WO2014147944A1 - Transmission device, reception device, and transmission/reception device - Google Patents

Transmission device, reception device, and transmission/reception device Download PDF

Info

Publication number
WO2014147944A1
WO2014147944A1 PCT/JP2014/000648 JP2014000648W WO2014147944A1 WO 2014147944 A1 WO2014147944 A1 WO 2014147944A1 JP 2014000648 W JP2014000648 W JP 2014000648W WO 2014147944 A1 WO2014147944 A1 WO 2014147944A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmission
directivity
guard interval
unit
Prior art date
Application number
PCT/JP2014/000648
Other languages
French (fr)
Japanese (ja)
Inventor
薫 塚本
加藤 泰典
彰浩 岡崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2014147944A1 publication Critical patent/WO2014147944A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining

Definitions

  • the present invention relates to a transmission apparatus, a reception apparatus, and a transmission / reception apparatus that perform wireless communication using a directional antenna having sharp directivity.
  • time variation of radio propagation path characteristics called fading occurs due to the influence of reflection / diffraction due to weather conditions and structures, movement of a transmitting station and a receiving station, and the like.
  • fading fluctuation becomes slow in time (slow fading), and the received signal power may be lowered for a long time.
  • the received power reduction time is longer than the interleave length (frame length)
  • a powerful error correction code such as a convolutional code or a turbo code that is a random error correction code cannot be obtained.
  • Reception performance is degraded.
  • Patent Document 1 changes the directivity of the mobile station antenna with a time length shorter than the interleave length to give a fading fluctuation in the frame, thereby improving the effect of the error correction code. It is disclosed.
  • a transmission apparatus includes a variable directivity antenna that can change a radiation pattern, a guard interval insertion unit that inserts a guard interval that does not contribute to data transmission, and a guard.
  • a control unit is provided that instructs the variable directivity antenna to change the radiation pattern in the guard section based on the position information of the section insertion.
  • the transmission apparatus of the present invention includes a plurality of antennas, a selector that selects an antenna from the plurality of antennas, a guard interval insertion unit that inserts a guard interval that does not contribute to data transmission in a frame, and a selector based on position information of guard interval insertion Is provided with a control unit for instructing to change the antenna in the guard section.
  • the receiving apparatus of the present invention detects a guard section that does not contribute to frame data transmission from a received signal received by a directional variable antenna, a directional variable antenna, and detects a directional variable antenna by a synchronizing section. And a control unit that instructs to change the radiation pattern in the guard section.
  • the receiving apparatus of the present invention also detects a guard interval that does not contribute to frame data transmission from a plurality of antennas, a selection combining unit that selects an antenna from a plurality of antennas, and a received signal received by any one of the plurality of antennas.
  • the control unit is configured to instruct the selective combining unit to change the antenna in the guard section.
  • a transmission / reception apparatus that transmits and receives data using time division duplex that distinguishes between transmission and reception by time-division of the same frequency includes a variable directivity antenna that can change a radiation pattern, uplink and downlink In a gap section provided to prevent a link collision, a control unit that instructs the variable directivity antenna to change the radiation pattern is provided.
  • the present invention has an effect that it is possible to suppress deterioration of reception performance at the time of change by changing the radiation pattern or the antenna in the guard section.
  • FIG. 3 is a diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing an example of a frame configuration in Embodiments 1 to 6.
  • FIG. 6 is a diagram illustrating a modification of the transmission apparatus according to Embodiment 1.
  • FIG. 6 is a diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2.
  • FIG. 10 is a diagram illustrating a modification of the transmission apparatus according to the second embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of a transmission device according to a third embodiment.
  • FIG. 10 is a diagram illustrating a modification of the transmission device according to the third embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of a receiving device according to a fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device according to a fifth embodiment.
  • FIG. 20 is a diagram illustrating a configuration example of a receiving device according to a sixth embodiment.
  • FIG. 38 is a diagram illustrating a modification of the reception device in the sixth embodiment.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments.
  • FIG. 11 is a diagram showing a modification of the transmission device and the reception device in the first to sixth embodiments.
  • FIG. 1 is a diagram illustrating a configuration of a transmission device 1 according to the present embodiment.
  • the transmission device 1 constitutes a transmission part of a communication device that transmits and receives radio signals.
  • the communication device is movable, for example, a mobile station of a mobile communication system.
  • the transmission apparatus 1 includes an encoding unit 11, an interleaving unit 12, a modulation unit 13, a guard interval insertion unit 14, a directivity variable antenna 15, and a directivity control unit 16, which will be described later.
  • FIG. 2 is a diagram illustrating an example of a frame format when the transmission apparatus 1 transmits a signal in the present embodiment.
  • the frame 2 includes radiation pattern A data 21, a guard interval 22 corresponding to a radiation pattern change period, and radiation pattern B data 23.
  • the frame length of frame 2 in the present embodiment is described as being the same as the interleave length, the present invention is not limited to this.
  • the number of guard sections 22 is described as 1. However, the number of guard sections 22 may be two or more.
  • the guard section 22 is described as being in the center of the frame 2, but the guard section 22 may be anywhere in the frame 2.
  • the encoding unit 11 performs error correction encoding on a transmission bit sequence that is an input signal.
  • the error correction coding method may be any error correction coding method such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code.
  • the interleaving unit 12 performs an interleaving process on the signal encoded by the encoding unit 11.
  • the modulation unit 13 performs a predetermined modulation process on the signal interleaved by the interleaving unit 12.
  • the guard interval insertion unit 14 inserts a guard interval 22 that does not contribute to data transmission into the signal modulated by the modulation unit 13 and notifies the directivity control unit 16 serving as a control unit of the guard interval insertion position.
  • the directivity variable antenna 15 transmits a signal after insertion of a guard section to a communication partner radio apparatus (not shown, hereinafter referred to as an opposite apparatus).
  • the directivity variable antenna 15 has a sharp directivity, and can change the radiation pattern as in APAA (Active Phased Array Antenna).
  • the directivity control unit 16 controls the directivity of the variable directivity antenna 15 and changes the radiation pattern of the variable directivity antenna 15.
  • Guard section insertion position information that is a guard section insertion position is received from the guard section insertion unit 14.
  • a change instruction signal for changing the radiation pattern at the guard section insertion position is output to the directivity variable antenna 15.
  • the transmission device 1 further includes a transmission control unit 17 that manages the operation timing of the entire transmission device 1, as shown in FIG. You may make it notify the guard area insertion position information which is the information of a guard area insertion position from the transmission control part 17 to the guard area insertion part 14 and the directivity control part 16.
  • Embodiment 2 In the first embodiment, a transmission apparatus provided with a single directivity variable antenna has been described. In this embodiment, a transmission apparatus provided with a plurality of fixed directivity antennas will be described. In the present embodiment, parts different from those of transmitting apparatus 1 in Embodiment 1 will be described.
  • FIG. 4 is a diagram illustrating an example of the transmission apparatus according to the second embodiment.
  • the transmitter 1a shown in FIG. 4 adds a selector 31 to the transmitter 1 described in the first embodiment, and replaces the directivity control unit 16 with an antenna selection unit 35 serving as a control unit. Are replaced by directional fixed antennas 32 to 34, respectively.
  • the directional fixed antennas 32 to 34 are arranged so that the radiation patterns are in different directions.
  • the directivity fixed antennas 32 to 34 are arranged so that the radiation patterns are in different directions. Therefore, unlike the directivity variable antenna 15 in the first embodiment, the radiation patterns need not be changeable. However, it is assumed that the directivity fixed antennas 32 to 34 have sharp directivities similar to the directivity variable antenna 15.
  • the selector 31 outputs the output signal of the guard interval insertion unit 14 to one of the directivity fixed antennas 32 to 34 designated by the antenna selection unit 35. Further, the directivity fixed antennas 32 to 34 not designated by the antenna selector 35 are set to 0 output (no output signal). Directional fixed antennas 32 to 34 transmit the output signal of selector 31 to the opposing device (not shown).
  • the selector 31 has been described as selecting one of the directional fixed antennas 32 to 34, but the present invention does not limit the number of antennas to be selected.
  • the antenna selection unit 35 selects a directional fixed antenna to be used for transmission from among the directional fixed antennas 32 to 34 and notifies the selector 31 of it. By this notification, the antenna selection unit 35 changes the directivity fixed antenna to be selected at the insertion position of the guard section 22 in the frame 2 notified from the guard section insertion unit 14.
  • the number of directional fixed antennas has been described as three, the number of antennas is not limited to this, and the same effect can be obtained even when the number of directional fixed antennas is N (N is an integer of 2 or more). .
  • the transmission device 1a further includes a transmission control unit 36 that manages the operation timing of the entire transmission device 1a, The control section 36 may notify the guard section insertion section 14 and the antenna selection section 35 of the guard section insertion position.
  • Embodiment 3 In the second embodiment, the transmission apparatus including a plurality of directional fixed antennas that do not change the radiation pattern has been described. However, in the present embodiment, the transmission apparatus including a plurality of directional variable antennas that can change the radiation pattern. Will be described. In the present embodiment, parts different from those of transmitting apparatus 1 in Embodiment 1 will be described.
  • the output signal from the modulation unit 41 is divided into two signals, a first modulation unit output signal and a second modulation unit output signal, and is input to the guard interval insertion unit 42.
  • the guard interval insertion unit 42 inserts a guard interval into the input first modulation unit output signal and outputs it to the directivity variable antenna 15 as a first guard interval insertion signal.
  • a guard interval is inserted into the modulation unit output signal and is output to the directivity variable antenna 43 as a second guard interval insertion signal.
  • the directivity variable antenna 15 and the directivity variable antenna 43 each change a radiation pattern according to an instruction from the directivity control unit 44 and transmit a transmission signal.
  • the modulation unit 41 performs predetermined modulation processing on the output signal of the interleaving unit 12 to generate a first modulation signal and a second modulation signal that are modulation signals for two antennas (directivity variable antennas 15 and 43). To do.
  • the guard interval insertion unit 42 inserts the guard interval 22 in the same manner as the guard interval insertion unit 14 for each of the first modulation signal and the second modulation signal, which are modulation signals for two antennas, A section insertion signal and a second guard section insertion signal are generated. Then, the first guard interval insertion signal and the second guard interval insertion signal are output to the directivity variable antenna 15 and the directivity variable antenna 43, respectively, and the guard interval insertion position is notified to the directivity control unit 44.
  • Directivity variable antennas 15 and 43 transmit signals after insertion of the guard interval to the opposing device (not shown).
  • the directivity control unit 44 controls the directivity so that the directivity variable antennas 15 and 43 change the radiation pattern in the guard section 22 based on the guard section insertion position notified from the guard section insertion unit 42.
  • the directivity control unit 44 controls the directivity of the directivity variable antennas 15 and 43 to change the radiation pattern. At this time, the directivity control unit 44 changes the radiation pattern of the directivity variable antennas 15 and 43 at the guard section insertion position in the frame 2 notified from the guard section insertion unit 42.
  • the directivity control unit 44 changes the radiation pattern of the directivity variable antennas 15 and 43 so that the radiation patterns of the directivity variable antennas 15 and 43 after the directivity change are in different directions. Can be controlled.
  • each directional variable antenna independently changes its own radiation pattern in the guard section 22 that does not contribute to data transmission, thereby changing the radiation pattern.
  • N is an integer of 2 or more.
  • the directivity control unit 44 sets the radiation pattern of each directivity variable antenna so that at least one radiation pattern of each directivity variable antenna is in a different direction. If it is changed, it is possible to reduce the probability that the reception power of the transmission signals from the respective directivity variable antennas in the opposite device is all reduced, so that a transmission diversity effect can be obtained.
  • the transmission device 1b further includes a transmission control unit 45 that manages the operation timing of the entire transmission device 1b. You may make it notify the guard area insertion part 42 and the directivity control part 44 from the transmission control part 45 to a guard area insertion position.
  • Embodiment 4 In the first to third embodiments, the transmission device 1 including a directional antenna has been described. In the present embodiment, a reception device 5 including a directional antenna will be described.
  • the receiving apparatus 5 of the present embodiment includes a variable directivity antenna 51, a directivity control unit 52, a synchronization unit 53, a demodulation unit 54, a deinterleave unit 55, and a decoding unit 56. .
  • variable directivity antenna 51 receives a signal transmitted from a counter device (not shown).
  • the directivity variable antenna 51 has a sharp directivity, and the radiation pattern can be changed.
  • the frame format in this embodiment is the same as the frame format in FIG.
  • the directivity control unit 52 serving as a control unit controls the directivity of the directivity variable antenna 51.
  • the synchronization unit 53 detects the position where the guard section 22 is inserted in the frame 2 from the signal received by the directivity variable antenna 51, and uses the section information indicating the guard section insertion position as guard section insertion position information. 52 is notified.
  • the demodulator 54 demodulates the data portions 21 and 23 obtained by removing the guard section 22 from the signal received by the directivity variable antenna 51.
  • the deinterleave unit 55 performs deinterleave processing on the signal demodulated by the demodulator 54.
  • the decoding unit 56 performs error correction decoding processing on the signal deinterleaved by the deinterleaving unit 55 to obtain a final received signal.
  • the directivity control unit 52 controls the directivity of the directivity variable antenna 51 to change the radiation pattern. At this time, the radiation pattern of the directivity variable antenna 51 is changed in the guard interval based on the guard interval insertion position information notified from the synchronization unit 53.
  • Embodiment 5 In the fourth embodiment, a receiving apparatus including a single directivity variable antenna has been described. In the present embodiment, a receiving apparatus including a plurality of fixed directivity antennas will be described.
  • the receiving device 5a shown in FIG. 9 adds a selection / synthesis unit 66 to the receiving device 5 shown in FIG. 8, the directivity variable antenna 51 is changed to the directivity fixed antennas 61 to 64, and the directivity control unit 52 is added.
  • the antenna selector 65 is replaced with each one. In the present embodiment, parts different from those of the fourth embodiment will be described.
  • the directional fixed antennas 61 to 64 are arranged so that the radiation patterns are in different directions.
  • the directivity fixed antennas 61 to 64 need not be able to change the radiation pattern.
  • the directivity fixed antennas 61 to 64 have a sharp directivity similar to the directivity variable antenna 51.
  • Directional fixed antennas 61 to 64 receive signals transmitted from a counter device (not shown). Each reception signal received by the directional fixed antennas 61 to 64 is input to the selection / synthesis unit 66.
  • the selection / combination unit 66 selects one of received signals from the directional fixed antennas 61 to 64 or combines some of them according to an instruction from the antenna selection unit 65 serving as a control unit, and outputs the selected signal to the synchronization unit 53 To do.
  • all the reception signals from the directivity fixed antennas 61 to 64 designated by the antenna selection unit 65 may be added, averaged, or according to the reception signal power. Weighted addition may be performed.
  • the antenna selecting unit 65 selects a directional fixed antenna to be used for reception from the directional fixed antennas 61 to 64 and notifies the selection combining unit 66 of the selected directional fixed antenna.
  • the directivity fixed antenna selection method of the antenna control unit 65 may be random, the directivity fixed antennas 61 to 64 may be periodically selected in order, and the reception power of the directivity fixed antennas 61 to 64 is large. An antenna may be selected. At this time, based on the information of the detected guard interval notified from the synchronization unit 53, control is performed to change the directional fixed antenna used in the guard interval.
  • the number of directional fixed antennas has been described as four, the number of antennas is not limited to this.
  • the number of directional fixed antennas may be N (N is an integer of 2 or more).
  • Embodiment 6 In the fifth embodiment, the reception apparatus including a plurality of directional fixed antennas that do not change the radiation pattern has been described. However, in the present embodiment, the reception apparatus including a plurality of directional variable antennas that can change the radiation pattern. Will be described.
  • the receiving apparatus 5b illustrated in FIG. 10 adds a directivity variable antenna 71 and a synchronization unit 73 to the receiving apparatus 5 described in the fourth embodiment, and demodulates the directivity control unit 52 to the directivity control unit 72.
  • the unit 53 is replaced with a demodulation unit 74.
  • the directivity variable antenna 71 has the same function as the directivity variable antenna 51, and the synchronization unit 73 has the same function as the synchronization unit 53. In the present embodiment, parts different from the fifth embodiment will be described.
  • Directivity variable antennas 51 and 71 receive a signal transmitted from a counter device (not shown).
  • the reception signal received by the directivity variable antenna 51 is input to the synchronization unit 53, and the reception signal received by the directivity variable antenna 71 is input to the synchronization unit 73.
  • the demodulator 74 performs a demodulation process corresponding to the modulation method of the opposite apparatus on the input signals.
  • the directivity control unit 72 controls the directivity of the directivity variable antennas 51 and 71 to change the radiation pattern. At this time, the radiation pattern of the directivity variable antenna 51 is changed in the guard section detected by the synchronization unit 53, and the radiation pattern of the directivity variable antenna 71 is changed in the guard section detected by the synchronization unit 73.
  • the radiation patterns of the directivity variable antennas 51 and 71 after the radiation pattern change can be controlled to be in different directions.
  • FIG. 11 is a diagram illustrating a modification of the receiving apparatus in FIG.
  • the receiving device 5c shown in FIG. 11 is obtained by replacing the receiving device 5b shown in FIG. 10 with the directivity control unit 72 replaced with the directivity control unit 81 and the synchronization units 53 and 73 with the synchronization unit 82. is there.
  • the other constituent elements are the same as those provided in the above-described receiving device 5b.
  • the two synchronization units 53 and 73 are provided, and the guard interval is detected for each of the received signals received by the directivity variable antennas 51 and 71. However, in FIG. One guard interval position is detected from the received signal.
  • the synchronization unit 82 detects the guard section position from each received signal received by the directivity variable antennas 51 and 71. At this time, the guard section position output by the synchronization unit 82 is a value common to the received signals received by the directivity variable antennas 51 and 71.
  • the directivity control unit 81 controls the directivity of the directivity variable antennas 51 and 71 to change the radiation pattern. At this time, the radiation patterns of the directivity variable antennas 51 and 71 are changed in the guard section detected by the synchronization unit 82. That is, the radiation patterns of the directivity variable antennas 51 and 71 are changed simultaneously. In addition, the radiation patterns of the directivity variable antennas 51 and 71 after the directivity change are controlled to be in different directions.
  • each directional variable antenna independently changes the radiation pattern of the directional variable antenna in the guard section 22 that does not contribute to data transmission. It is possible to remove the influence of the discontinuity of the received signal due to the change of the radiation pattern of the directivity variable antenna on the data portion, thereby suppressing the reception performance deterioration when the radiation pattern is changed.
  • reception diversity it is possible to eliminate the influence of the discontinuity of the received signal accompanying the change of the radiation pattern on the data portion.
  • the time of spatial multiplexing it is possible to remove the influence of the discontinuity of the received signal accompanying the change of the radiation pattern on the data portion for each stream.
  • N is an integer of 2 or more.
  • the directivity control unit 81 sets the radiation pattern of each directivity variable antenna so that at least one radiation pattern of each directivity variable antenna has a different direction. If it is changed, it is possible to reduce the probability that the received power in each directional variable antenna is all reduced, so that it is possible to obtain a reception diversity effect.
  • FIG. 12 is a diagram showing a modification of the frame format in the first to sixth embodiments.
  • the frame format 2a shown in FIG. 12 is obtained by replacing the data 21 and 23 with an OFDM (Orthogonal Frequency Division Multiplexing) symbol 91 for the frame 2 shown in FIG.
  • the OFDM symbol 91 includes a guard interval (GI: Guard Interval) 92 and data 93.
  • the guard interval 92 may be any signal such as a signal obtained by copying the latter half of the data 93 (cyclic prefix) or null (no transmission section).
  • the directivity control units 16, 44, 52, 72, 81 and the antenna selection units 35, 65 are not limited to the guard section 22 in the frame 2, In the interval 92, the radiation pattern of the directional variable antenna is changed or the directional fixed antenna used for transmission / reception is changed.
  • the number of OFDM symbols in the frame 2a is four, the present invention is not limited to this.
  • the number of OFDM symbols may be N (N is an integer of 2 or more).
  • the number of guard intervals for changing the radiation pattern is set to 1, but this is not restrictive.
  • the number of guard intervals for changing the radiation pattern may be M (M is an integer of 2 or more).
  • the OFDM symbol 91 in FIG. 12 may be of any format that uses a guard interval, such as a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • FIG. 13 is a diagram showing a modification of the frame format of FIG.
  • a frame format 2b shown in FIG. 13 is obtained by adding a guard section 101 to the frame 2a shown in FIG.
  • the guard interval 101 does not contribute to data transmission, and therefore may be any signal, a copy of a data portion, a random sequence, or '0' (no transmission).
  • the guard interval 101 is added immediately before an arbitrary guard interval 92, and the number of guard intervals in the frame may be any number greater than or equal to one.
  • the directivity control units 16, 44, 52, 72, 81 and the antenna selection units 35, 65 are replaced with an arbitrary guard in the frame 2 b instead of the guard section 22 in the frame 2.
  • the radiation pattern of the directional variable antenna is changed or the directional fixed antenna used for transmission / reception is changed.
  • FIG. 14 is a diagram showing a modified example different from FIGS. 12 and 13 of the frame format of the first to sixth embodiments.
  • the frame format 2c shown in FIG. 14 is obtained by adding a synchronization word (SyncWord) 111 to the front of the frame 2 shown in FIG.
  • Other components are the same as those provided in the frame 2.
  • the synchronization word 111 is a signal for detecting the head of the frame 2c in the receiving device, and is a signal known in the receiving device, a signal in which the same signal is repeated in time series, null (no transmission), or the like. Any signal may be used as long as it can detect the frame head position.
  • the synchronization units 53, 73, and 82 first detect the head position of the frame 2c from the synchronization word 111, and specify the position of the guard section 22 from the head position of the frame 2c.
  • FIG. 15 is a diagram showing a modification of the frame format of FIG.
  • FIG. 16 is a diagram showing a modification of the frame format of FIG.
  • the frame format 2d shown in FIG. 15 is obtained by adding a sync word 111 in front of the frame 2a shown in FIG. 12, and the frame format 2e shown in FIG. 16 is the frame format shown in FIG.
  • a synchronization word (SyncWord) 111 is added in front of 2b.
  • the synchronization units 53, 73 and 82 When using the frame format of FIG. 15 and FIG. 16, as in the case of using the frame format of FIG. 14, the synchronization units 53, 73 and 82 first detect the head position of the frame 2 d or 2 e from the synchronization word 111, The positions of the guard interval 92 and the guard section 101 are specified from the head position of the frame 2d or 2e.
  • FIG. 17 is a diagram showing a modification of the frame format in the first to sixth embodiments.
  • the frame format 2 f shown in FIG. 17 is a frame in a TDD (Time Division Division Duplex: time division duplex that distinguishes transmission from reception by time division of the same frequency) using the same frequency in the uplink and downlink.
  • TDD Time Division Division Duplex: time division duplex that distinguishes transmission from reception by time division of the same frequency
  • This is a format in which the data 21 and 23 are replaced with the uplink signal 94 and the downlink signal 95 for the frame 2 shown in FIG.
  • the guard section 22 corresponds to a gap section provided for preventing collision between the uplink and the downlink.
  • the transmission-side guard interval insertion units 14 and 42 in Embodiments 1 to 6 are not necessary. Further, it is not necessary to notify the guard section insertion position information from the receiving-side synchronization units 53, 73, 82 to the directivity control units 52, 72, 81 and the antenna selection unit 65 in the first to sixth embodiments.
  • the directivity control units 16, 44, 52, 72, and 81 and the antenna selection units 35 and 65 are the gap section portions.
  • the radiation pattern of the directivity variable antenna is changed or the directivity fixed antenna used for transmission / reception is changed.
  • FIG. 18 is a diagram illustrating a modification of the transmission device and the reception device in the TDD scheme.
  • the transmission device and the reception device are collectively referred to as a communication device (transmission / reception device) 1c.
  • the directivity variable antenna 96 transmits and receives radio signals to and from the opposite device, and the received power measuring unit 98 measures the received power of the received signal received by the directivity variable antenna 96 and sends it to the directivity control unit 97. Output.
  • the directivity control unit 97 controls the directivity of the directivity variable antenna 96.
  • the directivity control unit 97 is directed in the gap section when the reception power input from the reception power measurement section 98 is equal to or less than a certain value in the reception period (uplink section 94 when the communication device 1c is a base station).
  • the radiation pattern of the variable variable antenna 96 is changed.
  • the directivity control unit 97 knows the timing of the gap section in advance using this timing information.
  • the present invention is not limited to this. Absent.
  • the directivity control unit 97 may obtain gap section information from the synchronization unit 53.
  • the propagation path characteristic is deteriorated in the TDD scheme in which the propagation path characteristic is the same in the uplink and the downlink. Only in the case can the radiation pattern of the directional variable antenna be changed. Therefore, when reception characteristics deteriorate in the uplink (or downlink), the possibility of improving the reception characteristics of the downlink (or uplink) can be increased. In addition, it is possible to suppress degradation of reception characteristics due to unnecessary radiation pattern changes.
  • the transmission-side guard interval insertion units 14 and 42 in Embodiments 1 to 6 may be provided. Also, the guard section insertion position information may be notified from the receiving-side synchronization units 53, 73, and 82 to the directivity control units 52, 72, and 81 and the antenna selection unit 65 in the first to sixth embodiments. That is, the frame format of the uplink signal 94 and the downlink signal 95 may be any of FIG. 2 and FIGS.
  • the present invention is useful for improving the reception performance of a transmission device and a reception device having an antenna with a sharp directivity, and particularly in an environment where fading fluctuation is moderate, It is suitable for a communication device, a transmission device, and a reception device capable of suppressing deterioration in reception performance by control and antenna selection.

