WO2014146619A1 - 一种模仿全息3d场景的显示装置和视觉显示方法 - Google Patents
一种模仿全息3d场景的显示装置和视觉显示方法 Download PDFInfo
- Publication number
- WO2014146619A1 WO2014146619A1 PCT/CN2014/075951 CN2014075951W WO2014146619A1 WO 2014146619 A1 WO2014146619 A1 WO 2014146619A1 CN 2014075951 W CN2014075951 W CN 2014075951W WO 2014146619 A1 WO2014146619 A1 WO 2014146619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scene
- view
- human eye
- display screen
- camera
- Prior art date
Links
- 230000000007 visual effect Effects 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000009877 rendering Methods 0.000 claims abstract description 61
- 230000009977 dual effect Effects 0.000 claims abstract description 16
- 239000011521 glass Substances 0.000 claims description 17
- 239000004973 liquid crystal related substance Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0866—Digital holographic imaging, i.e. synthesizing holobjects from holograms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/31—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/366—Image reproducers using viewer tracking
- H04N13/383—Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/0088—Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
Definitions
- the present invention relates to the field of display technologies, and in particular, to a display device and a visual display method that mimic a holographic 3D scene.
- the existing multi-view 3D TV and multi-view process painting can view multi-view television programs in multiple narrow points within a certain narrow range.
- the disadvantage is that the number of visual channels has its limit, generally 8 viewpoints (or slightly More), and when shooting, take a stereo camera with 8 cameras and restore it.
- the present invention provides a display device and a visual display method that mimic a holographic 3D scene.
- the invention mainly provides a display device and a visual display method for simulating a holographic 3D scene, and uses the front 3D dual camera to capture the 3D position information of the human eye, and uses the 3D position information of the human eye to calculate the spatial coordinates of the human eye, and further
- the spatial coordinate control 3D scene generation unit is used to render and acquire the corresponding left-view 3D scene and the right-view 3D scene, and the working angle of the electronic grating is controlled by the spatial coordinates, so that the left-view 3D scene is incident into the left eye of the person. And realize that the right-view 3D scene is incident into the right eye of the person.
- a technical solution adopted by the present invention is to provide a display device that simulates a holographic 3D scene, including:
- the first front camera is disposed at an upper left corner of the display screen
- the second front camera is disposed at an upper right corner of the display screen
- the first front camera and The second front camera is used to capture 3D position information of the human eye
- the 3D human eye tracking algorithm processing unit is electrically connected to the first front camera and the second front camera, and is configured to generate a first 3D scene corresponding to the left and right visual channels according to the human eye 3D position information generation control 3D scene generating unit. a signal and a second signal that controls the working angle of the electronic grating;
- the 3D scene generating unit is electrically connected to the display screen, and configured to receive the first signal and render and acquire a corresponding left-view 3D scene and a right-view 3D scene according to the first signal, and view the left-view 3D scene and the right-view
- the 3D scene is sent to the display for display;
- the electronic grating is for receiving the second signal and adjusting the working angle according to the second signal such that the left-view 3D scene is incident into the left eye of the person, and the right-view 3D scene is incident into the right eye of the person.
- the first front camera is configured to acquire a left eye format picture of a human eye position
- the second camera is configured to acquire a right eye format picture of a human eye position
- the 3D human eye tracking algorithm processing unit is configured according to a left eye.
- the difference between the position of the human eye in the format picture and the right-eye format picture calculates the angle ⁇ between the projection of the human eye center point and the display center point on the XY plane of the spatial rectangular coordinate system O-XYZ and the Y-axis and the The angle between the center point of the human eye and the center point of the display screen and the projection ⁇ ,
- the origin O of the spatial Cartesian coordinate system O-XYZ is located at a center point of the display screen, and the X-axis of the spatial Cartesian coordinate system O-XYZ is parallel to the center point of the left and right opposite sides of the display screen, The Y-axis of the spatial Cartesian coordinate system O-XYZ is perpendicular to the center point of the left and right opposite sides of the display screen.
- the first signal is a signal containing parameters ⁇ and ⁇
- the second signal is a signal containing ⁇
- the 3D scene generation unit controls the OpenGL3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then controls the OpenGL3D scene rendering camera to move left to x distance to render and acquire the left view 3D scene, and then causes the OpenGL3D scene rendering camera to move to the right. Render and acquire a right-view 3D scene at 2x distance,
- the parameter x is a preset parameter related to the depth of field.
- the 3D scene generation unit controls the DirectX3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then controls the DirectX3D scene rendering camera to move left x distance to render and acquire the left view 3D scene, and then causes the DirectX3D scene to render the camera right. Move 2x distance to render and get the right view 3D scene,
- the parameter x is a preset parameter related to the depth of field.
- the electronic grating comprises: a first glass plate, a second glass plate, a liquid crystal layer and a control unit, wherein the first surface of the first glass plate is provided with a first polarizing plate, and the first glass plate faces away from the first polarizing plate
- the second surface is provided with a first ITO conductive layer
- the first surface of the second glass plate is provided with a second polarizing plate, the polarizing direction of the first polarizing plate and the second polarizing plate is perpendicular, and the second glass plate faces away from the second polarizing
- the second surface of the plate is provided with a second ITO conductive layer
- the second ITO conductive layer comprises a plurality of equally spaced ITO electrodes and an insulating black strip disposed between adjacent ITO electrodes
- the liquid crystal layer is firstly disposed
- the control unit is configured to control the on/off of the alternating voltage between the first ITO conductive layer and the respective ITO electrodes according to the
- the display device is preferably a computer.
- the display device is preferably a mobile phone.
- another technical solution provided by the present invention is to provide a visual display method for simulating a holographic 3D scene, including:
- the 3D human eye tracking algorithm processing unit calculates the spatial coordinates of the human eye according to the 3D position information of the human eye
- the step of calculating, by using the 3D human eye tracking algorithm processing unit, the spatial coordinates of the human eye according to the 3D position information of the human eye includes:
- the 3D human eye tracking algorithm processing unit calculates the line connecting the human eye center point and the display center point in the XY plane of the space rectangular coordinate system O-XYZ according to the difference of the human eye 3D position information captured by the front 3D dual camera.
- the origin O of the spatial Cartesian coordinate system O-XYZ is located at a center point of the display screen, and the X-axis of the spatial Cartesian coordinate system O-XYZ is parallel to the center point of the left and right opposite sides of the display screen, The Y-axis of the spatial Cartesian coordinate system O-XYZ is perpendicular to the center point of the left and right opposite sides of the display screen.
- the display includes:
- the 3D scene generation unit is used to control the OpenGL3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then control the OpenGL3D scene rendering camera to move left x distance rendering and obtain the left view 3D scene. Then make the OpenGL3D scene rendering camera move 2x distance to the right and get the right-view 3D scene.
- the parameter x is a preset parameter related to the depth of field.
- the display includes:
- the 3D scene generation unit is used to control the DirectX3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then control the DirectX3D scene rendering camera to move left x distance to render and obtain the left view 3D scene, and then make the DirectX3D scene rendering camera right shift 2x distance rendering And get the right view 3D scene,
- the parameter x is a preset parameter related to the depth of field.
- the invention has the beneficial effects that the display device and the visual display method for simulating the holographic 3D scene provided by the present invention capture the 3D position information of the human eye through the front 3D dual camera and according to the 3D position of the human eye, different from the prior art.
- the information calculates the spatial coordinates of the human eye, and then uses the human eye space coordinate control 3D human eye tracking algorithm processing unit to generate a control 3D scene generating unit to generate a first signal of the 3D scene corresponding to the left and right visual channels and control the electronic grating work.
- the second signal of the angle causes the left-view 3D scene to enter the person's left eye and cause the right-view 3D scene to enter the person's right eye. Therefore, the present invention can achieve the same effect of seeing different stereoscopic images from different angles as in reality, and can realize holographic display of an object or a scene.
- FIG. 1 is a schematic view showing the working principle of a display device emulating a holographic 3D scene of the present invention
- 2A-2B are schematic structural views of a preferred embodiment of a display device for a holographic 3D scene of the present invention.
- FIG. 3 is a flow chart showing a visual display method of a holographic 3D scene of the present invention.
- FIG. 1 is a schematic diagram showing the working principle of a display device emulating a holographic 3D scene according to the present invention.
- the display device emulating the holographic 3D scene of the present invention comprises: a display screen 11, a front 3D dual camera 12 (including a first front camera and a second front camera), and a 3D human eye tracking algorithm processing unit. 13. 3D scene generation unit 14 and electronic grating 15.
- the display screen 11 described in this embodiment may be an LCD display screen or a TFT display screen, which is not limited thereto.
- FIG. 2A is a schematic structural diagram of a first preferred embodiment of a display device for a holographic 3D scene according to the present invention.
- the first front camera is disposed at the upper left corner of the display screen 11.
- the second front camera is disposed in an upper right corner of the display screen 11, the first front camera and the second front camera are used to capture human eye 3D position information; the 3D human eye tracking algorithm processing unit 13 and the
- the first front camera and the second front camera are electrically connected, and are configured to generate a first signal of the 3D scene corresponding to the left and right visual channels and a working angle of the control electronic grating 15 according to the human eye 3D position information generation control.
- the 3D scene generating unit 14 is electrically connected to the display screen 11 for receiving the first signal and rendering and acquiring a corresponding left-view 3D scene and a right-view 3D scene according to the first signal, and the left-viewing channel
- the 3D scene and the right-view 3D scene are sent to the display screen 11 for display
- the electronic grating 15 is for receiving the second signal and adjusting the working angle according to the second signal, so that the left-view 3D scene is incident into the left eye of the person and makes the right Vision 3D scene incident into the human eye.
- the first front camera is used to acquire a left eye format picture of a human eye position
- the second camera is used to acquire a right eye format picture of a human eye position
- the 3D human eye tracking is performed.
- the algorithm processing unit calculates the projection and the Y-axis of the line connecting the human eye center point and the display center point O on the XY plane of the space rectangular coordinate system O-XYZ according to the difference of the human eye position in the left-eye format picture and the right-eye format picture.
- the origin O of the spatial rectangular coordinate system O-XYZ is located at a center point of the display screen, and the X-axis of the spatial rectangular coordinate system O-XYZ is parallel to the center point of the left and right opposite sides of the display screen 11, the space The Y-axis of the Cartesian coordinate system O-XYZ is perpendicular to the center point of the left and right opposite sides of the display screen 11.
- the first signal is a signal containing parameters ⁇ and ⁇
- the second signal is a signal containing ⁇
- the 3D scene generation unit controls the OpenGL3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then controls the OpenGL3D scene rendering camera to move left to x distance rendering and acquire the left view 3D scene.
- the OpenGL3D scene rendering camera is then moved to the right by 2x distance rendering and the right view 3D scene is acquired, wherein the parameter x is a preset parameter related to the depth of field.
- FIG. 2B is a schematic structural view of a second preferred embodiment of a display device for a holographic 3D scene of the present invention.
- 2B is different from FIG. 2A in that the display screen of FIG. 2A is a vertical screen display, and the corresponding front 3D dual cameras are preferably respectively disposed at the upper left corner and the upper right corner of the vertical display screen 11, and the display screen of FIG. 2B.
- the corresponding front 3D dual cameras are preferably respectively disposed at the upper right corner and the lower right corner of the display screen 11, and the spatial rectangular coordinate system O-XYZ is adaptively adjusted according to the display direction of the display screen.
- the spatial Cartesian coordinate system O-XYZ can be established according to actual needs, and is not limited to the above embodiments.
- the 3D scene generation unit controls the DirectX3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then controls the DirectX3D scene rendering camera to move left x distance rendering and acquire the left view 3D scene. Then, the DirectX3D scene rendering camera is moved to the right by 2x distance rendering and the right-view 3D scene is acquired, wherein the parameter x is a preset parameter related to the depth of field.
- the 3D scene generating unit 14 does not exclude the scene rendering function of the OpenGL3D scene rendering camera and the DirectX3D scene rendering camera by using other types of scene rendering cameras, which is not limited by the present invention.
- the electronic grating 15 includes: a first glass plate (not shown), a second glass plate (not shown), a liquid crystal layer (not labeled), and a control unit 153, the first surface of the first glass plate a first polarizing plate (not shown) is disposed, a first surface of the first glass plate facing away from the first polarizing plate is provided with a first ITO conductive layer 151, and a first surface of the second glass plate is provided with a second polarizing plate ( The second polarizing plate and the second polarizing plate are perpendicular to the polarizing direction, and the second glass plate is disposed opposite to the second surface of the second polarizing plate with a second ITO conductive layer 152, the second ITO conductive layer.
- the 152 includes a plurality of equally spaced ITO electrodes and an insulating black strip disposed between adjacent ITO electrodes.
- the liquid crystal layer is interposed between the first ITO conductive layer 151 and the second ITO conductive layer 152, and the control unit is configured to The second signal controls the on/off of the alternating voltage between the first ITO conductive layer 151 and the respective ITO electrodes, so that the position of the light and dark stripes of the grating is adaptively changed to adapt to the position of the human eye, so that the left view 3D scene displayed by the display screen 11 Injecting into the left eye of the person via the electronic grating 15 The right-view 3D scene displayed with the display screen 11 is incident into the right eye of the person via the electronic grating 15.
- the positions of the first ITO conductive layer 151 and the second ITO conductive layer 152 may be interchanged, and are also within the scope of the present invention.
- a preferred embodiment of the display device of the holographic 3D scene of the present invention is a computer.
- Another preferred embodiment provided by the present invention is a mobile phone.
- the display device of the holographic 3D scene may also be For other display devices.
- FIG. 3 is a schematic flow chart of a visual display method for a holographic 3D scene according to the present invention, including:
- step S2 comprises:
- the 3D human eye tracking algorithm processing unit calculates the line connecting the human eye center point and the display center point in the XY plane of the space rectangular coordinate system O-XYZ according to the difference of the human eye 3D position information captured by the front 3D dual camera.
- the origin O of the spatial Cartesian coordinate system O-XYZ is located at a center point of the display screen, and the X-axis of the spatial Cartesian coordinate system O-XYZ is parallel to the center point of the left and right opposite sides of the display screen, The Y-axis of the spatial Cartesian coordinate system O-XYZ is perpendicular to the center point of the left and right opposite sides of the display screen.
- step S3 includes:
- the 3D scene generation unit is used to control the OpenGL3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then control the OpenGL3D scene rendering camera to move left x distance rendering and obtain the left view 3D scene. Then make the OpenGL3D scene rendering camera move 2x distance to the right and get the right-view 3D scene.
- the parameter x is a preset parameter related to the depth of field.
- step S4 is a preferred embodiment of the present invention.
- the 3D scene generation unit is used to control the DirectX3D scene rendering camera to move to the position corresponding to the parameters ⁇ and ⁇ , and then control the DirectX3D scene rendering camera to move left x distance to render and obtain the left view 3D scene, and then make the DirectX3D scene rendering camera right shift 2x distance rendering And get the right view 3D scene,
- the parameter x is a preset parameter related to the depth of field.
- the camera in step S3, may be rendered by other scenes to complete the functions of the OpenGL3D scene rendering camera and the DirectX3D scene rendering camera, which is not limited by the present invention.
- the display screen is a vertical screen display
- the corresponding front 3D dual cameras are respectively disposed at the upper left corner and the upper right corner of the vertical display screen
- the X axis of -XYZ is parallel to the center point of the left and right sides of the display screen
- the Y axis of the space rectangular coordinate system O-XYZ is perpendicular to the center point of the left and right sides of the display screen.
- the display screen is a horizontal screen display
- the corresponding front 3D dual cameras are respectively disposed at an upper right corner and a lower right corner of the horizontal display screen
- the X axis of the -XYZ is parallel to the center point of the upper and lower sides of the display screen
- the Y axis of the space rectangular coordinate system O-XYZ is perpendicular to the center point of the upper and lower sides of the display screen. It is of course possible to set the positions of the first front camera and the second front camera to other positions, which may be determined according to a specific application, which is not limited by the present invention.
- the beneficial effects of the present invention are: different from the prior art, the display device and the visual display method for simulating a holographic 3D scene provided by the present invention capture the 3D position information of the human eye through the front 3D dual camera, and according to The human eye 3D position information calculates a spatial coordinate of the human eye, and then uses the human eye space coordinate control 3D human eye tracking algorithm processing unit to generate a first signal for controlling the 3D scene generating unit to generate a 3D scene corresponding to the left and right visual channels.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
Description
Claims (12)
- 一种模仿全息3D场景的显示装置,所述显示装置包括:显示屏;第一前置摄像头和第二前置摄像头,所述第一前置摄像头设置于显示屏的左上角,所述第二前置摄像头设置于显示屏的右上角,所述第一前置摄像头和第二前置摄像头用于捕获人眼3D位置信息;3D人眼跟踪算法处理单元,与所述第一前置摄像头、第二前置摄像头电连接,用于根据人眼3D位置信息生成控制3D场景生成单元生成左右视道对应的3D场景的第一信号和控制电子光栅工作角度的第二信号;3D场景生成单元与显示屏电连接,用于接收第一信号并根据第一信号渲染并获取对应的左视道3D场景和右视道3D场景,并将所述左视道3D场景和右视道3D场景输送给显示屏进行显示;电子光栅用于接收第二信号并根据第二信号调整工作角度,使得左视道3D场景入射进入人的左眼,并使得右视道3D场景入射进入人的右眼。
- 根据权利要求1所述的显示装置,所述第一前置摄像头用于获取人眼位置的左眼格式图片,所述第二摄像头用于获取人眼位置的右眼格式图片,所述3D人眼跟踪算法处理单元根据左眼格式图片和右眼格式图片中人眼位置的差异计算出人眼中心点与显示屏中心点连线在空间直角坐标系O-XYZ的XY平面上的投影与Y轴的夹角α以及所述人眼中心点与显示屏中心点连线与所述投影的夹角β,其中,所述空间直角坐标系O-XYZ的原点O位于显示屏的中心点,所述空间直角坐标系O-XYZ的X轴平行于所述显示屏的左右对边中心点连线,所述空间直角坐标系O-XYZ的Y轴垂直于所述显示屏的左右对边中心点连线。
- 根据权利要求2所述的显示装置,所述第一信号是包含了参数α和β的信号,所述第二信号是包含了α的信号。
- 根据权利要求3所述的显示装置,所述3D场景生成单元控制OpenGL3D场景渲染摄像头移至参数α和β对应的位置,然后控制OpenGL3D场景渲染摄像头左移x距离渲染并获取左视道3D场景,再使得OpenGL3D场景渲染摄像头右移2x距离渲染并获取右视道3D场景,其中,参数x是与景深有关的预先设置的参数。
- 根据权利要求3所述的显示装置,所述3D场景生成单元控制DirectX3D场景渲染摄像头移至参数α和β对应的位置,然后控制DirectX3D场景渲染摄像头左移x距离渲染并获取左视道3D场景,然后再使得DirectX3D场景渲染摄像头右移2x距离渲染并获取右视道3D场景,其中,参数x是与景深有关的预先设置的参数。
- 根据权利要求3所述的显示装置,所述电子光栅包括:第一玻璃板、第二玻璃板、液晶层和控制单元,第一玻璃板的第一表面设置有第一偏光板,第一玻璃板背向第一偏光板的第二表面设置有第一ITO导电层,第二玻璃板的第一表面设置有第二偏光板,第一偏光板和第二偏光板的偏光方向垂直,且第二玻璃板背向第二偏光板的第二表面设置有第二ITO导电层,所述第二ITO导电层包括多个等间隔排列的ITO电极以及设置于相邻ITO电极之间的绝缘黑条,液晶层夹设于第一ITO导电层和第二ITO导电层之间,控制单元用于根据第二信号控制第一ITO导电层与各个ITO电极之间交流电压的通/断,使得光栅的明暗条纹位置发生适应性改变适应人眼的位置,使得显示屏显示的左视道3D场景经由电子光栅入射进入人的左眼和显示屏显示的右视道3D场景经由电子光栅入射进入人的右眼。
- 根据权利要求1-6任意一项所述的显示装置,所述显示装置为电脑。
- 根据权利要求1-6任意一项所述的显示装置,所述显示装置为手机。
- 一种模仿全息3D场景的视觉显示方法,所述视觉显示方法包括:利用显示屏的前置3D双摄像头捕获人眼3D位置信息;利用3D人眼跟踪算法处理单元根据人眼3D位置信息计算人眼所处的空间坐标;根据人眼所处的空间坐标渲染并获取对应的左视道3D场景和右视道3D场景,并将所述左视道3D场景和右视道3D场景输送给显示屏进行显示;根据人眼所处的空间坐标调整电子光栅的工作角度,使得显示屏显示的左视道3D场景经电子光栅入射进入人的左眼,并使得显示屏显示的右视道3D场景经电子光栅入射进入人的右眼。
- 根据权利要求9所述的视觉显示方法,所述步骤利用3D人眼跟踪算法处理单元根据人眼3D位置信息计算人眼所处的空间坐标包括:所述3D人眼跟踪算法处理单元根据前置3D双摄像头捕获到的人眼3D位置信息的差异计算出人眼中心点与显示屏中心点连线在空间直角坐标系O-XYZ的XY平面上的投影与Y轴的夹角α以及所述人眼中心点与显示屏中心点连线与所述投影的夹角β,其中,所述空间直角坐标系O-XYZ的原点O位于显示屏的中心点,所述空间直角坐标系O-XYZ的X轴平行于所述显示屏的左右对边中心点连线,所述空间直角坐标系O-XYZ的Y轴垂直于所述显示屏的左右对边中心点连线。
- 根据权利要求9所述的视觉显示方法,所述步骤根据人眼所处的空间坐标渲染并获取对应的左视道3D场景和右视道3D场景,并将所述左视道3D场景和右视道3D场景输送给显示屏进行显示包括:利用3D场景生成单元控制OpenGL3D场景渲染摄像头移至参数α和β对应的位置,然后控制OpenGL3D场景渲染摄像头左移x距离渲染并获取左视道3D场景, 再使得OpenGL3D场景渲染摄像头右移2x距离渲染并获取右视道3D场景,其中,参数x是与景深有关的预先设置的参数。
- 根据权利要求9所述的视觉显示方法,所述步骤根据人眼所处的空间坐标渲染并获取对应的左视道3D场景和右视道3D场景,并将所述左视道3D场景和右视道3D场景输送给显示屏进行显示包括:利用3D场景生成单元控制DirectX3D场景渲染摄像头移至参数α和β对应的位置,然后控制DirectX3D场景渲染摄像头左移x距离渲染并获取左视道3D场景,再使得DirectX3D场景渲染摄像头右移2x距离渲染并获取右视道3D场景,其中,参数x是与景深有关的预先设置的参数。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015518844A JP2015528234A (ja) | 2013-03-22 | 2014-04-22 | ホログラフィーの3dシーンを模倣した表示装置及び視覚表示方法 |
EP14770997.6A EP2978217A1 (en) | 2013-03-22 | 2014-04-22 | Display device and visual display method for simulating holographic 3d scene |
KR1020157027103A KR20160042808A (ko) | 2013-03-22 | 2014-04-22 | 홀로그래픽 3d 장면을 시뮬레이팅하는 디스플레이 장치와 시각 디스플레이 방법 |
US14/415,603 US9983546B2 (en) | 2013-03-22 | 2014-04-22 | Display apparatus and visual displaying method for simulating a holographic 3D scene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310094938XA CN103248905A (zh) | 2013-03-22 | 2013-03-22 | 一种模仿全息3d场景的显示装置和视觉显示方法 |
CN201310094938.X | 2013-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014146619A1 true WO2014146619A1 (zh) | 2014-09-25 |
Family
ID=48928093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/075951 WO2014146619A1 (zh) | 2013-03-22 | 2014-04-22 | 一种模仿全息3d场景的显示装置和视觉显示方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9983546B2 (zh) |
EP (1) | EP2978217A1 (zh) |
JP (1) | JP2015528234A (zh) |
KR (1) | KR20160042808A (zh) |
CN (1) | CN103248905A (zh) |
WO (1) | WO2014146619A1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248905A (zh) | 2013-03-22 | 2013-08-14 | 深圳市云立方信息科技有限公司 | 一种模仿全息3d场景的显示装置和视觉显示方法 |
CN103595993A (zh) * | 2013-11-08 | 2014-02-19 | 深圳市奥拓电子股份有限公司 | 一种基于智能识别技术的led裸眼3d显示系统及其工作方法 |
CN103995620A (zh) * | 2013-12-02 | 2014-08-20 | 深圳市云立方信息科技有限公司 | 一种空中触控系统 |
CN104661012B (zh) * | 2014-11-28 | 2017-12-01 | 深圳市魔眼科技有限公司 | 个人全息三维显示方法及设备 |
CN104581114A (zh) * | 2014-12-03 | 2015-04-29 | 深圳市亿思达科技集团有限公司 | 基于人眼图像追踪的自适应全息显示方法及全息显示装置 |
CN104581113B (zh) * | 2014-12-03 | 2018-05-15 | 深圳市魔眼科技有限公司 | 基于观看角度的自适应全息显示方法及全息显示装置 |
CN104601974A (zh) * | 2014-12-30 | 2015-05-06 | 深圳市亿思达科技集团有限公司 | 基于人眼追踪的全息显示器及全息显示装置 |
CN104601980A (zh) * | 2014-12-30 | 2015-05-06 | 深圳市亿思达科技集团有限公司 | 基于眼镜追踪的全息显示装置、系统及方法 |
US10444972B2 (en) | 2015-11-28 | 2019-10-15 | International Business Machines Corporation | Assisting a user with efficient navigation between a selection of entries with elements of interest to the user within a stream of entries |
CN105467604B (zh) * | 2016-02-16 | 2018-01-12 | 京东方科技集团股份有限公司 | 一种3d显示装置及其驱动方法 |
EP3485322A4 (en) | 2016-07-15 | 2020-08-19 | Light Field Lab, Inc. | SELECTIVE PROPAGATION OF ENERGY IN A LUMINOUS FIELD AND HOLOGRAPHIC WAVE GUIDE NETWORKS |
CN105954992B (zh) | 2016-07-22 | 2018-10-30 | 京东方科技集团股份有限公司 | 显示系统和显示方法 |
CN106331688A (zh) * | 2016-08-23 | 2017-01-11 | 湖南拓视觉信息技术有限公司 | 基于视觉追踪技术的三维显示系统及方法 |
CN106125322A (zh) * | 2016-09-05 | 2016-11-16 | 万维云视(上海)数码科技有限公司 | 裸眼3d显示面板及裸眼3d显示装置 |
CN107172242A (zh) * | 2017-07-06 | 2017-09-15 | 重庆瑞景信息科技有限公司 | 智能手机 |
TW201919391A (zh) * | 2017-11-09 | 2019-05-16 | 英屬開曼群島商麥迪創科技股份有限公司 | 顯示系統及顯示影像的顯示方法 |
RU2686576C1 (ru) | 2017-11-30 | 2019-04-29 | Самсунг Электроникс Ко., Лтд. | Компактное устройство голографического дисплея |
JP7274682B2 (ja) | 2018-01-14 | 2023-05-17 | ライト フィールド ラボ、インコーポレイテッド | 3d環境からデータをレンダリングするためのシステムおよび方法 |
KR20200116941A (ko) | 2018-01-14 | 2020-10-13 | 라이트 필드 랩 인코포레이티드 | 정렬된 구조를 사용해 에너지 릴레이의 횡방향 에너지 편재를 위한 시스템 및 방법 |
US11163176B2 (en) | 2018-01-14 | 2021-11-02 | Light Field Lab, Inc. | Light field vision-correction device |
WO2019140398A1 (en) | 2018-01-14 | 2019-07-18 | Light Field Lab, Inc. | Holographic and diffractive optical encoding systems |
CN108182659A (zh) * | 2018-02-01 | 2018-06-19 | 周金润 | 一种基于视点跟踪、单视角立体画的裸眼3d显示技术 |
CN108881893A (zh) * | 2018-07-23 | 2018-11-23 | 上海玮舟微电子科技有限公司 | 基于人眼跟踪的裸眼3d显示方法、装置、设备和介质 |
CN109218701B (zh) * | 2018-11-13 | 2020-07-28 | 深圳市靓工创新应用科技有限公司 | 裸眼3d的显示设备、方法、装置及可读存储介质 |
CN112929642A (zh) * | 2019-12-05 | 2021-06-08 | 北京芯海视界三维科技有限公司 | 人眼追踪装置、方法及3d显示设备、方法 |
CN113947632A (zh) * | 2020-07-15 | 2022-01-18 | 北京芯海视界三维科技有限公司 | 实现目标物体定位的方法、装置及显示器件 |
CN113038116B (zh) * | 2021-03-09 | 2022-06-28 | 中国人民解放军海军航空大学航空作战勤务学院 | 一种空中加受油模拟训练视景系统 |
CN113660476A (zh) * | 2021-08-16 | 2021-11-16 | 纵深视觉科技(南京)有限责任公司 | 一种基于Web页面的立体显示系统及方法 |
CN113900273B (zh) * | 2021-10-09 | 2023-12-26 | 广东未来科技有限公司 | 裸眼3d显示方法及相关设备 |
CN114928739A (zh) * | 2022-02-11 | 2022-08-19 | 广东未来科技有限公司 | 3d显示方法、装置及存储介质 |
WO2024174050A1 (zh) * | 2023-02-20 | 2024-08-29 | 京东方科技集团股份有限公司 | 视频通信方法和装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072366A (zh) * | 2007-05-24 | 2007-11-14 | 上海大学 | 基于光场和双目视觉技术的自由立体显示系统和方法 |
CN202172467U (zh) * | 2011-06-21 | 2012-03-21 | 鼎创电子股份有限公司 | 具人眼定位的光栅随动装置的显示器 |
CN202453584U (zh) * | 2011-11-22 | 2012-09-26 | 深圳市亿思达显示科技有限公司 | 立体显示装置 |
CN102710956A (zh) * | 2012-06-04 | 2012-10-03 | 天马微电子股份有限公司 | 一种裸眼立体追踪显示方法及装置 |
CN103248905A (zh) * | 2013-03-22 | 2013-08-14 | 深圳市云立方信息科技有限公司 | 一种模仿全息3d场景的显示装置和视觉显示方法 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08106070A (ja) * | 1994-08-08 | 1996-04-23 | Sanyo Electric Co Ltd | 光シャッター及び3次元画像表示装置 |
AUPN003894A0 (en) * | 1994-12-13 | 1995-01-12 | Xenotech Research Pty Ltd | Head tracking system for stereoscopic display apparatus |
JP3459721B2 (ja) * | 1995-05-22 | 2003-10-27 | キヤノン株式会社 | 立体画像表示方法及びそれを用いた立体画像表示装置 |
JPH09127494A (ja) * | 1995-11-06 | 1997-05-16 | Sharp Corp | 液晶表示装置およびその製造方法 |
GB2337388A (en) * | 1998-05-12 | 1999-11-17 | Sharp Kk | Directional autereoscopic 3D display having directional illumination system |
US6757422B1 (en) * | 1998-11-12 | 2004-06-29 | Canon Kabushiki Kaisha | Viewpoint position detection apparatus and method, and stereoscopic image display system |
KR100399787B1 (ko) * | 2001-05-04 | 2003-09-29 | 삼성에스디아이 주식회사 | 기판과 이 기판의 제조방법 및 이 기판을 가지는 플라즈마표시장치 |
GB2405543A (en) * | 2003-08-30 | 2005-03-02 | Sharp Kk | Multiple view directional display having means for imaging parallax optic or display. |
US7623105B2 (en) * | 2003-11-21 | 2009-11-24 | Sharp Laboratories Of America, Inc. | Liquid crystal display with adaptive color |
KR100580632B1 (ko) * | 2003-12-05 | 2006-05-16 | 삼성전자주식회사 | 2차원과 3차원 영상을 선택적으로 표시할 수 있는디스플레이 |
US20050207486A1 (en) * | 2004-03-18 | 2005-09-22 | Sony Corporation | Three dimensional acquisition and visualization system for personal electronic devices |
US7433021B2 (en) * | 2004-08-10 | 2008-10-07 | Joseph Saltsman | Stereoscopic targeting, tracking and navigation device, system and method |
WO2007036936A1 (en) * | 2005-09-28 | 2007-04-05 | Mirage Innovations Ltd. | Stereoscopic binocular system, device and method |
US7451022B1 (en) * | 2006-12-28 | 2008-11-11 | Lockheed Martin Corporation | Calibration of ship attitude reference |
JP2008191569A (ja) * | 2007-02-07 | 2008-08-21 | Nano Loa Inc | 液晶デバイス |
US20100283843A1 (en) * | 2007-07-17 | 2010-11-11 | Yang Cai | Multiple resolution video network with eye tracking based control |
US8089479B2 (en) * | 2008-04-11 | 2012-01-03 | Apple Inc. | Directing camera behavior in 3-D imaging system |
JP5852956B2 (ja) * | 2009-06-23 | 2016-02-03 | シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. | 2次元及び3次元の少なくともいずれかの画像コンテンツ提示用ディスプレイに用いられる光変調デバイス |
CN102640502B (zh) * | 2009-10-14 | 2015-09-23 | 诺基亚公司 | 自动立体渲染和显示装置 |
US8976327B2 (en) * | 2010-05-05 | 2015-03-10 | 3M Innovative Properties Company | Optical shutter applicable in stereoscopic viewing glasses |
WO2012021967A1 (en) * | 2010-08-16 | 2012-02-23 | Tandemlaunch Technologies Inc. | System and method for analyzing three-dimensional (3d) media content |
US20120200676A1 (en) * | 2011-02-08 | 2012-08-09 | Microsoft Corporation | Three-Dimensional Display with Motion Parallax |
KR101270780B1 (ko) * | 2011-02-14 | 2013-06-07 | 김영대 | 가상 강의실 강의 방법 및 장치 |
CN201966999U (zh) * | 2011-03-17 | 2011-09-07 | 黑龙江省四维影像数码科技有限公司 | 三维自由立体显示手机 |
JP2012216951A (ja) * | 2011-03-31 | 2012-11-08 | Toshiba Corp | 電子機器およびインジケータの制御方法 |
JP5813434B2 (ja) * | 2011-09-22 | 2015-11-17 | 株式会社ジャパンディスプレイ | 液晶表示装置 |
US20130077154A1 (en) * | 2011-09-23 | 2013-03-28 | Milan Momcilo Popovich | Autostereoscopic display |
CN103135815B (zh) * | 2011-11-25 | 2017-02-22 | 上海天马微电子有限公司 | 内嵌触摸屏液晶显示装置及其触控驱动方法 |
ITTO20111150A1 (it) * | 2011-12-14 | 2013-06-15 | Univ Degli Studi Genova | Rappresentazione stereoscopica tridimensionale perfezionata di oggetti virtuali per un osservatore in movimento |
JP5167439B1 (ja) * | 2012-02-15 | 2013-03-21 | パナソニック株式会社 | 立体画像表示装置及び立体画像表示方法 |
WO2013121468A1 (ja) * | 2012-02-15 | 2013-08-22 | パナソニック株式会社 | 立体画像表示装置及び立体画像表示方法 |
US9786094B2 (en) * | 2012-03-19 | 2017-10-10 | Electronics For Imaging, Inc. | Method and apparatus for creating a dimensional layer for an image file |
CN102665087B (zh) * | 2012-04-24 | 2014-08-06 | 浙江工业大学 | 3d立体摄像设备的拍摄参数自动调整系统 |
KR20130140960A (ko) * | 2012-05-22 | 2013-12-26 | 엘지디스플레이 주식회사 | 액티브 리타더 역할을 하는 패널과 이의 제조 방법 및 이를 구비한 입체 영상 구현 시스템 |
US10025089B2 (en) * | 2012-10-05 | 2018-07-17 | Microsoft Technology Licensing, Llc | Backlight for viewing three-dimensional images from a display from variable viewing angles |
US20140132595A1 (en) * | 2012-11-14 | 2014-05-15 | Microsoft Corporation | In-scene real-time design of living spaces |
US20140181910A1 (en) * | 2012-12-21 | 2014-06-26 | Jim Fingal | Systems and methods for enabling parental controls based on user engagement with a media device |
US20140267772A1 (en) * | 2013-03-15 | 2014-09-18 | Novatel Inc. | Robotic total station with image-based target re-acquisition |
-
2013
- 2013-03-22 CN CN201310094938XA patent/CN103248905A/zh active Pending
-
2014
- 2014-04-22 EP EP14770997.6A patent/EP2978217A1/en not_active Withdrawn
- 2014-04-22 KR KR1020157027103A patent/KR20160042808A/ko not_active Application Discontinuation
- 2014-04-22 JP JP2015518844A patent/JP2015528234A/ja active Pending
- 2014-04-22 US US14/415,603 patent/US9983546B2/en active Active
- 2014-04-22 WO PCT/CN2014/075951 patent/WO2014146619A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072366A (zh) * | 2007-05-24 | 2007-11-14 | 上海大学 | 基于光场和双目视觉技术的自由立体显示系统和方法 |
CN202172467U (zh) * | 2011-06-21 | 2012-03-21 | 鼎创电子股份有限公司 | 具人眼定位的光栅随动装置的显示器 |
CN202453584U (zh) * | 2011-11-22 | 2012-09-26 | 深圳市亿思达显示科技有限公司 | 立体显示装置 |
CN102710956A (zh) * | 2012-06-04 | 2012-10-03 | 天马微电子股份有限公司 | 一种裸眼立体追踪显示方法及装置 |
CN103248905A (zh) * | 2013-03-22 | 2013-08-14 | 深圳市云立方信息科技有限公司 | 一种模仿全息3d场景的显示装置和视觉显示方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2978217A1 (en) | 2016-01-27 |
US9983546B2 (en) | 2018-05-29 |
CN103248905A (zh) | 2013-08-14 |
JP2015528234A (ja) | 2015-09-24 |
KR20160042808A (ko) | 2016-04-20 |
US20150227112A1 (en) | 2015-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014146619A1 (zh) | 一种模仿全息3d场景的显示装置和视觉显示方法 | |
JP7443314B2 (ja) | 3dテレプレゼンスシステム | |
CN101909219B (zh) | 一种立体显示方法及跟踪式立体显示器 | |
WO2015037796A1 (en) | Display device and method of controlling the same | |
CN101984670A (zh) | 一种立体显示方法、跟踪式立体显示器及图像处理装置 | |
WO2015081029A1 (en) | Video interaction between physical locations | |
WO2017004859A1 (zh) | 3d显示装置 | |
WO2015046684A1 (en) | Display device and control method thereof | |
WO2013174249A1 (zh) | 立体显示装置 | |
CN201114214Y (zh) | 具有立体拍照功能的手机 | |
CN103945122A (zh) | 利用云台摄像机和投影机实现虚拟窗户的方法 | |
WO2023231674A1 (zh) | 液晶光栅的驱动方法及显示装置、其显示方法 | |
CN205510302U (zh) | 一种三维立体投影仪 | |
WO2014058187A2 (ko) | 가변 초점 렌즈, 이를 이용한 디스플레이 장치 및 디스플레이 방법 | |
WO2013105794A1 (en) | 3d display apparatus and method thereof | |
WO2018018357A1 (zh) | Vr图像拍摄装置及其基于移动终端的vr图像拍摄系统 | |
CN201820070U (zh) | 立体拍摄装置 | |
CN102970498A (zh) | 菜单立体显示的显示方法及显示装置 | |
CN208092355U (zh) | 一种柱镜光栅裸眼3d显示器 | |
CN203775345U (zh) | 基于集成成像的2d-3d混合显示系统 | |
CN202512298U (zh) | 立体显示装置 | |
CN103777412A (zh) | 3d显示手机皮 | |
WO2015020423A1 (en) | Display apparatus and control method for providing a 3d image | |
CN103376558A (zh) | 立体显示装置 | |
CN103376557A (zh) | 立体显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14770997 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015518844 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014770997 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014770997 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14415603 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157027103 Country of ref document: KR Kind code of ref document: A |