WO2009087808A1 - Analog beam forming communication system - Google Patents

Analog beam forming communication system Download PDF

Info

Publication number
WO2009087808A1
WO2009087808A1 PCT/JP2008/070291 JP2008070291W WO2009087808A1 WO 2009087808 A1 WO2009087808 A1 WO 2009087808A1 JP 2008070291 W JP2008070291 W JP 2008070291W WO 2009087808 A1 WO2009087808 A1 WO 2009087808A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
base stations
pattern
communication system
mobile terminal
Prior art date
Application number
PCT/JP2008/070291
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Uchida
Hiroki Iura
Toshiyuki Kuze
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2009548859A priority Critical patent/JP4906928B2/en
Publication of WO2009087808A1 publication Critical patent/WO2009087808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to an analog beamforming communication system.
  • a radio terminal located at a cell boundary receiving signals from a plurality of base stations.
  • the radio terminal located at the cell boundary may have low received power, and means for solving this is required.
  • a wireless terminal is required to have not only line connectivity but also high speed.
  • the IEEE 802.16e-2005 specification shows a frame configuration when performing DBF.
  • JP 2000-92545 A IEEE Std 802.16e-2005 and IEEE Std 802.16-2004 / Cor1-2005 “Air Interface for Fixed and Mobile Mobile Broadband Wireless Access Systems,” 2006.
  • Beam forming by an array antenna is generally digital beam forming, and frequency conversion units and power amplification units corresponding to the number of antenna elements are required. For this reason, in order to form a beam having a high-gain directivity pattern, a large number of frequency conversion units and power amplification units are required, resulting in an increase in manufacturing cost.
  • the received signal power is low due to the long propagation distance, or because of strong interference power from surrounding sector cells, high robustness and high user There is a problem that it is difficult to achieve wireless communication with throughput.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an analog beamforming communication system in which a base station can select an appropriate analog beam pattern for each mobile terminal.
  • the analog beamforming communication system applies analog beamforming to communication between one or more base stations and one or more mobile terminals, and depends on the position of the mobile terminal or the received signal quality of the mobile terminal.
  • An analog beamforming communication system that performs communication by selecting an appropriate beam, and each of one or more base stations directs a download frame including information indicating a pattern for identifying a beam pattern that can be transmitted by the base station.
  • a beam pattern corresponding to information indicating the pattern is used.
  • Each of the one or more base stations transmits one or more mobiles based on information indicating communication quality information or patterns included in the respective upload frames received from one or more mobile terminals.
  • Terminal grouping is performed, and communication is performed by selecting an appropriate beam from the beam patterns that can be transmitted by each grouped mobile terminal.
  • the data structure of the upload frame and the download frame exchanged between the base station and the mobile terminal is specified, and the mobile terminals are grouped based on the communication quality information on the mobile terminal side that has received the download frame.
  • Embodiment 1 of this invention It is a block diagram of the radio base station apparatus in Embodiment 1 of this invention.
  • Embodiment 1 of this invention it is the figure which showed the frame structure in OFDM / OFDMA when introducing ABF on the basis of IEEE802.16e.
  • Embodiment 1 of this invention it is another figure which showed the frame structure in OFDM / OFDMA when introducing ABF on the basis of IEEE802.16e.
  • Embodiment 1 of this invention It is the figure which showed another frame structure which matches the terminal and beam by the grouping part of Embodiment 1 of this invention. It is a block diagram in case the some radio base station apparatus in Embodiment 1 of this invention cooperates. It is another block diagram in case the some radio base station apparatus in Embodiment 1 of this invention cooperates. It is the figure which showed the interference avoidance technique by the cooperative control between base stations of Embodiment 1 of this invention. It is the figure which showed the frame structure in the case of performing cooperation beam control between base stations in Embodiment 1 of this invention. In Embodiment 1 of this invention, it is an illustration figure in the case of using the cooperation operation
  • Embodiment 2 of this invention It is the figure which showed the frame structure in Embodiment 2 of this invention. It is explanatory drawing of the coping method of the problem in the case of acquiring communication quality information always in Embodiment 2 of this invention. It is the example figure which the base station 130 in Embodiment 3 of this invention transmits different user data using the same frequency and a different beam with respect to two MS. It is a block diagram of the radio base station apparatus in Embodiment 3 of this invention. It is the figure which showed the interference avoidance technique by the cooperative beam control between base stations of Embodiment 4 of this invention. In Embodiment 5 of this invention, it is an illustration figure in the case of using the cooperation operation
  • FIG. 1 is a configuration diagram of a radio base station apparatus according to Embodiment 1 of the present invention.
  • 1 includes a scheduling unit 1, a grouping unit 2, two modulation / demodulation units 3, 4, two frequency conversion units 5, 6, two signal power amplification units 7, 8, It comprises an analog beam control unit 9, an analog beam generation unit 10, and base station antennas 11-15.
  • the number of the series of a frequency conversion part and a signal power amplification part has shown two structures, such a structure is an example to the last, and the number of systems is a base station antenna. Or less.
  • FIG. 1 illustrates an apparatus configuration when two different data are transmitted or received
  • the present invention can achieve a desired object with the same configuration regardless of the number of transmission data. It is.
  • the modem unit 3 and the modem unit 4 modulate user data based on the user data control signals 18 and 19 received from the scheduling unit 1, respectively.
  • modulated signals are converted by the frequency converters 5 and 6 to the frequency of the antenna to be transmitted. Further, these frequency-converted signals are amplified by the signal power amplifiers 7 and 8, respectively. Further, these power amplified signals are input to the analog beam control unit 9.
  • the analog beam control unit 9 determines a beam to be used based on the beam control signal 16 from the scheduling unit 1.
  • a plurality of directivity patterns by ABF are prepared in advance, and the beam control signal 16 is a signal for selecting these directivity patterns prepared in advance.
  • the analog beam generation unit 10 includes an analog passive circuit that forms a beam selected by the analog beam control unit 9. The signal whose phase is adjusted by the analog beam generator 10 is radiated from the base station antennas 11 to 15.
  • FIG. 2 is a diagram showing a frame configuration in OFDM / OFDMA when ABF is introduced based on IEEE 802.16e in Embodiment 1 of the present invention.
  • a case where the DL PUSC frame configuration is applied to the first embodiment will be described as an example.
  • One radio frame is composed of DL_Sub_Frame 20 composed of downlink data and UL_Sub_Frame 21 composed of uplink data.
  • the preamble 22, the FCH 23, the DL-MAP 24, and the UL-MAP 25 are transmitted by an omni antenna or a sector antenna, and all terminals located in the service area of the base station can be decoded.
  • the next radio frame is composed of DL_Sub_Frame 34 and UL_Sub_Frame 35.
  • Preamble 36, FCH 37, DL-MAP 38, and UL-MAP 39 are transmitted by an omni antenna or a sector antenna and are located in the service area of the base station. All of the terminals are decipherable.
  • the Analog BF switching gaps 27 and 41 are time gaps necessary for securing time for switching the directivity pattern.
  • the beam generation circuit consisting of a distributor and a fixed phase shifter is used to switch the beam by an analog switch, or the phase of the variable phase shifter is changed using a beam generation circuit consisting of a distributor and a variable phase shifter. It is conceivable to apply one of the methods of changing the beam by changing the beam.
  • the time required for the beam change varies depending on the equipment used, and the influence of the beam change time on the system varies depending on the symbol time of the system and the system cycle. For this reason, the Analog BF switching gaps 27 and 41 are not necessarily required.
  • Analog BF Preamble 28 Sub_DL_UL_MAP 29, DL_Burst # 1, 30, DL_Burst # 2, and DL_Burst # 3 32 in DL_Sub_Frame20 are transmitted with a beam pattern having a certain directivity, they are transmitted by an omni antenna or a sector antenna.
  • the received signal characteristics power, frequency selectivity, correlation between signals, Doppler fading characteristics, etc. are significantly different depending on the location where the terminal is located.
  • the selected beam has a sharp directivity, it is higher than when using Analog BF Preamble28, Sub_DL_UL_MAP29, DL_Burst # 1, 30, DL_Burst # 2, 31 or DL_Burst # 3 32 with an omni antenna or a sector antenna. There are terminals that can obtain received power.
  • FIG. 2 shows a method of selecting a beam for each subframe.
  • FIG. 3 is another diagram showing a frame configuration in OFDM / OFDMA when ABF is introduced based on IEEE 802.16e in Embodiment 1 of the present invention. This is a method of performing beam selection a plurality of times within one frame, and more specifically, having a plurality of Analog BF Zones 67 and 68 within one frame.
  • the grouping unit 2 assigns each terminal to one or a plurality of beams based on information notified from the terminals, and associates the terminals with the beams. Below, the acquisition method of the information alert
  • FIG. 4 is an exemplary diagram of correspondence between terminals and beams by the grouping unit 2 according to Embodiment 1 of the present invention.
  • the base station 130 has a three-sector configuration including sectors 131 to 133. Only the sector 131 will be described, but the same applies to other sectors.
  • the sector area can be divided into a Beam # 1 area 134 and a Beam # 2 area 135 in the sector 131 by using two directional beams. At this time, it is assumed that each directional beam has a certain angle width, the antenna gain other than that angle is extremely low, and the beam and the terminal are associated by the strength of the received power.
  • Beam # 1 is a beam with high gain in the direction in which MS 136, MS 137, and MS 138, which are mobile stations, are located
  • Beam # 2 is a beam with high gain in the direction in which MS 139 and MS 140 are located. . Therefore, MS136, MS137, and MS138 are associated with Beam # 1, and MS139 and MS140 are associated with Beam # 2.
  • FIG. 5 is a diagram showing a frame configuration for associating terminals and beams by grouping unit 2 according to Embodiment 1 of the present invention, and shows a method of associating beams and terminals using ranging channels. ing. This will be described using a specific frame configuration.
  • Analog BF Preambles 79 and 85 have beam-specific preamble patterns, and beam pattern numbers that can be generated by the base station are assigned according to the patterns. Therefore, a terminal that can decode this preamble can know a beam pattern number that can be decoded, that is, communicated.
  • the terminal can know the received signal characteristics of each beam pattern using this preamble. For example, the terminal associates the reception signal characteristic of each beam pattern with the beam pattern number, and informs the base station of the table of each beam pattern number and reception power using the ranging 91 and 92. Based on this information, the grouping unit 2 of the base station associates terminals with beam numbers.
  • the above example is an example in which the terminal uses the received power of the terminal as a reference for communication information quality, and the terminal associates the beam number with the beam number, and transmits the result to the base station side.
  • a method for evaluating communication quality of a terminal in a communication system differs depending on a transmission system. Therefore, which beam each terminal belongs to is not only the received power, but the frequency selectivity, and if the terminal has multiple antennas, the beam to which it belongs by comprehensive evaluation based on the correlation of the received signals of these antennas. Will be determined.
  • the above example is an example in which the base station associates the terminal with the beam number based on the communication quality information received from the terminal.
  • a method of informing the user may be considered.
  • each terminal uses an orthogonal code when transmitting ranging information in the uplink. Therefore, by associating the orthogonal code number with the beam number to which the base station belongs, the base station can know the beam number to which the terminal belongs when decoding the ranging area.
  • FIG. 6 is a diagram showing another frame configuration for associating terminals and beams by the grouping unit 2 according to Embodiment 1 of the present invention, and is an example in the case of using Beam Selection messages 120 and 121.
  • the information transmitted by Beam Selection messages 120 and 121 is the same as the information transmitted by Ranging 91 and 92, and only the channel used is different.
  • the Beam Selection message may be in the form of a bitmap that can indicate a plurality of usable beam patterns.
  • FIG. 7 is a configuration diagram in the case where a plurality of radio base station apparatuses cooperate in Embodiment 1 of the present invention.
  • FIG. 7 illustrates a configuration in the case where two different radio base station apparatuses 150a and 150b perform a cooperative operation.
  • each of the radio base station devices 150a and 150b is the same as that of the radio base station device 150 of FIG. 1, and the subscripts a and b are attached to the respective components.
  • Each scheduling unit 1a, 1b and grouping unit 2a, 2b in each radio base station apparatus 150a, 150b generates a cooperative operation control signal based on the other party's scheduling information and user grouping information, and transmits it to the other party To do. Thereby, each scheduling part 1a, 1b and grouping part 2a, 2b can cooperate with another base station apparatus, and the coordinated ABF scheduling is attained.
  • FIG. 8 is another configuration diagram when a plurality of radio base station apparatuses in Embodiment 1 of the present invention cooperate.
  • the radio base station apparatuses 150a and 150b cooperate with each other and perform scheduling for cooperative operation in a distributed manner.
  • the inter-base station cooperative control scheduling unit 163 in the inter-base station cooperative control device 162 is used to coordinate the radio base station devices 150 a and 150 b.
  • the scheduling units 1a and 1b in the radio base station apparatuses 150a and 150b transmit scheduling information 164 and 166 to the inter-base station cooperative control scheduling unit 163. Further, the grouping units 2a and 2b in the radio base station apparatuses 150a and 150b transmit user grouping information 165 and 167, respectively.
  • the inter-base station cooperative control scheduling unit 163 performs grouping and scheduling for inter-base station cooperative control based on the sent scheduling information 164 and 166 and user grouping information 165 and 167 of the radio base station apparatuses 150a and 150b.
  • the generated information is sent as a cooperative operation control signal to each of the radio base station apparatuses 150a and 150b. Thereby, the operation
  • FIG. 9 is a diagram showing an interference avoidance technique by inter-base station cooperative control according to Embodiment 1 of the present invention.
  • the base station 186 sets the cell 170 as a service area, and the base station 187 sets the cell 171 as a service area.
  • the MS 181 and the MS 182 exist at the cell boundary between the cell 170 and the cell 171. Therefore, when the base station 186 and the base station 187 transmit signals using an omni antenna or a sector antenna as in the conventional case, for these MS 181 and 182, the signal from the cell to which it does not belong becomes a strong interference wave, Received signal quality deteriorates.
  • interference can be avoided by performing coordinated scheduling control of the beam used in each base station (186, 187) with other base stations (187, 186).
  • the base station 186 transmits to the MS 183 using the Beam 179 and the base station 187 transmits to the MS 181 using the Beam 180, the beam 179 and the Beam 180 are greatly overlapped in the radiation direction.
  • Beam 179 interferes with MS 181.
  • Beam 179 is a beam with high directivity, and therefore has stronger interference than when an omni antenna or a sector antenna is used. Therefore, when performing beam forming, it can be said that cooperative beam control with surrounding base stations is essential.
  • the base station 186 uses the Beam 178 which is a beam having high orthogonality to the Beam 180. Since Beam 180 and Beam 178 have high orthogonality, the power that causes interference with each other is extremely small, and it is possible to simultaneously realize both gain increase by beam and interference avoidance by coordinated beam control between base stations.
  • FIG. 10 is a diagram showing a frame configuration when performing inter-base station cooperative beam control in Embodiment 1 of the present invention. This is a case where the DL_Sub_Frame 189 of the base station 186 and the DL_Sub_Frame 203 of the base station 187 cooperate.
  • the time timing of Analog BF Zone 190 (Beam 178) is synchronized with the time timing of Analog BF Zone 204 (Beam 180), the time timing of Analog BF Zone 191 (Beam 179), and the time timing of Analog BF Zone 205 (Bone 185 Zone 5). is doing.
  • interference can be avoided by selecting beams with high orthogonality between surrounding base stations at the same time timing.
  • FIG. 11 is an exemplary diagram in the case where the cooperative operation between base stations is used as diversity or multi-stream transmission instead of interference avoidance in Embodiment 1 of the present invention.
  • the base station 224 and the base station 225 perform ABF scheduling in cooperation with each other.
  • the MS 226 is located at the cell edge.
  • the Beam 227, which is a beam formed by the base station 224, and the Beam 228, which is a beam formed by the base station 225 have the strongest received power among the beams of each base station. obtain.
  • a terminal located at a cell boundary receives strong interference waves from neighboring base stations.
  • the neighboring base station also communicates with a terminal located at the cell boundary, the interference signal so far becomes a desired signal.
  • the beam frame identification information is included in the data structure of the upload frame exchanged between the base station and the mobile terminal, and the communication quality is included in the data structure of the download frame. Information is included.
  • the mobile terminals can be grouped and beam selected, and the base station can select an appropriate analog beam pattern for each mobile terminal.
  • a beamforming communication system can be obtained.
  • FIG. The second embodiment is a modification of the first embodiment, and will be described below with reference to FIGS. 1, 4, 12, and 13.
  • the configuration of the radio base station apparatus that performs time division control using ABF is the same as that of FIG. 1 used in the first embodiment.
  • an example of association between mobile terminals and beams by the grouping unit 2 in FIG. 1 is the same as that in FIG. 4 used in the first embodiment.
  • FIG. 12 is a diagram showing a frame configuration in the second embodiment of the present invention, and shows a frame configuration in the case where ABF is introduced based on IEEE 802.16e, as in the first embodiment.
  • the permutation method is applicable to all methods such as PUSC (Partial Usage of SubChannels), Band AMC (Adaptive Modulation and Coding).
  • PUSC Partial Usage of SubChannels
  • Band AMC Adaptive Modulation and Coding
  • One radio frame is composed of DL_Sub_Frame 250 composed of downlink data and UL_Sub_Frame 251 composed of uplink data.
  • the preamble 254, the FCH 255, the DL-MAP 256, and the UL-MAP 257 are transmitted using an omni antenna or a sector antenna, and all terminals located in the service area of the base station can be decoded.
  • an Analog BF switching gap is not prepared. As described in the first embodiment, this is an example in which the beam change time is sufficiently shorter than the symbol time of the system and does not require the Analog BF switching gap. Yes.
  • DL_Sub_Frame 250 includes Analog BF Zone 252 that transmits Beam # 1, which is a beam pattern having a certain directivity, and Analog BF Zone 253 that transmits Beam # 2 having a beam pattern different from Beam # 1.
  • DL_Sub_Frame 250 in FIG. 12 exemplifies a case where two zones are included, but the number of DL_Sub_Frames 250 is not limited to two zones, and may be any number. Also, the number of ABF beams need not be limited to two, and may be any number depending on the specifications of the ABF. Furthermore, different radio frames may be transmitted with different beam patterns.
  • Analog BF Zones 252 and 253 The allocation of Analog BF Zones 252 and 253 is specified by DL-MAP256.
  • the Analog BF Zones 252 and 253 include user data and a pilot signal (Dedicated Pilot) in which beam forming is performed in the same manner as user data.
  • MS 136 to MS 140 analyze DL-MAP 256 to identify the allocation of Analog BF Zones 252, 253, and acquire downlink communication quality information (CINR, etc.) for each beam Beam # 1, Beam # 2. be able to.
  • CINR downlink communication quality information
  • the base station 130 (150 in FIG. 1) can instruct the MS 136 to MS 140 to report the communication quality information for each beam in the CQICH 264 in the UL_Sub_Frame 251.
  • the base station 130 acquires the communication quality information of all beams or all beams transmitted by DL_Sub_Frame within a certain period of time from each MS 136 to MS 140.
  • the grouping unit 2 in the base station 130 associates each MS with one or more beams having good communication quality.
  • the example of associating the MS and the beam by the grouping unit 2 has been described with reference to FIG. 4, but the second embodiment is the same as this.
  • FIG. 13 is an explanatory diagram of a method for dealing with a problem when communication quality information is constantly acquired in Embodiment 2 of the present invention.
  • the number of beams that can be transmitted by the base station 283 is 8 per sector.
  • the association between the MS 282 and the beam in the base station 283 is determined by causing the MS to report the communication quality information of each beam as described above.
  • the MS 282 is associated with the area 277 of Beam # 4. Thereafter, the base station 283 does not need to acquire the communication quality information of all beams from the MS 282, and only needs to acquire the communication quality information for Beam # 4.
  • the base station 283 when the base station 283 observes the communication quality information notified from the MS 282 and determines that the communication quality for the Beam # 4 has deteriorated, the MS 282 determines the Beam # 3 that is adjacent to the area 277 of the Beam # 4. It is determined that there is a possibility of moving to the area 276 of Beam # 5 or the area 276 of Beam # 5, and the communication quality for Beam # 3 and Beam # 5 is also periodically reported. Based on the information, the base station 283 switches the correspondence between the MS and each beam.
  • the communication quality information is included in the data structure of the upload frame exchanged between the base station and the mobile terminal.
  • the mobile terminals can be grouped and beam selected, and the base station can select an appropriate analog beam pattern for each mobile terminal.
  • a beamforming communication system can be obtained.
  • Embodiment 3 FIG. In the third embodiment, a case will be described in which the base station transmits different user data using the same frequency and two or more different beams in the first or second embodiment.
  • FIG. 14 is an exemplary diagram in which base station 130 according to Embodiment 3 of the present invention transmits different user data to two MSs using the same frequency and different beams.
  • FIG. 15 is a configuration diagram of the radio base station apparatus according to Embodiment 3 of the present invention.
  • the base station 130 uses the same frequency to transmit data for the MS 297 in the Beam 295 and data for the MS 298 in the Beam 296 at the same time. Even in the case, it is the same.
  • the base station 130 may perform multistream transmission or diversity transmission using Beam295 and Beam296, respectively, using a plurality of antennas.
  • the amount of interference between Beam 295 and Beam 296 may be very large depending on the beam pattern and the positional relationship between MS 297 and MS 298.
  • the modulation / demodulation units 3a, 4a, 3b, and 4b in FIG. 15 perform coding for canceling mutual interference between the data for MS297 and the data for MS298.
  • the description of the other functional units is omitted because it is the same as in the first embodiment.
  • the base station 130 includes four series of frequency converters 5a, 6a, 5b, 6b and signal power amplifiers 7a, 8a, 7b, 8b, and the following equation (1)
  • the determinant of (2) is used (see, for example, Non-Patent Document 2: IEEE C802.16m-08 / 698r1).
  • S [1] is used and transmitted by the Beam 295.
  • S [2] is used and transmitted by the Beam 296.
  • the rows of the matrix indicate the signal systems transmitted to the MS 297 and MS 298 by a series of two frequency converters 5a, 6a, 5b, 6b and signal power amplifiers 7a, 8a, 7b, 8b. Show. Further, the columns of the matrix indicate the time direction. In the case of OFDM / OFDMA, different OFDM / OFDMA symbols are shown, and may be consecutive OFDM / OFDMA symbols, or may be OFDM / OFDMA symbols that differ greatly in time by processing such as Hybrid ARQ. .
  • MS297 acquires data for MS297 by, for example, the following formulas (3) and (4).
  • MS 298 data for MS 298 is acquired by the following formulas (5) and (6).
  • r i is the i-th received symbol
  • h i is the transmission path information of the i-th transmission beam
  • n i ′ is noise.
  • Other processes are the same as those in the first embodiment.
  • Embodiment 3 is not limited to the above code, and any code that reduces inter-beam interference may be used. Further, in Embodiment 3, only downlink transmission is described, but uplink transmission can be considered similarly.
  • the interference between the beams transmitted by the transmitter is significantly reduced by the reception process of the receiver.
  • An analog beamforming communication system can be obtained.
  • FIG. 16 is a diagram illustrating an interference avoidance technique by inter-base station cooperative beam control according to Embodiment 4 of the present invention. Further, the corresponding configuration will be described with reference to FIG. 7 or FIG. 8 used in the first embodiment.
  • the base station 130a communicates with the MS 310 by transmitting Beam 306 and Beam 307, and the base station 130b communicates with the MS 311 by transmitting Beam 308 and Beam 309.
  • S [1] described in the third embodiment is used as data for the MS 310 by the modulation / demodulation unit # 1 3a and modulation / demodulation unit # 2 4a of the base station 130a, and is transmitted as Beam 306 and Beam 307.
  • S [2] described in the third embodiment is used as data for the MS 311 by the modem unit # 1 3b and the modem unit # 2 4b of the base station 130b, and is transmitted as Beam308 and Beam309.
  • an analog beamforming communication system can be obtained that further reduces interference between beams transmitted by a base station during a multi-base station cooperative interference avoidance operation by reception processing of a mobile terminal. Can do.
  • FIG. 17 is an exemplary diagram in the case where the cooperative operation between base stations is used as diversity or multi-stream transmission instead of interference avoidance in Embodiment 5 of the present invention. Further, the corresponding configuration will be described with reference to FIG. 7 or FIG. 8 used in the first embodiment.
  • the base station 130a constituting the cell 320 (150a in FIG. 7 or FIG. 8) or the base station 130b constituting the cell 322 (150b in FIG. 7 or FIG. 8) corresponds to the sector 321 and the sector 323, respectively. As shown in FIG. 7 or FIG. 8, it is assumed that the number of series systems of the frequency conversion unit and the signal power amplification unit is two.
  • the base station 130a transmits Beam 326 and Beam 327, and the base station 130b transmits Beam 328 and Beam 329, thereby performing coordinated transmission to the MS 330 and MS 331 located at the cell edge.
  • S [1] described in the third embodiment is used for data for the MS 330, and the first row of S [1] is used in the modem unit # 1 3a of the base station 130a.
  • the second line of S [1] is used by the modem unit # 13 3b of the base station 130b and transmitted as Beam 328.
  • S [2] described in the third embodiment is used for data for MS 331, and the first row of S [2] is used in modem # 2 4a of base station 130a as Beam 327.
  • the second line of S [2] is used by the modem unit # 24b of the base station 130b and transmitted as Beam 329.
  • an analog beamforming communication system that significantly reduces interference between beams transmitted by a base station at the time of coordinated transmission by a plurality of base stations by reception processing of a mobile terminal. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A base station can select an analog beam pattern suitable for each terminal device. Analog beam forming is applied to a communication system. In order for a base station (150) to select an appropriate beam for communication in accordance with a position of a mobile terminal device or a receiving signal quality, the base station (150) transmits a down-load frame including information indicative of a pattern to identify a beam pattern that the base station can transmit with a beam provided with a directionality pattern. When a mobile terminal device can receive the down-load frame, the mobile terminal device transmits an up-load frame including at least one of communication quality information and information indicating a pattern in carrying out communication by means of a beam pattern corresponding to the information indicating a pattern. The base station (150) groups mobile terminal devices based on the communication quality information or the information indicating a pattern included in the up-load frame and carries out communication by selecting a suitable beam from the beam patterns that the base station can transmit for every grouped mobile terminal device is possible to transmit by itself.

Description

アナログビームフォーミング通信システムAnalog beamforming communication system
 本発明は、アナログビームフォーミング通信システムに関する。 The present invention relates to an analog beamforming communication system.
 近年、移動体通信における電波資源不足は、深刻なものとなっている。一方で、ワイヤレスブロードバンド高速大容量化の要求は、日増しに大きくなっている。こういった状況から、利用周波数の高周波化と広帯域化が進んでいる。また、セルラー通信においては、隣接セルと同じ周波数を使用するReuse1が求められている。 In recent years, the shortage of radio wave resources in mobile communications has become serious. On the other hand, the demand for high-speed and large-capacity wireless broadband is increasing day by day. Under these circumstances, the use frequency has been increased and the bandwidth has been increased. In cellular communication, Reuse 1 that uses the same frequency as that of an adjacent cell is required.
 利用周波数の高周波化・広帯域周波数の利用により、電波の伝搬距離減衰は、非常に大きいものとなり、セル半径は、小さくなってしまう。そこで、アレーアンテナを用いたビームフォーミングにより、高利得な放射パターンを形成することが考えられている。 ・ By increasing the frequency of use and using broadband frequency, the propagation distance attenuation of radio waves becomes very large, and the cell radius becomes small. Therefore, it is considered to form a high-gain radiation pattern by beam forming using an array antenna.
 また、1周波数の繰り返し利用を可能にするため、セル・セクタ間干渉を回避する方策が切に求められる。特に、ビームフォーミングを行うシステムにおいては、形成する放射パターンが高利得であるため、適切に放射パターンを制御しない場合には、通常のオムニパターン、セクタパターンのアンテナよりも、大きな干渉となる。そのため、形成する放射パターンを干渉回避の観点から制御する必要がある。 Also, in order to enable repeated use of one frequency, a measure to avoid cell-sector interference is urgently required. In particular, in a beam forming system, since the radiation pattern to be formed has a high gain, if the radiation pattern is not appropriately controlled, the interference is larger than that of a normal omni pattern or sector pattern antenna. Therefore, it is necessary to control the radiation pattern to be formed from the viewpoint of avoiding interference.
 さらに、セル境界に位置する無線端末が複数の基地局からの信号を受信することでダイバーシチ効果を得る手法がある。この場合、セル境界に位置する無線端末は、受信電力が低いことがあり、これを解消する手段が必要とされている。また、セルの如何なる位置に無線端末が存在しても、回線の接続性だけでなく、その高速性も要求されている。 Furthermore, there is a technique in which a diversity effect is obtained by a radio terminal located at a cell boundary receiving signals from a plurality of base stations. In this case, the radio terminal located at the cell boundary may have low received power, and means for solving this is required. In addition, regardless of the location of a cell, a wireless terminal is required to have not only line connectivity but also high speed.
 このような背景の中では、基地局からみた移動局の方位角等を基準に移動局をグルーピングし、干渉が検出された場合にDBF(デジタルビームフォーミング)アンテナ制御を行う従来技術がある(例えば、特許文献1参照)。 In such a background, there is a conventional technique in which mobile stations are grouped on the basis of the azimuth angle of the mobile station viewed from the base station, and DBF (digital beam forming) antenna control is performed when interference is detected (for example, , See Patent Document 1).
 また、IEEE802.16e-2005仕様(例えば、非特許文献1参照)では、DBFを行う場合のフレーム構成が示されている。 Also, the IEEE 802.16e-2005 specification (see, for example, Non-Patent Document 1) shows a frame configuration when performing DBF.
特開2000-92545号公報JP 2000-92545 A
 しかしながら、従来技術には次のような課題がある。
 アレーアンテナによるビームフォーミングは、一般的に、デジタルビームフォーミングであり、アンテナ素子数分の周波数変換部、電力増幅部が必要であった。そのため、高利得の指向性パターンを有するビームを形成するためには、多数の周波数変換部、電力増幅部が必要となり、製作コストが増大する問題があった。
However, the prior art has the following problems.
Beam forming by an array antenna is generally digital beam forming, and frequency conversion units and power amplification units corresponding to the number of antenna elements are required. For this reason, in order to form a beam having a high-gain directivity pattern, a large number of frequency conversion units and power amplification units are required, resulting in an increase in manufacturing cost.
 また、OFDM・OFDMAシステムにおいて、セル・セクタ間干渉を回避するためには、周波数方向において直交を取るか、もしくは、時間方向において直交を取る必要がある。しかしながら、このような干渉回避方法では、多くの無線リソース、つまり多くのサブキャリアが必要となり、システム全体のスループットが劣化してしまう問題点があった。 Also, in the OFDM / OFDMA system, in order to avoid inter-sector interference, it is necessary to take orthogonality in the frequency direction or orthogonality in the time direction. However, such an interference avoidance method requires many radio resources, that is, many subcarriers, and has a problem that the throughput of the entire system deteriorates.
 さらに、セクタ・セル境界に位置する無線端末では、長い伝搬距離のために受信信号電力が低くなってしまうといった問題、あるいは周辺セクタ・セルからの強い干渉電力のために、高いロバスト性や高いユーザスループットを持つ無線通信を達成することが困難であるといった問題があった。 Furthermore, in wireless terminals located at the sector / cell boundary, the received signal power is low due to the long propagation distance, or because of strong interference power from surrounding sector cells, high robustness and high user There is a problem that it is difficult to achieve wireless communication with throughput.
 本発明は上述のような課題を解決するためになされたもので、基地局がそれぞれの移動端末に対する適切なアナログビームパターンを選択できるアナログビームフォーミング通信システムを得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain an analog beamforming communication system in which a base station can select an appropriate analog beam pattern for each mobile terminal.
 本発明に係るアナログビームフォーミング通信システムは、1以上の基地局と1以上の移動端末との間の通信にアナログビームフォーミングを適用し、移動端末の位置または前記移動端末の受信信号品質に応じた適切なビームを選択して通信を行うアナログビームフォーミング通信システムであって、1以上の基地局のそれぞれは、自身が送信可能なビームパターンを識別するためのパターンを示す情報を含むダウンロードフレームを指向性パターンを有するビームで送信し、1以上の移動端末のそれぞれは、指向性パターンを有するビームで送信されたダウンロードフレームを受信できた場合には、パターンを示す情報に対応するビームパターンを用いて通信を実行した際の通信品質情報およびパターンを示す情報の少なくともいずれか一方を含むアップロードフレームを送信し、1以上の基地局のそれぞれは、1以上の移動端末から受信したそれぞれのアップロードフレームに含まれるそれぞれの通信品質情報またはパターンを示す情報に基づいて1以上の移動端末のグループ化を行い、グループ化された移動端末ごとに自身が送信可能なビームパターンの中から適切なビームを選択して通信を行うものである。 The analog beamforming communication system according to the present invention applies analog beamforming to communication between one or more base stations and one or more mobile terminals, and depends on the position of the mobile terminal or the received signal quality of the mobile terminal. An analog beamforming communication system that performs communication by selecting an appropriate beam, and each of one or more base stations directs a download frame including information indicating a pattern for identifying a beam pattern that can be transmitted by the base station. When one or more mobile terminals can receive a download frame transmitted with a beam having a directivity pattern, a beam pattern corresponding to information indicating the pattern is used. Communication quality information at the time of executing communication and / or information indicating pattern Each of the one or more base stations transmits one or more mobiles based on information indicating communication quality information or patterns included in the respective upload frames received from one or more mobile terminals. Terminal grouping is performed, and communication is performed by selecting an appropriate beam from the beam patterns that can be transmitted by each grouped mobile terminal.
 本発明によれば、基地局と移動端末との間でやりとりするアップロードフレームおよびダウンロードフレームのデータ構成を特定し、ダウンロードフレームを受信した移動端末側の通信品質情報に基づいて、移動端末のグループ化とビーム選択を行うことにより、基地局がそれぞれの移動端末に対する適切なアナログビームパターンを選択できるアナログビームフォーミング通信システムを得ることができる。 According to the present invention, the data structure of the upload frame and the download frame exchanged between the base station and the mobile terminal is specified, and the mobile terminals are grouped based on the communication quality information on the mobile terminal side that has received the download frame. By performing the beam selection, it is possible to obtain an analog beamforming communication system in which the base station can select an appropriate analog beam pattern for each mobile terminal.
本発明の実施の形態1における無線基地局装置の構成図である。It is a block diagram of the radio base station apparatus in Embodiment 1 of this invention. 本発明の実施の形態1において、IEEE802.16eを基本としてABFを導入する場合のOFDM/OFDMAにおけるフレーム構成を示した図である。In Embodiment 1 of this invention, it is the figure which showed the frame structure in OFDM / OFDMA when introducing ABF on the basis of IEEE802.16e. 本発明の実施の形態1において、IEEE802.16eを基本としてABFを導入する場合のOFDM/OFDMAにおけるフレーム構成を示した別の図である。In Embodiment 1 of this invention, it is another figure which showed the frame structure in OFDM / OFDMA when introducing ABF on the basis of IEEE802.16e. 本発明の実施の形態1のグルーピング部による端末とビームの対応付けの例示図である。It is an illustration figure of matching of a terminal and a beam by the grouping part of Embodiment 1 of this invention. 本発明の実施の形態1のグルーピング部による端末とビームの対応付けを行うフレーム構成を示した図である。It is the figure which showed the frame structure which matches a terminal and a beam by the grouping part of Embodiment 1 of this invention. 本発明の実施の形態1のグルーピング部による端末とビームの対応付けを行う別のフレーム構成を示した図である。It is the figure which showed another frame structure which matches the terminal and beam by the grouping part of Embodiment 1 of this invention. 本発明の実施の形態1における複数の無線基地局装置が協調する場合の構成図である。It is a block diagram in case the some radio base station apparatus in Embodiment 1 of this invention cooperates. 本発明の実施の形態1における複数の無線基地局装置が協調する場合の別の構成図である。It is another block diagram in case the some radio base station apparatus in Embodiment 1 of this invention cooperates. 本発明の実施の形態1の基地局間協調制御による干渉回避手法を示した図である。It is the figure which showed the interference avoidance technique by the cooperative control between base stations of Embodiment 1 of this invention. 本発明の実施の形態1において基地局間協調ビーム制御を行う場合のフレーム構成を示した図である。It is the figure which showed the frame structure in the case of performing cooperation beam control between base stations in Embodiment 1 of this invention. 本発明の実施の形態1において、基地局間の協調動作を、干渉回避ではなく、ダイバーシチもしくはマルチストリーム伝送として用いる場合の例示図である。In Embodiment 1 of this invention, it is an illustration figure in the case of using the cooperation operation | movement between base stations as diversity or multi-stream transmission instead of interference avoidance. 本発明の実施の形態2におけるフレーム構成を示した図である。It is the figure which showed the frame structure in Embodiment 2 of this invention. 本発明の実施の形態2において通信品質情報を常時取得する場合における問題の対処方法の説明図である。It is explanatory drawing of the coping method of the problem in the case of acquiring communication quality information always in Embodiment 2 of this invention. 本発明の実施の形態3における基地局130が、2つのMSに対して同一周波数かつ異なるビームを用いて、異なるユーザデータを送信する例示図である。It is the example figure which the base station 130 in Embodiment 3 of this invention transmits different user data using the same frequency and a different beam with respect to two MS. 本発明の実施の形態3における無線基地局装置の構成図である。It is a block diagram of the radio base station apparatus in Embodiment 3 of this invention. 本発明の実施の形態4の基地局間協調ビーム制御による干渉回避手法を示した図である。It is the figure which showed the interference avoidance technique by the cooperative beam control between base stations of Embodiment 4 of this invention. 本発明の実施の形態5において、基地局間の協調動作を、干渉回避ではなく、ダイバーシチもしくはマルチストリーム伝送として用いる場合の例示図である。In Embodiment 5 of this invention, it is an illustration figure in the case of using the cooperation operation | movement between base stations as diversity or multi-stream transmission instead of interference avoidance.
 以下、本発明にかかるABF(Analog Beam Forming)による時間分割制御と、それに伴う複数基地局を協調させた通信方式を適用したアナログビームフォーミング通信システムの好適な実施の形態につき、図面を用いて説明する。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an analog beamforming communication system to which a time division control by ABF (Analog Beam Forming) according to the present invention and a communication method in which a plurality of base stations are coordinated are applied will be described using the drawings. To do.
 実施の形態1.
 まず始めに、本実施の形態1におけるABFを用いた時間分割制御を行う無線基地局装置の構成について説明する。図1は、本発明の実施の形態1における無線基地局装置の構成図である。図1に示した無線基地局装置150は、スケジューリング部1、グルーピング部2、2台の変復調部3、4、2台の周波数変換部5、6、2台の信号電力増幅部7、8、アナログビーム制御部9、アナログビーム生成部10、および基地局アンテナ11~15で構成されている。なお、図1においては、周波数変換部と信号電力増幅部の一連の系の数が2つの構成を示しているが、このような構成は、あくまでも一例であり、系の数は、基地局アンテナの数以下であればよい。
Embodiment 1 FIG.
First, the configuration of a radio base station apparatus that performs time division control using ABF according to the first embodiment will be described. FIG. 1 is a configuration diagram of a radio base station apparatus according to Embodiment 1 of the present invention. 1 includes a scheduling unit 1, a grouping unit 2, two modulation / demodulation units 3, 4, two frequency conversion units 5, 6, two signal power amplification units 7, 8, It comprises an analog beam control unit 9, an analog beam generation unit 10, and base station antennas 11-15. In addition, in FIG. 1, although the number of the series of a frequency conversion part and a signal power amplification part has shown two structures, such a structure is an example to the last, and the number of systems is a base station antenna. Or less.
 なお、図1においては、2つの異なるデータが送信もしくは受信される場合の装置構成を例示しているが、本発明は、送信データ数によらず、同様の構成にて所望の目的を達成可能である。送信において、変復調部3と変復調部4は、それぞれ、スケジューリング部1から受け取ったユーザデータ制御信号18、19に基づいて、ユーザデータを変調する。 Although FIG. 1 illustrates an apparatus configuration when two different data are transmitted or received, the present invention can achieve a desired object with the same configuration regardless of the number of transmission data. It is. In transmission, the modem unit 3 and the modem unit 4 modulate user data based on the user data control signals 18 and 19 received from the scheduling unit 1, respectively.
 これらの変調信号は、それぞれ、周波数変換部5、6により、送信される空中線の周波数へ変換される。さらに、これらの周波数変換された信号は、それぞれ、信号電力増幅部7、8にて電力増幅される。さらに、これらの電力増幅された信号は、アナログビーム制御部9へ入力される。 These modulated signals are converted by the frequency converters 5 and 6 to the frequency of the antenna to be transmitted. Further, these frequency-converted signals are amplified by the signal power amplifiers 7 and 8, respectively. Further, these power amplified signals are input to the analog beam control unit 9.
 そして、アナログビーム制御部9は、スケジューリング部1からのビーム制御信号16に基づいて、使用するビームを決定する。ABFによる指向性パターンは、あらかじめ複数個用意されており、ビーム制御信号16は、これらのあらかじめ用意された指向性パターンを選択する信号である。 Then, the analog beam control unit 9 determines a beam to be used based on the beam control signal 16 from the scheduling unit 1. A plurality of directivity patterns by ABF are prepared in advance, and the beam control signal 16 is a signal for selecting these directivity patterns prepared in advance.
 アナログビーム生成部10は、アナログビーム制御部9により選択されたビームを形成するアナログパッシブ回路から構成される。アナログビーム生成部10により位相調整された信号は、基地局アンテナ11~15から放射される。 The analog beam generation unit 10 includes an analog passive circuit that forms a beam selected by the analog beam control unit 9. The signal whose phase is adjusted by the analog beam generator 10 is radiated from the base station antennas 11 to 15.
 図2は、本発明の実施の形態1において、IEEE802.16eを基本としてABFを導入する場合のOFDM/OFDMAにおけるフレーム構成を示した図である。DL PUSCフレーム構成を一例として、本実施の形態1に適用した場合について説明する。 FIG. 2 is a diagram showing a frame configuration in OFDM / OFDMA when ABF is introduced based on IEEE 802.16e in Embodiment 1 of the present invention. A case where the DL PUSC frame configuration is applied to the first embodiment will be described as an example.
 1つの無線フレームは、ダウンリンク用データから構成されるDL_Sub_Frame20と、アップリンク用データから構成されるUL_Sub_Frame21から構成される。Preamble22、FCH23、DL-MAP24、UL-MAP25は、オムニアンテナやセクタアンテナにて送信され、その基地局のサービスエリアに在圏する端末のすべてが解読可能である。
 同様に、次の無線フレームは、DL_Sub_Frame34と、UL_Sub_Frame35で構成され、Preamble36、FCH37、DL-MAP38、UL-MAP39は、オムニアンテナやセクタアンテナにて送信され、その基地局のサービスエリアに在圏する端末のすべてが解読可能である。
One radio frame is composed of DL_Sub_Frame 20 composed of downlink data and UL_Sub_Frame 21 composed of uplink data. The preamble 22, the FCH 23, the DL-MAP 24, and the UL-MAP 25 are transmitted by an omni antenna or a sector antenna, and all terminals located in the service area of the base station can be decoded.
Similarly, the next radio frame is composed of DL_Sub_Frame 34 and UL_Sub_Frame 35. Preamble 36, FCH 37, DL-MAP 38, and UL-MAP 39 are transmitted by an omni antenna or a sector antenna and are located in the service area of the base station. All of the terminals are decipherable.
 Analog BF切替ギャップ27、41は、指向性パターンを切替えるための時間を確保するために必要となる時間ギャップである。ABFによるビームフォーミングでは、分配器と固定位相器からなるビーム生成回路を用いてアナログスイッチによりビームを切替える方法か、もしくは分配器と可変位相器からなるビーム生成回路を用いて可変位相器の位相を変化させることでビームを変更する方法のいずれかを適用することが考えられる。 The Analog BF switching gaps 27 and 41 are time gaps necessary for securing time for switching the directivity pattern. In beam forming by ABF, the beam generation circuit consisting of a distributor and a fixed phase shifter is used to switch the beam by an analog switch, or the phase of the variable phase shifter is changed using a beam generation circuit consisting of a distributor and a variable phase shifter. It is conceivable to apply one of the methods of changing the beam by changing the beam.
 このように、ABFにおいては、アナログ部品の状態を変化させる必要がある。一般に、アナログ部品の状態変化は、1シンボル時間と比較して無視できるほど短時間で収束しないため、ビーム変更のための時間として、Analog BF切替ギャップ27、41が必要となる。 Thus, in ABF, it is necessary to change the state of analog parts. In general, the state change of an analog component does not converge in a negligibly short time compared to one symbol time, so that the Analog BF switching gaps 27 and 41 are required as the time for beam change.
 しかし、使用する機器により、ビーム変更に必要とされる時間は変化し、また、ビーム変更時間がシステムに与える影響は、そのシステムのシンボル時間やシステム周期によって異なる。このため、必ずしもAnalog BF切替ギャップ27、41は、必要でない。 However, the time required for the beam change varies depending on the equipment used, and the influence of the beam change time on the system varies depending on the symbol time of the system and the system cycle. For this reason, the Analog BF switching gaps 27 and 41 are not necessarily required.
 Analog BF切替ギャップ27、41以後は、スケジューリング部1によって指示されたビームにより信号が送信される。よって、DL_Sub_Frame20におけるAnalog BF Preamble28、Sub_DL_UL_MAP29、DL_Burst#1 30、DL_Burst#2 31、およびDL_Burst#3 32は、ある指向性を持ったビームパターンで送信されるため、オムニアンテナやセクタアンテナで送信される場合と比較して、端末が位置する場所に依存して、受信信号特性(電力、周波数選択性、信号間の相関、ドップラーフェージング特性等)が著しく異なる。 After the Analog BF switching gaps 27 and 41, a signal is transmitted by the beam instructed by the scheduling unit 1. Therefore, since Analog BF Preamble 28, Sub_DL_UL_MAP 29, DL_Burst # 1, 30, DL_Burst # 2, and DL_Burst # 3 32 in DL_Sub_Frame20 are transmitted with a beam pattern having a certain directivity, they are transmitted by an omni antenna or a sector antenna. Compared to the case, the received signal characteristics (power, frequency selectivity, correlation between signals, Doppler fading characteristics, etc.) are significantly different depending on the location where the terminal is located.
 一般に、選択されるビームは、鋭い指向性をもつため、Analog BF Preamble28、Sub_DL_UL_MAP29、DL_Burst#1 30、DL_Burst#2 31、DL_Burst#3 32をオムニアンテナやセクタアンテナで使用した場合と比較すると、高い受信電力を得ることが可能な端末が存在する。 In general, since the selected beam has a sharp directivity, it is higher than when using Analog BF Preamble28, Sub_DL_UL_MAP29, DL_Burst # 1, 30, DL_Burst # 2, 31 or DL_Burst # 3 32 with an omni antenna or a sector antenna. There are terminals that can obtain received power.
 上記の特性は、DL_Sub_Frame34におけるAnalog BF Preambe42、Sub_DL_UL_MAP43、DL_Burst#1 44、DL_Burst#2 45、DL_Burst#3 46においても同様である。 The above characteristics are the same in Analog BF Preamble 42, Sub_DL_UL_MAP 43, DL_Burst # 1 44, DL_Burst # 2 45, and DL_Burst # 3 46 in DL_Sub_Frame34.
 この図2は、サブフレーム毎にビームを選択する方式である。一方、1つのフレーム内で複数回のビーム選択をする方式もある。図3は、本発明の実施の形態1において、IEEE802.16eを基本としてABFを導入する場合のOFDM/OFDMAにおけるフレーム構成を示した別の図である。1つのフレーム内で複数回のビーム選択をする方式であり、より具体的には、1つのフレーム内で複数のAnalog BF Zone 67、68を持つことを特徴とする。 FIG. 2 shows a method of selecting a beam for each subframe. On the other hand, there is also a method of performing beam selection a plurality of times within one frame. FIG. 3 is another diagram showing a frame configuration in OFDM / OFDMA when ABF is introduced based on IEEE 802.16e in Embodiment 1 of the present invention. This is a method of performing beam selection a plurality of times within one frame, and more specifically, having a plurality of Analog BF Zones 67 and 68 within one frame.
 グルーピング部2は、端末から報知された情報をもとに、各端末を1つもしくは複数のビームに対して割り当て、端末とビームの対応付けを行う。以下では、このグルーピング部2で使用する端末から報知される情報の取得方法と、端末とビームの対応付け方法について説明する。 The grouping unit 2 assigns each terminal to one or a plurality of beams based on information notified from the terminals, and associates the terminals with the beams. Below, the acquisition method of the information alert | reported from the terminal used by this grouping part 2, and the matching method of a terminal and a beam are demonstrated.
 図4は、本発明の実施の形態1のグルーピング部2による端末とビームの対応付けの例示図である。基地局130は、セクタ131~133からなる3セクタ構成である。セクタ131についてのみ説明するが、他のセクタについても同様である。セクタ131において、2つの指向性のビームを用いて、セクタ領域をBeam#1の領域134とBeam#2の領域135とに2分割できる場合を考える。このとき、各指向性ビームは、ある一定の角度幅をもち、その角度以外のアンテナ利得が極めて低く、ビームと端末の対応付けを受信電力の強弱によって行う場合を考える。 FIG. 4 is an exemplary diagram of correspondence between terminals and beams by the grouping unit 2 according to Embodiment 1 of the present invention. The base station 130 has a three-sector configuration including sectors 131 to 133. Only the sector 131 will be described, but the same applies to other sectors. Consider a case where the sector area can be divided into a Beam # 1 area 134 and a Beam # 2 area 135 in the sector 131 by using two directional beams. At this time, it is assumed that each directional beam has a certain angle width, the antenna gain other than that angle is extremely low, and the beam and the terminal are associated by the strength of the received power.
 つまり、基地局130を中心として、セクタ内を方位角方向に二分する場合と同等である。Beam#1は、移動端末(Mobile Station)であるMS136とMS137とMS138の位置する方向へ利得が高いビームであり、Beam#2は、MS139とMS140の位置する方向への利得が高いビームである。よって、MS136とMS137とMS138は、Beam#1と対応付けられ、MS139とMS140は、Beam#2と対応付けられる。 That is, it is equivalent to the case where the inside of the sector is bisected in the azimuth direction with the base station 130 as the center. Beam # 1 is a beam with high gain in the direction in which MS 136, MS 137, and MS 138, which are mobile stations, are located, and Beam # 2 is a beam with high gain in the direction in which MS 139 and MS 140 are located. . Therefore, MS136, MS137, and MS138 are associated with Beam # 1, and MS139 and MS140 are associated with Beam # 2.
 次に、図5は、本発明の実施の形態1のグルーピング部2による端末とビームの対応付けを行うフレーム構成を示した図であり、レンジングチャネルを用いたビームと端末の対応付け方法を示している。具体的なフレーム構成を用いて説明する。Analog BF Preamble79、85は、ビームの固有のプリアンブルパターンを持ち、そのパターンに応じて基地局が生成可能なビームパターン番号が割り当てられている。よって、このプリアンブルを解読可能な端末は、解読可能な、つまり通信可能なビームパターン番号を知ることが可能である。 Next, FIG. 5 is a diagram showing a frame configuration for associating terminals and beams by grouping unit 2 according to Embodiment 1 of the present invention, and shows a method of associating beams and terminals using ranging channels. ing. This will be described using a specific frame configuration. Analog BF Preambles 79 and 85 have beam-specific preamble patterns, and beam pattern numbers that can be generated by the base station are assigned according to the patterns. Therefore, a terminal that can decode this preamble can know a beam pattern number that can be decoded, that is, communicated.
 また、端末は、このプリアンブルを使用して、各ビームパターンの受信信号特性を知ることが可能である。例えば、端末は、各ビームパターンの受信信号特性とビームパターン番号を対応づけ、各ビームパターン番号と受信電力のテーブルを、Ranging91、92を使用して基地局に報知する。この情報をもとに、基地局のグルーピング部2は、端末とビーム番号の対応付けを行う。 Also, the terminal can know the received signal characteristics of each beam pattern using this preamble. For example, the terminal associates the reception signal characteristic of each beam pattern with the beam pattern number, and informs the base station of the table of each beam pattern number and reception power using the ranging 91 and 92. Based on this information, the grouping unit 2 of the base station associates terminals with beam numbers.
 上記の例は、端末の受信電力を通信情報品質の基準として、端末がビーム番号との対応付けを行い、その結果を基地局側に送信する例であるが、他の方法も考えられる。一般に、通信システムにおける端末の通信品質の評価方法は、伝送システムによって異なる。そのため、各端末がどのビームに属するかは、受信電力だけでなく、周波数選択性、端末が複数アンテナを有する場合にはそれらアンテナの受信信号の相関をもとに、総合的な評価によって属するビームを決定することとなる。 The above example is an example in which the terminal uses the received power of the terminal as a reference for communication information quality, and the terminal associates the beam number with the beam number, and transmits the result to the base station side. In general, a method for evaluating communication quality of a terminal in a communication system differs depending on a transmission system. Therefore, which beam each terminal belongs to is not only the received power, but the frequency selectivity, and if the terminal has multiple antennas, the beam to which it belongs by comprehensive evaluation based on the correlation of the received signals of these antennas. Will be determined.
 また、上記の例は、端末から受信した通信品質情報に基づいて、基地局が端末とビーム番号との対応付けを行う例であるが、端末が判断し、自分が属するビーム番号だけを基地局に報知する方法も考えられる。さらに、各端末は、アップリンクにおいてレンジング情報を送信する際、直交コードを用いる。よって、この直交コード番号と自分が属するビーム番号を対応付けることにより、基地局は、レンジング領域をデコードする際に、その端末が属するビーム番号を知ることが可能となる。 Further, the above example is an example in which the base station associates the terminal with the beam number based on the communication quality information received from the terminal. A method of informing the user may be considered. Further, each terminal uses an orthogonal code when transmitting ranging information in the uplink. Therefore, by associating the orthogonal code number with the beam number to which the base station belongs, the base station can know the beam number to which the terminal belongs when decoding the ranging area.
 図6は、本発明の実施の形態1のグルーピング部2による端末とビームの対応付けを行う別のフレーム構成を示した図であり、Beam Selection message120、121を使用する場合の例である。なお、Beam Selection message120、121により送信される情報は、Ranging91、92により送信される情報と同じであり、使用するチャネルが違うだけである。Beam Selection messageは、使用可能なビームパターンを複数示すことができるビットマップのような形式であってもよい。 FIG. 6 is a diagram showing another frame configuration for associating terminals and beams by the grouping unit 2 according to Embodiment 1 of the present invention, and is an example in the case of using Beam Selection messages 120 and 121. In addition, the information transmitted by Beam Selection messages 120 and 121 is the same as the information transmitted by Ranging 91 and 92, and only the channel used is different. The Beam Selection message may be in the form of a bitmap that can indicate a plurality of usable beam patterns.
 上述したABFに関する制御方法やフレーム構成は、1つの基地局が独立に動作する場合であるが、複数の基地局が協調する場合も考えられる。図7は、本発明の実施の形態1における複数の無線基地局装置が協調する場合の構成図である。図7においては、2つの異なる無線基地局装置150a、150bが協調動作する場合の構成を例示している。 The above-described control method and frame configuration related to ABF is a case where one base station operates independently, but a case where a plurality of base stations cooperate is also conceivable. FIG. 7 is a configuration diagram in the case where a plurality of radio base station apparatuses cooperate in Embodiment 1 of the present invention. FIG. 7 illustrates a configuration in the case where two different radio base station apparatuses 150a and 150b perform a cooperative operation.
 しかしながら、協調動作する基地局数は、2つに限定されるものではなく、任意基地局数での協調が可能である。なお、各無線基地局装置150a、150bの内部構成は、先の図1の無線基地局装置150と同じであり、それぞれの構成要素には、添字a、bを付している。 However, the number of base stations that operate in cooperation is not limited to two, and cooperation with any number of base stations is possible. The internal configuration of each of the radio base station devices 150a and 150b is the same as that of the radio base station device 150 of FIG. 1, and the subscripts a and b are attached to the respective components.
 各無線基地局装置150a、150b内部のそれぞれのスケジューリング部1a、1bおよびグルーピング部2a、2bは、相手側のスケジューリング情報およびユーザグルーピング情報に基づいて、協調動作制御信号を生成し、相手側に送信する。これにより、それぞれのスケジューリング部1a、1bおよびグルーピング部2a、2bは、他の基地局装置と協調可能であり、協調したABFスケジューリングが可能となる。 Each scheduling unit 1a, 1b and grouping unit 2a, 2b in each radio base station apparatus 150a, 150b generates a cooperative operation control signal based on the other party's scheduling information and user grouping information, and transmits it to the other party To do. Thereby, each scheduling part 1a, 1b and grouping part 2a, 2b can cooperate with another base station apparatus, and the coordinated ABF scheduling is attained.
 図8は、本発明の実施の形態1における複数の無線基地局装置が協調する場合の別の構成図である。先の図7では、各無線基地局装置150a、150bが互いに協調して、分散的に協調動作のためのスケジューリングを行う手法であった。これに対して、図8では、無線基地局装置150a、150bの協調を取るために、基地局間協調制御装置162内の基地局間協調制御用スケジューリング部163を用いている。 FIG. 8 is another configuration diagram when a plurality of radio base station apparatuses in Embodiment 1 of the present invention cooperate. In FIG. 7, the radio base station apparatuses 150a and 150b cooperate with each other and perform scheduling for cooperative operation in a distributed manner. On the other hand, in FIG. 8, the inter-base station cooperative control scheduling unit 163 in the inter-base station cooperative control device 162 is used to coordinate the radio base station devices 150 a and 150 b.
 基地局間協調制御用スケジューリング部163に対して、各無線基地局装置150a、150b内のスケジューリング部1a、1bがスケジューリング情報164、166を送信する。また、各無線基地局装置150a、150b内のグルーピング部2a、2bがユーザグルーピング情報165、167を送信する。 The scheduling units 1a and 1b in the radio base station apparatuses 150a and 150b transmit scheduling information 164 and 166 to the inter-base station cooperative control scheduling unit 163. Further, the grouping units 2a and 2b in the radio base station apparatuses 150a and 150b transmit user grouping information 165 and 167, respectively.
 基地局間協調制御用スケジューリング部163は、送付された各無線基地局装置150a、150bのスケジューリング情報164、166およびユーザグルーピング情報165、167に基づき、基地局間協調制御用のグループ化およびスケジュールを生成し、各無線基地局装置150a、150bに対して、生成した情報を協調動作制御信号として送付する。これにより、複数の基地局間で協調した動作が可能となる。 The inter-base station cooperative control scheduling unit 163 performs grouping and scheduling for inter-base station cooperative control based on the sent scheduling information 164 and 166 and user grouping information 165 and 167 of the radio base station apparatuses 150a and 150b. The generated information is sent as a cooperative operation control signal to each of the radio base station apparatuses 150a and 150b. Thereby, the operation | movement which cooperated between several base stations is attained.
 図9は、本発明の実施の形態1の基地局間協調制御による干渉回避手法を示した図である。基地局186は、セル170をサービスエリアとし、基地局187は、セル171をサービスエリアとする。このとき、セル170とセル171のセル境界に、MS181とMS182が存在する。そのため、基地局186と基地局187が従来のようにオムニアンテナやセクタアンテナによって信号を送信する場合には、これらMS181、182にとって、自分が属していないセルからの信号は、強い干渉波となり、受信信号品質が劣化する。 FIG. 9 is a diagram showing an interference avoidance technique by inter-base station cooperative control according to Embodiment 1 of the present invention. The base station 186 sets the cell 170 as a service area, and the base station 187 sets the cell 171 as a service area. At this time, the MS 181 and the MS 182 exist at the cell boundary between the cell 170 and the cell 171. Therefore, when the base station 186 and the base station 187 transmit signals using an omni antenna or a sector antenna as in the conventional case, for these MS 181 and 182, the signal from the cell to which it does not belong becomes a strong interference wave, Received signal quality deteriorates.
 そこで、各基地局(186、187)で使用するビームを他基地局(187、186)と協調的にスケジューリング制御することで、干渉を回避することができる。同時刻に、基地局186がMS183へBeam179を用いて送信し、基地局187がMS181へBeam180を用いて送信する場合には、Beam179とBeam180は、放射方向が大きく重なってしまう。 Therefore, interference can be avoided by performing coordinated scheduling control of the beam used in each base station (186, 187) with other base stations (187, 186). At the same time, when the base station 186 transmits to the MS 183 using the Beam 179 and the base station 187 transmits to the MS 181 using the Beam 180, the beam 179 and the Beam 180 are greatly overlapped in the radiation direction.
 このため、Beam179は、MS181に対して干渉となる。Beam179は、指向性の高いビームであるので、オムニアンテナやセクタアンテナを使用する場合よりも強い干渉となる。よって、ビーム形成をする場合、周囲の基地局との協調的なビーム制御が、必須といえる。 For this reason, Beam 179 interferes with MS 181. Beam 179 is a beam with high directivity, and therefore has stronger interference than when an omni antenna or a sector antenna is used. Therefore, when performing beam forming, it can be said that cooperative beam control with surrounding base stations is essential.
 そこで、基地局187がBeam180を使用するときには、基地局186は、Beam180と直交性の高いビームであるBeam178を使用する。Beam180とBeam178は、直交性が高いため、互いに干渉となる電力が極めて小さく、ビームによる利得増加と基地局間協調ビーム制御による干渉回避の両方を同時に実現することができる。 Therefore, when the base station 187 uses the Beam 180, the base station 186 uses the Beam 178 which is a beam having high orthogonality to the Beam 180. Since Beam 180 and Beam 178 have high orthogonality, the power that causes interference with each other is extremely small, and it is possible to simultaneously realize both gain increase by beam and interference avoidance by coordinated beam control between base stations.
 オムニアンテナやセクタアンテナを使用する場合の従来の方法において、セル境界に位置する端末は、常に強い干渉を受けてしまう問題があった。しかしながら、上述した本実施の形態1の基地局間協調ビーム制御を行うことにより、この干渉問題を解決できる。なお、本実施の形態1では、セル間の協調ビーム制御について説明したが、セクタ間においても同様の方法により、干渉回避が可能となる。 In a conventional method using an omni antenna or a sector antenna, there is a problem that a terminal located at a cell boundary always receives strong interference. However, this interference problem can be solved by performing the inter-base station cooperative beam control of the first embodiment described above. In the first embodiment, cooperative beam control between cells has been described, but interference can be avoided between sectors by a similar method.
 図10は、本発明の実施の形態1において基地局間協調ビーム制御を行う場合のフレーム構成を示した図である。基地局186のDL_Sub_Frame189と基地局187のDL_Sub_Frame203が協調動作する場合である。 FIG. 10 is a diagram showing a frame configuration when performing inter-base station cooperative beam control in Embodiment 1 of the present invention. This is a case where the DL_Sub_Frame 189 of the base station 186 and the DL_Sub_Frame 203 of the base station 187 cooperate.
 Analog BF Zone190(Beam178)の時間タイミングと、Analog BF Zone204(Beam180)の時間タイミングとが同期しており、Analog BF Zone191(Beam179)の時間タイミングと、Analog BF Zone205(Beam185)の時間タイミングとが同期している。このように、同じ時間タイミングで周囲の基地局間で直交性の高いビームを選択することで、干渉回避が可能である。 The time timing of Analog BF Zone 190 (Beam 178) is synchronized with the time timing of Analog BF Zone 204 (Beam 180), the time timing of Analog BF Zone 191 (Beam 179), and the time timing of Analog BF Zone 205 (Bone 185 Zone 5). is doing. Thus, interference can be avoided by selecting beams with high orthogonality between surrounding base stations at the same time timing.
 図11は、本発明の実施の形態1において、基地局間の協調動作を、干渉回避ではなく、ダイバーシチもしくはマルチストリーム伝送として用いる場合の例示図である。基地局224と基地局225は、互いに協調したABFスケジューリングを行う。セル端にMS226が位置し、この端末において、基地局224が形成するビームであるBeam227と、基地局225が形成するビームであるBeam228とは、各基地局が有するビーム内で最も強い受信電力を得る。 FIG. 11 is an exemplary diagram in the case where the cooperative operation between base stations is used as diversity or multi-stream transmission instead of interference avoidance in Embodiment 1 of the present invention. The base station 224 and the base station 225 perform ABF scheduling in cooperation with each other. The MS 226 is located at the cell edge. In this terminal, the Beam 227, which is a beam formed by the base station 224, and the Beam 228, which is a beam formed by the base station 225, have the strongest received power among the beams of each base station. obtain.
 このとき、MS226に対し、Beam227とBeam228を用いて協調伝送を行う。MS226に対し、同じ信号をBeam227とBeam228で送信する場合には、異なる伝搬環境を信号が伝搬するため、高いダイバーシチ利得を得ることが可能である。 At this time, cooperative transmission is performed to the MS 226 using the Beam 227 and the Beam 228. When the same signal is transmitted to the MS 226 using the Beam 227 and the Beam 228, the signal propagates through different propagation environments, so that a high diversity gain can be obtained.
 また、MS226に対する信号系列をシリアル-パラレル変換し、異なる信号系列をBeam227とBeam228で送信する場合には、マルチストリーム伝送が可能である。これにより、異なる伝搬環境を信号が伝搬するため、ストリーム間の相関が低く、信号分離性能も改善される。 In addition, when the signal sequence for the MS 226 is serial-parallel converted and different signal sequences are transmitted by the Beam 227 and Beam 228, multi-stream transmission is possible. Thereby, since signals propagate through different propagation environments, the correlation between streams is low, and the signal separation performance is improved.
 一般に、ビームフォーミングにより信号を送信する場合には、受信側における電波の到来角度幅が狭くなるため、受信信号間の相関が上昇してしまう。これに対して、基地局間協調動作におけるビームフォーミングでは、環境の異なる場所から信号が送信されるので、伝搬環境の類似点が少なく、受信信号間の相関も低い。なお、上述の説明では、協調するビーム選択の基準として、受信電力の大きさを挙げているが、この限りではない。 Generally, when a signal is transmitted by beam forming, the arrival angle width of the radio wave on the receiving side is narrowed, and thus the correlation between the received signals is increased. On the other hand, in beam forming in the cooperative operation between base stations, signals are transmitted from different environments, so that there are few similarities in the propagation environment and the correlation between received signals is low. In the above description, the magnitude of the received power is cited as the reference for cooperative beam selection, but this is not restrictive.
 一般的に、伝送方式やシステムによって最適なビーム選択基準は多様であり、特に、マルチストリーム伝送を行う際には、受信アンテナ間の信号相関も重要なビーム選択基準となる。一般に、基地局間の協調制御を用いない場合には、セル境界に位置する端末は、周辺基地局からの強い干渉波を受ける。しかし、その周辺基地局も、そのセル境界に位置する端末に対して通信を行う場合には、これまでの干渉信号が所望信号となる。 Generally, there are various optimum beam selection criteria depending on the transmission method and system, and in particular, when performing multi-stream transmission, signal correlation between receiving antennas is also an important beam selection criterion. In general, when cooperative control between base stations is not used, a terminal located at a cell boundary receives strong interference waves from neighboring base stations. However, when the neighboring base station also communicates with a terminal located at the cell boundary, the interference signal so far becomes a desired signal.
 さらに、ABFのような指向性の高い放射パターンを持つ場合には、他セルのサービスエリア内まで干渉波として到達するため、上記のような周辺基地局と協調し、干渉を取り除くことには、大きな意味がある。 Furthermore, in the case of having a highly directional radiation pattern such as ABF, in order to reach the service area of another cell as an interference wave, in order to remove interference by cooperating with the surrounding base station as described above, There is a big meaning.
 以上のように、実施の形態1によれば、基地局と移動端末との間でやりとりするアップロードフレームのデータ構成の中にビームパターンの識別情報を含め、ダウンロードフレームのデータ構成の中に通信品質情報を含めている。この結果、ダウンロードフレームを受信した移動端末側の通信品質情報に基づいて、移動端末のグループ化とビーム選択を行うことができ、基地局がそれぞれの移動端末に対する適切なアナログビームパターンを選択できるアナログビームフォーミング通信システムを得ることができる。 As described above, according to the first embodiment, the beam frame identification information is included in the data structure of the upload frame exchanged between the base station and the mobile terminal, and the communication quality is included in the data structure of the download frame. Information is included. As a result, based on the communication quality information on the mobile terminal side that has received the download frame, the mobile terminals can be grouped and beam selected, and the base station can select an appropriate analog beam pattern for each mobile terminal. A beamforming communication system can be obtained.
 さらに、このような1つの基地局におけるグループ化およびビーム選択の結果を複数の基地局間で共有することにより、基地局間で協調を取ったグループ化およびビーム選択が可能となる。この結果、セクタ・セル間の干渉を回避する、あるいはセクタ・セル境界に位置する無線端末のロバスト性およびユーザスループットを改善するアナログビームフォーミング通信システムを実現できる。 Furthermore, by sharing the result of grouping and beam selection in one base station among a plurality of base stations, it becomes possible to perform grouping and beam selection in cooperation between the base stations. As a result, it is possible to realize an analog beamforming communication system that avoids interference between sectors and cells or improves the robustness and user throughput of wireless terminals located at sector cell boundaries.
 実施の形態2.
 本実施の形態2は、先の実施の形態1の変形例であり、図1、図4、図12、図13を用いて、以下に説明する。なお、ABFを用いた時間分割制御を行う無線基地局装置の構成については、先の実施の形態1で用いた図1と同様である。また、図1のグルーピング部2による移動端末とビームの対応付けの例は、先の実施の形態1で用いた図4と同様である。
Embodiment 2. FIG.
The second embodiment is a modification of the first embodiment, and will be described below with reference to FIGS. 1, 4, 12, and 13. The configuration of the radio base station apparatus that performs time division control using ABF is the same as that of FIG. 1 used in the first embodiment. In addition, an example of association between mobile terminals and beams by the grouping unit 2 in FIG. 1 is the same as that in FIG. 4 used in the first embodiment.
 図12は、本発明の実施の形態2におけるフレーム構成を示した図であり、先の実施の形態1と同様に、IEEE802.16eを基本としてABFを導入する場合におけるフレーム構成を示している。 FIG. 12 is a diagram showing a frame configuration in the second embodiment of the present invention, and shows a frame configuration in the case where ABF is introduced based on IEEE 802.16e, as in the first embodiment.
 パーミュテーションの方式は、PUSC(Partial Usage of SubChannels)、Band AMC(Adaptive Modulation and Coding)等あらゆる方式に適用可能である。 The permutation method is applicable to all methods such as PUSC (Partial Usage of SubChannels), Band AMC (Adaptive Modulation and Coding).
 1つの無線フレームは、ダウンリンク用データから構成されるDL_Sub_Frame250と、アップリンク用データから構成されるUL_Sub_Frame251から構成される。Preamble254、FCH255、DL-MAP256、UL-MAP257は、オムニアンテナやセクタアンテナにて送信され、その基地局のサービスエリアに在圏する端末のすべてが解読可能である。 One radio frame is composed of DL_Sub_Frame 250 composed of downlink data and UL_Sub_Frame 251 composed of uplink data. The preamble 254, the FCH 255, the DL-MAP 256, and the UL-MAP 257 are transmitted using an omni antenna or a sector antenna, and all terminals located in the service area of the base station can be decoded.
 本実施の形態2におけるDL_Sub_Frame250では、Analog BF切替ギャップを用意していない。これは、先の実施の形態1に記載するように、ビーム変更時間が、そのシステムのシンボル時間と比較して十分短い時間であり、Analog BF切替ギャップを必要としない場合の例を記載している。 In the DL_Sub_Frame 250 in the second embodiment, an Analog BF switching gap is not prepared. As described in the first embodiment, this is an example in which the beam change time is sufficiently shorter than the symbol time of the system and does not require the Analog BF switching gap. Yes.
 DL_Sub_Frame250は、ある指向性を持ったビームパターンであるBeam#1を送信するAnalog BF Zone252、およびBeam#1とは異なるビームパターンのBeam#2を送信するAnalog BF Zone253を含んでいる。図12におけるDL_Sub_Frame250は、2つのゾーンを含む場合を例示しているが、2つのゾーンに限定する必要はなく、幾つでも構わない。また、ABFのビーム数も2に限定する必要はなく、ABFの仕様に応じて幾つでも構わない。さらに、異なる無線フレームでは、異なるビームパターンで送信しても構わない。 DL_Sub_Frame 250 includes Analog BF Zone 252 that transmits Beam # 1, which is a beam pattern having a certain directivity, and Analog BF Zone 253 that transmits Beam # 2 having a beam pattern different from Beam # 1. DL_Sub_Frame 250 in FIG. 12 exemplifies a case where two zones are included, but the number of DL_Sub_Frames 250 is not limited to two zones, and may be any number. Also, the number of ABF beams need not be limited to two, and may be any number depending on the specifications of the ABF. Furthermore, different radio frames may be transmitted with different beam patterns.
 Analog BF Zone252、253は、DL-MAP256により、その割当が特定される。また、Analog BF Zone252、253内には、ユーザデータの他、ユーザデータと同様にビーム形成がなされたパイロット信号(Dedicated Pilot)を含んでいる。そして、MS136ないしMS140では、DL-MAP256を解析することで、Analog BF Zone252、253の割当を特定し、各ビームBeam#1、Beam#2に対するダウンリンクの通信品質情報(CINR等)を取得することができる。 The allocation of Analog BF Zones 252 and 253 is specified by DL-MAP256. In addition, the Analog BF Zones 252 and 253 include user data and a pilot signal (Dedicated Pilot) in which beam forming is performed in the same manner as user data. Then, MS 136 to MS 140 analyze DL-MAP 256 to identify the allocation of Analog BF Zones 252, 253, and acquire downlink communication quality information (CINR, etc.) for each beam Beam # 1, Beam # 2. be able to.
 基地局130(図1では150)は、UL-MAP257を用いることで、MS136ないしMS140に対して、各ビームに対する通信品質情報をUL_Sub_Frame251内のCQICH264にて報告するよう指示することができる。基地局130は、全ビーム、または、ある一定時間内にDL_Sub_Frameで送信した全ビームの通信品質情報を各MS136ないしMS140から取得する。その上で、基地局130内のグルーピング部2は、各MSに対して通信品質が良好な1つもしくは複数のビームとの対応付けを行う。先の実施の形態1において図4を用いてグルーピング部2によるMSとビームの対応付け例を説明したが、本実施の形態2もこれと同様である。 Using the UL-MAP 257, the base station 130 (150 in FIG. 1) can instruct the MS 136 to MS 140 to report the communication quality information for each beam in the CQICH 264 in the UL_Sub_Frame 251. The base station 130 acquires the communication quality information of all beams or all beams transmitted by DL_Sub_Frame within a certain period of time from each MS 136 to MS 140. In addition, the grouping unit 2 in the base station 130 associates each MS with one or more beams having good communication quality. In the first embodiment, the example of associating the MS and the beam by the grouping unit 2 has been described with reference to FIG. 4, but the second embodiment is the same as this.
 ここで、各ビーム、各MSに対する通信品質情報を常時取得するとした場合、アップリンクの無線リソースを大幅に消費してしまうほか、MSの消費電力も大きくなる。この問題の対処方法を、次に説明する。図13は、本発明の実施の形態2において通信品質情報を常時取得する場合における問題の対処方法の説明図である。この図13において、基地局283が送信可能なビーム数は、セクタあたり8としている。 Here, if it is assumed that communication quality information for each beam and each MS is constantly acquired, uplink radio resources are consumed significantly, and the power consumption of the MS also increases. A method for dealing with this problem will be described next. FIG. 13 is an explanatory diagram of a method for dealing with a problem when communication quality information is constantly acquired in Embodiment 2 of the present invention. In FIG. 13, the number of beams that can be transmitted by the base station 283 is 8 per sector.
 MS282が基地局283のセル270圏内に入ってきた際の、基地局283におけるMS282とビームの対応付けについては、上述のように、MSに各ビームの通信品質情報を報告させることにより決定する。図13では、MS282は、Beam#4の領域277に対応付けられたとする。その後、基地局283は、MS282に対して全ビームの通信品質情報を取得する必要はなく、Beam#4に対する通信品質情報のみ取得してゆけばよい。 When the MS 282 enters the cell 270 range of the base station 283, the association between the MS 282 and the beam in the base station 283 is determined by causing the MS to report the communication quality information of each beam as described above. In FIG. 13, it is assumed that the MS 282 is associated with the area 277 of Beam # 4. Thereafter, the base station 283 does not need to acquire the communication quality information of all beams from the MS 282, and only needs to acquire the communication quality information for Beam # 4.
 ただし、基地局283がMS282から通知される通信品質情報を観測し、Beam#4に対する通信品質が劣化してきたと判断した際には、MS282は、Beam#4の領域277の隣であるBeam#3の領域276、またはBeam#5の領域276に移動する可能性があると判断し、Beam#3、かつ、Beam#5に対する通信品質についても、定期的に報告させるように動作する。それら情報を基に、基地局283は、MSと各ビームの対応付けを切り替える。 However, when the base station 283 observes the communication quality information notified from the MS 282 and determines that the communication quality for the Beam # 4 has deteriorated, the MS 282 determines the Beam # 3 that is adjacent to the area 277 of the Beam # 4. It is determined that there is a possibility of moving to the area 276 of Beam # 5 or the area 276 of Beam # 5, and the communication quality for Beam # 3 and Beam # 5 is also periodically reported. Based on the information, the base station 283 switches the correspondence between the MS and each beam.
 なお、隣接するビームを観測するだけでは、ビームの対応付けに失敗する可能性があることを考慮し、長周期でMS282がセル270圏内に入ってきた際と同様の処理を行ってもよい。
 複数基地局協調に関する処理については、先の実施の形態1と同様である。
Note that just by observing adjacent beams, beam matching may fail, and the same processing as when the MS 282 enters the cell 270 within a long period may be performed.
The processing related to multi-base station cooperation is the same as in the first embodiment.
 以上のように、実施の形態2によれば、基地局と移動端末との間でやりとりするアップロードフレームのデータ構成の中に通信品質情報を含めている。この結果、ダウンロードフレームを受信した移動端末側の通信品質情報に基づいて、移動端末のグループ化とビーム選択を行うことができ、基地局がそれぞれの移動端末に対する適切なアナログビームパターンを選択できるアナログビームフォーミング通信システムを得ることができる。 As described above, according to Embodiment 2, the communication quality information is included in the data structure of the upload frame exchanged between the base station and the mobile terminal. As a result, based on the communication quality information on the mobile terminal side that has received the download frame, the mobile terminals can be grouped and beam selected, and the base station can select an appropriate analog beam pattern for each mobile terminal. A beamforming communication system can be obtained.
 実施の形態3.
 本実施の形態3では、先の実施の形態1または2において、基地局が、同一周波数かつ2つ以上の異なるビームを用いて、異なるユーザデータを送信する場合について説明する。
Embodiment 3 FIG.
In the third embodiment, a case will be described in which the base station transmits different user data using the same frequency and two or more different beams in the first or second embodiment.
 図14は、本発明の実施の形態3における基地局130が、2つのMSに対して同一周波数かつ異なるビームを用いて、異なるユーザデータを送信する例示図である。また、図15は、本発明の実施の形態3における無線基地局装置の構成図である。 FIG. 14 is an exemplary diagram in which base station 130 according to Embodiment 3 of the present invention transmits different user data to two MSs using the same frequency and different beams. FIG. 15 is a configuration diagram of the radio base station apparatus according to Embodiment 3 of the present invention.
 図14の例では、簡単のため、基地局130が同一周波数を用いて、Beam295ではMS297向けのデータ、Beam296ではMS298向けデータを同時に送信している例を示しているが、2以上のビームの場合でも、同様である。なお、基地局130は、複数アンテナを用いて、Beam295、Beam296にて、それぞれマルチストリーム伝送、または、ダイバーシチ伝送していてもよい。 In the example of FIG. 14, for the sake of simplicity, the base station 130 uses the same frequency to transmit data for the MS 297 in the Beam 295 and data for the MS 298 in the Beam 296 at the same time. Even in the case, it is the same. Note that the base station 130 may perform multistream transmission or diversity transmission using Beam295 and Beam296, respectively, using a plurality of antennas.
 この際、Beam295とBeam296との間の干渉量は、ビームパターン、及びMS297、MS298の位置関係によって、非常に大きくなる可能性がある。 At this time, the amount of interference between Beam 295 and Beam 296 may be very large depending on the beam pattern and the positional relationship between MS 297 and MS 298.
 この問題を解消する方法として、MS297向けのデータとMS298向けのデータとの間で、お互いの干渉をキャンセルするための符号化を、図15の変復調部3a、4a、3b、4bにて行う。その他の機能部の説明は、先の実施の形態1と同様であるため割愛する。具体的には、基地局130が周波数変換部5a、6a、5b、6bと信号電力増幅部7a、8a、7b、8bの一連の系の数を4つ備えているとし、下式(1)(2)の行列式が用いられる(例えば、非特許文献2:IEEE C802.16m-08/698r1参照)。 As a method for solving this problem, the modulation / demodulation units 3a, 4a, 3b, and 4b in FIG. 15 perform coding for canceling mutual interference between the data for MS297 and the data for MS298. The description of the other functional units is omitted because it is the same as in the first embodiment. Specifically, the base station 130 includes four series of frequency converters 5a, 6a, 5b, 6b and signal power amplifiers 7a, 8a, 7b, 8b, and the following equation (1) The determinant of (2) is used (see, for example, Non-Patent Document 2: IEEE C802.16m-08 / 698r1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 MS297向けデータを処理する変復調部#1 3a、変復調部#2 4aでは、S[1]が使用され、Beam295にて送信される。また、MS298向けデータを処理する変復調部#3 3b、変復調部#4 4bでは、S[2]が使用され、Beam296にて送信される。 In the modem unit # 1 3a and the modem unit # 2 4a that process data for the MS 297, S [1] is used and transmitted by the Beam 295. In addition, in the modem unit # 3 3b and the modem unit # 4 4b that process data for the MS 298, S [2] is used and transmitted by the Beam 296.
 なお、行列の行は、MS297、MS298に対して各2つの周波数変換部5a、6a、5b、6bと信号電力増幅部7a、8a、7b、8bの一連の系により送信される信号の系を示している。また、行列の列は、時間方向を示している。OFDM/OFDMAの場合であれば、異なるOFDM/OFDMAシンボルを示しており、連続したOFDM/OFDMAシンボルでもよいし、Hybrid ARQ等の処理によって、時間的に大きく異なるOFDM/OFDMAシンボルであってもよい。 Note that the rows of the matrix indicate the signal systems transmitted to the MS 297 and MS 298 by a series of two frequency converters 5a, 6a, 5b, 6b and signal power amplifiers 7a, 8a, 7b, 8b. Show. Further, the columns of the matrix indicate the time direction. In the case of OFDM / OFDMA, different OFDM / OFDMA symbols are shown, and may be consecutive OFDM / OFDMA symbols, or may be OFDM / OFDMA symbols that differ greatly in time by processing such as Hybrid ARQ. .
 MS297では、例えば、下式(3)(4)によりMS297向けのデータを取得する。 MS297 acquires data for MS297 by, for example, the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に、MS298では、例えば、下式(5)(6)によりMS298向けのデータを取得する。 Similarly, in MS 298, for example, data for MS 298 is acquired by the following formulas (5) and (6).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、riは、i番目の受信シンボル、hiはi番目の送信ビームの伝送路情報、ni’はノイズを示す。
 その他の処理については、先の実施の形態1と同様である。
Here, r i is the i-th received symbol, h i is the transmission path information of the i-th transmission beam, and n i ′ is noise.
Other processes are the same as those in the first embodiment.
 なお、本実施の形態3は、上記符号に限る必要はなく、ビーム間干渉を低減するいかなる符号を用いてもよい。また、本実施の形態3では、ダウンリンク送信についてのみ記載したが、アップリンク送信についても同様に考えることができる。 Note that Embodiment 3 is not limited to the above code, and any code that reduces inter-beam interference may be used. Further, in Embodiment 3, only downlink transmission is described, but uplink transmission can be considered similarly.
 以上のように、実施の形態3によれば、お互いの干渉をキャンセルするための符号化を行うことで、送信機にて送信するビーム間での干渉を、受信機の受信処理により大幅に低減させることができるアナログビームフォーミング通信システムを得ることができる。 As described above, according to the third embodiment, by performing the encoding for canceling the mutual interference, the interference between the beams transmitted by the transmitter is significantly reduced by the reception process of the receiver. An analog beamforming communication system can be obtained.
 実施の形態4.
 本実施の形態4では、先の実施の形態3の内容を、基地局間協調制御による干渉回避に適用した場合について説明する。図16は、本発明の実施の形態4の基地局間協調ビーム制御による干渉回避手法を示した図である。また、対応する構成としては、先の実施の形態1で使用した図7または図8を用いて説明する。
Embodiment 4 FIG.
In this Embodiment 4, the case where the content of previous Embodiment 3 is applied to the interference avoidance by the cooperation control between base stations is demonstrated. FIG. 16 is a diagram illustrating an interference avoidance technique by inter-base station cooperative beam control according to Embodiment 4 of the present invention. Further, the corresponding configuration will be described with reference to FIG. 7 or FIG. 8 used in the first embodiment.
 セル300を構成する基地局130a(図7または図8での150a)、または、セル302を構成する基地局130b(図7または図8での150b)は、各々セクタ302、セクタ303に対して、図7または図8に記載する通り、周波数変換部と信号電力増幅部の一連の系の数を2つ備えているとする。基地局130aは、Beam306とBeam307を送信することで、MS310との通信を行い、基地局130bは、Beam308とBeam309を送信することで、MS311との通信を行う。 The base station 130a constituting the cell 300 (150a in FIG. 7 or FIG. 8) or the base station 130b constituting the cell 302 (150b in FIG. 7 or FIG. 8) As shown in FIG. 7 or FIG. 8, it is assumed that the number of series systems of the frequency conversion unit and the signal power amplification unit is two. The base station 130a communicates with the MS 310 by transmitting Beam 306 and Beam 307, and the base station 130b communicates with the MS 311 by transmitting Beam 308 and Beam 309.
 この際、先の実施の形態3に記載するS[1]は、MS310向けデータとして基地局130aの変復調部#1 3a、変復調部#2 4aで使用され、Beam306、Beam307として送出される。一方、先の実施の形態3に記載するS[2]は、MS311向けデータとして基地局130bの変復調部#1 3b、変復調部#2 4bで使用され、Beam308、Beam309として送出される。 At this time, S [1] described in the third embodiment is used as data for the MS 310 by the modulation / demodulation unit # 1 3a and modulation / demodulation unit # 2 4a of the base station 130a, and is transmitted as Beam 306 and Beam 307. On the other hand, S [2] described in the third embodiment is used as data for the MS 311 by the modem unit # 1 3b and the modem unit # 2 4b of the base station 130b, and is transmitted as Beam308 and Beam309.
 なお、基地局間の協調動作により干渉回避を行う際の協調制御方法については、先の実施の形態1で説明したものと同様であり、その他の処理については、先の実施の形態3で説明したものと同様である。 Note that the cooperative control method for performing interference avoidance by cooperative operation between base stations is the same as that described in the first embodiment, and other processes are described in the third embodiment. It is the same as what I did.
 以上のように、実施の形態4によれば、複数基地局協調干渉回避動作時に基地局で送信するビーム間の干渉を、移動端末の受信処理により、さらに低減するアナログビームフォーミング通信システムを得ることができる。 As described above, according to the fourth embodiment, an analog beamforming communication system can be obtained that further reduces interference between beams transmitted by a base station during a multi-base station cooperative interference avoidance operation by reception processing of a mobile terminal. Can do.
 実施の形態5.
 本実施の形態5では、先の実施の形態3を、基地局間の協調動作によりダイバーシチ伝送もしくはマルチストリーム伝送を行う場合に適用した場合について説明する。図17は、本発明の実施の形態5において、基地局間の協調動作を、干渉回避ではなく、ダイバーシチもしくはマルチストリーム伝送として用いる場合の例示図である。また、対応する構成としては、先の実施の形態1で使用した図7または図8を用いて説明する。
Embodiment 5 FIG.
In the fifth embodiment, a case will be described in which the previous third embodiment is applied to the case where diversity transmission or multi-stream transmission is performed by cooperative operation between base stations. FIG. 17 is an exemplary diagram in the case where the cooperative operation between base stations is used as diversity or multi-stream transmission instead of interference avoidance in Embodiment 5 of the present invention. Further, the corresponding configuration will be described with reference to FIG. 7 or FIG. 8 used in the first embodiment.
 セル320を構成する基地局130a(図7または図8での150a)、または、セル322を構成する基地局130b(図7または図8での150b)は、各々セクタ321、セクタ323に対して、図7または図8に記載する通り、周波数変換部と信号電力増幅部の一連の系の数を2つ備えているとする。基地局130aは、Beam326とBeam327を送信し、基地局130bは、Beam328とBeam329を送信することで、セル端に位置するMS330とMS331に対して協調伝送を行う。 The base station 130a constituting the cell 320 (150a in FIG. 7 or FIG. 8) or the base station 130b constituting the cell 322 (150b in FIG. 7 or FIG. 8) corresponds to the sector 321 and the sector 323, respectively. As shown in FIG. 7 or FIG. 8, it is assumed that the number of series systems of the frequency conversion unit and the signal power amplification unit is two. The base station 130a transmits Beam 326 and Beam 327, and the base station 130b transmits Beam 328 and Beam 329, thereby performing coordinated transmission to the MS 330 and MS 331 located at the cell edge.
 この際、先の実施の形態3に記載するS[1]は、MS330向けデータ用に使用され、S[1]の1行目は、基地局130aの変復調部#1 3aで使用され、Beam326として送出され、S[1]の2行目は、基地局130bの変復調部#1 3bで使用され、Beam328として送出される。 At this time, S [1] described in the third embodiment is used for data for the MS 330, and the first row of S [1] is used in the modem unit # 1 3a of the base station 130a. The second line of S [1] is used by the modem unit # 13 3b of the base station 130b and transmitted as Beam 328.
 一方、先の実施の形態3に記載するS[2]は、MS331向けデータ用に使用され、S[2]の1行目は、基地局130aの変復調部#2 4aで使用され、Beam327として送出され、S[2]の2行目は基地局130bの変復調部#2 4bで使用され、Beam329として送出される。 On the other hand, S [2] described in the third embodiment is used for data for MS 331, and the first row of S [2] is used in modem # 2 4a of base station 130a as Beam 327. The second line of S [2] is used by the modem unit # 24b of the base station 130b and transmitted as Beam 329.
 なお、基地局間の協調動作によりダイバーシチ伝送もしくはマルチストリーム伝送を行う際の協調制御方法については、先の実施の形態1で説明したものと同様であり、その他の処理については、先の実施の形態3で説明したものと同様である。 Note that the cooperative control method when performing diversity transmission or multi-stream transmission by cooperative operation between base stations is the same as that described in the first embodiment, and the other processes are the same as those in the previous implementation. This is the same as that described in the third embodiment.
 以上のように、実施の形態5によれば、複数基地局協調伝送時に基地局で送信するビーム間での干渉を、移動端末の受信処理により大幅に低減するアナログビームフォーミング通信システムを得ることができる。 As described above, according to the fifth embodiment, it is possible to obtain an analog beamforming communication system that significantly reduces interference between beams transmitted by a base station at the time of coordinated transmission by a plurality of base stations by reception processing of a mobile terminal. it can.

Claims (7)

  1.  1以上の基地局と1以上の移動端末との間の通信にアナログビームフォーミングを適用し、前記移動端末の位置または前記移動端末の受信信号品質に応じた適切なビームを選択して通信を行うアナログビームフォーミング通信システムであって、
     前記1以上の基地局のそれぞれは、自身が送信可能なビームパターンを識別するためのパターンを示す情報を含むダウンロードフレームを指向性パターンを有するビームで送信し、
     前記1以上の移動端末のそれぞれは、前記指向性パターンを有するビームで送信された前記ダウンロードフレームを受信できた場合には、前記パターンを示す情報に対応するビームパターンを用いて通信を実行した際の通信品質情報および前記パターンを示す情報の少なくともいずれか一方を含むアップロードフレームを送信し、
     前記1以上の基地局のそれぞれは、前記1以上の移動端末から受信したそれぞれのアップロードフレームに含まれるそれぞれの通信品質情報または前記パターンを示す情報に基づいて前記1以上の移動端末のグループ化を行い、グループ化された移動端末ごとに自身が送信可能なビームパターンの中から適切なビームを選択して通信を行う
     ことを特徴とするアナログビームフォーミング通信システム。
    Analog beam forming is applied to communication between one or more base stations and one or more mobile terminals, and communication is performed by selecting an appropriate beam according to the position of the mobile terminal or the received signal quality of the mobile terminal. An analog beamforming communication system,
    Each of the one or more base stations transmits a download frame including information indicating a pattern for identifying a beam pattern that can be transmitted by the beam having a directivity pattern,
    When each of the one or more mobile terminals is able to receive the download frame transmitted with the beam having the directivity pattern, when performing communication using the beam pattern corresponding to the information indicating the pattern An upload frame including at least one of communication quality information and information indicating the pattern,
    Each of the one or more base stations performs grouping of the one or more mobile terminals based on communication quality information or information indicating the pattern included in each upload frame received from the one or more mobile terminals. An analog beamforming communication system characterized in that communication is performed by selecting an appropriate beam from among beam patterns that can be transmitted for each grouped mobile terminal.
  2.  請求項1に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の基地局のそれぞれは、ビームパターンを切り換える時間を確保するために必要な時間ギャップを前記ダウンロードフレーム内にさらに含むことを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to claim 1,
    Each of the one or more base stations further includes a time gap necessary for ensuring a time for switching a beam pattern in the download frame.
  3.  請求項1または2に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の移動端末のそれぞれは、前記通信品質情報と前記パターンを示す情報を含む前記アップロードフレームを送信する場合に、直交コードを用いて送信することを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to claim 1 or 2,
    Each of the one or more mobile terminals transmits using the orthogonal code when transmitting the upload frame including the communication quality information and information indicating the pattern.
  4.  請求項1ないし3のいずれか1項に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の基地局のそれぞれは、前記1以上の移動端末から受信したそれぞれのアップロードフレームに含まれるそれぞれの通信品質情報または前記パターンを示す情報に基づいて、前記1以上の移動端末のグループ化を行い、グループ化された移動端末ごとに自身が送信可能なビームパターンの中から適切なビームを選択し、グループ化およびビーム選択の結果をセクタ・セル境界を共存する他の基地局との間で相互に送信し、前記他の基地局から受信した結果を参照して前記セクタ・セル境界での干渉が生じないように、基地局間の協調を取って最終的に移動端末のグループ化および各グループに対する適切なビーム選択を決定し、決定結果を前記他の基地局との間で相互に送信する
     ことを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to any one of claims 1 to 3,
    Each of the one or more base stations is configured to group the one or more mobile terminals based on communication quality information or information indicating the pattern included in each upload frame received from the one or more mobile terminals. For each grouped mobile terminal, select an appropriate beam from the beam patterns that can be transmitted by itself, and the result of grouping and beam selection between other base stations coexisting with sector cell boundaries. In order to avoid interference at the sector cell boundary with reference to the results transmitted from each other and received from the other base stations, the base stations are coordinated and finally grouped with mobile terminals. An analog beamforming communication characterized by determining an appropriate beam selection for each group and transmitting the determination result to and from the other base stations. system.
  5.  請求項1ないし3のいずれか1項に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の基地局のそれぞれは、前記1以上の移動端末から受信したそれぞれのアップロードフレームに含まれるそれぞれの通信品質情報または前記パターンを示す情報に基づいて、前記1以上の移動端末のグループ化を行い、グループ化された移動端末ごとに自身が送信可能なビームパターンの中から適切なビームを選択し、グループ化およびビーム選択の結果をセクタ・セル境界を共存する他の基地局との間で相互に送信し、前記他の基地局から受信した結果を参照して前記セクタ・セル境界に存在する同一の移動端末に対して異なる伝搬環境を有する異なる基地局から前記移動端末に対する信号が伝搬されるように、基地局間の協調を取って最終的に移動端末のグループ化および各グループに対する適切なビーム選択を決定し、決定結果を前記他の基地局との間で相互に送信する
     ことを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to any one of claims 1 to 3,
    Each of the one or more base stations is configured to group the one or more mobile terminals based on communication quality information or information indicating the pattern included in each upload frame received from the one or more mobile terminals. For each grouped mobile terminal, select an appropriate beam from the beam patterns that can be transmitted by itself, and the result of grouping and beam selection between other base stations coexisting with sector cell boundaries. The signals transmitted to the mobile terminal are transmitted from different base stations having different propagation environments to the same mobile terminal existing at the sector / cell boundary with reference to the results received from the other base stations. And determine the grouping of mobile terminals and the appropriate beam selection for each group by coordinating between base stations Analog beamforming communication system and transmits the results to each other between the other base station.
  6.  請求項4または5に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の基地局のそれぞれから受け取ったグループ化およびビーム選択の結果に基づいて、セクタ・セル境界を共存する基地局間の協調を取り、基地局ごとの移動端末のグループ化および各グループに対する適切なビーム選択を決定し、それぞれの基地局に決定結果を協調動作制御信号として通知する基地局間連携制御装置をさらに備えることを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to claim 4 or 5,
    Based on the grouping and beam selection results received from each of the one or more base stations, cooperation between base stations coexisting with sector cell boundaries is taken, grouping of mobile terminals for each base station and for each group An analog beamforming communication system, further comprising an inter-base station cooperation control device that determines an appropriate beam selection and notifies each base station of the determination result as a cooperative operation control signal.
  7.  請求項1ないし6のいずれか1項に記載のアナログビームフォーミング通信システムにおいて、
     前記1以上の基地局のそれぞれは、同一周波数にて複数ビームを送受信可能であり、複数ビーム間で干渉を避けるための符号処理を行う機能をさらに備えることを特徴とするアナログビームフォーミング通信システム。
    The analog beamforming communication system according to any one of claims 1 to 6,
    Each of the one or more base stations is capable of transmitting and receiving a plurality of beams at the same frequency, and further includes a function of performing a code process for avoiding interference between the plurality of beams.
PCT/JP2008/070291 2008-01-07 2008-11-07 Analog beam forming communication system WO2009087808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548859A JP4906928B2 (en) 2008-01-07 2008-11-07 Analog beamforming communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-000522 2008-01-07
JP2008000522 2008-01-07

Publications (1)

Publication Number Publication Date
WO2009087808A1 true WO2009087808A1 (en) 2009-07-16

Family

ID=40852931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070291 WO2009087808A1 (en) 2008-01-07 2008-11-07 Analog beam forming communication system

Country Status (2)

Country Link
JP (1) JP4906928B2 (en)
WO (1) WO2009087808A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050043A (en) * 2009-07-21 2011-03-10 Nortel Networks Ltd Method and apparatus for estimating location of wireless station using multi beam transmission
WO2011083875A1 (en) * 2010-01-07 2011-07-14 Sharp Kabushiki Kaisha Method for downlink multi-antenna multi-base station interference coordination and base station
JP2011193389A (en) * 2010-03-16 2011-09-29 Toshiba Corp Radio station and radio apparatus
JP2011250186A (en) * 2010-05-27 2011-12-08 Kyocera Corp Wireless base station, wireless communication system, and wireless communication method
KR20130029204A (en) * 2011-09-14 2013-03-22 삼성전자주식회사 Method and apparatus for configuring virtual cell in wireless communication system
WO2013022274A3 (en) * 2011-08-11 2013-05-02 Samsung Electronics Co., Ltd. Method and apparatus for determining analog beam in hybrid beam-forming system
JP2013516115A (en) * 2009-12-23 2013-05-09 クゥアルコム・インコーポレイテッド Cluster-specific reference signal for communication systems with multiple transmission points
JP2014078989A (en) * 2008-08-01 2014-05-01 Qualcomm Incorporated System and method for distributed multiple-input multiple-output (mimo) in wireless communication system
WO2014147944A1 (en) * 2013-03-19 2014-09-25 三菱電機株式会社 Transmission device, reception device, and transmission/reception device
JP2014527367A (en) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド Scheduling apparatus and method using beam scanning in a wireless communication system based on beamforming
US20140369328A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Apparatus and method for operating analog beam in a beam division multiple access system
JP2015527026A (en) * 2012-08-28 2015-09-10 インターデイジタル パテント ホールディングス インコーポレイテッド Method for handover of a communication link using a primary beam
JP2015164247A (en) * 2014-02-28 2015-09-10 パナソニック株式会社 Radio communication device and beam forming control method
JP2015536614A (en) * 2012-10-26 2015-12-21 インターデイジタル パテント ホールディングス インコーポレイテッド Uniform WLAN multi-AP physical layer method
JP2016181739A (en) * 2015-03-23 2016-10-13 パナソニック株式会社 Radio communication device and communication control method
KR20180088648A (en) * 2015-11-23 2018-08-06 퀄컴 인코포레이티드 Beamforming and user equipment grouping
JP2019523613A (en) * 2016-08-01 2019-08-22 ノキア テクノロジーズ オサケユイチア Using control resources for data transmission
CN111182629A (en) * 2018-11-09 2020-05-19 深圳市中兴微电子技术有限公司 Inter-cell interference coordination method, base station and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264490A (en) * 2002-03-07 2003-09-19 Matsushita Electric Ind Co Ltd Radio base station apparatus, and radio transmission method
JP2004297750A (en) * 2002-09-20 2004-10-21 Mitsubishi Electric Corp Radio communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264490A (en) * 2002-03-07 2003-09-19 Matsushita Electric Ind Co Ltd Radio base station apparatus, and radio transmission method
JP2004297750A (en) * 2002-09-20 2004-10-21 Mitsubishi Electric Corp Radio communication system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942165B2 (en) 2008-08-01 2015-01-27 Qualcomm Incorporated System and method for distributed multiple-input multiple-output (MIMO) in a wireless communication system
JP2014078989A (en) * 2008-08-01 2014-05-01 Qualcomm Incorporated System and method for distributed multiple-input multiple-output (mimo) in wireless communication system
JP2011050043A (en) * 2009-07-21 2011-03-10 Nortel Networks Ltd Method and apparatus for estimating location of wireless station using multi beam transmission
JP2013516115A (en) * 2009-12-23 2013-05-09 クゥアルコム・インコーポレイテッド Cluster-specific reference signal for communication systems with multiple transmission points
JP2015080236A (en) * 2009-12-23 2015-04-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Cluster-specific reference signals for communication systems with multiple transmission points
JP2013516799A (en) * 2010-01-07 2013-05-13 シャープ株式会社 Downlink multi-antenna multi-base station interference coordination method and base station
WO2011083875A1 (en) * 2010-01-07 2011-07-14 Sharp Kabushiki Kaisha Method for downlink multi-antenna multi-base station interference coordination and base station
JP2011193389A (en) * 2010-03-16 2011-09-29 Toshiba Corp Radio station and radio apparatus
JP2011250186A (en) * 2010-05-27 2011-12-08 Kyocera Corp Wireless base station, wireless communication system, and wireless communication method
WO2013022274A3 (en) * 2011-08-11 2013-05-02 Samsung Electronics Co., Ltd. Method and apparatus for determining analog beam in hybrid beam-forming system
JP2014527367A (en) * 2011-08-23 2014-10-09 サムスン エレクトロニクス カンパニー リミテッド Scheduling apparatus and method using beam scanning in a wireless communication system based on beamforming
KR20130029204A (en) * 2011-09-14 2013-03-22 삼성전자주식회사 Method and apparatus for configuring virtual cell in wireless communication system
JP2014530534A (en) * 2011-09-14 2014-11-17 サムスン エレクトロニクスカンパニー リミテッド Method and apparatus for forming virtual cell in wireless communication system
KR101884332B1 (en) * 2011-09-14 2018-08-01 삼성전자주식회사 Method and apparatus for configuring virtual cell in wireless communication system
JP2015527026A (en) * 2012-08-28 2015-09-10 インターデイジタル パテント ホールディングス インコーポレイテッド Method for handover of a communication link using a primary beam
US9961565B2 (en) 2012-08-28 2018-05-01 Idac Holdings, Inc. Method for millimeter wave beam tracking
JP2015536614A (en) * 2012-10-26 2015-12-21 インターデイジタル パテント ホールディングス インコーポレイテッド Uniform WLAN multi-AP physical layer method
WO2014147944A1 (en) * 2013-03-19 2014-09-25 三菱電機株式会社 Transmission device, reception device, and transmission/reception device
US9450720B2 (en) * 2013-06-13 2016-09-20 Samsung Electronics Co., Ltd. Apparatus and method for operating analog beam in a beam division multiple access system
US20140369328A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Apparatus and method for operating analog beam in a beam division multiple access system
JP2015164247A (en) * 2014-02-28 2015-09-10 パナソニック株式会社 Radio communication device and beam forming control method
JP2016181739A (en) * 2015-03-23 2016-10-13 パナソニック株式会社 Radio communication device and communication control method
KR20180088648A (en) * 2015-11-23 2018-08-06 퀄컴 인코포레이티드 Beamforming and user equipment grouping
JP2019501572A (en) * 2015-11-23 2019-01-17 クアルコム,インコーポレイテッド Beamforming and user equipment grouping
KR102559141B1 (en) * 2015-11-23 2023-07-24 퀄컴 인코포레이티드 Beamforming and user equipment grouping
JP2019523613A (en) * 2016-08-01 2019-08-22 ノキア テクノロジーズ オサケユイチア Using control resources for data transmission
JP2021013190A (en) * 2016-08-01 2021-02-04 ノキア テクノロジーズ オサケユイチア Usage of control resources for data transmission
US11363580B2 (en) 2016-08-01 2022-06-14 Nokia Technologies Oy On the usage of control resources for data transmission
JP7142069B2 (en) 2016-08-01 2022-09-26 ノキア テクノロジーズ オサケユイチア Use of control resources for data transmission
CN111182629A (en) * 2018-11-09 2020-05-19 深圳市中兴微电子技术有限公司 Inter-cell interference coordination method, base station and storage medium
CN111182629B (en) * 2018-11-09 2023-04-07 深圳市中兴微电子技术有限公司 Inter-cell interference coordination method, base station and storage medium

Also Published As

Publication number Publication date
JPWO2009087808A1 (en) 2011-05-26
JP4906928B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4906928B2 (en) Analog beamforming communication system
CN110168957B (en) Base station controlled beam management
CN109257957B (en) RRM measurement and reporting method in beam forming system and user equipment
US10244494B2 (en) Apparatus and method for synchronizing and obtaining system information in wireless communication system
KR102059155B1 (en) Method and apparatus for cell scanning in system with large number of antennas
Desai et al. Initial beamforming for mmWave communications
US9237582B2 (en) Method and apparatus for allocating uplink resources in beamforming-based wireless communication system
EP2915390B1 (en) Apparatus and method for paging in communication systems with large number of antennas
KR101981060B1 (en) Apparatus and method for transmmiting signal in a wireless communication system
KR102219997B1 (en) Method and apparatus for handling beam sensing for sidelink resource in a wireless communication system
US8274930B2 (en) Analog beamforming to reduce interference in WiMAX networks
US20090225728A1 (en) Analogue Beamforming
US10979192B2 (en) Uplink reference signal sending method and apparatus, base station, and user equipment
KR20130084340A (en) Method and apparatus for tracking uplink beams in beam-formed wireless communications system
CN109526245A (en) Twoway radio with main transceiver and auxiliary transceiver and the method using equipment offer initial access
US11342965B2 (en) Transmissions of blocks of data in distributed MIMO systems
WO2017167532A1 (en) Beamforming device for forming different beams for control and data signal
US8768417B2 (en) Base station and method for beam-forming in direction of degraded radio terminal using time band and frequency band resources
JP2010068519A (en) Method for communication on wireless network, and wireless network
Jung et al. Cell detection in high frequency band small cell networks
JP5795723B2 (en) Radio transmission apparatus and transmission control method
KR20070083048A (en) Apparatus and method for transmitting signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548859

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869423

Country of ref document: EP

Kind code of ref document: A1