필름을 포함하는 보호필름은 보호대상 디바이스에 본 발명에 따른 보호필름을 부착시 이형필름을 제조한 후 라미네이팅하여 보호필름을 부착할 수 있게 하여 공정상의 편의를 더욱 도모할 수 있다.In another aspect, the present invention provides a method for producing a protective film, the method for producing a protective film, characterized in that to form a silicon layer-polysilazane layer or polysilazane layer-silicon layer sequentially on the surface of the film base material To provide a protective film, the method for forming the silicon layer and the polysilazane layer in the method of manufacturing a protective film according to the present invention can be used in the encapsulation method, the film base is used in a known protective film The film substrate to be used may be used. As an example of the film base material, a polyester film (PET, PES, PEN) or a polyolefine film (PE, PP) is suitable, and a polyester film such as PET or PES is particularly suitable for an optical device. In addition, the protective film according to the present invention may further include a release film of the adhesive form on the upper surface of the protective film. The protective film including the release film may further facilitate the process by attaching the protective film by laminating after manufacturing the release film when attaching the protective film according to the present invention to the device to be protected.
본 발명에 따른 보호필름은 필름기재의 표면에 실리콘층 및 폴리실라잔층의 형성만으로도 보호필름의 굴절률, 광투과율, 경도 및 수분에 대한 배리어 특성 등을 동시에 향상시킬 수 있어 광학기기 또는 디스플레이기기 등에 유용하게 적용될 수 있다.The protective film according to the present invention can improve the refractive index, light transmittance, hardness, and barrier properties against water by simultaneously forming a silicon layer and a polysilazane layer on the surface of the film substrate, which is useful for optical devices or display devices. Can be applied.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
합성예 1Synthesis Example 1 : 폴리헤드랄 올리고머릭 실세스퀴옥산(C-POSS)의 합성: Synthesis of Polyhedral Oligomeric Silsesquioxane (C-POSS)
반응물로서 테트라실라노페닐 POSS 및 디클로로메틸페닐실란의 혼합물에 증류수를 상압 및 약 30 ℃에서 서서히 적가하면서 교반한 다음, 50 ℃에서 약 3시간 정도 추가 교반하고 용매를 제거함으로써 폴리헤드랄 올리고머릭 실세스퀴옥산을 합성하였다.To the mixture of tetrasilanophenyl POSS and dichloromethylphenylsilane as a reactant, distilled water was slowly added dropwise at atmospheric pressure and about 30 ° C., followed by additional stirring at 50 ° C. for about 3 hours, and the solvent was removed to remove the polyhedral oligomeric silses. Quioxane was synthesized.
제조예 1Preparation Example 1 : 폴리실라잔의 전처리: Pretreatment of Polysilazane
폴리실라잔으로서 HTT-1500(AZ사) 및 HTT-1800(AZ사)을 각각 진공 조건 및 혼합 공정이 가능한 반응기 내에 넣고, 반응기를 진공 조건(압력: 10-1 Torr 이하)으로 변환한 다음, 약 50 내지 100 ℃ 사이에서 약 3 내지 24시간 동안 교반시켜 전처리하였다.As polysilazane, HTT-1500 (AZ) and HTT-1800 (AZ) were placed in a reactor capable of vacuum conditions and mixing processes, respectively, and the reactor was converted to vacuum conditions (pressure: 10 −1 Torr or less), Pretreatment was carried out by stirring between about 50 to 100 ° C. for about 3 to 24 hours.
실시예 1Example 1
하기 표 1의 조성에 따라 다층구조의 광학소자 봉지재용 수지 조성물을 제조하였다.According to the composition of Table 1 to prepare a resin composition for an optical device sealing material of a multi-layer structure.
구체적으로, 합성예 1의 C-POSS, 실록산 수지 2, 가교수지 1 및 2, 및 실란 커플링제를 정량만큼 첨가하여 조성물 A를 제조하고, 실록산 수지 1, 촉매 및 반응지연제를 첨가하여 조성물 B를 제조한 다음, 조성물 A 및 B에 첨가된 성분들의 몰비를 고려하고, 공자전 진공탈포기를 사용하여 혼합액을 일액형으로 제조하였다.Specifically, the composition A was prepared by adding C-POSS, siloxane resin 2, crosslinked resins 1 and 2, and silane coupling agent of Synthesis Example 1 in an amount, and siloxane resin 1, catalyst and reaction delaying agent were added to composition B. Next, considering the molar ratio of the components added to Compositions A and B, the mixed solution was prepared in a one-component form using a co-rotating vacuum degassing machine.
또한 폴리실라잔층 형성용 조성물은 전처리된 폴리실라잔을 사용하였다.In addition, the polysilazane layer-forming composition was pretreated polysilazane.
실시예 2, 및 비교예 1-3Example 2, and Comparative Examples 1-3
하기 표 1의 조성에 따라 상기 실시예 1과 동일한 방법으로 다층구조의 광학소자 봉지재용 수지 조성물을 제조하였다. According to the composition of Table 1, a resin composition for an optical element encapsulant having a multilayer structure was prepared in the same manner as in Example 1.
표 1
구분 실시예(단위: 중량부, ppm) 비교예(단위: 중량부, ppm)
1 2 1 2 3
실리콘층 형성용조성물 실록산 수지1 54 54 54 54 0
실록산 수지2 22 27 22 27 0
가교수지 1 3 5 3 5 0
가교수지 2 17 11 17 11 0
C-POSS 2 1 2 1 0
실란 커플링제 0.005 0.005 0.005 0.005 0
촉매(ppm) 3 3 3 3 0
반응지연제 1(ppm) 50 100 50 100 0
반응지연제 2(ppm) 100 50 100 50 0
폴리실라잔층 형성용 조성물 폴리실라잔 1 3 2 0 0 3
폴리실라잔 2 0 1 0 0 0
Table 1
division Example (unit: parts by weight, ppm) Comparative example (unit: parts by weight, ppm)
One 2 One 2 3
Silicon layer formation composition Siloxane Resin1 54 54 54 54 0
Siloxane Resin 2 22 27 22 27 0
Crosslinked Resin 1 3 5 3 5 0
Crosslinked Resin 2 17 11 17 11 0
C-POSS 2 One 2 One 0
Silane coupling agent 0.005 0.005 0.005 0.005 0
Catalyst (ppm) 3 3 3 3 0
Retardant 1 (ppm) 50 100 50 100 0
Retardant 2 (ppm) 100 50 100 50 0
Polysilazane layer forming composition Polysilazane 1 3 2 0 0 3
Polysilazane 2 0 One 0 0 0
실록산 수지 1 : 폴리(메틸페닐)실록산 Siloxane Resin 1: Poly (methylphenyl) siloxane
실록산 수지 2 : 폴리(페닐비닐)-코-(메틸비닐)실세스퀴옥산Siloxane resin 2: poly (phenylvinyl) -co- (methylvinyl) silsesquioxane
가교수지 1 : 페닐하이드로실세스퀴옥산Crosslinked Resin 1: Phenylhydrosilsesquioxane
가교수지 2 : 디메틸실릴페닐에테르Crosslinked resin 2: dimethylsilylphenyl ether
C-POSS : 상기 합성예 1에서 제조된 폴리헤드랄 올리고머릭 실세스퀴옥산C-POSS: polyhedral oligomeric silsesquioxane prepared in Synthesis Example 1
실란 커플링제 : 메타크릴레이트계 기능성 시클로실록산Silane Coupling Agent: Methacrylate Functional Cyclosiloxane
촉매 : SIP6830.3(gelest사)Catalyst: SIP6830.3 (gelest)
반응 지연제 1 : 에티닐트리에틸실란(gelest사) Reaction Retardant 1: Ethynyltriethylsilane (gelest)
반응 지연제 2 : 에티닐트리메틸실란(gelest사)Reaction Retardant 2: Ethynyltrimethylsilane (gelest)
폴리실라잔 1 : 전처리된 HTT-1500(AZ사)Polysilazane 1: pretreated HTT-1500 (AZ)
폴리실라잔 2 : 전처리된 HTT-1800(AZ사)Polysilazane 2: Pretreated HTT-1800 (AZ)
시험예Test Example
상기 실시예 1 및 2, 및 비교예 1 및 2에 따른 다층구조의 광학소자 봉지재용 수지 조성물의 물성 및 성능 평가를 하기와 같이 수행하였으며, 그 결과를 하기 표 2에 기재하였다.The physical properties and performance evaluation of the resin composition for an optical device encapsulant of the multilayer structure according to Examples 1 and 2, and Comparative Examples 1 and 2 were performed as follows, and the results are shown in Table 2 below.
1) 광투과율: 상기 실리콘층 형성용 조성물을 상하 유리(glass) 및 테프론 프레임(Teflon frame) 표면에 50 mm× 50 mm×1 mm의 크기가 되도록 도포한 후, 150 ℃에서 1시간 및 170 ℃에서 1시간 동안 경화한 다음, 다시 상부에 폴리실라잔(PSZ)층 형성용 조성물을 약 5 um의 두께로 코팅한 다음, 40 ℃에서 30분, 100 ℃에서 30분 및 170 ℃에서 1시간 동안 경화하여 시편을 제조하였다. 자외-가시선 분광광도계(메카시스(Mecasys)사)를 사용하여 400 내지 780 nm의 파장에서 상기 제조된 시편의 5 포인트별 투과율을 측정하였으며, 얻어진 파장범위 내의 평균값으로부터 광투과율을 평가하였다. 이때, 비교예의 조성물을 이용하여 제조된 실리콘 단층막 구조의 광투과율을 100%로 했을 때를 기준으로 하여, 실시예의 조성물을 이용하여 제조된 다층구조의 광투과율을 나타내었다.1) Light transmittance: After coating the composition for forming the silicon layer to the size of 50 mm × 50 mm × 1 mm on the upper and lower glass and Teflon frame surface, 1 hour and 170 ℃ at 150 ℃ After curing for 1 hour, and then again coated with a composition for forming a polysilazane (PSZ) layer on the top to a thickness of about 5 um, 30 minutes at 40 ℃, 30 minutes at 100 ℃ and 1 hour at 170 ℃ The specimen was prepared by curing. The UV-vis spectrophotometer (Mecasys) was used to measure the transmittance of five points of the prepared specimen at a wavelength of 400 to 780 nm, and the light transmittance was evaluated from the average value within the obtained wavelength range. At this time, the light transmittance of the multilayered structure manufactured using the composition of the Example was shown based on the time when the light transmittance of the silicon monolayer film structure manufactured using the composition of the comparative example was 100%.
2) 경도: 20 mm× 20 mm× 15 mm 테프론 몰드 표면에 상기 실리콘층 형성용 조성물을 도포한 후, 150 ℃에서 1시간 및 170 ℃에서 1시간 동안 경화한 다음, 다시 상부에 폴리실라잔(PSZ)층 형성용 조성물을 약 5 um의 두께로 코팅하고, 40 ℃에서 30분, 100 ℃에서 30분 및 170 ℃에서 1시간 동안 경화하여 시편을 제조한 다음, 쇼어(Shore) 경도계를 사용하여 측정하였다.2) Hardness: After applying the composition for forming the silicon layer on the surface of 20 mm × 20 mm × 15 mm Teflon mold, and cured for 1 hour at 150 ℃ and 1 hour at 170 ℃, and then again polysilazane ( PSZ) coating the composition for forming a layer to a thickness of about 5 um, and cured for 30 minutes at 40 ℃, 30 minutes at 100 ℃ and 1 hour at 170 ℃ to prepare a specimen, using a Shore hardness tester Measured.
3) 수증기 투과율: 테프론 몰드 표면에 상기 실리콘층 형성용 조성물을 50 mm× 50 mm×1 mm의 크기가 되도록 도포한 후 150 ℃에서 1시간 및 170 ℃에서 1시간 동안 경화하고, 폴리실라잔(PSZ)층 형성용 조성물을 약 5 um의 두께로 코팅한 다음, 40 ℃에서 30분, 100 ℃에서 30분 및 170 ℃에서 1시간 동안 경화하여 시편을 제조하였다. 투습율 시험기(PERMATRAN-W, MOCON사)를 이용하여 37.8 ℃, 100 %RH 분위기에서 약 24시간 동안 상기 시편의 수증기 투과율을 측정하였으며, 그 평균값을 하기 표 2에 나타내었다.3) Water vapor transmission rate: After coating the composition for forming the silicon layer to the size of 50 mm × 50 mm × 1 mm on the surface of the Teflon mold, and cured for 1 hour at 150 ℃ and 1 hour at 170 ℃, polysilazane ( The composition for PSZ) layer formation was coated to a thickness of about 5 um, and then cured for 30 minutes at 40 ° C, 30 minutes at 100 ° C, and 1 hour at 170 ° C to prepare a specimen. The water vapor transmission rate of the specimen was measured for about 24 hours at 37.8 ° C. and 100% RH atmosphere using a moisture permeability tester (PERMATRAN-W, MOCON Co., Ltd.). The average values are shown in Table 2 below.
표 2
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
광투과율(%) 120 110 100 100 80
경도(Shore A) 76 75 70 72 2
수증기 투과율(g/m2) 4 5 14 15 105
TABLE 2
Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3
Light transmittance (%) 120 110 100 100 80
Shore A 76 75 70 72 2
Water vapor transmission rate (g / m 2 ) 4 5 14 15 105
상기 표 2에 나타난 바와 같이, 폴리실라잔 층이 실리콘 층의 상부 및/또는 하부에 별도의 층으로 형성된 다층구조를 갖는 본 발명의 봉지재는 광투과율 및 경도가 우수할 뿐 아니라, 향상된 수증기 투과율을 나타내었다.As shown in Table 2, the encapsulant of the present invention having a multilayer structure in which the polysilazane layer is formed as a separate layer on the top and / or bottom of the silicon layer is not only excellent in light transmittance and hardness, but also improves water vapor transmission rate. Indicated.
본 발명의 봉지방법 및 본 발명에 따른 광학소자는 폴리실라잔층이 실리콘 층의 상부 및/또는 하부에 별도의 층으로 형성되는 다층구조를 가져 광학소자 발광물질(또는 칩)과 대기층 사이에 형성되어 굴절률 차이를 보상(Refractive Index matching)함으로써 광추출 효율을 증대시킬 수 있을 뿐 아니라, 아웃-가스(out-gas)를 최소화함으로써 내부/표면이 고르고 투명한 막을 형성할 수 있고, 경도 및 수분 또는 산소에 대한 배리어 특성 등이 우수하다. 따라서 본 발명의 봉지방법은 다양한 광학소자의 봉지, 특히 고사양 또는 후막의 봉지에 유용하게 적용할 수 있으며, 디스플레이의 보호필름으로도 유용하게 적용될 수 있다.The encapsulation method of the present invention and the optical device according to the present invention have a multilayer structure in which a polysilazane layer is formed as a separate layer on and / or under the silicon layer, and is formed between the optical device light emitting material (or chip) and the atmospheric layer. Refractive Index matching not only improves light extraction efficiency, but also minimizes out-gas, resulting in a uniform and transparent film on the inside / surface and in terms of hardness and moisture or oxygen. Excellent barrier properties. Therefore, the encapsulation method of the present invention can be usefully applied to the encapsulation of various optical elements, especially high specification or thick film, and can also be usefully applied as a protective film of a display.

Claims (22)

  1. 광학소자의 봉지방법에 있어서,In the sealing method of an optical element,
    봉지하고자 하는 광학소자의 표면에 봉지재로 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.A method of encapsulating a multilayer structure of an optical element, comprising sequentially forming a silicon layer-polysilazane layer or a polysilazane layer-silicon layer with an encapsulant on the surface of the optical element to be encapsulated.
  2. 제1항에 있어서,The method of claim 1,
    상기 실리콘층은 하기 화학식 1-1 또는 1-2의 폴리헤드랄 올리고머릭 실세스퀴옥산(POSS)을 포함하는 실리콘층 형성용 조성물을 코팅하고 경화시켜 제조하는 것을 특징으로 하는 광학소자의 다층구조 봉지방법:The silicon layer is a multi-layer structure of the optical device, characterized in that by coating and curing the composition for forming a silicon layer containing a polyhedral oligomeric silsesquioxane (POSS) of the formula 1-1 or 1-2 Encapsulation Method:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2014002371-appb-I000015
    Figure PCTKR2014002371-appb-I000015
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2014002371-appb-I000016
    Figure PCTKR2014002371-appb-I000016
    상기 식들에서, In the above formulas,
    R은 각각 독립적으로 하기 화학식 2-1 또는 2-2의 화합물이고:Each R is independently a compound of Formula 2-1 or 2-2:
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2014002371-appb-I000017
    Figure PCTKR2014002371-appb-I000017
    [화학식 2-2][Formula 2-2]
    Figure PCTKR2014002371-appb-I000018
    Figure PCTKR2014002371-appb-I000018
    상기 식들에서, In the above formulas,
    R1 내지 R6는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고;R 1 to R 6 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms;
    Ra는 각각 독립적으로 수소 또는 염소 이고;Each Ra is independently hydrogen or chlorine;
    z는 3 내지 20의 정수이고; z is an integer from 3 to 20 ;
    a 및 b는 각각 독립적으로 0 내지 20의 정수이며, 이때 a+b는 3 내지 20의 정수이이며,a and b are each independently an integer of 0 to 20, where a + b is an integer of 3 to 20,
    M, Ma 및 Mb는 각각 독립적으로 methyl 또는 phenyl이다.M, Ma and Mb are each independently methyl or phenyl.
  3. 제2항에 있어서,The method of claim 2,
    상기 화학식 1-1 또는 1-2의 폴리헤드랄 올리고머릭 실세스퀴옥산이 실리콘층 형성용 조성물에 대하여 1 내지 30 중량%의 양으로 사용되는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The polyhedral oligomeric silsesquioxane of Formula 1-1 or 1-2 is used in an amount of 1 to 30% by weight based on the composition for forming a silicon layer.
  4. 제2항에 있어서,The method of claim 2,
    상기 경화는 40 내지 250 ℃의 온도에서 5분 내지 3시간 동안 이루어지는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The curing is a method for encapsulating a multilayer structure of an optical device, characterized in that for 5 minutes to 3 hours at a temperature of 40 to 250 ℃.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 경화는 2단계 이상의 용융 및 경화 공정으로 나누어서 수행되는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The hardening is a multi-layer structure encapsulation method of the optical element, characterized in that carried out by dividing into two or more melting and curing processes.
  6. 제2항에 있어서,The method of claim 2,
    상기 실리콘층의 코팅은 0.5 내지 2000 um인 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The coating of the silicon layer is a multilayer structure encapsulation method of an optical device, characterized in that 0.5 to 2000um.
  7. 제1항에 있어서,The method of claim 1,
    상기 폴리실라잔층은 하기 화학식 3의 폴리실라잔을 포함하는 폴리실라잔층 형성용 조성물을 코팅하고 경화시켜 제조하는 것을 특징으로 하는 광학소자의 다층구조 봉지방법:The polysilazane layer is a method for encapsulating a multilayer structure of an optical device, characterized in that the coating and curing the polysilazane layer forming composition comprising a polysilazane of the formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2014002371-appb-I000019
    Figure PCTKR2014002371-appb-I000019
    상기 식에서, Where
    RX 및 RY는 각각 독립적으로 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고;R X and R Y are each independently alkyl, alkenyl or aryl having 6 to 50 carbon atoms;
    m 및 n은 각각 독립적으로 1 내지 20의 정수이며, 이때 m+n은 2 내지 21이다.m and n are each independently an integer of 1 to 20, wherein m + n is 2 to 21.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리실라잔층 형성용 조성물은 상기 화학식 3로 표시되는 폴리실라잔을 1 내지 50 중량% 포함하는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The polysilazane layer-forming composition comprises a method for encapsulating the multilayer structure of the optical device, characterized in that it comprises 1 to 50% by weight of polysilazane represented by the formula (3).
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리실라잔층 형성용 조성물은 하기 화학식 4로 표시되는 변성 폴리실라잔을 더욱 포함하는 것을 특징으로 하는 광학소자의 다층구조 봉지방법:The polysilazane layer-forming composition further comprises a modified polysilazane represented by the formula (4)
    [화학식 4][Formula 4]
    Figure PCTKR2014002371-appb-I000020
    Figure PCTKR2014002371-appb-I000020
    상기 식에서,Where
    Ra는 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 50의 아릴이고;Ra is alkyl of 1 to 20 carbon atoms or aryl of 6 to 50 carbon atoms;
    Rb는 탄소수 1 내지 5의 탄화수소이며;Rb is a hydrocarbon of 1 to 5 carbon atoms;
    p는 1 내지 15의 정수이다.p is an integer from 1 to 15.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리실라잔층 형성용 조성물을 코팅 전에 10-1 Torr 이하의 압력, 70 내지 120 ℃의 온도에서 3 내지 24시간 동안 교반하는 전처리를 하고, 코팅하는 것을 수행되는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The multi-layer structure of the optical device, characterized in that the pre-treatment for stirring for 3 to 24 hours at a pressure of 10 -1 Torr or less, temperature of 70 to 120 ℃ before coating the polysilazane layer forming composition, and coating How to encapsulate.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 경화는 30 내지 250 ℃의 온도에서 5분 내지 2시간 동안 이루어지는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The curing is a method for encapsulating a multilayer structure of an optical device, characterized in that for 5 minutes to 2 hours at a temperature of 30 to 250 ℃.
  12. 제11항에 있어서,The method of claim 11,
    상기 경화는 1 내지 3단계의 경화로 나누어서 수행되는 것을 특징으로 하는 광학소자의 다층구조 봉지방법.The hardening is a multi-layer structure encapsulation method of the optical element, characterized in that carried out by dividing into one to three stages of curing.
  13. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리실라잔층의 코팅은 0.01 내지 1000 um인 것을 특징으로 하는 광학소자의 다층구조 봉지방법.Coating of the polysilazane layer is a multilayer structure encapsulation method of an optical device, characterized in that 0.01 to 1000um.
  14. 제1항 내지 제13항 중 어느 한 항 기재의 봉지방법에 의하여 봉지된 다층구조의 봉지재를 포함하는 것을 특징으로 하는 광학소자.An optical element comprising a sealing material of a multilayer structure sealed by the sealing method according to any one of claims 1 to 13.
  15. 제14항에 있어서,The method of claim 14,
    상기 광학소자는 실리콘층 위에 폴리실라잔층이 형성된 것을 특징으로 하는 광학소자.The optical device is an optical device, characterized in that the polysilazane layer is formed on the silicon layer.
  16. 제14항에 있어서,The method of claim 14,
    광학소자의 굴절율은 1.0 내지 1.6인 것을 특징으로 하는 광학소자.The refractive index of the optical element is an optical element, characterized in that from 1.0 to 1.6.
  17. 제14항 기재의 광학소자를 포함하는 광학기기.An optical device comprising the optical element of claim 14.
  18. 제17항에 있어서,The method of claim 17,
    광학기기는 LED 조명기구인 것을 특징으로 하는 광학기기.The optical device is an optical device, characterized in that the LED lighting fixture.
  19. 보호필름의 제조방법에 있어서,In the manufacturing method of the protective film,
    필름기재의 표면에 실리콘층-폴리실라잔층 또는 폴리실라잔층-실리콘층을 순차적으로 형성시키는 것을 특징으로 하는 보호필름의 제조방법.Method for producing a protective film, characterized in that to form a silicon layer-polysilazane layer or a polysilazane layer-silicon layer sequentially on the surface of the film substrate.
  20. 제19항에 있어서,The method of claim 19,
    상기 실리콘층은 하기 화학식 1-1 또는 1-2의 폴리헤드랄 올리고머릭 실세스퀴옥산(POSS)을 포함하는 실리콘층 형성용 조성물을 코팅하고 경화시켜 제조하는 것을 특징으로 하는 보호필름의 제조방법:The silicon layer is prepared by coating and curing a composition for forming a silicon layer comprising a polyhedral oligomeric silsesquioxane (POSS) of Formula 1-1 or 1-2 :
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2014002371-appb-I000021
    Figure PCTKR2014002371-appb-I000021
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2014002371-appb-I000022
    Figure PCTKR2014002371-appb-I000022
    상기 식들에서, In the above formulas,
    R은 각각 독립적으로 하기 화학식 2-1 또는 2-2의 화합물이고:Each R is independently a compound of Formula 2-1 or 2-2:
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2014002371-appb-I000023
    Figure PCTKR2014002371-appb-I000023
    [화학식 2-2][Formula 2-2]
    Figure PCTKR2014002371-appb-I000024
    Figure PCTKR2014002371-appb-I000024
    상기 식들에서, In the above formulas,
    R1 내지 R6는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고;R 1 to R 6 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl or aryl having 6 to 50 carbon atoms;
    Ra는 각각 독립적으로 수소 또는 염소 이고;Each Ra is independently hydrogen or chlorine;
    z는 3 내지 20의 정수이고; z is an integer from 3 to 20 ;
    a 및 b는 각각 독립적으로 0 내지 20의 정수이며, 이때 a+b는 3 내지 20의 정수이이며,a and b are each independently an integer of 0 to 20, where a + b is an integer of 3 to 20,
    M, Ma 및 Mb는 각각 독립적으로 methyl 또는 phenyl이다.M, Ma and Mb are each independently methyl or phenyl.
  21. 제19항에 있어서,The method of claim 19,
    상기 폴리실라잔층은 하기 화학식 3의 폴리실라잔을 포함하는 폴리실라잔층 형성용 조성물을 코팅하고 경화시켜 제조하는 것을 특징으로 하는 보호필름의 제조방법:The polysilazane layer is prepared by coating and curing the polysilazane layer-forming composition comprising the polysilazane of the following formula (3):
    [화학식 3][Formula 3]
    Figure PCTKR2014002371-appb-I000025
    Figure PCTKR2014002371-appb-I000025
    상기 식에서, Where
    RX 및 RY는 각각 독립적으로 탄소수 1 내지 20의 알킬, 알케닐 또는 탄소수 6 내지 50의 아릴이고;R X and R Y are each independently alkyl, alkenyl or aryl having 6 to 50 carbon atoms;
    m 및 n은 각각 독립적으로 1 내지 20의 정수이며, 이때 m+n은 2 내지 21이다.m and n are each independently an integer of 1 to 20, wherein m + n is 2 to 21.
  22. 제19항 기재의 방법에 의하여 제조된 보호필름.A protective film produced by the method of claim 19.
PCT/KR2014/002371 2013-03-21 2014-03-20 Multi-layer structure encapsulating method for optical element WO2014148852A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130030269 2013-03-21
KR10-2013-0030269 2013-03-21
KR10-2014-0029466 2014-03-13
KR1020140029466A KR20140115983A (en) 2013-03-21 2014-03-13 Encapsulating method for optical device with multi-layered structure

Publications (1)

Publication Number Publication Date
WO2014148852A1 true WO2014148852A1 (en) 2014-09-25

Family

ID=51580440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002371 WO2014148852A1 (en) 2013-03-21 2014-03-20 Multi-layer structure encapsulating method for optical element

Country Status (1)

Country Link
WO (1) WO2014148852A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062715A1 (en) * 2006-09-08 2008-03-13 Samsung Electronics Co., Ltd. Backlight assembly and liquid crystal display having the same
KR20090107882A (en) * 2008-04-10 2009-10-14 삼성전자주식회사 Graded composition encapsulation thin film comprising anchoring layer and method of fabricating the same
KR20100003344A (en) * 2003-12-26 2010-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing an organic semiconductor device
KR20110053470A (en) * 2008-09-05 2011-05-23 다우 코닝 도레이 캄파니 리미티드 Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
KR20120011230A (en) * 2010-07-28 2012-02-07 서울반도체 주식회사 Light emitting diode package and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100003344A (en) * 2003-12-26 2010-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing an organic semiconductor device
US20080062715A1 (en) * 2006-09-08 2008-03-13 Samsung Electronics Co., Ltd. Backlight assembly and liquid crystal display having the same
KR20090107882A (en) * 2008-04-10 2009-10-14 삼성전자주식회사 Graded composition encapsulation thin film comprising anchoring layer and method of fabricating the same
KR20110053470A (en) * 2008-09-05 2011-05-23 다우 코닝 도레이 캄파니 리미티드 Curable organopolysiloxane composition, optical semiconductor element sealant, and optical semiconductor device
KR20120011230A (en) * 2010-07-28 2012-02-07 서울반도체 주식회사 Light emitting diode package and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2014133287A1 (en) Resin composition for encapsulating optical element
WO2012102540A2 (en) Photovoltaic cell module
WO2014084637A1 (en) Light-emitting diode
WO2011090362A2 (en) Silicone resin
WO2015099443A1 (en) Silsesquioxane having hot melt extrusion forming capability, highly transparent and highly heat-resistant plastic transparent substrate using same, and method of manufacturing same
WO2014109455A1 (en) Photocurable composition, barrier layer comprising same, and encapsulated device comprising same
WO2012173461A2 (en) Sheet for photovoltaic cell
WO2011090365A2 (en) Sheet for photovoltaic cells
WO2013015591A2 (en) Curable composition
WO2011081325A2 (en) Light-transmitting resin for an encapsulating material and electronic device comprising same
WO2012093907A2 (en) Curable composition
WO2013077702A1 (en) Curable composition
WO2017171488A1 (en) Manufacturing method for barrier film
WO2014017888A1 (en) Hardening composition
WO2013077699A1 (en) Curable composition
WO2014092314A1 (en) Encapsulation composition and encapsulated device comprising same
WO2011081326A2 (en) Light-transmitting resin for an encapsulating material and electronic device comprising same
WO2015060512A1 (en) Composition for sealing organic light emitting diode and organic light emitting diode display device manufactured using same
WO2014163442A1 (en) Curable composition
WO2014092267A1 (en) Photocurable composition, barrier layer comprising same, and encapsulated apparatus comprising same
WO2012173459A2 (en) Composition having high refraction
WO2017061778A1 (en) Composition for increasing adhesion of radiation curable interfaces, and method for modifying surface of substrate by using same
WO2011090367A2 (en) Sheet for photovoltaic cells
WO2014148852A1 (en) Multi-layer structure encapsulating method for optical element
WO2012093908A2 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770862

Country of ref document: EP

Kind code of ref document: A1