WO2014147858A1 - 3次元ロック解除装置、3次元ロック解除方法及びプログラム - Google Patents
3次元ロック解除装置、3次元ロック解除方法及びプログラム Download PDFInfo
- Publication number
- WO2014147858A1 WO2014147858A1 PCT/JP2013/072244 JP2013072244W WO2014147858A1 WO 2014147858 A1 WO2014147858 A1 WO 2014147858A1 JP 2013072244 W JP2013072244 W JP 2013072244W WO 2014147858 A1 WO2014147858 A1 WO 2014147858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- selection
- operator
- information
- selection information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/36—User authentication by graphic or iconic representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/003—Navigation within 3D models or images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/03—Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
- G06F2221/031—Protect user input by software means
Definitions
- the present invention relates to a three-dimensional user interface technology.
- the lock function includes a lock function that disables a specific operation in addition to a screen lock function that disables a screen operation.
- a mobile terminal equipped with ANDROID has a screen lock function for releasing a screen lock when a trajectory pattern obtained by tracing nine points arranged vertically and horizontally matches a trajectory pattern registered in advance. have.
- Patent Document 1 in order to reduce the risk of a lock pattern being guessed by a third party from fingerprint marks remaining on the touch panel, the user may trace the same position on the touch panel every time the lock pattern is specified. Techniques to prevent it have been proposed.
- the present invention has been made in view of the circumstances as described above, and it is an object of the present invention to provide a technique for releasing a lock in accordance with an operator's three-dimensional operation.
- the three-dimensional unlocking device is indicated by a virtual data generating unit that generates three-dimensional lock data indicating a plurality of virtual objects arbitrarily arranged in a three-dimensional coordinate space, and three-dimensional lock data.
- a display processing unit that displays a plurality of virtual objects on the display unit, a position acquisition unit that acquires a three-dimensional position in a three-dimensional coordinate space related to the specific part of the operator, a three-dimensional position acquired by the position acquisition unit, and a plurality of positions
- the virtual object selected based on the selection operation detected by the operation detection unit and the operation detection unit that detects the selection operation for the virtual object of the operator using the specific part using the three-dimensional position of the virtual object
- a selection information acquisition unit for acquiring selection information indicating identification information corresponding to the selection order and a selection order; selection information acquired by the selection information acquisition unit; By comparing the selection information is recorded, it has a lock controller for unlocking, a.
- the 3D unlocking method according to the second aspect is executed by at least one computer.
- the three-dimensional unlocking method according to the second aspect generates three-dimensional lock data indicating a plurality of virtual objects arbitrarily arranged in a three-dimensional coordinate space, and generates a plurality of virtual objects indicated by the three-dimensional lock data.
- Display on the display unit obtain a three-dimensional position in the three-dimensional coordinate space related to the specific part of the operator, and use the specific part using the obtained three-dimensional position and the three-dimensional positions of a plurality of virtual objects.
- the selection operation on the virtual object of the operator is detected, and the selection information indicating the identification information and the selection order corresponding to the selected virtual object is acquired based on the detected selection operation. It includes releasing the lock by comparing with the registered selection information.
- a program that causes at least one computer to execute the method according to the second aspect, or a computer-readable recording medium that records such a program. Also good.
- This recording medium includes a non-transitory tangible medium.
- FIG. 1 is a diagram conceptually illustrating a configuration example of a three-dimensional lock release apparatus 100 according to an embodiment of the present invention.
- the three-dimensional lock release apparatus 100 includes a virtual data generation unit 101 that generates three-dimensional lock data indicating a plurality of virtual objects arbitrarily arranged in a three-dimensional coordinate space, and a three-dimensional lock.
- the display processing unit 102 that displays a plurality of virtual objects indicated by the data on the display unit, the position acquisition unit 103 that acquires a three-dimensional position in the three-dimensional coordinate space related to the specific part of the operator, and the position acquisition unit 103
- the operation detection unit 104 that detects a selection operation on the virtual object of the operator using the specific part using the three-dimensional position and the three-dimensional position of the plurality of virtual objects, and the selection operation detected by the operation detection unit 104 Based on the selection information acquisition unit 1 for acquiring selection information indicating identification information corresponding to the selected virtual object and the selection order Has a 5, by comparing the selection information and selection information obtained by the selection information acquiring unit 105 has already been registered, a locking control unit 106 for unlocking the.
- a three-dimensional unlocking device 100 shown in FIG. 1 has, for example, the same hardware configuration as the three-dimensional user interface system 1 in a detailed embodiment described later, and a program is processed in the same manner as the three-dimensional user interface system 1. As a result, the above-described processing units are realized.
- the display unit is communicably connected to the three-dimensional lock release device 100.
- the three-dimensional unlocking method in the present embodiment is executed by at least one computer such as the above-described three-dimensional unlocking device 100.
- This 3D lock release method generates 3D lock data indicating a plurality of virtual objects arbitrarily arranged in a 3D coordinate space, and causes the display unit to display a plurality of virtual objects indicated by the 3D lock data.
- three-dimensional lock data is generated, and a plurality of virtual objects indicated by the three-dimensional lock data are displayed.
- the three-dimensional position of the specific part of the operator in the same three-dimensional coordinate space as the three-dimensional coordinate space used in the three-dimensional lock data is acquired.
- a selection operation on the virtual object of the operator using the specific part is detected.
- the specific part is a part or the whole of the operator's body for indicating the operation position on the three-dimensional user interface.
- the three-dimensional position of the specific part of the operator may be acquired by a known method, and the acquisition method is not limited in this embodiment.
- selection information is acquired according to each detected selection operation, and the lock is released by comparing the selection information with the already registered selection information. For example, the lock is released when the selection order of the virtual objects indicated by the selection information matches between the two.
- the selection information indicates a selection order of virtual objects and identification information corresponding to each selected virtual object.
- the identification information may be any information that can identify each virtual object, and the specific content is not limited in the present embodiment. A specific aspect of the identification information will be described in detail in a detailed embodiment described later.
- the already registered selection information may be held in the three-dimensional unlocking device 100 or may be held by another computer. Further, the lock released in the present embodiment may be a screen lock or a lock of another process.
- FIG. 2 is a diagram conceptually illustrating a hardware configuration example of a three-dimensional user interface system (hereinafter simply referred to as a system) 1 in the first embodiment.
- the system 1 in the first embodiment has a sensor side configuration and a display side configuration.
- the sensor side configuration is formed by a three-dimensional sensor (hereinafter referred to as a 3D sensor) 8 and a sensor side device 10.
- the display side configuration is formed of a head mounted display (hereinafter referred to as HMD) 9 and a display side device 20.
- HMD head mounted display
- 3D is abbreviated as 3D
- 2D is abbreviated as 2D.
- FIG. 3 is a diagram illustrating an example of a usage pattern of the system 1 in the first embodiment.
- the 3D sensor 8 is arranged at a position where a specific part of the operator (user) can be detected.
- the HMD 9 is mounted on the head of the operator (user), picks up a line-of-sight image for the operator, and displays the above-described plurality of virtual objects combined with the line-of-sight image. While viewing the video displayed on the display unit of the HMD 9, the operator performs a selection operation on the virtual object that appears in the video to release the lock.
- the 3D sensor 8 detects 3D information used for detecting a specific part of the operator.
- the 3D sensor 8 is realized by a visible light camera and a distance image sensor like Kinect (registered trademark), for example.
- the distance image sensor also called a depth sensor, is operated from the distance image sensor based on information obtained by irradiating the operator with a near-infrared light pattern from a laser and capturing the pattern with a camera that detects the near-infrared light. The distance (depth) to the person is calculated.
- the method of realizing the 3D sensor 8 itself is not limited, and the 3D sensor 8 may be realized by a three-dimensional scanner method using a plurality of visible light cameras. In FIG.
- the 3D sensor 8 is illustrated as one element, but the 3D sensor 8 includes a plurality of devices such as a visible light camera that captures a two-dimensional image of the operator and a sensor that detects a distance to the operator. It may be realized with.
- a common three-dimensional coordinate space is set in the display side configuration and the sensor side configuration by the marker 7 indicating a known shape.
- the common real object for setting the common three-dimensional coordinate space is not limited to the dedicated marker 7 alone. If the common real object can always obtain a certain reference point and the directions of three axes orthogonal to each other from the reference point regardless of the reference direction, the specific form of the common real object is Not limited.
- the marker 7 can be substituted with an image or an object arranged in the real world.
- FIG. 4 is a diagram showing an example of the external configuration of the HMD 9.
- FIG. 4 shows the configuration of an HMD 9 called a video see-through type.
- the HMD 9 includes two line-of-sight cameras 9a and 9b and two displays 9c and 9d.
- Each line-of-sight camera 9a and 9b captures each line-of-sight image corresponding to each line of sight of the user.
- the HMD 9 can also be called an imaging unit.
- Each display 9c and 9d is arranged so as to cover most of the visual field of the user, and displays a combined 3D image in which a virtual 3D operation region is combined with each line-of-sight image.
- each display 9c and 9d can also be called a display part.
- the sensor side device 10 and the display side device 20 each have a CPU (Central Processing Unit) 2, a memory 3, a communication device 4, an input / output interface (I / F) 5, etc., which are connected to each other by a bus or the like.
- the memory 3 is a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk, a portable storage medium, or the like.
- the input / output I / F 5 of the sensor side device 10 is connected to the 3D sensor 8, and the input / output I / F 5 of the display side device 20 is connected to the HMD 9.
- the input / output I / F 5 and the 3D sensor 8 and the input / output I / F 5 and the HMD 9 may be connected so as to be communicable by radio.
- Each communication device 4 communicates with other devices (such as the sensor-side device 10 and the display-side device 20) wirelessly or by wire.
- the present embodiment does not limit the form of such communication.
- the specific hardware configurations of the sensor side device 10 and the display side device 20 are not limited.
- FIG. 5 is a diagram conceptually illustrating a processing configuration example of the sensor-side device 10 in the first embodiment.
- the sensor side device 10 in the first embodiment includes a 3D information acquisition unit 11, a first object detection unit 12, a reference setting unit 13, a position calculation unit 14, a state acquisition unit 15, a transmission unit 16, and the like.
- Each of these processing units is realized, for example, by executing a program stored in the memory 3 by the CPU 2.
- the program may be installed from a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the input / output I / F 5 and stored in the memory 3. Good.
- CD Compact Disc
- the 3D information acquisition unit 11 sequentially acquires 3D information detected by the 3D sensor 8.
- the 3D information includes a 2D image of the operator obtained by visible light and information on the distance (depth) from the 3D sensor 8.
- the 3D sensor 8 may be configured by a plurality of devices such as a visible light camera and a depth sensor.
- the first object detection unit 12 detects a known common real object from the 3D information acquired by the 3D information acquisition unit 11.
- the marker 7 shown in FIG. 3 is used as the common real object.
- the first object detection unit 12 holds information about the shape, size, color, and the like indicated by the marker 7 in advance, and detects the marker 7 from the 3D information using such known information.
- the reference setting unit 13 sets a 3D coordinate space based on the marker 7 detected by the first object detection unit 12, and calculates the position and orientation of the 3D sensor 8 in the 3D coordinate space. For example, the reference setting unit 13 sets a 3D coordinate space in which the reference point extracted from the marker 7 is the origin and the three directions from the reference point are orthogonal to each other. The reference setting unit 13 calculates the position and orientation of the 3D sensor 8 by comparing the known shape and size related to the marker 7 with the shape and size indicated by the marker 7 extracted from the 3D information.
- the position calculation unit 14 uses the 3D information sequentially acquired by the 3D information acquisition unit 11 to sequentially calculate 3D position information on the 3D coordinate space regarding the specific part of the operator.
- the position calculation unit 14 calculates the 3D position information specifically as follows.
- the position calculation unit 14 first extracts 3D position information of the specific part of the operator from the 3D information acquired by the 3D information acquisition unit 11.
- the 3D position information extracted here corresponds to the camera coordinate system of the 3D sensor 8. Therefore, the position calculation unit 14 uses the reference setting unit 13 to obtain 3D position information corresponding to the camera coordinate system of the 3D sensor 8 based on the position and orientation of the 3D sensor 8 calculated by the reference setting unit 13 and the 3D coordinate space. It is converted into 3D position information on the set 3D coordinate space. This conversion means conversion from the camera coordinate system of the 3D sensor 8 to the 3D coordinate system set based on the marker 7.
- the position calculation unit 14 extracts 3D position information of a plurality of specific parts from the 3D information acquired by the 3D information acquisition unit 11, and each 3D position information in the 3D coordinate space is extracted from the 3D position information.
- the specific part is a part of the body used by the operator to perform an operation, and thus has a certain area or volume. Therefore, the 3D position information calculated by the position calculation unit 14 may be position information of a certain point in the specific part or may be position information of a plurality of points.
- the state acquisition unit 15 acquires state information of a specific part of the operator.
- the state information of the specific part is information that can specify a state related to the shape of the specific part, and indicates, for example, a gripped state, an open state, a thumb-up state, and the like.
- This specific part is the same as the specific part that is to be detected by the position calculation unit 14.
- the present embodiment does not limit the number of states that can be indicated by this state information within a detectable range.
- the state acquisition unit 15 acquires state information regarding each specific part.
- the state acquisition unit 15 holds, for example, image feature information corresponding to each state to be identified of the specific part in advance, and is extracted from the 2D image included in the 3D information acquired by the 3D information acquisition unit 11.
- the state information of the specific part is acquired by comparing the feature information with the image feature information held in advance.
- the state acquisition unit 15 may acquire state information of the specific part from information obtained from a strain sensor (not shown) attached to the specific part.
- the state acquisition unit 15 may acquire the state information from information from an input mouse (not shown) operated by the operator's hand.
- the state acquisition unit 15 may acquire the state information by recognizing sound obtained by a microphone (not shown).
- the transmission unit 16 displays the 3D position information on the 3D coordinate space calculated by the position calculation unit 14 regarding the specific part of the operator and the state information about the specific part of the operator acquired by the state acquisition unit 15 on the display side. Transmit to device 20.
- FIG. 6 is a diagram conceptually illustrating a processing configuration example of the display-side device 20 in the first embodiment.
- the display-side device 20 in the first embodiment includes a line-of-sight image acquisition unit 21, a second object detection unit 22, a coordinate setting unit 23, a virtual data generation unit 24, an operation information acquisition unit 25, an operation detection unit 26, and an image composition unit 27.
- Each of these processing units is realized, for example, by executing a program stored in the memory 3 by the CPU 2.
- the program may be installed from a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the input / output I / F 5 and stored in the memory 3. Good.
- CD Compact Disc
- the line-of-sight image acquisition unit 21 acquires the line-of-sight image of the operator.
- a line-of-sight image is an image picked up from substantially the same direction as the direction in which the operator's eyes are facing. However, the line-of-sight image may not completely match the image that is visible (visible) to the operator.
- the line-of-sight image includes the same specific part as the specific part of the operator detected by the sensor-side device 10.
- the line-of-sight images 9a and 9b are provided, the line-of-sight image acquisition unit 21 acquires line-of-sight images corresponding to the left eye and the right eye, respectively. Note that each processing unit performs the same processing on both line-of-sight images corresponding to the left eye and the right eye, and therefore, in the following description, a single line-of-sight image will be described.
- the second object detection unit 22 detects the same known common real object as that detected by the sensor-side device 10 from the line-of-sight image acquired by the line-of-sight image acquisition unit 21. That is, in the present embodiment, the second object detection unit 22 detects the marker 7 shown in FIG. Since the processing of the second object detection unit 22 is the same as that of the first object detection unit 12 of the sensor-side device 10 described above, detailed description thereof is omitted here. Note that the marker 7 included in the line-of-sight image has a different imaging direction from the marker 7 included in the 3D information obtained by the 3D sensor 8.
- the coordinate setting unit 23 sets the same 3D coordinate space as that set by the reference setting unit 13 of the sensor-side device 10 based on the marker 7 detected by the second object detection unit 22, and the position of the HMD 9 And calculate the orientation. Since the processing of the coordinate setting unit 23 is the same as that of the reference setting unit 13 of the sensor side device 10, detailed description thereof is omitted here. Since the 3D coordinate space set by the coordinate setting unit 23 is also set based on the same common real object (marker 7) as the 3D coordinate space set by the reference setting unit 13 of the sensor side device 10, as a result, The 3D coordinate space is shared between the sensor side device 10 and the display side device 20.
- the virtual data generation unit 24 generates 3D lock data indicating a plurality of virtual objects arbitrarily arranged on the 3D coordinate space set by the coordinate setting unit 23. That is, the virtual data generation unit 24 corresponds to the virtual data generation unit 101 described above.
- FIG. 7 is a diagram illustrating an example of a virtual object indicated by the 3D lock data generated in the first embodiment. Note that the dotted lines shown in FIG. 7 are supplementarily shown so that the arrangement of the virtual objects is easy to see, and are not displayed on the HMD 9.
- FIG. 7 shows a spherical virtual object. However, in the first embodiment, the number, shape, color, and size of virtual objects are not limited. The virtual object may be translucent.
- the virtual data generation unit 24 generates 3D lock data in which the plurality of virtual objects are arranged in a predetermined arrangement in a lattice shape in the 3D coordinate space.
- the virtual objects arranged in a cube shape for each dimension in the 3D coordinate space are shown.
- each virtual object has relative position information in the grid-like arrangement in addition to the information indicating the position in the 3D coordinate space.
- 3D position information information indicating the position in the 3D coordinate space
- relative position information information indicating the relative position in the lattice arrangement of the virtual object.
- each virtual object has the following relative position information.
- the relative position information is indicated by (x, y, z) by the position in the x direction, the position in the y direction, and the position in the z direction.
- Virtual object OB1 relative position information (1, 3, 1)
- Virtual object OB2 relative position information (1, 3, 3)
- Virtual object OB3 relative position information (3, 3, 1)
- Virtual object OB4 relative position information (1, 1, 3)
- Virtual object OB5 relative position information (3, 1, 1)
- the image composition unit 27 synthesizes a virtual object with the line-of-sight image acquired by the line-of-sight image acquisition unit 21 based on the position and orientation of the HMD 9 and the 3D coordinate space and 3D lock data. At this time, the position of the virtual object in the 3D coordinate space is determined using the viewing space in the 3D coordinate space corresponding to the space appearing in the line-of-sight image as a display reference. In the present embodiment, the image composition unit 27 generates each composite image based on each line-of-sight image captured by the line-of-sight cameras 9a and 9b. It should be noted that since a known method used in augmented reality (AR) or the like may be used for the composition processing by the image composition unit 27, detailed description thereof is omitted here.
- AR augmented reality
- the display processing unit 28 displays a plurality of virtual objects on the HMD 9 in the same manner as the display processing unit 102 described above.
- the display processing unit 28 causes the HMD 9 to display a composite image of the virtual object and the line-of-sight image.
- each composite image corresponding to each line of sight of the operator is displayed on the displays 9c and 9d, respectively, so that the operator can visually recognize the line-of-sight image and the virtual object stereoscopically by binocular parallax. .
- FIG. 8 is a diagram illustrating an example of a composite image displayed on the HMD 9. Note that the dotted lines shown in FIG. 8 are supplementarily shown so that the arrangement of the virtual objects is easy to see, and are not displayed on the HMD 9.
- the operator sees a composite image of the line-of-sight image and the plurality of virtual objects as shown in FIG. 8 through the displays 9c and 9d.
- the composite image shown in the example of FIG. 8 includes a real-world table RT that appears in the line-of-sight image and nine virtual objects arranged in a grid pattern.
- the display processing unit 28 can change the color of the selected virtual object and display the selection trajectory of the virtual object corresponding to the selection order.
- the operation information acquisition unit 25 receives the 3D position information on the 3D coordinate space related to the specific part of the operator and the state information related to the specific part of the operator from the sensor side device 10. As a result, the operation information acquisition unit 25 corresponds to the position acquisition unit 103 described above.
- the operation detection unit 26 uses the 3D position information related to the specific part of the operator, the 3D position information of the plurality of virtual objects, and the state information related to the specific part of the operator, and the virtual object of the operator using the specific part Detects selection operation for. For example, the operation detection unit 26 recognizes an operation detection area for each virtual object, the operator's specific part enters the operation detection area, and the state information is in a predetermined state (for example, a grasped state). ), It is detected that a selection operation has been performed on the virtual object. For example, the operation detection area is set to a predetermined range centered on the 3D position set for the virtual object in the 3D coordinate space. The operation detection area may be set to the size (size) of the virtual object in the 3D coordinate space.
- the operation detection unit 26 may also detect a selection cancellation operation. For example, based on the state information, the operation detection unit 26 uses a change from a predetermined state (for example, a gripped state) corresponding to the selection operation to another predetermined state (for example, an open state) as a selection cancellation operation. It may be detected. In addition, the operation detection unit 26 may detect a movement of a specific part to a position away from a region where a plurality of virtual objects are arranged as a predetermined distance as an operation for deselection.
- a predetermined state for example, a gripped state
- another predetermined state for example, an open state
- the selection information acquisition unit 29 acquires selection information in the same manner as the selection information acquisition unit 105 described above.
- the selection information acquisition unit 29 acquires selection information indicating the relative position information and selection order of the selected virtual object based on the selection operation detected by the operation detection unit 26.
- the position information of the virtual object indicated by the selection information may be the above-described 3D position information.
- the selection information acquisition unit 29 acquires the relative position information and the order of the virtual objects as selection information in the order of detection of the selection operation by the operation detection unit 26 until the selection cancellation is detected.
- the deselection may be detected in response to the detection of the deselection operation by the operation detection unit 26, or is detected when the elapsed time from the first detection of the selection operation by the operation detection unit 26 exceeds a predetermined time. May be.
- the selection information acquisition unit 29 may detect the deselection when the number of selected virtual objects reaches the upper limit value.
- the lock control unit 30 releases the lock by comparing the selection information with the already registered selection information, similarly to the lock control unit 106 described above. For example, the lock control unit 30 releases the lock when the selection order of the virtual objects indicated by the selection information matches the selection order of the virtual objects indicated by the already registered selection information.
- Selection information already registered may be held in the display-side device 20 or may be held in another computer.
- FIG. 9 is a sequence chart showing an operation example of the system 1 in the first embodiment.
- the sensor-side device 10 or the display-side device 20 will be described as an execution subject of each method.
- the execution subject may be at least one computer constituting the system 1.
- the sensor side device 10 sequentially acquires 3D information from the 3D sensor 8 (S101).
- the 3D information includes information on the marker 7 as the common real object and the operator's specific part.
- the sensor side device 10 operates as follows with respect to the 3D information of a predetermined frame rate.
- the sensor side device 10 detects the common real object (marker 7) from the 3D information (S102). Subsequently, the sensor-side device 10 sets a 3D coordinate space based on the detected common real object, and calculates the position and orientation of the 3D sensor 8 in the 3D coordinate space (S103).
- the sensor side device 10 calculates 3D position information of the specific part of the operator using the 3D information (S104). Further, the sensor-side device 10 sets the 3D position information calculated in the step (S104) in the step (S103) based on the position and orientation of the 3D sensor 8 and the 3D coordinate space calculated in the step (S103). It is converted into 3D position information in the 3D coordinate space (S105).
- the sensor side device 10 further acquires state information of the specific part of the operator (S106).
- the sensor side device 10 transmits 3D position information and state information regarding the specific part of the operator to the display side device 20 (S107).
- FIG. 9 shows an example in which steps (S102) and (S103) are executed at a predetermined frame rate of 3D information for convenience of explanation, but steps (S102) and (S103) are executed only during calibration. You may be made to do. Further, the execution timing of (S106) is not limited to the timing shown in FIG.
- the display-side device 20 is sequentially acquiring the line-of-sight images from the HMD 9 (S111) asynchronously with the acquisition of the 3D information (S101).
- the display-side device 20 operates as follows on the line-of-sight image having a predetermined frame rate.
- the display-side device 20 detects the same common real object (marker 7) as that detected by the sensor-side device 10 from the line-of-sight image (S112). Subsequently, the display-side device 20 sets a 3D coordinate space based on the detected common real object, and calculates the position and orientation of the HMD 9 in this 3D coordinate space (S113). Since the same marker 7 (common real object) is used, the 3D coordinate space is shared between the sensor side device 10 and the display side device 20.
- the display side device 20 generates the 3D lock data as described above (S114).
- This 3D lock data includes information on a plurality of virtual objects, such as the position, size, shape, display mode, etc. in the 3D coordinate space set in (S113). Such setting information regarding the virtual object is acquired by an arbitrary method.
- the display-side device 20 Based on the 3D coordinate space set in (S113), the display-side device 20 displays the line-of-sight image acquired in (S111) and a plurality of virtual objects indicated by the 3D lock data generated in (S114). Synthesize (S115). The display-side device 20 displays the image obtained by the synthesis on the HMD 9 (S116).
- the display-side device 20 When the display-side device 20 receives the 3D position information and state information regarding the specific part of the operator from the sensor-side device 10 (S117), the 3D position of the specific part of the operator in the 3D coordinate space and the 3D of each virtual object Based on the position, the selection operation using the specific part of the operator for the virtual object is detected (S118). In detecting this selection operation, the display-side device 20 acquires the relative position information of the selected virtual object.
- the display-side device 20 updates the selection information in response to the detection of the selection operation in (S118) (S119). Specifically, the display-side device 20 reflects the relative position information of the virtual object on which the selection operation detected in (S118) is performed in the selection information according to the selection order. The display-side device 20 repeats (S120), (S118), and (S119) until the selection cancellation is detected. Thereby, the relative position information of the selected virtual object and the selection order are accumulated in the selection information.
- the display-side device 20 When the display-side device 20 detects selection cancellation (S120; YES), the display-side device 20 collates the selection information updated in (S119) with the selection information already registered (S121). When the selection order of both virtual objects matches (S122; YES), the display-side device 20 releases the lock (S123). On the other hand, if the selection order of both virtual objects does not match (S122; NO), the display-side device 20 initializes the selection information without releasing the lock (S124). Thereafter, until the selection order of both virtual objects coincides (S122), the display-side device 20 repeatedly executes (S118) and subsequent steps.
- FIG. 9 shows an example in which (S112) to (S115) are executed at a predetermined frame rate of the line-of-sight image, but (S112) and (S113) are executed only during calibration. , (S114) and (S115) may be executed at a timing when unlocking is necessary.
- the sensor-side device 10 and the display-side device 20 share the 3D coordinate space based on the common real object (marker 7) shown in the image information obtained by each of the HMD 9 and the 3D sensor 8. Is done. Then, based on this 3D coordinate space, the line-of-sight image and a plurality of virtual objects for unlocking are combined, and this combined image is displayed on the HMD 9 attached to the operator's head.
- a sensor (3D sensor 8) capable of measuring the position of a specific part of the operator is provided separately from the imaging unit (line-of-sight camera 9a and line-of-sight camera 9b) that obtains a line-of-sight image.
- the imaging unit line-of-sight camera 9a and line-of-sight camera 9b
- the positional relationship between the specific part of the operator and the virtual object is compared, and a selection operation using the specific part of the operator using the specific part for the virtual object is detected.
- a plurality of virtual objects to be selected are displayed in a grid pattern, and unlocking is determined based on relative position information of each virtual object and its selection order.
- a lock release function using a three-dimensional lock pattern is realized, in other words, a lock function in a three-dimensional user interface can be realized.
- the operator can visually recognize a plurality of virtual objects as if they existed in the real world in front of his / her eyes, and selects the virtual objects using his / her specific part for unlocking. be able to. That is, according to the first embodiment, the operator can perform an operation for unlocking with an intuitive operation feeling as if the virtual object is in direct contact. Further, since the virtual object can be seen only by the operator, it is difficult for the third party to grasp what the operation (gesture) using the specific part of the operator is intended for. That is, according to the first embodiment, it is possible to prevent a selection operation (gesture) using a specific part of the operator for unlocking from leaking to a third party.
- the virtual object selection operation is detected from the position and state of the specific part of the operator. Accordingly, if an operation (gesture) of grasping a virtual object with a hand as a specific part is detected as a selection operation, a more intuitive operational feeling can be given to the operator. Furthermore, by providing a specific state of a specific part corresponding to the selection operation, erroneous detection of the selection operation for the virtual object can be prevented. For example, even if a specific part of the operator touches the virtual object operation detection area unintentionally, the operation can be prevented from being detected as a virtual object selection operation. According to the first embodiment, the usability of the lock function in the three-dimensional user interface can be improved by such an intuitive operation and prevention of erroneous detection.
- the system 1 in the second embodiment determines unlocking based on the sign assigned to the virtual object.
- the system 1 in the second embodiment will be described focusing on the contents different from the first embodiment. In the following description, the same contents as those in the first embodiment are omitted as appropriate.
- the sensor side device 10 and the display side device 20 have the same processing configuration as that of the first embodiment. Only the processing units having different processing contents from the first embodiment will be described below.
- the virtual data generation unit 24 generates three-dimensional lock data indicating a plurality of virtual objects to which signs that can be identified by the operator are uniquely assigned.
- the virtual data generation unit 24 sets, for example, at least one of a color, a number, a character, and a symbol for each virtual object so that each virtual object can be identified.
- the virtual data generation unit 24 can arbitrarily determine the arrangement of a plurality of virtual objects on the 3D coordinate space.
- the virtual data generation unit 24 can also change the arrangement of a plurality of virtual objects at predetermined timings. The predetermined timing can be arbitrarily determined, for example, for each display of the virtual object or for each lock.
- the display processing unit 28 causes the HMD 9 to display a composite image of the virtual object and the line-of-sight image.
- 10A and 10B are diagrams illustrating examples of a composite image displayed on the HMD 9 in the second embodiment.
- a unique number as a sign is assigned to each virtual object
- a unique color as a sign is assigned to each virtual object.
- the selection information acquisition unit 29 acquires selection information indicating the signs attached to the selected virtual object and the selection order.
- the selection information acquisition unit 29 acquires selection information indicating the number and selection order of the selected virtual object.
- the selection information acquisition unit 29 selects the selected virtual object.
- the selection information indicating the color and the selection order is acquired.
- the selection information in the second embodiment indicates the sign as the identification information corresponding to the virtual object and the selection order.
- the three-dimensional unlocking method in the second embodiment is the same as that in the first embodiment shown in FIG. 9 except that a sign is used as identification information corresponding to a virtual object.
- the display-side device 20 may arbitrarily change the arrangement of the virtual objects. (S114) in FIG. 9 is executed again when releasing the locked state after releasing the lock (S123).
- each virtual object is assigned a sign that can be identified by the operator, and a plurality of virtual objects are combined with the line-of-sight image and displayed on the HMD 9.
- the operator can perform unlocking by sequentially selecting virtual objects in the order of selection of the virtual object signs as selection information already registered for unlocking.
- the operator can remember a pattern for unlocking with the arrangement of the signs of the virtual objects, so that an unlocking function that is easy for the operator to remember and easy to use can be realized. .
- the virtual object selection order is indicated by the virtual object signs, so the virtual object arrangement can be arbitrary, and the virtual object arrangement can be changed each time it is displayed. You can also. Therefore, according to the second embodiment, since the operation (gesture) using the operator's specific part for unlocking can be changed every time, the operator's specific part for unlocking can be given to a third party. It is possible to further prevent the selection operation (gesture) using the leak.
- a sign is used as identification information corresponding to a virtual object.
- the virtual data generation unit 24 generates three-dimensional lock data indicating a plurality of virtual objects each having at least one of a shape and a size that can be identified by the operator.
- the operator can perform unlocking by sequentially selecting virtual objects in order of selection of at least one of the shape and size of the virtual objects for unlocking. Since each virtual object can be identified by its shape and size, the same effects as those of the second embodiment can be obtained in such a modification.
- any combination of the signs, shapes, and sizes used in the second embodiment may be used as the identification information.
- the virtual object selection operation is detected using the 3D position information and the state information of the specific part of the operator.
- the state information is not used. obtain.
- the state acquisition unit 15 of the sensor side device 10 becomes unnecessary, and the transmission unit 16 transmits only the 3D position information of the specific part of the operator to the display side device 20.
- the operation detection unit 26 detects the selection operation for the virtual object based on the 3D position of the specific part of the operator and the 3D positions of the plurality of virtual objects without using the state information.
- the operation detection unit 26 detects a selection operation on the virtual object when the specific part of the operator exists in the operation detection area of the virtual object. Further, the operation detection unit 26 may detect a selection operation on the virtual object when the specific part of the operator is stopped for a predetermined time or longer in the operation detection area of the virtual object.
- the operation detection unit 26 may detect a selection operation on the virtual object as follows. For example, the operation detection unit 26 detects a specific operation only for the first selection operation, and does not select a specific part into the operation detection area of the virtual object instead of the specific operation. You may make it detect. Specifically, the operation detection unit 26 detects the initial selection of the virtual object by stopping the specific part in the operation detection area of the virtual object for a certain period of time, and selects subsequent selections of the specific part. It is detected only by entering the operation detection area. In this way, the virtual object selection operation for unlocking can be simplified.
- FIG. 11 is a diagram conceptually illustrating a processing configuration example of the display-side device 20 in the modification.
- the system 1 may have a function of registering selection information to be compared.
- the display-side device 20 may further include a selection information registration unit 35 in addition to the configuration in each of the embodiments described above, as shown in FIG.
- the display-side device 20 divides the processing between registration of selection information and unlocking, and when the selection information is registered, the selection information registration unit 35 uses the selection information acquired by the selection information acquisition unit 29 as the regular selection information. Is registered in the storage unit.
- the storage unit may be held by the display-side device 20 or may be held by another computer.
- the display processing unit 28 causes the HMD 9 to display a screen for allowing the operator to select at least one of position information, a sign, a shape, and a size used as identification information corresponding to the virtual object.
- the operation detection unit 26 detects an operation of selecting the form of identification information corresponding to the virtual object, and the selection information acquisition unit 29 includes the type of identification information selected by the operator and the identification information of that type.
- the selection information is registered in the selection information registration unit 35 in association with the selection information.
- the operator has a form using the relative position information (corresponding to the first embodiment) and a form using at least one of the sign, size and shape (corresponding to the second embodiment and the modification). You can choose.
- the operator may select a desired sign from among signs such as colors, numbers, and symbols.
- the operator may further select a grid-like arrangement pattern of virtual objects on the screen.
- the virtual data generation unit 24 may generate 3D lock data indicating a plurality of virtual objects arranged in the arrangement pattern selected by the operator.
- an arrangement pattern in addition to the cube illustrated in the first embodiment, there can be various patterns such as a rectangular parallelepiped, a triangular pyramid, and a regular octahedron.
- virtual object arrangement pattern information is registered together with regular selection information. In this way, since the arrangement and identification information of the virtual objects can be changed for each operator, it is possible to further prevent the leakage of the selection operation using the specific part of the operator for unlocking.
- the HMD 9 includes the line-of-sight cameras 9 a and 9 b and the displays 9 c and 9 d corresponding to the eyes of the operator (user). You may make it have one display.
- one display may be arranged so as to cover the visual field of one eye of the operator, or may be arranged so as to cover the visual field of both eyes of the operator.
- the virtual data generation unit 24 of the display-side device 20 may generate 3D lock data using a well-known 3DCG technique so that the virtual object can be displayed in 3DCG.
- the video see-through type HMD 9 is used to obtain the line-of-sight image, but an optical see-through type HMD 9 may be used.
- the HMD 9 may be provided with half-mirror displays 9c and 9d, and virtual objects may be displayed on the displays 9c and 9d.
- a camera for obtaining an image for detecting the common real object in the line of sight of the operator is provided at a location that does not block the visual field of the operator of the HMD 9.
- the sensor-side device 10 and the display-side device 20 are provided separately, and a virtual object is synthesized with the visual line image of the target person.
- a virtual object is synthesized with the visual line image of the target person.
- an image in which a virtual object is combined with a 2D image included in 3D information obtained by the sensor-side device 10 may be displayed.
- FIG. 12 is a diagram conceptually illustrating a hardware configuration example of the system 1 in the modified example.
- the system 1 includes a processing device 50, a 3D sensor 8, and a display device 51.
- the processing device 50 includes a CPU 2, a memory 3, an input / output I / F 5, and the like.
- the input / output I / F 5 is connected to the 3D sensor 8 and the display device 51.
- the display device 51 displays a composite image.
- FIG. 13 is a diagram conceptually illustrating a processing configuration example of the processing device 50 in the modification.
- the processing device 50 in the modification includes the 3D information acquisition unit 11, the position calculation unit 14, and the state acquisition unit 15 included in the sensor side device 10 in each of the above-described embodiments, and the display side device 20 in each of the above-described embodiments. Includes a virtual data generation unit 24, an operation detection unit 26, an image composition unit 27, a display processing unit 28, a selection information acquisition unit 29, and a lock control unit 30.
- These processing units are the same as those in the above-described embodiments except for the following points.
- the position calculation unit 14 obtains the 3D position information of the specific part of the subject directly from the 3D information obtained from the 3D sensor 8 by the 3D information acquisition unit 11.
- the operation detection unit 26 detects a selection operation on the virtual object based on the 3D position information of the camera coordinate system calculated by the position calculation unit 14 and the state information obtained by the state acquisition unit 15.
- the image composition unit 27 synthesizes the 2D image included in the 3D information obtained by the 3D information acquisition unit 11 and the virtual object indicated by the 3D lock data generated by the virtual data generation unit 24.
- the subject operates the virtual object while viewing his / her video imaged from a direction (3D sensor 8) other than his / her own line-of-sight direction. Therefore, in this modified example, intuition may be reduced as compared to the above-described embodiments using the subject's own line-of-sight image, but unlocking is performed by a three-dimensional operation on a virtual object using a specific part. can do.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Software Systems (AREA)
- Computer Security & Cryptography (AREA)
- Computer Graphics (AREA)
- Architecture (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
[第1実施形態]
〔システム構成〕
図2は、第1実施形態における3次元ユーザインタフェースシステム(以降、単にシステムと表記する)1のハードウェア構成例を概念的に示す図である。第1実施形態におけるシステム1は、センサ側構成と表示側構成とを持つ。センサ側構成は、3次元センサ(以降、3Dセンサと表記する)8及びセンサ側装置10から形成される。表示側構成は、ヘッドマウントディスプレイ(以降、HMDと表記する)9及び表示側装置20から形成される。以降、3次元を3D、2次元を2Dと適宜省略して表記する。
〈センサ側装置〉
図5は、第1実施形態におけるセンサ側装置10の処理構成例を概念的に示す図である。第1実施形態におけるセンサ側装置10は、3D情報取得部11、第1オブジェクト検出部12、基準設定部13、位置算出部14、状態取得部15、送信部16などを有する。これら各処理部は、例えば、CPU2によりメモリ3に格納されるプログラムが実行されることにより実現される。また、当該プログラムは、例えば、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから入出力I/F5を介してインストールされ、メモリ3に格納されてもよい。
図6は、第1実施形態における表示側装置20の処理構成例を概念的に示す図である。第1実施形態における表示側装置20は、視線画像取得部21、第2オブジェクト検出部22、座標設定部23、仮想データ生成部24、操作情報取得部25、操作検出部26、画像合成部27、表示処理部28、選択情報取得部29、ロック制御部30などを有する。これら各処理部は、例えば、CPU2によりメモリ3に格納されるプログラムが実行されることにより実現される。また、当該プログラムは、例えば、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから入出力I/F5を介してインストールされ、メモリ3に格納されてもよい。
仮想オブジェクトOB1:相対位置情報(1,3,1)
仮想オブジェクトOB2:相対位置情報(1,3,3)
仮想オブジェクトOB3:相対位置情報(3,3,1)
仮想オブジェクトOB4:相対位置情報(1,1,3)
仮想オブジェクトOB5:相対位置情報(3,1,1)
以下、第1実施形態における3次元ロック解除方法について図9を用いて説明する。図9は、第1実施形態におけるシステム1の動作例を示すシーケンスチャートである。以下では、センサ側装置10又は表示側装置20を各方法の実行主体として説明するが、実行主体は、システム1を構成する少なくとも1つのコンピュータとされてもよい。
センサ側装置10は、操作者の特定部位に関する3D位置情報及び状態情報を表示側装置20に送信する(S107)。
このように、第1実施形態では、HMD9及び3Dセンサ8の各々で得られる画像情報に写る共通実オブジェクト(マーカ7)に基づいて、センサ側装置10及び表示側装置20で3D座標空間が共有される。そして、この3D座標空間に基づいて、視線画像とロック解除のための複数の仮想オブジェクトとが合成され、この合成画像が操作者の頭部に装着されるHMD9に表示される。更に、第1実施形態では、視線画像を得る撮像部(視線カメラ9a及び視線カメラ9b)とは別に、操作者の特定部位の位置を測定し得るセンサ(3Dセンサ8)が設けられ、当該共通の3D座標空間において操作者の特定部位と仮想オブジェクトとの位置関係が比較され、仮想オブジェクトに対する特定部位を用いた操作者の特定部位を用いた選択操作が検出される。
第2実施形態におけるシステム1は、仮想オブジェクトに割り当てられている標識に基づいてロック解除を判断する。以下、第2実施形態におけるシステム1について、第1実施形態と異なる内容を中心に説明する。以下の説明では、第1実施形態と同様の内容については適宜省略する。
第2実施形態では、センサ側装置10及び表示側装置20は、第1実施形態と同様の処理構成を有する。以下には、第1実施形態と異なる処理内容の各処理部についてのみ説明する。
仮想データ生成部24は、操作者により識別可能な標識がユニークにそれぞれ付される複数の仮想オブジェクトを示す3次元ロックデータを生成する。仮想データ生成部24は、標識として、例えば、色、数字、文字及び記号の少なくとも1つを、各仮想オブジェクトがそれぞれ識別可能となるように、各仮想オブジェクトにそれぞれ設定する。第2実施形態では、仮想データ生成部24は、複数の仮想オブジェクトの配置を3D座標空間上に任意に決定することができる。また、第2実施形態では、仮想データ生成部24は、複数の仮想オブジェクトの配置を所定のタイミング毎に変更することもできる。所定のタイミングは、例えば、仮想オブジェクトの表示毎や、ロック毎等、任意に決定可能である。
第2実施形態における3次元ロック解除方法は、仮想オブジェクトに対応する識別情報として標識を用いる点以外、図9に示される第1実施形態と同様である。但し、(S114)において3Dロックデータを生成する度に、表示側装置20は、仮想オブジェクトの並びを任意に変えるようにしてもよい。図9の(S114)は、ロック解除(S123)後、再度掛けられたロックを解除する際に、また実行される。
このように、第2実施形態では、各仮想オブジェクトに、操作者により識別可能な標識がそれぞれ割り当てられ複数の仮想オブジェクトが視線画像と合成されてHMD9に表示される。これにより、操作者は、ロック解除のために既に登録されている選択情報としての仮想オブジェクトの標識の選択順に沿って、仮想オブジェクトを順次選択していくことで、ロック解除を行うことが出来る。第2実施形態によれば、操作者は、ロック解除のためのパターンを仮想オブジェクトの標識の並びで覚えることができるため、操作者にとって覚えやすく、使い勝手の良いロック解除機能を実現することができる。
上述の第2実施形態では、仮想オブジェクトに対応する識別情報として標識が用いられたが、形状及びサイズの少なくとも1つが当該識別情報として用いられてもよい。この場合、仮想データ生成部24は、操作者により識別可能な形状及びサイズの少なくとも一方がユニークにそれぞれ付される複数の仮想オブジェクトを示す3次元ロックデータを生成する。この場合、操作者は、ロック解除のために仮想オブジェクトの形状及びサイズの少なくとも一方の選択順に沿って、仮想オブジェクトを順次選択していくことで、ロック解除を行うことが出来る。形状及びサイズによっても、各仮想オブジェクトを識別することは可能であるため、このような変形例においても、第2実施形態と同様の作用効果を奏することができる。更に、第2実施形態において用いられた標識、形状及びサイズの中のいずれか複数の組み合わせが当該識別情報として用いられてもよい。
また、上述の第1実施形態及び第2実施形態では、操作者の特定部位の3D位置情報及び状態情報を用いて、仮想オブジェクトの選択操作が検出されたが、状態情報を用いない形態もあり得る。この場合、センサ側装置10の状態取得部15は不要となり、送信部16は、操作者の特定部位の3D位置情報のみを表示側装置20へ送信する。また、表示側装置20では、操作検出部26は、状態情報を用いず、操作者の特定部位の3D位置及び複数の仮想オブジェクトの3D位置に基づいて、仮想オブジェクトに対する選択操作を検出する。例えば、操作検出部26は、操作者の特定部位が仮想オブジェクトの操作検出領域内に存在することで、その仮想オブジェクトに対する選択操作を検出する。また、操作検出部26は、操作者の特定部位が仮想オブジェクトの操作検出領域内で所定時間以上停止した場合に、その仮想オブジェクトに対する選択操作を検出するようにしてもよい。
図11は、変形例における表示側装置20の処理構成例を概念的に示す図である。上述の各実施形態では特に触れられなかったが、システム1は、比較対象の選択情報を登録する機能を持つようにしてもよい。変形例では、表示側装置20は、図11に示されるように、上述の各実施形態における構成に加えて、選択情報登録部35を更に有するようにしてもよい。表示側装置20は、選択情報の登録時とロック解除時とで処理を分け、選択情報の登録時には、選択情報登録部35が、選択情報取得部29で取得された選択情報を正規の選択情報として格納部に登録する。この格納部は、表示側装置20が持っていてもよいし、他のコンピュータが持っていてもよい。
上述の各実施形態では、図3に示されるように、HMD9が、操作者(ユーザ)の両目に対応して、視線カメラ9a及び9b、並びに、ディスプレイ9c及び9dを有したが、視線カメラ及びディスプレイを1つずつ持つようにしてもよい。この場合、1つのディスプレイは、操作者の片目の視野を覆うように配置されてもよいし、操作者の両目の視野を覆うように配置されてもよい。この場合、表示側装置20の仮想データ生成部24は、仮想オブジェクトを3DCGで表示させることができるように、周知の3DCG技術を用いて3Dロックデータを生成すればよい。
Claims (13)
- 3次元座標空間上に任意に配置される複数の仮想オブジェクトを示す3次元ロックデータを生成する仮想データ生成部と、
前記3次元ロックデータにより示される前記複数の仮想オブジェクトを表示部に表示させる表示処理部と、
操作者の特定部位に関する前記3次元座標空間上の3次元位置を取得する位置取得部と、
前記位置取得部により取得される3次元位置及び前記複数の仮想オブジェクトの3次元位置を用いて、前記特定部位を用いた前記操作者の該仮想オブジェクトに対する選択操作を検出する操作検出部と、
前記操作検出部により検出される選択操作に基づいて、選択された仮想オブジェクトに対応する識別情報と選択順とを示す選択情報を取得する選択情報取得部と、
前記選択情報取得部により取得される選択情報と既に登録されている選択情報とを比較することにより、ロックを解除するロック制御部と、
を備える3次元ロック解除装置。 - 前記仮想データ生成部は、前記3次元座標空間において前記複数の仮想オブジェクトが格子状に所定の並びで配置される前記3次元ロックデータを生成し、
前記選択情報取得部は、選択された仮想オブジェクトの位置情報と選択順とを示す前記選択情報を取得する、
請求項1に記載の3次元ロック解除装置。 - 前記仮想データ生成部は、前記操作者により識別可能な標識がユニークにそれぞれ付される前記複数の仮想オブジェクト、若しくは、前記操作者により識別可能なユニークな形状又はサイズにそれぞれ設定される前記複数の仮想オブジェクトを示す前記3次元ロックデータを生成し、
前記選択情報取得部は、選択された前記仮想オブジェクトに付された標識と選択順とを示す前記選択情報、若しくは、選択された前記仮想オブジェクトの形状又はサイズと選択順とを示す前記選択情報を取得する、
請求項1に記載の3次元ロック解除装置。 - 前記仮想データ生成部は、前記複数の仮想オブジェクトの配置を所定のタイミング毎に変更する請求項3に記載の3次元ロック解除装置。
- 前記操作者の前記特定部位の状態情報を取得する状態取得部、
を更に備え、
前記操作検出部は、前記位置取得部により取得される3次元位置及び前記複数の仮想オブジェクトの3次元位置、並びに、前記状態取得部により取得される状態情報を用いて、前記特定部位を用いた前記操作者の該仮想オブジェクトに対する選択操作を検出する、
請求項1から4のいずれか1項に記載の3次元ロック解除装置。 - 前記ロック制御部において前記選択情報取得部により取得される選択情報と比較される、選択情報を登録する選択情報登録部、
を更に備え、
前記表示処理部は、前記仮想オブジェクトに対応する識別情報として用いる、位置情報、標識、形状及びサイズの少なくとも1つを前記操作者に選択させるための画面を前記表示部に表示させ、
前記選択情報取得部は、前記操作者に選択された識別情報の種別と、該種別の識別情報を含む前記選択情報とを対応付けて前記選択情報登録部に登録させる、
請求項1から5のいずれか1項に記載の3次元ロック解除装置。 - 少なくとも1つのコンピュータにより実行される3次元ロック解除方法において、
3次元座標空間上に任意に配置される複数の仮想オブジェクトを示す3次元ロックデータを生成し、
前記3次元ロックデータにより示される前記複数の仮想オブジェクトを表示部に表示させ、
操作者の特定部位に関する前記3次元座標空間上の3次元位置を取得し、
前記取得された3次元位置及び前記複数の仮想オブジェクトの3次元位置を用いて、前記特定部位を用いた前記操作者の該仮想オブジェクトに対する選択操作を検出し、
前記検出された選択操作に基づいて、選択された仮想オブジェクトに対応する識別情報と選択順とを示す選択情報を取得し、
前記取得された選択情報と既に登録されている選択情報とを比較することにより、ロックを解除する、
ことを含む3次元ロック解除方法。 - 前記3次元ロックデータの生成は、前記3次元座標空間において前記複数の仮想オブジェクトが格子状に所定の並びで配置される前記3次元ロックデータを生成し、
前記選択情報の取得は、前記選択された仮想オブジェクトの位置情報と選択順とを示す前記選択情報を取得する、
請求項7に記載の3次元ロック解除方法。 - 前記3次元ロックデータの生成は、前記操作者により識別可能な標識がユニークにそれぞれ付される前記複数の仮想オブジェクト、若しくは、前記操作者により識別可能なユニークな形状又はサイズにそれぞれ設定される前記複数の仮想オブジェクトを示す前記3次元ロックデータを生成し、
前記選択情報の取得は、選択された前記仮想オブジェクトに付された標識と選択順とを示す前記選択情報、若しくは、選択された前記仮想オブジェクトの形状又はサイズと選択順とを示す前記選択情報を取得する、
請求項7に記載の3次元ロック解除方法。 - 前記複数の仮想オブジェクトの配置を所定のタイミング毎に変更する、
ことを更に含む請求項9に記載の3次元ロック解除方法。 - 前記操作者の前記特定部位の状態情報を取得する、
ことを更に含み、
前記選択操作の検出は、前記取得された3次元位置及び前記複数の仮想オブジェクトの3次元位置、並びに、前記取得された状態情報を用いて、前記特定部位を用いた前記操作者の該仮想オブジェクトに対する選択操作を検出する、
請求項7から10のいずれか1項に記載の3次元ロック解除方法。 - 前記仮想オブジェクトに対応する識別情報として用いる、位置情報、標識、形状及びサイズの少なくとも1つを前記操作者に選択させるための画面を前記表示部に表示させ、
前記操作者に選択された識別情報の種別と、該種別の識別情報を含む前記選択情報とを対応付けて登録する、
ことを更に含む請求項7から11のいずれか1項に記載の3次元ロック解除方法。 - 請求項7から12のいずれか1項に記載の3次元ロック解除方法を少なくとも1つのコンピュータに実行させるプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015506534A JPWO2014147858A1 (ja) | 2013-03-19 | 2013-08-21 | 3次元ロック解除装置、3次元ロック解除方法及びプログラム |
CN201380074952.1A CN105051650A (zh) | 2013-03-19 | 2013-08-21 | 三维解锁设备、三维解锁方法和程序 |
EP13878884.9A EP2977924A1 (en) | 2013-03-19 | 2013-08-21 | Three-dimensional unlocking device, three-dimensional unlocking method and program |
US14/778,348 US20160055330A1 (en) | 2013-03-19 | 2013-08-21 | Three-dimensional unlocking device, three-dimensional unlocking method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-057185 | 2013-03-19 | ||
JP2013057185 | 2013-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014147858A1 true WO2014147858A1 (ja) | 2014-09-25 |
Family
ID=51579577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072244 WO2014147858A1 (ja) | 2013-03-19 | 2013-08-21 | 3次元ロック解除装置、3次元ロック解除方法及びプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160055330A1 (ja) |
EP (1) | EP2977924A1 (ja) |
JP (1) | JPWO2014147858A1 (ja) |
CN (1) | CN105051650A (ja) |
WO (1) | WO2014147858A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016115199A (ja) * | 2014-12-16 | 2016-06-23 | 国立大学法人 鹿児島大学 | 認証処理装置及び認証処理方法 |
CN105955630A (zh) * | 2015-09-24 | 2016-09-21 | 上海鼎为通讯电子有限公司 | 一种电子设备的屏幕解锁方法 |
JP2017068771A (ja) * | 2015-10-02 | 2017-04-06 | 東京ガスエンジニアリングソリューションズ株式会社 | 敷設設備表示装置 |
WO2018143313A1 (ja) * | 2017-02-01 | 2018-08-09 | コニカミノルタ株式会社 | ウェアラブル電子機器 |
JP2020501256A (ja) * | 2016-11-25 | 2020-01-16 | アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited | アイデンティティ検証方法および装置 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3123385B1 (en) * | 2014-03-25 | 2020-03-11 | Sony Corporation | 3d graphical authentication by revelation of hidden objects |
EP3119158A4 (en) * | 2014-03-31 | 2017-03-08 | Huawei Technologies Co. Ltd. | Privacy protection method and terminal device |
US10275935B2 (en) | 2014-10-31 | 2019-04-30 | Fyusion, Inc. | System and method for infinite synthetic image generation from multi-directional structured image array |
US10726593B2 (en) * | 2015-09-22 | 2020-07-28 | Fyusion, Inc. | Artificially rendering images using viewpoint interpolation and extrapolation |
US20170061700A1 (en) * | 2015-02-13 | 2017-03-02 | Julian Michael Urbach | Intercommunication between a head mounted display and a real world object |
US10750161B2 (en) * | 2015-07-15 | 2020-08-18 | Fyusion, Inc. | Multi-view interactive digital media representation lock screen |
US11006095B2 (en) | 2015-07-15 | 2021-05-11 | Fyusion, Inc. | Drone based capture of a multi-view interactive digital media |
US10242474B2 (en) | 2015-07-15 | 2019-03-26 | Fyusion, Inc. | Artificially rendering images using viewpoint interpolation and extrapolation |
US11095869B2 (en) | 2015-09-22 | 2021-08-17 | Fyusion, Inc. | System and method for generating combined embedded multi-view interactive digital media representations |
US10147211B2 (en) | 2015-07-15 | 2018-12-04 | Fyusion, Inc. | Artificially rendering images using viewpoint interpolation and extrapolation |
US10222932B2 (en) | 2015-07-15 | 2019-03-05 | Fyusion, Inc. | Virtual reality environment based manipulation of multilayered multi-view interactive digital media representations |
US11783864B2 (en) | 2015-09-22 | 2023-10-10 | Fyusion, Inc. | Integration of audio into a multi-view interactive digital media representation |
US11202017B2 (en) | 2016-10-06 | 2021-12-14 | Fyusion, Inc. | Live style transfer on a mobile device |
CN106682468A (zh) * | 2016-12-30 | 2017-05-17 | 百度在线网络技术(北京)有限公司 | 解锁电子设备的方法以及电子设备 |
US10437879B2 (en) | 2017-01-18 | 2019-10-08 | Fyusion, Inc. | Visual search using multi-view interactive digital media representations |
US10313651B2 (en) | 2017-05-22 | 2019-06-04 | Fyusion, Inc. | Snapshots at predefined intervals or angles |
US10719703B2 (en) * | 2017-05-30 | 2020-07-21 | Fujitsu Limited | Non-transitory computer-readable storage medium for storing line-of-sight analysis program, line-of-sight analysis method, and line-of-sight analysis apparatus |
US11069147B2 (en) | 2017-06-26 | 2021-07-20 | Fyusion, Inc. | Modification of multi-view interactive digital media representation |
EP3734428A4 (en) * | 2017-12-27 | 2021-03-03 | Sony Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM |
EP3518130A1 (en) | 2018-01-30 | 2019-07-31 | OneVisage SA | Method and system for 3d graphical authentication on electronic devices |
JP6623481B2 (ja) * | 2018-03-23 | 2019-12-25 | 株式会社コナミデジタルエンタテインメント | 情報処理装置、情報処理装置のプログラム、ヘッドマウントディスプレイ、及び、情報処理システム |
US10592747B2 (en) | 2018-04-26 | 2020-03-17 | Fyusion, Inc. | Method and apparatus for 3-D auto tagging |
US10783230B2 (en) * | 2018-05-09 | 2020-09-22 | Shape Matrix Geometric Instruments, LLC | Methods and apparatus for encoding passwords or other information |
US11334656B2 (en) * | 2018-05-17 | 2022-05-17 | Mindpass, Inc. | 3D virtual interactive digital user authentication security |
US11216586B2 (en) | 2018-12-03 | 2022-01-04 | At&T Intellectual Property I, L.P. | Multi-dimensional progressive security for personal profiles |
US11494953B2 (en) * | 2019-07-01 | 2022-11-08 | Microsoft Technology Licensing, Llc | Adaptive user interface palette for augmented reality |
US12067092B2 (en) * | 2022-03-31 | 2024-08-20 | Lenovo (Singapore) Pte. Ltd. | 3D passcode provided in virtual space |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001282428A (ja) * | 2000-03-29 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 情報処理装置 |
JP2010139711A (ja) * | 2008-12-11 | 2010-06-24 | Brother Ind Ltd | ヘッドマウントディスプレイ |
WO2011081371A1 (en) * | 2009-12-29 | 2011-07-07 | Bizmodeline Co., Ltd | Password processing method and apparatus |
JP2012173772A (ja) * | 2011-02-17 | 2012-09-10 | Panasonic Corp | ユーザインタラクション装置、ユーザインタラクション方法、ユーザインタラクションプログラム、及び集積回路 |
JP2013016115A (ja) | 2011-07-06 | 2013-01-24 | Nomura Research Institute Ltd | 情報処理端末のロック解除方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3795647B2 (ja) * | 1997-10-29 | 2006-07-12 | 株式会社竹中工務店 | ハンドポインティング装置 |
JP2002042172A (ja) * | 2000-07-25 | 2002-02-08 | Matsushita Electric Works Ltd | 仮想物体の選択方法、この方法が適用される記録媒体およびサービス |
JP3858091B2 (ja) * | 2002-10-03 | 2006-12-13 | 独立行政法人産業技術総合研究所 | パスワード認証装置およびパスワード認証方法 |
JP5499762B2 (ja) * | 2010-02-24 | 2014-05-21 | ソニー株式会社 | 画像処理装置、画像処理方法、プログラム及び画像処理システム |
JP5565331B2 (ja) * | 2011-01-28 | 2014-08-06 | コニカミノルタ株式会社 | 表示システム、表示処理装置、表示方法、および表示プログラム |
TWI463352B (zh) * | 2012-04-16 | 2014-12-01 | Phansco Corp | Shaking and unlocking touch - type portable electronic device and its rocking and unlocking method |
-
2013
- 2013-08-21 EP EP13878884.9A patent/EP2977924A1/en not_active Withdrawn
- 2013-08-21 JP JP2015506534A patent/JPWO2014147858A1/ja active Pending
- 2013-08-21 US US14/778,348 patent/US20160055330A1/en not_active Abandoned
- 2013-08-21 CN CN201380074952.1A patent/CN105051650A/zh active Pending
- 2013-08-21 WO PCT/JP2013/072244 patent/WO2014147858A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001282428A (ja) * | 2000-03-29 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 情報処理装置 |
JP2010139711A (ja) * | 2008-12-11 | 2010-06-24 | Brother Ind Ltd | ヘッドマウントディスプレイ |
WO2011081371A1 (en) * | 2009-12-29 | 2011-07-07 | Bizmodeline Co., Ltd | Password processing method and apparatus |
JP2012173772A (ja) * | 2011-02-17 | 2012-09-10 | Panasonic Corp | ユーザインタラクション装置、ユーザインタラクション方法、ユーザインタラクションプログラム、及び集積回路 |
JP2013016115A (ja) | 2011-07-06 | 2013-01-24 | Nomura Research Institute Ltd | 情報処理端末のロック解除方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016115199A (ja) * | 2014-12-16 | 2016-06-23 | 国立大学法人 鹿児島大学 | 認証処理装置及び認証処理方法 |
CN105955630A (zh) * | 2015-09-24 | 2016-09-21 | 上海鼎为通讯电子有限公司 | 一种电子设备的屏幕解锁方法 |
JP2017068771A (ja) * | 2015-10-02 | 2017-04-06 | 東京ガスエンジニアリングソリューションズ株式会社 | 敷設設備表示装置 |
JP2020501256A (ja) * | 2016-11-25 | 2020-01-16 | アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited | アイデンティティ検証方法および装置 |
US10831876B2 (en) | 2016-11-25 | 2020-11-10 | Advanced New Technologies Co., Ltd. | Methods and apparatuses for identity authentication in virtual reality |
WO2018143313A1 (ja) * | 2017-02-01 | 2018-08-09 | コニカミノルタ株式会社 | ウェアラブル電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014147858A1 (ja) | 2017-02-16 |
EP2977924A1 (en) | 2016-01-27 |
CN105051650A (zh) | 2015-11-11 |
US20160055330A1 (en) | 2016-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014147858A1 (ja) | 3次元ロック解除装置、3次元ロック解除方法及びプログラム | |
JP6057396B2 (ja) | 3次元ユーザインタフェース装置及び3次元操作処理方法 | |
JP5936155B2 (ja) | 3次元ユーザインタフェース装置及び3次元操作方法 | |
JP5871345B2 (ja) | 3次元ユーザインタフェース装置及び3次元操作方法 | |
JP5843340B2 (ja) | 3次元環境共有システム及び3次元環境共有方法 | |
JP6288372B2 (ja) | インタフェース制御システム、インタフェース制御装置、インタフェース制御方法、及びプログラム | |
US8139087B2 (en) | Image presentation system, image presentation method, program for causing computer to execute the method, and storage medium storing the program | |
JP5499762B2 (ja) | 画像処理装置、画像処理方法、プログラム及び画像処理システム | |
KR101146091B1 (ko) | 증강 현실을 위한 입력 인터페이스 장치 및 이를 구비한 증강 현실 시스템 | |
US20120135803A1 (en) | Game device utilizing stereoscopic display, method of providing game, recording medium storing game program, and game system | |
JP2021520577A (ja) | 画像処理方法及び装置、電子機器並びに記憶媒体 | |
US20200326783A1 (en) | Head mounted display device and operating method thereof | |
JP5863984B2 (ja) | ユーザインタフェース装置及びユーザインタフェース方法 | |
KR20110087407A (ko) | 카메라 시뮬레이션 시스템 및 이를 이용한 위치 감지 방법 | |
JP2013168120A (ja) | 立体画像処理装置、立体画像処理方法、及びプログラム | |
CN109144598A (zh) | 基于手势的电子面罩人机交互方法与系统 | |
JP2021039567A (ja) | 作業支援システム及びプログラム | |
WO2019106862A1 (ja) | 操作案内システム | |
JP2021162876A (ja) | 画像生成システム、画像生成装置及び画像生成方法 | |
KR20200120467A (ko) | Hmd 장치 및 그 동작 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380074952.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13878884 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015506534 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013878884 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14778348 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |