WO2014148149A1 - Mirror and method for manufacturing same - Google Patents

Mirror and method for manufacturing same Download PDF

Info

Publication number
WO2014148149A1
WO2014148149A1 PCT/JP2014/053164 JP2014053164W WO2014148149A1 WO 2014148149 A1 WO2014148149 A1 WO 2014148149A1 JP 2014053164 W JP2014053164 W JP 2014053164W WO 2014148149 A1 WO2014148149 A1 WO 2014148149A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
sic
support layer
layer
support
Prior art date
Application number
PCT/JP2014/053164
Other languages
French (fr)
Japanese (ja)
Inventor
淳仁 長田
コンスタンドポウロス・アタナシオス・ジー
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2014148149A1 publication Critical patent/WO2014148149A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a mirror and a manufacturing method thereof.
  • the new energy sources there is solar power generation that collects sunlight and uses it as energy. Since the use of solar heat does not use a semiconductor, the cost per unit area can be reduced as compared with a solar cell, and the initial investment for use in a large area can be kept low.
  • This power generator condenses sunlight to heat water, chlorofluorocarbon, and the like, and generates power by rotating a turbine with superheated steam or the like.
  • the trough condensing method is a method in which sunlight is reflected by a semi-cylindrical mirror (trough), condensed and collected on a pipe passing through the center of the cylinder, and the temperature of the heat medium passing through the pipe is increased.
  • a semi-cylindrical mirror trough
  • the uniaxial control changes the direction of the mirror so as to track the sunlight, a high temperature rise of the heat medium cannot be expected.
  • the tower condensing method is a heliostat (solar condensing system) that surrounds the periphery of the tower part while arranging the solar heat receiver on the tower part (supporting part) erected from the ground. ), A plurality of reflected light control mirrors for collecting light are arranged, and the sunlight reflected by these heliostats is led to a solar heat receiver to collect and collect heat.
  • heliostat solar condensing system
  • the heliostat that collects sunlight is composed of a plurality of mirrors, and is configured to reflect and collect sunlight on a heat receiving portion or the like, and to generate power with the heat.
  • a reflective film such as Ag is formed on glass and used as a mirror for solar power generation.
  • Patent Document 1 it is described that when used in a dental dental mirror, a solar power collector, etc., the surface is hardly damaged and excellent characteristics can be maintained over a long period of time.
  • Sand is composed of various components.
  • a mirror having a reflective film such as Ag on a conventional glass the surface is damaged by sand when used for a long period of time, and the reflectivity is lowered or cracking is caused.
  • the ceramic mirror described in Patent Document 1 is a mirror mainly used in precision optical equipment such as a camera and a laser, and there is no specific description in a solar power generation application.
  • desert areas suitable for power generation often have no means of transportation, and a large amount of necessary mirror transportation means becomes a problem. For this reason, it is desirable that the mirror be lightweight, and if it is a lightweight mirror, a large amount of mirrors can be transported at one time, and the burden on the control device that drives the mirror can be reduced.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a mirror that is lightweight, hardly damaged, and has long-term reliability.
  • the solving means of the present invention for solving the above problems comprises a support layer made of SiC, a reflective layer provided under the support layer, and a protective layer provided under the reflective layer. To do.
  • the reflective layer is protected from both sides by the support layer made of SiC and the protective layer.
  • SiC is harder than many components contained in sand, so that the surface is hardly damaged and long-term reliability can be ensured.
  • the support layer made of SiC has a high transmittance region in the visible light to infrared region, and therefore can be suitably used as a mirror in combination with the reflection layer.
  • the support layer made of SiC has high strength and hardness, it is difficult to be damaged, and even if it is thin, it can be made difficult to crack. For this reason, the mirror using this as a support layer can be reduced in weight.
  • up indicates the direction on the side of the mirror and “down” indicates the opposite direction. That is, when light travels through the reflective layer at an incident angle of 0 °, the direction is from top to bottom, and after reflection, the light travels from bottom to top.
  • light means electromagnetic waves, and is not limited to visible light, but in particular, infrared and visible light that easily transmit thermal energy are mainly targeted.
  • the mirror of the present invention comprises a support layer made of SiC, a reflection layer provided under the support layer, and a protective layer provided under the reflection layer.
  • the support layer made of SiC of the mirror of the present invention is disposed on the surface of the mirror that is exposed to light, and may be a flat surface or a curved surface. In the case of a curved surface, the curved surface may be formed by bending a flat surface.
  • the material of the support layer made of SiC of the mirror of the present invention is not particularly limited, but CVD-SiC or SiC single crystal can be used.
  • the crystal form and crystal direction are not particularly limited.
  • ⁇ type, ⁇ type, ⁇ - ⁇ mixed type can be used in the crystal form, and (111), (200), (220) planes can be used in the crystal direction.
  • the mirror of the present invention is made of CVD-SiC
  • the crystal form and the crystal direction are not particularly limited, but those having high crystallinity are preferably used. When the crystallinity is high, there are few portions that obstruct light transmission inside, and light scattering can be made difficult. High crystallinity is characterized by having a sharp peak in the X-ray diffraction spectrum. Specific features will be described later.
  • the support layer made of SiC of the mirror of the present invention is preferably transparent. Specifically, it is desirable to have a transmittance of 5% or more for light with a wavelength of 660 nm. When the transmittance is 5% or more, light can be efficiently reflected. Further, the transmittance for light having a wavelength of 660 nm is 40% or more. If it is 40% or more, light can be reflected more efficiently.
  • the reflectance of the support layer made of SiC can be adjusted by appropriately adjusting the thickness.
  • the support layer made of SiC of the mirror of the present invention preferably has a thickness of 1 to 100 ⁇ m.
  • the support layer made of SiC is 1 ⁇ m or more, even if scattered sand hits the surface, cracks hardly occur, so that deterioration of the reflective surface under the SiC coating layer can be prevented.
  • the thickness of the support layer made of SiC is 100 ⁇ m or less, the light transmission distance can be shortened, so that the light absorption can be reduced.
  • the support layer made of SiC of the mirror of the present invention preferably has a surface roughness Ra of 100 nm or less on both the upper side surface and the lower side surface.
  • Ra a surface roughness of 100 nm or less on both the upper side surface and the lower side surface.
  • the support layer made of SiC of the mirror of the present invention preferably has high crystallinity.
  • (111) shows the strongest peak
  • the intensity ratio is preferably 40 or more.
  • the (111) / (311) intensity ratio is the ratio of peak heights.
  • the crystallinity increases, so that the crystal is less disturbed, the scattering of light passing through the interior is reduced, and the transmittance can be increased.
  • a more preferable (111) / (311) intensity ratio is 400 or more.
  • the support layer made of SiC of the mirror of the present invention is preferably made of only ⁇ -SiC or ⁇ -SiC.
  • SiC includes high temperature type ⁇ -SiC and low temperature type ⁇ -SiC depending on the generation temperature.
  • ⁇ -SiC has crystal structure isomers such as 6H, 4H and 2H due to the difference in the repetition period of the layered arrangement of Si and C.
  • ⁇ -SiC has a cubic crystal structure with only one type of crystal structure.
  • the crystal structure is composed only of ⁇ -SiC or ⁇ -SiC.
  • ⁇ -SiC having various crystal structures does not coexist so that light can be hardly scattered, and since it is a low-temperature type, it can be easily manufactured.
  • the support layer made of SiC of the mirror of the present invention preferably has a (111) peak half-width of 0.19 ° or less in an X-ray diffraction spectrum using Cu—K ⁇ rays.
  • the half width of the (111) peak is 0.19 °, the crystal orientation is less disturbed, the scattering of light passing through the interior is reduced, and the transmittance can be increased.
  • the reflective layer of the mirror of the present invention is preferably composed of one or more selected from tungsten, molybdenum, aluminum, silver, gold, zirconium, titanium, and a dielectric multilayer film. Since these metals have a high reflectance in the visible light to infrared region, which is easily converted into thermal energy, they can be suitably used as a reflective layer of a mirror that can be used for solar thermal power generation. Having a plurality of reflective layers means a multilayer film. Moreover, when a reflection layer consists of metals, it can utilize regardless of a pure metal and an alloy.
  • the protective layer of the mirror of the present invention is not particularly limited as long as it has more corrosion resistance and weather resistance than the reflective layer. Ceramics such as low melting point glass and water glass, metals such as gold, silver, tin and nickel, and resins can be used. Especially, it is preferable that the protective layer of a mirror consists of resin. Since the resin can be formed thick and is soft, it does not cause thermal distortion in the mirror and can be used suitably.
  • the resin used for the protective layer of the mirror of the present invention is not particularly limited, such as a thermosetting resin or a thermoplastic resin. Various resins such as polyolefins such as polyethylene and polypropylene, epoxy resins, phenol resins, silicone resins, and fluorine resins can be used.
  • the mirror of the present invention preferably has a support for supporting the mirror further under the protective layer.
  • the support is for holding the mirror and has a function of preventing deformation due to its own weight, wind pressure, and the like.
  • a plate-like body, a truss structure, a ramen structure, an arch structure, or the like can be used. Further, a plate-like support and other structures may be used in combination. By using these supports, a light and high-strength mirror can be obtained.
  • a protective layer can also have a function as an adhesive layer.
  • the support is a plate-like body
  • the support can cover the entire protective layer, the corrosion resistance and weather resistance required for the adhesive layer are reduced, so the degree of freedom in selecting the adhesive layer is widened.
  • a protective layer having a high adhesion can be used.
  • the mirror of the present invention can be suitably used as a mirror for photovoltaic power generation.
  • Examples 1 to 3 of the mirror of the present invention will be described in order. Items common to Examples 1 to 3 will be described first, and a support layer made of SiC, which is a difference from Examples 1 to 3, will be described in detail later.
  • ⁇ Polishing process of support layer made of SiC> S2 Perform double-sided mirror polishing of SiC plate material. Starting with rough cutting, the final finish is a double-sided polishing finish using a polishing sheet having a particle size range of 0 to 3 ⁇ m and having a surface roughness Ra of 100 nm or less. Simultaneously with the surface finishing process, the film thickness of the SiC plate material is also finished to 100 ⁇ m or less. Polishing is finished when the thickness of the SiC plate is 100 ⁇ m or less and the surface roughness Ra is 100 nm or less, and the substrate is used as a support layer made of SiC.
  • a silver reflective layer is formed by sputtering.
  • a protective layer that covers the reflective layer is formed.
  • the protective layer can be obtained by applying an epoxy resin to the protective layer and curing it.
  • a support is affixed to a mirror obtained by sequentially forming a reflective layer and a protective layer on a support layer made of SiC.
  • the support may be attached to the mirror before the protective layer in the previous protective layer forming step is cured, or after the protective layer is formed, a new adhesive may be applied. good.
  • Example 1 A single CVD-SiC film manufactured by Admap is prepared and used as a SiC plate material.
  • Example 2 A CVD-SiC coated graphite material is formed using a CVD furnace. CH 3 SiCl 3 as a source gas and H 2 as a carrier gas are supplied into the CVD furnace. The CVD furnace is formed at a temperature of 1200 ° C. and a pressure of atmospheric pressure. The film formation time was 25 hours. When removed from the CVD furnace, the thickness of the CVD-SiC was 1000 ⁇ m. Graphite is removed from the obtained CVD-SiC coated graphite material, and this is used as a SiC plate material.
  • Example 3 A fine crystal SiC film manufactured by Interface Co., Ltd. is prepared and used as a SiC plate material.
  • a quartz glass having a thickness of 1500 ⁇ m and a surface roughness Ra of 20 nm is prepared, and a mirror is formed by sputtering silver on the lower surface.
  • the thickness of the obtained support layer made of SiC of Examples 1 to 3 and the surface roughness Ra of the lower surface which is the side on which the reflective layer is formed are measured. Further, an X-ray diffraction spectrum using Cu—K ⁇ rays is measured, and the plane direction showing the strongest peak (maximum peak), the (111) / (311) intensity ratio, and the half width of the (111) peak are measured. (Table 1)
  • the spectral transmittance is measured using a self-recording spectrophotometer UV3150 manufactured by Shimadzu Corporation.
  • a self-recording spectrophotometer UV3150 manufactured by Shimadzu Corporation.
  • an Rigaku X-ray diffractometer Ultima IV is used for the measurement of the X-ray diffraction spectrum.
  • FIGS. 6 shows the pattern of the first embodiment
  • FIG. 7 shows the pattern of the second embodiment
  • FIG. 8 shows the pattern of the third embodiment.
  • Example 1 and Example 2 since there was no 33.6 ° peak based on ⁇ -SiC beside the (111) peak, the mixture of ⁇ -SiC was suppressed, and it was made of SiC. It can be confirmed that the support layer is composed only of ⁇ -SiC. In Example 3, a 33.6 ° peak based on ⁇ -SiC next to the (111) peak exists, and it is confirmed that ⁇ -SiC and ⁇ -SiC are mixed.
  • the spectral transmittance and spectral reflectance of the support layers made of SiC of Examples 1 to 3 are measured at wavelengths of 220 to 850 nm.
  • quartz glass is also measured simultaneously.
  • the spectral reflectance of the mirrors of Examples 1 to 3 is measured in the wavelength range of 220 to 850 nm.
  • the protective layer is not formed because it does not affect the measurement.
  • the spectral reflectance is measured using a Shimadzu auto-recorded spectrophotometer UV3150 using a ⁇ 60 integrating sphere under the conditions of 220-850 nm detection, an incident angle of 8 °, and a slit width of 20 nm.
  • FIG. 3 shows spectral reflectances of the support layers made of SiC of Examples 1 to 3 and the silica glass of the comparative example.
  • the spectral reflectance of only the support layer made of SiC and quartz glass is shown.
  • the support layer made of SiC is higher than quartz in the measured wavelength range.
  • Example 1 and Example 2 with high crystallinity have a reflectance higher than that of Example 3 in the wavelength region of approximately 500 nm or more, and the higher crystallinity is particularly in the infrared region. It turns out that it is advantageous to a reflectance.
  • FIG. 4 shows spectral transmittances of the support layers made of SiC of Examples 1 to 3 and the quartz glass of the comparative example.
  • the thickness of the sample is 100 ⁇ m in Examples 1 to 3 (SiC) and 1500 ⁇ m in the comparative example (quartz glass).
  • the transmittance of the support layer made of SiC is lower than that of quartz glass.
  • the difference becomes smaller in the support layers made of SiC of Examples 1 and 2 having higher crystallinity.
  • the support layer made of SiC having high crystallinity has a high transmittance of visible light and infrared rays on the side having a long wavelength at which heat energy is easily transmitted.
  • the spectral transmittance is 57% in Example 1, 49% in Example 2, 5% in Example 3, and 94% in the comparative example (quartz glass) with respect to the electromagnetic wave having a wavelength of 660 nm.
  • FIG. 5 shows the spectral reflectance of mirrors using the mirrors of Examples 1 to 3 and the comparative example of quartz glass.
  • the light incident on the samples of Examples and Comparative Examples passes through the support layer (or quartz glass), is reflected by the reflection layer, and is reflected by passing through the support layer (or quartz glass).
  • the thickness of the sample is 100 ⁇ m in Examples 1 to 3 (SiC) and 1500 ⁇ m in the comparative example (quartz glass).
  • Example 1 and Example 2 in which the support layer made of SiC has a high degree of crystallinity, it is confirmed that the reflectance in the visible light to infrared region from infrared is high.
  • the spectral reflectance is 72% in Example 1, 54% in Example 2, 22% in Example 3, and 94% in the comparative example (quartz glass) with respect to the electromagnetic wave having a wavelength of 660 nm.
  • the mirror using the support layer made of SiC harder than the sand component that can exist in the desert can reflect light in the visible to infrared region and can be used as a mirror.
  • (111) shows the strongest peak, and the (111) / (311) intensity ratio is 40 or more, and the support layer is made of highly crystalline CVD-SiC. Since it has a high transmittance in the visible light to infrared region, it is confirmed that a high reflectance can be obtained by combining with a reflective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided is a lightweight mirror having long term reliability. The mirror is provided with a support layer (1) made of SiC, a reflective layer (2) provided below the support layer, and a protective layer (3) provided below the reflective layer. The reflective layer is protected on both sides by the support layer made of SiC and the protective layer. As a result, when used as a mirror for solar power generation, the surface is difficult to damage and long term reliability is guaranteed because the SiC layer is harder than most substances contained in sand. Also, according to the present invention, the support layer made of SiC has an area with high transmissivity in an area of visible to infrared light, and thus, in combination with the reflective layer, can be suitably used as a mirror. In addition, the support layer made of SiC has a high degree of strength and hardness, and thus is difficult to damage and difficult to crack even if made thin. Therefore, it is possible to decrease the weight of a mirror using this as the support layer.

Description

ミラーおよびその製造方法Mirror and manufacturing method thereof
 本発明は、ミラーおよびその製造方法に関するものである。 The present invention relates to a mirror and a manufacturing method thereof.
 近時、化石燃料の枯渇や二酸化炭素排出による諸問題に鑑み、二酸化炭素や窒素酸化物などの有害物質の排出が少ない自然エネルギー、資源を再利用するリサイクルエネルギーなどのクリーンエネルギーを利用した発電が注目されている。 Recently, in light of various problems caused by depletion of fossil fuels and carbon dioxide emissions, power generation using clean energy such as natural energy that emits less harmful substances such as carbon dioxide and nitrogen oxides, and recycled energy that recycles resources Attention has been paid.
 新たなエネルギー源の1つとして、太陽光を集光してエネルギーとして使用する太陽熱発電がある。太陽熱の利用は半導体を用いないため、太陽電池に比べて単位面積当たりのコストを低くすることができ、大面積で利用したい場合の初期投資が低く抑えられるため、近年注目を再び集めている。 As one of the new energy sources, there is solar power generation that collects sunlight and uses it as energy. Since the use of solar heat does not use a semiconductor, the cost per unit area can be reduced as compared with a solar cell, and the initial investment for use in a large area can be kept low.
 特に、発電せずに熱そのものを利用する場合に効率が高く、太陽熱を利用する意義が大きい。このため、特に産業用の蒸気の供給などの中規模なプラントにおいて太陽熱を利用できる太陽集光システムが日本だけではなく欧州等の世界各国でも検討されている。 Especially, when using the heat itself without generating electricity, the efficiency is high and the significance of using solar heat is great. For this reason, solar concentrating systems that can use solar heat in medium-sized plants such as industrial steam supply are being studied not only in Japan but also in countries around the world such as Europe.
 太陽熱を利用して発電を行なう太陽熱発電装置は、エネルギー利用の効率化、更には石油代替エネルギー源の開発の点からもその重要性、実用化が注目されるに至っている。この発電装置は、太陽光を集光して水、フロン等を加熱し、過熱蒸気等により、タービンを回して発電するものである。 The importance and practical use of solar thermal power generation devices that generate power using solar heat have attracted attention in terms of efficient use of energy and further development of alternative energy sources for petroleum. This power generator condenses sunlight to heat water, chlorofluorocarbon, and the like, and generates power by rotating a turbine with superheated steam or the like.
 太陽熱発電には、一般的にトラフ集光方式とタワー集光方式という二種類の方式がある。 There are generally two types of solar power generation: trough concentrating method and tower concentrating method.
 トラフ集光方式とは、半円筒型のミラー(トラフ)によって太陽光線を反射させ、円筒の中心を通るパイプに集光・集熱し、パイプ内を通る熱媒体の温度を上昇させるものである。しかしながら、トラフ集光方式では、ミラーが太陽光線を追尾するよう向きを変えるものの一軸制御であるため、熱媒体の高い温度上昇を期待することはできない。 The trough condensing method is a method in which sunlight is reflected by a semi-cylindrical mirror (trough), condensed and collected on a pipe passing through the center of the cylinder, and the temperature of the heat medium passing through the pipe is increased. However, in the trough condensing method, since the uniaxial control changes the direction of the mirror so as to track the sunlight, a high temperature rise of the heat medium cannot be expected.
 これに対して、タワー集光方式とは、地上から立設されたタワー部(支持部)上に太陽熱受熱器を配置するとともに、タワー部の周囲を取り囲むようにヘリオスタット(太陽光集光システム)と呼ばれる集光用の反射光制御ミラーを複数配置し、これらヘリオスタットで反射される太陽光線を太陽熱受熱器に導くことで集光・集熱するものである。 On the other hand, the tower condensing method is a heliostat (solar condensing system) that surrounds the periphery of the tower part while arranging the solar heat receiver on the tower part (supporting part) erected from the ground. ), A plurality of reflected light control mirrors for collecting light are arranged, and the sunlight reflected by these heliostats is led to a solar heat receiver to collect and collect heat.
 近年では、発電サイクルの更なる高効率化を図るという観点から、太陽熱受熱器で熱交換される熱媒体について、より高温化が可能なタワー集光方式の発電装置(タワー集光装置)の開発が盛んに行われている。 In recent years, from the viewpoint of further improving the efficiency of the power generation cycle, development of a tower condensing type power generation device (tower condensing device) that can increase the temperature of the heat medium that is heat-exchanged by a solar heat receiver Has been actively conducted.
 しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、太陽エネルギーのエネルギー密度が低いこと、並びに太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。 However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing it, the low energy density of solar energy and the difficulty in storing and transferring solar energy are problematic. It is done.
 これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な反射装置で太陽エネルギーを集めることによって解決することが提案されている。 On the other hand, it has been proposed to solve the problem of low energy density of solar energy by collecting solar energy with a huge reflector.
 この太陽熱発電において、太陽光を集光するヘリオスタットは、複数のミラーから構成されており、受熱部等に太陽光を反射・集光し、その熱で発電を行なうよう構成されている。 In this solar thermal power generation, the heliostat that collects sunlight is composed of a plurality of mirrors, and is configured to reflect and collect sunlight on a heat receiving portion or the like, and to generate power with the heat.
 一般的には、ガラスにAgなどの反射膜を成膜し、太陽熱発電用ミラーとして用いされてきた。 Generally, a reflective film such as Ag is formed on glass and used as a mirror for solar power generation.
 一方、カメラやレーザー等の精密光学機器に使用されるミラーとして、セラミックスよりなる板状体に反射膜を被着してなるセラミックスミラーが提案されている。(特許文献1)この中では、歯科用のデンタルミラーや太陽熱発電用の集光器などに使用すると、表面に傷がつきにくく長期に亘って優れた特性を維持できることが記載されている。 On the other hand, as a mirror used in precision optical equipment such as a camera and a laser, a ceramic mirror is proposed in which a reflective film is attached to a plate-shaped body made of ceramic. (Patent Document 1) In this document, it is described that when used in a dental dental mirror, a solar power collector, etc., the surface is hardly damaged and excellent characteristics can be maintained over a long period of time.
特開昭62-257102号公報JP-A-62-257102
 大規模な太陽熱発電は、地価が安く、日照時間の長い地域が設置場所として適している。このような地域の一つとして、砂漠が挙げられる。砂漠は、降雨が極端に少なく、砂や岩石の多い土地である。また、塩類を含む水が土壌から外部へ流出することなく蒸散するので、砂の塩類の含有量が高く緑化が困難であり、利用価値が小さく地価が安いうえに、日照時間が長く、大規模な太陽熱発電の候補地として注目されている。上記従来の太陽熱発電むけミラーは、24時間自然環境の中で稼動し続ける。砂漠は、地域によって異なり、砂の成分、粒の大きさは多種多様である。このような過酷な環境下で長期間用いられた場合であっても、ミラーの反射率が劣化せず、長期的な信頼性を保障することが課題となっている。砂は、様々な成分で構成されている。従来のガラスにAgなどの反射膜を有するミラーでは、長期間使用すると砂によって表面が傷つけられ、反射率が低下したり、割れの起点となる。また、特許文献1に記載されたセラミックミラーは、主にカメラやレーザー等の精密光学機器に使用されるミラーであって、太陽熱発電用途における具体的な記載が無い。また、発電に適した砂漠地域は交通手段がないことが多く、大量に必要なミラーの運搬手段が問題となる。このためミラーは軽量であることが望ましく、軽量なミラーであれば、一度に大量のミラーを運搬することができる上に、ミラーを駆動する制御装置への負担を小さくすることができる。 大 Large-scale solar power generation is suitable for installation in areas with low land prices and long sunshine hours. One such area is the desert. Deserts are land with extremely little rainfall and lots of sand and rocks. In addition, since salt-containing water evaporates without flowing out of the soil, sand content is high, making it difficult to plant trees, low utility value, low land prices, long sunshine hours, and large scale It is attracting attention as a potential solar power generation site. The conventional solar power generation mirror described above continues to operate in a natural environment for 24 hours. Deserts vary from region to region, with a variety of sand components and grain sizes. Even when used in such a harsh environment for a long time, the reflectance of the mirror does not deteriorate, and it is a problem to ensure long-term reliability. Sand is composed of various components. In a mirror having a reflective film such as Ag on a conventional glass, the surface is damaged by sand when used for a long period of time, and the reflectivity is lowered or cracking is caused. Moreover, the ceramic mirror described in Patent Document 1 is a mirror mainly used in precision optical equipment such as a camera and a laser, and there is no specific description in a solar power generation application. Also, desert areas suitable for power generation often have no means of transportation, and a large amount of necessary mirror transportation means becomes a problem. For this reason, it is desirable that the mirror be lightweight, and if it is a lightweight mirror, a large amount of mirrors can be transported at one time, and the burden on the control device that drives the mirror can be reduced.
 本発明は、このような事情を考慮してなされたものであり、その目的は、軽量であって傷つきにくく、長期信頼性とを有するミラーを提供することにある。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a mirror that is lightweight, hardly damaged, and has long-term reliability.
 前記課題を解決するための本発明の解決手段は、SiCからなる支持層と、該支持層下に備えられた反射層と、該反射層下に備えられた保護層とからなることを特徴とする。 The solving means of the present invention for solving the above problems comprises a support layer made of SiC, a reflective layer provided under the support layer, and a protective layer provided under the reflective layer. To do.
 本発明によれば、SiCからなる支持層と、保護層によって両面から反射層を保護している。このため、太陽光発電のミラーとして使用すると、SiCは砂に含まれる多くの成分より硬いので、表面が傷つきにくく長期信頼性を確保することができる。
 また、本発明によれば、SiCからなる支持層は、可視光~赤外線の領域に透過率の高い領域を有しているので、反射層と組み合わせることによりミラーとして好適に利用することができる。
 さらに、SiCからなる支持層は、高い強度と硬度を持っているので、傷つきにくく、薄くしても割れにくくすることができる。このため、これを支持層として用いたミラーは軽量化することができる。
According to the present invention, the reflective layer is protected from both sides by the support layer made of SiC and the protective layer. For this reason, when used as a mirror for photovoltaic power generation, SiC is harder than many components contained in sand, so that the surface is hardly damaged and long-term reliability can be ensured.
Further, according to the present invention, the support layer made of SiC has a high transmittance region in the visible light to infrared region, and therefore can be suitably used as a mirror in combination with the reflection layer.
Furthermore, since the support layer made of SiC has high strength and hardness, it is difficult to be damaged, and even if it is thin, it can be made difficult to crack. For this reason, the mirror using this as a support layer can be reduced in weight.
本発明のミラーの構成図である。It is a block diagram of the mirror of this invention. 本発明の実施例に係るミラーの製造手順を説明する図である。It is a figure explaining the manufacture procedure of the mirror which concerns on the Example of this invention. 本発明の実施例1~3のSiCよりなる支持層、及び比較例の石英ガラスの分光反射率を示す図である。It is a figure which shows the spectral reflectance of the support layer which consists of SiC of Examples 1-3 of this invention, and the quartz glass of a comparative example. 本発明の実施例1~3のSiCよりなる支持層、及び比較例の石英ガラスの分光透過率を示す図である。It is a figure which shows the spectral transmittance of the support layer which consists of SiC of Examples 1-3 of this invention, and the quartz glass of a comparative example. 本発明の実施例1~3のミラー、及び比較例の石英ガラスを用いたミラーの分光反射率を示す図である。It is a figure which shows the spectral reflectance of the mirror using the mirror of Examples 1-3 of this invention, and the quartz glass of a comparative example. 本発明の実施例1のSiCよりなる支持層のX線回折スペクトル図である。It is a X-ray-diffraction spectrum figure of the support layer which consists of SiC of Example 1 of this invention. 本発明の実施例2のSiCよりなる支持層のX線回折スペクトル図である。It is a X-ray-diffraction spectrum figure of the support layer which consists of SiC of Example 2 of this invention. 本発明の実施例3のSiCよりなる支持層のX線回折スペクトル図である。It is a X-ray-diffraction spectrum figure of the support layer which consists of SiC of Example 3 of this invention.
 本明細書において、上とはミラーの光が当たる側の方向、下とはその反対方向を示す。すなわち、反射層に入射角0°で光が進行するとき、その方向は上から下に向かい、反射した後、光は下から上に向かう。 In this specification, “up” indicates the direction on the side of the mirror and “down” indicates the opposite direction. That is, when light travels through the reflective layer at an incident angle of 0 °, the direction is from top to bottom, and after reflection, the light travels from bottom to top.
 本明細書において、光とは、電磁波のことを示し、可視光には限定されないが、なかでも、熱エネルギーを伝達しやすい赤外線、可視光を主な対象とする。 In this specification, light means electromagnetic waves, and is not limited to visible light, but in particular, infrared and visible light that easily transmit thermal energy are mainly targeted.
 本発明のミラーは、SiCからなる支持層と、該支持層下に備えられた反射層と、該反射層下に備えられた保護層とからなる。 The mirror of the present invention comprises a support layer made of SiC, a reflection layer provided under the support layer, and a protective layer provided under the reflection layer.
 本発明のミラーのSiCからなる支持層とは、ミラーの光が当たる側の面に配置されており、平面であっても曲面であっても良い。また、曲面である場合には、もともと平面であるものを曲げることによって曲面を構成しても良い。 The support layer made of SiC of the mirror of the present invention is disposed on the surface of the mirror that is exposed to light, and may be a flat surface or a curved surface. In the case of a curved surface, the curved surface may be formed by bending a flat surface.
 本発明のミラーのSiCからなる支持層の材質は、特に限定されないが、CVD-SiCまたはSiC単結晶などが利用できる。
 本発明のミラーの支持層がSiC単結晶からなる場合、結晶形態、結晶方向は特に限定されない。例えば、結晶形態であればα型、β型、α-β混在型、結晶方向であれば例えば(111)、(200)、(220)面などが利用できる。
 本発明のミラーが、CVD-SiCからなる場合、結晶形態、結晶方向は特に限定されないが、結晶性の高いものを用いることが好ましい。結晶性が高いと、内部に光の透過の障害となる部分が少なく光の散乱をしにくくすることができる。結晶性が高いとは、X線回折スペクトルにおいて、鋭いピークを持っている特徴がある。具体的な特徴については後述する。
The material of the support layer made of SiC of the mirror of the present invention is not particularly limited, but CVD-SiC or SiC single crystal can be used.
When the support layer of the mirror of the present invention is made of SiC single crystal, the crystal form and crystal direction are not particularly limited. For example, α type, β type, α-β mixed type can be used in the crystal form, and (111), (200), (220) planes can be used in the crystal direction.
When the mirror of the present invention is made of CVD-SiC, the crystal form and the crystal direction are not particularly limited, but those having high crystallinity are preferably used. When the crystallinity is high, there are few portions that obstruct light transmission inside, and light scattering can be made difficult. High crystallinity is characterized by having a sharp peak in the X-ray diffraction spectrum. Specific features will be described later.
 本発明のミラーのSiCからなる支持層は、透明であることが望ましい。具体的には、波長660nmの光に対して5%以上の透過率を有していることが望ましい。5%以上の透過率を有していると、光を効率良く反射することができる。さらに望ましい波長660nmの光に対する透過率は、40%以上である。40%以上であると、さらに効率良く光を反射することができる。SiCからなる支持層は、適宜厚さを調整することによって
反射率を調整することができる。
The support layer made of SiC of the mirror of the present invention is preferably transparent. Specifically, it is desirable to have a transmittance of 5% or more for light with a wavelength of 660 nm. When the transmittance is 5% or more, light can be efficiently reflected. Further, the transmittance for light having a wavelength of 660 nm is 40% or more. If it is 40% or more, light can be reflected more efficiently. The reflectance of the support layer made of SiC can be adjusted by appropriately adjusting the thickness.
 本発明のミラーのSiCからなる支持層は、厚さが1~100μmであることが好ましい。
 SiCからなる支持層が、1μm以上であると、飛散する砂などが表面に当たっても、クラックとなりにくいので、SiC被覆層の下の反射面の劣化を防止することができる。
 SiCからなる支持層の厚さが、100μm以下であると、光の透過する距離を短くできるので、光の吸収を少なくすることができる。
The support layer made of SiC of the mirror of the present invention preferably has a thickness of 1 to 100 μm.
When the support layer made of SiC is 1 μm or more, even if scattered sand hits the surface, cracks hardly occur, so that deterioration of the reflective surface under the SiC coating layer can be prevented.
When the thickness of the support layer made of SiC is 100 μm or less, the light transmission distance can be shortened, so that the light absorption can be reduced.
 本発明のミラーのSiCからなる支持層は、上側面、下側面とも面粗さRaが100nm以下であることが好ましい。面粗さが、100nm以下であると熱エネルギー源となる可視光、赤外線の波長より、面粗さが圧倒的に小さいので光が散乱されにくく、効率良く光を反射するミラーを提供することができる。さらに、反射層を形成するSiCからなる支持層の下側面は、反射面の凹凸による光の位相差が発生しやすいので、面粗さRaが20nm以下であることが好ましい。
 なお、面粗さは、JIS B0601に基づいて測定することができる。
The support layer made of SiC of the mirror of the present invention preferably has a surface roughness Ra of 100 nm or less on both the upper side surface and the lower side surface. To provide a mirror that reflects light efficiently because the surface roughness is over 100 nm or less than the wavelengths of visible light and infrared rays that are thermal energy sources, and the surface roughness is much smaller than the wavelength of visible light and infrared rays. it can. Furthermore, the lower surface of the support layer made of SiC that forms the reflective layer is likely to cause a phase difference of light due to the unevenness of the reflective surface, and thus the surface roughness Ra is preferably 20 nm or less.
The surface roughness can be measured based on JIS B0601.
 本発明のミラーのSiCからなる支持層は、結晶性が高いものが好ましく、具体的には、Cu-Kα線を用いたX線回折スペクトルにおいて、(111)が最も強いピークを示し、(111)/(311)強度比が40以上であることが好ましい。(111)/(311)強度比とは、ピーク高さの比である。(111)/(311)強度比が40以上であると、結晶性が高くなるので結晶の乱れが少なく、内部を通過する光の散乱が少なくなり、透過率を高めることができる。さらに好ましい(111)/(311)強度比は、400以上である。(111)/(311)強度比は、400以上であると、ほとんど(111)のピークとなり、SiCからなる支持層の透過率を高くすることができる。
 また、本発明のミラーのSiCからなる支持層は、α-SiCのみまたはβ-SiCのみからなることが好ましい。SiCには生成温度によって高温型のα-SiC、低温型のβ-SiCがある。α-SiCは、SiとCの層状配列の繰り返し周期の違いにより6H、4H、2H等の結晶構造異性体が存在する。一方β-SiCは、結晶構造が1種類のみで立方晶系結晶構造をとる。
The support layer made of SiC of the mirror of the present invention preferably has high crystallinity. Specifically, in the X-ray diffraction spectrum using Cu—Kα ray, (111) shows the strongest peak, and (111 ) / (311) The intensity ratio is preferably 40 or more. The (111) / (311) intensity ratio is the ratio of peak heights. When the (111) / (311) intensity ratio is 40 or more, the crystallinity increases, so that the crystal is less disturbed, the scattering of light passing through the interior is reduced, and the transmittance can be increased. A more preferable (111) / (311) intensity ratio is 400 or more. When the (111) / (311) intensity ratio is 400 or more, a peak of (111) is almost obtained, and the transmittance of the support layer made of SiC can be increased.
In addition, the support layer made of SiC of the mirror of the present invention is preferably made of only α-SiC or β-SiC. SiC includes high temperature type α-SiC and low temperature type β-SiC depending on the generation temperature. α-SiC has crystal structure isomers such as 6H, 4H and 2H due to the difference in the repetition period of the layered arrangement of Si and C. On the other hand, β-SiC has a cubic crystal structure with only one type of crystal structure.
 複数の結晶構造が混在すると、光の散乱の原因になるので、α-SiCのみまたはβ-SiCのみからなることが望ましい。また、β-SiCのみからなると、様々な結晶構造を有するα-SiCが混在しないので光が散乱しにくくすることができる上に、低温型であるので、容易に製造することができる。 When a plurality of crystal structures coexist, it causes light scattering. Therefore, it is preferable that the crystal structure is composed only of α-SiC or β-SiC. In addition, when only β-SiC is used, α-SiC having various crystal structures does not coexist so that light can be hardly scattered, and since it is a low-temperature type, it can be easily manufactured.
 本発明のミラーのSiCからなる支持層は、Cu-Kα線を用いたX線回折スペクトルにおいて、(111)ピークの半値幅が0.19°以下であることが好ましい。(111)ピークの半値幅0.19°であると、結晶方向の乱れが少なくなり、内部を通過する光の散乱が少なくなり、透過率を高めることができる。 The support layer made of SiC of the mirror of the present invention preferably has a (111) peak half-width of 0.19 ° or less in an X-ray diffraction spectrum using Cu—Kα rays. When the half width of the (111) peak is 0.19 °, the crystal orientation is less disturbed, the scattering of light passing through the interior is reduced, and the transmittance can be increased.
 本発明のミラーの反射層はタングステン、モリブデン、アルミニウム、銀、金、ジルコニウム、チタン、誘電体多層膜から選ばれる1又はそれ以上からなることが望ましい。これらの金属は、熱エネルギーに変換されやすい可視光~赤外域において高い反射率を有しているので、太陽熱発電に利用可能なミラーの反射層として好適に利用することができる。反射層が、複数からなるとは、多層膜であることを意味する。また、反射層が金属からなる場合は、純金属、合金を問わず利用することができる。 The reflective layer of the mirror of the present invention is preferably composed of one or more selected from tungsten, molybdenum, aluminum, silver, gold, zirconium, titanium, and a dielectric multilayer film. Since these metals have a high reflectance in the visible light to infrared region, which is easily converted into thermal energy, they can be suitably used as a reflective layer of a mirror that can be used for solar thermal power generation. Having a plurality of reflective layers means a multilayer film. Moreover, when a reflection layer consists of metals, it can utilize regardless of a pure metal and an alloy.
 本発明のミラーの保護層は、反射層よりも耐食性、耐候性があればどのようなものでもよく、特に限定されない。低融点ガラス、水ガラスなどのセラミックス、金、銀、スズ、ニッケルなどの金属、樹脂などが利用できる。中でも、ミラーの保護層は、樹脂からなることが好ましい。樹脂は、厚く形成することができる上に、軟らかいのでミラーに熱歪みを発生させないので好適に利用することができる。本発明のミラーの保護層に用いる樹脂は、熱硬化性樹脂、熱可塑性樹脂など特に限定されない。ポリエチレン、ポリプロピレンなどのポリオレフィン、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、フッ素系樹脂など様々な樹脂が利用可能である。 The protective layer of the mirror of the present invention is not particularly limited as long as it has more corrosion resistance and weather resistance than the reflective layer. Ceramics such as low melting point glass and water glass, metals such as gold, silver, tin and nickel, and resins can be used. Especially, it is preferable that the protective layer of a mirror consists of resin. Since the resin can be formed thick and is soft, it does not cause thermal distortion in the mirror and can be used suitably. The resin used for the protective layer of the mirror of the present invention is not particularly limited, such as a thermosetting resin or a thermoplastic resin. Various resins such as polyolefins such as polyethylene and polypropylene, epoxy resins, phenol resins, silicone resins, and fluorine resins can be used.
 本発明のミラーは、前記保護層の下にさらに前記ミラーを支持する支持体を有することが好ましい。支持体とは、ミラーを保持するためのもので、ミラーの自重、風圧などよる変形を防止する機能を有する。支持体の形態としては、例えば板状体、トラス構造体、ラーメン構造体、アーチ構造体などを用いることができる。また、板状体の支持体と、他の構造を組み合わせて用いても良い。これらの支持体を用いることにより軽く高強度のミラーを得ることができる。
 本発明のミラーの支持体を有する場合は、保護層は接着層としての機能も有することができる。特に支持体が板状体である場合には、支持体が保護層全体を覆うことができるので、接着層に要求される耐食性、耐候性が少なくなるので接着層の選択の自由度が広がり、高い接着力を有する保護層を使用することができる。このような理由から本発明のミラーは太陽光発電用のミラーとして好適に利用できる。
The mirror of the present invention preferably has a support for supporting the mirror further under the protective layer. The support is for holding the mirror and has a function of preventing deformation due to its own weight, wind pressure, and the like. As the form of the support, for example, a plate-like body, a truss structure, a ramen structure, an arch structure, or the like can be used. Further, a plate-like support and other structures may be used in combination. By using these supports, a light and high-strength mirror can be obtained.
When it has the support body of the mirror of this invention, a protective layer can also have a function as an adhesive layer. In particular, when the support is a plate-like body, since the support can cover the entire protective layer, the corrosion resistance and weather resistance required for the adhesive layer are reduced, so the degree of freedom in selecting the adhesive layer is widened. A protective layer having a high adhesion can be used. For these reasons, the mirror of the present invention can be suitably used as a mirror for photovoltaic power generation.
 以下に、本発明のミラーの実施例1~3について順に説明する。実施例1~3に共通する項目を先に説明し、実施例1~3の相違点であるSiCからなる支持層について後から詳しく説明する。 Hereinafter, Examples 1 to 3 of the mirror of the present invention will be described in order. Items common to Examples 1 to 3 will be described first, and a support layer made of SiC, which is a difference from Examples 1 to 3, will be described in detail later.
<SiC板材準備工程>S1
CVD-SiC、SiC単結晶などのSiCを含む板材を準備する。CVD-SiCなど異なる材質の基材上にSiC板材が形成されている場合、あらかじめ研磨、切削などして除去し、SiC板材を準備する。
<SiC plate material preparation step> S1
A plate material containing SiC such as CVD-SiC or SiC single crystal is prepared. When a SiC plate material is formed on a base material of a different material such as CVD-SiC, it is removed by polishing, cutting or the like in advance to prepare a SiC plate material.
<SiCからなる支持層の研磨工程>S2
 SiC板材の両面鏡面研磨仕上げを行う。荒削りから始め、最終仕上げは粒度範囲が0~3μmダイヤ粒子の研磨シートを用い、面粗さRa100nm以下となるように両面研磨仕上げする。表面仕上げ工程と同時に、SiC板材の膜厚も100μm以下となるように仕上げる。
 SiC板材の厚さが、100μm以下、面粗さRaが100nm以下となった段階で研磨を終了し、SiCからなる支持層として使用する。
<Polishing process of support layer made of SiC> S2
Perform double-sided mirror polishing of SiC plate material. Starting with rough cutting, the final finish is a double-sided polishing finish using a polishing sheet having a particle size range of 0 to 3 μm and having a surface roughness Ra of 100 nm or less. Simultaneously with the surface finishing process, the film thickness of the SiC plate material is also finished to 100 μm or less.
Polishing is finished when the thickness of the SiC plate is 100 μm or less and the surface roughness Ra is 100 nm or less, and the substrate is used as a support layer made of SiC.
<反射層形成工程>S3
 得られたSiCからなる支持層に反射層を形成する。反射層は、スパッタ法によって銀の反射層を形成する。
<Reflective layer forming step> S3
A reflective layer is formed on the obtained support layer made of SiC. As the reflective layer, a silver reflective layer is formed by sputtering.
<保護層形成工程>S4
 次に、反射層を覆う保護層を形成する。保護層は、エポキシ樹脂を保護層に塗布し、硬化することによって得ることができる。
<Protective layer forming step> S4
Next, a protective layer that covers the reflective layer is formed. The protective layer can be obtained by applying an epoxy resin to the protective layer and curing it.
<支持体貼付工程>S5
 SiCからなる支持層に反射層、保護層を順に形成することによって得られたミラーに支持体を貼付する。支持体の貼付は、前の保護層形成工程の保護層が硬化する前に、支持体をミラーに貼り付けても、保護層が形成された後、新たに接着剤を用いて貼り付けても良い。
<Support sticking process> S5
A support is affixed to a mirror obtained by sequentially forming a reflective layer and a protective layer on a support layer made of SiC. The support may be attached to the mirror before the protective layer in the previous protective layer forming step is cured, or after the protective layer is formed, a new adhesive may be applied. good.
 次に実施例1~3の相違点であるSiCよりなる支持層の製造方法について説明する。 Next, a method for producing a support layer made of SiC, which is a difference from Examples 1 to 3, will be described.
(実施例1)
 アドマップ社製CVD-SiC膜単体を準備し、これをSiC板材として使用する。
(Example 1)
A single CVD-SiC film manufactured by Admap is prepared and used as a SiC plate material.
(実施例2)
 CVD炉を用いて、CVD-SiC被覆黒鉛材を形成する。原料ガスとしてCHSiCl、キャリアガスとしてH、をCVD炉内に供給する。CVD炉の温度は1200℃、圧力は大気圧で成膜する。 成膜の時間は25時間であった。CVD炉から取り出すと、CVD-SiCの厚さは、1000μmであった。得られたCVD-SiC被覆黒鉛材から黒鉛を除去し、これをSiC板材として使用する。
(Example 2)
A CVD-SiC coated graphite material is formed using a CVD furnace. CH 3 SiCl 3 as a source gas and H 2 as a carrier gas are supplied into the CVD furnace. The CVD furnace is formed at a temperature of 1200 ° C. and a pressure of atmospheric pressure. The film formation time was 25 hours. When removed from the CVD furnace, the thickness of the CVD-SiC was 1000 μm. Graphite is removed from the obtained CVD-SiC coated graphite material, and this is used as a SiC plate material.
(実施例3)
 株式会社インターフェイス製、微細結晶SiC膜を準備し、これをSiC板材として使用する。
(Example 3)
A fine crystal SiC film manufactured by Interface Co., Ltd. is prepared and used as a SiC plate material.
(比較例)
 厚さ1500μm、面粗さ Ra20nmの石英ガラスを準備し、下面に銀をスパッタすることによってミラーを形成する。
(Comparative example)
A quartz glass having a thickness of 1500 μm and a surface roughness Ra of 20 nm is prepared, and a mirror is formed by sputtering silver on the lower surface.
 得られた実施例1~3のSiCよりなる支持層の厚さ及び反射層を形成する側である下面の面粗さRaを測定する。
 また、Cu-Kα線を用いたX線回折スペクトルを測定し、最も強いピーク(最大ピーク)を示す面方向、(111)/(311)強度比、(111)ピークの半値幅を計測する。(表1)
The thickness of the obtained support layer made of SiC of Examples 1 to 3 and the surface roughness Ra of the lower surface which is the side on which the reflective layer is formed are measured.
Further, an X-ray diffraction spectrum using Cu—Kα rays is measured, and the plane direction showing the strongest peak (maximum peak), the (111) / (311) intensity ratio, and the half width of the (111) peak are measured. (Table 1)
 分光透過率の測定は、島津製作所製自記分光光度計UV3150を用いる。
 X線回折スペクトルの測定は、リガク製X線回折装置UltimaIVを用いる。
The spectral transmittance is measured using a self-recording spectrophotometer UV3150 manufactured by Shimadzu Corporation.
For the measurement of the X-ray diffraction spectrum, an Rigaku X-ray diffractometer Ultima IV is used.
 実施例1~3のCu-Kα線を用いたX線回折スペクトルのパターンを図6~8に示す。
 図6は実施例1のパターン、図7は実施例2のパターン、図8は実施例3のパターンである。
The X-ray diffraction spectrum patterns using Cu—Kα rays of Examples 1 to 3 are shown in FIGS.
6 shows the pattern of the first embodiment, FIG. 7 shows the pattern of the second embodiment, and FIG. 8 shows the pattern of the third embodiment.
 X線回折スペクトルの結果より、実施例1~3のいずれも最も強いピークが111方向であることが確認される。
 X線回折スペクトルの(111)/(311)強度比は、実施例1が500、実施例2が43、実施例3が3である。X線回折スペクトルの(111)ピークの半値幅は、実施例1が0.136°、実施例2が0.186°、実施例3が0.197°である。この結果より、結晶化度の高さは、
 実施例1>実施例2>実施例3
の順であることがわかる。また、実施例1および実施例2では、(111)ピークの横にあるα-SiCに基づく33.6°のピークが存在しなかったことより、α-SiCの混在が抑制され、SiCよりなる支持層がβ-SiCのみで構成されていることが確認できる。なお、実施例3では、(111)ピークの横にあるα-SiCに基づく33.6°のピークが存在しα-SiCとβ-SiCとが混在していることが確認される。
Figure JPOXMLDOC01-appb-T000001
From the results of the X-ray diffraction spectrum, it is confirmed that the strongest peak in any of Examples 1 to 3 is in the 111 direction.
The (111) / (311) intensity ratio of the X-ray diffraction spectrum is 500 in Example 1, 43 in Example 2, and 3 in Example 3. The half width of the (111) peak of the X-ray diffraction spectrum is 0.136 ° in Example 1, 0.186 ° in Example 2, and 0.197 ° in Example 3. From this result, the high degree of crystallinity is
Example 1> Example 2> Example 3
It can be seen that this is the order. Further, in Example 1 and Example 2, since there was no 33.6 ° peak based on α-SiC beside the (111) peak, the mixture of α-SiC was suppressed, and it was made of SiC. It can be confirmed that the support layer is composed only of β-SiC. In Example 3, a 33.6 ° peak based on α-SiC next to the (111) peak exists, and it is confirmed that α-SiC and β-SiC are mixed.
Figure JPOXMLDOC01-appb-T000001
 また、実施例1~3のSiCよりなる支持層の分光透過率、分光反射率を波長220~850nmで測定する。なお、比較例として石英ガラスの測定も同時に行う。 Further, the spectral transmittance and spectral reflectance of the support layers made of SiC of Examples 1 to 3 are measured at wavelengths of 220 to 850 nm. As a comparative example, quartz glass is also measured simultaneously.
 次に、実施例1~3のミラーの分光反射率の測定を波長220~850nmの範囲で行う。なお、このとき保護層は、測定に影響を与えないので形成していない。 Next, the spectral reflectance of the mirrors of Examples 1 to 3 is measured in the wavelength range of 220 to 850 nm. At this time, the protective layer is not formed because it does not affect the measurement.
 分光反射率の測定は、φ60積分球を用いた島津製作所製自記分光光度計UV3150を用い、220-850nm検出、入射角8°、スリット幅20nmの条件で実施する。 The spectral reflectance is measured using a Shimadzu auto-recorded spectrophotometer UV3150 using a φ60 integrating sphere under the conditions of 220-850 nm detection, an incident angle of 8 °, and a slit width of 20 nm.
 図3は、実施例1~3のSiCよりなる支持層、及び比較例の石英ガラスの分光反射率を示す。この測定では、反射層が形成されていないので、SiCよりなる支持層、及び石英ガラスのみの分光反射率を示している。
 SiCよりなる支持層は、測定した波長域ではいずれも石英より高い。また、結晶化度の高い実施例1、実施例2は、おおよそ500nm以上の波長域で、反射率が実施例3よりも高くなることがわかり、結晶化度が高い方が特に赤外域での反射率に有利であることがわかる。
FIG. 3 shows spectral reflectances of the support layers made of SiC of Examples 1 to 3 and the silica glass of the comparative example. In this measurement, since the reflective layer is not formed, the spectral reflectance of only the support layer made of SiC and quartz glass is shown.
The support layer made of SiC is higher than quartz in the measured wavelength range. In addition, it can be seen that Example 1 and Example 2 with high crystallinity have a reflectance higher than that of Example 3 in the wavelength region of approximately 500 nm or more, and the higher crystallinity is particularly in the infrared region. It turns out that it is advantageous to a reflectance.
 図4は、実施例1~3のSiCよりなる支持層、及び比較例の石英ガラスの分光透過率を示す。試料の厚さは実施例1~3(SiC)は100μm、比較例(石英ガラス)は1500μmである。 FIG. 4 shows spectral transmittances of the support layers made of SiC of Examples 1 to 3 and the quartz glass of the comparative example. The thickness of the sample is 100 μm in Examples 1 to 3 (SiC) and 1500 μm in the comparative example (quartz glass).
 測定した波長域では、石英ガラスよりもSiCよりなる支持層の方が、透過率が低いことが確認される。しかしながら、電磁波の波長が長くなるに従って、結晶性の高い実施例1、実施例2のSiCよりなる支持層では、その差が小さくなっていくことがわかる。このため、結晶性の高いSiCよりなる支持層は、熱エネルギーを伝達しやすい波長が長い側の可視光及び赤外線の透過率が高いことが確認される。
 実際に分光透過率の値は、波長660nmの電磁波に対して、実施例1は57%、実施例2は49%、実施例3は5%、比較例(石英ガラス)では94%である。
In the measured wavelength region, it is confirmed that the transmittance of the support layer made of SiC is lower than that of quartz glass. However, it can be seen that, as the wavelength of the electromagnetic wave becomes longer, the difference becomes smaller in the support layers made of SiC of Examples 1 and 2 having higher crystallinity. For this reason, it is confirmed that the support layer made of SiC having high crystallinity has a high transmittance of visible light and infrared rays on the side having a long wavelength at which heat energy is easily transmitted.
Actually, the spectral transmittance is 57% in Example 1, 49% in Example 2, 5% in Example 3, and 94% in the comparative example (quartz glass) with respect to the electromagnetic wave having a wavelength of 660 nm.
 図5は実施例1~3のミラー、及び比較例の石英ガラスを用いたミラーの分光反射率を示す。実施例及び比較例の試料に入射した光は、支持層(あるいは石英ガラス)を通過し、反射層で反射し、支持層(あるいは石英ガラス)を通過することによって反射される。試料の厚さは実施例1~3(SiC)は100μm、比較例(石英ガラス)は1500μmである。 FIG. 5 shows the spectral reflectance of mirrors using the mirrors of Examples 1 to 3 and the comparative example of quartz glass. The light incident on the samples of Examples and Comparative Examples passes through the support layer (or quartz glass), is reflected by the reflection layer, and is reflected by passing through the support layer (or quartz glass). The thickness of the sample is 100 μm in Examples 1 to 3 (SiC) and 1500 μm in the comparative example (quartz glass).
 実施例1~3のミラーは、いずれも可視光~赤外域の光を反射することができ、ミラーとして好適に利用できることが確認された。また、SiCよりなる支持層の結晶化度の高い実施例1及び実施例2では、赤外よりの可視光~赤外域での反射率が高いことが確認される。
 実際に分光反射率の値は、波長660nmの電磁波に対して、実施例1は72%、実施例2は54%、実施例3は22%、比較例(石英ガラス)では94%である。
All of the mirrors of Examples 1 to 3 were able to reflect light in the visible light to infrared region, and it was confirmed that they can be suitably used as mirrors. Further, in Example 1 and Example 2 in which the support layer made of SiC has a high degree of crystallinity, it is confirmed that the reflectance in the visible light to infrared region from infrared is high.
Actually, the spectral reflectance is 72% in Example 1, 54% in Example 2, 22% in Example 3, and 94% in the comparative example (quartz glass) with respect to the electromagnetic wave having a wavelength of 660 nm.
 以上の結果より、砂漠に存在しうる砂の成分よりも硬いSiCよりなる支持層を用いたミラーは、可視光~赤外域で光を反射することができ、ミラーとして使用できることが確認される。また、Cu-Kα線を用いたX線回折スペクトルにおいて、(111)が最も強いピークを示し、(111)/(311)強度比が40以上である結晶性の高いCVD-SiCよりなる支持層は、可視光~赤外域での透過率が高いので反射層と組み合わせることによって高い反射率を得ることができることが確認される。 From the above results, it is confirmed that the mirror using the support layer made of SiC harder than the sand component that can exist in the desert can reflect light in the visible to infrared region and can be used as a mirror. Further, in the X-ray diffraction spectrum using Cu—Kα ray, (111) shows the strongest peak, and the (111) / (311) intensity ratio is 40 or more, and the support layer is made of highly crystalline CVD-SiC. Since it has a high transmittance in the visible light to infrared region, it is confirmed that a high reflectance can be obtained by combining with a reflective layer.
 1 SiCよりなる支持層
 2 反射層
 3 保護層
 4 支持体
DESCRIPTION OF SYMBOLS 1 Support layer which consists of SiC 2 Reflective layer 3 Protective layer 4 Support body

Claims (9)

  1.  SiCからなる支持層と、該支持層下に備えられた反射層と、該反射層下に備えられた保護層とからなるミラー。 A mirror comprising a support layer made of SiC, a reflective layer provided under the support layer, and a protective layer provided under the reflective layer.
  2.  前記支持層は、CVD-SiCまたはSiC単結晶であることを特徴とする請求項1に記載のミラー。 The mirror according to claim 1, wherein the support layer is CVD-SiC or SiC single crystal.
  3.  前記支持層は、厚さが、1~100μmであることを特徴とする請求項1または請求項2に記載のミラー。 3. The mirror according to claim 1, wherein the support layer has a thickness of 1 to 100 μm.
  4.  前記支持層は、Cu-Kα線を用いたX線回折スペクトルにおいて、(111)が最も強いピークを示し、(111)/(311)強度比が40以上であることを特徴とする請求項1~3のいずれか一項に記載のミラー。 2. The X-ray diffraction spectrum using Cu—Kα ray of the support layer, (111) shows the strongest peak, and (111) / (311) intensity ratio is 40 or more. 4. The mirror according to any one of items 1 to 3.
  5.  前記支持層は、Cu-Kα線を用いたX線回折スペクトルにおいて、(111)ピークの半値幅が0.19°以下であることを特徴とする請求項1~4のいずれか一項に記載のミラー。 The X-ray diffraction spectrum using Cu-Kα rays of the support layer has a (111) peak half-value width of 0.19 ° or less, according to any one of claims 1 to 4. mirror.
  6.  前記反射層は、タングステン、モリブデン、アルミニウム、銀、金、ジルコニウム、チタン、誘電体多層膜から選ばれる1又はそれ以上であることを特徴とする請求項1~5のいずれか一項に記載のミラー。 6. The reflective layer according to claim 1, wherein the reflective layer is one or more selected from tungsten, molybdenum, aluminum, silver, gold, zirconium, titanium, and a dielectric multilayer film. mirror.
  7.  前記保護層は、樹脂からなることを特徴とする請求項1~6のいずれか一項に記載のミラー。 The mirror according to any one of claims 1 to 6, wherein the protective layer is made of a resin.
  8.  樹脂からなる前記保護層の下にさらに前記ミラーを支持する支持体を有すること特徴とする請求項7に記載のミラー。 The mirror according to claim 7, further comprising a support body that supports the mirror under the protective layer made of resin.
  9.  前記ミラーは太陽光発電用であることを特徴とする請求項1~8のいずれか一項に記載のミラー。 The mirror according to any one of claims 1 to 8, wherein the mirror is for photovoltaic power generation.
PCT/JP2014/053164 2013-03-22 2014-02-12 Mirror and method for manufacturing same WO2014148149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013059336 2013-03-22
JP2013-059336 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148149A1 true WO2014148149A1 (en) 2014-09-25

Family

ID=51579843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053164 WO2014148149A1 (en) 2013-03-22 2014-02-12 Mirror and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014148149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033806A1 (en) * 2013-09-06 2015-03-12 イビデン株式会社 Reflective mirror

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661536A (en) * 1979-10-22 1981-05-27 Agency Of Ind Science & Technol Reflection type heat collecting plate and method of manufacturing and using the same
JPS574003A (en) * 1980-06-11 1982-01-09 Toshiba Electric Equip Corp Solar energy absorber
JPS63210276A (en) * 1987-02-26 1988-08-31 Mitsui Eng & Shipbuild Co Ltd Member having sic film
JPH04114971A (en) * 1990-09-05 1992-04-15 Nippon Pillar Packing Co Ltd Composite material
JPH06239609A (en) * 1992-11-23 1994-08-30 Cvd Inc New light transmitting independent beta-sic and preparation thereof
JP2003068594A (en) * 2001-08-29 2003-03-07 Tokai Carbon Co Ltd SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP2012251695A (en) * 2011-06-01 2012-12-20 Konica Minolta Advanced Layers Inc Solar light collection system and mirror

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661536A (en) * 1979-10-22 1981-05-27 Agency Of Ind Science & Technol Reflection type heat collecting plate and method of manufacturing and using the same
JPS574003A (en) * 1980-06-11 1982-01-09 Toshiba Electric Equip Corp Solar energy absorber
JPS63210276A (en) * 1987-02-26 1988-08-31 Mitsui Eng & Shipbuild Co Ltd Member having sic film
JPH04114971A (en) * 1990-09-05 1992-04-15 Nippon Pillar Packing Co Ltd Composite material
JPH06239609A (en) * 1992-11-23 1994-08-30 Cvd Inc New light transmitting independent beta-sic and preparation thereof
JP2003068594A (en) * 2001-08-29 2003-03-07 Tokai Carbon Co Ltd SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP2012251695A (en) * 2011-06-01 2012-12-20 Konica Minolta Advanced Layers Inc Solar light collection system and mirror

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033806A1 (en) * 2013-09-06 2015-03-12 イビデン株式会社 Reflective mirror

Similar Documents

Publication Publication Date Title
Manikandan et al. Enhancing the optical and thermal efficiency of a parabolic trough collector–A review
Weinstein et al. Concentrating solar power
Deubener et al. Glasses for solar energy conversion systems
Khechekhouche et al. Traditional solar distiller improvement by a single external refractor under the climatic conditions of the El Oued region, Algeria
US20110185728A1 (en) High efficiency solar thermal receiver
JP2013136999A (en) Solar light and heat hybrid power generation system
JPWO2009057552A1 (en) Sunlight collection system
WO2013044975A1 (en) Glas tube with infrared light reflective coating, method for manufacturing the glass tube, heat receiver tube with the glass tube, parabolic trough collector with the heat receiver tube and use of the parabolic trough collector
US11118815B2 (en) Hybrid solar thermal and photovoltaic energy collection
Shariar et al. Closed environment design of solar collector trough using lenses and reflectors
Ding et al. Spectrally selective absorption coatings and their applications: A review
Gao et al. Novel methods to harness solar radiation for advanced energy applications
WO2014148149A1 (en) Mirror and method for manufacturing same
AU2012100261A4 (en) Mgctc
CN101614388A (en) Solar energy steam boiler
Raza et al. Effect of heliostats reflectivity on the cost of solar thermal tower power plant
Emetere et al. A short review on solar concentrator for energy generation in tropical coastal belt
Kedar et al. Thermal analysis of parabolic solar cooker with back reflection
ES2636800B1 (en) Solar power generation plant
WO2016010151A1 (en) Mirror
CN103117320B (en) Based on optical waveguide fluorescence concentration structure and its preparation method of cesium triiodide tin
Desai et al. Techniques for enhancing performance of parabolic trough systems: a review
JP3149312U (en) Natural sunlight reflective film
Ryyan et al. Small-Scale Solar Cogeneration Systems
EP2486343B1 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP