WO2014148492A1 - Body having fine concavities and convexities in surface, and production method of body having fine concavities and convexities in surface - Google Patents

Body having fine concavities and convexities in surface, and production method of body having fine concavities and convexities in surface Download PDF

Info

Publication number
WO2014148492A1
WO2014148492A1 PCT/JP2014/057345 JP2014057345W WO2014148492A1 WO 2014148492 A1 WO2014148492 A1 WO 2014148492A1 JP 2014057345 W JP2014057345 W JP 2014057345W WO 2014148492 A1 WO2014148492 A1 WO 2014148492A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fine
fine unevenness
light
sheet
Prior art date
Application number
PCT/JP2014/057345
Other languages
French (fr)
Japanese (ja)
Inventor
喜久 正田
俊樹 岡安
江梨子 遠藤
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to CN201480016299.8A priority Critical patent/CN105143927B/en
Publication of WO2014148492A1 publication Critical patent/WO2014148492A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure

Definitions

  • the present invention relates to a light diffusing body and a surface fine concavo-convex body suitably used as a light diffusing body forming original plate and a method for producing the same.
  • the present invention claims priority based on Japanese Patent Application No. 2013-55722 filed in Japan on March 18, 2013 and Japanese Patent Application No. 2014-034687 filed in Japan on February 25, 2014. , The contents of which are incorporated herein.
  • a sheet-like surface fine uneven body on which a concave / convex pattern composed of fine wavy unevenness is formed is used as a light diffuser such as a light diffusing sheet because of its optical characteristics.
  • a method for producing a light diffusive sheet for example, in Patent Document 1, a laminated sheet provided with a resin hard layer on a resin substrate made of a heat shrinkable film is heated to shrink the heat shrinkable film.
  • a method of forming a concavo-convex pattern on the surface of a hard layer by deforming the hard layer so as to be folded into a concavo-convex shape.
  • Patent Document 1 describes that a concavo-convex pattern with small variation in orientation can be formed by stretching after shrinking a heat-shrinkable film.
  • a concavo-convex pattern with small variation in orientation can be formed by stretching after shrinking a heat-shrinkable film.
  • the diffusion angle in the main diffusion direction is large (for example, about 25 to 30 °), and the diffusion angle in the direction orthogonal to the main diffusion direction is small (for example, about 3 °). Excellent anisotropy.
  • a light diffusive sheet having a certain diffusion angle (at least 4 °) in a direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction is also required. It is like that.
  • a light diffusing sheet having a certain diffusion angle in a direction perpendicular to the surface is also required.
  • Such a light diffusable sheet is considered to be produced by, for example, using a biaxial heat-shrinkable film that heat-shrinks in the biaxial direction as a heat-shrinkable film and shrinking it in the biaxial direction.
  • a biaxial heat-shrinkable film that heat-shrinks in the biaxial direction as a heat-shrinkable film and shrinking it in the biaxial direction.
  • the present invention has been made in view of the above circumstances, and when used as a light diffuser, also in a direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction.
  • a fine surface irregularity body having a certain diffusion angle (at least 4 °) and easy to manufacture, and a method for manufacturing the same.
  • the present invention has the following aspects.
  • a surface fine concavo-convex body having fine irregularities formed on the surface wherein the fine irregularities are: A wavy uneven pattern having a plurality of ridges meandering non-parallel to each other and concave ridges formed between the plurality of ridges, and having a most frequent pitch of 3 to 20 ⁇ m; A fine surface irregularity having a number of hemispherical recesses or hemispherical projections formed on the pattern;
  • ⁇ 2> The fine surface irregularities according to ⁇ 1>, wherein the hemispherical concave portion or the hemispherical convex portion has a mode diameter of 1 to 10 ⁇ m;
  • ⁇ 3> The surface fine unevenness according to ⁇ 1> or ⁇ 2>, wherein the average height of the ridges is 4 to 7 ⁇ m; ⁇ 4> The surface fine unevenness according to any one of ⁇ 1> to ⁇ 3>, wherein an occupied
  • the particles are made of a material whose particle shape is not changed by heat at a temperature lower than the glass transition temperature of the resin constituting the substrate film by 10 ° C., and the particle diameter of the particles is larger than the thickness of the hard layer.
  • Manufacturing method of fine surface irregularities; ⁇ 8> The substrate film is a uniaxial heat-shrinkable film, and the deformation step is a step of heating the laminated sheet to shrink the uniaxial heat-shrinkable film.
  • Method for producing uneven body ⁇ 9> Using the surface fine unevenness produced by the production method according to ⁇ 7> or ⁇ 8> as an original plate for forming a light diffuser, and having a transfer step of transferring the fine unevenness of the surface fine unevenness.
  • a method for producing a light diffuser Using the surface fine unevenness produced by the production method according to ⁇ 7> or ⁇ 8> as an original plate for forming a light diffuser, and having a transfer step of transferring the fine unevenness of the surface fine unevenness.
  • this invention has the following structures.
  • the wavy uneven pattern includes a plurality of irregularly formed ridges and a recess between the plurality of ridges, and the plurality of ridges meander non-parallel to each other.
  • a laminated sheet is formed by providing a hard layer having a thickness of more than 0.05 ⁇ m and less than 5.0 ⁇ m made of matrix resin and particles dispersed in the matrix resin on one side of a base film made of resin.
  • the glass transition temperature of the matrix resin is 10 ° C.
  • the particles are made of a material whose particle shape is not changed by heat at a temperature lower than a temperature 10 ° C. higher than the glass transition temperature of the resin constituting the base film,
  • Manufacturing method of uneven body [8] A transfer step of transferring the fine unevenness of the surface fine unevenness using the surface fine unevenness produced by the production method according to [6] or [7] as a light diffuser forming original plate, A method for producing a light diffuser.
  • a certain diffusion angle (at least 4) in the direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction when used as a light diffuser, a certain diffusion angle (at least 4) in the direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction. And a method for producing the same can be provided.
  • FIG. 2 is an optical micrograph obtained by observing fine irregularities of the light diffusive sheet of Example 1.
  • FIG. 4 is another laser micrograph of the microscopic unevenness of the light diffusing sheet of Example 1 observed.
  • FIG. 1B is an enlarged longitudinal sectional view schematically showing a portion cut along the line I-I ′ in the optical micrograph of FIG. 1A. It is the Fourier-transform image which acquired the gray scale image from the optical microscope photograph of the light diffusable sheet
  • FIG. 4 is a graph in which a line L1-1 is drawn from the center of FIG.
  • FIG. 4 is a graph in which a line L1-2 is drawn from the center of FIG. 3 in a direction orthogonal to L1-1 and a frequency distribution of the line L1-2 is plotted.
  • It is the longitudinal cross-sectional view of the principal part of the light diffusable sheet
  • FIG. 1A is an optical micrograph (plan view; vertical 0.4 mm ⁇ horizontal) of one side of a light diffusing sheet (light diffusing body) which is an embodiment of the surface fine irregularities of the present invention (Example 1 described later).
  • FIG. 1B is a laser micrograph of the microscopic irregularities of the light diffusing sheet of Example 1 observed with a laser microscope (“VK-8510” manufactured by Keyence Corporation).
  • a line ⁇ in FIG. 1B indicates a height profile of a cut surface obtained by cutting the light diffusing sheet along the line ⁇ in the horizontal direction in the figure. 1A and FIG. 1B have different magnifications.
  • FIG. 1A is an optical micrograph (plan view; vertical 0.4 mm ⁇ horizontal) of one side of a light diffusing sheet (light diffusing body) which is an embodiment of the surface fine irregularities of the present invention (Example 1 described later).
  • FIG. 1B is a laser micrograph of the microscopic irregularities of the light diffusing sheet of Example 1 observed with
  • FIG. 2 is an enlarged vertical cross-sectional view schematically showing a portion cut along a line II ′ (a line along a direction in which a protruding ridge and a recessed ridge described later are repeated) in the optical micrograph of FIG. 1A.
  • FIG. 2 shows a simplified view from the viewpoint of easy understanding of the longitudinal cross-sectional shape of the light diffusive sheet.
  • the “surface fine uneven body” means an article having a fine uneven structure on the surface.
  • the light diffusing sheet 10 of this example includes a transparent base material 11 made of polyethylene terephthalate (PET) and an ionizing radiation curable resin provided on one surface of the base material 11. It has a two-layer structure with a transparent surface layer 12 made of a cured product, and a wavy uneven pattern 13 and a number of protrusions formed on the uneven pattern 13 are formed on the exposed surface of the surface layer 12.
  • corrugation comprised from the part 14 is formed.
  • the convex portion 14 is formed in a substantially hemispherical shape.
  • the exposed surface of the base material 11 (the surface on the side opposite to the side on which the surface layer 12 is provided) is a smooth surface.
  • the wavy uneven pattern 13 in the fine unevenness extends in the vertical direction in FIGS. 1A and 1B, and in FIG. 2, a plurality of streaky protrusions 13a extending in a direction perpendicular to the paper surface, and the plurality of protrusions.
  • the groove portions 13b between the portions 13a are alternately repeated in one direction (lateral direction in FIGS. 1A, 1B and 2).
  • the vertical cross-sectional shape of each ridge 13 a is a tapered shape that becomes thinner from the proximal end side toward the distal end side.
  • each of the plurality of ridge portions 13a meanders, is nonparallel to each other, and is irregularly formed.
  • the ridge line meanders in each protruding line part 13a, and the valley line meanders in each recessed line part 13b. Further, the interval between the ridge lines of the adjacent ridge portions 13a is not constant, and the interval between the valley lines of the adjacent ridge portions 13b is not constant.
  • the irregularity means that when the light diffusion sheet 10 is viewed from the normal direction with respect to the base material, the ridges 13a meander and are not parallel to each other.
  • the ridge line of the part 13a meanders, the valley line of each concave line part 13b meanders, the interval of the ridge line of the adjacent convex line part 13a is not constant, and the interval of the valley line of the adjacent concave line part 13b is Means not constant.
  • the height of the ridge line is not constant in each protruding line part 13a, and the height of the valley line is not fixed in each recessed line part 13b. Therefore, as shown in FIG. 2, the longitudinal cross-sectional shape of each protruding item
  • line part 13a is different, respectively, and is not uniform but irregular.
  • the fine unevenness is composed of such a wave-like uneven pattern 13 and a large number of randomly distributed convex portions 14.
  • the ridgeline of the “ridge 13a” means a line that connects the tops of the ridges 13a.
  • the convex part 14 exists in the middle of the ridgeline of the convex part 13a, it refers to the line drawn so that the top part of the convex part 14 may be passed.
  • a transparent material such as a resin such as polycarbonate, polymethyl methacrylate, polyethylene acrylate, and polystyrene, and glass can be used.
  • the thickness of the substrate 11 is, for example, 30 to 500 ⁇ m.
  • the surface layer 12 include a cured product of a thermosetting resin, a thermoplastic resin, and the like in addition to a cured product of an ionizing radiation curable resin.
  • the ionizing radiation curable resin include an ultraviolet curable resin and an electron beam curable resin.
  • the thickness of the surface layer 12 may be sufficient to form the wavy uneven pattern 13, and the thickness of the thickest portion is preferably about 10 to 25 ⁇ m.
  • the thickness of the surface layer 12 means a thickness before the surface layer 12 is deformed, and can be measured using an optical non-contact film thickness measuring instrument.
  • the fine unevenness of the light diffusing sheet 10 is composed of a wavy uneven pattern 13 and a large number of protrusions 14.
  • the fine unevenness of the surface fine unevenness of the present invention is wavy. You may be comprised from the uneven
  • the repeating direction (the horizontal direction in FIGS. 1A and 1B) of the wavy uneven pattern 13 is referred to as the Y direction
  • the direction orthogonal to the Y direction is referred to as the X direction.
  • the first direction may be referred to as the Y-axis direction
  • the second direction may be referred to as the X-axis direction
  • the direction orthogonal to the XY axis may be referred to as the third direction or the normal direction of the substrate of the surface fine unevenness.
  • the most frequent pitch of the wavy uneven pattern 13 is 3 to 20 ⁇ m from the viewpoint of exhibiting light diffusibility.
  • the most frequent pitch of the wavy uneven pattern 13 is preferably 7 to 15 ⁇ m, more preferably 11 to 13 ⁇ m.
  • the pitch is the distance between the tops of adjacent ridges.
  • a surface on which fine irregularities are formed (hereinafter may be referred to as a fine irregularity forming surface) or a smooth surface side opposite to the surface with respect to the light diffusing sheet 10
  • a sufficient diffusion angle in the Y direction for example, 18 ° or more, preferably 23 °.
  • 1/10 diffusion angle is (diffusion angle ⁇ 1.4 + 25 °) or less, preferably (diffusion angle ⁇ 1.4 + 22 °) or less, more preferably (diffusion angle ⁇ 1.4 + 20).
  • ° Indicates the following.
  • the upper limit value of the diffusion angle in the Y direction is not particularly limited, but is, for example, 30 °.
  • the fine unevenness of the light diffusing sheet 10 in the illustrated example has a large number of randomly formed convex portions 14 in addition to the wavy uneven pattern 13 mainly responsible for diffusion in the main diffusion direction as described above. is doing. Therefore, the anisotropy of the wavy uneven pattern 13 is moderately weakened by the protrusions 14.
  • a certain diffusion angle smaller than the Y direction for example, 4 ° or more, preferably 8 ° or more, more preferably 10 ° or more.
  • 1/10 diffusion angle is (diffusion angle ⁇ 1.6 + 25 °) or less, preferably ( (Diffusion angle ⁇ 1.6 + 20 °) or less, more preferably (Diffusion angle ⁇ 1.6 + 18 °) or less).
  • the upper limit value of the diffusion angle in the X direction is not particularly limited, but is 20 °, for example.
  • the apparent mode diameter of the convex portion 14 is preferably 1 to 10 ⁇ m, more preferably 3 to 6 ⁇ m, still more preferably 4 to 5 ⁇ m. If the apparent mode diameter of the convex portion 14 is within the above range, the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction are controlled within the above range.
  • the Y direction is preferably controlled at 25 to 30 °
  • the X direction is preferably controlled at 10 to 15 °.
  • the 1/10 diffusion angle in both the Y direction and the X direction can be easily controlled within the above range.
  • the Y direction is preferably (diffusion angle ⁇ 1.4 + 20 °) or less
  • the X direction is preferably (diffusion angle ⁇ 1.6 + 18 °) or less.
  • the diffusion angle in this specification (generally referred to as “FWHM”) and the 1/10 diffusion angle are measured using a light distribution characteristic measurement device (for example, GENESISIA GonioFar Field Profiler (manufactured by Genesia)). It can be measured by the following method.
  • the light diffusing sheet 10 is irradiated with light from one of the surfaces, that is, the fine unevenness forming surface or the opposite smooth surface side.
  • the illuminance curve is obtained by plotting the illuminance value with respect to the light emission angle in each Y direction.
  • the half value width (full half value width) in the illuminance curve is defined as the diffusion angle in the main diffusion direction (Y direction).
  • the 1/10 value width (all 1/10 value widths) is defined as a 1/10 diffusion angle in the main diffusion direction (Y direction).
  • the illuminance of the emitted light within the range of the light emission angle of ⁇ 90 ° to + 90 ° along the X direction is measured every 1 ° as a relative value with respect to the reference value.
  • the illuminance curve is obtained by plotting the illuminance value with respect to the light emission angle in each X direction.
  • the half value width (total half value width) in the illuminance curve is defined as a diffusion angle in a direction (X direction) orthogonal to the main diffusion direction.
  • the 1/10 value width (total 1/10 value width) is defined as a 1/10 diffusion angle in the direction (X direction) orthogonal to the main diffusion direction.
  • the mode pitch of the wavy uneven pattern 13 and the apparent mode diameter of the convex portion 14 are measured and defined as follows.
  • an optical micrograph as shown in FIG. 1A is obtained for the fine surface irregularities.
  • the observation visual field at that time is 0.4 to 1.6 mm in length and 0.5 to 2 mm in width. If this image is a compressed image such as jpeg, it is converted into a grayscale Tif image. Then, Fourier transform is performed to obtain a Fourier transform image as shown in FIG.
  • the schematic diagram of the Fourier-transform image of FIG. 3 is shown as FIG.
  • the white circular ring B in FIG. 3 includes information on the diameters of a large number of convex portions because the shape thereof has no directionality. Therefore, when the line L1-1 is drawn from the center of FIG. 3 so as to pass through the point having the maximum frequency in A1, and the frequency distribution of the line L1-1 is plotted, the graph of FIG. 5 is obtained. Further, when the line L1-2 is drawn from the center of FIG. 3 in the direction orthogonal to L1-1 and the frequency distribution of the line L1-2 is plotted, the graph of FIG. 6 is obtained. In FIG.
  • 1 / XA having a high frequency is the most frequent pitch of the wavy uneven pattern in the light diffusing sheet 10.
  • 1 / XB and 1 / YB which are frequently used, are the mode diameters in the L1-1 direction and the L1-2 direction of the large number of convex portions in the light diffusing sheet 10, respectively. That is, 1 / XA is the mode pitch of the wavy uneven pattern, and 1 / (XB + YB) is the apparent mode diameter of a number of convex portions.
  • the orientation from the center means the direction of the periodic structure (uneven pattern 13) existing in FIG. 1A, and the distance from the center is the period of the periodic structure existing in FIG.
  • FIG. 1A Means the reciprocal.
  • XB is a position where the frequency is maximum in a portion passing through the ring of line L1-1 (not shown in FIG. 4)
  • YB is a line L1-2. This is the position where the frequency is maximum in the portion passing through the ring (not shown in FIG. 4).
  • the average value of the mode pitches obtained as described above for each photo is defined as the “mode pitch” of the wavy uneven pattern 13. That is, the “most frequent pitch” refers to the distance between the tops having the highest appearance frequency among the distances between the tops of the adjacent ridges.
  • the average value of the apparent mode diameter obtained as described above for each photograph is defined as the “apparent mode diameter” of the convex portion 14. That is, the “apparent mode diameter” refers to a diameter having the highest appearance frequency among the diameters of the convex portions formed on the concave / convex pattern.
  • the fine irregularities of the surface fine irregularities may have concave portions instead of convex portions, and the “apparent mode diameter” of the concave portions is the same as the “apparent mode diameter” of the convex portions. Desired.
  • the average height of the ridges 13a constituting the wavy uneven pattern 13 is preferably 4 to 7 ⁇ m, more preferably 5 to 6 ⁇ m. When the average height of the ridges 13a is within the above range, sufficient light diffusibility can be obtained.
  • the average height of the ridges 13a of the wavy uneven pattern 13 is measured and defined as follows. First, the fine unevenness forming surface of the light diffusive sheet 10 is observed with an atomic force microscope, and from the observation result, the surface obtained by cutting the wavy uneven pattern 13 along the Y direction is a longitudinal sectional view as shown in FIG. Get. And the height H of the said protruding item
  • line part 13 is calculated
  • the height H of the ridge portion 13a is set to H1 as a vertical distance between the top portion T of the ridge portion 13a and the bottom portion B1 of the ridge portion 13b located on one side of the ridge portion 13a.
  • H2 (H1 + H2) / 2.
  • the average height of the convex portions 14 is preferably 0.5 to 3 ⁇ m, more preferably 1 to 2 ⁇ m, and still more preferably 1.1 to 1.5 ⁇ m.
  • the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction can be easily controlled within the above range.
  • the average height of the convex part 14 is measured and defined as follows.
  • the cross-sectional view of FIG. 7 is obtained as described above.
  • the waveform is separated into a shape derived from the wavy uneven pattern 13 and a shape derived from the convex portion 14.
  • the waveform separation is performed using a shape derived from the wavy uneven pattern 13 as a sine curve.
  • the shape derived from the wavy uneven pattern 13 is subtracted from the cross-sectional view of FIG. 8 to obtain a cross-sectional view of only the shape derived from the convex portion 14 as shown in FIG.
  • H1 ′ is a vertical distance between the top portion T ′ of the convex portion 14 and the base line L ⁇ on one side of the convex portion 14
  • H2 ′ is the top portion T ′ of the convex portion 14. It is a vertical distance between the baseline L beta of the other side of the convex portion 14.
  • Such measurement is performed on 50 convex portions 14, and the average value of 50 data is defined as "average height of convex portions".
  • the occupation area ratio of the convex portions 14 in the fine irregularities of the light diffusing sheet 10 is preferably 30 to 70%, more preferably 40 to 60%, and further preferably 45 to 55%.
  • the occupation area ratio of the convex portion 14 is in the above range, the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction can be easily controlled within the above range.
  • ⁇ (%) S1 ⁇ 100 / S2 (where r in the formula is 1 ⁇ 2 (ie, radius) of the apparent mode diameter of the convex portion)
  • the light diffusive sheet 10 in the illustrated example is formed on one surface of the corrugated uneven pattern 13 mainly having diffusion in the Y direction, and the corrugated uneven pattern 13.
  • the pattern 13 has fine irregularities including a large number of convex portions 14 that moderately weaken the anisotropy of the pattern 13 and increase diffusion in the X direction. Therefore, when light is incident on the light diffusing sheet 10 from any one surface, a sufficient diffusion angle of, for example, 18 ° or more, preferably 23 ° or more, more preferably 25 ° or more is obtained in the Y direction. .
  • a sufficient 1/10 diffusion angle of (diffusion angle ⁇ 1.4 + 25 °) or less, preferably (diffusion angle ⁇ 1.4 + 22 °) or less, more preferably (diffusion angle ⁇ 1.4 + 20 °) or less is obtained.
  • a diffusion angle of, for example, 4 ° or more, preferably 8 ° or more, more preferably 10 ° or more can be obtained in the X direction.
  • a sufficient 1/10 diffusion angle of (diffusion angle ⁇ 1.6 + 25 °) or less, preferably (diffusion angle ⁇ 1.6 + 20 °) or less, more preferably (diffusion angle ⁇ 1.6 + 18 °) or less is obtained. .
  • the ridges 13a constituting the wavy uneven pattern 13 of the illustrated light diffusing sheet 10 are non-parallel to each other and meandering, and have no regularity. For this reason, the anisotropy of the uneven pattern 13 is moderately weakened, and the effect of increasing the diffusion angle in the X direction is considered to be more prominently combined with the effect of forming the convex portion 14. It is done.
  • a method of increasing the diffusion angle in the X direction a method of adding a light diffusing agent is also conceivable. However, the addition of a light diffusing agent tends to lower the light transmittance of the light diffusing sheet.
  • the method of increasing the diffusion angle in the X direction by specifically controlling fine irregularities as in the present invention it is not necessary to add a light diffusing agent, and even when it is added, the amount of addition Can be made in small quantities. Therefore, the light transmittance can be maintained high.
  • Such a light diffusing sheet 10 in the illustrated example is, for example, in a head-up display (HUD) system that clearly displays current speed information, car navigation information, and the like on a windshield of a car that is formed in a gently curved surface. It is preferably used as a diffusion member.
  • the light diffusing sheet 10 is also suitably used as a diffusing member for a projector; a diffusing member for a backlight of a television, a monitor, a notebook personal computer, a tablet personal computer, a smartphone, a mobile phone, or the like.
  • the light diffusive sheet 10 is also preferably used as a diffusing member or the like constituting the exit surface of the light guide member in a scanner light source in which LED light sources are arranged in a line, used in a copying machine or the like.
  • One aspect of the present invention is the use of the above-described surface fine irregularities as a light diffusing sheet or a light diffusing member, or a method of using the same. Further, when the surface fine irregularities of the present invention are used as a light diffusing sheet or a light diffusing member, the application destination thereof is as described above for a head-up display system, a backlight for a personal computer or a mobile phone, or Examples thereof include a diffusion member such as an emission surface of the light guide member.
  • the light diffusing sheet 10 in the illustrated example uses a light diffusing sheet forming original plate (light diffusing material forming original plate) having fine irregularities on the surface as a mold, and the light diffusing sheet forming original plate (hereinafter referred to as “original plate”). (Also referred to as)).
  • original plate the light diffusing sheet forming original plate
  • One aspect of the present invention is the use of the surface fine concavo-convex body as a light diffusing sheet or an original plate for producing a diffusing member.
  • the light diffusing sheet 10 in the illustrated example is a secondary transfer product obtained by transferring the fine irregularities of the original plate to obtain a primary transfer product, and then further transferring the fine irregularities of the primary transfer product.
  • the fine unevenness of the primary transfer product is a reverse pattern of the fine unevenness of the original plate, but the fine unevenness of the secondary transfer product is the same pattern as the fine unevenness of the original plate. Therefore, in this example, a surface fine uneven body having the same fine unevenness as the light diffusing sheet 10 in the illustrated example is manufactured as an original, and this is used as a transfer mold for secondary transfer, and the light diffusing sheet 10 in the illustrated example is produced. Is manufacturing.
  • the fine unevenness of the transfer product when n is an even number, the fine unevenness of the transfer product is the same pattern as the fine unevenness of the original plate, but when n is an odd number, the transfer product has The fine unevenness becomes a reversal pattern of the fine unevenness of the original.
  • the fine unevenness of the n-order transfer product when n is an n-order transfer product having an odd number and the fine unevenness of the original used for transfer has a convex part, the fine unevenness of the n-order transfer product (n is an odd number)
  • the convex part has a concave part that is inverted.
  • the fine irregularities of the surface fine irregularities of the present invention may be in the form of having concave portions instead of convex portions.
  • the surface fine irregularities of the present invention include not only the above-mentioned original plate and the original n-order transfer product (n is an even number) but also the original n-order transfer product (n is an odd number).
  • the manufacturing method of the light diffusable sheet 10 of the example of illustration which is a secondary transfer product is demonstrated.
  • the surface fine uneven body 20 shown in FIG. 11 is manufactured and used as an original.
  • the original plate has a base material 21 made of resin and a hard layer 22 provided on one entire surface of the base material 21, and the exposed surface of the hard layer 22 has the light diffusing sheet 10 in the illustrated example. Are formed in the same fine irregularities.
  • the hard layer 22 includes a matrix resin 22a and particles 22b dispersed in the matrix resin 22a.
  • the hard layer 22 is deformed so as to be folded, and the thickness t of the hard layer 22 (part where no particles exist). Is set smaller than the particle diameter d of the particles. Therefore, the hard layer 22 has a wavy uneven pattern 13 ′ (projection strip portion 13 a ′ and recess strip portion 13 b ′) formed by being deformed as folded, and each particle 22 b dispersed in the hard layer 22.
  • the contact surface of the base material 21 with the hard layer 22 has a concavo-convex shape following the shape of the hard layer 22 deformed as if folded.
  • the thickness t of the hard layer 22 is a portion of the hard layer 22 where the particles 22b are not present from a micrograph of a cross section (longitudinal cross section) obtained by cutting the surface fine irregularities 20 perpendicular to the surface direction. This is the average value of the numerical values obtained when randomly extracting more than one point and measuring the thickness of each part in the normal direction.
  • the particle diameter d of the particles 22b is a mode diameter (mode) measured by a laser diffraction / scattering particle size distribution analyzer for uniformly dispersed particles.
  • the surface fine concavo-convex body 20 shown in FIG. 11 is a lamination process in which a hard layer in which particles are dispersed in a matrix resin is provided on one side of a base film made of resin to form a laminated sheet. And a deformation step of deforming at least a hard layer of the laminated sheet so as to be folded.
  • the vertical cross section of each protruding line portion 13a ' is tapered from the proximal end side toward the distal end side.
  • the glass transition temperature Tg2 of the matrix resin 22a needs to be 10 ° C. or more higher than the glass transition temperature Tg1 of the resin constituting the substrate 21.
  • the particles 22b need to be made of a material whose particle shape does not change due to heat at a temperature lower than a temperature 10 ° C. higher than the glass transition temperature of the resin constituting the substrate 21.
  • the particle shape does not change means that the particle shape and particle diameter do not change before and after heating.
  • the resin constituting the base material 21 and the matrix resin 22a need to be selected so that the difference between these glass transition temperatures (Tg2 ⁇ Tg1) is 10 ° C. or more. 20 degreeC or more is preferable and 30 degreeC or more is more preferable.
  • (Tg2 ⁇ Tg1) is 10 ° C. or higher, processing such as heat shrinkage can be easily performed at a temperature between Tg2 and Tg1 in a deformation process described later.
  • the temperature between Tg2 and Tg1 is the processing temperature, it can be processed under the condition that the Young's modulus of the base material is higher than the Young's modulus of the matrix resin 22a.
  • the uneven pattern 13 ′ can be easily formed.
  • the processing temperature is a temperature at which the hard layer 22 is deformed so as to be folded at least in the deformation process (for example, a heating temperature at the time of thermal contraction).
  • (Tg2 ⁇ Tg1) is preferably 550 ° C. or less. More preferably, it is 200 ° C. or lower. That is, in one embodiment of the present invention, (Tg2-Tg1) is preferably 10 to 550 ° C, more preferably 30 to 200 ° C.
  • (Tg2-Tg1) is preferably 10 to 550 ° C, more preferably 30 to 200 ° C.
  • the difference in Young's modulus between the base material 21 and the matrix resin 22a at the processing temperature in the deformation process described later is preferably 0.01 to 300 GPa because the wavy uneven pattern 13 ′ can be easily formed. More preferably, it is 1 to 10 GPa.
  • the Young's modulus is a value measured according to JIS K 7113-1995.
  • Tg1 is preferably ⁇ 150 to 300 ° C., more preferably ⁇ 120 to 200 ° C. There is no resin having a Tg1 lower than ⁇ 150 ° C., and if the Tg1 is 300 ° C. or lower, the temperature can be easily raised and heated to the above processing temperature.
  • the Young's modulus of the resin constituting the substrate 21 at the above processing temperature is preferably 0.01 to 100 MPa, and more preferably 0.1 to 10 MPa. If the Young's modulus of the resin constituting the base material 21 is 0.01 MPa or more, it is a hardness that can be used as the base material, and if it is 100 MPa or less, the hard layer 22 is deformed following the deformation at the same time. It is possible softness.
  • the material constituting the particles 22b at least one kind of material whose particle shape does not change by heat can be used at a temperature lower than 10 ° C. higher than the glass transition temperature of the resin constituting the substrate 21.
  • the glass transition temperature Tg3 is the glass transition temperature of the matrix resin. It is necessary to satisfy the same condition as Tg2, that is, (Tg3-Tg1) should be selected so as to be 10 ° C. or higher. (Tg3-Tg1) is more preferably 20 ° C. or higher, and 30 ° C. or higher. Further preferred.
  • the particles 22b are not deformed and melted, and the convex portions 14 ′ are reliably formed.
  • the material constituting the particles 22b is a material that does not have a glass transition temperature, such as an internally cross-linked resin
  • the Vicat softening temperature (as defined in JIS K7206) satisfies the above-described condition, that is, It is preferably higher than the glass transition temperature of the resin constituting the substrate 21 by 10 ° C. or higher, preferably higher by 20 ° C. or higher, more preferably higher by 30 ° C. or higher.
  • glass transition temperature Tg3 corresponds also to the Vicat softening temperature, when the particle
  • Tg2 and Tg3 are preferably 40 to 400 ° C, and more preferably 80 to 250 ° C. If Tg2 and Tg3 are 40 ° C. or higher, the above-mentioned processing temperature can be increased to room temperature or higher, which is useful, and matrix resin 22a or Tg3 having Tg2 higher than 400 ° C. is higher than 400 ° C. Use of the particles 22b is less necessary from the viewpoint of economy.
  • the Young's modulus of the matrix resin 22a at the above processing temperature is preferably 0.01 to 300 GPa, more preferably 0.1 to 10 GPa. If the Young's modulus of the matrix resin 22a is 0.01 GPa or more, sufficient hardness is obtained from the Young's modulus at the processing temperature of the resin constituting the substrate 21, and after the wavy uneven pattern 13 'is formed, The hardness is sufficient to maintain the uneven pattern 13 ′. Use of a resin having a Young's modulus exceeding 300 GPa as the matrix resin 22a is less necessary from the viewpoint of economy.
  • the resin constituting the substrate 21 examples include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, polystyrene resins such as styrene-butadiene block copolymers, polyvinyl chloride, polyvinylidene chloride, and polydimethylsiloxane.
  • polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, polystyrene resins such as styrene-butadiene block copolymers, polyvinyl chloride, polyvinylidene chloride, and polydimethylsiloxane.
  • resins such as silicone resin, fluororesin, ABS resin, polyamide, acrylic resin, polycarbonate, and polycycloolefin.
  • polyester and polycarbonate are preferable because a desired uneven shape can be easily obtained after shrinkage.
  • the resin preferably has a mass average molecular weight of 1,000 to 1
  • the mass average molecular weight refers to a value measured using gel permeation chromatography.
  • the eluent one appropriately selected from tetrahydrofuran, chloroform, hexafluoroisopropanol and the like can be used.
  • the molecular weight standard substance a material appropriately selected from known molecular weight polystyrene, polymethyl methacrylate and the like can be used.
  • the measurement temperature can be appropriately selected within the range of 35 to 50 ° C.
  • the matrix resin 22a is selected according to the type of the base material 21 so that the glass transition temperature Tg2 satisfies the above-mentioned conditions.
  • polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene -Acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, fluororesin, etc. can be used.
  • acrylic resins are preferable in terms of transparency.
  • the matrix resin preferably has a mass average molecular weight of 1,000 to 10,000,000, more preferably 10,000 to 2,000,000.
  • the mass average molecular weight refers to a value measured using gel permeation chromatography.
  • the eluent one appropriately selected from tetrahydrofuran, chloroform, hexafluoroisopropanol and the like can be used.
  • the molecular weight standard substance a material appropriately selected from known molecular weight polystyrene, polymethyl methacrylate and the like can be used.
  • the measurement temperature can be appropriately selected within the range of 35 to 50 ° C.
  • the matrix resin 22a may be used alone, but may be appropriately used in accordance with the purpose of adjusting the mode pitch, average height, and orientation degree of the wavy uneven pattern. For example, resins of the same type but different in glass transition temperature can be used in combination, or different types of resins can be used in combination.
  • the resin constituting the particles 22b is selected according to the type of the base material 21 so that the glass transition temperature Tg3 (or Vicat softening point) satisfies the above-described conditions, for example, acrylic thermoplastic resin particles, Examples thereof include polystyrene-based thermoplastic resin particles, acrylic-based crosslinked resin particles, and polystyrene-based crosslinked resin particles.
  • acrylic thermoplastic resin particles examples thereof include polystyrene-based thermoplastic resin particles, acrylic-based crosslinked resin particles, and polystyrene-based crosslinked resin particles.
  • the inorganic material include glass beads.
  • the thickness of the substrate 21 is preferably 30 to 500 ⁇ m. If the thickness of the base material is 30 ⁇ m or more, the manufactured original plate is hardly broken, and if the thickness is 500 ⁇ m or less, the original plate can be easily thinned.
  • the thickness of the base material 21 is randomly extracted from a microphotograph of a cross section (longitudinal section) obtained by cutting the surface fine irregularities (original plate) 20 of FIG. It is an average value of the obtained numerical values when the thickness of the substrate 21 is measured. Further, in order to support the substrate 21, a resin support having a thickness of 5 to 500 ⁇ m may be provided separately.
  • the thickness t of the hard layer 22 is preferably more than 0.05 ⁇ m and not more than 5 ⁇ m, and more preferably 0.1 to 2 ⁇ m. If the thickness t of the hard layer 22 is more than 0.05 ⁇ m and not more than 5 ⁇ m, a wavy uneven pattern 13 ′ suitable as a light diffuser can be formed. Moreover, you may form a primer layer between the base material 21 and the hard layer 22 for the purpose of improving adhesiveness or forming a finer structure.
  • the particle diameter d of the particles 22b needs to be larger than the thickness t of the hard layer 22, and is set according to the thickness t of the hard layer 22. Further, the apparent mode diameter of the convex portion 14 of the illustrated example of the light diffusing sheet 10 manufactured using the surface fine uneven body 20 of FIG. 11 as an original plate is appropriately set so as to be within the above-mentioned preferable range. Is done.
  • a preferred particle diameter d is, for example, 5 to 10 ⁇ m, and more preferably 5 to 8 ⁇ m.
  • the fine surface irregularities 20 in FIG. 11 can also be used as a light diffuser instead of the original.
  • a transparent material is used for the material used for the base material 21, the matrix resin 22 a, and the particles 22 b so that the surface fine uneven body 20 sufficiently functions as a light diffuser.
  • the surface fine irregularities 20 in FIG. 11 are a laminated sheet 30 as shown in FIG. 12, that is, a matrix resin on one side (flat surface) of a base film 31 made of resin, and particles 22b dispersed in the matrix resin.
  • the substrate film 31 corresponds to the substrate 21 of the surface fine irregularities 20 of FIG.
  • the term “flat” refers to a surface having a center line average roughness of 0.1 ⁇ m or less as described in JIS B0601.
  • a coating liquid (dispersion or solution) containing matrix resin 22a, particles 22b, and a solvent is prepared, and the coating liquid is applied to one surface of the base film 31 by a spin coater or a bar coater.
  • the hard layer 32 having a thickness t ′ of more than 0.05 ⁇ m and 5.0 ⁇ m or less is formed.
  • the hard layer 32 at this time is not deformed so as to be folded.
  • the hard layer 32 is obtained by laminating a hard layer (a film in which particles are dispersed in a matrix resin) prepared in advance on the base film. You may provide by the method to do.
  • the base film 31 is preferably a uniaxial heat shrinkable film made of resin.
  • the uniaxial heat-shrinkable film by heating the laminated sheet 30 in the next deformation step, the hard layer 32 can be easily deformed so as to be folded and the wavy uneven pattern 13 ′ can be formed. Further, according to this method, it is possible to form irregular ridges 13a 'that meander each other and are not parallel to each other.
  • the resin constituting the uniaxial heat-shrinkable film is as already exemplified as the resin constituting the base material 21.
  • a shrink film such as a polyethylene terephthalate shrink film, a polystyrene shrink film, a polyolefin shrink film, or a polyvinyl chloride shrink film can be preferably used.
  • these shrink films those that shrink 50 to 70% in the uniaxial direction are preferable. If a shrink film that shrinks by 50 to 70% is used, the deformation rate can be increased to 50% or more. As a result, it is possible to form a wavy uneven pattern 13 ′ having a preferable mode pitch and the height of the protruding portion 13a ′.
  • the deformation rate is (length before deformation ⁇ length after deformation) ⁇ 100 / (length before deformation) (%). Alternatively, (deformed length) ⁇ 100 / (length before deformation) (%).
  • the uneven pattern 13 ′ can be formed more easily.
  • the rate is preferably 0.01 to 300 GPa, more preferably 0.1 to 10 GPa.
  • the glass transition temperature Tg2 of the matrix resin 22a and the glass transition temperature Tg3 of the particles 22b are the base materials. It is important to select and combine the materials so that the glass transition temperature Tg1 of the film 31 is 10 ° C. or higher.
  • base film 31 When 30 is used, a wavy uneven pattern 13 ′ in which the most frequent pitch is 3 to 20 ⁇ m and the average height of the protrusions 13 a ′ is 4 to 7 ⁇ m is easily formed through the following deformation process.
  • the matrix resin 22a is, for example, an acrylic resin, one or more of methyl ethyl ketone and methyl isobutyl ketone can be used.
  • the concentration of the matrix resin 22a in the coating solution is preferably 5 to 10% by mass as the net amount (solid content) from the viewpoint of coating properties.
  • the amount of the particles 22b is preferably 10 to 50 parts by mass, and more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the net amount of the matrix resin 22a.
  • the occupation area ratio of the convex portion 14a ′ or the concave portion in the fine irregularities to be formed can be controlled within the above-described preferable range.
  • the net amount (solid content) refers to the ratio of the mass of the solid content remaining after the solvent in the coating solution volatilizes with respect to the mass (100 mass%) of the coating solution.
  • the thickness t ′ of the hard layer 32 formed in the laminating step may be continuously changed as long as it is in the range of more than 0.05 ⁇ m and 5.0 ⁇ m or less. In that case, the pitch and depth of the concavo-convex pattern formed by the deformation process are continuously changed.
  • (Deformation process) 11 is obtained by heating the laminated sheet 30 obtained as described above and causing the base film 31 of the laminated sheet 30 to be thermally contracted.
  • the well-known method disclosed by the Japan patent 4683011 etc. is employable, for example.
  • the heating method include a method of passing through hot air, steam, hot water, or far infrared rays. Among them, a method of passing through hot air or far infrared rays is preferable because it can be uniformly contracted.
  • the heating temperature (processing temperature) at the time of heat shrinking the base film 31 is preferably set to a temperature between Tg2 and Tg1, and specifically, the type of the base film 31 to be used and the intended uneven pattern. It is preferable to select appropriately according to the pitch of 13 ', the height of the protruding portion 13a', and the like.
  • the height of the ridge portion 13a ′ increases as the height increases. Therefore, in order to set the most frequent pitch of the concavo-convex pattern 13 ′ and the height of the ridge 13 a ′ to desired values, it is necessary to appropriately select the above conditions.
  • the surface fine uneven body 20 having the structure as shown in FIG. 11 can also be manufactured by the following methods (1) to (4).
  • (1) A method of forming a laminated sheet by providing an undeformed hard layer on one side of a flat base film, and compressing the whole laminated sheet in one direction along the surface. When the glass transition temperature of the base film is lower than room temperature, the laminated sheet is compressed at room temperature. When the glass transition temperature of the base film is higher than the room temperature, the laminated sheet is compressed above the glass transition temperature of the base material and hard. Performed below the glass transition temperature of the layer.
  • An undeformed hard layer is provided on one side of a flat base film to form a laminated sheet, the laminated sheet is stretched in one direction, and the direction perpendicular to the stretching direction is shrunk to form a hard layer.
  • a method of compressing in one direction along the surface When the glass transition temperature of the base film is lower than room temperature, the lamination sheet is stretched at room temperature. When the glass transition temperature of the base film is room temperature or higher, the stretching of the laminated sheet is equal to or higher than the glass transition temperature of the base film. It is performed below the glass transition temperature of the hard layer.
  • a flat base film formed of an uncured ionizing radiation curable resin is laminated with an undeformed hard layer to form a laminated sheet, and the base film is cured by irradiation with ionizing radiation.
  • An undeformed hard layer is laminated on a flat base film swelled by swelling a solvent to form a laminated sheet, and the solvent in the base film is dried and contracted by removing it. The method of compressing the hard layer laminated
  • a resin solution or dispersion containing particles is applied to one side of a flat base film using a spin coater or bar coater, and a solvent is used.
  • a drying method and a method in which a hard layer prepared in advance is laminated on one side of a flat base film examples include a method of compressing the laminated sheet by sandwiching one end portion of the laminated sheet and the opposite end portion thereof with a vise or the like.
  • examples of the method of stretching the laminated sheet in one direction include a method of stretching by stretching one end portion of the laminated sheet and the opposite end portion thereof.
  • examples of the ionizing radiation curable resin include an ultraviolet curable resin and an electron beam curable resin.
  • the solvent is appropriately selected according to the type of resin constituting the base film.
  • the drying temperature of the solvent is appropriately selected according to the type of solvent.
  • the same components as those used in the method (1) can be used, and the thickness can be the same.
  • the formation method of a lamination sheet is the same as the method of (1), the method of apply
  • the fine irregularities formed on the surface of the hard layer 22 of the surface fine irregularities (original) 20 are transferred to another material, and a primary transfer product having a reverse pattern of the fine irregularities of the original on the surface is obtained.
  • the reverse pattern of the primary transfer product is transferred to another material to obtain the light diffusive sheet 10 of the illustrated example which is a secondary transfer product.
  • a publicly known method disclosed in Japanese Patent No. 4683011 can be adopted.
  • One aspect of the present invention is a method for producing a surface fine unevenness using the surface fine unevenness described above as an original plate.
  • an uncured ionizing radiation curable resin containing a release agent is adjusted to a thickness of, for example, 3 to 30 ⁇ m with respect to the fine unevenness of the surface fine unevenness 20 of FIG.
  • a coater such as a die coater, roll coater, or bar coater
  • the original is peeled off to obtain a primary transfer product.
  • the primary transfer product has a reversal pattern of fine irregularities of the original plate.
  • a transparent substrate 11 made of PET is prepared, and an uncured ionizing radiation curable resin is applied on one surface thereof with a thickness that sufficiently covers fine irregularities.
  • the surface of the applied uncured ionizing radiation curable resin is pressed against the surface having the reversal pattern of the previously obtained primary transfer product and cured by irradiation with ionizing radiation.
  • the next transfer product is peeled off. Irradiation with ionizing radiation may be performed from either one of the primary transfer product side and the transparent PET substrate side having ionizing radiation transparency. Thereby, it consists of the transparent base material 11 which consists of PET, and the surface layer 12 of the ionizing radiation curable resin cured material formed on the one side, and FIG.
  • the light diffusable sheet (secondary transfer product) 10 of FIG. 2 is obtained.
  • the ionizing radiation curable resin examples include an ultraviolet curable resin and an electron beam curable resin.
  • the type of ionizing radiation to be irradiated is appropriately selected according to the type of resin.
  • the ionizing radiation often means ultraviolet rays and electron beams, but in the present specification, visible rays, X-rays, ion rays and the like are also included.
  • Uncured ionizing radiation curable resins include epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl / acrylate, polyene / acrylate, silicon acrylate, polybutadiene, and polystyrylmethyl methacrylate. 1 type selected from monomers such as prepolymers such as aliphatic acrylate, alicyclic acrylate, aromatic acrylate, hydroxyl group-containing acrylate, allyl group-containing acrylate, glycidyl group-containing acrylate, carboxy group-containing acrylate, halogen-containing acrylate, etc. The thing containing the above component is mentioned.
  • the uncured ionizing radiation curable resin is preferably diluted with a solvent or the like.
  • a fluorine resin, a silicone resin, or the like may be added to the uncured ionizing radiation curable resin.
  • a photopolymerization initiator such as acetophenones and benzophenones to the uncured ionizing radiation curable resin.
  • thermosetting resin such as uncured melamine resin, urethane resin or epoxy resin
  • thermoplastic resin such as acrylic resin, polyolefin or polyester.
  • the specific method and material to be transferred are not limited.
  • thermosetting resin for example, a method of applying a liquid uncured thermosetting resin to fine irregularities and curing it by heating is mentioned.
  • thermoplastic resin a sheet of thermoplastic resin is used. There is a method of heating and softening while pressing against fine irregularities and then cooling.
  • a method using a plating roll described in Japanese Patent No. 4683011 is also exemplified. Specifically, first, a long sheet-like material is manufactured as an original plate, the original plate is rounded and attached to the inside of a cylinder, plating is performed with a roll inserted inside the cylinder, and the roll is removed from the cylinder. Take out and obtain a plating roll (primary transfer product). Next, a light diffusive sheet (secondary transfer product) is obtained by transferring the fine irregularities of the plating roll.
  • a single wafer type or a web type can be used as the original plate. If a web type master is used, a web type primary transfer product and a secondary transfer product can be obtained.
  • a stamp method using the single-wafer type original as a flat plate, a roll imprint method using a single-wafer type original wound around a roll as a cylindrical die, and the like can be applied.
  • a single-wafer type master may be arranged inside the mold of the injection molding machine. However, in the method using these single-wafer type masters, it is necessary to repeat the transfer many times in order to mass-produce the light spreading powder sheet as shown in the illustrated example.
  • a method of forming a large number of concave portions or convex portions on the formed concave / convex pattern the following methods (5) to (8) can be mentioned.
  • (5) A method of cutting with a rotary precision cutting machine.
  • (6) A method of forming a recess by pressing a projection having the same size and diameter as the recess or the protrusion onto the wavy uneven pattern.
  • (7) A method of forming a convex portion formed of the resin or the inorganic substance by adhering a fine resin or inorganic melt to the wavy uneven pattern and then solidifying it by cooling.
  • the inkjet printing method in the method (7) or (8) a large number of concave portions or convex portions can be formed on the wavy uneven pattern with high accuracy.
  • a hard layer is formed using a coating liquid that does not contain particles and contains a matrix resin and a solvent, and is formed into a wavy uneven pattern by a deformation process (a large number of recesses or protrusions have not yet been formed) )
  • a deformation process a large number of recesses or protrusions have not yet been formed
  • a plurality of concave portions or convex portions may be formed on the concavo-convex pattern by the above methods (5) to (8). And by transferring this as an original plate, it is possible to produce a surface fine unevenness.
  • the primary transfer product obtained by using the surface fine irregularities 20 produced by the laminating process and the deformation process as an original plate and the n-order transfer product (n is an integer of 3 or more) are used as the light diffusive sheet. If it is a transfer product, it is not limited to a secondary transfer product. Moreover, you may transfer a fine unevenness
  • the particles used for forming the hard layer resin particles and inorganic particles can be used, and any material can be used as long as it is not melted or deformed in the deformation process or the process of transferring fine irregularities. There may be.
  • the particles are transparent particles, preferably acrylic cross-linked resin particles, glass It is necessary to use beads, polystyrene-based crosslinked resin particles, and the like.
  • the sheet-like material was illustrated as a surface fine unevenness
  • the fine unevenness may be formed in any part depending on the purpose as long as it is at least a part of the surface of the surface fine unevenness.
  • the surface fine unevenness is a sheet-like material, it may be formed on only one surface, on both surfaces, or may be formed on only part of each surface, You may form in at least one part of the surrounding surface (end surface) of a thing.
  • the surface fine irregularities are three-dimensional molded bodies, they may be formed on the entire surface or only on a part thereof.
  • a diffusion member for a HUD system a diffusion member for a projector; a diffusion member for a backlight of a television, a monitor, a notebook personal computer, a tablet personal computer, a smartphone, a mobile phone, etc .;
  • a scanner light source in which LED light sources are linearly arranged, it can be suitably used as a diffusing member that constitutes at least an emission surface of a light guide member.
  • the wavy concavo-convex pattern comprises a plurality of ridges arranged along a first direction, and a ridge between the plurality of ridges, The ridge lines of the plurality of ridges meander non-parallel to each other when viewed from the normal direction of the substrate of the surface fine irregularities, The most frequent pitch in the first direction of the plurality of ridges is 3 to 20 ⁇ m;
  • the apparent mode diameter of the concave portion or convex portion is 1 to 10 ⁇ m,
  • the surface fine irregularities, wherein the concave or convex shape is hemispherical.
  • the fine unevenness has a wavy uneven pattern and a recess or protrusion formed on the wavy uneven pattern
  • the wavy concavo-convex pattern comprises a plurality of ridges arranged along a first direction, and a ridge between the plurality of ridges, The ridge lines of the plurality of ridges meander non-parallel to each other when viewed from the normal direction of the surface fine irregularities,
  • the most frequent pitch in the first direction of the plurality of ridges is 3 to 20 ⁇ m;
  • the apparent mode diameter of the concave portion or convex portion is 1 to 10 ⁇ m,
  • the shape of the concave portion or convex portion is hemispherical,
  • the surface fine concavo-convex body in which the occupying ratio of the concave portion or the convex portion is 30 to 70 mass% with respect to the
  • a hard layer is provided by applying a coating liquid containing a matrix resin and particles so that the thickness after drying is more than 0.05 ⁇ m and 5.0 ⁇ m or less.
  • the resin is a polyester resin
  • the matrix resin is a group consisting of polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, and fluororesin.
  • the particles are at least one particle selected from the group consisting of acrylic thermoplastic resin particles, polystyrene thermoplastic resin particles, acrylic crosslinked resin particles, polystyrene crosslinked resin particles, and glass beads, At a temperature below 10 ° C. higher than the glass transition temperature of the resin constituting the substrate film, the particle shape does not change, The particle size is 5-10 ⁇ m, The method for producing a fine surface irregularity, wherein the cured layer contains 10 to 50 parts by mass of the particles with respect to 100 parts by mass of the matrix resin.
  • SC807 polyethylene terephthalate uniaxial heat shrinkable film
  • the mixture was mixed at a mass ratio of 70:30, and in addition to toluene, a coating liquid (1) having a solid content concentration of 7.7 mass% was obtained.
  • the said acrylic resin A is solid content concentration 20 mass%
  • concentration in this example are the values calculated by the net amount (solid content amount). The following examples are also calculated with the net amount.
  • the laminated sheet is heated at 150 ° C. for 1 minute using a hot air oven to heat shrink the polyethylene terephthalate uniaxial heat shrinkable film to 49% of the length before heating in the uniaxial direction (deformation rate). 51%), the hard layer was deformed to be folded. Thereby, the surface fine uneven sheet
  • An uncured UV curable resin A (manufactured by Soken Chemical Co., Ltd.) containing a release agent is applied to the surface of the surface fine uneven surface of the obtained surface fine uneven sheet (original) so as to have a thickness of 20 ⁇ m and irradiated with ultraviolet rays. And cured, and then peeled to obtain a primary transfer product having a reversal pattern of fine unevenness of the surface fine unevenness sheet.
  • an uncured UV curable resin B manufactured by Sony Chemical Co., Ltd. was applied to one side of a transparent PET base material (“A4300” manufactured by Toyobo Co., Ltd., thickness: 188 ⁇ m) to a thickness of 20 ⁇ m.
  • the surface of the primary transfer product having the above reversal pattern is pressed against the ultraviolet curable resin B, cured by irradiating with ultraviolet rays, and after curing, the primary transfer product is peeled off, and then on the transparent PET substrate.
  • Example 2 A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (2) was used instead of the coating liquid (1) in Example 1.
  • Example 3 A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (3) was used instead of the coating liquid (1) in Example 1.
  • Example 1 A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (4) was used instead of the coating liquid (1) in Example 1.
  • Example 4 A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (5) was used instead of the coating liquid (1) in Example 1.
  • Example 5 A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (6) was used instead of the coating liquid (1) in Example 1.
  • Example 6 In Example 1, coating was performed by a bar coater (Meyer bar # 20) so that the thickness t ′ of the hard layer after coating and drying was 3 ⁇ m, and a polyethylene terephthalate uniaxial heat-shrinkable film was uniaxially before heating. A light diffusing sheet was obtained in the same manner as in Example 1 except that the film was thermally shrunk to 60% of the length (40% as the deformation rate).
  • Example 7 Nickel was deposited to a thickness of 500 ⁇ m on the surface of the surface fine uneven sheet (original) obtained by the same method as in Example 1 by nickel electroforming. Subsequently, the deposited nickel was peeled from the surface fine uneven sheet (original) to obtain a nickel secondary original having the surface fine unevenness transferred on the surface. The nickel secondary original plate was incorporated into a mold of an injection molding machine, and injection molding of an acrylic resin was performed to obtain an injection molded product having fine irregularities transferred on the surface.
  • the obtained injection-molded product is a rectangular parallelepiped of 300 mm ⁇ 10 mm ⁇ 2 mm, in which fine irregularities are transferred to one surface of a pair of 2 mm ⁇ 300 mm surfaces, and the other surface is a smooth surface.
  • the shape of the diffused light (projected image) of the red laser pointer projected on white paper was visually evaluated in four stages. The results are shown in Table 1.
  • a luminance meter SR-3 manufactured by Topcon Co., Ltd. was placed at a position 1 m away from the light diffusing sheet and the injection molded product on the opposite surface side in the normal direction, and the luminance was measured. The results are shown in Table 1.
  • luminance of Table 1 is a relative brightness
  • the injection molded product manufactured in Example 7 was a rectangular parallelepiped, the surface on which fine irregularities were formed and the smooth surface were parallel.
  • the smooth surface parallel to the surface on which the fine irregularities are formed is obtained by appropriately cutting the injection molded product. It is preferable to use the sample that has been cut out as a sample, and to use the sample in the above measurements (2) to (5).
  • the diffusion angles in the X and Y directions are moderately large, and the 1/10 diffusion angles in the Y and X directions are
  • the respective values were (diffusion angle ⁇ 1.4 + 25 °) or less and (diffusion angle ⁇ 1.6 + 25 °) or less, and the relative luminance was sufficiently large. Therefore, it has been understood that these can be suitably used in, for example, a head-up display system in which information such as a traveling speed needs to be clearly diffused on the windshield of an automobile.
  • the light diffusing sheets of Examples 1 to 3 and the injection-molded product of Example 7 have a large diffusion angle in the X direction while maintaining a very high diffusion angle in the Y direction, and a balance with relative luminance. Also, it had very high performance.
  • the diffusion angle in the Y direction is sufficiently large, but the diffusion angle in the X direction is very small and the anisotropy is too high. It was understood that it was unsuitable for use.
  • the light diffusable sheet of each Example had sufficient light transmittance.
  • the injection molded product of Example 7 can be suitably used in a light guide member of a scanner light source in which LED light sources are arranged in a line, which is used in a copying machine or the like.

Abstract

The present invention relates to a body in which fine concavities and convexities are formed in at least a part of the surface, characterized in that the fine concavities and convexities consist of a wave-shape concavo-convex pattern and multiple concavities or convexities formed on said wave-shape concavo-convex pattern; the wave-shape concavo-convex pattern consists of irregularly formed convex ridges and concave furrows between the convex ridges; the convex ridges meander non-parallel to one another; the modal pitch of the convex ridges is 3-20μm; and, the apparent modal diameter of the concavities or convexities is 1-10μm. By means of the present invention, it is possible to provide an easily produced body having fine concavities and convexities in the surface and a production method thereof, wherein, when used as a light diffuser, said body has to a certain extent a diffusion angle even in the direction perpendicular to the main diffusion direction while still maintaining the diffusion angle of the primary diffusion direction.

Description

表面微細凹凸体および表面微細凹凸体の製造方法Surface fine unevenness and method for producing surface fine unevenness
 本発明は、光拡散体および光拡散体形成用原版として好適に使用される表面微細凹凸体と、その製造方法に関する。
 本発明は、2013年3月18日に日本国に出願された特願2013-55722号、2014年2月25日に日本国に出願された特願2014-034687号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light diffusing body and a surface fine concavo-convex body suitably used as a light diffusing body forming original plate and a method for producing the same.
The present invention claims priority based on Japanese Patent Application No. 2013-55722 filed in Japan on March 18, 2013 and Japanese Patent Application No. 2014-034687 filed in Japan on February 25, 2014. , The contents of which are incorporated herein.
 微細な波状の凹凸からなる凹凸パターンが表面に形成されたシート状の表面微細凹凸体は、その光学的特性から、光拡散性シート等の光拡散体として使用されることが知られている。
 光拡散性シートの製造方法として、例えば特許文献1には、加熱収縮性フィルムからなる樹脂製の基材上に、樹脂製の硬質層を設けた積層シートを加熱し、加熱収縮性フィルムを収縮させることにより、硬質層を折り畳むように変形させて凹凸状にして、硬質層の表面に凹凸パターンを形成する方法が開示されている。また、特許文献1には、加熱収縮性フィルムを収縮させた後、延伸を行うことにより、配向のばらつきが小さな凹凸パターンを形成できることが記載されている。このようなシートを光拡散性シートとすると、主拡散方向の拡散角度が大きく(例えば25~30°程度)、主拡散方向に対して直交する方向の拡散角度は小さい(例えば3°程度)という優れた異方性を示す。
It is known that a sheet-like surface fine uneven body on which a concave / convex pattern composed of fine wavy unevenness is formed is used as a light diffuser such as a light diffusing sheet because of its optical characteristics.
As a method for producing a light diffusive sheet, for example, in Patent Document 1, a laminated sheet provided with a resin hard layer on a resin substrate made of a heat shrinkable film is heated to shrink the heat shrinkable film. Thus, there is disclosed a method of forming a concavo-convex pattern on the surface of a hard layer by deforming the hard layer so as to be folded into a concavo-convex shape. Patent Document 1 describes that a concavo-convex pattern with small variation in orientation can be formed by stretching after shrinking a heat-shrinkable film. When such a sheet is a light diffusing sheet, the diffusion angle in the main diffusion direction is large (for example, about 25 to 30 °), and the diffusion angle in the direction orthogonal to the main diffusion direction is small (for example, about 3 °). Excellent anisotropy.
特開2011-213051号公報JP 2011-213051 A
 しかしながら最近では、主拡散方向に広い拡散角度(少なくとも18°)を維持したまま、主拡散方向に対して直交する方向にもある程度の拡散角度(少なくとも4°)を有する光拡散性シートも求められるようになっている。例えば、ゆるやかな曲面状に形成された自動車のフロントガラスに走行速度などの情報を表示させるヘッドアップディスプレイシステムにおいては、画像情報を拡散させながらフロントガラスに鮮明に表示させるために、主拡散方向に対して直交する方向にもある程度の拡散角度を有する光拡散性シートが求められる。このような光拡散性シートは、例えば、加熱収縮性フィルムとして二軸方向に熱収縮する二軸方向熱収縮フィルムを用い、二軸方向に収縮させることでも製造できると考えられる。ところが、前記方法は、製造条件の制御が難しく、一定の性能を有する光拡散性シートが安定して得られにくい。 However, recently, a light diffusive sheet having a certain diffusion angle (at least 4 °) in a direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction is also required. It is like that. For example, in a head-up display system that displays information such as traveling speed on the windshield of a car that is gently curved, in order to display the image clearly on the windshield while diffusing image information, On the other hand, a light diffusing sheet having a certain diffusion angle in a direction perpendicular to the surface is also required. Such a light diffusable sheet is considered to be produced by, for example, using a biaxial heat-shrinkable film that heat-shrinks in the biaxial direction as a heat-shrinkable film and shrinking it in the biaxial direction. However, in the above method, it is difficult to control the production conditions, and it is difficult to stably obtain a light diffusing sheet having a certain performance.
 本発明は上記事情に鑑みてなされたもので、光拡散体として用いた場合に、主拡散方向に広い拡散角度(少なくとも18°)を維持したまま、主拡散方向に対して直交する方向にもある程度の拡散角度(少なくとも4°)を有し、製造も容易な表面微細凹凸体とその製造方法を提供する。 The present invention has been made in view of the above circumstances, and when used as a light diffuser, also in a direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction. Provided are a fine surface irregularity body having a certain diffusion angle (at least 4 °) and easy to manufacture, and a method for manufacturing the same.
 本発明は以下の態様を有する。
<1>表面に微細凹凸が形成された表面微細凹凸体であって、前記微細凹凸は、
 互いに非平行に蛇行した複数の凸条部と、該複数の凸条部間に形成された凹条部とからなり、最頻ピッチが3~20μmである波状の凹凸パターンと、前記波状の凹凸パターン上に形成された多数の半球状凹部または半球状凸部と、を有することを特徴とする表面微細凹凸体;
<2>前記半球状凹部または前記半球状凸部の最頻直径が1~10μmである、<1>の表面微細凹凸体;
<3>前記凸条部の平均高さが4~7μmである、<1>または<2>に記載の表面微細凹凸体;
<4>前記微細凹凸における前記半球状凹部または前記半球状凸部の占有面積割合が、30~70%である、<1>~<3>のいずれか一項に記載の表面微細凹凸体;
<5>光拡散体である、<1>~<4>のいずれか一項に記載の表面微細凹凸体;
<6>前記微細凹凸を転写して光拡散体を製造するための光拡散体形成用原版である、<1>~<4>のいずれか一項に記載の表面微細凹凸体;
<7>樹脂からなる基材フィルムの片面に、マトリクス樹脂中に多数の粒子が分散してなり、厚みが0.05μmを超え5.0μm以下である硬質層を設けて積層シートを形成する積層工程と、前記積層シートの少なくとも前記硬質層を折り畳むように変形させる変形工程とを有し、前記マトリクス樹脂は、前記基材フィルムを構成する前記樹脂よりもガラス転移温度が10℃以上高く、前記粒子は、前記基材フィルムを構成する前記樹脂のガラス転移温度より10℃高い温度未満では、熱により粒子形状が変化しない材料からなり、前記粒子の粒径は、前記硬質層の厚みよりも大きい、表面微細凹凸体の製造方法;
<8>前記基材フィルムは、一軸方向加熱収縮性フィルムであり、前記変形工程は、前記積層シートを加熱して前記一軸方向加熱収縮性フィルムを収縮させる工程である、<7>の表面微細凹凸体の製造方法;
<9><7>または<8>に記載の製造方法で製造された表面微細凹凸体を光拡散体形成用原版として用い、該表面微細凹凸体の前記微細凹凸を転写する転写工程を有する、光拡散体の製造方法。
The present invention has the following aspects.
<1> A surface fine concavo-convex body having fine irregularities formed on the surface, wherein the fine irregularities are:
A wavy uneven pattern having a plurality of ridges meandering non-parallel to each other and concave ridges formed between the plurality of ridges, and having a most frequent pitch of 3 to 20 μm; A fine surface irregularity having a number of hemispherical recesses or hemispherical projections formed on the pattern;
<2> The fine surface irregularities according to <1>, wherein the hemispherical concave portion or the hemispherical convex portion has a mode diameter of 1 to 10 μm;
<3> The surface fine unevenness according to <1> or <2>, wherein the average height of the ridges is 4 to 7 μm;
<4> The surface fine unevenness according to any one of <1> to <3>, wherein an occupied area ratio of the hemispherical recess or the hemispherical protrusion in the fine unevenness is 30 to 70%;
<5> Surface fine unevenness according to any one of <1> to <4>, which is a light diffuser;
<6> The surface fine unevenness according to any one of <1> to <4>, which is a light diffuser-forming original plate for transferring the fine unevenness to produce a light diffuser;
<7> A laminate in which a large number of particles are dispersed in a matrix resin on one side of a base film made of resin, and a hard layer having a thickness of more than 0.05 μm and less than 5.0 μm is provided to form a laminated sheet And a deformation step of deforming so as to fold at least the hard layer of the laminated sheet, and the matrix resin has a glass transition temperature of 10 ° C. or higher than the resin constituting the base film, The particles are made of a material whose particle shape is not changed by heat at a temperature lower than the glass transition temperature of the resin constituting the substrate film by 10 ° C., and the particle diameter of the particles is larger than the thickness of the hard layer. , Manufacturing method of fine surface irregularities;
<8> The substrate film is a uniaxial heat-shrinkable film, and the deformation step is a step of heating the laminated sheet to shrink the uniaxial heat-shrinkable film. Method for producing uneven body;
<9> Using the surface fine unevenness produced by the production method according to <7> or <8> as an original plate for forming a light diffuser, and having a transfer step of transferring the fine unevenness of the surface fine unevenness. A method for producing a light diffuser.
 また、本発明は以下の構成を有する。
[1]表面の少なくとも一部に微細凹凸が形成された表面微細凹凸体であって、前記微細凹凸は、波状の凹凸パターンと、前記波状の凹凸パターン上に形成された複数の凹部または凸部からなり、前記波状の凹凸パターンは、不規則に形成された複数の凸条部と、前記複数の凸条部間の凹条部とからなり、前記複数の凸条部は互いに非平行に蛇行し、前記複数の凸条部の最頻ピッチが3~20μmであり、前記凹部または凸部の見かけの最頻径が1~10μmであることを特徴とする表面微細凹凸体。
[2]前記凸条部の平均高さが4~7μmである、[1]に記載の表面微細凹凸体。
[3]前記微細凹凸における前記凹部または前記凸部の占有面積割合が、30~70%である、[1]または[2]に記載の表面微細凹凸体。
[4]光拡散体である、[1]~[3]のいずれかに記載の表面微細凹凸体。
[5]前記微細凹凸を転写して光拡散体を製造するための光拡散体形成用原版である、[1]~[3]のいずれかに記載の表面微細凹凸体。
[6]樹脂からなる基材フィルムの片面に、マトリクス樹脂、及び前記マトリクス樹脂中に分散した粒子からなる、0.05μmを超え5.0μm以下の厚みを有する硬質層を設けて積層シートを形成する積層工程と、前記積層シートの少なくとも前記硬質層を折り畳むように変形させる変形工程とを有し、
 前記マトリクス樹脂のガラス転移温度が、前記基材フィルムを構成する前記樹脂のガラス転移温度よりも10℃以上高く、
 前記粒子は、前記基材フィルムを構成する前記樹脂のガラス転移温度より10℃高い温度未満の温度では、熱により粒子形状が変化しない材料からなり、
 前記粒子の粒径は、前記硬質層の厚みよりも大きい、表面微細凹凸体の製造方法。
[7]前記基材フィルムは、一軸方向加熱収縮性フィルムであり、前記変形工程は、前記積層シートを加熱して前記一軸方向加熱収縮性フィルムを収縮させる工程である、[6]の表面微細凹凸体の製造方法。
[8][6]または[7]に記載の製造方法で製造された表面微細凹凸体を光拡散体形成用原版として用い、前記表面微細凹凸体の前記微細凹凸を転写する転写工程を有する、光拡散体の製造方法。
Moreover, this invention has the following structures.
[1] A surface fine concavo-convex body in which fine concavo-convex is formed on at least a part of the surface, wherein the fine concavo-convex is a wavy concavo-convex pattern and a plurality of concave or convex portions formed on the undulating concavo-convex pattern The wavy uneven pattern includes a plurality of irregularly formed ridges and a recess between the plurality of ridges, and the plurality of ridges meander non-parallel to each other. The fine surface irregularities according to claim 1, wherein a mode pitch of the plurality of ridges is 3 to 20 μm, and an apparent mode diameter of the recesses or projections is 1 to 10 μm.
[2] The fine surface irregularities according to [1], wherein the average height of the ridges is 4 to 7 μm.
[3] The surface fine unevenness according to [1] or [2], wherein an occupied area ratio of the concave portion or the convex portion in the fine unevenness is 30 to 70%.
[4] The surface fine unevenness according to any one of [1] to [3], which is a light diffuser.
[5] The surface fine concavo-convex body according to any one of [1] to [3], which is a light diffuser-forming original plate for transferring the fine concavo-convex to produce a light diffuser.
[6] A laminated sheet is formed by providing a hard layer having a thickness of more than 0.05 μm and less than 5.0 μm made of matrix resin and particles dispersed in the matrix resin on one side of a base film made of resin. A laminating step, and a deforming step of deforming at least the hard layer of the laminated sheet so as to be folded,
The glass transition temperature of the matrix resin is 10 ° C. or more higher than the glass transition temperature of the resin constituting the base film,
The particles are made of a material whose particle shape is not changed by heat at a temperature lower than a temperature 10 ° C. higher than the glass transition temperature of the resin constituting the base film,
The method for producing a fine surface irregularity, wherein the particle diameter is larger than the thickness of the hard layer.
[7] The surface fine film according to [6], wherein the base film is a uniaxial heat-shrinkable film, and the deformation step is a step of heating the laminated sheet to shrink the uniaxial heat-shrinkable film. Manufacturing method of uneven body.
[8] A transfer step of transferring the fine unevenness of the surface fine unevenness using the surface fine unevenness produced by the production method according to [6] or [7] as a light diffuser forming original plate, A method for producing a light diffuser.
 本発明によれば、光拡散体として用いた場合に、主拡散方向に広い拡散角度(少なくとも18°)を維持したまま、主拡散方向に対して直交する方向にもある程度の拡散角度(少なくとも4°)を有し、製造も容易な表面微細凹凸体とその製造方法を提供できる。 According to the present invention, when used as a light diffuser, a certain diffusion angle (at least 4) in the direction orthogonal to the main diffusion direction while maintaining a wide diffusion angle (at least 18 °) in the main diffusion direction. And a method for producing the same can be provided.
実施例1の光拡散性シートの微細凹凸を観察した光学顕微鏡写真である。2 is an optical micrograph obtained by observing fine irregularities of the light diffusive sheet of Example 1. FIG. 実施例1の光拡散性シートの微細凹凸を観察したその他のレーザ顕微鏡写真である。4 is another laser micrograph of the microscopic unevenness of the light diffusing sheet of Example 1 observed. 図1Aの光学顕微鏡写真中のI-I’線に沿って切断した部分を模式的に示す拡大縦断面図である。FIG. 1B is an enlarged longitudinal sectional view schematically showing a portion cut along the line I-I ′ in the optical micrograph of FIG. 1A. 図1Aの光拡散性シートの光学顕微鏡写真からグレースケール画像を得て、前記画像をフーリエ変換したフーリエ変換画像である。It is the Fourier-transform image which acquired the gray scale image from the optical microscope photograph of the light diffusable sheet | seat of FIG. 1A, and Fourier-transformed the said image. 図3のフーリエ変換画像を模式的に示す模式図である。It is a schematic diagram which shows typically the Fourier-transform image of FIG. 図3の中心からA1の中で最大頻度となる点を通るように線L1-1を引き、線L1-1の頻度分布をプロットしたグラフである。FIG. 4 is a graph in which a line L1-1 is drawn from the center of FIG. 3 so as to pass through a point having the maximum frequency in A1, and the frequency distribution of the line L1-1 is plotted. 図3の中心からL1-1と直交する方向に線L1-2を引き、線L1-2の頻度分布をプロットしたグラフである。FIG. 4 is a graph in which a line L1-2 is drawn from the center of FIG. 3 in a direction orthogonal to L1-1 and a frequency distribution of the line L1-2 is plotted. 図1A又はBの光拡散性シートの微細凹凸形成面を原子間力顕微鏡により観察し、その観察結果から得た、光拡散性シートの要部の縦断面図である。It is the longitudinal cross-sectional view of the principal part of the light diffusable sheet | seat obtained from the observation result which observed the fine uneven | corrugated formation surface of the light diffusable sheet | seat of FIG. 1A or B with an atomic force microscope. 凸部の平均高さを求める方法の説明図である。It is explanatory drawing of the method of calculating | requiring the average height of a convex part. 凸部の平均高さを求める方法の説明図である。It is explanatory drawing of the method of calculating | requiring the average height of a convex part. 従来の異方性が高い光拡散性シートを用いた場合の出射光の投影像の形状を示すイメージ図である。It is an image figure which shows the shape of the projection image of the emitted light at the time of using the conventional light diffusive sheet with high anisotropy. 本発明による光拡散性シートを用いた場合の出射光の投影像の形状を示すイメージ図である。It is an image figure which shows the shape of the projection image of the emitted light at the time of using the light diffusable sheet | seat by this invention. 図1A又はBの光拡散性シートを製造するための原版(表面微細凹凸体)の縦断面図である。It is a longitudinal cross-sectional view of the original plate (surface fine unevenness | corrugation body) for manufacturing the light diffusable sheet of FIG. 1A or B. 図11の原版(表面微細凹凸体)の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the original plate (surface fine unevenness | corrugation body) of FIG.
 以下、本発明を詳細に説明する。
<表面微細凹凸体>
 図1Aは、本発明の表面微細凹凸体の一実施形態例(後述の実施例1)である光拡散性シート(光拡散体)の片面の光学顕微鏡写真(平面視;縦0.4mm×横0.5mmの視野部分を示す)であり、図1Bは、実施例1の光拡散性シートの微細凹凸をレーザ顕微鏡(キーエンス社製「VK-8510」)で観察したレーザ顕微鏡写真である。図1B中の線αは、前記光拡散性シートを線βに沿って図中横方向に切断した切断面における高さプロファイルを示している。なお、図1Aと図1Bとでは、倍率が異なる。
 図2は、図1Aの光学顕微鏡写真中のI-I’線(後述する凸条部と凹条部とが繰り返される方向に沿う線)に沿って切断した部分を模式的に示す拡大縦断面図である。なお、図2は、光拡散性シートの縦断面形状の理解しやすさの観点から、単純化して示している。
 本明細書において、「表面微細凹凸体」とは、表面に微細な凹凸構造を有する物品のことを意味する。
Hereinafter, the present invention will be described in detail.
<Surface fine irregularities>
FIG. 1A is an optical micrograph (plan view; vertical 0.4 mm × horizontal) of one side of a light diffusing sheet (light diffusing body) which is an embodiment of the surface fine irregularities of the present invention (Example 1 described later). FIG. 1B is a laser micrograph of the microscopic irregularities of the light diffusing sheet of Example 1 observed with a laser microscope (“VK-8510” manufactured by Keyence Corporation). A line α in FIG. 1B indicates a height profile of a cut surface obtained by cutting the light diffusing sheet along the line β in the horizontal direction in the figure. 1A and FIG. 1B have different magnifications.
FIG. 2 is an enlarged vertical cross-sectional view schematically showing a portion cut along a line II ′ (a line along a direction in which a protruding ridge and a recessed ridge described later are repeated) in the optical micrograph of FIG. 1A. FIG. Note that FIG. 2 shows a simplified view from the viewpoint of easy understanding of the longitudinal cross-sectional shape of the light diffusive sheet.
In the present specification, the “surface fine uneven body” means an article having a fine uneven structure on the surface.
 この例の光拡散性シート10は、図2に示すように、ポリエチレンテレフタレート(PET)からなる透明な基材11と、前記基材11の一方の面上に設けられた電離放射線硬化性樹脂の硬化物からなる透明な表面層12との2層構造であり、表面層12の露出している側の面に、波状の凹凸パターン13と、前記凹凸パターン13の上に形成された多数の凸部14とから構成された微細凹凸が形成されている。凸部14は、この例では、概略半球状に形成されている。また、この例では、基材11の露出している面(表面層12が設けられた方とは反対側の面)は、平滑面となっている。 As shown in FIG. 2, the light diffusing sheet 10 of this example includes a transparent base material 11 made of polyethylene terephthalate (PET) and an ionizing radiation curable resin provided on one surface of the base material 11. It has a two-layer structure with a transparent surface layer 12 made of a cured product, and a wavy uneven pattern 13 and a number of protrusions formed on the uneven pattern 13 are formed on the exposed surface of the surface layer 12. The fine unevenness | corrugation comprised from the part 14 is formed. In this example, the convex portion 14 is formed in a substantially hemispherical shape. In this example, the exposed surface of the base material 11 (the surface on the side opposite to the side on which the surface layer 12 is provided) is a smooth surface.
 微細凹凸における波状の凹凸パターン13は、図1A、B中では縦方向に延び、図2中では紙面に対して垂直な方向に延びる複数の筋状の凸条部13aと、前記複数の凸条部13a間の凹条部13bとが、一方向(図1A、Bおよび2中横方向)に交互に繰り返されたものである。
 各凸条部13aの縦断面形状は、図2に示すように、それぞれが基端側から先端側に向かって細くなる先細り形状である。
 複数の凸条部13aは、図1A、Bに示すとおり、それぞれが蛇行しており、かつ、互いに非平行であり、不規則に形成されている。すなわち、各凸条部13aにおいて、稜線が蛇行し、各凹条部13bにおいて、谷線が蛇行している。また、隣接する凸条部13aの稜線の間隔が一定しておらず、隣接する凹条部13bの谷線の間隔が一定していない。
 本明細書において、不規則であるとは、光拡散シート10を基材に対して法線方向から見た際に、凸条部13aが蛇行し、かつ互いに非平行であること、各凸条部13aの稜線が蛇行し、各凹条部13bの谷線画蛇行していること、また隣接する凸条部13aの稜線の間隔が一定せず、隣接する凹条部13bの谷線の間隔が一定していないことを意味する。
 また、各凸条部13aにおいて稜線の高さが一定しておらず、各凹条部13bにおいて谷線の高さが一定していない。そのため、図2に示すように、各凸条部13aの縦断面形状は、それぞれ異なっており一律ではなく、不規則である。
 微細凹凸は、このような波状の凹凸パターン13と、ランダムに分布した多数の凸部14とで、構成されている。
 ここで、「凸条部13a」の稜線とは、凸条部13aの頂部をつないで続く線のことを意味する。
 凸条部13aの稜線の途中に、凸部14が存在する場合は、凸部14の頂部を通るように引かれた線のことを指す。
The wavy uneven pattern 13 in the fine unevenness extends in the vertical direction in FIGS. 1A and 1B, and in FIG. 2, a plurality of streaky protrusions 13a extending in a direction perpendicular to the paper surface, and the plurality of protrusions. The groove portions 13b between the portions 13a are alternately repeated in one direction (lateral direction in FIGS. 1A, 1B and 2).
As shown in FIG. 2, the vertical cross-sectional shape of each ridge 13 a is a tapered shape that becomes thinner from the proximal end side toward the distal end side.
As shown in FIGS. 1A and 1B, each of the plurality of ridge portions 13a meanders, is nonparallel to each other, and is irregularly formed. That is, the ridge line meanders in each protruding line part 13a, and the valley line meanders in each recessed line part 13b. Further, the interval between the ridge lines of the adjacent ridge portions 13a is not constant, and the interval between the valley lines of the adjacent ridge portions 13b is not constant.
In the present specification, the irregularity means that when the light diffusion sheet 10 is viewed from the normal direction with respect to the base material, the ridges 13a meander and are not parallel to each other. The ridge line of the part 13a meanders, the valley line of each concave line part 13b meanders, the interval of the ridge line of the adjacent convex line part 13a is not constant, and the interval of the valley line of the adjacent concave line part 13b is Means not constant.
Moreover, the height of the ridge line is not constant in each protruding line part 13a, and the height of the valley line is not fixed in each recessed line part 13b. Therefore, as shown in FIG. 2, the longitudinal cross-sectional shape of each protruding item | line part 13a is different, respectively, and is not uniform but irregular.
The fine unevenness is composed of such a wave-like uneven pattern 13 and a large number of randomly distributed convex portions 14.
Here, the ridgeline of the “ridge 13a” means a line that connects the tops of the ridges 13a.
When the convex part 14 exists in the middle of the ridgeline of the convex part 13a, it refers to the line drawn so that the top part of the convex part 14 may be passed.
 図2に記載の基材11としては、機械的強度、寸法安定性に優れたPETの他、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンアクリレート、ポリスチレンなどの樹脂およびガラスなど、透明性を有する材料を使用できる。基材11の厚みは、例えば30~500μmである。
 表面層12としては、電離放射線硬化性樹脂の硬化物の他、熱硬化性樹脂の硬化物、熱可塑性樹脂等が挙げられる。電離放射線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂が挙げられる。表面層12の厚みは、波状の凹凸パターン13を形成するのに充分な厚みであればよく、最も厚い部分の厚みとして、10~25μm程度であることが好ましい。また、表面層12の厚みは、表面層12を変形させる前の厚みのことを意味し、光学式非接触膜厚測定器を用いて測定することができる。
As the substrate 11 shown in FIG. 2, in addition to PET having excellent mechanical strength and dimensional stability, a transparent material such as a resin such as polycarbonate, polymethyl methacrylate, polyethylene acrylate, and polystyrene, and glass can be used. . The thickness of the substrate 11 is, for example, 30 to 500 μm.
Examples of the surface layer 12 include a cured product of a thermosetting resin, a thermoplastic resin, and the like in addition to a cured product of an ionizing radiation curable resin. Examples of the ionizing radiation curable resin include an ultraviolet curable resin and an electron beam curable resin. The thickness of the surface layer 12 may be sufficient to form the wavy uneven pattern 13, and the thickness of the thickest portion is preferably about 10 to 25 μm. The thickness of the surface layer 12 means a thickness before the surface layer 12 is deformed, and can be measured using an optical non-contact film thickness measuring instrument.
 また、この例では、光拡散性シート10の微細凹凸は、波状の凹凸パターン13と、多数の凸部14とから構成されているが、本発明の表面微細凹凸体の微細凹凸は、波状の凹凸パターンと、多数の凹部とから構成されていてもよい。 In this example, the fine unevenness of the light diffusing sheet 10 is composed of a wavy uneven pattern 13 and a large number of protrusions 14. However, the fine unevenness of the surface fine unevenness of the present invention is wavy. You may be comprised from the uneven | corrugated pattern and many recessed parts.
 なお、光拡散性シート10において、波状の凹凸パターン13の繰り返し方向(図1A、B中横方向)をY方向、前記Y方向と直交する方向(図1A、B中縦方向)をX方向という場合がある。
 また本明細書では、このXY直交座標系において、第1の方向はY軸方向として、第2の方向はX軸方向という場合がある。また、XY軸に直交する方向を、第3の方向、または表面微細凹凸体の基材の法線方向と言うこともある。
In the light diffusing sheet 10, the repeating direction (the horizontal direction in FIGS. 1A and 1B) of the wavy uneven pattern 13 is referred to as the Y direction, and the direction orthogonal to the Y direction (the vertical direction in FIG. 1A and B) is referred to as the X direction. There is a case.
In this specification, in this XY orthogonal coordinate system, the first direction may be referred to as the Y-axis direction and the second direction may be referred to as the X-axis direction. In addition, the direction orthogonal to the XY axis may be referred to as the third direction or the normal direction of the substrate of the surface fine unevenness.
 図示例の光拡散性シート10は、光拡散性を発揮する観点から、波状の凹凸パターン13の最頻ピッチが3~20μmとされている。波状の凹凸パターン13の最頻ピッチは、好ましくは7~15μm、より好ましくは11~13μmである。ピッチとは、隣り合う凸条部の頂部間の距離である。
 最頻ピッチが上記範囲内であると、前記光拡散性シート10に対して、微細凹凸が形成された面(以下、微細凹凸形成面という場合がある)または前記面と反対側の平滑面側から光を入射させた場合、入射面とは反対面からの出射光は、Y方向(主拡散方向)に良好に拡散し、Y方向に充分な拡散角度(例えば18°以上、好ましくは23°以上、より好ましくは25°以上。1/10拡散角度は、(拡散角度×1.4+25°)以下、好ましくは(拡散角度×1.4+22°)以下、より好ましくは(拡散角度×1.4+20°)以下)を示す。Y方向の拡散角度の上限値は、特に制限はないが、例えば30°である。
In the illustrated example of the light diffusing sheet 10, the most frequent pitch of the wavy uneven pattern 13 is 3 to 20 μm from the viewpoint of exhibiting light diffusibility. The most frequent pitch of the wavy uneven pattern 13 is preferably 7 to 15 μm, more preferably 11 to 13 μm. The pitch is the distance between the tops of adjacent ridges.
When the most frequent pitch is within the above range, a surface on which fine irregularities are formed (hereinafter may be referred to as a fine irregularity forming surface) or a smooth surface side opposite to the surface with respect to the light diffusing sheet 10 When light is incident from the side, the outgoing light from the surface opposite to the incident surface diffuses well in the Y direction (main diffusion direction), and a sufficient diffusion angle in the Y direction (for example, 18 ° or more, preferably 23 °). Above, more preferably 25 ° or more, 1/10 diffusion angle is (diffusion angle × 1.4 + 25 °) or less, preferably (diffusion angle × 1.4 + 22 °) or less, more preferably (diffusion angle × 1.4 + 20). °) Indicates the following. The upper limit value of the diffusion angle in the Y direction is not particularly limited, but is, for example, 30 °.
 そして、図示例の光拡散性シート10の微細凹凸は、上述のように主拡散方向への拡散を主に担う波状の凹凸パターン13に加えて、ランダムに形成された多数の凸部14を有している。そのため、波状の凹凸パターン13の異方性が凸部14により適度に弱められる。その結果、前記光拡散性シート10に対して、いずれか一方の面から光を入射させた場合、反対面からの出射光は、X方向(主拡散方向に直交する方向)にも拡散し、Y方向よりも小さい、ある程度の拡散角度(例えば4°以上、好ましくは8°以上、より好ましくは10°以上。1/10拡散角度は、(拡散角度×1.6+25°)以下、好ましくは(拡散角度×1.6+20°)以下、より好ましくは(拡散角度×1.6+18°)以下)を示す。X方向の拡散角度の上限値は、特に制限はないが、例えば20°である。 Further, the fine unevenness of the light diffusing sheet 10 in the illustrated example has a large number of randomly formed convex portions 14 in addition to the wavy uneven pattern 13 mainly responsible for diffusion in the main diffusion direction as described above. is doing. Therefore, the anisotropy of the wavy uneven pattern 13 is moderately weakened by the protrusions 14. As a result, when light is incident on one of the surfaces with respect to the light diffusing sheet 10, the emitted light from the opposite surface is diffused also in the X direction (direction orthogonal to the main diffusion direction), A certain diffusion angle smaller than the Y direction (for example, 4 ° or more, preferably 8 ° or more, more preferably 10 ° or more. 1/10 diffusion angle is (diffusion angle × 1.6 + 25 °) or less, preferably ( (Diffusion angle × 1.6 + 20 °) or less, more preferably (Diffusion angle × 1.6 + 18 °) or less). The upper limit value of the diffusion angle in the X direction is not particularly limited, but is 20 °, for example.
 凸部14の見かけの最頻径は、1~10μmが好ましく、より好ましくは3~6μm、さらに好ましくは4~5μmである。凸部14の見かけの最頻径が上記範囲内であると、波状の凹凸パターン13の異方性を適度に弱めることができ、Y方向およびX方向の両方の拡散角度を上記範囲に制御しやすく、たとえば、Y方向は好ましくは25~30°、X方向は好ましくは10~15°に制御しやすい。また、Y方向およびX方向の両方の1/10拡散角度を上記範囲に制御しやすく、たとえば、Y方向は好ましくは(拡散角度×1.4+20°)以下、X方向は好ましくは(拡散角度×1.6+18°)以下に制御しやすい。 The apparent mode diameter of the convex portion 14 is preferably 1 to 10 μm, more preferably 3 to 6 μm, still more preferably 4 to 5 μm. If the apparent mode diameter of the convex portion 14 is within the above range, the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction are controlled within the above range. For example, the Y direction is preferably controlled at 25 to 30 °, and the X direction is preferably controlled at 10 to 15 °. Further, the 1/10 diffusion angle in both the Y direction and the X direction can be easily controlled within the above range. For example, the Y direction is preferably (diffusion angle × 1.4 + 20 °) or less, and the X direction is preferably (diffusion angle × 1.6 + 18 °) or less.
 本明細書における拡散角度(一般に、「FWHM」と呼称される場合がある。)および1/10拡散角度は、配光特性測定装置(例えば、GENESIA GonioFar Field Profiler(ジェネシア社製))を用いて以下の方法により測定できる。
 まず、光拡散性シート10に対していずれか一方の面、すなわち微細凹凸形成面または反対側の平滑面側から光を照射、入射させる。その際に、入射面とは反対面側から垂直に出光する出射光(出光角度=0°)の照度を基準値とし、Y方向に沿う出光角度-90°~+90°の範囲内の出射光の照度を、上記基準値に対する相対値として、1°おきに測定する。そして、各Y方向の出光角度に対する照度の値をプロットして照度曲線を得る。
 前記照度曲線における半値幅(全半値幅)を主拡散方向(Y方向)の拡散角度とする。また、1/10値幅(全1/10値幅)を主拡散方向(Y方向)の1/10拡散角度とする。
 同様に、X方向に沿う出光角度-90°~+90°の範囲内の出射光の照度を上記基準値に対する相対値として、1°おきに測定する。そして、各X方向の出光角度に対する照度の値をプロットして照度曲線を得る。前記照度曲線における半値幅(全半値幅)を主拡散方向に直交する方向(X方向)の拡散角度とする。また、1/10値幅(全1/10値幅)を主拡散方向に直交する方向(X方向)の1/10拡散角度とする。
The diffusion angle in this specification (generally referred to as “FWHM”) and the 1/10 diffusion angle are measured using a light distribution characteristic measurement device (for example, GENESISIA GonioFar Field Profiler (manufactured by Genesia)). It can be measured by the following method.
First, the light diffusing sheet 10 is irradiated with light from one of the surfaces, that is, the fine unevenness forming surface or the opposite smooth surface side. At that time, the illuminance of the outgoing light (light outgoing angle = 0 °) emitted perpendicularly from the side opposite to the incident surface is used as a reference value, and the outgoing light within the range of the light outgoing angle along the Y direction of −90 ° to + 90 °. Is measured at intervals of 1 ° as a relative value with respect to the reference value. Then, the illuminance curve is obtained by plotting the illuminance value with respect to the light emission angle in each Y direction.
The half value width (full half value width) in the illuminance curve is defined as the diffusion angle in the main diffusion direction (Y direction). Further, the 1/10 value width (all 1/10 value widths) is defined as a 1/10 diffusion angle in the main diffusion direction (Y direction).
Similarly, the illuminance of the emitted light within the range of the light emission angle of −90 ° to + 90 ° along the X direction is measured every 1 ° as a relative value with respect to the reference value. Then, the illuminance curve is obtained by plotting the illuminance value with respect to the light emission angle in each X direction. The half value width (total half value width) in the illuminance curve is defined as a diffusion angle in a direction (X direction) orthogonal to the main diffusion direction. Further, the 1/10 value width (total 1/10 value width) is defined as a 1/10 diffusion angle in the direction (X direction) orthogonal to the main diffusion direction.
 本明細書において、波状の凹凸パターン13の最頻ピッチ、凸部14の見かけの最頻径は、以下のように測定、定義される。
 まず、表面微細凹凸体について、図1Aのような光学顕微鏡写真を得る。その際の観察視野は、縦0.4~1.6mm、横0.5~2mmとする。この画像がjpeg等の圧縮画像である場合は、これをグレースケールのTif画像に変換する。そして、フーリエ変換を行い、図3のようなフーリエ変換画像を得る。
 また、図3のフーリエ変換画像の模式図を図4として示す。
 ここで、図3において符号A1およびA2の白色部は、その形状に方向性があることから、波状の凹凸パターンのピッチの情報を含む。白色の輝度は頻度を示す(ただし中心点は除く)。一方、図3の白色円環Bは、その形状に方向性がないことから、多数の凸部の径の情報を含む。
 そこで、図3の中心からA1の中で最大頻度となる点を通るように線L1-1を引き、線L1-1の頻度分布をプロットすると、図5のグラフが得られる。
 また、図3の中心からL1-1と直交する方向に線L1-2を引き、線L1-2の頻度分布をプロットすると、図6のグラフが得られる。
 図5において、頻度が高い1/XAが、光拡散性シート10における、波状の凹凸パターンの最頻ピッチとなる。
 また、図5および図6において、頻度が高い1/XB、1/YBが、光拡散性シート10における、多数の凸部のそれぞれL1-1方向、L1-2方向の最頻径となる。すなわち、1/XAは波状の凹凸パターンの最頻ピッチ、1/(XB+YB)は多数の凸部の見かけの最頻径である。
 なお、図3のフーリエ変換画像において、中心からの方位は、図1Aに存在する周期構造(凹凸パターン13)の方向を意味し、中心からの距離は、図1Aに存在する周期構造の周期の逆数を意味する。この例では、図1Aに示すように、波状の凹凸パターン13が図中横方向に繰り返されているため、フーリエ変換画像において中心からの図中横方向に延びる線L1-1において、最頻ピッチの逆数に相当する部分の輝度(頻度)が高くなっている。
 また、図4中、XBは、線L1-1(図4では図示略)の円環を通る部分において、頻度が最大となる位置であり、また、図4中、YBは、線L1-2(図4では図示略)の円環を通る部分において、頻度が最大となる位置である。
In the present specification, the mode pitch of the wavy uneven pattern 13 and the apparent mode diameter of the convex portion 14 are measured and defined as follows.
First, an optical micrograph as shown in FIG. 1A is obtained for the fine surface irregularities. The observation visual field at that time is 0.4 to 1.6 mm in length and 0.5 to 2 mm in width. If this image is a compressed image such as jpeg, it is converted into a grayscale Tif image. Then, Fourier transform is performed to obtain a Fourier transform image as shown in FIG.
Moreover, the schematic diagram of the Fourier-transform image of FIG. 3 is shown as FIG.
Here, the white portions denoted by reference signs A1 and A2 in FIG. 3 include information on the pitch of the wavy uneven pattern since the shape thereof has directionality. White brightness indicates frequency (except for the center point). On the other hand, the white circular ring B in FIG. 3 includes information on the diameters of a large number of convex portions because the shape thereof has no directionality.
Therefore, when the line L1-1 is drawn from the center of FIG. 3 so as to pass through the point having the maximum frequency in A1, and the frequency distribution of the line L1-1 is plotted, the graph of FIG. 5 is obtained.
Further, when the line L1-2 is drawn from the center of FIG. 3 in the direction orthogonal to L1-1 and the frequency distribution of the line L1-2 is plotted, the graph of FIG. 6 is obtained.
In FIG. 5, 1 / XA having a high frequency is the most frequent pitch of the wavy uneven pattern in the light diffusing sheet 10.
In FIGS. 5 and 6, 1 / XB and 1 / YB, which are frequently used, are the mode diameters in the L1-1 direction and the L1-2 direction of the large number of convex portions in the light diffusing sheet 10, respectively. That is, 1 / XA is the mode pitch of the wavy uneven pattern, and 1 / (XB + YB) is the apparent mode diameter of a number of convex portions.
In the Fourier transform image of FIG. 3, the orientation from the center means the direction of the periodic structure (uneven pattern 13) existing in FIG. 1A, and the distance from the center is the period of the periodic structure existing in FIG. 1A. Means the reciprocal. In this example, as shown in FIG. 1A, since the wavy uneven pattern 13 is repeated in the horizontal direction in the drawing, the most frequent pitch in the line L1-1 extending in the horizontal direction in the drawing from the center in the Fourier transform image. The luminance (frequency) of the portion corresponding to the reciprocal of is high.
In FIG. 4, XB is a position where the frequency is maximum in a portion passing through the ring of line L1-1 (not shown in FIG. 4), and in FIG. 4, YB is a line L1-2. This is the position where the frequency is maximum in the portion passing through the ring (not shown in FIG. 4).
 図示例のような光学顕微鏡写真を少なくとも5枚撮影し、それぞれの写真について上記のように求めた最頻ピッチの平均値を波状の凹凸パターン13の「最頻ピッチ」と定義する。すなわち、「最頻ピッチ」とは、隣り合う凸条部の頂部間距離のうち、最も出現頻度が高い頂部間距離のことを指す。また、それぞれの写真について上記のように求めた見かけの最頻径の平均値を凸部14の「見かけの最頻径」と定義する。すなわち、「見かけの最頻径」とは、凹凸パターンの上に形成された凸部の直径のうち、最も出現頻度の高い直径のことを指す。
 なお、表面微細凹凸体の微細凹凸は、凸部の代わりに、凹部を有していてもよく、凹部の「見かけの最頻径」も凸部の「見かけの最頻径」と同じ方法で求められる。
At least five optical micrographs as shown in the figure are taken, and the average value of the mode pitches obtained as described above for each photo is defined as the “mode pitch” of the wavy uneven pattern 13. That is, the “most frequent pitch” refers to the distance between the tops having the highest appearance frequency among the distances between the tops of the adjacent ridges. Further, the average value of the apparent mode diameter obtained as described above for each photograph is defined as the “apparent mode diameter” of the convex portion 14. That is, the “apparent mode diameter” refers to a diameter having the highest appearance frequency among the diameters of the convex portions formed on the concave / convex pattern.
The fine irregularities of the surface fine irregularities may have concave portions instead of convex portions, and the “apparent mode diameter” of the concave portions is the same as the “apparent mode diameter” of the convex portions. Desired.
 波状の凹凸パターン13を構成する凸条部13aの平均高さは、4~7μmが好ましく、より好ましくは5~6μmである。凸条部13aの平均高さが上記範囲であると、光拡散性が充分に得られる。 The average height of the ridges 13a constituting the wavy uneven pattern 13 is preferably 4 to 7 μm, more preferably 5 to 6 μm. When the average height of the ridges 13a is within the above range, sufficient light diffusibility can be obtained.
 本明細書において、波状の凹凸パターン13の凸条部13aの平均高さは、以下のように測定、定義される。
 まず、光拡散性シート10の微細凹凸形成面を原子間力顕微鏡により観察し、その観察結果から、Y方向に沿って波状の凹凸パターン13を切断した面について、図7のような縦断面図を得る。そして、凸部14が存在していない部分の凸条部13aの断面図から、前記凸条部13の高さHを求める。具体的には、凸条部13aの高さHは、前記凸条部13aの頂部Tと前記凸条部13aの一方側に位置する凹条部13bの底部B1との垂直距離をH1とし、前記凸条部13aの頂部Tと前記凸条部13aの他方側に位置する凹条部13bの底部B2との垂直距離をH2とした場合に、H=(H1+H2)/2で求められる。
 このような計測を凸部14が存在していない凸条部13aの50箇所に対して行い、50のデータの平均値を「凸条部の平均高さ」と定義する。
In the present specification, the average height of the ridges 13a of the wavy uneven pattern 13 is measured and defined as follows.
First, the fine unevenness forming surface of the light diffusive sheet 10 is observed with an atomic force microscope, and from the observation result, the surface obtained by cutting the wavy uneven pattern 13 along the Y direction is a longitudinal sectional view as shown in FIG. Get. And the height H of the said protruding item | line part 13 is calculated | required from sectional drawing of the protruding item | line part 13a of the part in which the protruding part 14 does not exist. Specifically, the height H of the ridge portion 13a is set to H1 as a vertical distance between the top portion T of the ridge portion 13a and the bottom portion B1 of the ridge portion 13b located on one side of the ridge portion 13a. When the vertical distance between the top portion T of the ridge portion 13a and the bottom portion B2 of the ridge portion 13b located on the other side of the ridge portion 13a is defined as H2, H = (H1 + H2) / 2.
Such measurement is performed on 50 portions of the ridge portion 13a where the ridge portion 14 does not exist, and the average value of the 50 data is defined as “average height of the ridge portion”.
 一方、凸部14の平均高さは、0.5~3μmが好ましく、より好ましくは1~2μm、さらに好ましくは1.1~1.5μmである。凸部14の平均高さが上記範囲であると、波状の凹凸パターン13の異方性を適度に弱めることができ、Y方向およびX方向の両方の拡散角度を上記範囲に制御しやすい。 On the other hand, the average height of the convex portions 14 is preferably 0.5 to 3 μm, more preferably 1 to 2 μm, and still more preferably 1.1 to 1.5 μm. When the average height of the protrusions 14 is in the above range, the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction can be easily controlled within the above range.
 本明細書において、凸部14の平均高さは、以下のように測定、定義される。
 まず、上述のようにして図7の断面図を得る。そして、図8に示すように、波状の凹凸パターン13に由来する形状と、凸部14に由来する形状とに波形分離する。なお、波形分離は、波状の凹凸パターン13に由来する形状をサインカーブとして行う。ついで、図8の断面図から、波状の凹凸パターン13に由来する形状を差し引き、図9に示すように、凸部14に由来する形状のみの断面図を得る。そして、図9の断面図において、凸部14の高さH’を、H’=(H1’+H2’)/2として求める。H1’は、図9の断面図において、凸部14の頂部T’と前記凸部14の一方側のベースラインLαとの垂直距離であり、H2’は、凸部14の頂部T’と前記凸部14の他方側のベースラインLβとの垂直距離である。
 このような計測を50個の凸部14に対して行い、50のデータの平均値を「凸部の平均高さ」と定義する。
In this specification, the average height of the convex part 14 is measured and defined as follows.
First, the cross-sectional view of FIG. 7 is obtained as described above. Then, as shown in FIG. 8, the waveform is separated into a shape derived from the wavy uneven pattern 13 and a shape derived from the convex portion 14. The waveform separation is performed using a shape derived from the wavy uneven pattern 13 as a sine curve. Next, the shape derived from the wavy uneven pattern 13 is subtracted from the cross-sectional view of FIG. 8 to obtain a cross-sectional view of only the shape derived from the convex portion 14 as shown in FIG. Then, in the cross-sectional view of FIG. 9, the height H ′ of the convex portion 14 is obtained as H ′ = (H1 ′ + H2 ′) / 2. In the cross-sectional view of FIG. 9, H1 ′ is a vertical distance between the top portion T ′ of the convex portion 14 and the base line L α on one side of the convex portion 14, and H2 ′ is the top portion T ′ of the convex portion 14. it is a vertical distance between the baseline L beta of the other side of the convex portion 14.
Such measurement is performed on 50 convex portions 14, and the average value of 50 data is defined as "average height of convex portions".
 光拡散性シート10の微細凹凸における凸部14の占有面積割合は、30~70%が好ましく、より好ましくは40~60%、さらに好ましくは45~55%である。凸部14の占有面積割合が上記範囲であると、波状の凹凸パターン13の異方性を適度に弱めることができ、Y方向およびX方向の両方の拡散角度を上記範囲に制御しやすい。 The occupation area ratio of the convex portions 14 in the fine irregularities of the light diffusing sheet 10 is preferably 30 to 70%, more preferably 40 to 60%, and further preferably 45 to 55%. When the occupation area ratio of the convex portion 14 is in the above range, the anisotropy of the wavy uneven pattern 13 can be moderately weakened, and the diffusion angles in both the Y direction and the X direction can be easily controlled within the above range.
 本明細書において、光拡散性シート10における凸部14の占有面積割合γ(%)は、以下のように測定、定義される。
 まず、図1Aのような光学顕微鏡写真を得て、視野全体の面積S2(例えば縦0.4~1.6mm、横0.5~2mm)中に認められる凸部14の個数nを数え、視野全体において、n個の凸部14によって占有されている面積S1=nrπを求める。占有面積割合γ(%)は以下の式により求められる。
In this specification, the occupation area ratio γ (%) of the convex portion 14 in the light diffusive sheet 10 is measured and defined as follows.
First, an optical microscope photograph as shown in FIG. 1A is obtained, and the number n of convex portions 14 recognized in the area S2 of the entire visual field (for example, 0.4 to 1.6 mm in length and 0.5 to 2 mm in width) is counted. In the entire field of view, an area S1 = nr 2 π occupied by the n convex portions 14 is obtained. The occupied area ratio γ (%) is obtained by the following formula.
 γ(%)=S1×100/S2(ただし、式中のrは、凸部の見かけの最頻径の1/2(すなわち半径)である) Γ (%) = S1 × 100 / S2 (where r in the formula is ½ (ie, radius) of the apparent mode diameter of the convex portion)
 このように図示例の光拡散性シート10は、その片面に、Y方向への拡散を主に担う特定の波状の凹凸パターン13と、前記波状の凹凸パターン13上に形成され、前記波状の凹凸パターン13の異方性を適度に弱め、X方向の拡散を増加させる多数の凸部14とからなる微細凹凸を有している。そのため、いずれか一方の面から光拡散性シート10に光を入射させた場合、Y方向には例えば18°以上、好ましくは23°以上、より好ましくは25°以上の充分な拡散角度が得られる。また、(拡散角度×1.4+25°)以下、好ましくは(拡散角度×1.4+22°)以下、より好ましくは(拡散角度×1.4+20°)以下の充分な1/10拡散角度が得られる。一方、X方向にも例えば4°以上、好ましくは8°以上、より好ましくは10°以上の拡散角度が得られる。また、(拡散角度×1.6+25°)以下、好ましくは(拡散角度×1.6+20°)以下、より好ましくは(拡散角度×1.6+18°)以下の充分な1/10拡散角度が得られる。従来の異方性が高い光拡散性シートを用いると、出射光はY方向には拡散するがX方向にはほとんど拡散せず、そのため出射光の投影像は、図10Aに示すように、扁平率の大きな楕円状であった。これに対して、図示例の光拡散性シート10を用いると、出射光はX方向にも拡散するため、出射光の投影像は、図10Bに示すように、扁平率の小さな楕円状となる。 As described above, the light diffusive sheet 10 in the illustrated example is formed on one surface of the corrugated uneven pattern 13 mainly having diffusion in the Y direction, and the corrugated uneven pattern 13. The pattern 13 has fine irregularities including a large number of convex portions 14 that moderately weaken the anisotropy of the pattern 13 and increase diffusion in the X direction. Therefore, when light is incident on the light diffusing sheet 10 from any one surface, a sufficient diffusion angle of, for example, 18 ° or more, preferably 23 ° or more, more preferably 25 ° or more is obtained in the Y direction. . Further, a sufficient 1/10 diffusion angle of (diffusion angle × 1.4 + 25 °) or less, preferably (diffusion angle × 1.4 + 22 °) or less, more preferably (diffusion angle × 1.4 + 20 °) or less is obtained. . On the other hand, a diffusion angle of, for example, 4 ° or more, preferably 8 ° or more, more preferably 10 ° or more can be obtained in the X direction. Further, a sufficient 1/10 diffusion angle of (diffusion angle × 1.6 + 25 °) or less, preferably (diffusion angle × 1.6 + 20 °) or less, more preferably (diffusion angle × 1.6 + 18 °) or less is obtained. . When a conventional light diffusive sheet having high anisotropy is used, the emitted light diffuses in the Y direction but hardly diffuses in the X direction. Therefore, the projected image of the emitted light is flat as shown in FIG. 10A. It was an elliptical shape with a large rate. On the other hand, when the light diffusive sheet 10 shown in the figure is used, the emitted light diffuses in the X direction, so that the projected image of the emitted light has an elliptical shape with a small flatness as shown in FIG. 10B. .
 また、図示例の光拡散性シート10の波状の凹凸パターン13を構成している凸条部13aは、互いに非平行で、かつ、それぞれが蛇行していて、規則性がない。そのため、凹凸パターン13の異方性が適度に弱められていて、凸部14が形成されていることによる効果とあいまって、X方向の拡散角度を増加させる効果がより顕著に発現するものと考えられる。
 X方向の拡散角度を増加させる方法としては、光拡散剤を添加する方法も考えられる。
 しかしながら、光拡散剤の添加は、光拡散性シートの光透過率を下げる傾向にある。これに対して、本発明のように微細凹凸を特定に制御することでX方向の拡散角度を増加させる方法では、光拡散剤を添加する必要がなく、また、添加する場合でも、その添加量を少量とできる。そのため、光透過率を高く維持できる。
Further, the ridges 13a constituting the wavy uneven pattern 13 of the illustrated light diffusing sheet 10 are non-parallel to each other and meandering, and have no regularity. For this reason, the anisotropy of the uneven pattern 13 is moderately weakened, and the effect of increasing the diffusion angle in the X direction is considered to be more prominently combined with the effect of forming the convex portion 14. It is done.
As a method of increasing the diffusion angle in the X direction, a method of adding a light diffusing agent is also conceivable.
However, the addition of a light diffusing agent tends to lower the light transmittance of the light diffusing sheet. On the other hand, in the method of increasing the diffusion angle in the X direction by specifically controlling fine irregularities as in the present invention, it is not necessary to add a light diffusing agent, and even when it is added, the amount of addition Can be made in small quantities. Therefore, the light transmittance can be maintained high.
 このような図示例の光拡散性シート10は、例えば、ゆるやかな曲面状に形成された自動車のフロントガラスに現在の速度情報やカーナビ情報などを鮮明に表示させるヘッドアップディスプレイ(HUD)システムなどにおいて、拡散部材として好適に使用される。
 また、前記光拡散性シート10は、プロジェクター用の拡散部材;テレビ、モニター、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ、スマートフォン、携帯電話等のバックライト用の拡散部材;等としても好適に使用される。
 また、前記光拡散性シート10は、コピー機等に使用される、LED光源を線状に配列したスキャナ光源において、導光部材の出射面を構成する拡散部材等としても好適に使用される。
Such a light diffusing sheet 10 in the illustrated example is, for example, in a head-up display (HUD) system that clearly displays current speed information, car navigation information, and the like on a windshield of a car that is formed in a gently curved surface. It is preferably used as a diffusion member.
The light diffusing sheet 10 is also suitably used as a diffusing member for a projector; a diffusing member for a backlight of a television, a monitor, a notebook personal computer, a tablet personal computer, a smartphone, a mobile phone, or the like. The
The light diffusive sheet 10 is also preferably used as a diffusing member or the like constituting the exit surface of the light guide member in a scanner light source in which LED light sources are arranged in a line, used in a copying machine or the like.
 本発明の1つの態様は、前述の表面微細凹凸体の光拡散性シート、または光拡散部材としての使用、もしくはその使用方法である。また、本発明の表面微細凹凸体を光拡散性シート、または光拡散部材として用いる場合、その応用先としては、前述の通り、ヘッドアップディスプレイシステムや、パソコンや携帯電話等のバックライト用、または導光部材の出射面等の拡散部材等が挙げられる。 One aspect of the present invention is the use of the above-described surface fine irregularities as a light diffusing sheet or a light diffusing member, or a method of using the same. Further, when the surface fine irregularities of the present invention are used as a light diffusing sheet or a light diffusing member, the application destination thereof is as described above for a head-up display system, a backlight for a personal computer or a mobile phone, or Examples thereof include a diffusion member such as an emission surface of the light guide member.
<表面微細凹凸体の製造方法>
 図示例の光拡散性シート10は、微細凹凸を表面に有する光拡散性シート形成用原版(光拡散体形成用原版)を型として用い、前記光拡散性シート形成用原版(以下、「原版」ともいう)の微細凹凸を転写する転写工程を有する方法により製造できる。
 本発明の1つの態様は、前記表面微細凹凸体の光拡散性シートや、拡散部材を製造するための原版としての使用である。
<Method for producing surface fine unevenness>
The light diffusing sheet 10 in the illustrated example uses a light diffusing sheet forming original plate (light diffusing material forming original plate) having fine irregularities on the surface as a mold, and the light diffusing sheet forming original plate (hereinafter referred to as “original plate”). (Also referred to as)).
One aspect of the present invention is the use of the surface fine concavo-convex body as a light diffusing sheet or an original plate for producing a diffusing member.
 図示例の光拡散性シート10は、原版の微細凹凸を転写して1次転写品を得て、ついで、前記1次転写品の微細凹凸をさらに転写して得た2次転写品である。1次転写品の有する微細凹凸は、原版の微細凹凸の反転パターンであるが、2次転写品の微細凹凸は、原版の微細凹凸と同じパターンである。よって、この例では原版として、図示例の光拡散性シート10と同じ微細凹凸を有する表面微細凹凸体を製造し、これを転写の型として2次転写を行い、図示例の光拡散性シート10を製造している。 The light diffusing sheet 10 in the illustrated example is a secondary transfer product obtained by transferring the fine irregularities of the original plate to obtain a primary transfer product, and then further transferring the fine irregularities of the primary transfer product. The fine unevenness of the primary transfer product is a reverse pattern of the fine unevenness of the original plate, but the fine unevenness of the secondary transfer product is the same pattern as the fine unevenness of the original plate. Therefore, in this example, a surface fine uneven body having the same fine unevenness as the light diffusing sheet 10 in the illustrated example is manufactured as an original, and this is used as a transfer mold for secondary transfer, and the light diffusing sheet 10 in the illustrated example is produced. Is manufacturing.
 また、n次転写品において、nが偶数である場合には、前記転写品の有する微細凹凸は原版の微細凹凸と同じパターンであるが、nが奇数である場合には、前記転写品の有する微細凹凸は原版の微細凹凸の反転パターンとなる。そして、nが奇数であるn次転写品であって、かつ、転写に用いた原版の微細凹凸が凸部を有するものである場合、そのn次転写品(nが奇数)の微細凹凸は、凸部が反転した凹部を有するものとなる。すでに述べたとおり、本発明の表面微細凹凸体の具備する微細凹凸は、凸部の代わりに凹部を有する形態であってもよい。よって、本発明の表面微細凹凸体には、上述の原版と、原版のn次転写品(nが偶数)だけでなく、原版のn次転写品(nが奇数)も含まれる。
 以下、2次転写品である図示例の光拡散性シート10の製造方法について説明する。
Further, in the n-order transfer product, when n is an even number, the fine unevenness of the transfer product is the same pattern as the fine unevenness of the original plate, but when n is an odd number, the transfer product has The fine unevenness becomes a reversal pattern of the fine unevenness of the original. And, when n is an n-order transfer product having an odd number and the fine unevenness of the original used for transfer has a convex part, the fine unevenness of the n-order transfer product (n is an odd number) The convex part has a concave part that is inverted. As already described, the fine irregularities of the surface fine irregularities of the present invention may be in the form of having concave portions instead of convex portions. Therefore, the surface fine irregularities of the present invention include not only the above-mentioned original plate and the original n-order transfer product (n is an even number) but also the original n-order transfer product (n is an odd number).
Hereinafter, the manufacturing method of the light diffusable sheet 10 of the example of illustration which is a secondary transfer product is demonstrated.
[原版]
 図示例の光拡散性シート10を製造するにあたっては、まず、図11に示す表面微細凹凸体20を製造し、これを原版として用いる。前記原版は、樹脂からなる基材21と、前記基材21の片面全体に設けられた硬質層22とを有し、硬質層22の露出した側の表面が、図示例の光拡散性シート10と同様の微細凹凸に形成されたものである。
[Original version]
In manufacturing the light diffusable sheet 10 of the illustrated example, first, the surface fine uneven body 20 shown in FIG. 11 is manufactured and used as an original. The original plate has a base material 21 made of resin and a hard layer 22 provided on one entire surface of the base material 21, and the exposed surface of the hard layer 22 has the light diffusing sheet 10 in the illustrated example. Are formed in the same fine irregularities.
 硬質層22は、この例では、マトリクス樹脂22aと前記マトリクス樹脂22a中に分散した粒子22bとからなり、折り畳まれたように変形しているとともに、硬質層22の厚みt(粒子が存在しない部分の厚み)は粒子の粒径dよりも小さく設定されている。そのため、前記硬質層22は、折り畳まれたように変形したことにより形成された波状の凹凸パターン13’(凸条部13a’および凹条部13b’)と、硬質層22に分散した各粒子22bが硬質層22の表面側に突出することにより形成された凸部14’とからなる微細凹凸を有する。基材21における硬質層22との接触面は、折り畳まれたように変形した硬質層22の形状に追従した凹凸状となっている。 In this example, the hard layer 22 includes a matrix resin 22a and particles 22b dispersed in the matrix resin 22a. The hard layer 22 is deformed so as to be folded, and the thickness t of the hard layer 22 (part where no particles exist). Is set smaller than the particle diameter d of the particles. Therefore, the hard layer 22 has a wavy uneven pattern 13 ′ (projection strip portion 13 a ′ and recess strip portion 13 b ′) formed by being deformed as folded, and each particle 22 b dispersed in the hard layer 22. Has a fine asperity composed of a convex portion 14 ′ formed by projecting to the surface side of the hard layer 22. The contact surface of the base material 21 with the hard layer 22 has a concavo-convex shape following the shape of the hard layer 22 deformed as if folded.
 なお、硬質層22の厚みtとは、表面微細凹凸体20をその面方向に対して垂直に切った断面(縦断面)の顕微鏡写真から、硬質層22のうち粒子22bの存在しない部分を10カ所以上無作為に抽出して各部分の厚さを法線方向に測定した際の、得られた各数値の平均値である。 Note that the thickness t of the hard layer 22 is a portion of the hard layer 22 where the particles 22b are not present from a micrograph of a cross section (longitudinal cross section) obtained by cutting the surface fine irregularities 20 perpendicular to the surface direction. This is the average value of the numerical values obtained when randomly extracting more than one point and measuring the thickness of each part in the normal direction.
 また、粒子22bの粒径dとは、均一に単分散している粒子について、レーザー回折・散乱式粒度分布分析装置で測定したモード径(最頻径)である。 Further, the particle diameter d of the particles 22b is a mode diameter (mode) measured by a laser diffraction / scattering particle size distribution analyzer for uniformly dispersed particles.
 このような図11の表面微細凹凸体20は、詳しくは後述するように、樹脂からなる基材フィルムの片面に、マトリクス樹脂中に粒子が分散した硬質層を設けて積層シートを形成する積層工程と、積層シートの少なくとも硬質層を折り畳むように変形させる変形工程とを有する方法により製造できる。この方法によれば、それぞれが蛇行し、互いに非平行で、不規則な凸条部13a’を形成できる。また、各凸条部13a’の縦断面は、基端側から先端側に向かって先細り形状になる。 As described in detail later, the surface fine concavo-convex body 20 shown in FIG. 11 is a lamination process in which a hard layer in which particles are dispersed in a matrix resin is provided on one side of a base film made of resin to form a laminated sheet. And a deformation step of deforming at least a hard layer of the laminated sheet so as to be folded. According to this method, it is possible to form meandering portions 13 a ′ which meander each other and are not parallel to each other and irregular. Further, the vertical cross section of each protruding line portion 13a 'is tapered from the proximal end side toward the distal end side.
 図11の表面微細凹凸体20においては、基材21を構成する樹脂のガラス転移温度Tg1よりも、マトリクス樹脂22aのガラス転移温度Tg2が、10℃以上高いことが必要である。また、粒子22bは、基材21を構成する樹脂のガラス転移温度より10℃高い温度未満の温度では、熱により粒子形状が変化しない材料からなることが必要である。
 ここで「粒子形状が変化しない」とは、加熱前後で粒子の形、及び粒子径が変化しないことを意味する。
11, the glass transition temperature Tg2 of the matrix resin 22a needs to be 10 ° C. or more higher than the glass transition temperature Tg1 of the resin constituting the substrate 21. Further, the particles 22b need to be made of a material whose particle shape does not change due to heat at a temperature lower than a temperature 10 ° C. higher than the glass transition temperature of the resin constituting the substrate 21.
Here, “the particle shape does not change” means that the particle shape and particle diameter do not change before and after heating.
 すなわち、基材21を構成する樹脂と、マトリクス樹脂22aとにおいては、これらのガラス転移温度の差(Tg2-Tg1)が10℃以上となるように選択されることが必要であり、前記差は20℃以上が好ましく、30℃以上がより好ましい。(Tg2-Tg1)が10℃以上であると、Tg2とTg1の間の温度で、容易に、後述の変形工程において加熱収縮などの加工が行える。また、Tg2とTg1の間の温度を加工温度とすると、基材のヤング率がマトリクス樹脂22aのヤング率より高くなる条件で加工でき、その結果、後述の変形工程において、硬質層22に波状の凹凸パターン13’を容易に形成できる。加工温度とは、変形工程で少なくとも硬質層22を折り畳むように変形させる際の温度(例えば熱収縮時の加熱温度。)のことである。 That is, the resin constituting the base material 21 and the matrix resin 22a need to be selected so that the difference between these glass transition temperatures (Tg2−Tg1) is 10 ° C. or more. 20 degreeC or more is preferable and 30 degreeC or more is more preferable. When (Tg2−Tg1) is 10 ° C. or higher, processing such as heat shrinkage can be easily performed at a temperature between Tg2 and Tg1 in a deformation process described later. Further, if the temperature between Tg2 and Tg1 is the processing temperature, it can be processed under the condition that the Young's modulus of the base material is higher than the Young's modulus of the matrix resin 22a. As a result, in the deformation process described later, the hard layer 22 is wavy. The uneven pattern 13 ′ can be easily formed. The processing temperature is a temperature at which the hard layer 22 is deformed so as to be folded at least in the deformation process (for example, a heating temperature at the time of thermal contraction).
 また、Tg2が400℃を超えるような樹脂を使用する必要性は経済面から乏しく、Tg1が-150℃より低い樹脂は存在しないことから、(Tg2-Tg1)は550℃以下であることが好ましく、200℃以下であることがより好ましい。すなわち、本発明の1つの態様において、(Tg2-Tg1)は、10~550℃が好ましく、30~200℃がより好ましい。なお、後述の変形工程の加工温度における基材21とマトリクス樹脂22aとのヤング率の差は、波状の凹凸パターン13’を容易に形成できることから、0.01~300GPaであることが好ましく、0.1~10GPaであることがより好ましい。
 ヤング率は、JIS K 7113-1995に準拠して測定した値である。
Further, the necessity of using a resin having a Tg2 exceeding 400 ° C. is scarce from an economic viewpoint, and since there is no resin having a Tg1 lower than −150 ° C., (Tg2−Tg1) is preferably 550 ° C. or less. More preferably, it is 200 ° C. or lower. That is, in one embodiment of the present invention, (Tg2-Tg1) is preferably 10 to 550 ° C, more preferably 30 to 200 ° C. Note that the difference in Young's modulus between the base material 21 and the matrix resin 22a at the processing temperature in the deformation process described later is preferably 0.01 to 300 GPa because the wavy uneven pattern 13 ′ can be easily formed. More preferably, it is 1 to 10 GPa.
The Young's modulus is a value measured according to JIS K 7113-1995.
 Tg1は-150~300℃であることが好ましく、-120~200℃であることがより好ましい。Tg1が-150℃より低い樹脂は存在せず、Tg1が300℃以下であれば、上述の加工温度まで、容易に昇温、加熱できる。 Tg1 is preferably −150 to 300 ° C., more preferably −120 to 200 ° C. There is no resin having a Tg1 lower than −150 ° C., and if the Tg1 is 300 ° C. or lower, the temperature can be easily raised and heated to the above processing temperature.
 上述の加工温度における、基材21を構成する樹脂のヤング率は0.01~100MPaであることが好ましく、0.1~10MPaであることがより好ましい。基材21を構成する樹脂のヤング率が0.01MPa以上であれば、基材として使用可能な硬さであり、100MPa以下であれば、硬質層22が変形する際に同時に追従して変形することが可能な軟らかさである。 The Young's modulus of the resin constituting the substrate 21 at the above processing temperature is preferably 0.01 to 100 MPa, and more preferably 0.1 to 10 MPa. If the Young's modulus of the resin constituting the base material 21 is 0.01 MPa or more, it is a hardness that can be used as the base material, and if it is 100 MPa or less, the hard layer 22 is deformed following the deformation at the same time. It is possible softness.
 粒子22bを構成する材料には、基材21を構成する樹脂のガラス転移温度より10℃高い温度未満では、熱により粒子形状が変化しない材料の1種以上を用いることができる。
 例えば、粒子22bを構成する材料が、ガラス転移温度を有する樹脂およびガラス転移温度を有する無機材料からなる群から選ばれる1種以上である場合、そのガラス転移温度Tg3が、マトリクス樹脂のガラス転移温度Tg2と同様の条件を満たすこと、すなわち、(Tg3-Tg1)が10℃以上となるように選択されることが必要であり、(Tg3-Tg1)は20℃以上がより好ましく、30℃以上が更に好ましい。(Tg3-Tg1)が10℃以上であると、上述の加工温度において、粒子22bが変形した溶融したりせず、確実に凸部14’を形成する。
 粒子22bを構成する材料が、ガラス転移温度を有さない材料、例えば内部架橋型樹脂などである場合には、そのビカット軟化温度(JIS K7206に規定)が、上述の条件を満たすこと、すなわち、基材21を構成する樹脂のガラス転移温度より10℃以上高いことが好ましく、20℃以上高いことが好ましく、30℃以上高いことがより好ましい。
 なお、本明細書において、ガラス転移温度Tg3についての好ましい温度範囲などの記載は、粒子22bがガラス転移温度を有さず、ビカット軟化温度を有する材料からなる場合、そのビカット軟化温度にも該当するものとする。
 さらに、粒子22bを構成する材料としては、ガラス転移温度、ビカット軟化温度が測定できないものであっても、基材21を構成する樹脂のガラス転移温度Tg1より10℃高い温度未満において、熱により粒子形状が変化しない材料であれば、本発明において使用可能である。
As the material constituting the particles 22b, at least one kind of material whose particle shape does not change by heat can be used at a temperature lower than 10 ° C. higher than the glass transition temperature of the resin constituting the substrate 21.
For example, when the material constituting the particles 22b is at least one selected from the group consisting of a resin having a glass transition temperature and an inorganic material having a glass transition temperature, the glass transition temperature Tg3 is the glass transition temperature of the matrix resin. It is necessary to satisfy the same condition as Tg2, that is, (Tg3-Tg1) should be selected so as to be 10 ° C. or higher. (Tg3-Tg1) is more preferably 20 ° C. or higher, and 30 ° C. or higher. Further preferred. When (Tg3−Tg1) is 10 ° C. or higher, at the above-described processing temperature, the particles 22b are not deformed and melted, and the convex portions 14 ′ are reliably formed.
When the material constituting the particles 22b is a material that does not have a glass transition temperature, such as an internally cross-linked resin, the Vicat softening temperature (as defined in JIS K7206) satisfies the above-described condition, that is, It is preferably higher than the glass transition temperature of the resin constituting the substrate 21 by 10 ° C. or higher, preferably higher by 20 ° C. or higher, more preferably higher by 30 ° C. or higher.
In addition, in this specification, description of the preferable temperature range etc. about glass transition temperature Tg3 corresponds also to the Vicat softening temperature, when the particle | grains 22b consist of a material which does not have a glass transition temperature but has a Vicat softening temperature. Shall.
Further, as the material constituting the particles 22b, even if the glass transition temperature and the Vicat softening temperature cannot be measured, the particles are heated by heat at a temperature lower than 10 ° C. higher than the glass transition temperature Tg1 of the resin constituting the base material 21. Any material that does not change shape can be used in the present invention.
 Tg2およびTg3は、40~400℃であることが好ましく、80~250℃であることがより好ましい。Tg2およびTg3が40℃以上であれば、上述の加工温度を室温またはそれ以上にすることができて有用であり、Tg2が400℃を超えるようなマトリクス樹脂22aやTg3が400℃を超えるような粒子22bを使用することは、経済性の面から必要性に乏しい。 Tg2 and Tg3 are preferably 40 to 400 ° C, and more preferably 80 to 250 ° C. If Tg2 and Tg3 are 40 ° C. or higher, the above-mentioned processing temperature can be increased to room temperature or higher, which is useful, and matrix resin 22a or Tg3 having Tg2 higher than 400 ° C. is higher than 400 ° C. Use of the particles 22b is less necessary from the viewpoint of economy.
 上述の加工温度におけるマトリクス樹脂22aのヤング率は0.01~300GPaであることが好ましく、0.1~10GPaであることがより好ましい。マトリクス樹脂22aのヤング率が0.01GPa以上であれば、基材21を構成する樹脂の加工温度におけるヤング率より充分な硬さが得られ、波状の凹凸パターン13’が形成された後、前記凹凸パターン13’を維持するのに充分な硬さである。ヤング率が300GPaを超えるような樹脂をマトリクス樹脂22aとして使用することは、経済性の面から必要性に乏しい。 The Young's modulus of the matrix resin 22a at the above processing temperature is preferably 0.01 to 300 GPa, more preferably 0.1 to 10 GPa. If the Young's modulus of the matrix resin 22a is 0.01 GPa or more, sufficient hardness is obtained from the Young's modulus at the processing temperature of the resin constituting the substrate 21, and after the wavy uneven pattern 13 'is formed, The hardness is sufficient to maintain the uneven pattern 13 ′. Use of a resin having a Young's modulus exceeding 300 GPa as the matrix resin 22a is less necessary from the viewpoint of economy.
 基材21を構成する樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、スチレン-ブタジエンブロック共重合体等のポリスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリジメチルシロキサン等のシリコーン樹脂、フッ素樹脂、ABS樹脂、ポリアミド、アクリル樹脂、ポリカーボネート、ポリシクロオレフィンなどの樹脂が挙げられる。
 このうち、収縮後に所望の凹凸形状が得られやすいというから、ポリエステル、ポリカーボネートが好ましい。
 また、前記樹脂としては、質量平均分子量が、1000~100万のものがより好ましい。1万~10万のものがより好ましい。前記質量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、測定した値のことを指す。具体的な測定条件として、溶離液としては、テトラヒドロフラン、クロロホルム、ヘキサフルオロイソプロパノール等から適宜選択したものを用いることできる。また、分子量の標準物質としては、既知の分子量のポリスチレン、ポリメチルメタクリレート等から適宜選択したものを用いることができる。また、測定温度としては、35~50℃の範囲で適宜選択できる。
Examples of the resin constituting the substrate 21 include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, polystyrene resins such as styrene-butadiene block copolymers, polyvinyl chloride, polyvinylidene chloride, and polydimethylsiloxane. Examples thereof include resins such as silicone resin, fluororesin, ABS resin, polyamide, acrylic resin, polycarbonate, and polycycloolefin.
Among these, polyester and polycarbonate are preferable because a desired uneven shape can be easily obtained after shrinkage.
The resin preferably has a mass average molecular weight of 1,000 to 1,000,000. More preferably 10,000 to 100,000. The mass average molecular weight refers to a value measured using gel permeation chromatography. As specific measurement conditions, as the eluent, one appropriately selected from tetrahydrofuran, chloroform, hexafluoroisopropanol and the like can be used. Further, as the molecular weight standard substance, a material appropriately selected from known molecular weight polystyrene, polymethyl methacrylate and the like can be used. The measurement temperature can be appropriately selected within the range of 35 to 50 ° C.
 マトリクス樹脂22aとしては、そのガラス転移温度Tg2が上述の条件を満たすように、基材21の種類等に応じて選択され、例えば、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン-アクリル共重合体、スチレン-アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂などを使用することができる。これらの中でも透明性の点では、アクリル樹脂が好ましい。
 また、前記マトリクス樹脂としては、質量平均分子量が1000~1000万のものが好ましく、1万~200万のものがより好ましい。前記質量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、測定した値のことを指す。具体的な測定条件として、溶離液としては、テトラヒドロフラン、クロロホルム、ヘキサフルオロイソプロパノール等から適宜選択したものを用いることができる。また、分子量の標準物質としては、既知の分子量のポリスチレン、ポリメチルメタクリレート等から適宜選択したものを用いることができる。また、測定温度としては、35~50℃の範囲で適宜選択できる。
 マトリクス樹脂22aは単独で使用してもよいが、波状の凹凸パターンの最頻ピッチ、平均高さおよび配向度を調整するなどの目的に応じて適宜併用してもよい。例えば、同種ではあるがガラス転移温度の異なる樹脂を併用したり、異なる種類の樹脂を併用したりできる。
The matrix resin 22a is selected according to the type of the base material 21 so that the glass transition temperature Tg2 satisfies the above-mentioned conditions. For example, polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene -Acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, fluororesin, etc. can be used. Among these, acrylic resins are preferable in terms of transparency.
The matrix resin preferably has a mass average molecular weight of 1,000 to 10,000,000, more preferably 10,000 to 2,000,000. The mass average molecular weight refers to a value measured using gel permeation chromatography. As specific measurement conditions, as the eluent, one appropriately selected from tetrahydrofuran, chloroform, hexafluoroisopropanol and the like can be used. Further, as the molecular weight standard substance, a material appropriately selected from known molecular weight polystyrene, polymethyl methacrylate and the like can be used. The measurement temperature can be appropriately selected within the range of 35 to 50 ° C.
The matrix resin 22a may be used alone, but may be appropriately used in accordance with the purpose of adjusting the mode pitch, average height, and orientation degree of the wavy uneven pattern. For example, resins of the same type but different in glass transition temperature can be used in combination, or different types of resins can be used in combination.
 粒子22bを構成する樹脂としては、そのガラス転移温度Tg3(またはビカット軟化点)が上述の条件を満たすように、基材21の種類等に応じて選択され、例えば、アクリル系熱可塑性樹脂粒子、ポリスチレン系熱可塑性樹脂粒子、アクリル系架橋型樹脂粒子、ポリスチレン系架橋型樹脂粒子などが挙げられる。また、無機材料としては、ガラスビーズなどが挙げられる。 The resin constituting the particles 22b is selected according to the type of the base material 21 so that the glass transition temperature Tg3 (or Vicat softening point) satisfies the above-described conditions, for example, acrylic thermoplastic resin particles, Examples thereof include polystyrene-based thermoplastic resin particles, acrylic-based crosslinked resin particles, and polystyrene-based crosslinked resin particles. Examples of the inorganic material include glass beads.
 基材21の厚みは30~500μmであることが好ましい。基材の厚みが30μm以上であれば、製造された原版が破れにくくなり、500μm以下であれば、原版を容易に薄型化できる。なお、基材21の厚みとは、図11の表面微細凹凸体(原版)20をシート面に対して垂直に切った断面(縦断面)の顕微鏡写真から、10カ所以上無作為に抽出して基材21の厚さを測定した際の、得られた各数値の平均値である。
 また、基材21を支持するために、厚さ5~500μmの樹脂製の支持体を別途設けてもよい。
The thickness of the substrate 21 is preferably 30 to 500 μm. If the thickness of the base material is 30 μm or more, the manufactured original plate is hardly broken, and if the thickness is 500 μm or less, the original plate can be easily thinned. In addition, the thickness of the base material 21 is randomly extracted from a microphotograph of a cross section (longitudinal section) obtained by cutting the surface fine irregularities (original plate) 20 of FIG. It is an average value of the obtained numerical values when the thickness of the substrate 21 is measured.
Further, in order to support the substrate 21, a resin support having a thickness of 5 to 500 μm may be provided separately.
 硬質層22の厚みtは、0.05μmを超え5μm以下であることが好ましく、0.1~2μmであることがより好ましい。硬質層22の厚みtが0.05μmを超え5μm以下であれば、光拡散体として好適な波状の凹凸パターン13’を形成できる。また、基材21と硬質層22との間には、密着性の向上やより微細な構造を形成することを目的として、プライマー層を形成してもよい。 The thickness t of the hard layer 22 is preferably more than 0.05 μm and not more than 5 μm, and more preferably 0.1 to 2 μm. If the thickness t of the hard layer 22 is more than 0.05 μm and not more than 5 μm, a wavy uneven pattern 13 ′ suitable as a light diffuser can be formed. Moreover, you may form a primer layer between the base material 21 and the hard layer 22 for the purpose of improving adhesiveness or forming a finer structure.
 粒子22bの粒径dは、硬質層22の厚みtより大きいことが必要であり、硬質層22の厚みtに応じて設定される。また、図11の表面微細凹凸体20を原版として用いて製造された図示例の光拡散性シート10の凸部14の見かけの最頻径が、上述の好適な範囲となるように、適宜設定される。好ましい粒径dは、例えば、5~10μmで、より好ましくは5~8μmである。 The particle diameter d of the particles 22b needs to be larger than the thickness t of the hard layer 22, and is set according to the thickness t of the hard layer 22. Further, the apparent mode diameter of the convex portion 14 of the illustrated example of the light diffusing sheet 10 manufactured using the surface fine uneven body 20 of FIG. 11 as an original plate is appropriately set so as to be within the above-mentioned preferable range. Is done. A preferred particle diameter d is, for example, 5 to 10 μm, and more preferably 5 to 8 μm.
 なお、図11の表面微細凹凸体20は、原版ではなく光拡散体として使用することもできる。その場合には、前記表面微細凹凸体20が光拡散体としての機能を充分に奏するように、基材21、マトリクス樹脂22a、粒子22bに用いる材料に透明材料を用いる。 Note that the fine surface irregularities 20 in FIG. 11 can also be used as a light diffuser instead of the original. In that case, a transparent material is used for the material used for the base material 21, the matrix resin 22 a, and the particles 22 b so that the surface fine uneven body 20 sufficiently functions as a light diffuser.
[原版の製造方法]
 図11の表面微細凹凸体20は、図12のような積層シート30、すなわち、樹脂からなる基材フィルム31の片面(平坦な面)に、マトリクス樹脂、及び前記マトリクス樹脂中に分散した粒子22bからなり、0.05μmを超え5.0μm以下の厚みを有する硬質層32を設けた積層シート30を形成する積層工程と、積層シート30の少なくとも硬質層32を折り畳むように変形させる変形工程とを有する方法により製造できる。ここで基材フィルム31は、図11の表面微細凹凸体20の基材21に相当する。また、ここで平坦とは、JIS B0601に記載の中心線平均粗さ0.1μm以下の面である。
[Original plate manufacturing method]
The surface fine irregularities 20 in FIG. 11 are a laminated sheet 30 as shown in FIG. 12, that is, a matrix resin on one side (flat surface) of a base film 31 made of resin, and particles 22b dispersed in the matrix resin. A laminating step of forming a laminated sheet 30 provided with a hard layer 32 having a thickness of more than 0.05 μm and not more than 5.0 μm, and a deformation step of deforming at least the hard layer 32 of the laminated sheet 30 so as to be folded. It can be manufactured by the method of having. Here, the substrate film 31 corresponds to the substrate 21 of the surface fine irregularities 20 of FIG. Here, the term “flat” refers to a surface having a center line average roughness of 0.1 μm or less as described in JIS B0601.
(積層工程)
 積層工程では、まず、マトリクス樹脂22aと粒子22bと溶媒とを含む塗工液(分散液または溶液)を調製し、前記塗工液を基材フィルム31の片面にスピンコーターやバーコーター等により塗工して乾燥させ、図12のように、厚みt’が0.05μmを超え、5.0μm以下である硬質層32を形成する。この時点での硬質層32は、折り畳むように変形していない。
 硬質層32は、このように塗工液を基材フィルム31に直接塗工して設ける代わりに、あらかじめ作製した硬質層(マトリクス樹脂中に粒子が分散してなるフィルム)を基材フィルムに積層する方法で設けてもよい。
(Lamination process)
In the laminating step, first, a coating liquid (dispersion or solution) containing matrix resin 22a, particles 22b, and a solvent is prepared, and the coating liquid is applied to one surface of the base film 31 by a spin coater or a bar coater. As shown in FIG. 12, the hard layer 32 having a thickness t ′ of more than 0.05 μm and 5.0 μm or less is formed. The hard layer 32 at this time is not deformed so as to be folded.
Instead of providing the coating liquid directly on the base film 31 as described above, the hard layer 32 is obtained by laminating a hard layer (a film in which particles are dispersed in a matrix resin) prepared in advance on the base film. You may provide by the method to do.
 基材フィルム31は、樹脂からなる一軸方向加熱収縮性フィルムであることが好ましい。前記一軸方向加熱収縮性フィルムを用いると、次の変形工程において積層シート30を加熱することにより、容易に、硬質層32を折り畳むように変形し、波状の凹凸パターン13’を形成できる。また、この方法によれば、それぞれが蛇行し、互いに非平行となる不規則な凸条部13a’を形成できる。 The base film 31 is preferably a uniaxial heat shrinkable film made of resin. When the uniaxial heat-shrinkable film is used, by heating the laminated sheet 30 in the next deformation step, the hard layer 32 can be easily deformed so as to be folded and the wavy uneven pattern 13 ′ can be formed. Further, according to this method, it is possible to form irregular ridges 13a 'that meander each other and are not parallel to each other.
 一軸方向加熱収縮性フィルムを構成する樹脂としては、基材21を構成する樹脂としてすでに例示したとおりである。具体的には、ポリエチレンテレフタレート系シュリンクフィルム、ポリスチレン系シュリンクフィルム、ポリオレフィン系シュリンクフィルム、ポリ塩化ビニル系シュリンクフィルムなどのシュリンクフィルムが好ましく使用できる。
 これらのシュリンクフィルムの中でも、一軸方向において、50~70%収縮するものが好ましい。50~70%収縮するシュリンクフィルムを用いれば、変形率を50%以上にでき、その結果、好適な最頻ピッチ、凸条部13a’の高さの波状の凹凸パターン13’を形成できる。
 ここで、変形率とは、(変形前の長さ-変形後の長さ)×100/(変形前の長さ)(%)のことである。あるいは、(変形した長さ)×100/(変形前の長さ)(%)のことである。
The resin constituting the uniaxial heat-shrinkable film is as already exemplified as the resin constituting the base material 21. Specifically, a shrink film such as a polyethylene terephthalate shrink film, a polystyrene shrink film, a polyolefin shrink film, or a polyvinyl chloride shrink film can be preferably used.
Among these shrink films, those that shrink 50 to 70% in the uniaxial direction are preferable. If a shrink film that shrinks by 50 to 70% is used, the deformation rate can be increased to 50% or more. As a result, it is possible to form a wavy uneven pattern 13 ′ having a preferable mode pitch and the height of the protruding portion 13a ′.
Here, the deformation rate is (length before deformation−length after deformation) × 100 / (length before deformation) (%). Alternatively, (deformed length) × 100 / (length before deformation) (%).
 また、このように基材フィルム31として一軸方向加熱収縮性フィルムを用い、次の変形工程でこれを熱収縮させる場合には、より容易に凹凸パターン13’を形成できることから、マトリクス樹脂22aのヤング率を0.01~300GPaにすることが好ましく、0.1~10GPaにすることがより好ましい。 Further, when a uniaxial heat-shrinkable film is used as the base film 31 as described above and this is heat-shrinked in the next deformation step, the uneven pattern 13 ′ can be formed more easily. The rate is preferably 0.01 to 300 GPa, more preferably 0.1 to 10 GPa.
 塗工液に用いるマトリクス樹脂22aおよび粒子22bを構成する樹脂としては、それぞれすでに例示したものを使用できるが、マトリクス樹脂22aのガラス転移温度Tg2と、粒子22bのガラス転移温度Tg3とが、基材フィルム31のガラス転移温度Tg1よりも10℃以上高くなるように各材質を選択し、組み合わせることが重要である。このようにそれぞれの材質を選択したうえで、厚みt’が0.05μmを超え5.0μm以下である硬質層32を一軸方向加熱収縮性フィルム(基材フィルム31)の片面に設けた積層シート30を用いると、次の変形工程を経ることにより、最頻ピッチが3~20μmであり、凸条部13a’の平均高さが4~7μmである波状の凹凸パターン13’が形成されやすい。 As the resins constituting the matrix resin 22a and the particles 22b used in the coating liquid, those already exemplified can be used. The glass transition temperature Tg2 of the matrix resin 22a and the glass transition temperature Tg3 of the particles 22b are the base materials. It is important to select and combine the materials so that the glass transition temperature Tg1 of the film 31 is 10 ° C. or higher. Thus, after selecting each material, the laminated sheet which provided the hard layer 32 whose thickness t 'exceeds 0.05 micrometer and is 5.0 micrometers or less on the single side | surface of the uniaxial heat-shrinkable film (base film 31). When 30 is used, a wavy uneven pattern 13 ′ in which the most frequent pitch is 3 to 20 μm and the average height of the protrusions 13 a ′ is 4 to 7 μm is easily formed through the following deformation process.
 塗工液に用いる溶媒としては、マトリクス樹脂22aの種類にもよるが、マトリクス樹脂22aが例えばアクリル系樹脂の場合、メチルエチルケトンおよびメチルイソブチルケトンなどのうちの1種以上を使用できる。 As a solvent used for the coating liquid, depending on the type of the matrix resin 22a, when the matrix resin 22a is, for example, an acrylic resin, one or more of methyl ethyl ketone and methyl isobutyl ketone can be used.
 塗工液中のマトリクス樹脂22aの濃度は、正味量(固形分量)として、5~10質量%であることが塗工性の点で好ましい。また、粒子22bの量は、マトリクス樹脂22aの正味量100質量部に対して、10~50質量部であることが好ましく、20~30質量部であることがより好ましい。このような範囲であると、形成される微細凹凸における凸部14a’または凹部の占有面積割合を上述の好適な範囲内に制御することができる。
 ここで正味量(固形分量)とは、塗工液の質量(100質量%)に対して、前記塗工液中の溶媒が揮発した後に残る固形分の質量の比率のことをいう。
The concentration of the matrix resin 22a in the coating solution is preferably 5 to 10% by mass as the net amount (solid content) from the viewpoint of coating properties. Further, the amount of the particles 22b is preferably 10 to 50 parts by mass, and more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the net amount of the matrix resin 22a. Within such a range, the occupation area ratio of the convex portion 14a ′ or the concave portion in the fine irregularities to be formed can be controlled within the above-described preferable range.
Here, the net amount (solid content) refers to the ratio of the mass of the solid content remaining after the solvent in the coating solution volatilizes with respect to the mass (100 mass%) of the coating solution.
 なお、積層工程で形成される硬質層32の厚みt’は、0.05μmを超え5.0μm以下の範囲内であれば、連続的に変化していても構わない。その場合、変形工程により形成される凹凸パターンのピッチおよび深さが連続的に変化するようになる。硬質層32の厚みt’は、次の変形工程を経てもほとんど変化せず、t’=tと考えることができる。 Note that the thickness t ′ of the hard layer 32 formed in the laminating step may be continuously changed as long as it is in the range of more than 0.05 μm and 5.0 μm or less. In that case, the pitch and depth of the concavo-convex pattern formed by the deformation process are continuously changed. The thickness t ′ of the hard layer 32 hardly changes even after the next deformation step, and can be considered as t ′ = t.
(変形工程)
 上述のようにして得られた積層シート30を加熱して、積層シート30の基材フィルム31を熱収縮させることにより、図11の表面微細凹凸体20が得られる。なお、変形工程としては、例えば、日本国特許第4683011号公報等に開示の公知の方法を採用できる。
 加熱方法としては、熱風、蒸気、熱水または遠赤外線中に通す方法等が挙げられ、中でも、均一に収縮させることができることから、熱風または遠赤外線に通す方法が好ましい。
 基材フィルム31を熱収縮させる際の加熱温度(加工温度)は、Tg2とTg1の間の温度とすることが好ましく、具体的には、使用する基材フィルム31の種類および目的とする凹凸パターン13’のピッチ、凸条部13a’の高さ等に応じて適宜選択することが好ましい。
(Deformation process)
11 is obtained by heating the laminated sheet 30 obtained as described above and causing the base film 31 of the laminated sheet 30 to be thermally contracted. In addition, as a deformation | transformation process, the well-known method disclosed by the Japan patent 4683011 etc. is employable, for example.
Examples of the heating method include a method of passing through hot air, steam, hot water, or far infrared rays. Among them, a method of passing through hot air or far infrared rays is preferable because it can be uniformly contracted.
The heating temperature (processing temperature) at the time of heat shrinking the base film 31 is preferably set to a temperature between Tg2 and Tg1, and specifically, the type of the base film 31 to be used and the intended uneven pattern. It is preferable to select appropriately according to the pitch of 13 ', the height of the protruding portion 13a', and the like.
 この製造方法では、硬質層22の厚さが薄いほど、また、硬質層22のヤング率が低いほど、凹凸パターン13’の最頻ピッチが小さくなり、また、基材フィルム31の変形率が高いほど、凸条部13a’の高さが大きくなる。したがって、凹凸パターン13’の最頻ピッチおよび凸条部13a’の高さを所望の値にするためには、前記条件を適宜選択する必要がある。 In this manufacturing method, the thinner the thickness of the hard layer 22 and the lower the Young's modulus of the hard layer 22, the smaller the most frequent pitch of the uneven pattern 13 ′ and the higher the deformation rate of the base film 31. The height of the ridge portion 13a ′ increases as the height increases. Therefore, in order to set the most frequent pitch of the concavo-convex pattern 13 ′ and the height of the ridge 13 a ′ to desired values, it is necessary to appropriately select the above conditions.
 なお、図11のような構成の表面微細凹凸体20は、下記(1)~(4)の方法で製造することもできる。
(1)平坦な基材フィルムの片面の全部に、未変形の硬質層を設けて積層シートを形成し、積層シート全体を表面に沿った一方向に圧縮する方法。
 基材フィルムのガラス転移温度が室温未満の場合、積層シートの圧縮は室温で行い、基材フィルムのガラス転移温度が室温以上の場合、積層シートの圧縮は、基材のガラス転移温度以上、硬質層のガラス転移温度未満で行う。
(2)平坦な基材フィルムの片面の全部に、未変形の硬質層を設けて積層シートを形成し、積層シートを一方向に延伸し、延伸方向に対する直交方向を収縮させて、硬質層を表面に沿った一方向に圧縮する方法。
 基材フィルムのガラス転移温度が室温未満の場合、積層シートの延伸は室温で行い、基材フィルムのガラス転移温度が室温以上の場合、積層シートの延伸は、基材フィルムのガラス転移温度以上、硬質層のガラス転移温度未満で行う。
(3)未硬化の電離放射線硬化性樹脂により形成された平坦な基材フィルムに、未変形の硬質層を積層して積層シートを形成し、電離放射線を照射して基材フィルムを硬化させることにより収縮させて、基材フィルムに積層された硬質層を表面に沿った少なくとも一方向に圧縮する方法。
(4)溶媒を膨潤させて膨張させた平坦な基材フィルムに、未変形の硬質層を積層して積層シートを形成し、基材フィルム中の溶媒を乾燥し、除去することにより収縮させて、基材フィルムに積層された硬質層を表面に沿った少なくとも一方向に圧縮する方法。
Note that the surface fine uneven body 20 having the structure as shown in FIG. 11 can also be manufactured by the following methods (1) to (4).
(1) A method of forming a laminated sheet by providing an undeformed hard layer on one side of a flat base film, and compressing the whole laminated sheet in one direction along the surface.
When the glass transition temperature of the base film is lower than room temperature, the laminated sheet is compressed at room temperature. When the glass transition temperature of the base film is higher than the room temperature, the laminated sheet is compressed above the glass transition temperature of the base material and hard. Performed below the glass transition temperature of the layer.
(2) An undeformed hard layer is provided on one side of a flat base film to form a laminated sheet, the laminated sheet is stretched in one direction, and the direction perpendicular to the stretching direction is shrunk to form a hard layer. A method of compressing in one direction along the surface.
When the glass transition temperature of the base film is lower than room temperature, the lamination sheet is stretched at room temperature. When the glass transition temperature of the base film is room temperature or higher, the stretching of the laminated sheet is equal to or higher than the glass transition temperature of the base film. It is performed below the glass transition temperature of the hard layer.
(3) A flat base film formed of an uncured ionizing radiation curable resin is laminated with an undeformed hard layer to form a laminated sheet, and the base film is cured by irradiation with ionizing radiation. A method of compressing the hard layer laminated on the base film in at least one direction along the surface.
(4) An undeformed hard layer is laminated on a flat base film swelled by swelling a solvent to form a laminated sheet, and the solvent in the base film is dried and contracted by removing it. The method of compressing the hard layer laminated | stacked on the base film in at least one direction along the surface.
 (1)の方法において、積層シートを形成する方法としては、例えば、平坦な基材フィルムの片面に、粒子を含む樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、平坦な基材フィルムの片面に、あらかじめ作製した硬質層を積層する方法などが挙げられる。積層シート全体を表面に沿った一方向に圧縮する方法としては、例えば、積層シートの一端部とその反対側の端部とを、万力等により挟んで圧縮する方法などが挙げられる。 In the method of (1), as a method of forming a laminated sheet, for example, a resin solution or dispersion containing particles is applied to one side of a flat base film using a spin coater or bar coater, and a solvent is used. Examples thereof include a drying method and a method in which a hard layer prepared in advance is laminated on one side of a flat base film. Examples of the method for compressing the entire laminated sheet in one direction along the surface include a method of compressing the laminated sheet by sandwiching one end portion of the laminated sheet and the opposite end portion thereof with a vise or the like.
 (2)の方法において、積層シートを一方向に延伸する方法としては、例えば、積層シートの一端部とその反対側の端部とを、引っ張って延伸する方法などが挙げられる。
 (3)の方法において、電離放射線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが挙げられる。
 (4)の方法において、溶媒は基材フィルムを構成する樹脂の種類に応じて適宜選択される。溶媒の乾燥温度は溶媒の種類に応じて適宜選択される。
In the method (2), examples of the method of stretching the laminated sheet in one direction include a method of stretching by stretching one end portion of the laminated sheet and the opposite end portion thereof.
In the method (3), examples of the ionizing radiation curable resin include an ultraviolet curable resin and an electron beam curable resin.
In the method (4), the solvent is appropriately selected according to the type of resin constituting the base film. The drying temperature of the solvent is appropriately selected according to the type of solvent.
 (2)~(4)の方法における硬質層においても、(1)の方法で用いるものと同様の成分を用いることができ、同様の厚さとすることができる。また、積層シートの形成方法は、(1)の方法と同様に、基材フィルムの片面に塗工液を塗工し、溶媒を乾燥させる方法、基材フィルムの片面に、あらかじめ作製した硬質層を積層する方法を適用できる。 In the hard layer in the methods (2) to (4), the same components as those used in the method (1) can be used, and the thickness can be the same. Moreover, the formation method of a lamination sheet is the same as the method of (1), the method of apply | coating a coating liquid on the single side | surface of a base film, and drying the solvent, The hard layer produced beforehand on the single side | surface of a base film The method of laminating can be applied.
[原版を用いた転写による表面微細凹凸体の製法]
 図11の表面微細凹凸体20を原版として用いて、図示例の光拡散性シート10を製造する場合には、前記表面微細凹凸体(原版)20の微細凹凸を他の材料に転写する転写工程を行う。この例では、前記表面微細凹凸体(原版)20の硬質層22の表面に形成された微細凹凸を他の材料に転写し、原版の微細凹凸の反転パターンを表面に有する1次転写品を得て、次いで、前記1次転写品の反転パターンを他の材料に転写し、2次転写品である図示例の光拡散性シート10を得る。転写工程としては、例えば、日本国特許第4683011号公報等に開示の公知の方法を採用できる。
 本発明の1つの態様は、前述の表面微細凹凸体を原版として用いた、表面微細凹凸体の製造方法である。
[Manufacturing method of surface irregularities by transfer using original plate]
When manufacturing the light diffusive sheet 10 in the illustrated example using the surface fine irregularities 20 of FIG. 11 as an original plate, a transfer step of transferring the fine irregularities of the surface fine irregularities (original plate) 20 to another material. I do. In this example, the fine irregularities formed on the surface of the hard layer 22 of the surface fine irregularities (original) 20 are transferred to another material, and a primary transfer product having a reverse pattern of the fine irregularities of the original on the surface is obtained. Then, the reverse pattern of the primary transfer product is transferred to another material to obtain the light diffusive sheet 10 of the illustrated example which is a secondary transfer product. As the transfer step, for example, a publicly known method disclosed in Japanese Patent No. 4683011 can be adopted.
One aspect of the present invention is a method for producing a surface fine unevenness using the surface fine unevenness described above as an original plate.
 具体的には、原版である図11の表面微細凹凸体20の微細凹凸に対して、離型剤を含む未硬化の電離放射線硬化性樹脂を例えば3~30μmの厚さに収まるように、Tダイコーター、ロールコーター、バーコーターなどのコーターで塗布し、電離放射線を照射して硬化させた後、原版を剥離して、1次転写品を得る。1次転写品は、原版の微細凹凸の反転パターンを有する。一方、PETからなる透明な基材11を用意し、その片面に、未硬化の電離放射線硬化性樹脂を微細凹凸を充分に覆う厚さで塗布する。そして、塗布された未硬化の電離放射線硬化性樹脂の層に対して、先に得られた1次転写品の反転パターンを有する面を押し当て、電離放射線を照射して硬化させた後、1次転写品を剥離する。電離放射線の照射は、1次転写品側、透明なPET基材側のうち、電離放射線透過性を有するいずれか一方側から行えばよい。これにより、PETからなる透明な基材11と、その片面上に形成された電離放射線硬化性樹脂硬化物の表面層12とからなり、表面層12の表面に微細凹凸が形成された図1Aおよび図2の光拡散性シート(2次転写品)10が得られる。 Specifically, an uncured ionizing radiation curable resin containing a release agent is adjusted to a thickness of, for example, 3 to 30 μm with respect to the fine unevenness of the surface fine unevenness 20 of FIG. After coating with a coater such as a die coater, roll coater, or bar coater and irradiating with ionizing radiation to cure, the original is peeled off to obtain a primary transfer product. The primary transfer product has a reversal pattern of fine irregularities of the original plate. On the other hand, a transparent substrate 11 made of PET is prepared, and an uncured ionizing radiation curable resin is applied on one surface thereof with a thickness that sufficiently covers fine irregularities. Then, the surface of the applied uncured ionizing radiation curable resin is pressed against the surface having the reversal pattern of the previously obtained primary transfer product and cured by irradiation with ionizing radiation. The next transfer product is peeled off. Irradiation with ionizing radiation may be performed from either one of the primary transfer product side and the transparent PET substrate side having ionizing radiation transparency. Thereby, it consists of the transparent base material 11 which consists of PET, and the surface layer 12 of the ionizing radiation curable resin cured material formed on the one side, and FIG. The light diffusable sheet (secondary transfer product) 10 of FIG. 2 is obtained.
 電離放射線硬化性樹脂としては、紫外線硬化性樹脂、電子線硬化性樹脂などが挙げられる。照射する電離放射線の種類は、樹脂の種類に応じて適宜選択する。電離放射線としては、一般には紫外線および電子線を意味することが多いが、本明細書においては、可視光線、X線、イオン線等も含む。 Examples of the ionizing radiation curable resin include an ultraviolet curable resin and an electron beam curable resin. The type of ionizing radiation to be irradiated is appropriately selected according to the type of resin. In general, the ionizing radiation often means ultraviolet rays and electron beams, but in the present specification, visible rays, X-rays, ion rays and the like are also included.
 未硬化の電離放射線硬化性樹脂としては、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニル/アクリレート、ポリエン/アクリレート、シリコンアクリレート、ポリブタジエン、ポリスチリルメチルメタクリレート等のプレポリマー、脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、水酸基含有アクリレート、アリル基含有アクリレート、グリシジル基含有アクリレート、カルボキシ基含有アクリレート、ハロゲン含有アクリレート等のモノマーの中から選ばれる1種類以上の成分を含有するものが挙げられる。未硬化の電離放射線硬化性樹脂は溶媒等で希釈することが好ましい。未硬化の電離放射線硬化性樹脂には、フッ素樹脂、シリコーン樹脂等を添加してもよい。また、未硬化の電離放射線硬化性樹脂が紫外線硬化性である場合には、未硬化の電離放射線硬化性樹脂にアセトフェノン類、ベンゾフェノン類等の光重合開始剤を添加することが好ましい。 Uncured ionizing radiation curable resins include epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl / acrylate, polyene / acrylate, silicon acrylate, polybutadiene, and polystyrylmethyl methacrylate. 1 type selected from monomers such as prepolymers such as aliphatic acrylate, alicyclic acrylate, aromatic acrylate, hydroxyl group-containing acrylate, allyl group-containing acrylate, glycidyl group-containing acrylate, carboxy group-containing acrylate, halogen-containing acrylate, etc. The thing containing the above component is mentioned. The uncured ionizing radiation curable resin is preferably diluted with a solvent or the like. A fluorine resin, a silicone resin, or the like may be added to the uncured ionizing radiation curable resin. When the uncured ionizing radiation curable resin is ultraviolet curable, it is preferable to add a photopolymerization initiator such as acetophenones and benzophenones to the uncured ionizing radiation curable resin.
 また、電離放射線硬化性樹脂の代わりに、例えば、未硬化のメラミン樹脂、ウレタン樹脂、エポキシ樹脂等の熱硬化性樹脂や、アクリル樹脂、ポリオレフィン、ポリエステル等の熱可塑性樹脂を用いて転写を行ってもよく、微細凹凸が転写できる限り、その具体的方法、転写する材料に制限はない。
 熱硬化性樹脂を用いる場合には、例えば液状の未硬化の熱硬化性樹脂を微細凹凸に塗布し、加熱により硬化させる方法が挙げられ、熱可塑性樹脂を用いる場合には、熱可塑性樹脂のシートを用い、微細凹凸に押し当てながら加熱して軟化させた後、冷却する方法が挙げられる。
Also, instead of ionizing radiation curable resin, transfer is performed using, for example, thermosetting resin such as uncured melamine resin, urethane resin or epoxy resin, or thermoplastic resin such as acrylic resin, polyolefin or polyester. As long as fine irregularities can be transferred, the specific method and material to be transferred are not limited.
In the case of using a thermosetting resin, for example, a method of applying a liquid uncured thermosetting resin to fine irregularities and curing it by heating is mentioned. When using a thermoplastic resin, a sheet of thermoplastic resin is used. There is a method of heating and softening while pressing against fine irregularities and then cooling.
 また、上述のように、2次転写品を製造する場合には、例えば日本国特許第4683011号公報などに記載されている、めっきロールを用いる方法も挙げられる。具体的には、まず、原版として長尺なシート状物を製造し、前記原版を丸めて円筒の内側に貼り付け、前記円筒の内側にロールを挿入した状態でめっきを行い、円筒からロールを取り出してめっきロール(1次転写品)を得る。ついで、前記めっきロールの微細凹凸を転写することにより、光拡散性シート(2次転写品)を得る。 In addition, as described above, in the case of producing a secondary transfer product, for example, a method using a plating roll described in Japanese Patent No. 4683011 is also exemplified. Specifically, first, a long sheet-like material is manufactured as an original plate, the original plate is rounded and attached to the inside of a cylinder, plating is performed with a roll inserted inside the cylinder, and the roll is removed from the cylinder. Take out and obtain a plating roll (primary transfer product). Next, a light diffusive sheet (secondary transfer product) is obtained by transferring the fine irregularities of the plating roll.
 原版としては、枚葉タイプのものもウェブタイプのものも用いることができる。ウェブタイプの原版を用いると、ウェブタイプの1次転写品および2次転写品を得ることができる。枚葉タイプにおいては、前記枚葉タイプの原版を平板状の型として使用するスタンプ法、枚葉タイプの原版をロールに巻きつけて円筒状の型として使用するロールインプリント法等を適用できる。また、射出成形機の型の内側に枚葉タイプの原版を配置させてもよい。ただし、これら枚葉タイプの原版を用いる方法において、図示例のような光拡性散シートを大量生産するためには、転写を多数回繰り返す必要がある。転写性(離型性)が低い場合には、転写すべき微細凹凸に目詰まりが生じ、微細凹凸の転写が不完全になる場合がある。これに対して、原版をウェブタイプとすると、大面積で連続的に微細凹凸を転写でき、転写を多数繰り返さなくても、必要な量の光拡散性シートを短時間に製造できる。 As the original plate, either a single wafer type or a web type can be used. If a web type master is used, a web type primary transfer product and a secondary transfer product can be obtained. In the single-wafer type, a stamp method using the single-wafer type original as a flat plate, a roll imprint method using a single-wafer type original wound around a roll as a cylindrical die, and the like can be applied. Further, a single-wafer type master may be arranged inside the mold of the injection molding machine. However, in the method using these single-wafer type masters, it is necessary to repeat the transfer many times in order to mass-produce the light spreading powder sheet as shown in the illustrated example. When the transferability (releasability) is low, clogging occurs in the fine unevenness to be transferred, and the transfer of the fine unevenness may be incomplete. On the other hand, when the original is a web type, fine irregularities can be continuously transferred in a large area, and a necessary amount of light diffusive sheet can be produced in a short time without repeating many transfers.
[原版の製造方法および原版を用いた転写による表面微細凹凸体の製法の変形例]
 上述の[原版の製造方法]の積層工程においては、マトリクス樹脂22aと粒子22bと溶媒とを含む塗工液を用いた。しかしながら、粒子を含まず、マトリクス樹脂と溶媒とを含む塗工液を用いて硬質層を形成し、変形工程により波状の凹凸パターンとし、その後に、前記凹凸パターン上に、多数の凹部または凸部を形成してもよい。硬質層の形成方法は、粒子を用いない以外は、上述の方法と同様に行える。変形工程も、上述の方法と同様に行える。ついで行われる、形成された凹凸パターン上に、多数の凹部または凸部を形成する方法としては、後述の(5)~(8)の方法が挙げられる。
(5)回転式精密切削加工機により切削加工する方法。
(6)凹部または凸部と同様な大きさ、径を有する突起物を前記波状の凹凸パターン上に押し付けて凹みを形成する方法。
(7)樹脂又は無機物の溶融物を微粒子化したものを前記波状の凹凸パターン上に付着させた後、冷却固化して前記樹脂又は無機物によって形成された凸部を形成する方法。
(8)樹脂又は無機物を分散媒に分散した液を前記波状の凹凸パターン上に付着させた後、分散媒を蒸発させて前記樹脂又は無機物によって形成された凸部を形成する方法。
 なお、上記(7)又は(8)の方法においてインクジェット印刷方式を応用することにより、高精度で波状の凹凸パターン上に多数の凹部または凸部を形成することができる。
 また、粒子を含まず、マトリクス樹脂と溶媒とを含む塗工液を用いて硬質層を形成し、変形工程により波状の凹凸パターンとしたもの(多数の凹部または凸部は未だ形成されていないもの)を原版として転写品を得て、前記転写品に対して、上記(5)~(8)の方法により、凹凸パターン上に多数の凹部または凸部を形成してもよい。そして、これを原版として転写することにより、表面微細凹凸体を製造することもできる。
[Modification of manufacturing method of original plate and manufacturing method of fine surface irregularities by transfer using original plate]
In the above-described lamination process of [Original Plate Manufacturing Method], a coating liquid containing matrix resin 22a, particles 22b, and a solvent was used. However, a hard layer is formed using a coating liquid that does not contain particles and contains a matrix resin and a solvent, and is formed into a wavy uneven pattern by a deformation process, and then a large number of recesses or protrusions on the uneven pattern. May be formed. The method for forming the hard layer can be performed in the same manner as described above except that particles are not used. The deformation process can also be performed in the same manner as described above. Next, as a method of forming a large number of concave portions or convex portions on the formed concave / convex pattern, the following methods (5) to (8) can be mentioned.
(5) A method of cutting with a rotary precision cutting machine.
(6) A method of forming a recess by pressing a projection having the same size and diameter as the recess or the protrusion onto the wavy uneven pattern.
(7) A method of forming a convex portion formed of the resin or the inorganic substance by adhering a fine resin or inorganic melt to the wavy uneven pattern and then solidifying it by cooling.
(8) A method in which a liquid in which a resin or an inorganic substance is dispersed in a dispersion medium is deposited on the wavy uneven pattern, and then the dispersion medium is evaporated to form a convex portion formed of the resin or the inorganic substance.
In addition, by applying the inkjet printing method in the method (7) or (8), a large number of concave portions or convex portions can be formed on the wavy uneven pattern with high accuracy.
In addition, a hard layer is formed using a coating liquid that does not contain particles and contains a matrix resin and a solvent, and is formed into a wavy uneven pattern by a deformation process (a large number of recesses or protrusions have not yet been formed) ) As an original plate, and a plurality of concave portions or convex portions may be formed on the concavo-convex pattern by the above methods (5) to (8). And by transferring this as an original plate, it is possible to produce a surface fine unevenness.
<その他の形態について>
 以上の説明においては、積層工程と変形工程により製造された表面微細凹凸体を原版とし、前記表面微細凹凸体の微細凹凸を転写した1次転写品を得て、ついで、前記1次転写品の微細凹凸(原版の反転パターン)を転写した2次転写品を光拡散性シート10とした。
 しかしながら、本発明は、以上の形態に限定されない。
 すなわち、上述の積層工程と変形工程により製造された図11のような表面微細凹凸体20そのものを光拡散性シートとして使用することもできる。また、積層工程と変形工程により製造された表面微細凹凸体20を原版として得られた1次転写品や、n次転写品(nは3以上の整数。)を光拡散性シートとして使用することもでき、転写品であれば、2次転写品に限定されない。
 また、原版を用いて、曲面を有する成形体の前記曲面に、微細凹凸を転写してもよい。
 また、積層工程と変形工程により製造された表面微細凹凸体やそのn次転写品を原版として用いて、アクリル樹脂、ポリカーボネート樹脂等の透明な熱可塑性樹脂を射出成形し、微細凹凸が表面の少なくとも一部に形成された射出成形品を製造してもよい。
<About other forms>
In the above description, using the surface fine unevenness produced by the laminating process and the deformation process as an original plate, a primary transfer product obtained by transferring the fine unevenness of the surface fine unevenness is obtained, and then the primary transfer product of A secondary transfer product to which fine irregularities (reverse pattern of the original plate) were transferred was used as a light diffusive sheet 10.
However, the present invention is not limited to the above form.
That is, the surface fine uneven body 20 itself as shown in FIG. 11 manufactured by the above-described lamination process and deformation process can also be used as the light diffusive sheet. Moreover, the primary transfer product obtained by using the surface fine irregularities 20 produced by the laminating process and the deformation process as an original plate and the n-order transfer product (n is an integer of 3 or more) are used as the light diffusive sheet. If it is a transfer product, it is not limited to a secondary transfer product.
Moreover, you may transfer a fine unevenness | corrugation to the said curved surface of the molded object which has a curved surface using an original plate.
Also, using the surface fine irregularities produced by the laminating process and the deformation process and the n-order transfer product as an original plate, a transparent thermoplastic resin such as an acrylic resin or a polycarbonate resin is injection-molded, and the fine irregularities are at least on the surface. You may manufacture the injection molded product formed in part.
 なお、先に具体的に示した積層工程と変形工程により製造された表面微細凹凸体20を原版として得られたn次転写品において、nが奇数の場合には、微細凹凸として、特定の波状の凹凸パターン上に、凸部ではなく、凹部が形成されている。これは、nが奇数であるn次転写品においては、粒子に基づいて形成される凸部の反転パターン、すなわち、凹部が形成されるためである。このように微細凹凸として、特定の波状の凹凸パターンとともに凹部を有する表面微細凹凸体であっても、波状の凹凸パターンによる異方性が凹部により弱められているため、Y方向に充分な拡散角度を有し、かつ、X方向にもある程度の拡散角度を示す。よって、nが奇数であるn次転写品であっても、nが偶数であるn次転写品と同等の光拡散性を示す。 In the n-order transfer product obtained by using the surface fine irregularities 20 produced by the laminating process and the deformation process specifically shown above as an original plate, when n is an odd number, as the fine irregularities, a specific corrugation On the concave / convex pattern, concave portions are formed instead of convex portions. This is because in the n-th order transfer product in which n is an odd number, a reverse pattern of the convex portion formed based on the particles, that is, a concave portion is formed. In this way, even if the surface fine unevenness having a concave portion with a specific wavy uneven pattern as the fine unevenness, since the anisotropy due to the wavy uneven pattern is weakened by the concave portion, a sufficient diffusion angle in the Y direction And a certain diffusion angle in the X direction. Therefore, even if it is an n-order transfer product in which n is an odd number, it exhibits the same light diffusibility as an n-order transfer product in which n is an even number.
 また、硬質層の形成に用いる粒子としては、樹脂粒子、無機粒子が使用でき、変形工程や、微細凹凸を転写する工程において、溶融したり変形したりしない限り、どのような材料からなるものであってもよい。ただし、上述のとおり、図11のように粒子そのものを備えた表面微細凹凸体20を光拡散性シートとして使用する場合には、粒子として、透明粒子、好適にはアクリル系架橋型樹脂粒子、ガラスビーズ、ポリスチレン系架橋型樹脂粒子などを用いる必要がある。 In addition, as the particles used for forming the hard layer, resin particles and inorganic particles can be used, and any material can be used as long as it is not melted or deformed in the deformation process or the process of transferring fine irregularities. There may be. However, as described above, when the surface fine irregularities 20 having the particles themselves as shown in FIG. 11 are used as the light diffusing sheet, the particles are transparent particles, preferably acrylic cross-linked resin particles, glass It is necessary to use beads, polystyrene-based crosslinked resin particles, and the like.
 また、以上の例では、表面微細凹凸体、光拡散性シートとして、シート状物を例示したが、シート状物に限定されず、立体成形体であってもよい。
 また、微細凹凸は、表面微細凹凸体の表面の少なくとも一部であれば、目的に応じて、いかなる部分に形成されていてもよい。例えば、表面微細凹凸体がシート状物である場合、一方の面のみに形成されていても、両面に形成されていても、各面において一部のみに形成されていてもよいし、シート状物の周面(端面)の少なくとも一部に形成されていてもよい。さらに、表面微細凹凸体が立体成形体である場合にも、全表面の全面に形成されていても、一部のみに形成されていてもよい。なお、表面微細凹凸体が立体成形体である場合、前記立体成形体は、光拡散性シートについて例示した用途と同様の用途に使用できる。すなわち、HUDシステム用の拡散部材;プロジェクター用の拡散部材;テレビ、モニター、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ、スマートフォン、携帯電話等のバックライト用の拡散部材;コピー機等に使用される、LED光源を線状に配列したスキャナ光源において、導光部材の少なくとも出射面を構成する拡散部材;等として好適に使用できる。
Moreover, in the above example, although the sheet-like material was illustrated as a surface fine unevenness | corrugation body and a light diffusable sheet, it is not limited to a sheet-like material, A solid molded body may be sufficient.
Further, the fine unevenness may be formed in any part depending on the purpose as long as it is at least a part of the surface of the surface fine unevenness. For example, when the surface fine unevenness is a sheet-like material, it may be formed on only one surface, on both surfaces, or may be formed on only part of each surface, You may form in at least one part of the surrounding surface (end surface) of a thing. Furthermore, even when the surface fine irregularities are three-dimensional molded bodies, they may be formed on the entire surface or only on a part thereof. In addition, when a surface fine unevenness | corrugation body is a three-dimensional molded object, the said three-dimensional molded object can be used for the use similar to the use illustrated about the light diffusable sheet. A diffusion member for a HUD system; a diffusion member for a projector; a diffusion member for a backlight of a television, a monitor, a notebook personal computer, a tablet personal computer, a smartphone, a mobile phone, etc .; In a scanner light source in which LED light sources are linearly arranged, it can be suitably used as a diffusing member that constitutes at least an emission surface of a light guide member.
 また、以下の側面を有する。
 表面の少なくとも一部に微細凹凸が形成された表面微細凹凸体であって、
 前記微細凹凸は、波状の凹凸パターンと、前記波状の凹凸パターン上に形成された凹部または凸部とを有し、
 前記波状の凹凸パターンは、第1の方向に沿って配列している複数の凸条部と、前記複数の凸条部間の凹条部とからなり、
 前記複数の凸条部の稜線が、前記表面微細凹凸体の基材の法線方向から見て、互いに非平行に蛇行し、
 前記複数の凸条部の第1の方向における最頻ピッチが3~20μmであり、
 前記凹部、または凸部の見かけの最頻径が、1~10μmであり、
 前記凹部、または凸部の形状が、半球状であることを特徴とする表面微細凹凸体。
Moreover, it has the following side surfaces.
It is a surface fine uneven body in which fine unevenness is formed on at least a part of the surface,
The fine unevenness has a wavy uneven pattern and a recess or protrusion formed on the wavy uneven pattern,
The wavy concavo-convex pattern comprises a plurality of ridges arranged along a first direction, and a ridge between the plurality of ridges,
The ridge lines of the plurality of ridges meander non-parallel to each other when viewed from the normal direction of the substrate of the surface fine irregularities,
The most frequent pitch in the first direction of the plurality of ridges is 3 to 20 μm;
The apparent mode diameter of the concave portion or convex portion is 1 to 10 μm,
The surface fine irregularities, wherein the concave or convex shape is hemispherical.
 また、本発明の以下の側面を有する。
 表面の少なくとも一部に微細凹凸が形成された表面微細凹凸体であって、
 前記微細凹凸は、波状の凹凸パターンと、前記波状の凹凸パターン上に形成された凹部または凸部とを有し、
 前記波状の凹凸パターンは、第1の方向に沿って配列している複数の凸条部と、前記複数の凸条部間の凹条部とからなり、
 前記複数の凸条部の稜線が、前記表面微細凹凸体の法線方向から見て、互いに非平行に蛇行し、
 前記複数の凸条部の第1の方向における最頻ピッチが3~20μmであり、
 前記凹部、または凸部の見かけの最頻径が、1~10μmであり、
 前記凹部、または凸部の形状が、半球状であり、
 微細凹凸が形成された面の総面積に対する、前記凹部、または凸部の占有割合が、30~70質量%である、表面微細凹凸体である。
Moreover, it has the following aspects of this invention.
It is a surface fine uneven body in which fine unevenness is formed on at least a part of the surface,
The fine unevenness has a wavy uneven pattern and a recess or protrusion formed on the wavy uneven pattern,
The wavy concavo-convex pattern comprises a plurality of ridges arranged along a first direction, and a ridge between the plurality of ridges,
The ridge lines of the plurality of ridges meander non-parallel to each other when viewed from the normal direction of the surface fine irregularities,
The most frequent pitch in the first direction of the plurality of ridges is 3 to 20 μm;
The apparent mode diameter of the concave portion or convex portion is 1 to 10 μm,
The shape of the concave portion or convex portion is hemispherical,
The surface fine concavo-convex body in which the occupying ratio of the concave portion or the convex portion is 30 to 70 mass% with respect to the total area of the surface on which the fine unevenness is formed.
 また、本発明は以下の側面を有する。
 樹脂からなる基材フィルムの片面に、マトリクス樹脂、及び粒子とを含む塗工液を、乾燥後の厚みが0.05μmを超え5.0μm以下となるように塗工して硬質層を設けて積層シートを形成する積層工程と、
 前記積層シートの少なくとも前記硬質層を折り畳むように変形させる変形工程とを有し、
 前記樹脂が、ポリエステル系樹脂であり、
 前記マトリクス樹脂が、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン-アクリル共重合体、スチレン-アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、及びフッ素樹脂からなる群より選択される少なくとも1つの樹脂であって、前記基材フィルムを構成する樹脂よりも10℃以上高いガラス転移温度を有し、
 前記粒子が、アクリル系熱可塑性樹脂粒子、ポリスチレン系熱可塑性樹脂粒子、アクリル系架橋型樹脂粒子、ポリスチレン系架橋型樹脂粒子、及びガラスビーズからなる群より選択される少なくとも1つの粒子であって、前記基材フィルムを構成する前記樹脂のガラス転移温度より10℃高い温度未満の温度では、粒子形状が変化しない粒子であり、
 前記粒子の粒径が、5~10μmであり、
 前記硬化層が、前記マトリクス樹脂100質量部に対して、前記粒子を10~50質量部含むことを特徴とする、表面微細凹凸体の製造方法。
The present invention has the following aspects.
On one side of a base film made of resin, a hard layer is provided by applying a coating liquid containing a matrix resin and particles so that the thickness after drying is more than 0.05 μm and 5.0 μm or less. A lamination process for forming a laminated sheet;
A deformation step of deforming so as to fold at least the hard layer of the laminated sheet,
The resin is a polyester resin,
The matrix resin is a group consisting of polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, and fluororesin. At least one resin more selected, having a glass transition temperature higher by 10 ° C. or more than the resin constituting the base film,
The particles are at least one particle selected from the group consisting of acrylic thermoplastic resin particles, polystyrene thermoplastic resin particles, acrylic crosslinked resin particles, polystyrene crosslinked resin particles, and glass beads, At a temperature below 10 ° C. higher than the glass transition temperature of the resin constituting the substrate film, the particle shape does not change,
The particle size is 5-10 μm,
The method for producing a fine surface irregularity, wherein the cured layer contains 10 to 50 parts by mass of the particles with respect to 100 parts by mass of the matrix resin.
 以下、本発明について、実施例を例示して具体的に説明する。
[実施例1]
 下記塗工液(1)をポリエチレンテレフタレート一軸方向加熱収縮性フィルム(東洋紡株式会社製「SC807」、厚さ:30μm、ガラス転移温度Tg1=80℃)の片面に、塗工乾燥後の硬質層の厚みt’が2μmになるようにバーコーター(メイヤーバー♯14)により塗工し、積層シートを得た。
(塗工液(1))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)と、粒径dが5μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX105」、ビカット軟化温度200℃以上)とを、固形分質量比70:30で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(1)を得た。
 なお、上記アクリル樹脂Aは固形分濃度20質量%であるが、本例での質量比および濃度は、正味量(固形分量)で計算した値である。以下の例についても、正味量で計算している。
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
The following coating liquid (1) is applied to one side of a polyethylene terephthalate uniaxial heat shrinkable film (“SC807” manufactured by Toyobo Co., Ltd., thickness: 30 μm, glass transition temperature Tg1 = 80 ° C.). The laminated sheet was obtained by coating with a bar coater (Meyer bar # 14) so that the thickness t ′ was 2 μm.
(Coating fluid (1))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.) and acrylic cross-linked resin particles having a particle diameter d of 5 μm (“SSX105” manufactured by Sekisui Plastics Co., Ltd., Vicat softening temperature of 200 ° C. or higher) are solid. The mixture was mixed at a mass ratio of 70:30, and in addition to toluene, a coating liquid (1) having a solid content concentration of 7.7 mass% was obtained.
In addition, although the said acrylic resin A is solid content concentration 20 mass%, the mass ratio and density | concentration in this example are the values calculated by the net amount (solid content amount). The following examples are also calculated with the net amount.
 次いで、前記積層シートを熱風式オーブンを用いて150℃で1分間加熱することにより、ポリエチレンテレフタレート一軸方向加熱収縮性フィルムを一軸方向において、加熱前の長さの49%に熱収縮させ(変形率として51%)、硬質層を折り畳むように変形させた。これにより、波状の凹凸パターンと、その上に形成された多数の凸部とを有する微細凹凸が硬質層の表面に形成された表面微細凹凸シート(原版)を得た。また、形成された凸条部は、それぞれが蛇行して、互いに非平行で、不規則に形成されていた。
 得られた表面微細凹凸シート(原版)の微細凹凸形成面に、離型剤を含む未硬化の紫外線硬化性樹脂A(綜研化学社製)を厚さ20μmとなるように塗布し、紫外線を照射して硬化させ、硬化後、剥離して、表面微細凹凸シートの微細凹凸の反転パターンを有する1次転写品を得た。
 ついで、透明PET基材(東洋紡株式会社製「A4300」、厚さ:188μm)の片面に未硬化の紫外線硬化性樹脂B(ソニーケミカル社製)を厚さ20μmとなるように塗布し、塗布された紫外線硬化性樹脂Bに対して、1次転写品の上記反転パターンを有する面を押し当て、紫外線を照射して硬化させ、硬化後、1次転写品を剥離して、透明PET基材上に、紫外線硬化性樹脂の硬化物からなる表面層が形成され、前記表面層の表面に、上記の表面微細凹凸シート(原版)と同じ微細凹凸が形成された光拡散性シート(2次転写品)を得た。
Next, the laminated sheet is heated at 150 ° C. for 1 minute using a hot air oven to heat shrink the polyethylene terephthalate uniaxial heat shrinkable film to 49% of the length before heating in the uniaxial direction (deformation rate). 51%), the hard layer was deformed to be folded. Thereby, the surface fine uneven sheet | seat (original) in which the fine unevenness | corrugation which has a wavy uneven pattern and many convex parts formed on it was formed in the surface of the hard layer was obtained. Further, the formed ridges meander each other and are non-parallel to each other and irregularly formed.
An uncured UV curable resin A (manufactured by Soken Chemical Co., Ltd.) containing a release agent is applied to the surface of the surface fine uneven surface of the obtained surface fine uneven sheet (original) so as to have a thickness of 20 μm and irradiated with ultraviolet rays. And cured, and then peeled to obtain a primary transfer product having a reversal pattern of fine unevenness of the surface fine unevenness sheet.
Next, an uncured UV curable resin B (manufactured by Sony Chemical Co., Ltd.) was applied to one side of a transparent PET base material (“A4300” manufactured by Toyobo Co., Ltd., thickness: 188 μm) to a thickness of 20 μm. The surface of the primary transfer product having the above reversal pattern is pressed against the ultraviolet curable resin B, cured by irradiating with ultraviolet rays, and after curing, the primary transfer product is peeled off, and then on the transparent PET substrate. A light diffusive sheet (secondary transfer product) having a surface layer made of a cured product of an ultraviolet curable resin formed on the surface layer and having the same fine unevenness as the above-mentioned surface fine unevenness sheet (original) )
[実施例2]
 実施例1において塗工液(1)に変えて、下記塗工液(2)を用いた以外は実施例1と同様にして、光拡散性シートを得た。
(塗工液(2))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)と、粒径dが5μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX105」)とを、固形分質量比80:20で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(2)を得た。
[Example 2]
A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (2) was used instead of the coating liquid (1) in Example 1.
(Coating fluid (2))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.) and acrylic cross-linked resin particles having a particle diameter d of 5 μm (“SSX105” manufactured by Sekisui Plastics Co., Ltd.) at a solid content mass ratio of 80:20 It mixed and added to toluene, and the coating liquid (2) with a solid content density | concentration of 7.7 mass% was obtained.
[実施例3]
 実施例1において塗工液(1)に変えて、下記塗工液(3)を用いた以外は実施例1と同様にして、光拡散性シートを得た。
(塗工液(3))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)と、アクリル樹脂B(ガラス転移温度Tg2=132℃)と、粒径dが5μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX105」)とを、固形分質量比35:35:30で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(3)を得た。
[Example 3]
A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (3) was used instead of the coating liquid (1) in Example 1.
(Coating liquid (3))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.), acrylic resin B (glass transition temperature Tg2 = 132 ° C.), and acrylic cross-linked resin particles having a particle diameter d of 5 μm (manufactured by Sekisui Plastics Co., Ltd. “ SSX105 ") was mixed at a solid content mass ratio of 35:35:30 and added to toluene to obtain a coating solution (3) having a solid content concentration of 7.7 mass%.
[比較例1]
 実施例1において塗工液(1)に変えて、下記塗工液(4)を用いた以外は実施例1と同様にして、光拡散性シートを得た。
(塗工液(4))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)をトルエンに加え、固形分濃度7.7質量%の塗工液(4)を得た。
[Comparative Example 1]
A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (4) was used instead of the coating liquid (1) in Example 1.
(Coating fluid (4))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.) was added to toluene to obtain a coating liquid (4) having a solid content concentration of 7.7% by mass.
[実施例4]
 実施例1において塗工液(1)に変えて、下記塗工液(5)を用いた以外は実施例1と同様にして、光拡散性シートを得た。
(塗工液(5))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)と、粒径dが10μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX110」、ビカット軟化温度点200℃以上)とを、固形分質量比70:30で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(5)を得た。
[Example 4]
A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (5) was used instead of the coating liquid (1) in Example 1.
(Coating liquid (5))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.) and acrylic cross-linked resin particles having a particle diameter d of 10 μm (“SSX110” manufactured by Sekisui Plastics Co., Ltd., Vicat softening temperature point of 200 ° C. or higher) The mixture was mixed at a solid content mass ratio of 70:30, and in addition to toluene, a coating solution (5) having a solid content concentration of 7.7 mass% was obtained.
[実施例5]
 実施例1において塗工液(1)に変えて、下記塗工液(6)を用いた以外は実施例1と同様にして、光拡散性シートを得た。
(塗工液(6))
 アクリル樹脂A(ガラス転移温度Tg2=128℃)と、粒径dが5μmであるアクリル系架橋型樹脂粒子(積水化成品工業株式会社製「SSX105」)とを、固形分質量比50:50で混合し、トルエンに加え、固形分濃度7.7質量%の塗工液(6)を得た。
[Example 5]
A light diffusing sheet was obtained in the same manner as in Example 1 except that the following coating liquid (6) was used instead of the coating liquid (1) in Example 1.
(Coating liquid (6))
Acrylic resin A (glass transition temperature Tg2 = 128 ° C.) and acrylic cross-linked resin particles having a particle diameter d of 5 μm (“SSX105” manufactured by Sekisui Plastics Co., Ltd.) are in a solid content mass ratio of 50:50. It mixed and added to toluene, and the coating liquid (6) with a solid content density | concentration of 7.7 mass% was obtained.
[実施例6]
 実施例1において、塗工乾燥後の硬質層の厚みt’が3μmになるようにバーコーター(メイヤーバー♯20)により塗工し、ポリエチレンテレフタレート一軸方向加熱収縮性フィルムを一軸方向において、加熱前の長さの60%に熱収縮させ(変形率として40%)た以外は実施例1と同様にして、光拡散性シートを得た。
[Example 6]
In Example 1, coating was performed by a bar coater (Meyer bar # 20) so that the thickness t ′ of the hard layer after coating and drying was 3 μm, and a polyethylene terephthalate uniaxial heat-shrinkable film was uniaxially before heating. A light diffusing sheet was obtained in the same manner as in Example 1 except that the film was thermally shrunk to 60% of the length (40% as the deformation rate).
[実施例7]
 実施例1と同様の方法で得られた表面微細凹凸シート(原版)の表面に、ニッケル電気鋳造法にて、ニッケルを500μmの厚さになるように堆積させた。ついで、堆積させたニッケルを表面微細凹凸シート(原版)から剥離し、表面に表面微細凹凸シートの微細凹凸が転写されたニッケル2次原版を得た。前記ニッケル2次原版を射出成形機の金型に組込み、アクリル樹脂の射出成形を行うことで、表面に微細凹凸が転写された射出成形品を得た。得られた射出成形品は、300mm×10mm×2mmの直方体であり、一対の2mm×300mmの面のうちの一面に微細凹凸が転写され、他面が平滑面とされたものである。
[Example 7]
Nickel was deposited to a thickness of 500 μm on the surface of the surface fine uneven sheet (original) obtained by the same method as in Example 1 by nickel electroforming. Subsequently, the deposited nickel was peeled from the surface fine uneven sheet (original) to obtain a nickel secondary original having the surface fine unevenness transferred on the surface. The nickel secondary original plate was incorporated into a mold of an injection molding machine, and injection molding of an acrylic resin was performed to obtain an injection molded product having fine irregularities transferred on the surface. The obtained injection-molded product is a rectangular parallelepiped of 300 mm × 10 mm × 2 mm, in which fine irregularities are transferred to one surface of a pair of 2 mm × 300 mm surfaces, and the other surface is a smooth surface.
(評価)
(1)上記の各例で得られた光拡散性シートおよび射出成形品の微細凹凸について、波状の凹凸パターンの最頻ピッチ、波状の凹凸パターンの凸条部の平均高さ、凸部の見かけの最頻径および平均高さ、微細凹凸における凸部の占有面積割合を上述した方法にて求めた。結果を表1に示す。
(2)GENESIA GonioFar Field Profiler(ジェネシア社製)を用いて、上記の各例で得られた光拡散性シートおよび射出成形品に平滑面側から光を入射させ、Y方向の拡散角度および1/10拡散角度ならびにX方向の拡散角度および1/10拡散角度を測定した。結果を表1に示す。
(3)上記の各例で得られた光拡散性シートおよび射出成形品に、その平滑面側から赤色レーザーポインタの光を入射させ、反対面側から拡散光を出射させた。光拡散性シートおよび射出成形品の上述の反対面側に、光拡散性シートおよび射出成形品と平行に白い紙を配置した。白い紙に映し出された赤色レーザーポインタの拡散光の形(投影像)を4段階で目視評価した。結果を表1に示す。
(4)上記の各例で得られた光拡散性シートおよび射出成形品に、その平滑面側からLED光源(照射角10°)の光を入射させ、反対面(微細凹凸形成面)側から透過光を出射させた。光拡散性シートおよび射出成形品の上述の反対面側の法線方向1m離れた位置に輝度計SR-3(トプコン社製)を配置し、輝度を測定した。結果を表1に示す。なお、表1の輝度は、実施例1の光拡散性シートを上述の方法で測定した場合の輝度を100とした時の相対輝度である。
(5)上記の各例で得られた光拡散性シートおよび射出成形品の微細凹凸形成面側から、光を入射させて、JIS K 7105「プラスチックの光学的特性試験方法」に準拠し、全光線透過率(%)を測定した。結果を表1に示す。
 なお、実施例7で製造した射出成形品は直方体であるため、微細凹凸が形成された面と平滑面とが平行であった。しかしながら、微細凹凸が形成された面と平滑面とが平行でない射出成形品を製造した場合には、前記射出成形品を適宜カットすることにより、微細凹凸が形成された面と平行な平滑面を切り出したものをサンプルとし、前記サンプルを上記(2)~(5)の測定に供することが好ましい。
(Evaluation)
(1) About the fine unevenness of the light diffusive sheet and the injection-molded product obtained in each of the above examples, the most frequent pitch of the wavy uneven pattern, the average height of the protruding portion of the wavy uneven pattern, and the appearance of the protruding portion The mode diameter and the average height of the projections, and the occupied area ratio of the projections in the fine irregularities were determined by the method described above. The results are shown in Table 1.
(2) Using GENESISIA GonioFar Field Profiler (manufactured by Genesia), light is incident on the light diffusing sheet and injection molded product obtained in each of the above examples from the smooth surface side, and the diffusion angle in the Y direction and 1 / Ten diffusion angles, X-direction diffusion angles and 1/10 diffusion angles were measured. The results are shown in Table 1.
(3) The light of the red laser pointer was made incident from the smooth surface side and the diffused light was emitted from the opposite surface side to the light diffusing sheet and the injection molded product obtained in each of the above examples. White paper was placed in parallel with the light diffusing sheet and the injection-molded product on the opposite side of the light diffusing sheet and the injection-molded product. The shape of the diffused light (projected image) of the red laser pointer projected on white paper was visually evaluated in four stages. The results are shown in Table 1.
(4) Light from the LED light source (irradiation angle 10 °) is incident on the light diffusable sheet and injection molded product obtained in each of the above examples from the smooth surface side, and from the opposite surface (fine unevenness forming surface) side. Transmitted light was emitted. A luminance meter SR-3 (manufactured by Topcon Co., Ltd.) was placed at a position 1 m away from the light diffusing sheet and the injection molded product on the opposite surface side in the normal direction, and the luminance was measured. The results are shown in Table 1. In addition, the brightness | luminance of Table 1 is a relative brightness | luminance when the brightness | luminance when the light diffusable sheet | seat of Example 1 is measured by the above-mentioned method is set to 100.
(5) From the light diffusive sheet and the injection molded product obtained in each of the above examples, light was incident from the side of the fine unevenness, and in accordance with JIS K 7105 “Testing methods for optical properties of plastics” The light transmittance (%) was measured. The results are shown in Table 1.
In addition, since the injection molded product manufactured in Example 7 was a rectangular parallelepiped, the surface on which fine irregularities were formed and the smooth surface were parallel. However, when an injection molded product in which the surface on which the fine irregularities are formed and the smooth surface is not parallel is manufactured, the smooth surface parallel to the surface on which the fine irregularities are formed is obtained by appropriately cutting the injection molded product. It is preferable to use the sample that has been cut out as a sample, and to use the sample in the above measurements (2) to (5).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から、互いに非平行に蛇行した不規則な複数の凸条部と、前記複数の凸条部間の凹条部とからなり、最頻ピッチが3~20μmである波状の凹凸パターンと、見かけの最頻径が1~10μmである多数の凸部とからなる微細凹凸が形成された各実施例の光拡散性シートおよび射出成形品によれば、Y方向の拡散角度が充分に大きく、かつ、X方向の拡散角度が4°以上であった。また、実施例1~5および実施例7の光拡散性シートおよび射出成形品によれば、X、Y方向の拡散角度が適度に大きく、また、Y方向およびX方向の1/10拡散角度がそれぞれ(拡散角度×1.4+25°)以下、(拡散角度×1.6+25°)以下であり、相対輝度が充分に大きかった。そのため、これらは、例えば、自動車のフロントガラスに走行速度などの情報を鮮明に拡散させる必要のある、ヘッドアップディスプレイシステムなどにおいて、好適に使用できることが理解できた。なかでも実施例1~3の光拡散性シートおよび実施例7の射出成形品は、Y方向の拡散角度を非常に高く維持したまま、X方向の拡散角度も大きく、また、相対輝度とのバランスもよく、非常に高い性能を有していた。
 一方、比較例の光拡散性シートによれば、Y方向の拡散角度は充分に大きいが、X方向の拡散角度が非常に小さく、異方性が高すぎ、上述のヘッドアップディスプレイシステムなどにおいての使用には不適であることが理解できた。
 また、各実施例の光拡散性シートは、充分な光透過性を有していた。
 また、実施例7の射出成形品は、コピー機等に使用される、LED光源を線状に配列したスキャナ光源の導光部材などにおいて好適に使用できることが理解できた。
From the results shown in Table 1, a wavy uneven pattern having a plurality of irregular ridges meandering non-parallel to each other and ridges between the plurality of ridges and having a most frequent pitch of 3 to 20 μm. In addition, according to the light diffusing sheet and the injection-molded product of each Example in which fine irregularities including a large number of convex portions having an apparent mode diameter of 1 to 10 μm are formed, the diffusion angle in the Y direction is sufficiently high. It was large and the diffusion angle in the X direction was 4 ° or more. In addition, according to the light diffusing sheets and injection-molded articles of Examples 1 to 5 and Example 7, the diffusion angles in the X and Y directions are moderately large, and the 1/10 diffusion angles in the Y and X directions are The respective values were (diffusion angle × 1.4 + 25 °) or less and (diffusion angle × 1.6 + 25 °) or less, and the relative luminance was sufficiently large. Therefore, it has been understood that these can be suitably used in, for example, a head-up display system in which information such as a traveling speed needs to be clearly diffused on the windshield of an automobile. In particular, the light diffusing sheets of Examples 1 to 3 and the injection-molded product of Example 7 have a large diffusion angle in the X direction while maintaining a very high diffusion angle in the Y direction, and a balance with relative luminance. Also, it had very high performance.
On the other hand, according to the light diffusing sheet of the comparative example, the diffusion angle in the Y direction is sufficiently large, but the diffusion angle in the X direction is very small and the anisotropy is too high. It was understood that it was unsuitable for use.
Moreover, the light diffusable sheet of each Example had sufficient light transmittance.
Further, it was understood that the injection molded product of Example 7 can be suitably used in a light guide member of a scanner light source in which LED light sources are arranged in a line, which is used in a copying machine or the like.
10:光拡散性シート、13:波状の凹凸パターン、13a:凸条部、13b:凹条部、14:凸部、20:表面微細凹凸体(原版)、21:基材、22:硬質層、22a:マトリクス樹脂、22b:粒子、31:基材フィルム、32:硬質層(未変形) 10: Light diffusive sheet, 13: Wavy uneven pattern, 13a: Convex part, 13b: Concave part, 14: Convex part, 20: Surface fine unevenness (original), 21: Base material, 22: Hard layer 22a: matrix resin, 22b: particles, 31: base film, 32: hard layer (undeformed)

Claims (8)

  1.  表面の少なくとも一部に微細凹凸が形成された表面微細凹凸体であって、
     前記微細凹凸は、波状の凹凸パターンと、前記波状の凹凸パターン上に形成された複数の凹部または凸部からなり、
     前記波状の凹凸パターンは、不規則に形成された複数の凸条部と、前記複数の凸条部間の凹条部とからなり、
     前記複数の凸条部は互いに非平行に蛇行し、
     前記複数の凸条部の最頻ピッチが3~20μmであり、
     前記凹部または凸部の見かけの最頻径が1~10μmであることを特徴とする、表面微細凹凸体。
    It is a surface fine uneven body in which fine unevenness is formed on at least a part of the surface,
    The fine unevenness includes a wavy uneven pattern and a plurality of concave portions or convex portions formed on the wavy uneven pattern,
    The wavy uneven pattern is composed of a plurality of irregularly formed ridges and a groove between the plurality of ridges,
    The plurality of ridges meander non-parallel to each other,
    The most frequent pitch of the plurality of ridges is 3 to 20 μm,
    The surface fine irregularities, wherein the apparent mode diameter of the concave portion or convex portion is 1 to 10 μm.
  2.  前記凸条部の平均高さが4~7μmである、請求項1に記載の表面微細凹凸体。 2. The surface fine irregularities according to claim 1, wherein the average height of the ridges is 4 to 7 μm.
  3.  前記微細凹凸における前記凹部または前記凸部の占有面積割合が、30~70%である、請求項1または2に記載の表面微細凹凸体。 3. The surface fine uneven body according to claim 1 or 2, wherein the area occupied by the concave portion or the convex portion in the fine unevenness is 30 to 70%.
  4.  光拡散体である、請求項1~3のいずれか一項に記載の表面微細凹凸体。 4. The surface fine unevenness according to any one of claims 1 to 3, which is a light diffuser.
  5.  前記微細凹凸を転写して光拡散体を製造するための光拡散体形成用原版である、請求項1~3のいずれか一項に記載の表面微細凹凸体。 The surface fine unevenness according to any one of claims 1 to 3, which is a light diffuser-forming original plate for transferring the fine unevenness to produce a light diffuser.
  6.  樹脂からなる基材フィルムの片面に、マトリクス樹脂、及び前記マトリクス樹脂中に分散した粒子からなる、0.05μmを超え5.0μm以下の厚みを有する硬質層を設けて積層シートを形成する積層工程と、
     前記積層シートの少なくとも前記硬質層を折り畳むように変形させる変形工程とを有し、
     前記マトリクス樹脂のガラス転移温度が、前記基材フィルムを構成する前記樹脂のガラス転移温度よりも10℃以上高く、
     前記粒子は、前記基材フィルムを構成する前記樹脂のガラス転移温度より10℃高い温度未満の温度では、熱により粒子形状が変化しない材料からなり、
     前記粒子の粒径は、前記硬質層の厚みよりも大きい、表面微細凹凸体の製造方法。
    A laminating step of forming a laminated sheet by providing a hard layer having a thickness of more than 0.05 μm and not more than 5.0 μm consisting of matrix resin and particles dispersed in the matrix resin on one side of a base film made of resin When,
    A deformation step of deforming so as to fold at least the hard layer of the laminated sheet,
    The glass transition temperature of the matrix resin is 10 ° C. or more higher than the glass transition temperature of the resin constituting the base film,
    The particles are made of a material whose particle shape is not changed by heat at a temperature lower than a temperature 10 ° C. higher than the glass transition temperature of the resin constituting the base film,
    The method for producing a fine surface irregularity, wherein the particle diameter is larger than the thickness of the hard layer.
  7.  前記基材フィルムは、一軸方向加熱収縮性フィルムであり、
     前記変形工程は、前記積層シートを加熱して前記一軸方向加熱収縮性フィルムを収縮させる工程である、請求項6の表面微細凹凸体の製造方法。
    The base film is a uniaxial heat shrinkable film,
    The method for producing a surface fine unevenness according to claim 6, wherein the deformation step is a step of heating the laminated sheet to shrink the uniaxial heat-shrinkable film.
  8.  請求項6または7に記載の製造方法で製造された表面微細凹凸体を光拡散体形成用原版として用い、前記表面微細凹凸体の前記微細凹凸を転写する転写工程を有する、光拡散体の製造方法。 Manufacturing of a light diffuser having a transfer step of transferring the fine unevenness of the surface fine unevenness using the surface fine unevenness produced by the manufacturing method according to claim 6 or 7 as an original plate for forming a light diffuser. Method.
PCT/JP2014/057345 2013-03-18 2014-03-18 Body having fine concavities and convexities in surface, and production method of body having fine concavities and convexities in surface WO2014148492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480016299.8A CN105143927B (en) 2013-03-18 2014-03-18 The manufacture method of surface micro concavo-convex body and surface micro concavo-convex body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013055722 2013-03-18
JP2013-055722 2013-03-18
JP2014034687A JP5660235B2 (en) 2013-03-18 2014-02-25 Surface fine unevenness and method for producing surface fine unevenness
JP2014-034687 2014-02-25

Publications (1)

Publication Number Publication Date
WO2014148492A1 true WO2014148492A1 (en) 2014-09-25

Family

ID=51580170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057345 WO2014148492A1 (en) 2013-03-18 2014-03-18 Body having fine concavities and convexities in surface, and production method of body having fine concavities and convexities in surface

Country Status (5)

Country Link
JP (1) JP5660235B2 (en)
CN (2) CN105143927B (en)
MY (1) MY176154A (en)
TW (2) TWI651552B (en)
WO (1) WO2014148492A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136254A (en) * 2015-01-20 2016-07-28 王子ホールディングス株式会社 Material with fine concavo-convex surface
JP2016167063A (en) * 2015-03-02 2016-09-15 王子ホールディングス株式会社 Fine concavo-convex surfaced material
WO2017135261A1 (en) * 2016-02-01 2017-08-10 旭硝子株式会社 Translucent structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161287B2 (en) * 2016-12-28 2022-10-26 恵和株式会社 Optical sheet for liquid crystal display device and backlight unit for liquid crystal display device
JP6990984B2 (en) * 2017-04-20 2022-01-12 旭化成株式会社 Heat shrinkable laminated film and bag
JP7119417B2 (en) * 2018-02-22 2022-08-17 Agc株式会社 translucent structure
JP7103186B2 (en) * 2018-11-22 2022-07-20 マツダ株式会社 Method for manufacturing resin members, molding dies for resin members, and resin members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102487A1 (en) * 2007-02-21 2008-08-28 Oji Paper Co., Ltd. Sheet having uneven pattern formed thereon and method for production thereof
JP2009162831A (en) * 2007-12-28 2009-07-23 Oji Paper Co Ltd Rugged pattern sheet and method of manufacturing the same, method of manufacturing optical sheet, and optical apparatus
JP2011519054A (en) * 2008-04-02 2011-06-30 スリーエム イノベイティブ プロパティズ カンパニー Method and system for fabricating an optical film having an overlaid mechanism
JP2012252149A (en) * 2011-06-02 2012-12-20 Oji Holdings Corp Asperity pattern forming sheet and manufacturing method therefor, light diffusion body, stamper for manufacturing light diffusion body, and manufacturing method for light diffusion body
WO2014002850A1 (en) * 2012-06-26 2014-01-03 王子ホールディングス株式会社 Light-diffusing sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558333B (en) * 2007-05-09 2012-02-22 索尼株式会社 Antiglare film, process for producing the same and display apparatus utilizing the film
JP2009103884A (en) * 2007-10-23 2009-05-14 Goyo Paper Working Co Ltd Punchable abrasion flaw-resistant double layer lens film
CN101609174B (en) * 2008-06-17 2012-01-18 颖台科技股份有限公司 Optical membrane for eliminating moire interference and controlling visual angle
CN101630028A (en) * 2008-07-16 2010-01-20 颖台科技股份有限公司 Compound type diffusion plate structure, backlight module and liquid crystal display
JP2010060743A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Antiglare film, antireflection film, polarizing plate, and image display device
JP2012002829A (en) * 2010-05-20 2012-01-05 Dainippon Printing Co Ltd Optical sheet, face light source device, and liquid crystal display apparatus
JP2012068276A (en) * 2010-09-21 2012-04-05 Oji Paper Co Ltd Light diffusion sheet
JP2013044949A (en) * 2011-08-24 2013-03-04 Dexerials Corp Oriented film, manufacturing method thereof, retardation film, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102487A1 (en) * 2007-02-21 2008-08-28 Oji Paper Co., Ltd. Sheet having uneven pattern formed thereon and method for production thereof
JP2009162831A (en) * 2007-12-28 2009-07-23 Oji Paper Co Ltd Rugged pattern sheet and method of manufacturing the same, method of manufacturing optical sheet, and optical apparatus
JP2011519054A (en) * 2008-04-02 2011-06-30 スリーエム イノベイティブ プロパティズ カンパニー Method and system for fabricating an optical film having an overlaid mechanism
JP2012252149A (en) * 2011-06-02 2012-12-20 Oji Holdings Corp Asperity pattern forming sheet and manufacturing method therefor, light diffusion body, stamper for manufacturing light diffusion body, and manufacturing method for light diffusion body
WO2014002850A1 (en) * 2012-06-26 2014-01-03 王子ホールディングス株式会社 Light-diffusing sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136254A (en) * 2015-01-20 2016-07-28 王子ホールディングス株式会社 Material with fine concavo-convex surface
JP2016167063A (en) * 2015-03-02 2016-09-15 王子ホールディングス株式会社 Fine concavo-convex surfaced material
WO2017135261A1 (en) * 2016-02-01 2017-08-10 旭硝子株式会社 Translucent structure
CN107924003A (en) * 2016-02-01 2018-04-17 旭硝子株式会社 Translucency structure
JPWO2017135261A1 (en) * 2016-02-01 2018-12-13 Agc株式会社 Translucent structure
CN107924003B (en) * 2016-02-01 2020-08-25 Agc株式会社 Light-transmitting structure
DE112017000097B4 (en) 2016-02-01 2022-11-03 AGC Inc. Translucent structure
US11772356B2 (en) 2016-02-01 2023-10-03 AGC Inc. Translucent structure

Also Published As

Publication number Publication date
CN105143927A (en) 2015-12-09
CN107907925A (en) 2018-04-13
CN105143927B (en) 2017-10-20
TWI586536B (en) 2017-06-11
JP5660235B2 (en) 2015-01-28
TW201725403A (en) 2017-07-16
JP2014206728A (en) 2014-10-30
TW201441042A (en) 2014-11-01
TWI651552B (en) 2019-02-21
MY176154A (en) 2020-07-24

Similar Documents

Publication Publication Date Title
JP5660235B2 (en) Surface fine unevenness and method for producing surface fine unevenness
TWI518376B (en) Peak-valley pattern formed sheet and method for producing the same
KR102497982B1 (en) Secure lens layer
JP6409675B2 (en) Illumination unit for display device and display device
CN102906604A (en) Light redirecting film and display system incorporating same
JP6274102B2 (en) Light diffusing sheet
JP5482401B2 (en) The manufacturing method of the surface fine unevenness | corrugation body which has a nano buckling shape, the manufacturing method of an optical element, and the manufacturing method of a secondary process sheet | seat.
JP6536312B2 (en) Fine surface irregularities
JP2019003221A (en) Surface fine irregularity body and method for manufacturing surface fine irregularity body
JP2018014307A (en) Lighting unit for display, and display
JP2016167063A (en) Fine concavo-convex surfaced material
JP2016136254A (en) Material with fine concavo-convex surface
JP6593055B2 (en) Surface fine irregularities and the method of obtaining the illuminance curve
JP2017187561A (en) Reflective screen
JP6515759B2 (en) Surface fine asperity body and method of manufacturing surface fine asperity body
JP2016066050A (en) Fine concavo-convex-surfaced material and manufacturing method therefor
JP6255676B2 (en) Method for manufacturing light diffusion sheet and method for manufacturing light diffuser
JP2012111086A (en) Irregular pattern formation sheet, method of manufacturing the same, process sheet original plate for duplicating the irregular pattern formation sheet and optical element
JP6079603B2 (en) Anisotropic light diffusion sheet and light diffusion method
JP6515781B2 (en) Surface fine uneven sheet and multilayer body
JP2012238002A (en) Substrate for liquid crystal alignment, manufacturing method therefor, and process sheet original plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016299.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769722

Country of ref document: EP

Kind code of ref document: A1