Abstract

A transmission device characterized by the provision of the following: a variable-directivity antenna, the radiation pattern of which can be changed; a guard-interval insertion unit that inserts, into frames, guard intervals that do not contribute to data transmission; and a control unit that, on the basis of information on the positions at which the guard intervals are inserted, instructs the variable-directivity antenna to change the radiation pattern thereof during the guard intervals.

Description

送信装置、受信装置および送受信装置Transmission device, reception device, and transmission / reception device
本発明は、鋭い指向性を有する指向性アンテナを使用して無線通信を行う送信装置、受信装置及び送受信装置に関する。 The present invention relates to a transmission apparatus, a reception apparatus, and a transmission / reception apparatus that perform wireless communication using a directional antenna having sharp directivity.
無線通信では、気象条件や構造物などでの反射・回折の影響、送信局や受信局の移動などにより、フェージングと呼ばれる無線伝搬路特性の時間変動が生じる。指向性の鋭い指向性アンテナを使用する場合、フェージング変動が時間的に緩やか(スローフェージング)となり、長時間に渡り受信信号電力が低下することがある。受信電力低下時間がインタリーブ長(フレーム長)よりも長くなるとインタリーブによる誤りのランダム化が困難となり、ランダム誤り訂正符号である畳み込み符号やターボ符号といった強力な誤り訂正符号の効果が得られなくなるため、受信性能が劣化する。 In wireless communication, time variation of radio propagation path characteristics called fading occurs due to the influence of reflection / diffraction due to weather conditions and structures, movement of a transmitting station and a receiving station, and the like. When a directional antenna having a sharp directivity is used, fading fluctuation becomes slow in time (slow fading), and the received signal power may be lowered for a long time. If the received power reduction time is longer than the interleave length (frame length), it becomes difficult to randomize errors by interleaving, and the effect of a powerful error correction code such as a convolutional code or a turbo code that is a random error correction code cannot be obtained. Reception performance is degraded.
本問題に対し、特許文献1では、移動局アンテナの指向性をインタリーブ長よりも短い時間長で変更することでフレーム内に擬似的にフェージング変動を与え、誤り訂正符号の効果を向上させていることが開示されている。 To deal with this problem, Patent Document 1 changes the directivity of the mobile station antenna with a time length shorter than the interleave length to give a fading fluctuation in the frame, thereby improving the effect of the error correction code. It is disclosed.
特許平9-270625Japanese Patent No. 9-270625
しかし、特許文献1の通り、短い時間長であっても指向性アンテナの指向性を変更すると、信号の瞬時振幅と位相は不連続に変化する。すなわち、送信アンテナの指向性を変更すると送信信号の振幅と位相が不連続に変化し、受信アンテナの指向性を変更すると、受信信号の振幅と位相が不連続に変化する。このような信号の不連続性は、受信性能の劣化を引き起こす。本発明は、上記に鑑みてなされたものであって、指向性変更時においても受信性能の劣化を低く抑えることを目的とする。 However, as described in Patent Document 1, if the directivity of the directional antenna is changed even with a short time length, the instantaneous amplitude and phase of the signal change discontinuously. That is, when the directivity of the transmission antenna is changed, the amplitude and phase of the transmission signal change discontinuously, and when the directivity of the reception antenna is changed, the amplitude and phase of the reception signal change discontinuously. Such signal discontinuity causes deterioration in reception performance. The present invention has been made in view of the above, and an object of the present invention is to suppress deterioration in reception performance even when directivity is changed.
上述した課題を解決し目的を達成するために、本発明の送信装置は、放射パターンの変更が可能な指向性可変アンテナ、フレームにデータ伝送に寄与しないガード区間を挿入するガード区間挿入部、ガード区間挿入の位置情報に基づいて、指向性可変アンテナに対してガード区間での放射パターンの変更を指示する制御部を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a transmission apparatus according to the present invention includes a variable directivity antenna that can change a radiation pattern, a guard interval insertion unit that inserts a guard interval that does not contribute to data transmission, and a guard. A control unit is provided that instructs the variable directivity antenna to change the radiation pattern in the guard section based on the position information of the section insertion.
また、本発明の送信装置は、複数のアンテナ、複数のアンテナからアンテナを選択するセレクタ、フレームにデータ伝送に寄与しないガード区間を挿入するガード区間挿入部、ガード区間挿入の位置情報に基づいてセレクタに対してガード区間でのアンテナの変更の指示を行う制御部を備えることを特徴とする。 Further, the transmission apparatus of the present invention includes a plurality of antennas, a selector that selects an antenna from the plurality of antennas, a guard interval insertion unit that inserts a guard interval that does not contribute to data transmission in a frame, and a selector based on position information of guard interval insertion Is provided with a control unit for instructing to change the antenna in the guard section.
また、本発明の受信装置は、指向性可変アンテナ、指向性可変アンテナで受信した受信信号からフレームのデータ伝送に寄与しないガード区間を検出する同期部、指向性可変アンテナに対し、同期部により検出されたガード区間での放射パターン変更の指示を行なう制御部を備えることを特徴とする。 In addition, the receiving apparatus of the present invention detects a guard section that does not contribute to frame data transmission from a received signal received by a directional variable antenna, a directional variable antenna, and detects a directional variable antenna by a synchronizing section. And a control unit that instructs to change the radiation pattern in the guard section.
また、本発明の受信装置は、複数のアンテナ、複数のアンテナからアンテナを選択する選択合成部、複数アンテナのいずれかのアンテナで受信した受信信号から、フレームのデータ伝送に寄与しないガード区間を検出する同期部、ガード区間において、選択合成部に対してガード区間での前記アンテナ変更の指示を行う制御部を備えることを特徴とする。 The receiving apparatus of the present invention also detects a guard interval that does not contribute to frame data transmission from a plurality of antennas, a selection combining unit that selects an antenna from a plurality of antennas, and a received signal received by any one of the plurality of antennas. In the synchronizing unit and the guard section, the control unit is configured to instruct the selective combining unit to change the antenna in the guard section.
また、本発明の同一の周波数を時分割して送信と受信を区別する時分割複信を用いてデータを送受信する送受信装置は、放射パターンの変更が可能な指向性可変アンテナ、アップリンクとダウンリンクの衝突を防止するために設けられるギャップ区間において、指向性可変アンテナに対して放射パターンの変更をするように指示する制御部を備えることを特徴とする。 In addition, according to the present invention, a transmission / reception apparatus that transmits and receives data using time division duplex that distinguishes between transmission and reception by time-division of the same frequency includes a variable directivity antenna that can change a radiation pattern, uplink and downlink In a gap section provided to prevent a link collision, a control unit that instructs the variable directivity antenna to change the radiation pattern is provided.
この発明は、ガード区間において、放射パターンの変更またはアンテナの変更をすることにより、変更時において受信性能の劣化を抑圧できるという効果を奏する。 The present invention has an effect that it is possible to suppress deterioration of reception performance at the time of change by changing the radiation pattern or the antenna in the guard section.
実施の形態1の送信装置の構成例を示す図である。3 is a diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1. FIG. 実施の形態1~6のフレーム構成例を示す図である。6 is a diagram showing an example of a frame configuration in Embodiments 1 to 6. FIG. 実施の形態1の送信装置の変形例を示す図である。6 is a diagram illustrating a modification of the transmission apparatus according to Embodiment 1. FIG. 実施の形態2の送信装置の構成例を示す図である。6 is a diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2. FIG. 実施の形態2の送信装置の変形例を示す図である。FIG. 10 is a diagram illustrating a modification of the transmission apparatus according to the second embodiment. 実施の形態3の送信装置の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a transmission device according to a third embodiment. 実施の形態3の送信装置の変形例を示す図である。FIG. 10 is a diagram illustrating a modification of the transmission device according to the third embodiment. 実施の形態4の受信装置の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a receiving device according to a fourth embodiment. 実施の形態5の受信装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a receiving device according to a fifth embodiment. 実施の形態6の受信装置の構成例を示す図である。FIG. 20 is a diagram illustrating a configuration example of a receiving device according to a sixth embodiment. 実施の形態6の受信装置の変形例を示す図である。FIG. 38 is a diagram illustrating a modification of the reception device in the sixth embodiment. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6のフレーム構成の変形例を示す図である。FIG. 10 is a diagram showing a modification of the frame configuration of the first to sixth embodiments. 実施の形態1~6の送信装置、受信装置の変形例を示す図である。FIG. 11 is a diagram showing a modification of the transmission device and the reception device in the first to sixth embodiments.
以下に、本発明にかかる通信装置、送信装置および受信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a communication device, a transmission device, and a reception device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1
図1は、本実施の形態における送信装置1の構成を示す図である。この送信装置1は、無線信号を送受信する通信装置のうち送信部分を構成するものである。通信装置は移動可能なものとし、例えば、移動体通信システムの移動局とする。送信装置1は、後述する符号化部11、インタリーブ部12、変調部13、ガード区間挿入部14、指向性可変アンテナ15、指向性制御部16を備える。
Embodiment 1
FIG. 1 is a diagram illustrating a configuration of a transmission device 1 according to the present embodiment. The transmission device 1 constitutes a transmission part of a communication device that transmits and receives radio signals. The communication device is movable, for example, a mobile station of a mobile communication system. The transmission apparatus 1 includes an encoding unit 11, an interleaving unit 12, a modulation unit 13, a guard interval insertion unit 14, a directivity variable antenna 15, and a directivity control unit 16, which will be described later.
図2は、本実施の形態において送信装置1が信号を送信する際のフレームフォーマットの一例を示す図である。フレーム2は、放射パターンAのデータ21、放射パターン変更期間に対応したガード区間(Guard Time)22、放射パターンBのデータ23から構成されている。本実施の形態におけるフレーム2のフレーム長は、インタリーブ長と同一として説明するが、この発明はこれに限られるものではない。 FIG. 2 is a diagram illustrating an example of a frame format when the transmission apparatus 1 transmits a signal in the present embodiment. The frame 2 includes radiation pattern A data 21, a guard interval 22 corresponding to a radiation pattern change period, and radiation pattern B data 23. Although the frame length of frame 2 in the present embodiment is described as being the same as the interleave length, the present invention is not limited to this.
本実施の形態では、ガード区間22の個数を1として説明するが、ガード区間22の個数は2以上であってもよい。また、ガード区間22はフレーム2内の中央にあるとして説明するが、ガード区間22はフレーム2内のどこにあってもよい。 In the present embodiment, the number of guard sections 22 is described as 1. However, the number of guard sections 22 may be two or more. The guard section 22 is described as being in the center of the frame 2, but the guard section 22 may be anywhere in the frame 2.
送信装置1において、符号化部11は、入力信号である送信ビット系列に対して誤り訂正符号化を施す。誤り訂正符号化の方式は、畳み込み符号、ターボ符号、LDPC(Low Density Parity Check)符号など、どのような誤り訂正符号化方式でもよい。インタリーブ部12は、符号化部11により符号化された信号に対してインタリーブ処理を行う。変調部13は、インタリーブ部12によりインタリーブされた信号に対して所定の変調処理を施す。ガード区間挿入部14は、変調部13により変調された信号に対して、データ伝送に寄与しないガード区間22を挿入するとともに、ガード区間挿入位置を制御部である指向性制御部16に通知する。ガード区間22はデータ伝送に寄与しないため、どのような信号でもよく、データ部分のコピーでもよいし、ランダム系列でもよいし、‘0’(無送信)でもよい。指向性可変アンテナ15は、通信相手無線装置(図示せず、以下、対向装置)に対してガード区間挿入後の信号を送信する。この指向性可変アンテナ15は鋭い指向性を持っており、また、APAA(Active Phased Array Antenna)のように、放射パターンの変更が可能とする。指向性制御部16は、指向性可変アンテナ15の指向性を制御し、指向性可変アンテナ15の放射パターンを変更する。 In the transmission apparatus 1, the encoding unit 11 performs error correction encoding on a transmission bit sequence that is an input signal. The error correction coding method may be any error correction coding method such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code. The interleaving unit 12 performs an interleaving process on the signal encoded by the encoding unit 11. The modulation unit 13 performs a predetermined modulation process on the signal interleaved by the interleaving unit 12. The guard interval insertion unit 14 inserts a guard interval 22 that does not contribute to data transmission into the signal modulated by the modulation unit 13 and notifies the directivity control unit 16 serving as a control unit of the guard interval insertion position. Since the guard section 22 does not contribute to data transmission, it may be any signal, a copy of the data portion, a random sequence, or ‘0’ (no transmission). The directivity variable antenna 15 transmits a signal after insertion of a guard section to a communication partner radio apparatus (not shown, hereinafter referred to as an opposite apparatus). The directivity variable antenna 15 has a sharp directivity, and can change the radiation pattern as in APAA (Active Phased Array Antenna). The directivity control unit 16 controls the directivity of the variable directivity antenna 15 and changes the radiation pattern of the variable directivity antenna 15.
次に、指向性制御部16の動作を説明する。ガード区間挿入部14より、ガード区間挿入位置であるガード区間挿入位置情報を受信する。次に、このガード区間挿入位置情報に基づいて、指向性可変アンテナ15に対し、ガード区間挿入位置において放射パターンを変化させる変更指示信号を出力する。 Next, the operation of the directivity control unit 16 will be described. Guard section insertion position information that is a guard section insertion position is received from the guard section insertion unit 14. Next, based on this guard section insertion position information, a change instruction signal for changing the radiation pattern at the guard section insertion position is output to the directivity variable antenna 15.
このように、データの伝送に寄与しないガード区間22において指向性可変アンテナの放射パターンを変化させることで、放射パターン変更に伴う送信信号の不連続性がデータ部分に与える影響を除去することができ、それにより放射パターン変更時の受信性能劣化を抑圧できる。 In this way, by changing the radiation pattern of the variable directivity antenna in the guard section 22 that does not contribute to data transmission, it is possible to eliminate the influence of the discontinuity of the transmission signal due to the radiation pattern change on the data portion. Thus, it is possible to suppress the reception performance degradation when changing the radiation pattern.
なお、ガード区間挿入部14と指向性制御部16の同期方法として、ガード区間挿入部14から指向性制御部16にガード区間挿入位置を通知するとして説明したが、これに限定されるものではない。ガード区間挿入部14と指向性制御部16の同期方法の他の一例として、図3に示すように、送信装置1に、送信装置1全体の動作タイミングを管理する送信制御部17をさらに備え、送信制御部17からガード区間挿入部14と指向性制御部16に、ガード区間挿入位置の情報であるガード区間挿入位置情報を通知するようにしてもよい。 In addition, although the guard interval insertion unit 14 and the directivity control unit 16 have been described as notifying the guard interval insertion position from the guard interval insertion unit 14 to the directivity control unit 16 as a synchronization method, the present invention is not limited to this. . As another example of the synchronization method of the guard interval insertion unit 14 and the directivity control unit 16, the transmission device 1 further includes a transmission control unit 17 that manages the operation timing of the entire transmission device 1, as shown in FIG. You may make it notify the guard area insertion position information which is the information of a guard area insertion position from the transmission control part 17 to the guard area insertion part 14 and the directivity control part 16.
実施の形態2
実施の形態1では単一の指向性可変アンテナを備えた送信装置について説明したが、本実施の形態では複数の指向性固定アンテナを備えた送信装置について説明する。本実施の形態では、実施の形態1における送信装置1と異なる部分について説明する。
Embodiment 2
In the first embodiment, a transmission apparatus provided with a single directivity variable antenna has been described. In this embodiment, a transmission apparatus provided with a plurality of fixed directivity antennas will be described. In the present embodiment, parts different from those of transmitting apparatus 1 in Embodiment 1 will be described.
図4は、実施の形態2の送信装置の一例を示す図である。図4に示した送信装置1aは、実施の形態1で説明した送信装置1に対してセレクタ31を追加し、指向性制御部16を制御部となるアンテナ選択部35に、指向性可変アンテナ15を指向性固定アンテナ32~34に、それぞれ置き換えたものである。 FIG. 4 is a diagram illustrating an example of the transmission apparatus according to the second embodiment. The transmitter 1a shown in FIG. 4 adds a selector 31 to the transmitter 1 described in the first embodiment, and replaces the directivity control unit 16 with an antenna selection unit 35 serving as a control unit. Are replaced by directional fixed antennas 32 to 34, respectively.
送信装置1aでは、指向性固定アンテナ32~34を、放射パターンがそれぞれ異なる方向となるように配置する。ここで指向性固定アンテナ32~34は、放射パターンがそれぞれ異なる方向となるように配置するために、実施の形態1における指向性可変アンテナ15と異なり、放射パターンを変更可能である必要はない。ただし、指向性固定アンテナ32~34は、指向性可変アンテナ15と同様に鋭い指向性を持っているものとする。 In the transmission device 1a, the directional fixed antennas 32 to 34 are arranged so that the radiation patterns are in different directions. Here, the directivity fixed antennas 32 to 34 are arranged so that the radiation patterns are in different directions. Therefore, unlike the directivity variable antenna 15 in the first embodiment, the radiation patterns need not be changeable. However, it is assumed that the directivity fixed antennas 32 to 34 have sharp directivities similar to the directivity variable antenna 15.
セレクタ31は、アンテナ選択部35から指定された指向性固定アンテナ32~34の1つに対して、ガード区間挿入部14の出力信号を出力する。また、アンテナ選択部35から指定されなかった指向性固定アンテナ32~34については0出力(出力信号なし)とする。指向性固定アンテナ32~34は、対向装置(図示せず)に対してセレクタ31の出力信号を送信する。なお、ここではセレクタ31は、指向性固定アンテナ32~34のうち1つを選択するとして説明したが、この発明は選択するアンテナ数をこれに限定するものではない。 The selector 31 outputs the output signal of the guard interval insertion unit 14 to one of the directivity fixed antennas 32 to 34 designated by the antenna selection unit 35. Further, the directivity fixed antennas 32 to 34 not designated by the antenna selector 35 are set to 0 output (no output signal). Directional fixed antennas 32 to 34 transmit the output signal of selector 31 to the opposing device (not shown). Here, the selector 31 has been described as selecting one of the directional fixed antennas 32 to 34, but the present invention does not limit the number of antennas to be selected.
アンテナ選択部35は、指向性固定アンテナ32~34の中から送信で使用する指向性固定アンテナを選択し、セレクタ31へ通知する。この通知により、ガード区間挿入部14より通知されるフレーム2内のガード区間22挿入位置において、アンテナ選択部35は選択する指向性固定アンテナを変更することになる。 The antenna selection unit 35 selects a directional fixed antenna to be used for transmission from among the directional fixed antennas 32 to 34 and notifies the selector 31 of it. By this notification, the antenna selection unit 35 changes the directivity fixed antenna to be selected at the insertion position of the guard section 22 in the frame 2 notified from the guard section insertion unit 14.
このように、データの伝送に寄与しないガード区間22において指向性固定アンテナを変更することで、指向性固定アンテナ変更に伴う送信信号の不連続性がデータ部分に与える影響を除去することができ、それにより指向性固定アンテナの変更による受信性能劣化を抑圧できる。 Thus, by changing the directional fixed antenna in the guard section 22 that does not contribute to data transmission, it is possible to remove the influence of the discontinuity of the transmission signal accompanying the change of the directional fixed antenna on the data portion, Thereby, it is possible to suppress the reception performance deterioration due to the change of the directional fixed antenna.
なお、指向性固定アンテナの本数を3として説明したが、アンテナ数をこれに限定するものではなく、指向性固定アンテナの本数をN(Nは2以上の整数)としても同様の効果が得られる。 Although the number of directional fixed antennas has been described as three, the number of antennas is not limited to this, and the same effect can be obtained even when the number of directional fixed antennas is N (N is an integer of 2 or more). .
なお、ガード区間挿入部14とアンテナ選択部35の同期方法として、ガード区間挿入部14からアンテナ選択部35にガード区間挿入位置を通知する方法について説明したが、これに限定するものではない。ガード区間挿入部14とアンテナ選択部35の同期方法の他の一例として、図5に示すように、送信装置1aに、送信装置1a全体の動作タイミングを管理する送信制御部36をさらに備え、送信制御部36からガード区間挿入部14とアンテナ選択部35に、ガード区間挿入位置を通知するようにしてもよい。 In addition, although the method of notifying the guard interval insertion position from the guard interval insertion unit 14 to the antenna selection unit 35 has been described as a synchronization method of the guard interval insertion unit 14 and the antenna selection unit 35, the present invention is not limited to this. As another example of the synchronization method of the guard interval insertion unit 14 and the antenna selection unit 35, as shown in FIG. 5, the transmission device 1a further includes a transmission control unit 36 that manages the operation timing of the entire transmission device 1a, The control section 36 may notify the guard section insertion section 14 and the antenna selection section 35 of the guard section insertion position.
実施の形態3
実施の形態2では、放射パターンを変更しない複数の指向性固定アンテナを備えた送信装置について説明したが、本実施の形態では、放射パターンを変更可能な複数の指向性可変アンテナを備えた送信装置について説明する。本実施の形態では、実施の形態1における送信装置1と異なる部分について説明する。
Embodiment 3
In the second embodiment, the transmission apparatus including a plurality of directional fixed antennas that do not change the radiation pattern has been described. However, in the present embodiment, the transmission apparatus including a plurality of directional variable antennas that can change the radiation pattern. Will be described. In the present embodiment, parts different from those of transmitting apparatus 1 in Embodiment 1 will be described.
図6に示した送信装置1bは、実施の形態1で説明した送信装置1に対して指向性可変アンテナ43を追加し、変調部13を変調部41に、ガード区間挿入部14をガード区間挿入部42に、指向性制御部16を指向性制御部44に、それぞれ置き換えたものである。 6 adds a directivity variable antenna 43 to the transmission apparatus 1 described in the first embodiment, inserts the modulation unit 13 into the modulation unit 41, and inserts the guard interval insertion unit 14 into the guard interval. The directivity control unit 16 is replaced with the directivity control unit 44 in the unit 42.
また、変調部41からの出力信号が第1の変調部出力信号、第2の変調部出力信号の2つに分かれて、ガード区間挿入部42に入力される。ガード区間挿入部42では、入力された第1の変調部出力信号に対してガード区間を挿入し第1のガード区間挿入信号として指向性可変アンテナ15に出力し、また、入力された第2の変調部出力信号に対してガード区間を挿入し第2のガード区間挿入信号として指向性可変アンテナ43に出力する。指向性可変アンテナ15及び指向性可変アンテナ43は、各々指向性制御部44の指示に従って放射パターンを変更し、送信信号を送信する。 Also, the output signal from the modulation unit 41 is divided into two signals, a first modulation unit output signal and a second modulation unit output signal, and is input to the guard interval insertion unit 42. The guard interval insertion unit 42 inserts a guard interval into the input first modulation unit output signal and outputs it to the directivity variable antenna 15 as a first guard interval insertion signal. A guard interval is inserted into the modulation unit output signal and is output to the directivity variable antenna 43 as a second guard interval insertion signal. The directivity variable antenna 15 and the directivity variable antenna 43 each change a radiation pattern according to an instruction from the directivity control unit 44 and transmit a transmission signal.
変調部41はインタリーブ部12の出力信号に対して所定の変調処理を施し、2アンテナ(指向性可変アンテナ15および43)分の変調信号である第1の変調信号、第2の変調信号を生成する。ガード区間挿入部42は、2アンテナ分の変調信号である第1の変調信号、第2の変調信号それぞれに対して、ガード区間挿入部14と同様にガード区間22を挿入し、第1のガード区間挿入信号、第2のガード区間挿入信号を生成する。そして、第1のガード区間挿入信号、第2のガード区間挿入信号を、指向性可変アンテナ15と指向性可変アンテナ43それぞれに出力するとともに、ガード区間挿入位置を指向性制御部44に通知する。指向性可変アンテナ15および43は、対向装置(図示せず)に対してガード区間挿入後の信号を送信する。指向性制御部44は、ガード区間挿入部42から通知されたガード区間挿入位置に基づいて、指向性可変アンテナ15および43がガード区間22で放射パターンを変更するように指向性を制御する。 The modulation unit 41 performs predetermined modulation processing on the output signal of the interleaving unit 12 to generate a first modulation signal and a second modulation signal that are modulation signals for two antennas (directivity variable antennas 15 and 43). To do. The guard interval insertion unit 42 inserts the guard interval 22 in the same manner as the guard interval insertion unit 14 for each of the first modulation signal and the second modulation signal, which are modulation signals for two antennas, A section insertion signal and a second guard section insertion signal are generated. Then, the first guard interval insertion signal and the second guard interval insertion signal are output to the directivity variable antenna 15 and the directivity variable antenna 43, respectively, and the guard interval insertion position is notified to the directivity control unit 44. Directivity variable antennas 15 and 43 transmit signals after insertion of the guard interval to the opposing device (not shown). The directivity control unit 44 controls the directivity so that the directivity variable antennas 15 and 43 change the radiation pattern in the guard section 22 based on the guard section insertion position notified from the guard section insertion unit 42.
次に、指向性制御部44の動作を説明する。指向性制御部44は、指向性可変アンテナ15および43の指向性を制御し、放射パターンを変化させる。このとき、ガード区間挿入部42より通知されるフレーム2内のガード区間挿入位置において、指向性制御部44は指向性可変アンテナ15および43の放射パターンを変化させる。 Next, the operation of the directivity control unit 44 will be described. The directivity control unit 44 controls the directivity of the directivity variable antennas 15 and 43 to change the radiation pattern. At this time, the directivity control unit 44 changes the radiation pattern of the directivity variable antennas 15 and 43 at the guard section insertion position in the frame 2 notified from the guard section insertion unit 42.
この放射パターンの変更については、指向性制御部44は、指向性変更後の指向性可変アンテナ15および43の放射パターンがそれぞれ異なる方向となるように、指向性可変アンテナ15および43の放射パターンを制御することができる。 Regarding the change of the radiation pattern, the directivity control unit 44 changes the radiation pattern of the directivity variable antennas 15 and 43 so that the radiation patterns of the directivity variable antennas 15 and 43 after the directivity change are in different directions. Can be controlled.
このように、複数の指向性可変アンテナを備えた送信機において、各指向性可変アンテナが独立して、データの伝送に寄与しないガード区間22において自身の放射パターンを変化させることで、放射パターン変更に伴う送信信号の不連続性がデータ部分に与える影響を除去することができ、それにより放射パターン変更時の受信性能劣化を抑圧できる。 Thus, in a transmitter having a plurality of directional variable antennas, each directional variable antenna independently changes its own radiation pattern in the guard section 22 that does not contribute to data transmission, thereby changing the radiation pattern. Thus, it is possible to remove the influence of the discontinuity of the transmission signal that accompanies the data portion on the data portion, thereby suppressing the deterioration of the reception performance when changing the radiation pattern.
なお、指向性可変アンテナの本数を2として説明したが、アンテナ数をこれに限定するものではなく、指向性可変アンテナの本数をN(Nは2以上の整数)としても同様の効果が得られる。 Although the number of directional variable antennas has been described as two, the number of antennas is not limited to this, and the same effect can be obtained even when the number of directional variable antennas is N (N is an integer of 2 or more). .
また、指向性可変アンテナの数を3以上とする場合、各指向性可変アンテナの放射パターンが少なくとも一つは異なる方向となるように、指向性制御部44は各指向性可変アンテナの放射パターンを変化させれば各指向性可変アンテナからの送信信号の対向装置における受信電力がすべて小さくなる確率を低減させることができるため、送信ダイバーシティ効果を得ることができる。 When the number of directivity variable antennas is 3 or more, the directivity control unit 44 sets the radiation pattern of each directivity variable antenna so that at least one radiation pattern of each directivity variable antenna is in a different direction. If it is changed, it is possible to reduce the probability that the reception power of the transmission signals from the respective directivity variable antennas in the opposite device is all reduced, so that a transmission diversity effect can be obtained.
なお、ガード区間挿入部42と指向性制御部44の同期方法として、ガード区間挿入部42から指向性制御部44にガード区間挿入位置を通知する方法について説明したが、これに限定するものではない。ガード区間挿入部42と指向性制御部44の同期方法の他の一例として、図7に示すように、送信装置1bに、送信装置1b全体の動作タイミングを管理する送信制御部45をさらに備え、送信制御部45からガード区間挿入部42と指向性制御部44に、ガード区間挿入位置を通知するようにしてもよい。 As a method of synchronizing the guard interval insertion unit 42 and the directivity control unit 44, the method of notifying the guard interval insertion position from the guard interval insertion unit 42 to the directivity control unit 44 has been described. However, the present invention is not limited to this. . As another example of the synchronization method of the guard interval insertion unit 42 and the directivity control unit 44, as illustrated in FIG. 7, the transmission device 1b further includes a transmission control unit 45 that manages the operation timing of the entire transmission device 1b. You may make it notify the guard area insertion part 42 and the directivity control part 44 from the transmission control part 45 to a guard area insertion position.
実施の形態4
実施の形態1~3では指向性アンテナを備えた送信装置1について説明したが、本実施の形態では指向性アンテナを備えた受信装置5について説明する。
Embodiment 4
In the first to third embodiments, the transmission device 1 including a directional antenna has been described. In the present embodiment, a reception device 5 including a directional antenna will be described.
図8に示したように、本実施の形態の受信装置5は、指向性可変アンテナ51、指向性制御部52、同期部53、復調部54、デインタリーブ部55および復号部56を備えている。 As shown in FIG. 8, the receiving apparatus 5 of the present embodiment includes a variable directivity antenna 51, a directivity control unit 52, a synchronization unit 53, a demodulation unit 54, a deinterleave unit 55, and a decoding unit 56. .
受信装置5において、指向性可変アンテナ51は、対向装置(図示せず)から送信された信号を受信する。この指向性可変アンテナ51は鋭い指向性を持っており、放射パターンを変更可能なものとする。本実施の形態におけるフレームフォーマットは、図2のフレームフォーマットと同様とする。 In the receiving device 5, the variable directivity antenna 51 receives a signal transmitted from a counter device (not shown). The directivity variable antenna 51 has a sharp directivity, and the radiation pattern can be changed. The frame format in this embodiment is the same as the frame format in FIG.
制御部となる指向性制御部52は、指向性可変アンテナ51の指向性を制御する。同期部53は、指向性可変アンテナ51で受信した信号からフレーム2内のガード区間22が挿入されている位置を検出し、ガード区間挿入位置の情報であるガード区間挿入位置情報を指向性制御部52に通知する。復調部54は、指向性可変アンテナ51で受信した信号からガード区間22を除いたデータ部分21、23について復調処理を施す。デインタリーブ部55は、復調部54により復調された信号に対してデインタリーブ処理を行う。復号部56は、デインタリーブ部55によりデインタリーブされた信号に対して誤り訂正復号処理を行い、最終的な受信信号を得る。 The directivity control unit 52 serving as a control unit controls the directivity of the directivity variable antenna 51. The synchronization unit 53 detects the position where the guard section 22 is inserted in the frame 2 from the signal received by the directivity variable antenna 51, and uses the section information indicating the guard section insertion position as guard section insertion position information. 52 is notified. The demodulator 54 demodulates the data portions 21 and 23 obtained by removing the guard section 22 from the signal received by the directivity variable antenna 51. The deinterleave unit 55 performs deinterleave processing on the signal demodulated by the demodulator 54. The decoding unit 56 performs error correction decoding processing on the signal deinterleaved by the deinterleaving unit 55 to obtain a final received signal.
次に、指向性制御部52の動作を説明する。指向性制御部52は、指向性可変アンテナ51の指向性を制御し、放射パターンを変化させる。このとき、同期部53から通知されたガード区間挿入位置情報に基づいてガード区間において指向性可変アンテナ51の放射パターンを変化させる。 Next, the operation of the directivity control unit 52 will be described. The directivity control unit 52 controls the directivity of the directivity variable antenna 51 to change the radiation pattern. At this time, the radiation pattern of the directivity variable antenna 51 is changed in the guard interval based on the guard interval insertion position information notified from the synchronization unit 53.
このように、データ伝送に寄与しないガード区間において指向性可変アンテナの放射パターンを変化させることで、放射パターン変更に伴う受信信号の不連続性がデータ部分に与える影響をなくすことができ、それにより放射パターン変更時の受信性能劣化を抑圧できる。 In this way, by changing the radiation pattern of the directional variable antenna in the guard interval that does not contribute to data transmission, the influence of the discontinuity of the received signal due to the radiation pattern change on the data part can be eliminated, thereby It is possible to suppress the reception performance degradation when changing the radiation pattern.
実施の形態5
実施の形態4では単一の指向性可変アンテナを備えた受信装置について説明したが、本実施の形態では複数の指向性固定アンテナを備えた受信装置について説明する。
Embodiment 5
In the fourth embodiment, a receiving apparatus including a single directivity variable antenna has been described. In the present embodiment, a receiving apparatus including a plurality of fixed directivity antennas will be described.
図9に示した受信装置5aは、図8に示した受信装置5に対して選択合成部66を追加し、指向性可変アンテナ51を指向性固定アンテナ61~64に、指向性制御部52をアンテナ選択部65に、それぞれ置き換えたものである。本実施の形態では、実施の形態4と異なる部分について説明する。 The receiving device 5a shown in FIG. 9 adds a selection / synthesis unit 66 to the receiving device 5 shown in FIG. 8, the directivity variable antenna 51 is changed to the directivity fixed antennas 61 to 64, and the directivity control unit 52 is added. The antenna selector 65 is replaced with each one. In the present embodiment, parts different from those of the fourth embodiment will be described.
受信装置5aでは、指向性固定アンテナ61~64を放射パターンがそれぞれ異なる方向となるように配置する。ここで指向性固定アンテナ61~64は、指向性可変アンテナ51と異なり、放射パターンを変更可能である必要はない。ただし、指向性固定アンテナ61~64は、指向性可変アンテナ51と同様に鋭い指向性を持っているものとする。 In the receiving device 5a, the directional fixed antennas 61 to 64 are arranged so that the radiation patterns are in different directions. Here, unlike the directivity variable antenna 51, the directivity fixed antennas 61 to 64 need not be able to change the radiation pattern. However, it is assumed that the directivity fixed antennas 61 to 64 have a sharp directivity similar to the directivity variable antenna 51.
指向性固定アンテナ61~64は、図示しない対向装置から送信された信号を受信する。指向性固定アンテナ61~64で受信した各受信信号は選択合成部66に入力される。選択合成部66は、制御部となるアンテナ選択部65からの指示に従い、指向性固定アンテナ61~64による受信信号の中の1つを選択、またはいくつかを合成して、同期部53へ出力する。選択合成部66における合成方法は、アンテナ選択部65から指定された指向性固定アンテナ61~64による受信信号をすべて加算してもよいし、平均化してもよいし、また、受信信号電力に応じた重み付け加算をしてもよい。 Directional fixed antennas 61 to 64 receive signals transmitted from a counter device (not shown). Each reception signal received by the directional fixed antennas 61 to 64 is input to the selection / synthesis unit 66. The selection / combination unit 66 selects one of received signals from the directional fixed antennas 61 to 64 or combines some of them according to an instruction from the antenna selection unit 65 serving as a control unit, and outputs the selected signal to the synchronization unit 53 To do. As a combining method in the selection combining unit 66, all the reception signals from the directivity fixed antennas 61 to 64 designated by the antenna selection unit 65 may be added, averaged, or according to the reception signal power. Weighted addition may be performed.
アンテナ選択部65は、指向性固定アンテナ61~64の中から受信で使用する指向性固定アンテナを選択し、選択合成部66へ通知する。アンテナ制御部65の指向性固定アンテナ選択方法は、ランダムでもよいし、指向性固定アンテナ61~64を周期的に順番に選択してもよいし、指向性固定アンテナ61~64における受信電力の大きいアンテナを選択してもよい.このとき、同期部53から通知された検出されたガード区間の情報に基づいて、ガード区間において使用する指向性固定アンテナを変更するよう制御する。 The antenna selecting unit 65 selects a directional fixed antenna to be used for reception from the directional fixed antennas 61 to 64 and notifies the selection combining unit 66 of the selected directional fixed antenna. The directivity fixed antenna selection method of the antenna control unit 65 may be random, the directivity fixed antennas 61 to 64 may be periodically selected in order, and the reception power of the directivity fixed antennas 61 to 64 is large. An antenna may be selected. At this time, based on the information of the detected guard interval notified from the synchronization unit 53, control is performed to change the directional fixed antenna used in the guard interval.
このように、データ伝送に寄与しないガード区間において指向性固定アンテナを別の指向性固定アンテナに変更することにより、指向性固定アンテナの変更に伴う受信信号の不連続性がデータ部分に与える影響をなくすことができ、それにより指向性固定アンテナの変更による受信性能劣化を抑圧できる。 In this way, by changing the directional fixed antenna to another directional fixed antenna in the guard interval that does not contribute to data transmission, the effect of the received signal discontinuity on the data part due to the change of the directional fixed antenna is affected. Accordingly, it is possible to suppress the reception performance deterioration due to the change of the directional fixed antenna.
なお、指向性固定アンテナの本数を4として説明したが、アンテナ数をこれに限定するものではない。指向性固定アンテナの本数をN(Nは2以上の整数)としてもよい。 Although the number of directional fixed antennas has been described as four, the number of antennas is not limited to this. The number of directional fixed antennas may be N (N is an integer of 2 or more).
実施の形態6
実施の形態5では、放射パターンを変更しない複数の指向性固定アンテナを備えた受信装置について説明したが、本実施の形態では、放射パターンを変更可能な複数の指向性可変アンテナを備えた受信装置について説明する。
Embodiment 6
In the fifth embodiment, the reception apparatus including a plurality of directional fixed antennas that do not change the radiation pattern has been described. However, in the present embodiment, the reception apparatus including a plurality of directional variable antennas that can change the radiation pattern. Will be described.
図10に示した受信装置5bは、実施の形態4で説明した受信装置5に対して指向性可変アンテナ71と同期部73を追加し、指向性制御部52を指向性制御部72に、復調部53を復調部74に、それぞれ置き換えたものである。 The receiving apparatus 5b illustrated in FIG. 10 adds a directivity variable antenna 71 and a synchronization unit 73 to the receiving apparatus 5 described in the fourth embodiment, and demodulates the directivity control unit 52 to the directivity control unit 72. The unit 53 is replaced with a demodulation unit 74.
また、指向性可変アンテナ71は指向性可変アンテナ51と、同期部73は同期部53と同機能を持つ。本実施の形態では、実施の形態5と異なる部分について説明する。 The directivity variable antenna 71 has the same function as the directivity variable antenna 51, and the synchronization unit 73 has the same function as the synchronization unit 53. In the present embodiment, parts different from the fifth embodiment will be described.
指向性可変アンテナ51および71は、対向装置(図示せず)から送信された信号を受信する。指向性可変アンテナ51で受信した受信信号は同期部53に、指向性可変アンテナ71で受信した受信信号は同期部73にそれぞれ入力される。復調部74は、入力された複数の信号に対して、対向装置の変調方式に対応した復調処理を行う。 Directivity variable antennas 51 and 71 receive a signal transmitted from a counter device (not shown). The reception signal received by the directivity variable antenna 51 is input to the synchronization unit 53, and the reception signal received by the directivity variable antenna 71 is input to the synchronization unit 73. The demodulator 74 performs a demodulation process corresponding to the modulation method of the opposite apparatus on the input signals.
指向性制御部72は、指向性可変アンテナ51および71の指向性を制御し、放射パターンを変化させる。このとき、同期部53において検出されたガード区間において指向性可変アンテナ51の放射パターンを変化させ、同期部73において検出されたガード区間において指向性可変アンテナ71の放射パターンを変化させる。 The directivity control unit 72 controls the directivity of the directivity variable antennas 51 and 71 to change the radiation pattern. At this time, the radiation pattern of the directivity variable antenna 51 is changed in the guard section detected by the synchronization unit 53, and the radiation pattern of the directivity variable antenna 71 is changed in the guard section detected by the synchronization unit 73.
また、放射パターン変更後の指向性可変アンテナ51および71の放射パターンがそれぞれ異なる方向となるように制御することができる。 Further, the radiation patterns of the directivity variable antennas 51 and 71 after the radiation pattern change can be controlled to be in different directions.
図11は、図10の受信装置の変形例を示した図である。図11に示した受信装置5cは、図10に示した受信装置5bに対して指向性制御部72を指向性制御部81に、同期部53および73を同期部82に、それぞれ置き換えたものである。これら以外の構成要素については上述した受信装置5bが備えていたものと同様である。 FIG. 11 is a diagram illustrating a modification of the receiving apparatus in FIG. The receiving device 5c shown in FIG. 11 is obtained by replacing the receiving device 5b shown in FIG. 10 with the directivity control unit 72 replaced with the directivity control unit 81 and the synchronization units 53 and 73 with the synchronization unit 82. is there. The other constituent elements are the same as those provided in the above-described receiving device 5b.
図10では2つの同期部53および73を備え、指向性可変アンテナ51および71で受信した受信信号のそれぞれについてガード区間を検出する構成としたが、図11では、指向性可変アンテナ51および71で受信した受信信号から1つのガード区間位置を検出する構成とする。 In FIG. 10, the two synchronization units 53 and 73 are provided, and the guard interval is detected for each of the received signals received by the directivity variable antennas 51 and 71. However, in FIG. One guard interval position is detected from the received signal.
同期部82は、指向性可変アンテナ51および71で受信した各受信信号からガード区間位置を検出する。このとき、同期部82が出力するガード区間位置は、指向性可変アンテナ51および71で受信した各受信信号で共通の値とする。指向性制御部81は、指向性可変アンテナ51および71の指向性を制御し、放射パターンを変化させる。このとき、同期部82において検出されたガード区間において指向性可変アンテナ51および71の放射パターンを変化させる。すなわち、指向性可変アンテナ51および71の放射パターンを同時に変化させる。また、指向性変更後の指向性可変アンテナ51および71の放射パターンがそれぞれ異なる方向となるように制御する。 The synchronization unit 82 detects the guard section position from each received signal received by the directivity variable antennas 51 and 71. At this time, the guard section position output by the synchronization unit 82 is a value common to the received signals received by the directivity variable antennas 51 and 71. The directivity control unit 81 controls the directivity of the directivity variable antennas 51 and 71 to change the radiation pattern. At this time, the radiation patterns of the directivity variable antennas 51 and 71 are changed in the guard section detected by the synchronization unit 82. That is, the radiation patterns of the directivity variable antennas 51 and 71 are changed simultaneously. In addition, the radiation patterns of the directivity variable antennas 51 and 71 after the directivity change are controlled to be in different directions.
このように、複数の指向性可変アンテナを備えた受信機において、各指向性可変アンテナが独立して、データの伝送に寄与しないガード区間22において指向性可変アンテナの放射パターンを変更することで、指向性可変アンテナの放射パターンの変更に伴う受信信号の不連続性がデータ部分に与える影響を除去することができ、それにより放射パターン変更時の受信性能劣化を抑圧できる。受信ダイバーシティ時において、放射パターン変更に伴う受信信号の不連続性がデータ部分に与える影響を除去することができる。また、空間多重時においては、各ストリームに対して、放射パターン変更に伴う受信信号の不連続性がデータ部分に与える影響を除去することができる。 In this manner, in a receiver including a plurality of directional variable antennas, each directional variable antenna independently changes the radiation pattern of the directional variable antenna in the guard section 22 that does not contribute to data transmission. It is possible to remove the influence of the discontinuity of the received signal due to the change of the radiation pattern of the directivity variable antenna on the data portion, thereby suppressing the reception performance deterioration when the radiation pattern is changed. At the time of reception diversity, it is possible to eliminate the influence of the discontinuity of the received signal accompanying the change of the radiation pattern on the data portion. Further, at the time of spatial multiplexing, it is possible to remove the influence of the discontinuity of the received signal accompanying the change of the radiation pattern on the data portion for each stream.
なお、指向性可変アンテナの本数を2として説明したが、アンテナ数をこれに限定するものではなく、指向性可変アンテナの本数をN(Nは2以上の整数)としてもよい。 Although the number of directional variable antennas has been described as two, the number of antennas is not limited to this, and the number of directional variable antennas may be N (N is an integer of 2 or more).
また、指向性可変アンテナの数を3以上とする場合、各指向性可変アンテナの放射パターンが少なくとも一つは異なる方向となるように、指向性制御部81は各指向性可変アンテナの放射パターンを変化させれば、各指向性可変アンテナにおける受信電力がすべて小さくなる確率を低減させることができるため、受信ダイバーシティ効果を得ることができる。 When the number of directivity variable antennas is 3 or more, the directivity control unit 81 sets the radiation pattern of each directivity variable antenna so that at least one radiation pattern of each directivity variable antenna has a different direction. If it is changed, it is possible to reduce the probability that the received power in each directional variable antenna is all reduced, so that it is possible to obtain a reception diversity effect.
図12は、実施の形態1~6のフレームフォーマットの変形例を示す図である。図12に示したフレームフォーマット2aは、図2に示したフレーム2に対して、データ21および23をOFDM(Orthogonal Frequency Division Multiplexing) シンボル91に置き換えたものである。OFDMシンボル91は、ガードインターバル(GI:Guard Interval)92とデータ93で構成される。ガードインターバル92は、データ93の後半部分をコピーした信号(サイクリックプレフィックス)や、ヌル(無送信区間)など、どのような信号でもよい。 FIG. 12 is a diagram showing a modification of the frame format in the first to sixth embodiments. The frame format 2a shown in FIG. 12 is obtained by replacing the data 21 and 23 with an OFDM (Orthogonal Frequency Division Multiplexing) symbol 91 for the frame 2 shown in FIG. The OFDM symbol 91 includes a guard interval (GI: Guard Interval) 92 and data 93. The guard interval 92 may be any signal such as a signal obtained by copying the latter half of the data 93 (cyclic prefix) or null (no transmission section).
図12のフレームフォーマットを使用する場合、指向性制御部16、44、52、72、81およびアンテナ選択部35、65は、フレーム2内のガード区間22の代わりに、フレーム2a内の任意のガードインターバル92の部分で指向性可変アンテナの放射パターンの変更または送受信で使用する指向性固定アンテナの変更を行う。 When the frame format of FIG. 12 is used, the directivity control units 16, 44, 52, 72, 81 and the antenna selection units 35, 65 are not limited to the guard section 22 in the frame 2, In the interval 92, the radiation pattern of the directional variable antenna is changed or the directional fixed antenna used for transmission / reception is changed.
なお、図12では、フレーム2a内のOFDMシンボル数を4としているが、これに限定するものではない。OFDMシンボル数をN(Nは2以上の整数)としてもよい。 In FIG. 12, although the number of OFDM symbols in the frame 2a is four, the present invention is not limited to this. The number of OFDM symbols may be N (N is an integer of 2 or more).
また、図12では、放射パターンの変更を行うガードインターバル数を1としているが、これに限定するものではない。放射パターンを変更するガードインターバル数をM(Mは2以上の整数)としても良い。 In FIG. 12, the number of guard intervals for changing the radiation pattern is set to 1, but this is not restrictive. The number of guard intervals for changing the radiation pattern may be M (M is an integer of 2 or more).
また、図12におけるOFDMシンボル91はSC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボルなど、ガードインターバルを使用する形式であれば何でもよい。 In addition, the OFDM symbol 91 in FIG. 12 may be of any format that uses a guard interval, such as a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
以上のような構成とすることにより、指向性可変アンテナの放射パターン変更時または指向性固定アンテナの変更時において受信性能の劣化を抑圧できるという効果を得ることができる。また、ガード区間を挿入する必要がないため、伝送効率の低下を抑圧する効果を得ることができる。 With the configuration as described above, it is possible to obtain an effect that it is possible to suppress deterioration in reception performance when changing the radiation pattern of the variable directivity antenna or changing the fixed directivity antenna. Moreover, since it is not necessary to insert a guard interval, an effect of suppressing a decrease in transmission efficiency can be obtained.
図13は、図12のフレームフォーマットの変形例を示す図である。図13に示したフレームフォーマット2bは、図12に示したフレーム2aに対して、ガード区間101を追加したものである。ガード区間101は、ガード区間22と同様、データ伝送に寄与しないため、どのような信号でもよく、データ部分のコピーでもよいし、ランダム系列でもよいし、‘0’(無送信)でもよい。また、ガード区間101は任意のガードインターバル92の直前に追加するものとし、フレーム中のガード区間の個数は1以上のいくつでもよい。 FIG. 13 is a diagram showing a modification of the frame format of FIG. A frame format 2b shown in FIG. 13 is obtained by adding a guard section 101 to the frame 2a shown in FIG. Like the guard interval 22, the guard interval 101 does not contribute to data transmission, and therefore may be any signal, a copy of a data portion, a random sequence, or '0' (no transmission). The guard interval 101 is added immediately before an arbitrary guard interval 92, and the number of guard intervals in the frame may be any number greater than or equal to one.
図13のフレームフォーマットを使用する場合、指向性制御部16、44、52、72、81およびアンテナ選択部35、65は、フレーム2内のガード区間22の代わりに、フレーム2b内の任意のガード区間101とガードインターバル92の部分で指向性可変アンテナの放射パターンの変更または送受信で使用する指向性固定アンテナの変更を行う。 When using the frame format of FIG. 13, the directivity control units 16, 44, 52, 72, 81 and the antenna selection units 35, 65 are replaced with an arbitrary guard in the frame 2 b instead of the guard section 22 in the frame 2. In the section 101 and the guard interval 92, the radiation pattern of the directional variable antenna is changed or the directional fixed antenna used for transmission / reception is changed.
以上のような構成とすることでも、指向性可変アンテナの放射パターン変更時または指向性固定アンテナの変更時において受信性能の劣化を抑圧できるという効果を得ることができる。また、ガードインターバルの直前にガード区間を挿入するため、図12のフレームフォーマットと比較して、ガードインターバルの有効サンプル数が増加することから、遅延波への耐性が向上する効果を得ることができる。また、図12のフレームフォーマットと比較して、指向性変更を行う候補となる時間長が増加するため、ガード区間の検出要求精度を緩和することができ、回路規模を削減できる効果を得ることができる。 Even with the configuration as described above, it is possible to obtain an effect that deterioration of reception performance can be suppressed when the radiation pattern of the directional variable antenna is changed or when the directional fixed antenna is changed. In addition, since the guard interval is inserted immediately before the guard interval, the number of effective samples in the guard interval is increased as compared with the frame format of FIG. 12, so that an effect of improving resistance to delayed waves can be obtained. . Further, since the time length that is a candidate for changing the directivity is increased as compared with the frame format of FIG. 12, it is possible to relax the detection accuracy of the guard interval and obtain an effect of reducing the circuit scale. it can.
図14は、実施の形態1~6のフレームフォーマットの図12および図13とは異なる変形例を示す図である。図14に示したフレームフォーマット2cは、図2に示したフレーム2の前方に、同期語(SyncWord)111を追加したものである。これ以外の構成要素についてはフレーム2が備えていたものと同様である。 FIG. 14 is a diagram showing a modified example different from FIGS. 12 and 13 of the frame format of the first to sixth embodiments. The frame format 2c shown in FIG. 14 is obtained by adding a synchronization word (SyncWord) 111 to the front of the frame 2 shown in FIG. Other components are the same as those provided in the frame 2.
同期語111は受信装置においてフレーム2cの先頭を検出するための信号であり、受信装置にて既知の信号、または同一信号が時系列で繰り返された信号、ヌル(無送信)など、受信装置でフレーム先頭位置を検出可能な信号であれば、どのような信号でもよい。 The synchronization word 111 is a signal for detecting the head of the frame 2c in the receiving device, and is a signal known in the receiving device, a signal in which the same signal is repeated in time series, null (no transmission), or the like. Any signal may be used as long as it can detect the frame head position.
図14のフレームフォーマットを使用する場合、同期部53、73および82では、まず同期語111によりフレーム2cの先頭位置を検出し、フレーム2cの先頭位置からガード区間22の位置を特定する。 When the frame format of FIG. 14 is used, the synchronization units 53, 73, and 82 first detect the head position of the frame 2c from the synchronization word 111, and specify the position of the guard section 22 from the head position of the frame 2c.
以上のような構成とすることでも、指向性可変アンテナの放射パターン変更時または指向性固定アンテナの変更時において受信性能の劣化を抑圧できるという効果を得ることができる。 Even with the configuration as described above, it is possible to obtain an effect that deterioration of reception performance can be suppressed when the radiation pattern of the directional variable antenna is changed or when the directional fixed antenna is changed.
図15は、図12のフレームフォーマットの変形例を示す図である。また、図16は、図13のフレームフォーマットの変形例を示す図である。図15に示したフレームフォーマット2dは、図12に示したフレーム2aの前方に、同期語(SyncWord)111を追加したものであり、図16に示したフレームフォーマット2eは、図13に示したフレーム2bの前方に、同期語(SyncWord)111を追加したものである。 FIG. 15 is a diagram showing a modification of the frame format of FIG. FIG. 16 is a diagram showing a modification of the frame format of FIG. The frame format 2d shown in FIG. 15 is obtained by adding a sync word 111 in front of the frame 2a shown in FIG. 12, and the frame format 2e shown in FIG. 16 is the frame format shown in FIG. A synchronization word (SyncWord) 111 is added in front of 2b.
図15および図16のフレームフォーマットを使用する場合、図14のフレームフォーマットを使用する場合と同様、同期部53、73および82では、まず同期語111によりフレーム2dまたは2eの先頭位置を検出し、フレーム2dまたは2eの先頭位置からガードインターバル92、ガード区間101の位置を特定する。 When using the frame format of FIG. 15 and FIG. 16, as in the case of using the frame format of FIG. 14, the synchronization units 53, 73 and 82 first detect the head position of the frame 2 d or 2 e from the synchronization word 111, The positions of the guard interval 92 and the guard section 101 are specified from the head position of the frame 2d or 2e.
以上のような構成とすることでも、指向性可変アンテナの放射パターン変更時または指向性固定アンテナの変更時において受信性能の劣化を抑圧できるという効果を得ることができる。 Even with the configuration as described above, it is possible to obtain an effect that deterioration of reception performance can be suppressed when the radiation pattern of the directional variable antenna is changed or when the directional fixed antenna is changed.
図17は、実施の形態1~6のフレームフォーマットの変形例を示す図である。図17に示したフレームフォーマット2fは、アップリンクとダウンリンクで同一の周波数を使用するTDD(Time Division Duplex:同一の周波数を時分割して送信と受信を区別する時分割複信)方式におけるフレームフォーマットであり、図2に示したフレーム2に対して、データ21および23をアップリンク信号94およびダウンリンク信号95に置き換えたものである。ガード区間22は、アップリンクとダウンリンクの衝突を防止するために設けられるギャップ区間に相当する。 FIG. 17 is a diagram showing a modification of the frame format in the first to sixth embodiments. The frame format 2 f shown in FIG. 17 is a frame in a TDD (Time Division Division Duplex: time division duplex that distinguishes transmission from reception by time division of the same frequency) using the same frequency in the uplink and downlink. This is a format in which the data 21 and 23 are replaced with the uplink signal 94 and the downlink signal 95 for the frame 2 shown in FIG. The guard section 22 corresponds to a gap section provided for preventing collision between the uplink and the downlink.
図17のフレームフォーマットを使用する場合、実施の形態1~6における送信側のガード区間挿入部14、42は不要となる。また、実施の形態1~6における受信側の同期部53、73、82から指向性制御部52、72、81およびアンテナ選択部65へのガード区間挿入位置情報の通知も不要となる。 When the frame format of FIG. 17 is used, the transmission-side guard interval insertion units 14 and 42 in Embodiments 1 to 6 are not necessary. Further, it is not necessary to notify the guard section insertion position information from the receiving- side synchronization units 53, 73, 82 to the directivity control units 52, 72, 81 and the antenna selection unit 65 in the first to sixth embodiments.
また、TDD方式では、送信装置および受信装置はギャップ区間のタイミングを把握しているため、指向性制御部16、44、52、72、81およびアンテナ選択部35、65は、ギャップ区間の部分で指向性可変アンテナの放射パターンの変更または送受信で使用する指向性固定アンテナの変更を行う。 Further, in the TDD scheme, since the transmission device and the reception device grasp the timing of the gap section, the directivity control units 16, 44, 52, 72, and 81 and the antenna selection units 35 and 65 are the gap section portions. The radiation pattern of the directivity variable antenna is changed or the directivity fixed antenna used for transmission / reception is changed.
以上のような構成とすることにより、指向性可変アンテナの放射パターン変更時または指向性固定アンテナの変更時において受信性能の劣化を抑圧できるという効果を得ることができる。また、ガード区間を挿入する必要がないため、伝送効率の低下を抑圧する効果を得ることができる。 With the configuration as described above, it is possible to obtain an effect that it is possible to suppress deterioration in reception performance when changing the radiation pattern of the variable directivity antenna or changing the fixed directivity antenna. Moreover, since it is not necessary to insert a guard interval, an effect of suppressing a decrease in transmission efficiency can be obtained.
図18は、TDD方式における送信装置および受信装置の変形例を示す図である。図18では送信装置と受信装置をまとめて通信装置(送受信装置)1cとしている。通信装置1cにおいて、指向性可変アンテナ96は対向装置と無線信号の送受を行い、受信電力測定部98は指向性可変アンテナ96で受信した受信信号の受信電力を測定して指向性制御部97へ出力する。指向性制御部97は指向性可変アンテナ96の指向性を制御する。指向性制御部97は、受信期間(通信装置1cが基地局の場合はアップリンク区間94)において受信電力測定部98から入力される受信電力が一定値以下の場合に、ギャップ区間の部分で指向性可変アンテナ96の放射パターンを変更する。なおTDD方式では送信装置および受信装置はギャップ区間のタイミングを把握しているため、このタイミング情報を利用して指向性制御部97は予めギャップ区間のタイミングを把握するが、これに限られるものではない。例えば、指向性制御部97は同期部53からギャップ区間の情報を得る場合もある。 FIG. 18 is a diagram illustrating a modification of the transmission device and the reception device in the TDD scheme. In FIG. 18, the transmission device and the reception device are collectively referred to as a communication device (transmission / reception device) 1c. In the communication device 1c, the directivity variable antenna 96 transmits and receives radio signals to and from the opposite device, and the received power measuring unit 98 measures the received power of the received signal received by the directivity variable antenna 96 and sends it to the directivity control unit 97. Output. The directivity control unit 97 controls the directivity of the directivity variable antenna 96. The directivity control unit 97 is directed in the gap section when the reception power input from the reception power measurement section 98 is equal to or less than a certain value in the reception period (uplink section 94 when the communication device 1c is a base station). The radiation pattern of the variable variable antenna 96 is changed. In the TDD scheme, since the transmitter and the receiver know the timing of the gap section, the directivity control unit 97 knows the timing of the gap section in advance using this timing information. However, the present invention is not limited to this. Absent. For example, the directivity control unit 97 may obtain gap section information from the synchronization unit 53.
以上のように、受信電力が小さい場合のみ指向性可変アンテナの放射パターンを変更する構成とすることで、アップリンクとダウンリンクで伝搬路特性が同じとなるTDD方式では、伝搬路特性が劣化した場合のみ指向性可変アンテナの放射パターンを変更することができる.したがって、アップリンク(またはダウンリンク)で受信特性が劣化した場合に、ダウンリンク(またはアップリンク)の受信特性を向上させる可能性を高めることができる。
また、不要な放射パターン変更による受信特性の劣化を抑圧できる。
As described above, with the configuration in which the radiation pattern of the directional variable antenna is changed only when the received power is small, the propagation path characteristic is deteriorated in the TDD scheme in which the propagation path characteristic is the same in the uplink and the downlink. Only in the case can the radiation pattern of the directional variable antenna be changed. Therefore, when reception characteristics deteriorate in the uplink (or downlink), the possibility of improving the reception characteristics of the downlink (or uplink) can be increased.
In addition, it is possible to suppress degradation of reception characteristics due to unnecessary radiation pattern changes.
また、TDD方式において図17のフレームフォーマットを使用する場合においても、実施の形態1~6における送信側のガード区間挿入部14、42があってもよい。また、実施の形態1~6における受信側の同期部53、73、82から指向性制御部52、72、81およびアンテナ選択部65へのガード区間挿入位置情報の通知を行ってもよい。すなわち、アップリンク信号94およびダウンリンク信号95のフレームフォーマットが図2または図12~16のいずれかであってもよい。 Further, even when the frame format of FIG. 17 is used in the TDD scheme, the transmission-side guard interval insertion units 14 and 42 in Embodiments 1 to 6 may be provided. Also, the guard section insertion position information may be notified from the receiving- side synchronization units 53, 73, and 82 to the directivity control units 52, 72, and 81 and the antenna selection unit 65 in the first to sixth embodiments. That is, the frame format of the uplink signal 94 and the downlink signal 95 may be any of FIG. 2 and FIGS.
以上のように、本発明は、指向性の鋭いアンテナを備えた送信装置および受信装置の受信性能を向上させる場合に有用であり、特に、フェージング変動が緩やかな環境において、指向性アンテナの指向性制御、アンテナの選択により受信性能劣化を抑えることが可能な通信装置、送信装置および受信装置に適している。 As described above, the present invention is useful for improving the reception performance of a transmission device and a reception device having an antenna with a sharp directivity, and particularly in an environment where fading fluctuation is moderate, It is suitable for a communication device, a transmission device, and a reception device capable of suppressing deterioration in reception performance by control and antenna selection.
 1、1a、1b:送信装置、1c:送受信装置、11:符号化部、12:インタリーブ部、13、41:変調部、14、42:ガード区間挿入部、15、43、51、71、96:指向性可変アンテナ、16、44、52、72、81、97:指向性制御部、17、36、45:送信制御部、2、2a、2b、2c、2d、2e、2f:フレーム、21、23、93、94、95:データ、22、101:ガード区間、31:セレクタ、32、33、34、61、62、63、64:指向性固定アンテナ、35、65:アンテナ選択部、5、5a、5b、5c:受信装置、53、73、82:同期部、54、74:復調部
、55:デインタリーブ部、56:復号部、66:選択合成部、91:OFDMシンボル、92:ガードインターバル、111:同期語、98:受信電力測定部
DESCRIPTION OF SYMBOLS 1, 1a, 1b: Transmission apparatus, 1c: Transmission / reception apparatus, 11: Encoding part, 12: Interleaving part, 13, 41: Modulation part, 14, 42: Guard section insertion part, 15, 43, 51, 71, 96 : Directivity variable antenna, 16, 44, 52, 72, 81, 97: Directivity control unit, 17, 36, 45: Transmission control unit, 2, 2a, 2b, 2c, 2d, 2e, 2f: Frame, 21 , 23, 93, 94, 95: Data, 22, 101: Guard section, 31: Selector, 32, 33, 34, 61, 62, 63, 64: Directivity fixed antenna, 35, 65: Antenna selection unit, 5 5a, 5b, 5c: receiving device, 53, 73, 82: synchronization unit, 54, 74: demodulation unit, 55: deinterleaving unit, 56: decoding unit, 66: selection combining unit, 91: OFDM symbol, 92: Guard interval, 1 11: Sync word, 98: Received power measurement unit

Claims (11)

  1. 放射パターンの変更が可能な指向性可変アンテナ、
    フレームにデータ伝送に寄与しないガード区間を挿入するガード区間挿入部、
    ガード区間挿入の位置情報に基づいて、前記指向性可変アンテナに対して前記ガード区間での放射パターンの変更を指示する制御部、
    を備えたことを特徴とする送信装置。
    Directional variable antenna that can change the radiation pattern,
    A guard interval insertion unit that inserts a guard interval that does not contribute to data transmission in the frame;
    Based on position information of guard section insertion, a control unit that instructs the directivity variable antenna to change a radiation pattern in the guard section,
    A transmission device comprising:
  2. 複数のアンテナ、
    該複数のアンテナからアンテナを選択するセレクタ、
    フレームにデータ伝送に寄与しないガード区間を挿入するガード区間挿入部、
    ガード区間挿入の位置情報に基づいて前記セレクタに対して前記ガード区間での前記アンテナの変更の指示を行う制御部、
    を備えたことを特徴とする送信装置。
    Multiple antennas,
    A selector for selecting an antenna from the plurality of antennas;
    A guard interval insertion unit that inserts a guard interval that does not contribute to data transmission in the frame;
    A control unit that instructs the selector to change the antenna in the guard section based on position information of the guard section insertion;
    A transmission device comprising:
  3. 前記前記ガード区間挿入の位置情報は、前記ガード区間挿入部から得ることを特徴とする請求項1及び2のいずれかに記載の送信装置。 The transmission apparatus according to claim 1, wherein the position information of the guard interval insertion is obtained from the guard interval insertion unit.
  4. 前記ガード区間には0信号が挿入されたることを特徴とする
    請求項1乃至3のいずれかに記載の送信装置。
    4. The transmission apparatus according to claim 1, wherein a 0 signal is inserted in the guard interval.
  5. 伝送方式は、OFDMまたはSC-FDMAのブロック伝送を採用する
    ことを特徴とする請求項1乃至4のいずれかに記載の送信装置。
    5. The transmission apparatus according to claim 1, wherein the transmission system employs OFDM or SC-FDMA block transmission.
  6. 前記ガード区間はブロック伝送におけるガードインターバルである
    ことを特徴とする請求項5に記載の送信装置。
    The transmission apparatus according to claim 5, wherein the guard interval is a guard interval in block transmission.
  7. フレームには、前記ガードインターバルの他にガード区間を設けた
    ことを特徴とする請求項6に記載の送信装置。
    The transmission apparatus according to claim 6, wherein a guard interval is provided in the frame in addition to the guard interval.
  8. 前記フレームの先頭にフレーム同期用の同期語が付加された
    ことを特徴とする請求項1乃至7のいずれかに記載の送信装置。
    8. The transmission apparatus according to claim 1, wherein a synchronization word for frame synchronization is added to the head of the frame.
  9. 指向性可変アンテナ、
    該指向性可変アンテナで受信した受信信号からフレームのデータ伝送に寄与しないガード区間を検出する同期部、
    前記指向性可変アンテナに対し、前記同期部により検出されたガード区間での放射パターン変更の指示を行なう制御部、
    を備えたことを特徴とする受信装置。
    Directional variable antenna,
    A synchronization unit for detecting a guard interval that does not contribute to data transmission of a frame from a received signal received by the directivity variable antenna;
    A control unit that instructs the variable directivity antenna to change a radiation pattern in the guard section detected by the synchronization unit;
    A receiving apparatus comprising:
  10. 複数のアンテナ、
    該複数のアンテナからアンテナを選択する選択合成部、
    該複数アンテナのいずれかのアンテナで受信した受信信号から、フレームのデータ伝送に寄与しないガード区間を検出する同期部、
    前記ガード区間において、前記選択合成部に対してガード区間での前記アンテナ変更の指示を行う制御部、
    を備えたことを特徴とする受信装置。
    Multiple antennas,
    A selective combining unit for selecting an antenna from the plurality of antennas;
    A synchronization unit that detects a guard interval that does not contribute to data transmission of a frame from a reception signal received by any one of the antennas;
    In the guard section, a control unit that instructs the selection combining unit to change the antenna in the guard section,
    A receiving apparatus comprising:
  11. 同一の周波数を時分割して送信と受信を区別する時分割複信を用いてデータを送受信する送受信装置において、
    放射パターンの変更が可能な指向性可変アンテナ、
    アップリンクとダウンリンクの衝突を防止するために設けられるギャップ区間において、前記指向性可変アンテナに対して放射パターンの変更をするように指示する制御部、
    を備えたことを特徴とする送受信装置。
    In a transmission / reception device that transmits and receives data using time division duplex to distinguish between transmission and reception by time division of the same frequency,
    Directional variable antenna that can change the radiation pattern,
    A control unit for instructing the directional variable antenna to change a radiation pattern in a gap section provided to prevent an uplink and downlink collision;
    A transmission / reception device comprising:
PCT/JP2014/000648 2013-03-19 2014-02-07 Transmission device, reception device, and transmission/reception device WO2014147944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013056054A JP2016106443A (en) 2013-03-19 2013-03-19 Transmitting device and receiving device
JP2013-056054 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014147944A1 true WO2014147944A1 (en) 2014-09-25

Family

ID=51579649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000648 WO2014147944A1 (en) 2013-03-19 2014-02-07 Transmission device, reception device, and transmission/reception device

Country Status (2)

Country Link
JP (1) JP2016106443A (en)
WO (1) WO2014147944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022422A1 (en) * 2015-08-04 2017-02-09 三菱電機株式会社 Wireless communication system, base station, and wireless communication method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059279A (en) * 1998-08-11 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Method and device for digital highs-speed radio communication
JP2007267198A (en) * 2006-03-29 2007-10-11 Casio Comput Co Ltd Ofdm reception apparatus, ofdm reception method and terrestrial digital reception device
WO2009087808A1 (en) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation Analog beam forming communication system
JP2010041269A (en) * 2008-08-04 2010-02-18 Mitsubishi Electric Corp Radio communication device, radio communication system, and calibration method
WO2011055535A1 (en) * 2009-11-04 2011-05-12 日本電気株式会社 Control method for wireless communication system, wireless communication system, and wireless communication device
JP2011130126A (en) * 2009-12-16 2011-06-30 Canon Inc Control device, relay device, control method thereof, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059279A (en) * 1998-08-11 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Method and device for digital highs-speed radio communication
JP2007267198A (en) * 2006-03-29 2007-10-11 Casio Comput Co Ltd Ofdm reception apparatus, ofdm reception method and terrestrial digital reception device
WO2009087808A1 (en) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation Analog beam forming communication system
JP2010041269A (en) * 2008-08-04 2010-02-18 Mitsubishi Electric Corp Radio communication device, radio communication system, and calibration method
WO2011055535A1 (en) * 2009-11-04 2011-05-12 日本電気株式会社 Control method for wireless communication system, wireless communication system, and wireless communication device
JP2011130126A (en) * 2009-12-16 2011-06-30 Canon Inc Control device, relay device, control method thereof, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022422A1 (en) * 2015-08-04 2017-02-09 三菱電機株式会社 Wireless communication system, base station, and wireless communication method
CN107852258A (en) * 2015-08-04 2018-03-27 三菱电机株式会社 Wireless communication system, base station and wireless communications method

Also Published As

Publication number Publication date
JP2016106443A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
CN110754051B (en) Wireless communication device, infrastructure equipment and method
KR101995798B1 (en) Device and method for random access in a wireless communication system using beamformig
KR102026652B1 (en) Method of signal generation and signal generating device
US9780899B2 (en) Radio communication apparatus, transmission apparatus, and reception apparatus
EP3220564B1 (en) Data transmission method and device
US20090041150A1 (en) Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems
EP2041887B1 (en) Enabling mobile switched antennas
US20080181319A1 (en) Method and apparatus for providing time-frequency diversity in OFDM wireless communication systems
KR20120052941A (en) Wireless relay device and wireless relay method
CN114245970B (en) Method and apparatus for securing communications
CN107888260B (en) Beam selection method and related equipment
CN111385812B (en) Beam management method and device
WO2014147944A1 (en) Transmission device, reception device, and transmission/reception device
JP5291584B2 (en) OFDM receiver and transmitter
US9565004B2 (en) Transmit diversity for pre-coded radio control signals
JP4846745B2 (en) Wireless communication apparatus and wireless communication method.
CN110830159B (en) Wireless communication method, device and computer readable storage medium
JP2010124259A (en) Mimo transmitting apparatus, receiving apparatus and system
JP2008113175A (en) Radio transmitter-receiver and radio transmission and reception method
CN111698061B (en) Signal transmission method and device
JP4754324B2 (en) Wireless communication apparatus and communication control method
JP6985851B2 (en) Transmitter
JP2018026786A (en) Terminal apparatus, radio communication system, and communication method
KR20160080040A (en) Apparatus for receiving a signal in the cells with multiple overlapping signals and method thereof
US20100135424A1 (en) Communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP