WO2014148099A1 - 光源デバイスおよび表示装置、ならびに電子機器 - Google Patents

光源デバイスおよび表示装置、ならびに電子機器 Download PDF

Info

Publication number
WO2014148099A1
WO2014148099A1 PCT/JP2014/051360 JP2014051360W WO2014148099A1 WO 2014148099 A1 WO2014148099 A1 WO 2014148099A1 JP 2014051360 W JP2014051360 W JP 2014051360W WO 2014148099 A1 WO2014148099 A1 WO 2014148099A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
scattering
internal reflection
scattering areas
Prior art date
Application number
PCT/JP2014/051360
Other languages
English (en)
French (fr)
Inventor
龍 宮尾
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2014148099A1 publication Critical patent/WO2014148099A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present disclosure relates to a light source device and a display device that enable stereoscopic viewing and multi-view using a parallax barrier (parallax barrier) method, and an electronic apparatus.
  • parallax barrier parallax barrier
  • a parallax barrier type stereoscopic display device is known as one of the stereoscopic display methods capable of stereoscopic viewing with the naked eye without wearing special glasses.
  • a parallax barrier is disposed opposite to the front surface (display surface side) of a two-dimensional display panel.
  • the general structure of the parallax barrier is provided with shielding portions that shield display image light from the two-dimensional display panel and stripe-shaped openings (slit portions) that transmit display image light alternately in the horizontal direction. Is.
  • a parallax image for stereoscopic viewing (a right-eye viewpoint image and a left-eye viewpoint image in the case of two viewpoints) is spatially divided and displayed on a two-dimensional display panel.
  • Stereoscopic viewing is performed by separating in the horizontal direction by the barrier.
  • Patent Document 1 discloses a light source device in which a scattering pattern is provided on the internal reflection surface of a light guide plate serving as a backlight, and the light guide plate itself has a function equivalent to a parallax barrier.
  • Patent Document 1 when the light guide plate itself has a function equivalent to a parallax barrier, it is preferable that the in-plane distribution of the luminance of light emitted from the light guide plate is uniform.
  • the nonuniformity of the in-plane distribution of luminance is improved by changing the shape of the scattering pattern (depth and length of the pattern) according to the distance from the side surface of the light guide plate on which the light source is arranged. Is going.
  • Patent Document 1 discloses an example in which nonuniformity is improved by changing the shape of a scattering pattern in one direction in one dimension. However, further improvement of nonuniformity is desired.
  • a first light source device includes at least one first light source that emits first illumination light, an internal reflection surface, and a plurality of distribution in an oblique direction within the surface of the internal reflection surface. And a light guide plate that emits the first illumination light to the outside by scattering the light in the plurality of scattering areas.
  • Each of the plurality of scattering areas has a depth with respect to the internal reflection surface, the depth of the plurality of scattering areas changes two-dimensionally, and in the vertical and horizontal directions within the surface of the internal reflection surface It changes asymmetrically.
  • a first display device includes a display unit that displays an image and a light source device that emits light for image display toward the display unit.
  • the first light source device is configured.
  • a first electronic device includes the first display device according to the embodiment of the present disclosure.
  • the first illumination light from the first light source is scattered by the scattering area and is emitted to the outside of the light guide plate.
  • the light guide plate itself can have a function as a parallax barrier. That is, equivalently, it can function as a parallax barrier having the scattering area as an opening (slit).
  • the depth of the plurality of scattering areas changes two-dimensionally and changes asymmetrically in the vertical and horizontal directions within the surface of the internal reflection surface. The non-uniformity of the luminance distribution of the illumination light of 1) is improved.
  • the second light source device is distributed in an oblique direction within the plane of the at least one first light source group that emits the first illumination light, the internal reflection surface, and the internal reflection surface.
  • a light guide plate having a plurality of scattering areas and emitting the first illumination light to the outside by scattering the first illumination light in the plurality of scattering areas.
  • the first light source group includes a plurality of light sources, and each of the plurality of scattering areas has a depth with respect to the internal reflection surface.
  • the depth of the plurality of scattering areas is a structure that changes according to the distance from the first light source group, and the arrangement density of the plurality of light sources is not uniform.
  • a second display device includes a display unit that performs image display, and a light source device that emits light for image display toward the display unit.
  • the second light source device is configured.
  • a second electronic device includes the second display device according to the embodiment of the present disclosure.
  • the first illumination light from the first light source is scattered by the scattering area and is emitted to the outside of the light guide plate.
  • the light guide plate itself can have a function as a parallax barrier. That is, equivalently, it can function as a parallax barrier having the scattering area as an opening (slit).
  • the depth of the plurality of scattering areas is changed according to the distance from the first light source group, and the arrangement density of the plurality of light sources is non-uniform so that the light guide plate is emitted.
  • the non-uniformity of the luminance distribution of the light in-plane distribution of the luminance of the first illumination light
  • the light source plate is provided with the plurality of scattering areas that scatter the first illumination light.
  • the light guide plate itself can have a function as a parallax barrier.
  • the depth of the plurality of scattering areas changes two-dimensionally and changes asymmetrically in the vertical and horizontal directions within the surface of the internal reflection surface, the luminance surface of the first illumination light The non-uniformity of internal distribution can be improved.
  • the light source plate is provided with the plurality of scattering areas that scatter the first illumination light.
  • the light guide plate itself can have a function as a parallax barrier.
  • the first illumination light The unevenness of the in-plane distribution of brightness can be improved.
  • FIG. 3 is a cross-sectional view in the Y direction showing a configuration example of the display device according to the first embodiment of the present disclosure.
  • FIG. It is sectional drawing of the X direction which shows one structural example of a display apparatus. It is a top view which shows the example of 1 structure of a light-guide plate. It is a top view which shows an example of the pixel structure of a display part. It is sectional drawing which shows an example of the radiation
  • the display device includes a display unit 1 that performs image display, and a light source device that is disposed on the back side of the display unit 1 and emits light for image display toward the display unit 1.
  • the light source device includes a first light source 2, a light guide plate 3, and a second light source 7.
  • the light guide plate 3 includes a first internal reflection surface 3 ⁇ / b> A disposed to face the display unit 1, and a second internal reflection surface 3 ⁇ / b> B disposed to face the second light source 7.
  • the light guide plate 3 also has a first end face 51 and a second end face 52 that face each other in the Y direction (FIG. 1). Moreover, it has the 3rd end surface 53 and the 4th end surface 54 which mutually oppose in a X direction (FIG. 2).
  • the display device includes a control circuit for the display unit 1 necessary for display, but the configuration is the same as that of a general display control circuit. Omitted.
  • the light source device includes a control circuit that performs on (lighting) / off (non-lighting) control of the first light source 2 and the second light source 7.
  • the first direction (vertical direction) in the plane parallel to the display surface (pixel array surface) of the display unit 1 or the second internal reflection surface 3B of the light guide plate 3 is the Y direction.
  • a second direction (horizontal direction) orthogonal to the first direction is defined as an X direction (FIG. 2).
  • This display device can arbitrarily and selectively switch between a two-dimensional (2D) display mode on a full screen and a three-dimensional (3D) display mode on a full screen. Switching between the two-dimensional display mode and the three-dimensional display mode is performed by performing switching control of image data displayed on the display unit 1 and switching control of on / off of the first light source 2 and the second light source 7. It is possible.
  • FIG. 5 schematically shows a light emission state from the light source device when only the first light source 2 is turned on (lighted), which corresponds to the three-dimensional display mode.
  • An example of the in-plane emission pattern of the light emitted from the light guide plate 3 when only the first light source 2 is turned on (lighted) is shown in FIG.
  • FIG. 7 schematically shows a light emission state from the light source device when only the second light source 7 is turned on (lit), which corresponds to the two-dimensional display mode.
  • the display unit 1 is configured using a transmissive two-dimensional display panel, for example, a transmissive liquid crystal display panel.
  • a transmissive liquid crystal display panel for example, as illustrated in FIG. 4, the R (red) pixel 11R and the G (green) pixel 11G. , And B (blue) pixels 11 ⁇ / b> B, and the plurality of pixels are arranged in a matrix to form a planar pixel surface 11.
  • the display unit 1 performs two-dimensional image display by modulating light from the light source device for each color according to image data. A plurality of viewpoint images based on three-dimensional image data and images based on two-dimensional image data are selectively switched and displayed on the display unit 1.
  • the three-dimensional image data is data including a plurality of viewpoint images corresponding to a plurality of viewing angle directions in a three-dimensional display, for example.
  • the viewpoint image data is for right-eye display and left-eye display.
  • a composite image including a plurality of stripe-like viewpoint images in one screen is generated and displayed.
  • the first light source 2 is configured using, for example, a fluorescent lamp such as CCFL (Cold Cathode Fluorescent Lamp) or an LED (Light Emitting Diode).
  • the first light source 2 emits the first illumination light L1 (FIG. 1) from the side surface direction toward the inside of the light guide plate 3.
  • At least one first light source 2 may be disposed on the side surface of the light guide plate 3.
  • the first light source 2 is controlled to be turned on (lighted) and turned off (not lighted) in accordance with switching between the two-dimensional display mode and the three-dimensional display mode.
  • the first light source 2 is controlled to be in a lighting state when displaying an image based on the three-dimensional image data on the display unit 1 (in the case of the three-dimensional display mode), and two-dimensionally displayed on the display unit 1.
  • an image based on the image data is displayed (in the case of the two-dimensional display mode)
  • it is controlled to a non-lighting state or a lighting state.
  • the second light source 7 is disposed opposite to the light guide plate 3 on the side where the second internal reflection surface 3B is formed.
  • the second light source 7 emits the second illumination light L10 toward the light guide plate 3 from a direction different from that of the first light source 2. More specifically, the second light source 7 emits the second illumination light L10 from the outside (the back side of the light guide plate 3) toward the second internal reflection surface 3B (FIG. 7). reference).
  • the second light source 7 may be a planar light source. For example, a structure using a light diffusing plate that incorporates a light emitter such as CCFL or LED and diffuses light emitted from the light emitter may be considered.
  • the second light source 7 is controlled to be on (lit) and off (not lit) in accordance with switching between the two-dimensional display mode and the three-dimensional display mode. Specifically, the second light source 7 is controlled to be in a non-lighting state when displaying an image based on the three-dimensional image data on the display unit 1 (in the case of the three-dimensional display mode), and the display unit 1 has 2 When displaying an image based on the two-dimensional image data (in the two-dimensional display mode), the lighting state is controlled.
  • the light guide plate 3 is made of a transparent plastic plate made of, for example, acrylic resin.
  • the surface of the light guide plate 3 other than the second internal reflection surface 3B is transparent over the entire surface. That is, the first internal reflection surface 3A and the four end surfaces are transparent over the entire surface.
  • the first internal reflection surface 3A is mirror-finished over the entire surface, and internally reflects light rays incident at an incident angle satisfying the total reflection condition inside the light guide plate 3 and also does not satisfy the total reflection conditions. Is emitted to the outside.
  • the second internal reflection surface 3 ⁇ / b> B has a scattering area 31 and a total reflection area 32. Light scattering characteristics are added to the scattering area 31 by, for example, printing a scatterer on the surface of the light guide plate 3, laser processing, sandblasting, or the like.
  • the scattering area 31 has a depth with respect to the second internal reflection surface 3B.
  • the scattering area 31 may be a concave scattering area 31 ⁇ / b> A having a depth H ⁇ b> 1 in the inner direction of the light guide plate 3, for example, as illustrated in FIG. 8. Alternatively, for example, as shown in FIG.
  • a convex scattering area 31 ⁇ / b> B having a depth H ⁇ b> 2 in the external direction of the light guide plate 3 may be used.
  • the depths of the plurality of scattering areas 31 change two-dimensionally and in the vertical direction and the horizontal direction in the plane of the second internal reflection surface 3B.
  • the structure changes asymmetrically.
  • the first illumination light L1 from the first light source 2 serves as an opening (slit part) as a parallax barrier.
  • the total reflection area 32 functions as a shielding part.
  • the scattering area 31 and the total reflection area 32 are provided in a pattern having a structure corresponding to a parallax barrier. That is, the total reflection area 32 is provided in a pattern corresponding to a shielding part in the parallax barrier, and the scattering area 31 is provided in a pattern corresponding to an opening in the parallax barrier.
  • the barrier pattern of the parallax barrier for example, a striped pattern in which a large number of slit-like openings are arranged in parallel in the horizontal direction through the shielding part can be used.
  • a plurality of scattering areas 31 distributed in an oblique direction (inclination angle ⁇ , inclination direction P1) in the plane of the second internal reflection surface 3B are striped.
  • An example of the in-plane light emission pattern of the outgoing light from the light guide plate 3 (the outgoing light L20 from the first light source 2 (FIG. 5)) when arranged in parallel is shown.
  • a plurality of scattering areas 31 are provided in a predetermined region between the first end surface 51 and the second end surface 52 in the light guide plate 3. Thereby, the scattering surface 50 is formed by the plurality of scattering areas 31.
  • the total internal reflection area 32 on the first internal reflection surface 3A and the second internal reflection surface 3B totally reflects light incident at an incident angle satisfying the total reflection condition (incident at an incident angle larger than a predetermined critical angle). The reflected light is totally reflected internally).
  • the first illumination light L1 from the first light source 2 incident at an incident angle satisfying the total reflection condition satisfies the total reflection area 32 on the first internal reflection surface 3A and the second internal reflection surface 3B.
  • the light is guided in the lateral direction by total internal reflection.
  • the total reflection area 32 transmits the second illumination light L10 from the second light source 7 and is a light beam that does not satisfy the total reflection condition toward the first internal reflection surface 3A. It comes out.
  • the scattering area 31 scatters and reflects the first illumination light L1 from the first light source 2, and at least part of the first illumination light L1 is the first light.
  • a light beam that does not satisfy the total reflection condition is emitted as an outgoing light beam L20 toward the internal reflection surface 3A.
  • the display unit 1 when displaying in the three-dimensional display mode, the display unit 1 displays an image based on the three-dimensional image data, and uses the first light source 2 and the second light source 7 for three-dimensional display. On (lit) and off (non-lit) are controlled. Specifically, as shown in FIG. 5, the first light source 2 is turned on (lighted) and the second light source 7 is controlled to be turned off (non-lighted). In this state, the first illumination light L1 from the first light source 2 is repeatedly transmitted between the first internal reflection surface 3A and the total internal reflection area 32 of the second internal reflection surface 3B in the light guide plate 3. By being totally reflected, light is guided from one side surface on the side where the first light source 2 is disposed to the opposite side surface.
  • the in-plane light emission pattern of the light emitted from the light guide plate 3 (the light L20 emitted from the first light source 2 (FIG. 5)) is, for example, as shown in FIG.
  • the light guide plate itself can have a function as a parallax barrier.
  • the parallax barrier having the scattering area 31 as an opening (slit part) and the total reflection area 32 as a shielding part.
  • Can function equivalently, three-dimensional display by the parallax barrier method in which the parallax barrier is arranged on the back side of the display unit 1 is performed.
  • the display unit 1 displays an image based on the two-dimensional image data, and the first light source 2 and the second light source 7 are used for two-dimensional display. Controls on (lit) and off (not lit). Specifically, for example, as shown in FIG. 7, the first light source 2 is turned off (non-lighted) and the second light source 7 is controlled to be turned on (lighted). In this case, the second illumination light L10 from the second light source 7 is transmitted through the total reflection area 32 on the second internal reflection surface 3B, so that the total reflection condition is obtained from almost the entire surface of the first internal reflection surface 3A. Is emitted to the outside of the light guide plate 3. That is, the light guide plate 3 functions as a planar light source similar to a normal backlight. Thereby, equivalently, two-dimensional display is performed by a backlight system in which a normal backlight is arranged on the back side of the display unit 1.
  • the second illumination light L10 is emitted from almost the entire surface of the light guide plate 3.
  • the first light source 2 is turned on. Also good. Thereby, for example, when only the second light source 7 is lit, if there is a difference in luminance distribution in the portion corresponding to the scattering area 31 and the total reflection area 32, the lighting state of the first light source 2 is changed. By appropriately adjusting (on / off control or adjusting the lighting amount), it is possible to optimize the luminance distribution over the entire surface.
  • only the second light source 7 may be turned on.
  • the depth of the plurality of scattering areas 31 changes two-dimensionally and is asymmetric in the vertical and horizontal directions in the plane of the second internal reflection surface 3B. It has a changing structure.
  • the reason why such a structure is used will be described by taking the structure of the light guide plate of the comparative example as an example.
  • FIG. 10 shows an example of the structure of the light guide plate 3 according to the first comparative example.
  • a plurality of vertically long scattering areas 31 are arranged in parallel in a stripe shape.
  • the tilt angle ⁇ of the scattering area 31 is 0 ° (the tilt direction P1 is the vertical direction) with respect to the structure of FIG.
  • the luminance distribution of the light emitting surface of the light plate 3 increases in the vicinity of the first end surface 51 and the second end surface 52 close to the first light source 2, and decreases as it goes to the center. Therefore, as shown in FIG.
  • the depth distribution of the scattering area 31 is deepest in the center and shallowest in the vicinity of the first end face 51 and in the vicinity of the second end face 52.
  • the depth distribution of the scattering area 31 is changed one-dimensionally in the vertical direction.
  • FIG. 12 shows the result of simulating the luminance distribution on the light-emitting surface of the light guide plate when the depth distribution shown in FIG. 11 is used.
  • the non-uniformity of the luminance distribution is improved in the central region as shown in FIG. 12, but the non-uniformity of the luminance distribution is sufficiently eliminated in the peripheral portion in the horizontal direction.
  • FIG. 13 shows an example of the depth distribution of the scattering area 31 that further improves the nonuniformity of the luminance distribution in the horizontal direction with respect to the structure shown in FIG.
  • the depth distribution of the scattering area 31 is changed not only in the vertical direction but also in the horizontal direction as compared with the structure of FIG.
  • the depth distribution changes symmetrically in the vertical direction and the horizontal direction.
  • FIG. 14 shows the result of simulating the luminance distribution of the light guide plate light emitting surface in the case of the structure according to the second comparative example.
  • the scattering areas 31 are distributed in an oblique direction (inclination angle ⁇ , inclination direction P1) as in the configuration example shown in FIG. Further, the depth distribution of the scattering area 31 is changed one-dimensionally in the vertical direction as in the structure of FIG.
  • the unevenness of the luminance distribution is not sufficiently eliminated particularly in the peripheral portion of the scattering area 31 in the direction opposite to the inclination direction P1.
  • the luminance tends to decrease in the upper left area and the lower right area.
  • the length distribution of the scattering area 31 is different from the inclination direction P1 as one of the reasons why the luminance distribution is uneven in the direction opposite to the inclination direction P1 of the scattering area 31. It is conceivable that the area changes in the reverse direction (upper left area B and lower right area A). As shown in FIG. 15, the length of the scattering area 31 is relatively long with respect to the length L4C in the central region, the length L4B in the upper left region B, and the length L4B in the lower right region A. Is shorter.
  • FIG. 17 shows the result of simulating the luminance distribution on the light-emitting surface of the light guide plate when the structure shown in FIG. 16 is used.
  • the depth distribution of the scattering area 31 is changed not only in the vertical direction but also in the horizontal direction (the depth distribution is changed two-dimensionally).
  • the depth distribution is changed asymmetrically in the vertical and horizontal directions.
  • the depth of the scattering area 31 increases as the distance between the third end surface 53 and the fourth end surface 54 of the light guide plate 3 increases in the direction opposite to the tilt direction P1 with respect to the central portion. It changes to be deeper.
  • the depth distribution is such that the vicinity of the third end face 53 and the fourth end face 54 is deeper than the vicinity of the first end face 51 and the vicinity of the second end face 52 in the light guide plate 3.
  • the depth of the plurality of scattering areas 31 changes two-dimensionally and changes asymmetrically in the vertical direction and the horizontal direction.
  • the non-uniformity of the in-plane distribution of the luminance of the light L1 can be improved.
  • FIG. 18 shows an example of the depth distribution of the scattering area 31 in the display device according to the first modification of the first embodiment.
  • This first modification shows an example in which the depth distribution is optimized when only one first light source 2 is provided in the structure of FIG.
  • the first light source 2 is provided only on the first end surface 51 is shown.
  • the depth of the area 31 is changed to be deep. In particular, the depth is changed to be deepest in the upper left region. It should be noted that the depth distribution may be similarly optimized when the first light source 2 is provided only on the second end face 52.
  • FIG. 19 shows a configuration example of the display device according to the second modification of the first embodiment.
  • a modification of the arrangement of the first light source 2 is shown.
  • the configuration example in which the first light source 2 is arranged in the vertical direction (Y direction) in the light guide plate 3 has been described.
  • the first light source in the left and right direction (X direction). 2 may be arranged.
  • the first light source 2 is disposed opposite to the first end surface 51 and the second end surface 52 of the light guide plate 3, but in the configuration example of FIG. 19, the third end surface 53 is provided.
  • the first light source 2 is disposed opposite to each of the first end face 54 and the fourth end face 54.
  • the depth of the scattering pattern an asymmetric two-dimensional distribution, the luminance distribution of the light emitted from the light guide plate 3 (first illumination light propagating inside the light guide plate 3)
  • the non-uniformity of the luminance distribution on the light emitting surface of L1 can be improved.
  • first light source 2 may be disposed so as to face only one of the third end face 53 and the fourth end face 54.
  • FIG. 20 shows a configuration example of the display device according to the second embodiment.
  • FIG. 20 shows a configuration example in which a first light source group including a plurality of LEDs (Light Emitting Diodes) 301 is used as the first light source 2.
  • a configuration example is shown in which a first light source group including a plurality of LEDs 301 is provided to be opposed to each of the first end surface 51 and the second end surface 52 of the light guide plate 3.
  • the depth of the scattering area 31 is changed two-dimensionally.
  • the structure changes one-dimensionally in the first direction (Y direction) according to the distance from the light source group.
  • the depth distribution of the scattering area 31 is the same as the structure of FIG.
  • the arrangement density of the LEDs 301 is not uniform. Specifically, the arrangement density of the LEDs 301 is not uniform in the second direction (X direction).
  • the length distribution of the scattering area 31 is changed in a region opposite to the tilt direction P1 (upper left region B and lower right region A). As shown in FIG.
  • the length of the scattering area 31 is relatively long with respect to the length L4C in the central region, the length L4B in the upper left region B, and the length L4B in the lower right region A. Is shorter.
  • the arrangement density of the LEDs 301 is made denser as the length of the scattering area 31 becomes closer to the region. That is, since the length of the scattering area 31 is shorter in the lower right region A on the first end face 51 side (lower end side), the arrangement density of the LEDs 301 becomes denser toward the right side.
  • the arrangement density of the LEDs 301 is made denser toward the left side.
  • the depth of the plurality of scattering areas 31 is changed according to the distance from the first light source group, and the arrangement density of the LEDs 301 is not uniform. Therefore, the non-uniformity of the in-plane distribution of the luminance of the first illumination light L1 can be improved.
  • the in-plane distribution of luminance is non-uniform even in a structure in which the depth of the scattering area 31 is changed one-dimensionally without changing it two-dimensionally. Can improve sex.
  • FIG. 21 shows a configuration example of a display device according to a modification of the second embodiment.
  • first light source 2 first light source group
  • FIG. 21 shows a configuration example of a display device according to a modification of the second embodiment.
  • first light source 2 first light source group
  • the first light source group is provided only on one end face side with respect to the structure of FIG.
  • the arrangement density is optimized.
  • the first light source group is provided only on the first end face 51
  • the depth is changed one-dimensionally so that the depth of the scattering area 31 increases as the distance from the position (first end face 51) where the first light source group is provided increases. I am letting.
  • the upper end (second end face 52) is changed to have the deepest depth.
  • FIG. 21 shows a configuration example of a display device according to a modification of the second embodiment.
  • the arrangement density of the LEDs 301 is made denser toward the right side. Note that optimization may be similarly performed when the first light source group is provided only on the second end face 52.
  • FIG. 22 illustrates an appearance configuration of a television device as an example of such an electronic device.
  • This television apparatus includes a video display screen unit 200 including a front panel 210 and a filter glass 220.
  • the configuration example in which the scattering area 31 and the total reflection area 32 are provided on the second internal reflection surface 3B side in the light guide plate 3 has been described, but the first internal reflection surface 3A side is described.
  • the structure provided in may be sufficient.
  • the case where the first illumination light L1 from the first light source 2 is used for three-dimensional display is exemplified.
  • a different image is displayed depending on the viewing direction.
  • Such so-called multi-view display may be performed.
  • this technique can take the following composition.
  • a display unit for displaying images A light source device that emits light for image display toward the display unit, The light source device is: At least one first light source emitting a first illumination light; A light guide plate having an internal reflection surface and a plurality of scattering areas distributed in an oblique direction within the surface of the internal reflection surface, and emitting the first illumination light to the outside by scattering the plurality of scattering areas.
  • Each of the plurality of scattering areas has a depth relative to the internal reflection surface; The display device in which the depths of the plurality of scattering areas change two-dimensionally and change asymmetrically in a vertical direction and a horizontal direction within the surface of the internal reflection surface.
  • the light guide plate has a first end surface and a second end surface facing each other in the vertical direction, and a third end surface and a fourth end surface facing each other in the horizontal direction,
  • the first light source is disposed opposite to each of the first end surface and the second end surface;
  • the depth of the plurality of scattering areas is deeper in the vicinity of the third end face and the fourth end face than in the vicinity of the first end face and the second end face. Display device.
  • the light guide plate has a first end surface and a second end surface facing each other in the vertical direction, and a third end surface and a fourth end surface facing each other in the horizontal direction,
  • the first light source is provided so as to be opposed to only one of the first end surface and the second end surface; The more the distance from the first end surface or the second end surface where the first light source is provided, and the more the distance in the direction opposite to the inclination direction of the plurality of scattering areas, the more the plurality of The display device according to (1), wherein the depth of the scattering area changes deeply.
  • the display apparatus as described in any one.
  • the display unit is configured to selectively switch and display the plurality of viewpoint images based on 3D image data and an image based on 2D image data;
  • the second light source is controlled to be in a non-lighting state when displaying the plurality of viewpoint images on the display unit, and is lit when displaying an image based on the two-dimensional image data on the display unit.
  • the display device according to (5) controlled by a state.
  • the first light source is controlled to be lit when displaying the plurality of viewpoint images on the display unit, and is not lit when displaying an image based on the two-dimensional image data on the display unit.
  • the display device according to (6) controlled to a state or a lighting state.
  • the first light source group includes a plurality of light sources, Each of the plurality of scattering areas has a depth relative to the internal reflection surface;
  • the depth of the plurality of scattering areas is a structure that changes according to the distance from the first light source group, and A display device in which the arrangement density of the plurality of light sources is not uniform.
  • the depth of the plurality of scattering areas is a structure that changes one-dimensionally in a first direction according to the distance from the first light source group, and The display device according to (8), wherein an arrangement density of the plurality of light sources is not uniform in a second direction orthogonal to the first direction.
  • the plurality of scattering areas includes a region in which the length in the oblique direction becomes relatively short, The display device according to (8) or (9), wherein the closer to the region to be shortened, the denser the arrangement density of the plurality of light sources is.
  • (11) At least one first light source emitting a first illumination light; A light guide plate having an internal reflection surface and a plurality of scattering areas distributed in an oblique direction within the surface of the internal reflection surface, and radiating the first illumination light to the outside by scattering the plurality of scattering areas.
  • Each of the plurality of scattering areas has a depth relative to the internal reflection surface;
  • the depth of the plurality of scattering areas changes two-dimensionally and changes asymmetrically in the vertical and horizontal directions in the plane of the internal reflection surface.
  • At least one first light source group emitting first illumination light;
  • a light guide plate having an internal reflection surface and a plurality of scattering areas distributed in an oblique direction within the surface of the internal reflection surface, and radiating the first illumination light to the outside by scattering the plurality of scattering areas.
  • the first light source group includes a plurality of light sources, Each of the plurality of scattering areas has a depth relative to the internal reflection surface; The depth of the plurality of scattering areas is a structure that changes according to the distance from the first light source group, and The arrangement density of the plurality of light sources is not uniform.
  • Light source device (13) A display device, The display device A display unit for displaying images; A light source device that emits light for image display toward the display unit, The light source device is: At least one first light source emitting a first illumination light; A light guide plate having an internal reflection surface and a plurality of scattering areas distributed in an oblique direction within the surface of the internal reflection surface, and radiating the first illumination light to the outside by scattering the plurality of scattering areas.
  • Each of the plurality of scattering areas has a depth relative to the internal reflection surface;
  • An electronic apparatus in which depths of the plurality of scattering areas change two-dimensionally and change asymmetrically in a vertical direction and a horizontal direction within the surface of the internal reflection surface.
  • a display device The display device A display unit for displaying images;
  • a light source device that emits light for image display toward the display unit, The light source device is: At least one first light source group emitting first illumination light;
  • a light guide plate having an internal reflection surface and a plurality of scattering areas distributed in an oblique direction within the surface of the internal reflection surface, and radiating the first illumination light to the outside by scattering the plurality of scattering areas.
  • the first light source group includes a plurality of light sources, Each of the plurality of scattering areas has a depth relative to the internal reflection surface; The depth of the plurality of scattering areas is a structure that changes according to the distance from the first light source group, and An electronic device in which the arrangement density of the plurality of light sources is not uniform.

Abstract

 画像表示を行う表示部と、前記表示部に向けて画像表示用の光を出射する光源デバイスとを含む。前記光源デバイスは、第1の照明光を発する少なくとも1つの第1の光源と、内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板とを備える。前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有する。前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する。

Description

光源デバイスおよび表示装置、ならびに電子機器
 本開示は、パララックスバリア(視差バリア)方式による立体視やマルチビューを可能にする光源デバイスおよび表示装置、ならびに電子機器に関する。
 特殊な眼鏡を装着する必要がなく、裸眼で立体視が可能な立体表示方式の一つとして、パララックスバリア方式の立体表示装置が知られている。この立体表示装置は、2次元表示パネルの前面(表示面側)に、パララックスバリアを対向配置したものである。パララックスバリアの一般的な構造は、2次元表示パネルからの表示画像光を遮蔽する遮蔽部と、表示画像光を透過するストライプ状の開口部(スリット部)とを水平方向に交互に設けたものである。
 パララックスバリア方式では、2次元表示パネルに立体視用の視差画像(2視点の場合には右眼用視点画像と左眼用視点画像)を空間分割して表示し、その視差画像をパララックスバリアによって水平方向に分離することで立体視が行われる。パララックスバリアにおけるスリット幅などを適切に設定することで、所定の位置、方向から観察者が立体表示装置を見た場合に、スリット部を介して観察者の左右の眼に異なる視差画像の光を別々に入射させることができる。
 なお、2次元表示パネルとして例えば透過型の液晶表示パネルを用いる場合、2次元表示パネルの背面側にパララックスバリアを配置する構成も可能である。この場合、パララックスバリアは、透過型の液晶表示パネルとバックライトとの間に配置される。特許文献1には、バックライトとなる導光板の内部反射面に散乱パターンを設け、導光板自体にパララックスバリアと等価な機能を持たせた光源デバイスが開示されている。
特開2012-226294号公報
 特許文献1に記載のように、導光板自体にパララックスバリアと等価な機能を持たせる構成の場合、導光板を出射する光の輝度の面内分布が均一であることが好ましい。特許文献1では、散乱パターンの形状(パターンの深さや長さ)を光源が配置された導光板の側面からの距離に応じて変化させることで、輝度の面内分布の不均一性の改善を行っている。特許文献1では、散乱パターンの形状を1つの方向に1次元的に変化させることで不均一性の改善を行う例が開示されているが、さらなる不均一性の改善が望まれている。
 従って、パララックスバリアと等価な機能を導光板を用いて実現すると共に、輝度の面内分布の不均一性を改善できるようにした光源デバイスおよび表示装置、ならびに電子機器を提供することが望ましい。
 本開示の一実施の形態に係る第1の光源デバイスは、第1の照明光を発する少なくとも1つの第1の光源と、内部反射面と、内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、第1の照明光を複数の散乱エリアで散乱させることによって外部に出射させる導光板とを備えている。記複数の散乱エリアはそれぞれ、内部反射面に対して深さを有し、複数の散乱エリアの深さが、2次元的に変化し、かつ内部反射面の面内の垂直方向および水平方向に非対称に変化する。
 本開示の一実施の形態に係る第1の表示装置は、画像表示を行う表示部と、表示部に向けて画像表示用の光を出射する光源デバイスとを含み、その光源デバイスを、上記本開示の一実施の形態に係る第1の光源デバイスで構成したものである。
 また、本開示の一実施の形態に係る第1の電子機器は、上記本開示の一実施の形態に係る第1の表示装置を備えたものである。
 本開示の一実施の形態に係る第1の光源デバイス、表示装置または電子機器では、第1の光源からの第1の照明光が散乱エリアによって散乱され、導光板の外部に出射される。これにより、第1の照明光に対しては、導光板自体にパララックスバリアとしての機能を持たせることが可能となる。すなわち、等価的に、散乱エリアを開口部(スリット部)としたパララックスバリアとして機能させることができる。これにより、3次元表示やマルチビューに対応することが可能となる。
 また、複数の散乱エリアの深さが、2次元的に変化し、かつ内部反射面の面内の垂直方向および水平方向に非対称に変化することで、導光板を出射する光の輝度分布(第1の照明光の輝度の面内分布)の不均一性が改善される。
 本開示の一実施の形態に係る第2の光源デバイスは、第1の照明光を発する少なくとも1つの第1の光源群と、内部反射面と、内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、第1の照明光を複数の散乱エリアで散乱させることによって外部に出射させる導光板とを備えている。第1の光源群は、複数の光源を含み、複数の散乱エリアはそれぞれ、内部反射面に対して深さを有する。複数の散乱エリアの深さが、第1の光源群からの距離に応じて変化する構造とされ、かつ、複数の光源の配置密度が不均一となっている。
 本開示の一実施の形態に係る第2の表示装置は、画像表示を行う表示部と、表示部に向けて画像表示用の光を出射する光源デバイスとを含み、その光源デバイスを、上記本開示の一実施の形態に係る第2の光源デバイスで構成したものである。
 また、本開示の一実施の形態に係る第2の電子機器は、上記本開示の一実施の形態に係る第2の表示装置を備えたものである。
 本開示の一実施の形態に係る第2の光源デバイス、表示装置または電子機器では、第1の光源からの第1の照明光が散乱エリアによって散乱され、導光板の外部に出射される。これにより、第1の照明光に対しては、導光板自体にパララックスバリアとしての機能を持たせることが可能となる。すなわち、等価的に、散乱エリアを開口部(スリット部)としたパララックスバリアとして機能させることができる。これにより、3次元表示やマルチビューに対応することが可能となる。
 また、複数の散乱エリアの深さが、第1の光源群からの距離に応じて変化する構造とされ、かつ、複数の光源の配置密度が不均一となっていることで、導光板を出射する光の輝度分布(第1の照明光の輝度の面内分布)の不均一性が改善される。
 本開示の一実施の形態に係る第1の光源デバイス、表示装置または電子機器によれば、導光板に第1の照明光を散乱させる複数の散乱エリアを設けるようにしたので、第1の照明光に対しては、等価的に、導光板自体にパララックスバリアとしての機能を持たせることができる。
 また、複数の散乱エリアの深さが、2次元的に変化し、かつ内部反射面の面内の垂直方向および水平方向に非対称に変化するようにしたので、第1の照明光の輝度の面内分布の不均一性を改善できる。
 本開示の一実施の形態に係る第2の光源デバイス、表示装置または電子機器によれば、導光板に第1の照明光を散乱させる複数の散乱エリアを設けるようにしたので、第1の照明光に対しては、等価的に、導光板自体にパララックスバリアとしての機能を持たせることができる。
 また、複数の散乱エリアの深さが、第1の光源群からの距離に応じて変化する構造とし、かつ、複数の光源の配置密度が不均一となるようにしたので、第1の照明光の輝度の面内分布の不均一性を改善できる。
本開示の第1の実施の形態に係る表示装置の一構成例を示すY方向の断面図である。 表示装置の一構成例を示すX方向の断面図である。 導光板の一構成例を示す平面図である。 表示部の画素構造の一例を示す平面図である。 第1の光源のみをオン(点灯)状態にした場合における光線の出射状態の一例を示す断面図である。 第1の光源のみをオン(点灯)状態にした場合における面内発光パターンの一例を示す平面図である。 第2の光源のみをオン(点灯)状態にした場合における光線の出射状態の一例を示す断面図である。 散乱エリアの構造の第1の例を示す断面図である。 散乱エリアの構造の第2の例を示す断面図である。 第1の比較例に係る導光板の構造の一例を示す平面図である。 第1の比較例に係る導光板における散乱エリアの深さ分布の一例を示す平面図である。 図11に示した深さ分布にした場合における導光板発光面の輝度分布をシミュレーションした結果を示す特性図である。 図11に示した第1の比較例に係る構造に対して、輝度の面内分布の不均一性を改善する散乱エリアの深さ分布の一例を示す平面図である。 第2の比較例に係る構造にした場合における導光板発光面の輝度分布をシミュレーションした結果を示す特性図である。 散乱エリアの長さについての説明図である。 散乱エリアが斜め方向に分布する場合において、輝度の面内分布の不均一性を改善する散乱エリアの深さ分布の一例を示す平面図である。 図16に示した深さ分布にした場合における導光板発光面の輝度分布をシミュレーションした結果を示す特性図である。 第1の実施の形態の第1の変形例に係る表示装置における散乱エリアの深さ分布の一例を示す平面図である。 第1の実施の形態の第2の変形例に係る表示装置の一構成例を示す平面図である。 第2の実施の形態に係る表示装置の一構成例を示す平面図である。 第2の実施の形態の変形例に係る表示装置の一構成例を示す平面図である。 電子機器の一例を示す外観図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
  1.1 表示装置の全体構成
  1.2 表示装置の基本動作
  1.3 導光板の構造の具体例
  1.4 第1の実施の形態の変形例
 2.第2の実施の形態
  2.1 導光板の構造の具体例
  2.2 第2の実施の形態の変形例
 3.その他の実施の形態
 
<1.第1の実施の形態>
[1.1 表示装置の全体構成]
 図1および図2は、本開示の第1の実施の形態に係る表示装置の一構成例を示している。この表示装置は、画像表示を行う表示部1と、表示部1の背面側に配置され、表示部1に向けて画像表示用の光を出射する光源デバイスとを備えている。光源デバイスは、第1の光源2と、導光板3と、第2の光源7とを備えている。導光板3は、表示部1に対向配置される第1の内部反射面3Aと、第2の光源7に対向配置される第2の内部反射面3Bとを有している。導光板3はまた、Y方向(図1)において互いに対向する第1の端面51と第2の端面52とを有している。また、X方向(図2)において互いに対向する第3の端面53と第4の端面54とを有している。なお、この表示装置は、その他にも、表示に必要な表示部1用の制御回路等を備えているが、その構成は一般的な表示用の制御回路等と同様であるので、その説明を省略する。また、光源デバイスは、図示しないが、第1の光源2および第2の光源7のオン(点灯)・オフ(非点灯)制御を行う制御回路を備えている。
 なお、本実施の形態では、表示部1の表示面(画素の配列面)、または導光板3の第2の内部反射面3Bに平行な面内における第1の方向(垂直方向)をY方向(図1)、第1の方向に直交する第2の方向(水平方向)をX方向(図2)とする。
 この表示装置は、全画面での2次元(2D)表示モードと、全画面での3次元(3D)表示モードとを任意に選択的に切り替えることが可能とされている。2次元表示モードと3次元表示モードとの切り替えは、表示部1に表示する画像データの切り替え制御と、第1の光源2および第2の光源7のオン・オフの切り替え制御とを行うことで可能となっている。図5は、第1の光源2のみをオン(点灯)状態にした場合における光源デバイスからの光線の出射状態を模式的に示しているが、これは3次元表示モードに対応している。この第1の光源2のみをオン(点灯)状態にした場合における導光板3からの出射光の面内発光パターンの一例を、図6に示す。図7は、第2の光源7のみをオン(点灯)状態にした場合における光源デバイスからの光線の出射状態を模式的に示しているが、これは2次元表示モードに対応している。
 表示部1は、透過型の2次元表示パネル、例えば透過型の液晶表示パネルを用いて構成され、例えば図4に示したように、R(赤色)用画素11R、G(緑色)用画素11G、およびB(青色)用画素11Bからなる画素を複数有し、それら複数の画素がマトリクス状に配置されて、平面状の画素面11が形成されている。表示部1は、光源デバイスからの光を画像データに応じて画素を各色ごとに変調させることで2次元的な画像表示を行うようになっている。表示部1には、3次元画像データに基づく複数の視点画像と2次元画像データに基づく画像とが任意に選択的に切り替え表示されるようになっている。なお、3次元画像データとは、例えば、3次元表示における複数の視野角方向に対応した複数の視点画像を含むデータである。例えば2眼式の3次元表示を行う場合、右眼表示用と左眼表示用の視点画像のデータである。3次元表示モードでの表示を行う場合には、例えば、1画面内にストライプ状の複数の視点画像が含まれる合成画像を生成して表示する。
 第1の光源2は、例えば、CCFL(Cold Cathode Fluorescent Lamp)等の蛍光ランプや、LED(Light Emitting Diode)を用いて構成されている。第1の光源2は、導光板3内部に向けて側面方向から第1の照明光L1(図1)を照射するようになっている。第1の光源2は、導光板3の側面に少なくとも1つ配置されていれば良い。本実施の形態では、第1の光源2が、導光板3の第1の端面51と第2の端面52とのそれぞれに対向配置して設けられている場合を例に説明する。第1の光源2は、2次元表示モードと3次元表示モードとの切り替えに応じて、オン(点灯)・オフ(非点灯)制御されるようになっている。具体的には第1の光源2は、表示部1に3次元画像データに基づく画像を表示する場合(3次元表示モードの場合)には点灯状態に制御されると共に、表示部1に2次元画像データに基づく画像を表示する場合(2次元表示モードの場合)には非点灯状態または点灯状態に制御されるようになっている。
 第2の光源7は、導光板3に対して第2の内部反射面3Bが形成された側に対向配置されている。第2の光源7は、第1の光源2とは異なる方向から導光板3に向けて第2の照明光L10を照射するようになっている。より具体的には、第2の光源7は、第2の内部反射面3Bに向けて外側(導光板3の背面側)から第2の照明光L10を照射するようになっている(図7参照)。第2の光源7は、面状光源であれば良い。例えばCCFLやLED等の発光体を内蔵し、その発光体からの出射光を拡散する光拡散板とを用いた構造などが考えられる。第2の光源7は、2次元表示モードと3次元表示モードとの切り替えに応じて、オン(点灯)・オフ(非点灯)制御されるようになっている。具体的には第2の光源7は、表示部1に3次元画像データに基づく画像を表示する場合(3次元表示モードの場合)には非点灯状態に制御されると共に、表示部1に2次元画像データに基づく画像を表示する場合(2次元表示モードの場合)には点灯状態に制御されるようになっている。
 導光板3は、例えばアクリル樹脂等による透明なプラスチック板により構成されている。導光板3は、第2の内部反射面3B以外の面は、全面に亘って透明とされている。すなわち、第1の内部反射面3Aと4つの端面は全面に亘って透明とされている。
 第1の内部反射面3Aは、全面に亘って鏡面加工がなされており、導光板3内部において全反射条件を満たす入射角で入射した光線を内部全反射させると共に、全反射条件から外れた光線を外部に出射するようになっている。
 第2の内部反射面3Bは、散乱エリア31と全反射エリア32とを有している。散乱エリア31は、例えば、導光板3の表面に散乱体を印刷したものやレーザ加工やサンドブラスト加工などすることで、光散乱特性が付加されている。散乱エリア31は、第2の内部反射面3Bに対して深さを有している。散乱エリア31は、例えば図8に示したように、導光板3の内部方向に深さH1を有する凹形状の散乱エリア31Aであってもよい。または、例えば図9に示したように、導光板3の外部方向に深さH2を有する凸形状の散乱エリア31Bであってもよい。本実施の形態では、後述する図16に示すように、複数の散乱エリア31の深さが、2次元的に変化し、かつ第2の内部反射面3Bの面内の垂直方向および水平方向に非対称に変化する構造とされている。
 第2の内部反射面3Bにおいて、散乱エリア31は3次元表示モードにしたときに、第1の光源2からの第1の照明光L1に対してパララックスバリアとしての開口部(スリット部)として機能し、全反射エリア32は遮蔽部として機能するようになっている。第2の内部反射面3Bにおいて、散乱エリア31と全反射エリア32は、パララックスバリアに相当する構造となるようなパターンで設けられている。すなわち、全反射エリア32はパララックスバリアにおける遮蔽部に相当するパターンで設けられ、散乱エリア31はパララックスバリアにおける開口部に相当するパターンで設けられている。
 なお、パララックスバリアのバリアパターンとしては例えば、スリット状の開口部が遮蔽部を介して水平方向に多数、並列配置されたようなストライプ状のパターンのものを用いることができる。図6では、図3に示したように第2の内部反射面3Bの面内において斜め方向(傾斜角θ、傾斜方向P1)に延在するように分布する散乱エリア31を複数、ストライプ状に並列配置した場合における、導光板3からの出射光(第1の光源2からの出射光L20(図5))の面内発光パターンの一例を示している。散乱エリア31は、図3に示したように、導光板3における第1の端面51と第2の端面52との間の所定の領域に複数設けられている。これにより、複数の散乱エリア31によって散乱面50が形成されている。
 第1の内部反射面3Aと第2の内部反射面3Bにおける全反射エリア32は、全反射条件を満たす入射角で入射した光線を内部全反射させる(所定の臨界角よりも大きい入射角で入射した光線を内部全反射させる)ようになっている。これにより、全反射条件を満たす入射角で入射した第1の光源2からの第1の照明光L1は、第1の内部反射面3Aと第2の内部反射面3Bにおける全反射エリア32との間で、内部全反射により側面方向に導光されるようになっている。全反射エリア32はまた、図7に示したように、第2の光源7からの第2の照明光L10を透過させ、第1の内部反射面3Aに向けて全反射条件を外れた光線として出射するようになっている。
 散乱エリア31は、図1および図5に示したように、第1の光源2からの第1の照明光L1を散乱反射させ、第1の照明光L1の少なくとも一部の光を第1の内部反射面3Aに向けて全反射条件を外れた光線を出射光線L20として出射するようになっている。
[1.2 表示装置の基本動作]
 この表示装置において、3次元表示モードでの表示を行う場合、表示部1には3次元画像データに基づく画像表示を行うと共に、第1の光源2と第2の光源7とを3次元表示用にオン(点灯)・オフ(非点灯)制御する。具体的には、図5に示したように、第1の光源2をオン(点灯)状態にすると共に、第2の光源7をオフ(非点灯)状態に制御する。この状態では、第1の光源2からの第1の照明光L1は、導光板3において第1の内部反射面3Aと第2の内部反射面3Bの全反射エリア32との間で、繰り返し内部全反射されることにより、第1の光源2が配置された側の一方の側面から、対向する他方の側面へと導光される。その一方で、第1の光源2による第1の照明光L1の一部が、導光板3の散乱エリア31で散乱反射されることで、導光板3の第1の内部反射面3Aを透過し、導光板3の外部に出射される。この場合の導光板3からの出射光(第1の光源2からの出射光L20(図5))の面内発光パターンは、例えば図6に示したようになる。これにより、導光板自体にパララックスバリアとしての機能を持たせることが可能となる。すなわち、第1の光源2による第1の照明光L1に対しては、等価的に、散乱エリア31を開口部(スリット部)とし、全反射エリア32を遮蔽部とするようなパララックスバリアとして機能させることができる。これにより、等価的に、表示部1の背面側にパララックスバリアを配置したパララックスバリア方式による3次元表示が行われる。
 一方、2次元表示モードでの表示を行う場合には、表示部1には2次元画像データに基づく画像表示を行うと共に、第1の光源2と第2の光源7とを2次元表示用にオン(点灯)・オフ(非点灯)制御する。具体的には、例えば図7に示したように、第1の光源2をオフ(非点灯)状態にすると共に、第2の光源7をオン(点灯)状態に制御する。この場合、第2の光源7による第2の照明光L10が、第2の内部反射面3Bにおける全反射エリア32を透過することで、第1の内部反射面3Aのほぼ全面から、全反射条件を外れた光線となって導光板3の外部に出射される。すなわち導光板3は、通常のバックライトと同様の面状光源として機能する。これにより、等価的に、表示部1の背面側に通常のバックライトを配置したバックライト方式による2次元表示が行われる。
 なお、第2の光源7のみを点灯させたとしても導光板3のほぼ全面から、第2の照明光L10が出射されるが、必要に応じて、第1の光源2を点灯するようにしても良い。これにより、例えば、第2の光源7のみを点灯しただけでは、散乱エリア31と全反射エリア32とに対応する部分で輝度分布に差が生じるような場合、第1の光源2の点灯状態を適宜調整する(オン・オフ制御、または点灯量の調整をする)ことで全面に亘って輝度分布を最適化することが可能である。ただし、2次元表示を行う場合において、例えば表示部1側で十分に輝度の補正を行える場合には、第2の光源7のみの点灯で構わない。
[1.3 導光板の構造の具体例]
 本実施の形態では、図16に示すように、複数の散乱エリア31の深さが、2次元的に変化し、かつ第2の内部反射面3Bの面内の垂直方向および水平方向に非対称に変化する構造とされている。以下、このような構造にする理由を、比較例の導光板の構造を例に説明する。
 図10は、第1の比較例に係る導光板3の構造の一例を示している。この第1の比較例では、縦長の散乱エリア31が複数、ストライプ状に並列配置した構造とされている。図3の構造に対して散乱エリア31の傾斜角θが0°(傾斜方向P1が垂直方向)となっている。このように散乱エリア31が縦長に分布し、かつ、第1の光源2が導光板3の第1の端面51と第2の端面52とのそれぞれに対向配置して設けられている場合、導光板3の発光面の輝度分布は、第1の光源2に近い第1の端面51付近および第2の端面52付近では輝度が高くなり、中央部に行くほど、輝度が低下する。そこで、図11に示したように、散乱エリア31の深さ分布を中央部で最も深く、第1の端面51付近および第2の端面52付近で最も浅くなるようにする構造が考えられる。図11の構造では、散乱エリア31の深さ分布を垂直方向に一次元的に変化させている。
 図12は、図11に示した深さ分布にした場合における導光板発光面の輝度分布をシミュレーションした結果を示している。図11のような深さ分布にした場合、図12に示したように中央領域では輝度分布の不均一性が改善されているものの、水平方向の周辺部では輝度分布の不均一が十分に解消されない。
 図13は、図11に示した構造に対して、さらに水平方向の輝度分布の不均一性を改善する散乱エリア31の深さ分布の一例を示している。図13の構造では、図11の構造に対して、垂直方向だけでなく、水平方向にも散乱エリア31の深さ分布を変化させている。2次元的に散乱エリア31の深さ分布を最適化することで、水平方向の輝度分布の不均一を改善することができる。図13の構造では、垂直方向および水平方向に対称的に深さ分布が変化している。
 図14は、第2の比較例に係る構造にした場合における導光板発光面の輝度分布をシミュレーションした結果を示している。この第2の比較例では、図3に示した構成例と同様に散乱エリア31が斜め方向(傾斜角θ、傾斜方向P1)に分布している。さらに、図11の構造と同様に散乱エリア31の深さ分布は垂直方向に一次元的に変化させている。このような構造の場合、図14に示したように、特に散乱エリア31の傾斜方向P1とは逆方向の周辺部では輝度分布の不均一が十分に解消されない。特に、左上の領域と右下の領域とで輝度が低下する傾向となる。このように散乱エリア31の傾斜方向P1とは逆方向に輝度分布の不均一が生じる理由の1つとして、図15に示したように、散乱エリア31の長さ分布が、傾斜方向P1とは逆方向の領域(左上の領域Bと右下の領域A)で変化していることが考えられる。図15に示したように、散乱エリア31の長さは、中央領域での長さL4Cに対して相対的に、左上の領域Bにおける長さL4Bと、右下の領域Aにおける長さL4Bとが短くなっている。
 図14に示した輝度分布の不均一は、散乱エリア31の深さ分布を図16に示したような構造にすることにより改善できる。図17は、図16の構造にした場合における導光板発光面の輝度分布をシミュレーションした結果を示している。図16の構造では、垂直方向だけでなく、水平方向にも散乱エリア31の深さ分布を変化させている(2次元的に深さ分布を変化させている)。かつ、深さ分布を垂直方向および水平方向に非対称に変化させている。図16の構造では、導光板3における第3の端面53と第4の端面54との間で中心部に対して傾斜方向P1とは逆方向に距離が離れるほど、散乱エリア31の深さが深くなるように変化している。また、導光板3における第1の端面51付近および第2の端面52付近に比べて、第3の端面53および第4の端面54付近の方が深くなるような深さ分布となっている。
 以上のように、本実施の形態によれば、複数の散乱エリア31の深さが、2次元的に変化し、かつ垂直方向および水平方向に非対称に変化するようにしたので、第1の照明光L1の輝度の面内分布の不均一性を改善できる。
[1.4 第1の実施の形態の変形例]
 図18は、第1の実施の形態の第1の変形例に係る表示装置における散乱エリア31の深さ分布の一例を示している。この第1の変形例では、図16の構造に対して、第1の光源2が1つのみ設けられた場合に深さ分布を最適化した例を示している。一例として、第1の光源2を第1の端面51にのみ設けた例を示している。図18の構造では、第1の光源2が設けられた位置(第1の端面51)からの距離が離れるほど、かつ、散乱エリア31の傾斜方向P1とは逆方向に距離が離れるほど、散乱エリア31の深さが深くなるように変化させている。特に左上の領域で最も深さが深くなるように変化させている。なお、第2の端面52にのみ第1の光源2を設けた場合にも同様に深さ分布を最適化すればよい。
 図19は、第1の実施の形態の第2の変形例に係る表示装置の一構成例を示している。特に、第1の光源2の配置の変形例を示している。以上の説明では、導光板3における上下方向(Y方向)に第1の光源2を配置した構成例を述べたが、図19に示したように、左右方向(X方向)に第1の光源2を配置するようにしても良い。図1の構成例では導光板3の第1の端面51と第2の端面52とのそれぞれに、第1の光源2が対向配置されていたが、図19の構成例では第3の端面53と第4の端面54とのそれぞれに、第1の光源2が対向配置されている。このような構成であっても、散乱パターンの深さを、非対称な2次元分布にすることで、導光板3を出射する光の輝度分布(導光板3の内部を伝搬する第1の照明光L1の発光面における輝度分布)の不均一性を改善することができる。
 なお、第3の端面53と第4の端面54とのいずれか一方にのみ、第1の光源2を対向配置するようにしてもよい。
<2.第2の実施の形態>
 次に、第2の実施の形態に係る表示装置について説明する。なお、上記第1の実施の形態に係る表示装置と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
[2.1 導光板の構造の具体例]
 図20は、第2の実施の形態に係る表示装置の一構成例を示している。図20では、第1の光源2として、複数のLED(Light Emitting Diode)301を含む第1の光源群を用いた構成例を示している。特に、複数のLED301を含む第1の光源群が、導光板3の第1の端面51と第2の端面52とのそれぞれに対向配置して設けられている構成例を示している。
 上記第1の実施の形態の図16の構成例では、散乱エリア31の深さを2次元的に変化させるようにしたが、図20の構成例では、散乱エリア31の深さが、第1の光源群からの距離に応じて第1の方向(Y方向)に1次元的に変化する構造とされている。散乱エリア31の深さ分布は、図11の構造と同様になっている。かつ、LED301の配置密度を不均一にしている。具体的には、LED301の配置密度を、第2の方向(X方向)に不均一にしている。図15に示したように、散乱エリア31の長さ分布は、傾斜方向P1とは逆方向の領域(左上の領域Bと右下の領域A)で変化させている。図15に示したように、散乱エリア31の長さは、中央領域での長さL4Cに対して相対的に、左上の領域Bにおける長さL4Bと、右下の領域Aにおける長さL4Bとが短くなっている。図20の構成例では、散乱エリア31の長さが短くなる領域に近くなるほど、LED301の配置密度が密になるようにしている。すなわち、第1の端面51側(下端側)においては右下の領域Aにおいて散乱エリア31の長さが短くなっているため、右側に行くほどLED301の配置密度を密にしている。一方、第2の端面52側(上端側)においては左上の領域Bにおいて散乱エリア31の長さが短くなっているため、左側に行くほどLED301の配置密度を密にしている。
 このように、本実施の形態によれば、複数の散乱エリア31の深さが、第1の光源群からの距離に応じて変化する構造とし、かつ、LED301の配置密度が不均一となるようにしたので、第1の照明光L1の輝度の面内分布の不均一性を改善できる。LED301の配置密度を最適化するようにしたことで、散乱エリア31の深さを2次元的に変化させることなく1次元的に変化させた構造であっても、輝度の面内分布の不均一性を改善できる。
[2.2 第2の実施の形態の変形例]
 図21は、第2の実施の形態の変形例に係る表示装置の一構成例を示している。この第1の変形例では、図20の構造に対して、第1の光源2(第1の光源群)が1つの端面側にのみ設けられた場合に散乱エリア31の深さ分布およびLED301の配置密度を最適化した例を示している。一例として、第1の光源群を第1の端面51にのみ設けた例を示している。図21の構造では、第1の光源群が設けられた位置(第1の端面51)からの距離が離れるほど、散乱エリア31の深さが深くなるように、1次元的に深さを変化させている。特に上端(第2の端面52)で最も深さが深くなるように変化させている。また、図20の場合と同様に、右下の領域A(図15参照)において散乱エリア31の長さが短くなっているため、右側に行くほどLED301の配置密度を密にしている。なお、第2の端面52にのみ第1の光源群を設けた場合にも同様に最適化すればよい。
<3.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
 例えば、上記各実施の形態に係る表示装置はいずれも、表示機能を有する種々の電子機器に適用可能である。図22は、そのような電子機器の一例としてテレビジョン装置の外観構成を表している。このテレビジョン装置は、フロントパネル210およびフィルターガラス220を含む映像表示画面部200を備えている。
 また、上記各実施の形態では、導光板3において、散乱エリア31と全反射エリア32とを第2の内部反射面3B側に設けた構成例について説明したが、第1の内部反射面3A側に設けた構成であっても良い。
 また、上記各実施の形態では、第1の光源2からの第1の照明光L1を3次元表示に用いる場合を例にしたが、3次元表示に代えて、見る方向によって違う映像を表示させるような、いわゆるマルチビュー表示を行うようにしても良い。
 また例えば、本技術は以下のような構成を取ることができる。
(1)
 画像表示を行う表示部と、
 前記表示部に向けて画像表示用の光を出射する光源デバイスと
 を含み、
 前記光源デバイスは、
 第1の照明光を発する少なくとも1つの第1の光源と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
 表示装置。
(2)
 前記導光板は、前記垂直方向において互いに対向する第1の端面および第2の端面と、前記水平方向において互いに対向する第3の端面および第4の端面とを有し、
 前記第1の光源が、前記第1の端面と前記第2の端面とのそれぞれに対向配置して設けられ、
 前記複数の散乱エリアの深さが、前記第3の端面と前記第4の端面との間で中心部に対して前記複数の散乱エリアの傾斜方向とは逆方向に距離が離れるほど、前記複数の散乱エリアの深さが深く変化する
 上記(1)に記載の表示装置。
(3)
 前記複数の散乱エリアの深さが、前記第1の端面および前記第2の端面付近に比べて、前記第3の端面および前記第4の端面付近の方が深くなる
 上記(2)に記載の表示装置。
(4)
 前記導光板は、前記垂直方向において互いに対向する第1の端面および第2の端面と、前記水平方向において互いに対向する第3の端面および第4の端面とを有し、
 前記第1の光源が、前記第1の端面と前記第2の端面とのいずれか一方にのみ対向配置して設けられ、
 前記第1の光源が設けられた前記第1の端面または前記第2の端面からの距離が離れるほど、かつ、前記複数の散乱エリアの傾斜方向とは逆方向に距離が離れるほど、前記複数の散乱エリアの深さが深く変化する
 上記(1)に記載の表示装置。
(5)
 前記導光板に対向配置され、前記第1の光源とは異なる方向から前記導光板に向けて第2の照明光を照射する第2の光源をさらに備えた
 上記(1)ないし(4)のいずれか1つに記載の表示装置。
(6)
 前記表示部は、3次元画像データに基づく前記複数の視点画像と2次元画像データに基づく画像とを選択的に切り替え表示するものであり、
 前記第2の光源は、前記表示部に前記複数の視点画像を表示する場合には、非点灯状態に制御され、前記表示部に前記2次元画像データに基づく画像を表示する場合には、点灯状態に制御される
 上記(5)に記載の表示装置。
(7)
 前記第1の光源は、前記表示部に前記複数の視点画像を表示する場合には、点灯状態に制御され、前記表示部に前記2次元画像データに基づく画像を表示する場合には、非点灯状態または点灯状態に制御される
 上記(6)に記載の表示装置。
(8)
 画像表示を行う表示部と、
 前記表示部に向けて画像表示用の光を出射する光源デバイスと
 を含み、
 前記光源デバイスは、
 第1の照明光を発する少なくとも1つの第1の光源群と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記第1の光源群は、複数の光源を含み、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
 前記複数の光源の配置密度が不均一となっている
 表示装置。
(9)
 前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて第1の方向に1次元的に変化する構造とされ、かつ、
 前記複数の光源の配置密度が、前記第1の方向に直交する第2の方向に不均一となっている
 上記(8)に記載の表示装置。
(10)
 前記複数の散乱エリアは、前記斜め方向の長さが相対的に短くなる領域を含み、
 前記短くなる領域に近くなるほど、前記複数の光源の配置密度が密になる
 上記(8)または(9)に記載の表示装置。
(11)
 第1の照明光を発する少なくとも1つの第1の光源と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
 光源デバイス
(12)
 第1の照明光を発する少なくとも1つの第1の光源群と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記第1の光源群は、複数の光源を含み、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
 前記複数の光源の配置密度が不均一となっている
 光源デバイス
(13)
 表示装置を備え、
 前記表示装置は、
 画像表示を行う表示部と、
 前記表示部に向けて画像表示用の光を出射する光源デバイスと
 を含み、
 前記光源デバイスは、
 第1の照明光を発する少なくとも1つの第1の光源と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
 電子機器。
(14)
 表示装置を備え、
 前記表示装置は、
 画像表示を行う表示部と、
 前記表示部に向けて画像表示用の光を出射する光源デバイスと
 を含み、
 前記光源デバイスは、
 第1の照明光を発する少なくとも1つの第1の光源群と、
 内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
 を備え、
 前記第1の光源群は、複数の光源を含み、
 前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
 前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
 前記複数の光源の配置密度が不均一となっている
 電子機器。
 本出願は、日本国特許庁において2013年3月18日に出願された日本特許出願番号第2013-55347号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (14)

  1.  画像表示を行う表示部と、
     前記表示部に向けて画像表示用の光を出射する光源デバイスと
     を含み、
     前記光源デバイスは、
     第1の照明光を発する少なくとも1つの第1の光源と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
     表示装置。
  2.  前記導光板は、前記垂直方向において互いに対向する第1の端面および第2の端面と、前記水平方向において互いに対向する第3の端面および第4の端面とを有し、
     前記第1の光源が、前記第1の端面と前記第2の端面とのそれぞれに対向配置して設けられ、
     前記複数の散乱エリアの深さが、前記第3の端面と前記第4の端面との間で中心部に対して前記複数の散乱エリアの傾斜方向とは逆方向に距離が離れるほど、前記複数の散乱エリアの深さが深く変化する
     請求項1に記載の表示装置。
  3.  前記複数の散乱エリアの深さが、前記第1の端面および前記第2の端面付近に比べて、前記第3の端面および前記第4の端面付近の方が深くなる
     請求項2に記載の表示装置。
  4.  前記導光板は、前記垂直方向において互いに対向する第1の端面および第2の端面と、前記水平方向において互いに対向する第3の端面および第4の端面とを有し、
     前記第1の光源が、前記第1の端面と前記第2の端面とのいずれか一方にのみ対向配置して設けられ、
     前記第1の光源が設けられた前記第1の端面または前記第2の端面からの距離が離れるほど、かつ、前記複数の散乱エリアの傾斜方向とは逆方向に距離が離れるほど、前記複数の散乱エリアの深さが深く変化する
     請求項1に記載の表示装置。
  5.  前記導光板に対向配置され、前記第1の光源とは異なる方向から前記導光板に向けて第2の照明光を照射する第2の光源をさらに備えた
     請求項1に記載の表示装置。
  6.  前記表示部は、3次元画像データに基づく前記複数の視点画像と2次元画像データに基づく画像とを選択的に切り替え表示するものであり、
     前記第2の光源は、前記表示部に前記複数の視点画像を表示する場合には、非点灯状態に制御され、前記表示部に前記2次元画像データに基づく画像を表示する場合には、点灯状態に制御される
     請求項5に記載の表示装置。
  7.  前記第1の光源は、前記表示部に前記複数の視点画像を表示する場合には、点灯状態に制御され、前記表示部に前記2次元画像データに基づく画像を表示する場合には、非点灯状態または点灯状態に制御される
     請求項6に記載の表示装置。
  8.  画像表示を行う表示部と、
     前記表示部に向けて画像表示用の光を出射する光源デバイスと
     を含み、
     前記光源デバイスは、
     第1の照明光を発する少なくとも1つの第1の光源群と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記第1の光源群は、複数の光源を含み、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
     前記複数の光源の配置密度が不均一となっている
     表示装置。
  9.  前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて第1の方向に1次元的に変化する構造とされ、かつ、
     前記複数の光源の配置密度が、前記第1の方向に直交する第2の方向に不均一となっている
     請求項8に記載の表示装置。
  10.  前記複数の散乱エリアは、前記斜め方向の長さが相対的に短くなる領域を含み、
     前記短くなる領域に近くなるほど、前記複数の光源の配置密度が密になる
     請求項8に記載の表示装置。
  11.  第1の照明光を発する少なくとも1つの第1の光源と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
     光源デバイス。
  12.  第1の照明光を発する少なくとも1つの第1の光源群と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記第1の光源群は、複数の光源を含み、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
     前記複数の光源の配置密度が不均一となっている
     光源デバイス。
  13.  表示装置を備え、
     前記表示装置は、
     画像表示を行う表示部と、
     前記表示部に向けて画像表示用の光を出射する光源デバイスと
     を含み、
     前記光源デバイスは、
     第1の照明光を発する少なくとも1つの第1の光源と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、2次元的に変化し、かつ前記内部反射面の面内の垂直方向および水平方向に非対称に変化する
     電子機器。
  14.  表示装置を備え、
     前記表示装置は、
     画像表示を行う表示部と、
     前記表示部に向けて画像表示用の光を出射する光源デバイスと
     を含み、
     前記光源デバイスは、
     第1の照明光を発する少なくとも1つの第1の光源群と、
     内部反射面と、前記内部反射面の面内で斜め方向に分布する複数の散乱エリアとを有し、前記第1の照明光を前記複数の散乱エリアで散乱させることによって外部に出射させる導光板と
     を備え、
     前記第1の光源群は、複数の光源を含み、
     前記複数の散乱エリアはそれぞれ、前記内部反射面に対して深さを有し、
     前記複数の散乱エリアの深さが、前記第1の光源群からの距離に応じて変化する構造とされ、かつ、
     前記複数の光源の配置密度が不均一となっている
     電子機器。
PCT/JP2014/051360 2013-03-18 2014-01-23 光源デバイスおよび表示装置、ならびに電子機器 WO2014148099A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-055347 2013-03-18
JP2013055347 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148099A1 true WO2014148099A1 (ja) 2014-09-25

Family

ID=51579795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051360 WO2014148099A1 (ja) 2013-03-18 2014-01-23 光源デバイスおよび表示装置、ならびに電子機器

Country Status (2)

Country Link
TW (1) TW201437687A (ja)
WO (1) WO2014148099A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9804317B2 (en) * 2015-02-06 2017-10-31 Japan Display Inc. Display apparatus
TWI666479B (zh) * 2019-01-30 2019-07-21 友達光電股份有限公司 光源組件及使用其之背光模組

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145932A (ja) * 1995-11-24 1997-06-06 Konica Corp バックライト及び光学シート
JP2007507071A (ja) * 2003-09-27 2007-03-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3dディスプレイ装置用バックライト
JP2007242336A (ja) * 2006-03-07 2007-09-20 Yowa:Kk 面光源用導光板とそれを用いた面光源装置
WO2011066692A1 (zh) * 2009-12-01 2011-06-09 深圳帝光电子有限公司 均匀高亮度侧光式背光源
JP2012237961A (ja) * 2011-04-28 2012-12-06 Sony Corp 表示装置および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145932A (ja) * 1995-11-24 1997-06-06 Konica Corp バックライト及び光学シート
JP2007507071A (ja) * 2003-09-27 2007-03-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3dディスプレイ装置用バックライト
JP2007242336A (ja) * 2006-03-07 2007-09-20 Yowa:Kk 面光源用導光板とそれを用いた面光源装置
WO2011066692A1 (zh) * 2009-12-01 2011-06-09 深圳帝光电子有限公司 均匀高亮度侧光式背光源
JP2012237961A (ja) * 2011-04-28 2012-12-06 Sony Corp 表示装置および電子機器

Also Published As

Publication number Publication date
TW201437687A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP4973794B1 (ja) 表示装置
JP4930631B2 (ja) 立体表示装置
JP5674023B2 (ja) 光源デバイスおよび表示装置
JP4998644B2 (ja) 立体表示装置
JP5545068B2 (ja) 光源デバイスおよび立体表示装置
JP2014103049A (ja) 光源デバイスおよび表示装置、ならびに電子機器
US20130083260A1 (en) Light source device, display apparatus and electronic equipment
JP2014029356A (ja) 光源デバイスおよび表示装置、ならびに電子機器
JP2012237961A (ja) 表示装置および電子機器
JP2013104917A (ja) 光源デバイスおよび表示装置、ならびに電子機器
US20130076999A1 (en) Light source device, display device and electronic apparatus
JP2012226294A (ja) 光源デバイスおよび表示装置、ならびに電子機器
US20120306861A1 (en) Light source device and display
JP2012226199A (ja) 光源デバイスおよび表示装置
KR20140089523A (ko) 표시 장치 및 전자 기기
JP2013105005A (ja) 光源デバイスおよび表示装置、ならびに電子機器
US20130121027A1 (en) Light source device, display device, and electronic apparatus
JP2012252937A (ja) 光源デバイスおよび表示装置
JP2013104914A (ja) 光源デバイスおよび表示装置、ならびに電子機器
WO2014148099A1 (ja) 光源デバイスおよび表示装置、ならびに電子機器
WO2014112258A1 (ja) 表示装置および電子機器
JP2011033803A (ja) 立体画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP