WO2014146641A1 - Prüfvorrichtung - Google Patents

Prüfvorrichtung Download PDF

Info

Publication number
WO2014146641A1
WO2014146641A1 PCT/DE2014/100060 DE2014100060W WO2014146641A1 WO 2014146641 A1 WO2014146641 A1 WO 2014146641A1 DE 2014100060 W DE2014100060 W DE 2014100060W WO 2014146641 A1 WO2014146641 A1 WO 2014146641A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heating
metal block
chamber
test
Prior art date
Application number
PCT/DE2014/100060
Other languages
English (en)
French (fr)
Inventor
Thomas BARKEY
Original Assignee
Barkey Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barkey Gmbh & Co. Kg filed Critical Barkey Gmbh & Co. Kg
Priority to DK14720884.7T priority Critical patent/DK2976637T3/da
Priority to ES14720884T priority patent/ES2945638T3/es
Priority to EP14720884.7A priority patent/EP2976637B1/de
Priority to PL14720884.7T priority patent/PL2976637T3/pl
Publication of WO2014146641A1 publication Critical patent/WO2014146641A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • G01N25/142Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation by condensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2241Sampling from a closed space, e.g. food package, head space purpose-built sampling enclosure for emissions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the invention relates to a device for testing material properties of material samples, in particular for testing outgassing of volatiles of a material sample, comprising a housing containing a number of recesses for receiving a sample container containing the material sample, with a heating device for heating the material sample to a predetermined test temperature with a test surface covering the sample container and cooled to a cooling temperature so that a deposit of the material sample forms on the test surface.
  • Thermo Fisher Scientific has a device known as "Horizon FTS", which is a device for testing volatiles in material samples, which allows the so-called fogging behavior of plastic materials used in vehicles, for example, to be measured according to DIN 75201, after which outgassing or volatile components of material samples are examined gravimetrically or reflectometrically a predetermined test temperature is heated.
  • a cooled test surface ensures that the outgassing generated by the heating of the material sample accumulates by condensation on the test surface.
  • a heater provided for heating to the material sample consists of a heated oil bath, which is located in a trough-shaped housing. In the heating liquid piston provided with recesses are immersed, in each of which the material samples are positioned on a bottom of the recess.
  • the recess is covered by a test surface, which is cooled by an external cooling device to a predetermined temperature. At the test surface then the deposits or volatile outgassing, which are examined gravimetrically or reflectometrically in a final test step. Since the heater has a heat bath, special measures to meet the tightness requirements are required. Furthermore, the heat bath must be renewed at regular intervals. The handling of the device is thus relatively complicated and expensive.
  • Object of the present invention is therefore to develop a device for testing material properties of material samples such that the handling is simplified and a long-term stable and reliable operation of the device is guaranteed.
  • the invention in connection with the preamble of claim 1, characterized in that the heating device comprises a heatable solid or modular metal block which completely surrounds the recess with the exception of an opening area.
  • the particular advantage of the invention is that a simple and safe heating device is provided, which in particular simplifies the handling of the test device.
  • the heating device according to the invention has solid heat transfer medium, namely a metal block, by means of which the heat is supplied to the sample container or arranged in the sample container material sample.
  • the metal block is preferably heated homogeneously and allows a targeted and comprehensive heat transfer or heat input into the material sample.
  • the metal block can be massively made in one piece.
  • the metal block may also be made modularly from a plurality of segment parts that are joined together to form the metal block.
  • the metal block is made of an aluminum-based material.
  • it is an aluminum alloy, so that the voluminous metal block is relatively easily formed.
  • the metal block is cuboid and has a shape adapted to the shape of the housing.
  • the metal block can completely fill the housing in the material sample area.
  • an electrically operated heating source adjoins a base side of the metal block, the heat being introduced in a planar manner (i.e., homogeneously) into the metal block.
  • the heat input can be easily controlled or the test temperature can be easily controlled.
  • the heat source is designed as a surface heating element or a heating plate.
  • the heating plate or the metal block can be formed with blind holes for receiving heating cartridges be. The dimension of these components is adapted to the required heating power.
  • the metal block is formed as a casting produced by casting.
  • the heat transfer medium thus produced is thus relatively easy to produce.
  • the metal block is created by machining.
  • the metal block has at least one blind hole, by means of which the recess for receiving the sample container is ensured. If the metal block is produced by casting, by appropriate design of the mold, the blind hole arise during the Urformvorganges.
  • a connection for a vent valve is integrated in a coolant distribution unit, so that when commissioning or change of the cooling medium in the cooling medium circuit occurred air can be easily removed.
  • the connection for the ventilation valve is arranged at the level of an upper region of a chamber of the coolant distribution unit, in which the cooling medium to be supplied to the cooling elements of the test device or cooling medium coming from the respective cooling elements collects.
  • the coolant distribution unit has chamber walls which taper in a vertical direction, so that the air collects in the vicinity of the connection for the ventilation valve and can then easily escape.
  • the hollow-shaped cooling member has a chamber which is roof-shaped on a vertical upper side.
  • an upper flat side of the cooling member corresponding roof segments on.
  • a line connection for a return line and a supply line of the cooling medium is arranged so that the unwanted air purposefully collect in an upper region of the chamber and then via the lines in the direction ofmémediumverteilhow can be derived, where it is discharged via the vent valve to the outside.
  • Figure 1 is a perspective view of a tester with a
  • Figure 2 is a side view of the housing
  • FIG. 3 shows a plan view of the housing with cooling elements removed
  • Figure 4a is a front perspective view of a base plate of a
  • Cooling medium distribution unit which is attached to a rear side of the test apparatus
  • FIG. 4b is a front view of the base plate with molded chambers
  • FIG. 5 shows a front view of a cover plate of the cooling medium distribution unit
  • Figure 6 is a perspective view of an upper flat side of
  • Figure 7 is a bottom view of the upper flat side of the cooling member.
  • a device according to the invention for testing material properties on material samples can be used in particular for the quantitative examination thereof.
  • the device is used to test outgassing of volatiles of a material sample 1, which has been taken for example from an interior of a motor vehicle.
  • the test apparatus comprises a cuboid housing 2, in which a heating device 3 for heating the material sample to a predetermined test temperature is arranged.
  • the heating device 3 has, as a heat transfer means, a metal block 4 which has a number of recesses 6 on an upper side 5.
  • the preferably solid metal block 4 has six recesses, into each of which sample containers 7 can be inserted.
  • the sample containers 7 are formed as cylindrical glass containers whose outer diameter substantially corresponds to the inner diameter of the recess 6, so that the sample container 7 can be inserted under clearance fit in the respective recesses 6. On a bottom of the sample container 7, the material samples 1 are positioned.
  • the metal block 4 is preferably made of an aluminum-based material, that is, an aluminum alloy or other thermally conductive material.
  • the heating device 3 comprises a preferably electrically operable heating source, which adjoins a base side 8 of the metal block 4, preferably abutting against the base 8, so that heat generated by the heating source is introduced flat (i.e., homogeneously) into the metal block.
  • the heating source is designed as a heating plate 9 or as a surface heating element, which converts electrical energy into thermal energy in the manner of resistance heating.
  • the metal block 4 thus serves as a heat transfer medium.
  • the heating plate may also have blind holes for receiving heating cartridges.
  • the heating plate 9 or the alternative heater designs are coupled via a cable to an electrical control unit 10, by means of which an electric current dependent on the required heating power is impressed into the heating plate 9.
  • the control unit 10 has a control module, by means of which the test temperature is regulated to a predetermined desired temperature.
  • heating elements may be integrated in the metal block 4 so that the heat transfer path to the sample containers is reduced.
  • the metal block 4 have blind holes for receiving heating cartridges or surface heating, which are integrated on or in the heating block.
  • the metal block 4 can be made, for example, by casting, wherein a casting with the corresponding recesses 6 has been formed.
  • the metal block 4 may consist of a plurality of segment parts, which are stacked or assembled in the housing 2.
  • the metal block instead of being formed as a one-piece solid heat transfer medium, may also be made in a modular fashion from a plurality of segment parts which are joined together to form the metal block.
  • the metal block 4 may also comprise each of the sample containers 7 associated metal segments, each having the recesses and in which adjacent metal segments are directly adjacent to each other or spaced from each other.
  • an unillustrated external cooling device is connected via lines or hoses 12 with cooling members 13 which rest flat on the test surface 1 1.
  • the test surface 1 1 is formed as a glass plate which closes off the upper opening of the sample container 7.
  • deposits of the material sample 1 deposit on a flat side of the glass plate 1 facing the recess 6 or condense outgassed volatile constituents of the material sample 1.
  • a cooling medium is introduced or discharged into the cooling elements 13, so that the test area 1 1 has the cooling temperature of, for example, 20 ° C. required for the condensation of the outgassing.
  • a portable frame 14 is provided with receiving openings 15 whose inside diameter is greater than a diameter of the glass container 7 on the one hand and smaller than an upper opening edge 16 of the glass container 7 on the other. In this way, the glass container 7 is securely in the receiving opening 15 of the frame 14 ; held.
  • a display 17 and buttons 18 are arranged so that an operator can set the desired heating temperature, for example 100 ° C, and possibly the heating time, for example 3 to 6 hours.
  • the control unit 10 is preferably designed so that the heating plate 9 is regulated to a certain temperature, so that always a same heat input is ensured in the respective recesses 6.
  • the heater 3 and the cooling device is turned off. Subsequently, the cooling elements 13 are removed, so that now the deposited on the cooled test surface 1 1 deposits can be determined according to the standard DIN 75201.
  • a measuring device not shown, means for reflectometric measurement.
  • the reflection of the deposited deposit is determined in a known manner.
  • the test surface is designed as a film on which the deposits collect. With the help of a gravimetric balance, the quantity of material of the deposit can then be determined quantitatively.
  • sample plates coated on one side are filled with the sample substance Sample container placed.
  • the cooling member 13 is set. By condensation or bubbling on the coated side can be concluded that water vapor-tight coating material.
  • This test method can be used for many corrosion test procedures in the analytical field.
  • a frame not shown, which is formed like a frame with at least one horizontal support rod to which the cooling elements 13 can be attached, stored or suspended in a non-use position rises. Due to the safe storage of the cooling elements 13 on the frame and the ergonomically short path from the attachment point on the frame to the cover layer at the upper edge region of the sample container 7, the handling of the test device can be improved.
  • the frame 14 serves as a centering frame for accurate storage of the cooling elements 13 in the position of use of the same.
  • a cooling device consists essentially of the external cooling device, cooling medium-carrying lines, amémediumverteilritt 20 and the cooling elements 13.
  • the external cooling device cools the cooling medium to a predetermined temperature and passes this by means of an integrated pump via a feed line, not shown, to an input-side line connection 21st thedemediumverteilritt 20.
  • Thedemediumverteilritttician 20 distributes the supplied cooling medium via line connections 22 to the respective line connection 23 of the cooling elements 13.
  • the input-side line connection 23 is located at a first end 24 of the cooling member 13.
  • a line connection 26 is arranged, from which via the coolant-carrying lines (tubes 12), the cooling medium is returned to corresponding line connections 27 of thedemediumverteilritt 20.
  • the coming of the respective cooling elements 13 cooling medium collects in an output chamber 28 of thedemediumverteiltechnik 20, from where it is forwarded via an output-side line connection 29 via lines not shown to the external cooling device.
  • a continuous circulation of the cooling medium takes place between the external cooling device on the one side and the cooling elements 13 on the other side.
  • Thedemediumverteilhowhowtician 20 further includes an input chamber 30, in which the supplied via the input-side pipe connection 21 cooling medium is introduced and distributed over the plurality of line connections 22 to the respective cooling elements 13. From Figure 5 it can be seen that via the line connections 22 six supply lines to the cooling elements 13 and the line connections 27 six return lines to the six cooling elements 13 extend, each cooling member 13 via the input-side line connection 23 and the hose with one of the line connections 22 and the further line connection 26 is connected via the hose 12 to one of the line connections 27 of the cooling medium distribution unit 20.
  • Thedemediumverteiltician 20 has a base plate 31 with the molded input chamber 30 and the molded output chamber 28.
  • the base plate 31 is connected via fastening means with a cover plate 32, the line connection 21 for coming from the external cooling device inlet line and the line connections 22 for leading to the cooling elements 13 supply lines 12 on one input side and the line connection 29 for the external Refrigeration unit running return line and the line connections 27 for the running of the respective cooling elements 13 return lines 12 on an output side.
  • the input chamber 30 and the output chamber 28 respectively by opposing flat sides 38 of the base plate 31 and a flat side 39 of the cover plate 32 and a
  • Narrow side 33 is limited.
  • the narrow side 33 is integrated in the plate 31, forming cup-shaped recesses in the region of the input and output chamber.
  • the narrow sides 33 of the input chamber 30 and the output chamber 28 each have vertically upwardly tapering walls 34 and 35 converging at a height in which a port 36 associated with the input chamber and a port 37 for a vent valve associated with the output chamber 28 is provided on the cover plate 32.
  • connections 36, 37 for the corresponding venting valves are arranged above the line connections 21, 29 and 22 and 27 leading to the inlet chamber 30 and the outlet chamber 28, so that upon commissioning of the testing device or a change of the Coolant can easily and quickly escape air from the piping system.
  • the cooling member 13 is hollow and has an upper flat side 40 and a lower flat side 40, not shown, which is plate-shaped and fixedly connected to the upper flat side 40 to form a chamber 41st
  • the upper flat side 40 has a peripheral edge 42 which has holes 43 for attachment to the lower flat side, not shown. Further, the rim 42 bounds the chamber 41 from the side. From a vertically upper side of the chamber 41 is bounded by the upper flat side 40, which consists of two roof segments 44 which rise roof-shaped at an inclined angle to a top edge 45 of the upper flat side 40 out.
  • the roof segments 44 at an acute angle to a plane formed by the peripheral edge surface 42.
  • the inclination angle is in a range between 10 ° and 30 °.
  • the line connections 23, 26 are thus located at a highest point of the chamber 41, so that relatively quickly and easily air can escape into the lines 12 at startup or when changing the cooling medium.
  • the air After the air has been passed through the tubes 12 in the input chamber 30 and in the output chamber 28, it can be removed from the cooling medium circuit via the vent valves arranged on the connections 36, 37. It can be seen that the venting takes place at the highest points of the respective chamber 41 or the inlet chamber 30 or the outlet chamber 28.
  • the port may also be located in a horizontal plane that intersects the highest point of the chamber. In this way it is always ensured that air can be removed with little effort from the coolant circuit.
  • the walls of the chambers terminate at a highest point of the chamber, in the horizontal plane of the connection is arranged.
  • the chamber may have only a single wall extending at an angle in the vertical upward direction, the end of which coincides with an upper end of a vertical wall. If the connection is provided in the area of this upper end, the air can also be easily removed.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Prüfen von Materialeigenschaften von Materialproben, insbesondere zum Prüfen von Ausgasungen flüchtiger Bestandteile einer Materialprobe, - mit einem Gehäuse enthaltend eine Anzahl von Ausnehmungen zur Aufnahme von einem Materialprobe enthaltenen Probebehälter, - mit einer Heizeinrichtung zur Erwärmung der Materialprobe auf eine vorgegebene Prüftemperatur, - mit einer den Probebehälter abdeckenden und auf eine Kühltemperatur gekühlten Prüffläche, so dass sich an der Prüffläche eine Ablagerung der Materialprobe bildet, wobei die Heizeinrichtung einen aufheizbaren massiven oder modularen Metallblock aufweist, der die Ausnehmung mit Ausnahme eines Öffnungsbereichs vollständig umgibt.

Description

Prüfvorrichtung
Die Erfindung betrifft eine Vorrichtung zum Prüfen von Materialeigenschaften von Materialproben, insbesondere zum Prüfen von Ausgasungen flüchtiger Bestandteile einer Materialprobe, mit einem Gehäuse enthaltend eine Anzahl von Ausnehmungen zur Aufnahme von einem die Materialprobe enthaltenen Probebehälter, mit einer Heizeinrichtung zur Erwärmung der Materialprobe auf eine vorgegebene Prüftemperatur, mit einer den Probebehälter abdeckenden und auf eine Kühltemperatur gekühlten Prüffläche, so dass sich an der Prüffläche eine Ablagerung der Materialprobe bildet.
Von der Firma Thermo Fisher Scientific ist unter der Produktbezeichnung„Ho- rizon FTS" eine Vorrichtung zum Prüfen von Ausgasungen flüchtiger Bestandteile von Materialproben bekannt. Diese Geräte ermöglichten somit die Prüfung des sogenannten Foggingverhaltens von Kunststoffmaterialen, die beispielsweise im Kraftfahrzeug eingesetzt werden. Die Messung erfolgt nach der Norm DIN 75201 , nach der Ausgasungen bzw. flüchtige Bestandteile von Materialproben gravimetrisch oder reflektome'risch untersucht werden. Hierzu ist es erforderlich, dass die Materialprobe über einen bestimmten Zeitraum auf eine vorgegebene Prüftemperatur aufgeheizt wird. Eine gekühlte Prüffläche sorgt dafür, dass die durch Aufheizung der Materialprobe entstehende Ausgasung durch Kondensation an der Prüffläche ansammelt. Eine zur Erwärmung zur Materialprobe vorgesehene Heizeinrichtung besteht aus einem aufgeheiztem Ölbad, das sich in einem wannenförmigen Gehäuse befindet. In der Heizflüssigkeit sind mit Ausnehmungen versehene Kolben eingetaucht, in denen jeweils die Materialproben auf einem Boden der Ausnehmung positioniert sind. Deckseitig ist die Ausnehmung von einer Prüffläche abgedeckt, die über ein externes Kühlgerät auf eine vorgegebene Temperatur gekühlt wird. An der Prüffläche bilden sich dann die Ablagerungen bzw. flüchtigen Ausgasungen, die in einem abschließenden Prüfschritt gravimetrisch oder reflektometrisch untersucht werden. Da die Heizeinrichtung ein Wärmebad aufweist, sind besondere Maßnahmen zur Erfüllung der Dichtigkeitsanforderungen erforderlich. Weiterhin muss das Wärmebad in regelmäßigen Abständen erneuert werden. Die Handhabung der Vorrichtung ist somit relativ aufwendig und kostenintensiv.
Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung zum Prüfen von Materialeigenschaften an Materialproben derart weiterzubilden, dass die Handhabung vereinfacht und ein langzeitstabiler und zuverlässiger Betrieb der Vorrichtung gewährleistet ist.
Zur Lösung dieser Aufgabe ist die Erfindung in Verbindung mit dem Oberbegriff des Patentanspruchs 1 dadurch gekennzeichnet, dass die Heizeinrichtung einen aufheizbaren massiven oder modularen Metallblock aufweist, der die Ausnehmung mit Ausnahme eines Öffnungsbereichs vollständig umgibt.
Der besondere Vorteil der Erfindung besteht darin, dass eine einfache und sichere Heizeinrichtung vorgesehen ist, die insbesondere die Handhabung der Prüfvorrichtung vereinfacht. Die erfindungsgemäße Heizeinrichtung weist ein festes Wärmeübertragungsmedium, nämlich einen Metallblock auf, mittels dessen die Wärme dem Probenbehälter bzw. der in dem Probenbehälter angeordneten Materialprobe zugeführt wird. Der Metallblock ist vorzugsweise homogen erwärmt und ermöglicht eine gezielte und umfassende Wärmeübertragung bzw. Wärmeeinbringung in die Materialprobe.
Der Metallblock kann massiv aus einem Stück hergestellt sein. Alternativ kann der Metallblock auch modular aus mehreren Segmentteilen hergestellt sein, die zu dem Metallblock zusammengefügt werden.
Nach einer bevorzugten Ausführungsform der Erfindung besteht der Metallblock aus einem aluminiumbasiertem Material. Vorzugsweise handelt es sich um eine Aluminiumlegierung, so dass der volumige Metallblock relativ leicht ausgebildet ist.
Nach einer Weiterbildung der Erfindung ist der Metallblock quaderförmig ausgebildet und weist eine an die Form des Gehäuses angepasste Form auf. Der Metallblock kann das Gehäuse in dem Materialprobenbereich vollständig ausfüllen.
Nach einer Weiterbildung der Erfindung schließt sich an einer Grundseite des Metallblocks eine elektrisch betriebene Heizquelle an, wobei die Wärme flächig (d.h. homogen) in den Metallblock eingebracht wird. Dadurch, dass die Heizquelle elektrisch betrieben wird, kann die Wärmeeinbringung leicht gesteuert bzw. die Prüftemperatur einfach geregelt werden.
Nach einer Weiterbildung der Erfindung ist die Heizquelle als ein Flächenheizelement bzw. eine Heizplatte ausgeführt. Alternativ kann die Heizplatte oder der Metallblock mit Sacklöchern zur Aufnahme von Heizpatronen ausgebildet sein. Die Dimension dieser Bauteile ist an ldie erforderliche Heizleistung ange- passt ausgebildet.
Nach einer Weiterbildung der Erfindung ist der Metallblock als ein durch Gießen hergestelltes Gussteil ausgebildet. Das so hergestellte Wärmeübertra- gungsmittei ist somit relativ einfach herstellbar. Alternativ ist der Metallblock durch spanende Bearbeitung erstellt.
Nach einer Weiterbildung der Erfindung weist der Metallblock mindestens ein Sackloch auf, mittels dessen die Ausnehmung für die Aufnahme des Probenbehälters gewährleistet ist. Wenn der Metallblock durch Gießen hergestellt wird, kann durch entsprechende Ausbildung der Gussform das Sackloch im Rahmen des Urformvorganges entstehen.
Nach einer bevorzugten Ausführungsform der Erfindung ist in einer Kühlmittelverteileinheit ein Anschluss für ein Entlüftungsventil integriert, sodass bei Inbetriebnahme oder Wechsel des Kühlmediums in den Kühlmediumkreislauf eingetretene Luft leicht entfernt werden kann. Damit die unerwünschte Luft innerhalb der Kühlmittelverteileinheit leicht entweichen kann, ist der Anschluss für das Entlüftungsventil in Höhe eines oberen Bereichs einer Kammer der Kühlmittelverteileinheit angeordnet, in der sich das zu Kühlorganen der Prüfvorrichtung zuzuführende Kühlmedium bzw. von den jeweiligen Kühlorganen kommende Kühlmedium sammelt. Vorteilhaft weist die Kühlmittelverteileinheit Kammerwände auf, die sich in vertikaler Richtung hin verjüngen, sodass sich die Luft in der Nähe des Anschlusses für das Entlüftungsventil sammelt und dann leicht entweichen kann.
Nach einer Weiterbildung der Erfindung weist das hohlförmige Kühlorgan eine Kammer auf, die auf einer vertikalen Oberseite dachförmig verläuft. Hierzu weist eine obere Flachseite des Kühlorgans entsprechende Dachsegmente auf. An einer obersten Kante der Dachsegmente bzw. an einem oberen Punkt des so gebildeten Daches ist ein Leitungsanschluss für eine Rücklaufleitung und eine Zulaufleitung des Kühlmediums angeordnet, sodass sich die unerwünschte Luft zielgerichtet in einem oberen Bereich der Kammer sammeln und dann über die Leitungen in Richtung der Kühlmediumverteileinheit abgeleitet werden kann, wo sie über das Entlüftungsventil nach außen abgeführt wird.
Weitere Vorteile der Erfindung ergeben sich aus den weiteren Unteransprüchen.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert.
Es zeigen:
Figur 1 eine perspektivische Darstellung einer Prüfvorrichtung mit einem
Gehäuse und mehreren Probenbehältern, auf denen jeweils Kühlorgane angeordnet sind, die mit einem nicht dargestellten externen Kühlgerät gekoppelt sind,
Figur 2 eine Seitenansicht des Gehäuses und
Figur 3 eine Draufsicht auf das Gehäuse mit entfernten Kühlorganen,
Figur 4a eine perspektivische Vorderansicht einer Grundplatte einer
Kühlmediumverteileinheit, die an einer Rückseite der Prüfvorrichtung befestigt ist,
Figur 4b eine Vorderansicht der Grundplatte mit ausgeformten Kammern, Figur 5 eine Vorderansicht einer Abdeckplatte der Kühlmediumvertei- leinheit,
Figur 6 eine perspektivische Darstellung einer oberen Flachseite des
Kühlorgans von unten gesehen,
Figur 7 eine Untenansicht der oberen Flachseite des Kühlorgans und
Figur 8 einen Schnitt durch die obere Flachseite des Kühlorgans entlang
Schnittlinie Vlll-Vlll in Figur 7.
Eine erfindungsgemäße Vorrichtung zum Prüfen von Materialeigenschaften an Materialproben kann insbesondere zurquantitativen Untersuchung derselben eingesetzt werden. Im vorliegenden Ausführungsbeispiel dient die Vorrichtung zum Prüfen von Ausgasungen flüchtiger Bestandteile einer Materialprobe 1 , die beispielsweise von einer Inneneinrichtung eines Kraftfahrzeugs entnommen worden ist. Die Prüfvorrichtung umfasst ein quaderförmiges Gehäuse 2, in dem eine Heizeinrichtung 3 zur Erwärmung der Materialprobe auf eine vorgegebene Prüftemperatur angeordnet ist. Die Heizeinrichtung 3 weist als Wärmeübertragungsmittel einen Metallblock 4 auf, der an einer Oberseite 5 eine Anzahl von Ausnehmungen 6 aufweist. Im vorliegenden Ausführungsbeispiel weist der vorzugsweise massiv ausgebildete Metallblock 4 sechs Ausnehmungen auf, in die jeweils Probenbehälter 7 einführbar sind. Die Probenbehälter 7 sind als zylinderförmige Glasbehälter ausgebildet, deren Außendurchmesser im Wesentlichen dem Innendurchmesser der Ausnehmung 6 entspricht, so dass die Probenbehälter 7 unter Spielpassung in die jeweiligen Ausnehmungen 6 eingeschoben werden können. Auf einem Boden der Probenbehälter 7 sind die Materialproben 1 positioniert. Der Metallblock 4 ist vorzugsweise aus einem aluminiumbasiertem Material hergestellt, also einer Aluminiumlegierung oder einem anderen thermisch leitenden Material.
Ferner umfasst die Heizeinrichtung 3 eine vorzugsweise elektrisch betreibbare Heizquelle, die sich an einer Grundseite 8 des Metallblocks 4 anschließt, wobei sie vorzugsweise an der Grundseite 8 anliegt, so dass durch die Heizquelle erzeugte Wärme flächig (d.h. homogen) in den Metallblock eingebracht wird. Die Heizquelle ist als eine Heizplatte 9 bzw. als ein Flächenheizelement ausgebildet, das nach Art einer Widerstandsheizung elektrische Energie in thermische Energie umwandelt. Der Metallblock 4 dient somit als Wärmeübertragungsmittel.
Alternativ kann die Heizplatte auch Sacklöcher aufweisen zur Aufnahme von Heizpatronen.
Die Heizplatte 9 oder die alternativen Heizungsausführungen sind über ein Kabel mit einer elektrischen Steuereinheit 10 gekoppelt, mittels derer ein von der erforderlichen Heizleistung abhängiger elektrischer Strom in die Heizplatte 9 eingeprägt wird. Vorzugsweise weist die Steuereinheit 10 ein Regelmodul auf, mittels dessen die Prüftemperatur auf eine vorgegebene Solltemperatur geregelt wird.
Alternativ können in dem Metallblock 4 Heizelemente integriert sein, so dass der Wärmeübertragungsweg zu den Probebehältern verringert ist. Beispielsweise kann der Metallblock 4 Sacklöcher aufweisen zur Aufnahme von Heizpatronen oder Flächenheizungen, welche am oder im Heizblock integriert werden. Der Metallblock 4 kann beispielsweise durch Gießen hergestellt sein, wobei ein Gussteil mit den entsprechenden Ausnehmungen 6 geformt worden ist.
Alternativ kann der Metallblock 4 aus mehreren Segmentteilen bestehen, die in dem Gehäuse 2 aufeinander geschichtet bzw. zusammengesetzt werden. Der Metallblock kann, statt als ein einstückiges massives Wärmeübertragungsmittel ausgebildet zu sein, auch modular aus mehreren Segmentteilen hergestellt sein, die zu dem Metallblock zusammengefügt werden.
Alternativ kann der Metallblock 4 auch aus jeweils den Probenbehältern 7 zugeordnete Metallsegmente aufweisen, die jeweils die Ausnehmungen aufweisen und bei denen benachbarte Metallsegmente unmittelbar aneinander liegen oder beabstandet zueinander angeordnet sind.
Damit sich die Ablagerungen der Materialprobe 1 an einer Prüffläche 1 1 durch Kondensieren sammeln können, ist ein nicht dargestelltes externes Kühlgerät über Leitungen bzw. Schläuche 12 mit Kühlorganen 13 verbunden, die flächig auf der Prüffläche 1 1 aufliegen. Wird ein reflektometrisches Messverfahren eingesetzt, ist die Prüffläche 1 1 als eine Glasplatte ausgebildet, die die obere Öffnung des Probenbehälters 7 abschließt. Dadurch, dass die Glasplatte 1 1 von den Kühlorganen 13 gekühlt wird, setzen sich auf einer der Ausnehmung 6 zugewandten Flachseite der Glasplatte 1 1 Ablagerungen der Materialprobe 1 ab bzw. kondensieren ausgegaste flüchtige Bestandteile der Materialprobe 1 .
Über die Schläuche 12, die als eine Zulaufleitung und eine Rücklaufleitung dienen, wird in die Kühlorgane 13 ein Kühlmedium ein- bzw. ausgeleitet, so dass die Prüffläche 1 1 die für die Kondensation der Ausgasung erforderliche Kühltemperatur von bspw. 20°C aufweist. Damit die Glasbehälter 7 eine definierte Lage einnehmen und besser transportiert werden können, ist ein tragbarer Rahmen 14 mit Aufnahmeöffnungen 15 vorgesehen, deren lichte Weite jeweils größer ist als ein Durchmesser der Glasbehälter 7 einerseits und kleiner als ein oberer Öffnungsrand 16 des Glasbehälters 7 andererseits. Auf diese Weise ist der Glasbehälter 7 sicher in der Aufnahmeöffnung 15 des Rahmens 14; gehalten.
An einer Vorderseite des Gehäuses 2 sind ein Display 17 sowie Tasten 18 angeordnet, so dass eine Bedienperson die gewünschte Heiztemperatur, beispielsweise 100°C, und ggf. die Heizdauer, beispielsweise 3 bis 6 Stunden, einstellen kann. Die Steuereinheit 10 ist vorzugsweise so ausgelegt, dass die Heizplatte 9 auf eine bestimmte Temperatur geregelt wird, so dass stets ein gleicher Wärmeeintrag in die jeweiligen Ausnehmungen 6 gewährleistet ist.
Nachdem die Materialprobe 1 in dem Prüfzeitraum auf die vorgegebene Prüftemperatur gehalten worden ist, wird die Heizeinrichtung 3 bzw. das Kühlgerät abgeschaltet. Anschließend werden die Kühlorgane 13 entfernt, so dass nun die sich an der gekühlten Prüffläche 1 1 niedergeschlagenen Ablagerungen entsprechend der Norm DIN 75201 bestimmt werden können. Hierzu weist eine nicht dargestellte Messeinrichtung Mittel zur reflektometrischen Messung auf. Hierbei wird die Reflexion der niedergeschlagenen Ablagerung in bekannter Weise bestimmt.
Soll zur Foggingprüfung ein gravimetrisches Messverfahren eingesetzt werden, ist die Prüffläche als eine Folie ausgebildet, an der sich die Ablagerungen sammeln. Mit Hilfe einer gravimetrischen Waage kann dann quantitativ die Stoffmenge der Ablagerung ermittelt werden.
Soll eine Wasserdampf-Diffusionsprüfung vorgenommen werden, werden einseitig beschichtete Probenbleche auf die mit einer Probesubstanz gefüllten Probenbehälter gelegt. Auf die nichtbeschichtete Seite wird das Kühlorgan 13 gesetzt. Durch Kondensation bzw. Bläschenbildung an der beschichteten Seite kann auf wasserdampfdichtes Beschichtungsmaterial geschlossen werden. Dieses Prüfverfahren kann für viele Korrosionsprüfverfahren im analytischen Bereich eingesetzt werden.
Von dem Gehäuse 2 erhebt sich ein nicht dargestelltes Gestell, das rahmen- förmig ausgebildet ist mit mindestens einer waagerechten Haltestange, an der die Kühlorgane 13 in einer Nichtgebrauchsstellung befestigt, abgelegt oder eingehängt werden können. Aufgrund der sicheren Lagerung der Kühlorgane 13 an dem Gestell und des ergonomisch kurzen Weges von der Befestigungsstelle am Gestell zur Abdecklage am oberen Randbereich der Probenbehälter 7 kann die Handhabung der Prüfvorrichtung verbessert werden.
Der Rahmen 14 dient als Zentrierrahmen zur passgenauen Lagerung der Kühlorgane 13 in der Gebrauchsstellung derselben.
Eine Kühleinrichtung besteht im Wesentlichen aus dem externen Kühlgerät, kühlmediumführenden Leitungen, einer Kühlmediumverteileinheit 20 sowie den Kühlorganen 13. Das externe Kühlgerat kühlt das Kühlmedium auf eine vorgegebene Temperatur und leitet dieses mittels einer integrierten Pumpe über eine nicht dargestellte Zulaufleitung an einen eingangsseitigen Leitungs- anschluss 21 der Kühlmediumverteileinheit 20. Die Kühlmediumverteileinheit 20 verteilt das zugeleitete Kühlmedium über Leitungsanschlüsse 22 an den jeweiligen Leitungsanschluss 23 der Kühlorgane 13. Der eingangsseitige Lei- tungsanschluss 23 befindet sich an einem ersten Ende 24 des Kühlorgans 13. An einem gegenüberliegenden zweiten Ende 25 des Kühlorgans 13 ist ein Leitungsanschluss 26 angeordnet, von dem aus über die kühlmittelführenden Leitungen (Schläuche 12) das Kühlmedium an entsprechende Leitungsanschlüsse 27 der Kühlmediumverteileinheit 20 zurückgeleitet wird. Das von den jeweiligen Kühlorganen 13 kommende Kühlmedium sammelt sich in einer Ausgangskammer 28 der Kühlmediumverteileinheit 20, von wo aus es über einen ausgangsseitigen Leitungsanschluss 29 über nicht dargestellte Leitungen an das externe Kühlgerät weitergeleitet wird. Im Betrieb der Prüfvorrichtung erfolgt ein kontinuierliches Umwälzen des Kühlmediums zwischen dem externen Kühlgerät auf der einen Seite und den Kühlorganen 13 auf der anderen Seite.
Die Kühlmediumverteileinheit 20 weist ferner eine Eingangskammer 30 auf, in der das über den eingangsseitigen Leitungsanschluss 21 zugeführte Kühlmedium eingeleitet und über die mehreren Leitungsanschlüsse 22 zu den jeweiligen Kühlorganen 13 verteilt wird. Aus Figur 5 ist ersichtlich, dass über die Leitungsanschlüsse 22 sechs Zulaufleitungen an die Kühlorgane 13 und über die Leitungsanschlüsse 27 sechs Rücklaufleitungen zu den sechs Kühlorganen 13 verlaufen, wobei jedes Kühlorgan 13 über den eingangsseitigen Leitungsanschluss 23 und dem Schlauch mit einem der Leitungsanschlüsse 22 und über den weiteren Leitungsanschluss 26 über den Schlauch 12 mit einem der Leitungsanschlüsse 27 der Kühlmediumverteileinheit 20 verbunden ist.
Die Kühlmediumverteileinheit 20 weist eine Grundplatte 31 mit der ausgeformten Eingangskammer 30 und der ausgeformten Ausgangskammer 28 auf. Die Grundplatte 31 ist über Befestigungsmittel mit einer Abdeckplatte 32 verbunden, die den Leitungsanschluss 21 für die von dem externen Kühlgerät kommende Zulaufleitung sowie die Leitungsanschlüsse 22 für die zu den Kühlorganen 13 führenden Zulaufleitungen 12 auf einer Eingangsseite und die den Leitungsanschluss 29 für die zu dem externen Kühlgerät verlaufende Rücklaufleitung sowie die Leitungsanschlüsse 27 für die von den jeweiligen Kühlorganen 13 verlaufenden Rücklauf leitungen 12 auf einer Ausgangsseite aufweist. Aus den Figuren 4a und 4b ist ersichtlich, dass die Eingangskammer 30 und die Ausgangskammer 28 jeweils durch gegenüberliegende Flachseiten 38 der Grundplatte 31 und einer Flachseite 39 der Abdeckplatte 32 und einer
Schmalseite 33 begrenzt ist. Die Schmalseite 33 ist in der Platte 31 integriert, wobei sich im Bereich der Eingangs-und Ausgangskammer topfförmige Ausnehmungen bilden. Die Schmalseiten 33 der Eingangskammer 30 und der Ausgangskammer 28 weisen jeweils sich in vertikaler Richtung nach oben verjüngende Wände 34 und 35 auf, die in einer Höhe zusammenlaufen, in der ein der Eingangskammer zugeordneter Anschluss 36 und ein der Ausgangskammer 28 zugeordneter Anschluss 37 für ein Entlüftungsventil an der Abdeckplatte 32 vorgesehen ist.
Wie insbesondere aus Figur 5 ersichtlich ist, sind die Anschlüsse 36, 37 für die entsprechenden Entlüftungsventile sind oberhalb der zu der Eingangskammer 30 und der Ausgangskammer 28 führenden Leitungsanschlüsse 21 , 29 sowie 22 und 27 angeordnet, sodass bei einer Inbetriebnahme der Prüfvorrichtung oder einem Wechsel des Kühlmediums auf einfache und schnelle Weise Luft aus dem Leitungssystem entweichen kann.
Das Kühlorgan 13 ist hohlförmig ausgebildet und weist eine obere Flachseite 40 und eine nicht dargestellte untere Flachseite 40 auf, die plattenförmig ausgebildet ist und mit der oberen Flachseite 40 fest verbunden ist zur Bildung einer Kammer 41 . Die obere Flachseite 40 weist einen umlaufenden Rand 42 auf, der Bohrungen 43 zur Befestigung mit der nicht dargestellten unteren Flachseite aufweist. Ferner begrenzt der Rand 42 die Kammer 41 von der Seite her. Von einer in vertikaler Richtung oberen Seite wird die Kammer 41 durch die obere Flachseite 40 begrenzt, die aus zwei Dachsegmenten 44 besteht, die sich dachförmig unter einem geneigten Winkel zu einer obersten Kante 45 der oberen Flachseite 40 hin erheben. Die Dachsegmente 44 erstre- cken sich unter einem spitzen Winkel zu einer Ebene, die durch die umlaufende Randfläche 42 gebildet ist. Vorzugsweise liegt der Neigungswinkel in einem Bereich zwischen 10° und 30 °. An der oberen Kante 45 und zwar an dem ersten Ende 24 und an dem gegenüberliegenden zweiten Ende 25 des Kühlorgans 13 befinden sich die Leitungsanschlüsse 23, 26 für die Zulaufiei- tung und die Rücklaufleitung des Kühlmediums. Die Leitungsanschlüsse 23, 26 befinden sich somit an einem höchsten Punkt der Kammer 41 , sodass bei Inbetriebnahme oder bei Wechsel des Kühlmediums relativ schnell und einfach Luft in die Leitungen 12 entweichen kann. Nachdem die Luft über die Schläuche 12 in die Eingangskammer 30 bzw. in die Ausgangskammer 28 geleitet worden ist, kann sie über die an den Anschlüssen 36, 37 angeordneten Entlüftungsventilen aus dem Kühlmediumkreislauf entfernt werden. Es ist ersichtlich, dass die Entlüftung an den höchsten Punkten der jeweiligen Kammer 41 bzw. der Eingangskammer 30 bzw. der Ausgangskammer 28 erfolgt.
Alternativ kann bei größerer Dimensionierung der Kammern der Anschluss auch in einer horizontalen Ebene angeordnet sein, die den höchsten Punkt der Kammer schneidet. Auf diese Weise ist stets gewährleistet, dass Luft mit geringem Aufwand aus dem Kühlmittelkreislauf entfernt werden kann.
Die Wände der Kammern enden an einem höchsten Punkt der Kammer, in dessen horizontaler Ebene der Anschluss angeordnet ist.
Nach einer alternativen Ausführungsform der Erfindung kann die Kammer lediglich eine einzige unter einem Winkel in vertikaler Richtung nach oben verlaufende Wand aufweisen, dessen Ende mit einem oberen Ende einer vertikalen Wand zusammenfällt. Wenn im Bereich dieses oberen Endes der Anschluss vorgesehen ist, kann ebenfalls die , Luft leicht abgeführt werden.

Claims

Patentansprüche:
1 . Vorrichtung zum Prüfen von Materialeigenschaften von Materialproben, insbesondere zum Prüfen von Ausgasungen flüchtiger Bestandteile einer Materialprobe,
- mit einem Gehäuse enthaltend eine Anzahl von Ausnehmungen zur Aufnahme von einem Materialprobe enthaltenen Probebehälter,
- mit einer Heizeinrichtung zur Erwärmung der Materialprobe auf eine vorgegebene Prüftemperatur,
- mit einer den Probebehälter abdeckenden und auf eine Kühltemperatur gekühlten Prüffiäche, so dass sich an der Prüffläche eine Ablagerung der Materialprobe bildet, dadurch gekennzeichnet, dass die Heizeinrichtung (3) einen aufheizbaren massiven oder modularen Metallbiock (4) aufweist, der die Ausnehmung (6) mit Ausnahme eines Öffnungsbereichs vollständig umgibt.
2. Prüfvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der Metallblock (4) aus einem aluminiumbasierten Material besteht.
3. Prüfvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Metallblock (4) quaderförmig ausgebildet ist.
4. Prüfvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich an eine Grundseite (8) des Metallblocks (4) eine elektrisch betreibbare Heizqueile (9) unter flächiger Anlage an der Grundseite (8) anschließt.
5. Prüfvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Heizquelle (9) als ein Flächenheizelement ausgebildet ist oder dass der Metallblock (4) oder die Heizquelle (9) Sacklöcher zur Aufnahme von Heizpatronen aufweist oder dass Flächenheizungen an oder im Metallblock integriert sind.
6. Prüfvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Metallblock (4) als ein durch Gießen hergestelltes Gussteil oder als ein durch mehrere metallische Segmentteile zusammengesetzter Körper ausgebildet ist.
7. Prüfvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die gekühlte Prüffläche (1 1) mit einem Kühlmedium durchströmten Kühlorgan (13) gekoppelt ist zur Kühlung derselben auf eine vorgegebene Temperatur.
8. Prüfvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Heizeinrichtung (3) eine elektrische Steuereinheit (10) aufweist zur Ansteuerung oder Regelung der Heizplatte (9) auf eine vorgegebene Temperatur.
9. Prüfvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Ausnehmung (6) als ein Sackloch ausgebildet ist mit einem auf den Probenbehälter angepassten Durchmesser, so dass der Probenbehälter (7) unter Spielpassung in dem Sackloch gelagert ist.
10. Prüfvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Messeinrichtung zur quantitativen oder qualitativen Untersuchung der Ablagerung vorgesehen ist, die insbesondere zur Bestimmung des Foggingverhaltens der Materialprobe Mittel zur gravimetrischen oder reflektometrischen Messung der Ablagerung aufweist.
1 1 . Prüfvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Kühleinrichtung ein externes Kühlgerät umfasst, das über kühlmediumführende Leitungen mit einer Kühlmediumvertei- leinheit (20) verbunden ist, dass die Kühlmediumverteileinheit (20) jeweils über eine Zulaufleitung (12) und eine Rücklaufleitung (12) mit den Kühlorganen (13) gekoppelt ist, wobei in der Kühlmediumverteileinheit (20) und/oder in den Kühlorganen (13) jeweils eine Kammer (28, 30, 41 ) vorgesehen ist, die zumindest eine geneigte Wand (34,
35, 44) aufweist, an deren oberen Ende (45) ein Anschluss (23, 26,
36, 37) für eine Leitung (12) oder ein Entlüftungsventil angeordnet ist.
12. Prüfvorrichtung nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der Anschluss (23, 26, 36, 37) an einem in vertikaler Richtung höchsten Punkt der Kammer (28, 30, 41 ) oder in einer den höchsten Punkt der Kammer(28, 30, 41 ) schneidenden horizontalen Ebene angeordnet ist.
13. Prüfvorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Kühlorgan (13) hohlförmig ausgebildet ist mit einer oberen Flachseite (40) und mit einpr unteren Flachseite, die über einen schmalseitigen Rand (42) miteinander verbunden sind, wobei innerhalb des Kühlorgans (13) die Kammer (41 ) angeordnet ist, und dass die obere Flachseite eine Anzahl von sich dachförmig von der unteren Flachseite erhebende Dachsegmente (44) aufweist, an deren obersten Kante (45) der Leitungsanschluss (23, 26) für die Zulaufleitung und die Rücklaufleitung angeordnet sind.
14. Prüfvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Kühlmediumverteileinheit (20) eine Grundplatte (31 ), eine Abdeckplatte (32) und Schmalseiten (33) aufweist zur Bildung einer Eingangskammer (30) für den Zulauf des von dem Kühlgerät kommenden Kühlmediums und zur Bildung einer Ausgangskammer für den Rücklauf des von den Kühlorganen (13) kommenden Kühlmediums, wobei die Abdeckplatte (32) der Eingangskammer (30) zugeordnete Leitungsanschlüsse (21 , 22) für die zu den Kühlorganen (13) führenden Zulaufleitung (12) und für die von den Kühlgerät kommenden Zulaufleitung sowie der Ausgangskammer zugeordnete Leitungsanschlüsse (27, 29) für die zu den Kühlorganen führenden Rücklaufleitungen und für die zu dem Kühlgerät verlaufenden Rücklaufleitung aufweist und dass sich an den Schmalseiten (33) der Eingangskammer (30) und der Ausgangskammer (28) in vertikaler Richtung nach oben verjüngende Wände (34, 35) vorgesehen sind, die in Höhe eines Anschlusses für das Entlüftungsventil zusammenlaufen.
15. Prüfvorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Anschluss (36, 37) für das Entlüftungsventil in vertikaler Richtung oberhalb der Leitungsanschlüsse (21 , 22, 27, 29) der Kühlmediumverteileinheit (20) angeordnet ist.
PCT/DE2014/100060 2013-03-21 2014-02-17 Prüfvorrichtung WO2014146641A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK14720884.7T DK2976637T3 (da) 2013-03-21 2014-02-17 Prøveapparat
ES14720884T ES2945638T3 (es) 2013-03-21 2014-02-17 Dispositivo de prueba
EP14720884.7A EP2976637B1 (de) 2013-03-21 2014-02-17 Prüfvorrichtung
PL14720884.7T PL2976637T3 (pl) 2013-03-21 2014-02-17 Urządzenie badawcze

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202013101214U DE202013101214U1 (de) 2013-03-21 2013-03-21 Prüfvorrichtung
DE202013101214.9 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014146641A1 true WO2014146641A1 (de) 2014-09-25

Family

ID=48465346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/100060 WO2014146641A1 (de) 2013-03-21 2014-02-17 Prüfvorrichtung

Country Status (8)

Country Link
EP (1) EP2976637B1 (de)
DE (1) DE202013101214U1 (de)
DK (1) DK2976637T3 (de)
ES (1) ES2945638T3 (de)
HU (1) HUE061814T2 (de)
PL (1) PL2976637T3 (de)
PT (1) PT2976637T (de)
WO (1) WO2014146641A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499458B2 (en) 2018-05-07 2019-12-03 Fremon Scientific, Inc. Thawing biological substances
US10576190B2 (en) 2014-08-08 2020-03-03 Fremon Scientific, Inc. Smart bag used in sensing physiological and/or physical parameters of bags containing biological substance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH711107A1 (de) * 2015-05-20 2016-11-30 Glas Trösch Holding AG Kopplungsvorrichtung für die thermogravimetrische Analyse.
CN109323916B (zh) * 2018-11-17 2024-01-26 金华职业技术学院 一种气相沉积装置
DE102018132624B4 (de) * 2018-12-18 2020-09-03 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Vorrichtung zur Erfassung einer Längenänderung von Probekörpern bei hoher Temperatur und hoher Luftfeuchtigkeit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5229580A (en) * 1992-06-09 1993-07-20 Automated Biosystems, Inc. Block for holding multiple sample tubes for automatic temperature control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399840A (en) * 1994-03-09 1995-03-21 Lab-Line Instruments, Inc. Block heating system with thermistor probe
WO2010035063A1 (en) * 2008-09-23 2010-04-01 Koninklijke Philips Electronics N.V. Thermocycling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5229580A (en) * 1992-06-09 1993-07-20 Automated Biosystems, Inc. Block for holding multiple sample tubes for automatic temperature control

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"DIN 75201:2011-11 Bestimmung des Foggingverhaltens von Werkstoffen der Kraftfahrzeug-Innenausstattung. [Determination of the fogging characteristics of trim materials in the interior of automobiles]", vol. DIN 75201:2011-11, 1 November 2011 (2011-11-01), pages 1 - 22, XP008169716, Retrieved from the Internet <URL:http://www.beuth.de/en/standard/din-75201/144385173> *
"Temperature Control Unit for the Fogging Test acc. to DIN 75201 and ISO 6452/2000", 1 September 2001 (2001-09-01), XP055121158, Retrieved from the Internet <URL:http://www.nor.com.pt/images/upload/THERMO_ELECTRON_Fogging-en.pdf> [retrieved on 20140602] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10576190B2 (en) 2014-08-08 2020-03-03 Fremon Scientific, Inc. Smart bag used in sensing physiological and/or physical parameters of bags containing biological substance
US10722623B2 (en) 2014-08-08 2020-07-28 Fremon Scientific, Inc. Smart bag used in sensing physiological and/or physical parameters of bags containing biological substance
US10499458B2 (en) 2018-05-07 2019-12-03 Fremon Scientific, Inc. Thawing biological substances
US10732083B2 (en) 2018-05-07 2020-08-04 Fremon Scientific, Inc. Thawing biological substances
US10816446B2 (en) 2018-05-07 2020-10-27 Fremon Scientific, Inc. Thawing biological substances
US10837885B2 (en) 2018-05-07 2020-11-17 Fremon Scientific, Inc. Thawing biological substances
US10866173B2 (en) 2018-05-07 2020-12-15 Fremon Scientific, Inc. Thawing biological substances
US11448575B2 (en) 2018-05-07 2022-09-20 Fremon Scientific, Inc. Thawing biological substances

Also Published As

Publication number Publication date
HUE061814T2 (hu) 2023-08-28
DE202013101214U1 (de) 2013-04-22
EP2976637B1 (de) 2023-04-05
DK2976637T3 (da) 2023-06-26
EP2976637A1 (de) 2016-01-27
ES2945638T3 (es) 2023-07-05
PT2976637T (pt) 2023-05-29
PL2976637T3 (pl) 2023-08-21

Similar Documents

Publication Publication Date Title
EP2976637B1 (de) Prüfvorrichtung
EP0592654B2 (de) Vorrichtung zur verdampfungsbehandlung von vorzugsweise flüssigen stoffen, insbesondere reagenzstoffen, oder zum aufbereiten oder analysieren von probenmaterial
DE4143541C2 (de) Vorrichtung zum Extrahieren von Proben mittels eines Lösungsmittels bei erhöhter Temperatur
DE102011084000A1 (de) Vorrichtung zum Führen eines Kühlfluids und Kühlsystem zum Kühlen einer elektrischen Komponente
WO2015007360A1 (de) Aufnahmevorrichtung zur aufnahme wenigstens einer energiespeicherkomponente
DE112017004226T5 (de) Kompakte Thermozyklusvorrichtungund System umfassend die Thermozyklusvorrichtung
WO2015007361A1 (de) Aufnahmevorrichtung zur aufnahme wenigstens einer energiespeicherkomponente
DE102005003286B4 (de) Behälter für eine Vorrichtung zur automatisierten Gefrier- oder Tieftemperatursubstitution
DE19848558A1 (de) Verfahren und Vorrichtung zum Trocknen von Materialien
WO2007057432A1 (de) Probenwehmer mit einer separaten temperiereinheit
EP3315872A2 (de) Warmwasserspeicher und heizflansch für einen warmwasserspeicher
DE102017110379B4 (de) Verfahren und Vorrichtung zum Setzen eines Füllstriches auf einem Gefäß
WO1991006369A2 (de) Temperierkammer, insbesondere für die temperierung des inhalts einer mikrotitrationsplatte
DE4319498A1 (de) Rotationsverdampfer
DE10301240B4 (de) Reaktionskammersystem zur Bearbeitung von Proben
DE102015121049A1 (de) System zur Trocknung und/oder zur Wassergehaltsbestimmung von einer Probemenge Schrott, Verwendung des Systems und Verfahren
EP1150773B1 (de) Verdampferanordung mit einer probengefäss-haltevorrichtung und verfahren zum verdampfen einer probe
DE102016123595B4 (de) Gießofen für den Niederdruckguss
DE202022105493U1 (de) Abscheidungsstation sowie Vorrichtung zur Erzeugung von Kontaktmetallisierungen
DE4037955A1 (de) Vorrichtung zur aufnahme von probenbehaeltnissen
DE202009016079U1 (de) Anordnung zur Messung der Viskosität einer gleichmäßig temperierten Flüssigkeit
DE102009038174B4 (de) Reaktionsvorrichtung zur Sublimation und/oder Thermodesorption und/oder Destillation und/oder Extraktion von Stoffen
DE19946427C2 (de) Verfahren und Vorrichtung zum definierten gleichzeitigen Wärmebehandeln von mehreren Probenbehältern
DE102017006683A1 (de) Verschlussdeckel einer Batteriezelle
DE102012013126A1 (de) Vorrichtung zur biochemischen Markierung von Geweben und Zellkulturen und deren Verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14720884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014720884

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120140015350

Country of ref document: DE