JP6255676B2 - Method for manufacturing light diffusion sheet and method for manufacturing light diffuser - Google Patents

Method for manufacturing light diffusion sheet and method for manufacturing light diffuser Download PDF

Info

Publication number
JP6255676B2
JP6255676B2 JP2013039552A JP2013039552A JP6255676B2 JP 6255676 B2 JP6255676 B2 JP 6255676B2 JP 2013039552 A JP2013039552 A JP 2013039552A JP 2013039552 A JP2013039552 A JP 2013039552A JP 6255676 B2 JP6255676 B2 JP 6255676B2
Authority
JP
Japan
Prior art keywords
sheet
light
laminated
hard layer
laminated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013039552A
Other languages
Japanese (ja)
Other versions
JP2014167553A (en
Inventor
俊樹 岡安
俊樹 岡安
道子 前田
道子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2013039552A priority Critical patent/JP6255676B2/en
Publication of JP2014167553A publication Critical patent/JP2014167553A/en
Application granted granted Critical
Publication of JP6255676B2 publication Critical patent/JP6255676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、光拡散シートまたは光拡散体の製造方法に関する。さらに詳しくは、異方性光拡散特性を有する光拡散シートまたは光拡散体の製造方法に関する。 The present invention relates to a method for producing a light diffusion sheet or light diffuser. More specifically, the present invention relates to a method for manufacturing a light diffusion sheet or light diffuser having anisotropic light diffusion characteristics.

微細な波状の凹凸からなる凹凸パターンが表面に形成され、凹凸パターンの平均ピッチが1〜10μmの凹凸パターン形成シートは光拡散体として利用できることが知られている(特許文献1,2) It is known that a concavo-convex pattern composed of fine wavy concavo-convex is formed on the surface, and the concavo-convex pattern forming sheet having an average pitch of 1 to 10 μm can be used as a light diffuser (Patent Documents 1 and 2).

このような凹凸パターン形成シートを製造する方法として、加熱収縮性フィルムの片面または両面に、硬質層が、少なくとも1層積層された積層シートの状態で、該積層シートの少なくとも一方向に張力を作用させて、加熱収縮させることにより、前記積層シートの少なくとも硬質層を蛇行変形させることを特徴とする凹凸パターン形成シートの製造方法(特許文献3)が知られている。 As a method for producing such a concavo-convex pattern forming sheet, a tension is applied in at least one direction of the laminated sheet in the state of a laminated sheet in which at least one hard layer is laminated on one side or both sides of the heat-shrinkable film. Then, a method for producing a concavo-convex pattern forming sheet (Patent Document 3) is known in which at least a hard layer of the laminated sheet is meandered and deformed by heating and shrinking.

しかし、点状光源を効率良く拡散して、展示用照明、廊下用照明、通路用照明などの長手方向を均一に照明する光拡散体となる凹凸パターン形成シートの製造方法は知られていなかった。
特開平10-123307号公報 特開2006−261064号公報 特開2008−304651号公報
However, a method for producing an uneven pattern forming sheet that is a light diffuser that efficiently diffuses a point light source and uniformly illuminates the longitudinal direction of display lighting, hallway lighting, passage lighting, etc. has not been known. .
JP-A-10-123307 Japanese Patent Application Laid-Open No. 2006-261064 JP 2008-304651 A

本発明は、点状光源または点状光源を並べた光源ユニットの光を用い、通路などの一方向に延びた空間を長手方向に効率よく且つ均一に照明する照明装置に適した異方性光拡散特性を有する光拡散シートを製造する方法を提供する。 The present invention is an anisotropic light diffusion characteristic suitable for an illumination device that uses a light from a point light source or a light source unit in which point light sources are arranged and illuminates a space extending in one direction such as a passage efficiently and uniformly in the longitudinal direction. A method for producing a light diffusing sheet having the following is provided.

本発明者らは、優れた異方性光拡散特性を有する光拡散シートの製造方法について鋭意検討を重ねた結果、以下の製造方法を完成するに至った。 As a result of intensive studies on a method for producing a light diffusing sheet having excellent anisotropic light diffusing characteristics, the present inventors have completed the following production method.

〔1〕加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し、積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸を形成する凹凸パターン形成工程と、を有する光拡散シートの製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、
前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散シートの製造方法。
〔2〕加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸パターンを形成して母型を得る母型形成工程と、前記硬質層の表面に形成された凹凸パターンを樹脂組成物に形状転写して片面に凹凸パターンを有する転写型を得る転写工程と、を有し、前記転写型を光拡散体として得る光拡散体の製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、
前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散体に入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散体の製造方法。
〔3〕加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸パターンを形成して1次母型を得る1次母型形成工程と、前記硬質層の表面に形成された凹凸パターンを樹脂組成物または金属組成物に1〜n回形状転写して片面に凹凸パターンを有する2〜(n+1)次母型を得る2〜(n+1)次母型形成工程と、前記2〜(n+1)次母型の凹凸パターンを更に別の樹脂組成物に形状転写して片面に凹凸パターンを有する複製物を得る複製物製造工程を有し、前記複製物を光拡散体として得る光拡散体の製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、
前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散体に入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散体の製造方法。
〔4〕前記光拡散シートのY方向に沿って測定したときの前記凹凸パターンの平均ピッチを1〜20μmに調整する請求項1〜3に記載の光拡散シートまたは光拡散体の製造方法。
[1] At least one hard layer is laminated on one side of a heat-shrinkable film, and a laminating step for producing a laminated sheet, and at least the hard layer of the laminated sheet is meandered and deformed by heating and deforming the laminated sheet. An uneven pattern forming step of forming unevenness on the surface of the hard layer, and a method of manufacturing a light diffusion sheet,
When one direction along the surface of the laminated sheet is the X direction, the direction along the surface of the laminated sheet and perpendicular to the X direction is the Y direction,
In the concavo-convex pattern forming step, tension is applied at least in the Y direction, and a 1/10 value diffusion angle of light incident on the light diffusion sheet from the surface on which the hard layer is laminated is 70 to 80 degrees in the X direction, Y direction. The manufacturing method of the light-diffusion sheet characterized by shrinking so that it may become 5-15 degree | times.
[2] A laminating step in which at least one hard layer is laminated on one side of the heat-shrinkable film to produce a laminated sheet, and at least the hard layer of the laminated sheet is meandered and deformed by heating and deforming the laminated sheet. A master mold forming step for obtaining a master by forming a concavo-convex pattern on the surface of the hard layer, and a transfer mold having a concavo-convex pattern on one side by transferring the shape of the concavo-convex pattern formed on the surface of the hard layer to a resin composition And a transfer step for obtaining a light diffusing body, wherein the transfer mold is obtained as a light diffusing body,
When one direction along the surface of the laminated sheet is the X direction, the direction along the surface of the laminated sheet and perpendicular to the X direction is the Y direction,
In the concavo-convex pattern forming step, tension is applied at least in the Y direction, and a 1/10 value diffusion angle of light incident on the light diffuser from the surface on which the hard layer is laminated is 70 to 80 degrees in the X direction, and the Y direction. A method for producing a light diffuser, wherein the light diffuser is contracted to 5 to 15 degrees.
[3] At least one hard layer is laminated on one side of the heat-shrinkable film to produce a laminated sheet, and by heating and deforming the laminated sheet, at least the hard layer of the laminated sheet is meandered and deformed. A primary master mold forming step of forming a concave / convex pattern on the surface of the hard layer to obtain a primary master block, and the concave / convex pattern formed on the surface of the hard layer are applied to the resin composition or metal composition 1 to n times. A 2- (n + 1) -order matrix forming step for transferring a shape to obtain a 2- (n + 1) -order matrix having a concavo-convex pattern on one side, and a concavo-convex pattern of the 2- (n + 1) -order matrix for further different resin composition A method of manufacturing a light diffuser having a replica manufacturing step of obtaining a replica having a concavo-convex pattern on one side by transferring a shape to an object, and obtaining the replica as a light diffuser,
When one direction along the surface of the laminated sheet is the X direction, the direction along the surface of the laminated sheet and perpendicular to the X direction is the Y direction,
In the concavo-convex pattern forming step, tension is applied at least in the Y direction, and a 1/10 value diffusion angle of light incident on the light diffuser from the surface on which the hard layer is laminated is 70 to 80 degrees in the X direction, and the Y direction. A method for producing a light diffuser, wherein the light diffuser is contracted to 5 to 15 degrees.
[4] The method for producing a light diffusing sheet or a light diffusing body according to any one of claims 1 to 3, wherein an average pitch of the concavo-convex pattern when measured along the Y direction of the light diffusing sheet is adjusted to 1 to 20 μm.

本発明の光拡散シートまたは光拡散体の製造方法では、表面に微細な凹凸パターンを容易に大面積で形成でき、かつ優れた異方性光拡散特性を有する光拡散シートを簡便に、かつ、大量に製造できる。 In the method for producing a light diffusing sheet or light diffusing body of the present invention, a light diffusing sheet that can easily form a fine concavo-convex pattern on a surface with a large area and has excellent anisotropic light diffusing characteristics can be easily and in large quantities. Can be manufactured.

(光拡散シートの製造方法)
本発明の光拡散シートの製造方法の一実施形態について説明する。
本実施形態の光拡散シートの製造方法は、図1に示すように、1軸方向加熱収縮性フィルム11の片面の全面に、表面が平滑な硬質層12a(以下、表面平滑硬質層12aという。)を設けて積層シート10aを形成する工程と、積層シート10aの加熱により最も大きく収縮する方向をX方向とし、X方向と直交する方向(Y方向)に張力を作用させて、加熱変形させる工程とからなる。
上記方法を採用することにより、積層シートの硬質層を蛇行変形させ、図2に示すような凹凸パターン13が、1軸方向加熱収縮性フィルム11の片面の全面に形成された、光拡散シート10が得られる。
ここで、表面平滑硬質層12aとは、JIS B0601に記載の中心線平均粗さ0.1μm以下の層である。
また、「蛇行変形」とは、図2に示すような、波状の凹凸パターンを形成するような変形をいう。
(Production method of light diffusion sheet)
An embodiment of the method for producing a light diffusion sheet of the present invention will be described.
As shown in FIG. 1, the light diffusing sheet manufacturing method of the present embodiment has a hard layer 12 a (hereinafter referred to as a surface smooth hard layer 12 a) having a smooth surface on the entire surface of one surface of the uniaxial heat-shrinkable film 11. ) And forming the laminated sheet 10a, and the step of causing the largest contraction by heating of the laminated sheet 10a as the X direction and applying a tension in the direction orthogonal to the X direction (Y direction) to cause heat deformation It consists of.
By adopting the above-described method, the hard layer of the laminated sheet is meandered and a concavo-convex pattern 13 as shown in FIG. 2 is formed on the entire surface of one side of the uniaxial heat-shrinkable film 11. Is obtained.
Here, the surface smooth hard layer 12a is a layer having a center line average roughness of 0.1 μm or less described in JIS B0601.
“Meandering deformation” refers to a deformation that forms a wavy uneven pattern as shown in FIG.

本発明の1軸方向加熱収縮性フィルム11としては、従来公知のものが使用でき、例えば、1軸収縮性ポリエチレンテレフタレート系シュリンクフィルム、1軸収縮性ポリスチレン系シュリンクフィルム、1軸収縮性ポリオレフィン系シュリンクフィルム、1軸収縮性ポリ塩化ビニル系シュリンクフィルムなどを用いることができる。これらの1軸方向加熱収縮性フィルムは、収縮温度以上で加熱した場合、主に1方向に収縮する特性を有する。1軸方向加熱収縮性フィルム11の厚みは一般的には10〜500μmである。好ましくは、フィルムの入手しやすさの点で、20〜100μmである。 A conventionally known film can be used as the uniaxial heat-shrinkable film 11 of the present invention. A film, a uniaxial shrinkable polyvinyl chloride shrink film, or the like can be used. These uniaxial heat-shrinkable films have the property of shrinking mainly in one direction when heated at a shrinkage temperature or higher. The thickness of the uniaxial heat-shrinkable film 11 is generally 10 to 500 μm. Preferably, it is 20-100 micrometers from the point of the availability of a film.

本発明の表面平滑硬質層12aとしては、金属、金属化合物または1軸方向加熱収縮性フィルム11の加熱収縮温度より3℃以上高いガラス転移温度を有する樹脂の中から選ばれる少なくとも1種で構成する。このような構成により、積層シート10aを加熱収縮させる際、1軸方向加熱収縮フィルム11より、表面平滑硬質層12aの弾性率を大きくすることができ、表面平滑硬質層12aが波状に折れ曲がり蛇行変形して、凹凸パターン13を容易に形成できる。 The surface smooth hard layer 12a of the present invention is composed of at least one selected from a metal, a metal compound, or a resin having a glass transition temperature 3 ° C. higher than the heat shrinkage temperature of the uniaxial heat shrinkable film 11. . With such a configuration, when the laminated sheet 10a is heated and shrunk, the elastic modulus of the surface smooth hard layer 12a can be made larger than that of the uniaxial heat-shrinkable film 11, and the surface smooth hard layer 12a bends in a wavy shape and meanders. Thus, the uneven pattern 13 can be easily formed.

表面平滑硬質層12aに使用できる金属としては、弾性率が過剰に高くならず、より容易に凹凸パターン13を形成することができることから、金、アルミニウム、銀、炭素、銅、ゲルマニウム、インジウム、マグネシウム、ニオブ、パラジウム、鉛、白金、シリコン、スズ、チタン、バナジウム、亜鉛、ビスマスよりなる群から選ばれる少なくとも1種の金属であることが好ましい。ここでいう金属は、半金属も含む。 As the metal that can be used for the surface smooth hard layer 12a, the elastic modulus is not excessively high and the uneven pattern 13 can be formed more easily. Therefore, gold, aluminum, silver, carbon, copper, germanium, indium, magnesium Niobium, palladium, lead, platinum, silicon, tin, titanium, vanadium, zinc, and at least one metal selected from the group consisting of bismuth is preferable. The metal here includes a semi-metal.

また、金属化合物としては、上述と同様の理由から、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化スズ、酸化銅、酸化インジウム、酸化カドミウム、酸化鉛、酸化ケイ素、フッ化バリウム、フッ化カルシウム、フッ化マグネシウム、硫化亜鉛、ガリウムヒ素よりなる群から選ばれる少なくとも1種の金属化合物であることが好ましい。中でも、酸化チタンは、光が当たると表面に付着した有機物を分解する光触媒であり、自己洗浄機能を有しているため、好ましい。 In addition, as a metal compound, for the same reason as described above, titanium oxide, aluminum oxide, zinc oxide, magnesium oxide, tin oxide, copper oxide, indium oxide, cadmium oxide, lead oxide, silicon oxide, barium fluoride, fluoride It is preferably at least one metal compound selected from the group consisting of calcium, magnesium fluoride, zinc sulfide, and gallium arsenide. Among these, titanium oxide is preferable because it is a photocatalyst that decomposes organic substances attached to the surface when exposed to light and has a self-cleaning function.

さらに、樹脂としては、1軸方向加熱収縮性フィルム11の加熱収縮温度より3℃以上高いガラス転移温度を有する樹脂であればよく、例えば、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン−アクリル共重合体、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂等が挙げられ、2種以上の樹脂を混合してもよい。 Further, the resin may be a resin having a glass transition temperature that is 3 ° C. or more higher than the heat shrinkage temperature of the uniaxial heat shrinkable film 11. For example, polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer Styrene-acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, fluororesin and the like, and two or more kinds of resins may be mixed.

表面平滑硬質層12aが金属または金属化合物の場合は、厚さは、1nm〜2μmであることが好ましい。また、表面平滑硬質層12aが樹脂の場合、厚さは、5nm〜10μmであることが好ましい。表面平滑硬質層12aの厚さを上述の範囲に制御し、凹凸パターン13の平均ピッチを1〜20μmにすることが好ましい。
ここで、平均ピッチAは、各ピッチA1,A2,A3・・・の平均値である。
また、各ピッチA1,A2,A3・・・は、平均ピッチAが1〜20μmであることを満たした上で、連続的に変化してもかまわない。
また、1軸方向加熱収縮性フィルム11と表面平滑硬質層12aとの間には、密着性の向上等を目的として、プライマー層を形成してもよい。
When the surface smooth hard layer 12a is a metal or a metal compound, the thickness is preferably 1 nm to 2 μm. Moreover, when the surface smooth hard layer 12a is resin, it is preferable that thickness is 5 nm-10 micrometers. It is preferable that the thickness of the surface smooth hard layer 12a is controlled within the above range, and the average pitch of the uneven pattern 13 is 1 to 20 μm.
Here, the average pitch A is an average value of the pitches A1, A2, A3,.
Each pitch A1, A2, A3... May be continuously changed after satisfying that the average pitch A is 1 to 20 μm.
In addition, a primer layer may be formed between the uniaxial heat-shrinkable film 11 and the surface smooth hard layer 12a for the purpose of improving adhesion.

1軸方向加熱収縮性フィルム11に前記表面平滑硬質層12aを形成する方法としては、(A)金属や金属化合物の場合には、例えば、(1)1軸方向加熱収縮性フィルム11の片面に、金属や金属化合物を蒸着させる方法、(2)1軸方向加熱収縮性フィルム11の片面に、あらかじめ作製した表面平滑硬質層12aを積層する方法などが挙げられる。また、(B)樹脂の場合には、例えば、(3)樹脂の溶液または分散液をスピンコーターやバーコーター等により塗工し、溶媒を乾燥させる方法、(4)1軸方向加熱収縮性フィルム11の片面に、あらかじめ作製した表面平滑硬質層12aを積層する方法などが挙げられる。 As a method of forming the surface smooth hard layer 12a on the uniaxial heat-shrinkable film 11, in the case of (A) a metal or a metal compound, for example, (1) on one side of the uniaxial heat-shrinkable film 11 And a method of depositing a metal or a metal compound, and (2) a method of laminating a surface smooth hard layer 12a prepared in advance on one surface of the uniaxial heat-shrinkable film 11. In the case of (B) resin, for example, (3) a method of applying a resin solution or dispersion with a spin coater or bar coater and drying the solvent, and (4) a uniaxial heat-shrinkable film. 11 is a method of laminating a previously prepared surface smooth hard layer 12a on one surface.

本発明の積層シート10aの加熱収縮方向に張力を作用させて、加熱変形させる方法としては、例えば、以下の方法が適用できる。 For example, the following method can be applied as a method of applying heat in the direction of heat shrinkage of the laminated sheet 10a of the present invention to cause heat deformation.

図3を用いて、具体的に一実施形態について説明する。
主に幅方向に加熱収縮する連続シート状積層シート(加熱変形前)10aの流れ方向(Y方向)に張力をかけながら、加熱ゾーン40に導入し、加熱ゾーン40内で積層シート10aの幅を連続的に減少させ、光拡散シート10を製造する。
An embodiment will be specifically described with reference to FIG.
While applying tension in the flow direction (Y direction) of the continuous sheet-shaped laminated sheet (before heating deformation) 10a that mainly heat-shrinks in the width direction, it is introduced into the heating zone 40, and the width of the laminated sheet 10a is increased in the heating zone 40. The light diffusion sheet 10 is manufactured by continuously reducing the light diffusion sheet 10.

Y方向に張力を作用させながら、積層シート10aを幅方向に連続的に加熱変形させることによって、前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となる光拡散シートをより安定的に製造することができる。 By continuously heating and deforming the laminated sheet 10a in the width direction while applying tension in the Y direction, a 1/10 value diffusion angle of light incident on the light diffusion sheet from the surface on which the hard layer is laminated is obtained. A light diffusion sheet having an X direction of 70 to 80 degrees and a Y direction of 5 to 15 degrees can be manufactured more stably.

上述した方法では、積層シートのX方向に張力をかけながら積層シートを加熱変形してもよい。積層シートのX方向に張力をかけながら積層シートを加熱変形する方法としては、図3に示すように積層シートのX方向の両端をグリップで把持し、X方向の張力を制御しながら、加熱ゾーン入口から出口にかけて積層シートのX方向の幅が連続的に減少するように加熱変形する方法がある。 In the method described above, the laminated sheet may be heated and deformed while applying tension in the X direction of the laminated sheet. As shown in FIG. 3, as a method of heating and deforming the laminated sheet while applying tension in the X direction of the laminated sheet, gripping both ends in the X direction of the laminated sheet with grips and controlling the tension in the X direction, the heating zone There is a method of performing heat deformation so that the width of the laminated sheet in the X direction continuously decreases from the inlet to the outlet.

積層シート10aのY方向に張力を作用させながら、且つ積層シート10aのX方向にかかる張力を制御しながら、積層シート10aを幅方向に連続的に加熱変形させることによって、前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となる光拡散シートをより安定的に製造することができる。 The hard layer is laminated by continuously deforming the laminated sheet 10a in the width direction while applying tension in the Y direction of the laminated sheet 10a and controlling the tension applied in the X direction of the laminated sheet 10a. It is possible to more stably manufacture a light diffusion sheet in which the 1/10 value diffusion angle of light incident on the light diffusion sheet from the surface is 70 to 80 degrees in the X direction and 5 to 15 degrees in the Y direction.

本発明の光拡散シートの製造方法においては、積層シート10aのY方向の変形率を10%以内、より好ましくは、5%以内に制御することが好ましい。積層シート10aのY方向の変形率を10%以内とすることによって前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となる光拡散シートをより安定的に製造することができる。
ここで、積層シート10aのY方向の変形率は、積層シート10aのY方向に沿った直線状の2点をマーキングし、2点間の距離の加熱変形前後で測定して、(加熱変形前の2点間の距離)−(加熱変形後の2点間の距離)の絶対値/(加熱変形前の2点間の距離)×100(%)を算出することにより得られる。
In the method for producing a light diffusing sheet of the present invention, the deformation rate in the Y direction of the laminated sheet 10a is preferably controlled within 10%, more preferably within 5%. By setting the deformation rate in the Y direction of the laminated sheet 10a within 10%, the 1/10 value diffusion angle of light incident on the light diffusion sheet from the surface on which the hard layer is laminated is 70 to 80 degrees in the X direction, Y A light diffusion sheet having a direction of 5 to 15 degrees can be manufactured more stably.
Here, the deformation rate in the Y direction of the laminated sheet 10a is determined by marking two linear points along the Y direction of the laminated sheet 10a and measuring the distance between the two points before and after heat deformation. (Distance between two points) − (distance between two points after heat deformation) / (distance between two points before heat deformation) × 100 (%).

本発明の光拡散シートの製造方法においては、凹凸パターン13の底部13bの平均深さBを、容易に平均ピッチAを100%とした際の30%以上、より好ましくは70%以上とすることが光拡散性能を向上させるために好ましい。 In the method for producing a light diffusing sheet of the present invention, the average depth B of the bottom 13b of the concavo-convex pattern 13 is easily set to 30% or more, more preferably 70% or more when the average pitch A is 100%. Is preferable for improving the light diffusion performance.

ここで、底部13bとは、凹凸パターン13の凹部の極小点であり、平均深さBは、光拡散シート10を長さ方向に沿って切断した断面(図5参照)を見た際の、光拡散シート10全体の面方向と平行な基準線L1から各凸部の頂部までの長さB1,B2,B3・・・の平均値(Bav)と、基準線L1から各凹部の底部までの長さb1,b2,b3・・・の平均値(bAV)との差(bAV−BAV)のことである。前記凸部の頂部および前記凹部の底部は、硬質層12における加熱収縮性フィルム11側と反対側の面に接するものである。また、各深さB1,B2,B3・・・は、平均深さBが平均ピッチAを100%とした際の10%以上であることを満たした上で、連続的に変化してもかまわない。 Here, the bottom portion 13b is a local minimum point of the concave portion of the concavo-convex pattern 13, and the average depth B is obtained when viewing a cross section (see FIG. 5) obtained by cutting the light diffusion sheet 10 along the length direction. The average value (Bav) of the lengths B1, B2, B3... From the reference line L1 parallel to the surface direction of the entire light diffusing sheet 10 to the top of each convex portion, and from the reference line L1 to the bottom of each concave portion. It is the difference (bAV−BAV) from the average value (bAV) of the lengths b1, b2, b3. The top part of the convex part and the bottom part of the concave part are in contact with the surface of the hard layer 12 opposite to the heat-shrinkable film 11 side. Each depth B1, B2, B3... May change continuously after satisfying that the average depth B is 10% or more when the average pitch A is 100%. Absent.

さらに、加熱変形により製造された光拡散シート10の凹凸パターンの幅方向の均一性の向上、あるいは熱安定化を目的として、図4に示すように、加熱変形後の積層シート10のX方向の収縮率の20%以下の拡幅処理を行うことも可能である。この場合、加熱変形後の加熱変形後の積層シート10を流れ方向川下に向けて幅広になる把持グリップ31で把持することにより拡幅処理が行なわれる。
ここで、収縮率の20%以下とは、例えば、加熱変形後の積層シート10の幅が加熱変形前の積層シート10aの幅の40%になった場合、収縮率は60%で拡幅処理はその20%以下、つまり、もとの長さの12%以下となる。
Furthermore, for the purpose of improving the uniformity in the width direction of the concavo-convex pattern of the light diffusion sheet 10 manufactured by heat deformation, or for the purpose of thermal stabilization, as shown in FIG. It is also possible to perform a widening process with a shrinkage rate of 20% or less. In this case, the widening process is performed by gripping the laminated sheet 10 after heat deformation with the grip grip 31 that becomes wider toward the downstream in the flow direction.
Here, 20% or less of the shrinkage rate means that, for example, when the width of the laminated sheet 10 after heat deformation is 40% of the width of the laminated sheet 10a before heat deformation, the shrinkage rate is 60% and the widening process is performed. 20% or less, that is, 12% or less of the original length.

本発明の製造方法において、上述のY方向の張力の制御およびX方向の張力の制御に加えて、本発明の積層シート10aの表面平滑硬質層12aの弾性率および厚さを制御することにより、凹凸パターン13の平均ピッチAをコントロールすることができる。
また、1軸方向加熱収縮性フィルム11の加熱変形率を制御することにより、凹凸パターン13の平均深さBをコントロールすることができる。
具体的には、表面平滑硬質層12aの弾性率が大きいほど、あるいは厚さが大きいほど平均ピッチAが大きくなる。また、加熱収縮率が大きいほど平均深さBが大きくなる。
上述の条件を適宜選択することで所望の品質を得ることができる。
In the production method of the present invention, in addition to the control of the tension in the Y direction and the control of the tension in the X direction, by controlling the elastic modulus and thickness of the surface smooth hard layer 12a of the laminated sheet 10a of the present invention, The average pitch A of the uneven pattern 13 can be controlled.
Moreover, the average depth B of the concavo-convex pattern 13 can be controlled by controlling the heating deformation rate of the uniaxial heat-shrinkable film 11.
Specifically, the average pitch A increases as the elastic modulus of the surface smooth hard layer 12a increases or the thickness increases. Further, the average depth B increases as the heat shrinkage rate increases.
Desired quality can be obtained by appropriately selecting the above conditions.

積層シート10aに1軸方向加熱収縮性フィルム11を用いた場合は、収縮方向に対して直交方向に沿って波状の凹凸パターン13が形成される。1軸方向加熱収縮性フィルム11の代わりに、軸方向で収縮率が異なる2軸方向加熱収縮性フィルムを用いても、光拡散性に異方性を有する光拡散シートを得ることができる。 When the uniaxial heat-shrinkable film 11 is used for the laminated sheet 10a, the wavy uneven pattern 13 is formed along the direction orthogonal to the shrinking direction. Even if a biaxial heat-shrinkable film having a different shrinkage rate in the axial direction is used in place of the uniaxial heat-shrinkable film 11, a light diffusion sheet having anisotropy in light diffusibility can be obtained.

なお、上述した実施形態では、加熱収縮性フィルムの片面の全面に表面平滑硬質層を設けたが、加熱収縮性フィルムの片面の一部に表面平滑硬質層を設けてもよいし、加熱収縮性フィルムの両面の全面に表面平滑硬質層を設けてもよいし、加熱収縮性フィルムの両面の一部に表面平滑硬質層を設けてもよい。 In the above-described embodiment, the surface smooth hard layer is provided on the entire surface of one side of the heat-shrinkable film. However, the surface smooth hard layer may be provided on a part of one surface of the heat-shrinkable film, or the heat-shrinkable property. A smooth surface hard layer may be provided on the entire surface of both surfaces of the film, or a smooth surface hard layer may be provided on a part of both surfaces of the heat-shrinkable film.

本発明によれば、光拡散シート10を簡便に、かつ、大面積で製造できる。
また、この製造方法によれば、容易に、凹凸パターン13の平均ピッチAおよび平均深さBをコントロールし、優れた異方性光拡散特性を有する光拡散シート10を製造できる。
According to the present invention, the light diffusion sheet 10 can be manufactured easily and in a large area.
Moreover, according to this manufacturing method, the light diffusion sheet 10 having excellent anisotropic light diffusion characteristics can be easily manufactured by controlling the average pitch A and the average depth B of the uneven pattern 13.

本発明の光拡散シートの製造方法では、前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向5〜15度、Y方向70〜80度となるように収縮させることを特徴とする。 In the method for producing a light diffusion sheet of the present invention, the 1/10 value diffusion angle of light incident on the light diffusion sheet from the surface on which the hard layer is laminated is 5 to 15 degrees in the X direction and 70 to 80 degrees in the Y direction. It is made to shrink so that it may become.

前記光拡散シートを通路や廊下の照明装置の拡散体として用いた場合、X方向の前記1/10値拡散角度が5度未満であると幅方向で照度不足の部分が生じ、15度を越えると壁面が明るくなり過ぎて相対的に足元の照度が低くなるため、足元が見づらくなる。
また、Y方向の前記1/10値拡散角度が70度未満であると通路や廊下の長手方向の明るさに不均一な部分が生じ、80度を越えると照明が不要なエリアにまで光が照射され、照明が必要なエリアの照度が低下する。
When the light diffusion sheet is used as a diffuser of a lighting device in a passage or hallway, if the 1/10 value diffusion angle in the X direction is less than 5 degrees, an insufficient illuminance portion is generated in the width direction, exceeding 15 degrees. Because the wall surface becomes too bright and the illuminance at the foot is relatively low, it becomes difficult to see the foot.
Further, if the 1/10 value diffusion angle in the Y direction is less than 70 degrees, unevenness occurs in the brightness in the longitudinal direction of the passages and hallways, and if it exceeds 80 degrees, light reaches an area that does not require illumination. Irradiation reduces the illuminance in areas that require illumination.

前記光拡散シートを壁面に飾られた展示物を照らすための照明装置の拡散体として用いた場合、X方向の前記1/10値拡散角度が5度未満であると展示物に照度不足の部分が生じ、15度を越えると展示物の観察者の目に直接照明の光が入り易くなり、展示物が観察しづらくなる。壁面が明るくなり過ぎて相対的に足元の照度が低くなるため、足元が見づらくなる。
また、Y方向の前記1/10値拡散角度が70度未満であると展示物の明るさに不均一な部分が生じ、80度を越えると、展示物を斜め方向から観察するときに観察者の目に直接照明の光が入り易くなり、展示物が見づらくなる。
When the light diffusing sheet is used as a diffuser of a lighting device for illuminating an exhibit displayed on a wall surface, if the 1/10 value diffusion angle in the X direction is less than 5 degrees, the exhibit has insufficient illuminance When the angle exceeds 15 degrees, it becomes easy for the illumination light to enter directly into the eyes of the observer of the exhibit, making it difficult to observe the exhibit. Since the wall surface becomes too bright and the illuminance at the foot is relatively low, it becomes difficult to see the foot.
Further, if the 1/10 value diffusion angle in the Y direction is less than 70 degrees, an uneven portion of the brightness of the exhibit occurs, and if it exceeds 80 degrees, the observer observes the exhibit from an oblique direction. This makes it easier for the eyes to get direct lighting, making it difficult to see the exhibits.

前記1/10値拡散角度の不足を解消しようとすると、点状光源を直線上に間隔を小さく並べる必要があり、照明装置の製造コストや消費電力を増加させることとなり、効率が悪くなる。 In order to solve the shortage of the 1 / 10-value diffusion angle, it is necessary to arrange the point light sources on a straight line with a small interval, which increases the manufacturing cost and power consumption of the lighting device, resulting in poor efficiency.

前記1/10値拡散角度を調整する方法としては、各軸方向の収縮率、縦横の収縮率の比率または縦横の収縮率の差の調整、収縮工程においてX軸方向にかける張力の調整、Y軸方向にかける張力調整、X軸方向、Y軸方向の張力の比率または差の調整、加熱条件(温度、時間、張力条件との組み合わせ、冷却条件など)の調整、のうちの1つまたは、2つ以上を組み合わせる方法が挙げられる。 As the method for adjusting the 1/10 value diffusion angle, the shrinkage rate in the respective axial directions, the ratio of the vertical and horizontal shrinkage rates or the difference in the vertical and horizontal shrinkage rates, the adjustment of the tension applied in the X-axis direction in the shrinking process, and Y One of tension adjustment applied in the axial direction, adjustment of tension ratio or difference in the X-axis direction and Y-axis direction, adjustment of heating conditions (temperature, time, combination with tension conditions, cooling conditions, etc.), or The method of combining two or more is mentioned.

1/10値拡散角度を上記条件とした本発明の製造方法は、通路、廊下、プラットホームなどを照明する際に、少ない個数の点状光源であっても、長手方向に効率よく、均一な照度で照らすことができる照明装置に用いる光拡散シートとなる。 The manufacturing method according to the present invention with the 1/10 value diffusion angle as the above condition, when illuminating a passage, corridor, platform, etc., even with a small number of point light sources, it is efficient in the longitudinal direction and uniform illuminance. It becomes the light-diffusion sheet used for the illuminating device which can be illuminated with.

前記照明装置においては、発光ダイオードの出光面側に本発明の光拡散シートまたは光拡散体を配置する。前記照明装置の設置においては、通路、廊下、プラットホームなどの長手方向と、凹凸が形成された面から前記光拡散シートに入射した光の1/10値拡散角度が最大となる方向と、が略同じとなるように照明装置を設置する。また、本発明の光拡散シート1枚に対し、1個の光源を配置しても良いし、複数の光源ユニットを配置しても良い。 In the illumination device, the light diffusion sheet or light diffuser of the present invention is disposed on the light exit surface side of the light emitting diode. In the installation of the lighting device, the longitudinal direction of the passage, hallway, platform, etc., and the direction in which the 1/10 value diffusion angle of the light incident on the light diffusion sheet from the surface on which the unevenness is formed are maximized. Install the lighting device to be the same. Moreover, one light source may be arranged for one light diffusion sheet of the present invention, or a plurality of light source units may be arranged.

本発明の光拡散シートまたは光拡散体は、光源ユニットと照明ユニットの間に配置しても良く、照明カバーの表面に貼り付けられていても良く、照明カバーを兼ねていても良い。 The light diffusion sheet or light diffuser of the present invention may be disposed between the light source unit and the illumination unit, may be affixed to the surface of the illumination cover, and may also serve as the illumination cover.

本発明の光拡散シートおよび光拡散体においては、加熱収縮性フィルムには、より光拡散効果を高める目的で、光透過率等の光学特性を大きく損なわない範囲内で、無機化合物からなる光拡散剤、有機化合物からなる有機光拡散剤あるいは微細気泡を含有させることができる。 In the light diffusing sheet and light diffusing body of the present invention, the heat-shrinkable film has a light diffusing property composed of an inorganic compound within a range that does not significantly impair the optical properties such as light transmittance for the purpose of further enhancing the light diffusing effect. Agent, an organic light diffusing agent made of an organic compound, or fine bubbles can be contained.

本発明は、上述の製造方法で製造された光拡散シートの前記硬質層が積層された面の形状を転写し、表面に凹凸パターンを有する光拡散体を得る光拡散体の製造方法を含む。 This invention includes the manufacturing method of the light diffusing body which transfers the shape of the surface where the said hard layer of the light diffusing sheet manufactured by the above-mentioned manufacturing method was laminated | stacked, and obtains the light diffusing body which has an uneven | corrugated pattern on the surface.

前記光拡散体の具体的な製造方法としては、例えば、下記(a)〜(c)の方法が挙げられる。
(a)光拡散シートの前記硬質層が積層された面に、未硬化の電離放射線硬化性樹脂を塗工し、電離放射線を照射して前記硬化性樹脂を硬化させた後、硬化した塗膜を前記光拡散シートから剥離する方法。ここで、電離放射線とは、通常、紫外線または電子線のことであるが、本発明では、可視光線、X線、イオン線等も含む。
(b)光拡散シートの前記硬質層が積層された面に、未硬化の液状熱硬化性樹脂を塗工し、加熱して前記液状熱硬化性樹脂を硬化させた後、硬化した塗膜を前記光拡散シートから剥離する方法。
(c)光拡散シートの前記硬質層が積層された面に、シート状の熱可塑性樹脂を接触させ、該熱可塑性樹脂を前記光拡散シートに押圧しながら加熱して軟化させた後、冷却し、その冷却したシート状の熱可塑性樹脂を前記光拡散シートから剥離する方法。
Specific examples of the method for producing the light diffuser include the following methods (a) to (c).
(A) An uncured ionizing radiation curable resin is applied to the surface of the light diffusion sheet on which the hard layer is laminated, and the cured resin film is cured by irradiating with ionizing radiation. Is peeled from the light diffusion sheet. Here, the ionizing radiation is usually ultraviolet rays or electron beams, but in the present invention, visible rays, X-rays, ion rays and the like are also included.
(B) An uncured liquid thermosetting resin is applied to the surface of the light diffusion sheet on which the hard layer is laminated, heated to cure the liquid thermosetting resin, and then the cured coating film is applied. A method of peeling from the light diffusion sheet.
(C) A sheet-like thermoplastic resin is brought into contact with the surface of the light diffusion sheet on which the hard layer is laminated, and the thermoplastic resin is heated and softened while pressing the thermoplastic resin against the light diffusion sheet, and then cooled. The method of peeling the cooled sheet-like thermoplastic resin from the light diffusion sheet.

また、光拡散シートを用いて工程シートを作製し、その工程シートを用いて、光学素子を製造することもできる。工程シートを用いる具体的な方法としては、下記(d)〜(f)の方法が挙げられる。
(d)光拡散シートの前記硬質層が積層された面に、ニッケル等の金属めっきを行って、めっき層(凹凸パターン転写用材料)を積層し、そのめっき層を前記光拡散シートから剥離し、金属性の工程シートを作製し、次いで、工程シートの前記硬質層が積層された面と接していた側の面に、未硬化の電離放射線硬化性樹脂を塗工し、電離放射線を照射して前記硬化性樹脂を硬化させた後、硬化した塗膜を工程シートから剥離する方法。
(e)(d)と同様にして工程シートを作製し、該工程シートの前記硬質層が積層された面と接していた側の面に、未硬化の液状熱硬化性樹脂を塗工し、加熱により該樹脂を硬化させた後、硬化した塗膜を工程シートから剥離する方法。
(f)(d)と同様にして工程シートを作製し、該工程シートの前記硬質層が積層された面と接していた側の面に、シート状の熱可塑性樹脂を接触させ、該熱可塑性樹脂を工程シートに押圧しながら加熱して軟化させた後、冷却し、その冷却したシート状の熱可塑性樹脂を工程シートから剥離する方法。
Moreover, a process sheet | seat is produced using a light-diffusion sheet, An optical element can also be manufactured using the process sheet | seat. Specific methods using the process sheet include the following methods (d) to (f).
(D) Metal plating such as nickel is performed on the surface of the light diffusion sheet on which the hard layer is laminated, and a plating layer (uneven pattern transfer material) is laminated, and the plating layer is peeled off from the light diffusion sheet. Then, a metallic process sheet is prepared, and then an uncured ionizing radiation curable resin is applied to the surface of the process sheet that is in contact with the surface on which the hard layer is laminated, and the ionizing radiation is irradiated. A method of peeling the cured coating film from the process sheet after curing the curable resin.
(E) A process sheet is prepared in the same manner as (d), and an uncured liquid thermosetting resin is applied to the surface of the process sheet that is in contact with the surface on which the hard layer is laminated, A method of peeling the cured coating film from the process sheet after curing the resin by heating.
(F) A process sheet is prepared in the same manner as in (d), and a sheet-like thermoplastic resin is brought into contact with the surface of the process sheet that has been in contact with the surface on which the hard layer is laminated. A method in which a resin is heated and softened while being pressed against a process sheet, then cooled, and the cooled sheet-like thermoplastic resin is peeled from the process sheet.

(a)の方法の具体例について説明する。図6に示すように、まず、ウェブ状の前記光拡散シートの凹凸パターン113aが形成された面に、コーター120により未硬化の液状電離放射線硬化性樹脂113cを塗工する。次いで、該硬化性樹脂を塗工した工程シート110を、ロール130を通すことにより押圧して、前記硬化性樹脂を前記光拡散シートの凹凸パターン113a内部に充填する。その後、電離放射線照射装置140により電離放射線を照射して、硬化性樹脂を架橋・硬化させる。そして、硬化後の電離放射線硬化性樹脂を前記光拡散シートから剥離させることにより、ウェブ状の光学素子150を製造することができる。 A specific example of the method (a) will be described. As shown in FIG. 6, first, an uncured liquid ionizing radiation curable resin 113 c is applied by a coater 120 to the surface of the web-shaped light diffusion sheet on which the uneven pattern 113 a is formed. Next, the process sheet 110 coated with the curable resin is pressed by passing through a roll 130, and the curable resin is filled into the concave-convex pattern 113a of the light diffusion sheet. Thereafter, ionizing radiation is irradiated by the ionizing radiation irradiation device 140 to crosslink and cure the curable resin. And the web-like optical element 150 can be manufactured by peeling the ionizing radiation curable resin after hardening from the said light-diffusion sheet.

(a)の方法において、前記光拡散シートの前記硬質層が積層された面には、離型性を付与する目的で、未硬化の電離放射線硬化性樹脂塗工前に、シリコーン樹脂、フッ素樹脂等からなる層を1〜10nm程度の厚さで設けてもよい。
前記光拡散シートの凹凸パターンが形成された面に、未硬化の電離放射線硬化性樹脂を塗工するコーターとしては、Tダイコーター、ロールコーター、バーコーター等が挙げられる。
未硬化の電離放射線硬化性樹脂としては、エポキシアクリレート、エポキシ化油アクリレート、ウレタンアクリレート、不飽和ポリエステル、ポリエステルアクリレート、ポリエーテルアクリレート、ビニル/アクリレート、ポリエン/アクリレート、シリコンアクリレート、ポリブタジエン、ポリスチリルメチルメタクリレート等のプレポリマー、脂肪族アクリレート、脂環式アクリレート、芳香族アクリレート、水酸基含有アクリレート、アリル基含有アクリレート、グリシジル基含有アクリレート、カルボキシ基含有アクリレート、ハロゲン含有アクリレート等のモノマーの中から選ばれる1種類以上の成分を含有するものが挙げられる。未硬化の電離放射線硬化性樹脂は溶媒等で希釈することが好ましい。
また、未硬化の電離放射線硬化性樹脂には、フッ素樹脂、シリコーン樹脂等を添加してもよい。
未硬化の電離放射線硬化性樹脂を紫外線により硬化する場合には、未硬化の電離放射線硬化性樹脂にアセトフェノン類、ベンゾフェノン類等の光重合開始剤を添加することが好ましい。
In the method (a), for the purpose of imparting releasability to the surface of the light diffusion sheet on which the hard layer is laminated, a silicone resin or fluororesin is applied before application of an uncured ionizing radiation curable resin. And the like, and a thickness of about 1 to 10 nm may be provided.
Examples of the coater that coats an uncured ionizing radiation curable resin on the surface of the light diffusion sheet on which the uneven pattern is formed include a T-die coater, a roll coater, and a bar coater.
Uncured ionizing radiation curable resins include epoxy acrylate, epoxidized oil acrylate, urethane acrylate, unsaturated polyester, polyester acrylate, polyether acrylate, vinyl / acrylate, polyene / acrylate, silicon acrylate, polybutadiene, and polystyrylmethyl methacrylate. 1 type selected from monomers such as prepolymers such as aliphatic acrylate, alicyclic acrylate, aromatic acrylate, hydroxyl group-containing acrylate, allyl group-containing acrylate, glycidyl group-containing acrylate, carboxy group-containing acrylate, halogen-containing acrylate, etc. The thing containing the above component is mentioned. The uncured ionizing radiation curable resin is preferably diluted with a solvent or the like.
Moreover, you may add a fluororesin, a silicone resin, etc. to uncured ionizing radiation curable resin.
When the uncured ionizing radiation curable resin is cured by ultraviolet rays, it is preferable to add a photopolymerization initiator such as acetophenones and benzophenones to the uncured ionizing radiation curable resin.

未硬化の液状電離放射線硬化性樹脂を塗工した後には、樹脂、ガラス等からなる基材を貼り合わせてから電離放射線を照射してもよい。電離放射線の照射は、基材、前記光拡散シートの電離放射線透過性を有するいずれか一方から行えばよい。 After coating the uncured liquid ionizing radiation curable resin, the substrate may be irradiated with ionizing radiation after a substrate made of resin, glass or the like is bonded. Irradiation with ionizing radiation may be carried out from either the substrate or the light diffusing sheet having ionizing radiation transparency.

硬化後の電離放射線硬化性樹脂のシートの厚みは0.1〜100μm程度とすることが好ましい。硬化後の電離放射線硬化性樹脂のシートの厚みが0.1μm以上であれば、充分な強度を確保でき、100μm以上であれば、充分な可撓性を確保できる。 The thickness of the ionizing radiation curable resin sheet after curing is preferably about 0.1 to 100 μm. If the thickness of the ionizing radiation curable resin sheet after curing is 0.1 μm or more, sufficient strength can be secured, and if it is 100 μm or more, sufficient flexibility can be secured.

上記図6に示す方法では、前記光拡散シートがウェブ状であったが、枚葉のシートであってもよい。枚葉のシートを用いる場合、枚葉のシートを平板状の型として使用するスタンプ法、枚葉のシートをロールに巻きつけて円筒状の型として使用するロールインプリント法等を適用できる。また、射出成形機の型の内側に枚葉の前記光拡散シートを配置させてもよい。 In the method shown in FIG. 6, the light diffusing sheet has a web shape, but it may be a sheet. In the case of using a single sheet, a stamp method using a single sheet as a flat plate mold, a roll imprint method using a single sheet wound around a roll as a cylindrical mold, and the like can be applied. Moreover, you may arrange | position the said light-diffusion sheet of a sheet | seat inside the type | mold of an injection molding machine.

(b),(e)の方法において、液状熱硬化性樹脂としては、例えば、未硬化の、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。
また、(b)の方法における硬化温度は、前記光拡散シートのガラス転移温度より低いことが好ましい。硬化温度が前記光拡散シートのガラス転移温度以上であると、硬化時に前記光拡散シートの凹凸パターンが変形するおそれがあるからである。
In the methods (b) and (e), examples of the liquid thermosetting resin include uncured melamine resin, urethane resin, and epoxy resin.
The curing temperature in the method (b) is preferably lower than the glass transition temperature of the light diffusion sheet. This is because if the curing temperature is equal to or higher than the glass transition temperature of the light diffusing sheet, the uneven pattern of the light diffusing sheet may be deformed during curing.

(c),(f)の方法において、熱可塑性樹脂としては、例えば、アクリル樹脂、ポリオレフィン、ポリエステル等が挙げられる。
シート状の熱可塑性樹脂を工程シートに押圧する際の圧力は1〜100MPaであることが好ましい。押圧時の圧力が1MPa以上であれば、凹凸パターンを高い精度で転写させることができ、100MPa以下であれば、過剰な加圧を防ぐことができる。
また、(c)の方法における熱可塑性樹脂の加熱温度は、前記光拡散シートのガラス転移温度より低いことが好ましい。加熱温度が前記光拡散シートのガラス転移温度以上であると、加熱時に前記光拡散シートの凹凸パターンが変形するおそれがあるからである。
加熱後の冷却温度としては、凹凸パターンを高い精度で転写させることができることから、熱可塑性樹脂のガラス転移温度未満であることが好ましい。
In the methods (c) and (f), examples of the thermoplastic resin include acrylic resin, polyolefin, polyester, and the like.
The pressure when pressing the sheet-like thermoplastic resin on the process sheet is preferably 1 to 100 MPa. If the pressure at the time of pressing is 1 MPa or more, the concavo-convex pattern can be transferred with high accuracy, and if it is 100 MPa or less, excessive pressurization can be prevented.
Moreover, it is preferable that the heating temperature of the thermoplastic resin in the method (c) is lower than the glass transition temperature of the light diffusion sheet. It is because the uneven | corrugated pattern of the said light-diffusion sheet may deform | transform at the time of heating that heating temperature is more than the glass transition temperature of the said light-diffusion sheet.
The cooling temperature after heating is preferably less than the glass transition temperature of the thermoplastic resin because the uneven pattern can be transferred with high accuracy.

(a)〜(c)の方法の中でも、加熱を省略でき、前記光拡散シートの凹凸パターンの変形を防止できる点で、電離放射線硬化性樹脂を使用する(a)の方法が好ましい。 Among the methods (a) to (c), the method (a) using an ionizing radiation curable resin is preferable in that heating can be omitted and deformation of the uneven pattern of the light diffusion sheet can be prevented.

(d)〜(f)の方法においては、工程シートの厚さを50〜500μm程度とすることが好ましい。工程シートの厚さが50μm以上であれば、工程シートが充分な強度を有し、500μm以下であれば、充分な可撓性を確保できる。
(d)〜(f)の方法では、熱による変形が小さい工程シートを工程シートとして用いるため、光拡散シート用の材料として、電離放射線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂のいずれも使用できる。
In the methods (d) to (f), the thickness of the process sheet is preferably about 50 to 500 μm. If the thickness of the process sheet is 50 μm or more, the process sheet has sufficient strength, and if it is 500 μm or less, sufficient flexibility can be secured.
In the methods (d) to (f), since a process sheet having a small deformation due to heat is used as a process sheet, any of an ionizing radiation curable resin, a thermosetting resin, and a thermoplastic resin is used as a material for the light diffusion sheet. Can be used.

なお、(d)〜(f)では前記光拡散シートの凹凸パターンを金属に転写させて工程シートを得たが、樹脂に転写させて工程シートを得てもよい。その場合に使用できる樹脂としては、例えば、ポリカーボネート、ポリアセタール、ポリスルホン、(a)の方法で使用する電離放射線硬化性樹脂などが挙げられる。電離放射線硬化性樹脂を用いる場合には、(a)の方法と同様に、電離放射線硬化性樹脂の塗工、硬化、剥離を順次行なって、工程シートを得る。 In addition, in (d)-(f), the uneven | corrugated pattern of the said light-diffusion sheet was transcribe | transferred to the metal, and the process sheet was obtained, but you may transcribe | transfer to resin and may obtain a process sheet. Examples of the resin that can be used in this case include polycarbonate, polyacetal, polysulfone, and ionizing radiation curable resin used in the method (a). When using an ionizing radiation curable resin, similarly to the method (a), coating, curing, and peeling of the ionizing radiation curable resin are sequentially performed to obtain a process sheet.

本発明の光拡散シートまたは光拡散体には、凹凸パターンの形成された面と反対の面に粘着剤層を設けても構わない。 The light diffusion sheet or light diffuser of the present invention may be provided with a pressure-sensitive adhesive layer on the surface opposite to the surface on which the concavo-convex pattern is formed.

以下、製造例を示して本発明を詳細に説明する。但し、本発明は以下の記載に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to production examples. However, the present invention is not limited to the following description.

(製造例1)
加熱収縮性フィルムとして、幅方向に最も大きく熱収縮する厚さ60μmの連続シート状ポリエチレンテレフタレートシュリンクフィルム(三菱樹脂株式会社製、商品名ヒシペット)の片面に、トルエンで希釈したポリスチレン(ポリマーソース株式会社製、ガラス転移温度100℃)を厚さが0.7μmになるように塗工機により塗工し、硬質層を形成して積層シートを得た。
得られた積層シートの50cm四方の積層シートサンプルを切り出し、最も大きく熱収縮する幅方向をX方向と定め、積層シートサンプルのX方向の両端部およびY方向の両端部を把持した。
このとき、図7および図8に示すように、Y方向の両端部を把持する把持手段33は、積層シートのX方向の熱収縮に合わせてX方向へ移動可能にするためX方向に延びた直線状のレールに移動可能なようにX方向8cm毎に取り付けた把持手段とした。更に、図7および図8に示すように、X方向、Y方向の張力を検出制御する手段を配置した。
次に積層シートのX方向にかかる張力がY方向にかかる張力の30倍となるように積層シートに張力を作用させながら、100℃で1分間加熱することにより、X方向で加熱前の長さの40%に熱収縮させ(すなわち、収縮率60%で収縮させ)、Y方向で加熱前の長さの94%に収縮させ(すなわち、変形率6%で収縮させ)、硬質層が、最も大きな収縮方向に対して直交する方向に沿って波状の凹凸パターンを有する光拡散シートを得た。
(Production Example 1)
Polystyrene (Polymer Source Co., Ltd.) diluted with toluene on one side of a 60 μm thick continuous sheet-like polyethylene terephthalate shrink film (trade name HIPIPET, manufactured by Mitsubishi Plastics, Inc.) that heat shrinks the most in the width direction as the heat shrinkable film Manufactured and having a glass transition temperature of 100 ° C.) was applied by a coating machine so as to have a thickness of 0.7 μm, and a hard layer was formed to obtain a laminated sheet.
A laminated sheet sample of 50 cm square of the obtained laminated sheet was cut out, the width direction in which the heat shrinkage was the largest was determined as the X direction, and both ends in the X direction and both ends in the Y direction of the laminated sheet sample were gripped.
At this time, as shown in FIGS. 7 and 8, the gripping means 33 for gripping both ends in the Y direction extends in the X direction in order to be movable in the X direction in accordance with the heat shrinkage in the X direction of the laminated sheet. The gripping means was attached every 8 cm in the X direction so as to be movable on a linear rail. Further, as shown in FIGS. 7 and 8, a means for detecting and controlling the tension in the X direction and the Y direction is arranged.
Next, the length before heating in the X direction by heating at 100 ° C. for 1 minute while applying tension to the laminated sheet so that the tension applied in the X direction of the laminated sheet is 30 times the tension applied in the Y direction. 40% (ie, shrink at a shrinkage rate of 60%), and shrink to 94% of the length before heating in the Y direction (ie, shrink at a deformation rate of 6%). A light diffusing sheet having a wavy uneven pattern along a direction perpendicular to the large shrinkage direction was obtained.

(製造例2)
製造例1において、積層シートのX方向にかかる張力がY方向にかかる張力の20倍となるように積層シートに張力を作用させながら、85℃で1分間加熱することにより、X方向で加熱前の長さの60%に熱収縮させ(すなわち、収縮率40%で収縮させ)、Y方向で加熱前の長さの87%に収縮させ(すなわち、変形率13%で収縮させ)こと以外は、製造例1と同様にして、光拡散シートを得た。
(Production Example 2)
In Production Example 1, before heating in the X direction by heating at 85 ° C. for 1 minute while applying tension to the laminated sheet so that the tension applied in the X direction of the laminated sheet is 20 times the tension applied in the Y direction. Except for heat shrinking to 60% of the length (ie shrinking at a shrinkage rate of 40%) and shrinking to 87% of the length before heating in the Y direction (ie shrinking at a deformation rate of 13%) In the same manner as in Production Example 1, a light diffusion sheet was obtained.

(製造例3)
製造例1において、X方向にかかる張力がY方向にかかる張力の25倍となるように積層シートに張力を作用させながら、85℃で1分20秒間加熱することにより、X方向で加熱前の長さの50%に熱収縮させ(すなわち、収縮率50%で収縮させ)、Y方向で加熱前の長さの92%に収縮させ(すなわち、変形率8%で収縮させ)こと以外は、製造例1と同様にして、光拡散シートを得た。
(Production Example 3)
In Production Example 1, heating was performed at 85 ° C. for 1 minute and 20 seconds while applying tension to the laminated sheet so that the tension applied in the X direction was 25 times the tension applied in the Y direction. Except for heat shrinking to 50% of the length (ie shrinking at a shrinkage rate of 50%) and shrinking to 92% of the length before heating in the Y direction (ie shrinking at a deformation rate of 8%), A light diffusion sheet was obtained in the same manner as in Production Example 1.

(製造例4)
製造例1において、積層シートのX方向にかかる張力がY方向にかかる張力の5倍となるように積層シートに張力を作用させながら、100℃で1分20秒間加熱することにより、X方向で加熱前の長さの80%に熱収縮させ(すなわち、収縮率20%で収縮させ)、Y方向で加熱前の長さの85%に熱収縮させた(すなわち、収縮率15%で収縮させた)こと以外は、製造例1と同様にして、光拡散シートを得た。
(Production Example 4)
In Production Example 1, by heating at 100 ° C. for 1 minute and 20 seconds while applying tension to the laminated sheet so that the tension applied in the X direction of the laminated sheet is 5 times the tension applied in the Y direction, Heat-shrink to 80% of the length before heating (ie, shrink at a shrinkage rate of 20%), and heat-shrink to 85% of the length before heating in the Y direction (ie, shrink at a shrinkage rate of 15%). Except that, a light diffusion sheet was obtained in the same manner as in Production Example 1.

(製造例5)
加熱収縮性フィルムとして幅方向と流れ方向でほぼ同等に熱収縮する2軸方向加熱収縮性フィルムを用い、積層シートのX方向の両端部およびY方向の両端部を把持しないで加熱変形させたこと以外は、製造例1と同様にして光拡散シートを得た。
(Production Example 5)
A biaxial heat-shrinkable film that heat-shrinks almost equally in the width direction and the flow direction is used as the heat-shrinkable film, and it is heat-deformed without gripping both ends in the X direction and both ends in the Y direction of the laminated sheet. Except for the above, a light diffusion sheet was obtained in the same manner as in Production Example 1.

(評価方法)
(1)平均ピッチ、平均深さの求め方
製造例1〜5の光拡散シートの凹凸が形成された面の任意の10箇所を、原子間力顕微鏡(日本ビーコ社製ナノスコープIII)により測定し、凹凸パターンの平均ピッチおよび平均深さを求めた。
(Evaluation method)
(1) Determination of average pitch and average depth Measure any 10 locations on the surface of the light diffusing sheet of Production Examples 1 to 5 with an atomic force microscope (Nanoscope III manufactured by Nihon Beco). The average pitch and average depth of the concavo-convex pattern were obtained.

(2)光拡散特性の評価
[照度曲線における1/10幅の測定]
製造例1〜5の光拡散シートに対し、該光拡散シートの凹凸パターンが形成された面から、照射角3.5度のLED光源の光を、該LED光源の最も発光輝度が高くなる軸が前記光拡散シートの面に対して垂直に入射した。
次いで、ゴニオメーター(型式:GENESIA Gonio/FFP、ジェネシア社製)を用いて透過散乱光を測定することにより、照度曲線を得た。具体的には、光拡散シートから垂直に出射する光(この光の出光角度を0°とする。)の照度を1とした際の相対照度を、XまたはY方向に沿って出光角度−90°から90°までの相対照度を1°間隔で測定して、照度曲線を得た。ここで、照度曲線とは、図5に示すような、横軸を出光角度とし、縦軸を相対照度として、プロットとした曲線である。
そして、照度曲線における1/10値幅(図5中のW2)を求めた。その際、相対照度が0.1以上の角度範囲のデータのみを利用した。
1/10値幅の結果を表1に示す。なお、照度曲線の1/10値幅の角度が大きい程、拡散角度が大きくなる。
(2) Evaluation of light diffusion characteristics [Measurement of 1/10 width in illuminance curve]
With respect to the light diffusing sheets of Production Examples 1 to 5, the light from the LED light source with an irradiation angle of 3.5 degrees from the surface on which the concave / convex pattern of the light diffusing sheet is formed is the axis where the emission luminance of the LED light source is highest. Were incident perpendicular to the surface of the light diffusion sheet.
Next, an illuminance curve was obtained by measuring transmitted scattered light using a goniometer (model: GENESIA Gonio / FFP, manufactured by Genesia). Specifically, the relative illuminance when the illuminance of light vertically emitted from the light diffusion sheet (the light emission angle of this light is 0 °) is 1, the light emission angle −90 along the X or Y direction. The relative illuminance from ° to 90 ° was measured at 1 ° intervals to obtain an illuminance curve. Here, the illuminance curve is a curve plotted as shown in FIG. 5 with the horizontal axis as the light emission angle and the vertical axis as the relative illuminance.
Then, a 1/10 value width (W2 in FIG. 5) in the illuminance curve was obtained. At that time, only data in an angle range where the relative illuminance was 0.1 or more was used.
Table 1 shows the results of the 1/10 value range. In addition, a diffusion angle becomes large, so that the angle of 1/10 value width of an illumination intensity curve is large.

(3)照明に使用したときの特性
LED光源を廊下の天井中央に設置し、該LED光源を覆うように製造例1〜5の光拡散シートを配置した。このとき、光拡散シートの凹凸が形成された面がLED光源側となるように配置し、且つ、前記(2)で測定された1/10値拡散角度が最も大きくなる方向が、廊下の長手方向となるように光拡散シートを配置した。次に該LED光源を点灯して、廊下の照明状態を以下の基準に従って目視で観察した。
(廊下長手方向の照度均一性)
○:廊下の長手方向に広く、且つ均一に照らされている。
×:廊下の長手方向に広く照らされていない、または均一に照らされていない。
(廊下壁面の照度適性)
○:廊下壁面が眩しすぎない程度に、且つ均一に照らされている。
×:廊下壁面が眩しすぎる、または均一に照らされていない。
(3) Characteristic when used for illumination The LED light source was installed in the center of the ceiling of the hallway, and the light diffusion sheets of Production Examples 1 to 5 were arranged so as to cover the LED light source. At this time, the light diffusion sheet is arranged so that the uneven surface is on the LED light source side, and the direction in which the 1/10 value diffusion angle measured in (2) is the largest is the length of the corridor. The light diffusing sheet was arranged so as to be in the direction. Next, the LED light source was turned on, and the illumination state of the hallway was visually observed according to the following criteria.
(Illuminance uniformity in the longitudinal direction of the corridor)
○: Widely and uniformly illuminated in the longitudinal direction of the corridor.
X: Not widely illuminated in the longitudinal direction of the corridor or not illuminated uniformly.
(Adjustment of illuminance on the corridor wall)
○: The corridor wall surface is uniformly illuminated to the extent that it is not too bright.
X: The wall surface of a hallway is too dazzling or is not illuminated uniformly.

得られた光拡散シートについて、上述の評価方法で評価した。結果を表1に示す。 The obtained light diffusion sheet was evaluated by the above-described evaluation method. The results are shown in Table 1.

Figure 0006255676
Figure 0006255676

製造例1から製造例4から得られた光拡散シートは、いずれも、X方向の1/10値拡散角度が70〜80度、Y方向の1/10値拡散角度が5〜15度の範囲であり、廊下、通路などの照明に適した光拡散シートであった。 All of the light diffusion sheets obtained from Production Example 1 to Production Example 4 have a range in which the 1/10 value diffusion angle in the X direction is 70 to 80 degrees and the 1/10 value diffusion angle in the Y direction is 5 to 15 degrees. It was a light diffusing sheet suitable for lighting in hallways and passages.

本発明の製造方法により、優れた異方性光拡散特性を有する光拡散シートまたは光拡散体光拡散シートを提供することができる。 The production method of the present invention can provide a light diffusion sheet or a light diffuser light diffusion sheet having excellent anisotropic light diffusion characteristics.

本発明の光拡散シートの製造方法の一実施形態における積層シートを示す断面図である。It is sectional drawing which shows the lamination sheet in one Embodiment of the manufacturing method of the light-diffusion sheet of this invention. 本発明の光拡散シートの一実施形態の一部を拡大して示す拡大斜視図である。It is an expansion perspective view which expands and shows a part of one embodiment of the light diffusion sheet of the present invention. 本発明の光拡散シートの製造方法の一実施形態における加熱変形方法を示す図である。It is a figure which shows the heating deformation method in one Embodiment of the manufacturing method of the light-diffusion sheet of this invention. 本発明の光拡散シートの製造方法の一実施形態における拡幅処理を加えた加熱変形方法を示す図である。It is a figure which shows the heating deformation method which added the widening process in one Embodiment of the manufacturing method of the light-diffusion sheet of this invention. 図2の光拡散シートを、凹凸パターンの形成方向と直交方向に切断した際の断面図である。It is sectional drawing at the time of cut | disconnecting the light-diffusion sheet | seat of FIG. 2 in the orthogonal direction with the formation direction of an uneven | corrugated pattern. 本発明の光拡散シートを用いた光学素子の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the optical element using the light-diffusion sheet of this invention. 本発明の実施例を説明する概念図(加熱変形前を示す。)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram (before heating deformation) illustrating an embodiment of the present invention. 本発明の実施例を説明する概念図(加熱変形後を示す。)である。It is a conceptual diagram (after heating deformation) explaining the Example of this invention.

10光拡散シート
10a 積層シート
11 加熱収縮性フィルム
12 硬質層
12a 表面が平滑の硬質層(表面平滑硬質層)
13 凹凸パターン
13b 底部
32 把持手段
33 把持手段
52 張力検出および制御手段
53 張力検出および制御手段
10 Light diffusion sheet 10a Laminated sheet 11 Heat shrinkable film 12 Hard layer 12a Hard layer with smooth surface (surface smooth hard layer)
13 Concavity and convexity pattern 13b Bottom 32 Holding means 33 Holding means 52 Tension detection and control means 53 Tension detection and control means

Claims (7)

加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し、積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸を形成する凹凸パターン形成工程と、を有する光拡散シートの製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散シートに入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散シートの製造方法。
At least one hard layer is laminated on one side of the heat-shrinkable film to produce a laminated sheet, and by heating and deforming the laminated sheet, at least the hard layer of the laminated sheet is meandered and deformed. An uneven pattern forming step of forming unevenness on the surface of the layer, and a method of manufacturing a light diffusion sheet,
When the direction along the surface of the laminated sheet is defined as the X direction and the direction along the surface of the laminated sheet and perpendicular to the X direction is defined as the Y direction, tension is applied at least in the Y direction in the concavo-convex pattern forming step. It is contracted so that the 1/10 value diffusion angle of the light incident on the light diffusion sheet from the surface on which the hard layer is laminated is 70 to 80 degrees in the X direction and 5 to 15 degrees in the Y direction. A method for producing a light diffusion sheet.
加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し、積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸パターンを形成して母型を得る母型形成工程と、前記硬質層の表面に形成された凹凸パターンを樹脂組成物に形状転写して片面に凹凸パターンを有する転写型を得る転写工程と、を有し、前記転写型を光拡散体として得る光拡散体の製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散体に入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散体の製造方法。
At least one hard layer is laminated on one side of the heat-shrinkable film to produce a laminated sheet, and by heating and deforming the laminated sheet, at least the hard layer of the laminated sheet is meandered and deformed. A master mold forming step for obtaining a master by forming a concavo-convex pattern on the surface of the layer, and a transfer mold having a concavo-convex pattern on one side by transferring the shape of the concavo-convex pattern formed on the surface of the hard layer to the resin composition And a transfer step, and a method for producing a light diffuser that obtains the transfer mold as a light diffuser,
When the direction along the surface of the laminated sheet is defined as the X direction and the direction along the surface of the laminated sheet and perpendicular to the X direction is defined as the Y direction, tension is applied at least in the Y direction in the concavo-convex pattern forming step. It is made to act, and it is made to shrink so that the 1/10 value diffusion angle of the light which entered the light diffuser from the surface where the hard layer was laminated may be 70 to 80 degrees in the X direction and 5 to 15 degrees in the Y direction. A method for producing a light diffuser.
加熱収縮性フィルムの片面に、硬質層を少なくとも1層積層し、積層シートを作製する積層工程と、前記積層シートを加熱変形させることにより、前記積層シートの少なくとも硬質層を蛇行変形させて前記硬質層の表面に凹凸パターンを形成して1次母型を得る1次母型形成工程と、前記硬質層の表面に形成された凹凸パターンを樹脂組成物または金属組成物に1〜n回(前記nは、2以上の整数)形状転写して片面に凹凸パターンを有する2〜(n+1)次母型を得る2〜(n+1)次母型形成工程と、前記2〜(n+1)次母型の凹凸パターンを更に別の樹脂組成物に形状転写して片面に凹凸パターンを有する複製物を得る複製物製造工程を有し、前記複製物を光拡散体として得る光拡散体の製造方法であって、
前記積層シートの表面に沿った1方向をX方向とし、前記積層シートの表面に沿い、且つX方向に直交する方向をY方向とした時、前記凹凸パターン形成工程において、少なくともY方向に張力を作用させ、前記硬質層が積層された面から前記光拡散体に入射した光の1/10値拡散角度がX方向70〜80度、Y方向5〜15度となるように収縮させることを特徴とする光拡散体の製造方法。
At least one hard layer is laminated on one side of the heat-shrinkable film to produce a laminated sheet, and by heating and deforming the laminated sheet, at least the hard layer of the laminated sheet is meandered and deformed. A primary master mold forming step of forming a concave / convex pattern on the surface of the layer to obtain a primary master block, and the concave / convex pattern formed on the surface of the hard layer are applied to the resin composition or the metal composition 1 to n times (described above) n is an integer of 2 or more) 2- (n + 1) -order master mold forming step to obtain a 2- (n + 1) -order master mold having a concavo-convex pattern on one side, and the 2- (n + 1) -order master mold A method for producing a light diffusing body, comprising a step of producing a replica having a concavo-convex pattern transferred to another resin composition to obtain a replica having the concavo-convex pattern on one side, wherein the replica is obtained as a light diffusing body. ,
When the direction along the surface of the laminated sheet is defined as the X direction and the direction along the surface of the laminated sheet and perpendicular to the X direction is defined as the Y direction, tension is applied at least in the Y direction in the concavo-convex pattern forming step. It is made to act, and it is made to shrink so that the 1/10 value diffusion angle of the light which entered the light diffuser from the surface where the hard layer was laminated may be 70 to 80 degrees in the X direction and 5 to 15 degrees in the Y direction. A method for producing a light diffuser.
前記凹凸パターン形成工程において、X方向及びY方向に張力を作用させる、請求項1に記載の光拡散シートの製造方法。 The convex-concave in the pattern forming step, the action of tension in the X and Y directions, a method of manufacturing an optical diffusion sheet according to claim 1. 前記凹凸パターン形成工程において、X方向及びY方向に張力を作用させる、請求項2又は3に記載の光拡散体の製造方法。The method for producing a light diffuser according to claim 2 or 3, wherein tension is applied in the X direction and the Y direction in the uneven pattern forming step. 前記光拡散シートのY方向に沿って測定したときの前記凹凸パターンの平均ピッチを1〜20μmに調整する請求項1又は4に記載の光拡散シートの製造方法。 The average pitch of the concavo-convex pattern is adjusted to 1 to 20 [mu] m, the manufacturing method of the light diffusing sheet according to claim 1 or 4 as measured along the Y direction of the light diffusing sheet. 前記光拡散体のY方向に沿って測定したときの前記凹凸パターンの平均ピッチを1〜20μmに調整する、請求項2、3及び5のいずれかに記載の光拡散体の製造方法。The manufacturing method of the light diffuser in any one of Claim 2, 3 and 5 which adjusts the average pitch of the said uneven | corrugated pattern when measuring along the Y direction of the said light diffuser to 1-20 micrometers.
JP2013039552A 2013-02-28 2013-02-28 Method for manufacturing light diffusion sheet and method for manufacturing light diffuser Expired - Fee Related JP6255676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039552A JP6255676B2 (en) 2013-02-28 2013-02-28 Method for manufacturing light diffusion sheet and method for manufacturing light diffuser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039552A JP6255676B2 (en) 2013-02-28 2013-02-28 Method for manufacturing light diffusion sheet and method for manufacturing light diffuser

Publications (2)

Publication Number Publication Date
JP2014167553A JP2014167553A (en) 2014-09-11
JP6255676B2 true JP6255676B2 (en) 2018-01-10

Family

ID=51617273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039552A Expired - Fee Related JP6255676B2 (en) 2013-02-28 2013-02-28 Method for manufacturing light diffusion sheet and method for manufacturing light diffuser

Country Status (1)

Country Link
JP (1) JP6255676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065981A (en) * 2014-09-25 2016-04-28 Jx日鉱日石エネルギー株式会社 Method of manufacturing member with concavo-convex pattern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142289A (en) * 1994-11-15 1996-06-04 Mitsui Petrochem Ind Ltd Multilayer rolled sheet having cyclic olefin resin layer
JP3747210B2 (en) * 2003-11-18 2006-02-22 日東電工株式会社 Optical film manufacturing method, optical film, liquid crystal display device and image display device
JP5434755B2 (en) * 2010-04-01 2014-03-05 王子ホールディングス株式会社 Method for producing fine surface irregularities and method for producing transfer body
JP2011213053A (en) * 2010-04-01 2011-10-27 Oji Paper Co Ltd Method for manufacturing original plate sheet and method for manufacturing uneven pattern transfer sheet
JP5738006B2 (en) * 2011-03-01 2015-06-17 株式会社巴川製紙所 Optical film

Also Published As

Publication number Publication date
JP2014167553A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
TWI448736B (en) Peak-valley pattern formed sheet and method for producing the same
JP5098450B2 (en) Method for producing uneven pattern forming sheet and uneven pattern forming sheet
JP5660235B2 (en) Surface fine unevenness and method for producing surface fine unevenness
JP2008302591A (en) Irregularly patterned sheet, method of manufacturing irregularly pattered sheet, optical diffuser, original sheet plate for manufacture of optical diffuser and method of manufacturing optical diffuser
JP5391529B2 (en) Method for producing uneven pattern forming sheet
JP5637074B2 (en) Method for producing uneven pattern forming sheet, method for producing stamper for transfer molding, and method for producing light diffuser
JP2009092769A (en) Optical sheet and light diffusion sheet
JP2012022292A (en) Convex and concave pattern formation sheet, process sheet original plate for manufacturing optical diffuser, and method for manufacturing optical diffuser
JP6274102B2 (en) Light diffusing sheet
JP6255676B2 (en) Method for manufacturing light diffusion sheet and method for manufacturing light diffuser
JP2011224916A (en) Method of manufacturing surface fine uneven body having nano-buckling form, surface fine uneven body, process sheet original plate, and method of manufacturing optical element
JP5682841B2 (en) Process sheet master for manufacturing light diffuser and method for manufacturing light diffuser
JP2009282279A (en) Reflecting sheet and backlight unit
JP6536312B2 (en) Fine surface irregularities
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
JP5858113B2 (en) Convex / concave pattern forming sheet, light diffuser, master plate for light diffuser production stamper, light diffuser production stamper
JP2017187561A (en) Reflective screen
JP5135539B2 (en) Diffuse light guide and backlight unit
JP2013148921A (en) Optical sheet, and original plate of process sheet thereof
JP2016167063A (en) Fine concavo-convex surfaced material
JP2016136254A (en) Material with fine concavo-convex surface
JP6593055B2 (en) Surface fine irregularities and the method of obtaining the illuminance curve
JP2015052808A (en) Body having fine protrusion and recession on surface and method for manufacturing body having fine protrusion and recession on surface
JP5884790B2 (en) Method for producing uneven pattern forming sheet, process sheet original plate for producing light diffuser, and method for producing light diffuser
JP2018120145A (en) Daylighting sheet and daylighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6255676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees