WO2014146523A1 - 集成气体放电管及其制备方法 - Google Patents

集成气体放电管及其制备方法 Download PDF

Info

Publication number
WO2014146523A1
WO2014146523A1 PCT/CN2014/072010 CN2014072010W WO2014146523A1 WO 2014146523 A1 WO2014146523 A1 WO 2014146523A1 CN 2014072010 W CN2014072010 W CN 2014072010W WO 2014146523 A1 WO2014146523 A1 WO 2014146523A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cavity
discharge tube
gas discharge
layer
Prior art date
Application number
PCT/CN2014/072010
Other languages
English (en)
French (fr)
Inventor
付猛
Original Assignee
深圳市槟城电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市槟城电子有限公司 filed Critical 深圳市槟城电子有限公司
Priority to US14/779,082 priority Critical patent/US9478386B2/en
Publication of WO2014146523A1 publication Critical patent/WO2014146523A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/18Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J17/183Seals between parts of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/54Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/36Tubes with flat electrodes, e.g. disc electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps

Definitions

  • the present application relates to a discharge tube technology, and more particularly to an integrated gas discharge tube and a method of preparing the same. Background technique
  • the conventional diode gas discharge tube is composed of two metal electrodes, two solders, and a ceramic insulating tube with a metallized layer to form a discharge gap; the electrode is coated with a cathode emitting material, and the ceramic insulating tube has two or more
  • the conductive strip is triggered, as shown in FIG. 1, two metal electrodes 1, two solders 2, a ceramic insulating tube 3 with a metallization layer 32, and at least two conductive strips 31 on the ceramic insulating tube 3.
  • the preparation process of the conventional diode gas discharge tube is as follows:
  • the metal electrode is mechanically stamped from a bar or sheet, and then formed by trimming and polishing.
  • the ceramic insulating tube is formed into a slurry by ceramic particles and organic matter, or is subjected to dry pressing, and then subjected to low temperature debinding, and sintered at a high temperature of 1400 degrees. Smoothed out;
  • the metallized layer is screen printed, cured at low temperature, sintered at about 1300 degrees, and finally plated with nickel;
  • solder is smelted at a high temperature (about 1200 degrees) to form a solder alloy, and is annealed to form a bulk alloy, and the bulk alloy is rolled into a sheet and finally punched;
  • the electrode is coated with electronic powder by washing, assembled with metallized porcelain tube and solder into the mold, and then vacuum-sealed, inflated, sealed at 850 °C by high-temperature brazing, and cooled to form a semi-finished product. After aging, cleaning, plating, printing, testing, the final product is formed.
  • the conventional structure of the gas discharge tube has a poor discharge effect, and the structure is complicated, which is disadvantageous for preparation.
  • the conventional gas discharge tube has many raw material processing steps, so the raw material cost is high; the metallized ceramic needs to be sintered at a high temperature of 1000 degrees or more.
  • the solder needs to be smelted at a high temperature of 1000 degrees, and the raw material consumes high energy.
  • the product needs to be sealed at a high temperature of about 850 degrees. Three times of high-temperature sintering in the entire supply chain is not conducive to energy saving;
  • a four-terminal to ground gas discharge tube usually requires 13 components, including 5 electrodes 4, 6 solders 5, and 2 ceramic insulating tubes 6 with metallization layer 61);
  • the manufacturing process of the conventional discharge tube has many processes, and the processing precision of the raw materials is not high, which causes the parameters of the discharge tube to fluctuate greatly. Summary of the invention
  • the main object of the present application is to provide an integrated gas discharge tube which can improve the discharge effect, greatly shorten the preparation process and flow, and improve the integration degree.
  • a method for preparing an integrated gas discharge tube is provided, which is capable of mass production of the integrated gas discharge tube and is advantageous for the high integration of the integrated gas discharge tube.
  • An integrated gas discharge tube comprising an upper cover and an insulating base with a bottom surface integrating a plurality of electrodes, the insulating base having a cavity structure, the upper cover sealing with the insulating base to form a cavity, the bottom surface Dividing an inner side surface and an outer side surface, the inner side surface is integrated with at least one electrode, the outer side surface is integrated with at least two electrodes, and at least one electrode of the outer surface of the bottom surface corresponds to and is electrically connected to at least one electrode of the inner side surface .
  • the insulating base has a multi-layer structure including the bottom surface, at least one cavity layer on the upper portion of the bottom surface, and a sealing layer on the upper portion of the cavity layer, the sealing layer including brazing by high temperature A layer of solder or a metal layer that is soldered in parallel.
  • the cavity layers has at least one vertical and/or lateral conductive strip.
  • the insulating base has an integral structure including the bottom surface, a cavity integrally formed with the bottom surface, and a sealing layer on the upper portion of the cavity, the sealing layer including a solder layer brazed by high temperature Or a parallel sealed metal layer.
  • the cavity has at least one vertical and/or lateral conductive strip.
  • the upper cover is a conductive upper cover, and at least one electrode of the outer side is electrically connected to the conductive upper cover.
  • each of the electrodes integrated on the outer side surface is provided with at least one via filled with a conductive material passing through the bottom surface, and at least one electrode integrated on the outer side surface passes through the conductive material filled in the via hole and the The conductive upper covers are electrically conductive to each other.
  • the at least one electrode integrated on the outer side surface is electrically conductive to each other through a conductive material filled in the via hole and a corresponding electrode on the inner side surface.
  • the via filled with a conductive material is replaced by a conductive layer.
  • the upper cover is an insulating upper cover, and a common electrode of at least one inner side electrode is disposed at a specific position of the cavity structure of the insulating base, and at least one electrode of the outer side is shared with the outer surface
  • the electrodes are electrically connected.
  • the upper cover is an insulating upper cover, and the inner side surface is integrated with at least two electrodes, and the outer two corresponding electrodes.
  • the insulating base further includes a metal ring on an upper portion of the solder layer.
  • At least one electrode of the outer surface of the bottom surface extends to a sidewall of the insulating base.
  • a method for preparing an integrated gas discharge tube comprising: performing an arrangement of an insulating material slurry, casting a configured insulating material slurry into a green sheet; forming a conductive pillar or a conductive layer on the green sheet; Co-fired and electroplated; sealed with an upper cover and filled with an inert gas.
  • the step of generating a conductive pillar on the green sheet comprises: punching a hole in the green sheet; filling the via hole with a conductive material.
  • the step of forming a conductive layer on the green sheet is: embedding or printing a conductive material on the surface of the green sheet.
  • the embodiment of the present application further provides a gas discharge tube, comprising: a sealed cavity formed by a cover member and an insulating cavity for storing an inert gas; the inner surface of the sealed cavity is attached with at least one first electrode, The outer surface of the closed cavity is attached with at least one second electrode, and at least one of the second electrodes is electrically connected to at least one of the first electrodes.
  • the cover member is a cover member made of a conductive material, and the inner surface of the closed cavity is attached with at least one first electrode, and includes:
  • the inner surface of the insulating cavity is attached with at least one first electrode;
  • the outer surface of the closed cavity is attached with at least one second electrode, including:
  • the outer surface of the insulating cavity is attached with at least one second electrode
  • the outer surface of the insulating cavity is further attached with at least one third electrode, and the at least one third electrode and the cover member are electrically connected.
  • the at least one third electrode and the cover member are electrically connected, and the method includes:
  • the at least one third electrode and the cover member are electrically connected together by a conductive material filled in the via.
  • the at least one second electrode is electrically connected to the at least one first electrode, including:
  • the at least one second electrode is electrically connected to the at least one first electrode through a conductive material filled in the via.
  • the insulating cavity includes a sealing layer, a bottom layer, and at least one cavity layer between the sealing layer and the bottom layer, the sealing layer including brazing by high temperature Solder layer or parallel sealed metal layer.
  • the present invention adjusts the structure of the gas discharge tube into an upper cover and an insulating base, and respectively integrates the electrodes on the inner side surface and the outer side surface of the bottom surface of the insulating base, thereby effectively improving the discharge effect of the gas discharge tube.
  • the process and the process for preparing the multi-terminal gas discharge tube are greatly enlarged, the preparation process is greatly enlarged, and the mass production and high integration of the gas discharge tube are realized.
  • FIG. 1 is a schematic structural view of a prior art diode gas discharge tube
  • FIG. 2 is a schematic structural view of a prior art four-terminal to ground gas discharge tube
  • FIG. 3 is a schematic structural view of a preferred embodiment of an integrated gas discharge tube of the present application.
  • FIG. 4 is a top plan view of a cavity structure of a preferred embodiment of the insulating base of FIG. 3 of the present application; 5 is a schematic view showing the outer surface of the bottom surface of the preferred embodiment of the integrated electrode layer of the insulating base of FIG. 4;
  • FIG. 6 is a schematic view showing the inner side structure of the bottom surface of the preferred embodiment of the integrated electrode layer of the insulating base of FIG. 4;
  • FIG. 7 is a schematic view showing a layered structure of a preferred embodiment of the insulating base of FIG. 4 of the present application.
  • FIG. 8 is a plan view showing a cavity structure of another preferred embodiment of the insulating base of FIG. 3;
  • FIG. 9 is a schematic structural view of a preferred embodiment of the insulating base of FIG.
  • FIG. 10 is a schematic diagram of a discharge principle of an integrated gas discharge tube according to an embodiment of the present application. detailed description
  • the present application provides an integrated gas discharge tube, comprising: an upper cover, and an insulating base with a bottom surface integrating a plurality of electrodes, the insulating base having a cavity structure, The cover is sealed with the insulating base to form a cavity filled with an inert gas.
  • the upper cover may be a conductive upper cover or an insulating upper cover.
  • the conductive upper cover can serve as a common electrode of the plurality of electrodes on the bottom surface of the insulating base. At this time, at least one electrode on the outer side surface of the bottom surface of the insulating base is electrically connected to the conductive upper cover.
  • At least one common electrode of the plurality of electrodes on the bottom surface of the insulating base may be disposed at any suitable position of the cavity structure of the insulating base, for example, at least one of the sidewalls of the cavity structure is disposed.
  • the common electrode or, at a certain position in the middle of the cavity structure, is provided with at least one conductive layer as a common electrode.
  • at least one electrode of the outer surface of the bottom surface of the insulating base is electrically connected to the common electrode.
  • the common electrode of the plurality of electrodes on the bottom surface of the insulating base may not be disposed in the cavity structure of the insulating base.
  • at least two electrodes on the outer side of the bottom surface of the insulating base are At least two electrodes on the inner side surface of the bottom surface of the insulating base are respectively electrically connected to form at least two corresponding electrodes.
  • XI and X2 on the outer side surface of the bottom surface of the insulating base, and at least two electrodes Y1 and Y2 on the inner side surface of the bottom surface of the insulating base, wherein XI and Y1 are electrically Connected, X2 and Y2 are electrically connected, XI and Y1 form a first corresponding electrode, X2 and Y2 form a second corresponding electrode, and a discharge is formed between the first corresponding electrode and the second corresponding electrode.
  • the plurality of electrodes on the bottom surface of the insulating base share the same sealed cavity for storing the inert gas, the electrode on the outer side surface of the bottom surface of the insulating base having the electrical connection relationship, and the electrode on the inner side surface of the bottom surface of the insulating base
  • a gas discharge tube is formed, that is, a gas discharge tube having a plurality of electrodes on the inner side surface of the bottom surface and a plurality of electrodes on the outer side surface of the bottom surface of the insulating base.
  • FIG. 10 is a schematic diagram of the discharge principle of the integrated gas discharge tube according to the embodiment of the present application. As shown in FIG. 10, each of the discharge tubes passes through electrons and ions in a common cavity.
  • the migration ignites the entire cavity, triggering the simultaneous operation of the other discharge tubes, thereby allowing a larger amount of lightning or overvoltage current to be discharged, further reducing the damage of the single discharge tube and, in this embodiment, the common closed chamber
  • the body can maintain the consistency of the action of each discharge tube in the case of lightning strike or overvoltage, so the common mode differential mode generated by the inconsistency of the two discharge tubes can be effectively prevented, thereby protecting the rear stage circuit from damage.
  • the structural features when the upper cover is a conductive upper cover and the conductive upper cover serves as a common electrode of a plurality of electrodes on the bottom surface of the insulating base, and how to be in the insulating base are explained in detail in conjunction with FIG. 3 to FIG.
  • the bottom surface of the plurality of electrodes forms an electrical connection relationship with the common electrode. It will be easily understood by those skilled in the art that, when the upper cover is an insulating cover, at least one insulation can be disposed at any suitable position of the cavity structure of the insulating base.
  • a common electrode of a plurality of electrodes on the bottom surface of the pedestal and "when the upper cover is an insulating upper cover, a common electrode of a plurality of electrodes on the bottom surface of the insulating pedestal may not be provided in the cavity structure of the insulating pedestal.
  • the at least two electrodes on the outer side surface of the bottom surface of the insulating base and the at least two electrodes on the inner side surface of the bottom surface of the insulating base are electrically connected to each other to form at least two corresponding electrodes, which are not described herein.
  • FIG. 3 it is a schematic structural view of a preferred embodiment of the integrated gas discharge tube of the present application.
  • the integrated gas discharge tube includes a conductive upper cover 7 and an insulating base 8 with a bottom surface integrating a plurality of electrodes.
  • the insulating base 8 has a cavity structure (for example, as shown in Fig. 4 or Fig. 8), and the conductive upper cover 7 and the insulating base 8 form a closed cavity.
  • the insulating base 8 may be a unitary structure or a multilayer structure.
  • the material of the insulating base 8 may be ceramic or any other suitable insulating material.
  • the material of the conductive upper cover 7 may be a conductive material as a whole, or may be an insulating material surface coated with a conductive layer.
  • the insulating base 8 has a multi-layer structure, and the multilayer structure of the insulating base 8 includes a bottom surface integrated with a plurality of discharge electrodes, at least one cavity layer on the upper portion of the bottom surface, and a solder layer on the upper portion of the cavity layer .
  • the multilayer structure of the insulating base 8 includes a bottom surface 80 in which a plurality of discharge electrodes are integrated, and three cavity layers on the upper portion of the bottom surface 80 (for example, a cavity layer 83, a cavity layer 84, and a cavity).
  • the bulk layer 85 wherein the uppermost cavity layer 85 has a metallization layer on its upper surface, and the upper portion of the three cavity layers (for example, the cavity layer 83, the cavity layer 84, and the cavity layer 85)
  • the layer 86, the at least one cavity layer has at least one vertical and/or lateral conductive strip (in the form of a semi-cylindrical shape, for example, as shown in FIG. 7, the cavity layer 84 has a plurality of vertical conductive strips 10, the cavity
  • the body layer 83 has a plurality of lateral conductive strips 11), and the conductive upper cover 7 is sealed on the solder layer 86 to form a closed cavity.
  • the specific solder layer is a solder layer which is brazed at a high temperature, i.e., metallized on the susceptor, and the metal on the susceptor and the upper cover are brazed by high temperature by solder.
  • the solder layer is replaced by a parallel sealed metal layer, i.e., metallized on the pedestal, and metal is soldered to parallel seal the metal to the upper cover.
  • the bottom surface 80 of the insulating base 8 may have only one cavity layer or multiple cavity layers, and the closed cavity is formed. Fill the inert gas.
  • At least one electrode of the outer surface of the bottom surface extends to the sidewall of the insulating base.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall extending to the solder during the soldering process of the product, and detecting whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.
  • the insulating base 8 has a multi-layer structure, and the multilayer structure of the insulating base 8 includes a bottom surface integrated with a plurality of discharge electrodes, at least one cavity layer on the upper portion of the bottom surface, and a solder layer on the upper portion of the cavity layer. And a metal ring on the upper part of the solder layer.
  • the multilayer structure of the insulating base 8 includes a bottom surface 80 in which a plurality of discharge electrodes are integrated, and three cavity layers on the upper portion of the bottom surface 80 (for example, a cavity layer 83, a cavity layer 84, and a cavity).
  • the upper surface of the uppermost cavity layer 87 is provided with a solder layer 89, and a metal ring 88 on the upper portion of the solder layer 89, at least one cavity layer having at least one vertical and/or lateral conductive strip (
  • a semi-cylindrical shape is taken as an example.
  • the cavity layer 84 has a plurality of vertical directions.
  • the conductive strip 10 the cavity layer 83 has a plurality of lateral conductive strips 11), and the conductive upper cover 7 is sealed on the metal ring 88 to form a closed cavity.
  • the specific solder layer is a solder layer that is brazed at a high temperature, that is, metallized on the susceptor, and the metal on the pedestal and the upper cover are brazed by high temperature by solder.
  • the solder layer is replaced by a parallel sealed metal layer, i.e., metallized on the pedestal, and metal is soldered to parallel seal the metal to the upper cover.
  • the bottom surface 80 of the insulating base 8 may have only one cavity layer or multiple cavity layers, and the closed cavity is formed. Fill the inert gas.
  • At least one electrode of the outer surface of the bottom surface extends to the sidewall of the insulating base.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall to which the solder extends to the soldering process of the product, and whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.
  • the insulating base 8 has an integral structure (not shown), and the insulating base 8 includes a bottom surface and a cavity formed integrally, and a solder layer, wherein the bottom surface is integrated with a plurality of discharge electrodes, the cavity
  • the upper part is a solder layer, and the cavity has at least one vertical and/or lateral conductive strip (for example, a semi-cylindrical shape), and the conductive upper cover 7 is sealed on the solder layer to form a closed cavity, and the closed cavity is formed. Fill the inert gas.
  • At least one electrode of the outer surface of the bottom surface extends to the sidewall of the insulating base.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall to which the solder extends to the soldering process of the product, and whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.
  • the insulating base 8 has an integral structure (not shown), and the insulating base 8 includes an integral bottom surface and a cavity, a solder layer, and a metal ring, wherein the bottom surface is integrated with a plurality of discharge electrodes
  • the upper part of the cavity is a solder layer
  • the cavity has at least one vertical and/or lateral conductive strip (in the form of a semi-cylindrical shape)
  • the upper part of the solder layer is a metal ring
  • the conductive upper cover 7 is sealed on the metal ring to form a
  • the closed cavity forms a closed cavity for filling the inert gas.
  • At least one electrode of the outer surface of the bottom surface extends to the insulating base Side wall.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall extending to the solder during the soldering process of the product, and detecting whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.
  • the bottom surface 80 of the insulating base 8 is exemplarily explained below.
  • FIG. 5 it is a schematic diagram of the outer surface of the bottom surface of the preferred embodiment of the integrated electrode layer of the insulating base of FIG.
  • the outer surface of the bottom surface 80 of the insulating base 8 is integrated with at least two electrodes.
  • six electrodes are integrated on the outer surface 82 of the bottom surface 80 (electrode A1, electrode B1, electrode C1, electrode D1, electrode E1, electrode F1).
  • the outer surface 82 of the bottom surface 80 is integrated with any number of electrodes, such as an example, two electrodes, three electrodes, four electrodes, five electrodes, seven electrodes, eight electrodes, and nine electrodes. Any suitable number of electrodes, such as electrodes.
  • FIG 6 there is shown a schematic diagram of the bottom side structure of the preferred embodiment of the integrated electrode layer of the insulating pedestal of Figure 4 of the present application.
  • the inner surface of the bottom surface 80 of the insulating base 8 is integrated with at least one electrode.
  • four electrodes are integrated on the inner side surface 81 of the bottom surface 80 (electrode A, electrode B, electrode C, electrode D).
  • the inner surface 81 of the bottom surface 80 is integrated with any number of electrodes, for example, any suitable number of electrodes such as two electrodes, three electrodes, four electrodes, five electrodes, seven electrodes, eight electrodes, and nine electrodes.
  • Method 1 The bottom surface 80 of the bottom surface 82 is integrated with at least one (two in the figure) through the through hole 9 of the bottom surface 80 (the shape of the via hole may be a circular column hole, an elliptical column hole Any of the cylindrical holes, such as a square post hole, is used to fill the conductive material to be electrically conductive with the corresponding electrode or the conductive upper cover 7 of the inner surface 81 of the bottom surface 80, and at least one electrode integrated with the outer surface 82 of the bottom surface 80 (for example, The electrode E1 and the electrode F1 shown in FIG.
  • the 5 are electrically conductive with the conductive upper cover 7 through the conductive material filled in the via 9, and at least one electrode integrated on the outer surface 82 of the bottom surface 80 (for example, the electrode A1, the electrode shown in FIG. 5) Bl, the electrode C1, and the electrode D1) pass through the conductive material filled in the via hole 9 and the corresponding electrode of the inner side surface 81 of the bottom surface 80 (for example, the electrode A, the electrode B, the electrode C, and the electrode D shown in FIG. 6, wherein the electrode A Corresponding to the electrode A1, the electrode B and the electrode B1 correspond to each other, the electrode C and the electrode C1 correspond to each other, and the electrode D and the electrode D1 correspond to each other).
  • Method 2 an electrode integrated on the outer surface 82 of the bottom surface 80 (for example, the electrode A1, the electrode B1, the electrode C1, and the electrode D1 shown in FIG. 5) and the corresponding electrode on the inner side 81 of the bottom surface 80 (for example, the electrode A and the electrode A1 are mutually connected)
  • the electrode B and the electrode B1 correspond to each other
  • the electrode C and the electrode C1 correspond to each other
  • the electrode D and the electrode D1 correspond to each other
  • the conductive upper cover 7 has a conductive layer such that the electrode of the outer surface 82 of the bottom surface 80 and the inner surface of the bottom surface 80
  • the corresponding electrode of the 81 or the conductive upper cover 7 are electrically conductive to each other, and the conductive layer is formed by embedding or printing on the surface, which is not described herein.
  • the manner in which the conductive layer is formed differs from the manner in which the conductive material is filled in the via hole 9 in the first embodiment to form a conductive pillar.
  • At least one electrode of the outer surface of the bottom surface extends to the sidewall of the insulating base.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall extending to the solder during the soldering process of the product, and detecting whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.
  • the insulating base 8 has a multi-layer structure, all the cavity layers on the upper surface of the bottom surface 80 should have corresponding vias 9 and the vias 9 of the electrodes integrated with the outer surface 82 of the bottom surface 80 of the conductive upper cover 7 mutually conductive, After the vias 9 of the electrodes integrated on the outer surface 82 of the bottom surface 80 of the via holes 9 of all the cavity layers in the upper portion of the bottom surface 80 are filled with the conductive material, the electrodes integrated with the conductive upper cover 7 and the corresponding outer surface 82 of the bottom surface 80 are electrically conductive to each other. For example, as shown in Fig.
  • the via holes 9 in the cavity layer 83, the cavity layer 84, and the cavity layer 85 correspond to the via holes 9 of the bottom surface 80.
  • the preferred embodiment of the present application further provides a method for preparing an integrated gas discharge tube having a multilayer structure, including:
  • a preferred step of forming a conductive pillar on the green sheet includes: punching a hole in the green sheet; filling the via hole with a conductive material. Further, a preferred step of forming a conductive layer on the green sheet is: embedding or printing a conductive material on the surface of the green sheet.
  • the above-mentioned preparation method of the integrated gas discharge tube having the multi-layer structure is suitable for the preparation of a single integrated gas discharge tube, and is also applicable to a single batch preparation of a plurality of integrated gas discharge tubes.
  • the step of co-firing and electroplating the plurality of green sheets to form an insulating base of the integrated gas discharge tube further comprises: co-firing
  • the plated product is subjected to a cutting separation to produce an insulating base of a single integrated gas discharge tube.
  • the method of assembling the integrated gas discharge tube includes, but is not limited to, the above steps, to those skilled in the art.
  • the embodiment of the present application further provides a gas discharge tube, comprising: a sealed cavity formed by a cover member and an insulating cavity for storing an inert gas; the inner surface of the closed cavity is attached with at least one first electrode, and the closed cavity is The outer surface is attached with at least one second electrode, and at least one of the second electrodes is electrically connected to at least one of the first electrodes.
  • An insulating cavity provided in this embodiment is an insulating base.
  • the inner surface of the closed cavity is attached with a first electrode
  • the outer surface of the closed cavity is attached with a second electrode
  • the second electrode is electrically connected by a conductive material filled in a via hole. Connected to the first electrode.
  • the inner surface of the closed cavity is attached with a first electrode
  • the outer surface of the closed cavity is attached with two second electrodes, wherein one or two second electrodes may pass the same or different A conductive material filled in the hole is electrically connected to the first electrode.
  • the number of the first electrodes in the closed cavity is not limited by this embodiment, and the number of the second electrodes attached to the outer surface of the sealed cavity is not limited by this embodiment.
  • all the first electrodes share the same sealed cavity for storing the inert gas
  • the first electrode and the second electrode having the electrical connection relationship form a gas discharge tube, that is, a gas discharge tube, if the closed cavity
  • the body is provided with a plurality of first electrodes and a plurality of second electrodes respectively having electrical connection relationship with the plurality of first electrodes, thereby forming a multi-channel gas discharge tube in principle, which is equivalent to integrating a plurality of gas discharge tubes and
  • the gas discharge tube can realize the exchange and migration of gas, primary electrons, gas electrons, and gas ions. Specifically, reference may be made to FIG.
  • FIG. 10 is a schematic diagram of a discharge principle of an integrated gas discharge tube according to an embodiment of the present application, as shown in FIG. 10 . It is shown that each of the discharge tubes ignites the entire cavity through the electrons and ions in the common cavity, triggering the simultaneous operation of the other discharge tubes, thereby being able to discharge a larger lightning or overvoltage current, and further reducing the single channel. The probability of damage to the discharge tube.
  • the common closed cavity can maintain the consistency of the operation of each discharge tube during lightning strike or overvoltage, thereby effectively preventing the common mode differential mode generated by the inconsistency of the two discharge tubes, thereby protecting The rear stage circuit is protected from damage.
  • the outer surface of the closed cavity is attached with at least one second electrode, including:
  • the outer surface of the insulating cavity and/or the outer side wall of the cover member and/or the outer surface of the top end of the cover member are attached with at least one second electrode.
  • the inner surface of the sealed cavity is attached with at least one first electrode, including: the inner surface of the insulating cavity and/or the surface of the bottom end of the cover member is attached with at least one first electrode.
  • the cover member is a cover member made of an insulating material.
  • the cover member is a cover member made of a conductive material, and the inner surface of the closed cavity is attached with at least one first electrode, including:
  • the inner surface of the insulating cavity is attached with at least one first electrode
  • the outer surface of the closed cavity is attached with at least one second electrode, including:
  • the outer surface of the insulating cavity is attached with at least one second electrode
  • the outer surface of the insulating cavity is further attached with at least one third electrode, and the at least one third electrode and the cover member are electrically connected.
  • the at least one third electrode and the cover member are electrically connected, and the method includes: the at least one third electrode and the cover member are electrically connected together through a conductive material filled in the via hole.
  • the at least one second electrode is electrically connected to the at least one first electrode, and includes:
  • At least one second electrode is electrically connected to the at least one first electrode through a conductive material filled in the via.
  • the insulating cavity comprises a sealing layer, a bottom layer and at least one cavity layer between the sealing layer and the bottom layer
  • the sealing layer comprises a solder layer brazed by high temperature or parallel sealing welding Metal layer.
  • the specific solder layer is a solder layer that is brazed at a high temperature, that is, metallized on the susceptor, and the metal on the pedestal and the upper cover are brazed by high temperature by solder. Or, replace this solder layer It is replaced by a parallel sealed metal layer, that is, metallized on the susceptor, and metal is welded to make the metal and the upper cover parallel sealing welding.
  • At least one electrode of the outer surface of the bottom surface extends to the sidewall of the insulating base.
  • the electrode extension portion of the side wall is mainly convenient for performing part soldering of the sidewall extending to the solder during the soldering process of the product, and detecting whether the soldering effect is qualified or not. It is convenient to start welding before the secondary soldering so that the discharge tube can be easily separated from the pad without damaging the product and improving the product utilization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Spark Plugs (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本申请提供了一种集成气体放电管。该集成气体放电管通过将气体放电管结构调整为上盖和绝缘基座,在绝缘基座的底面的内侧面和外侧面分别进行电极的集成,有效提高了气体放电管的放电效果,大大简化了多端对地气体放电管的制备工序和流程,使得制备工序大大简化,实现气体放电管的批量生产和高度集成性。本申请还提供一种集成气体放电管的制备方法。

Description

集成气体放电管及其制备方法
本申请要求于 2013 年 3 月 22 日提交中国专利局、 申请号为 201310095077.7、 发明名称为"集成气体放电管及其制备方法"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本申请涉及一种放电管技术, 特别涉及一种集成气体放电管及其制备方 法。 背景技术
传统的二极管气体放电管由 2个金属电极、 2个焊料、 一个带有金属化层 的陶瓷绝缘管密封组成一个放电间隙; 电极上涂有阴极发射材料, 陶瓷绝缘管 上有 2根或多根触发导电带, 如图 1所示, 2个金属电极 1 , 2个焊料 2 , —个 带有金属化层 32的陶瓷绝缘管 3 , 陶瓷绝缘管 3上有至少 2根导电带 31。
传统的二极管气体放电管的制备工艺如下:
金属电极由棒材或片材机械冲压, 再通过切边, 抛光清洗形成; 陶瓷绝缘管经过陶瓷颗粒与有机物形成 浆料注浆成型或干压成型, 再经 过低温排胶, 1400度高温烧结, 磨平而成;
金属化层则通过丝网印刷, 低温固化, 1300度左右烧结, 最后经过电镀 镍而成;
焊料通过高温 ( 1200度左右)熔炼形成焊料合金, 通过退火, 形成块状 合金, 块状合金通过碾压成片, 最后冲压而成;
触发导电带通过铅笔图画而成;
电极通过清洗涂敷上电子粉、 与金属化瓷管、 焊料组装到模具中, 再通过 真空封接炉经过排气抽真空、 充气、 850度左右高温钎焊密封封接, 冷却形成 半成品, 再经过老炼、 清洗 、 电镀、 打印、 测试最终形成合格成品。
传统结构的气体放电管放电效果不佳, 且结构复杂不利于制备, 例如: 传统的气体放电管的原材料加工工序较多, 因此原材料成本高; 金属化陶瓷需要经过两次 1000度以上高温烧结, 焊料需要经过一次 1000 度高温熔炼, 原材料耗能高, 另外产品需要经过 850度左右的高温封接, 因此 整个供应链需要经过三次的高温烧结不利于节能减排;
传统气体放电管的加工工序较多, 需要投入的设备及人工成本较多, 因此 成本较高;
不利于产品的小型化集成化,如需制作多极的集成气体放电管,原材料的 个数成倍数增长, 成本也成倍增长(如图 2所示, 采用传统的气体放电管的加 工工艺制造四端对地的气体放电管通常需要 13个部件组成, 包括 5个电极 4, 6个焊料 5 , 及 2个带有金属化层 61的陶瓷绝缘管 6 );
传统放电管的制造工艺由于工序较多,原材料加工精度不高,造成放电管 的参数波动较大。 发明内容
本申请的主要目的是提供一种集成气体放电管, 能够提高放电效果, 大大 筒化制备工序和流程, 且提高集成度。
此外, 还提供一种集成气体放电管的制备方法, 工序筒单, 能够使集成气 体放电管批量生产, 且有利于集成气体放电管的高度集成性。
一种集成气体放电管,包括上盖,及带有集成多个电极的底面的绝缘基座, 该绝缘基座具有空腔结构, 该上盖与该绝缘基座密封形成一空腔, 所述底面分 内侧面和外侧面, 所述内侧面集成有至少一个电极, 所述外侧面集成有至少两 个电极,所述底面外侧面的至少一个电极与所述内侧面的至少一个电极对应并 电连接。
优选地, 所述绝缘基座具有多层结构, 包括所述底面、 所述底面上部的至 少一个腔体层及腔体层上部的封接层,所述封接层包括通过高温进行钎焊的焊 料层或者平行封焊的金属层。
优选地, 至少一个腔体层具有至少一个垂直方向及 /或横向的导电带。 优选地, 所述绝缘基座具有整体结构, 包括所述底面, 与所述底面形成整 体的腔体, 及腔体上部的封接层, 所述封接层包括通过高温进行钎焊的焊料层 或者平行封焊的金属层。
优选地, 所述腔体具有至少一个垂直方向及 /或横向的导电带。
优选地, 所述上盖是导电上盖, 所述外侧面的至少一个电极与导电上盖电 连接。 优选地,所述外侧面集成的每个电极都具备至少一个穿过所述底面的填充 有导电材料的过孔,所述外侧面集成的至少一个电极通过过孔中填充的导电材 料与所述导电上盖相互导电。
优选地,所述外侧面集成的至少一个电极通过过孔中填充的导电材料与所 述内侧面的对应电极相互导电。
优选地, 所述填充有导电材料的过孔由导电层替换。
优选地, 所述上盖是绝缘上盖,在所述绝缘基座的空腔结构的特定位置设 置至少一个所述内侧面的电极的共用电极,所述外侧面的至少一个电极与所述 共用电极电连接。
优选地, 所述上盖是绝缘上盖, 所述内侧面集成有至少两个电极, 所述外 两个对应电极。
优选地, 所述绝缘基座还包括所述焊料层上部的金属环。
作为一种可选的实施方式 ,所述底面的外表面的至少一个电极延伸至所述 绝缘基座的侧壁。
一种集成气体放电管的制备方法,该方法包括:进行绝缘材质浆料的配置, 将配置好的绝缘材质浆料流延成生片; 在生片上生成导电柱或导电层; 在作为 层进行共烧并电镀; 进行上盖密封及填充惰性气体。
优选地, 所述在生片上生成导电柱的步骤包括: 在生片上冲过孔; 在过孔 中填充导电材料。
优选地, 所述在生片上生成导电层的步骤为: 在生片表面埋设或印刷导电 材料。
本申请实施例还提供了一种气体放电管, 包括: 由盖部件和绝缘腔体形成 的一个存储惰性气体的密闭腔体;所述密闭腔体的内表面附有至少一个第一电 极, 所述密闭腔体的外表面附有至少一个第二电极, 所有第二电极中的至少一 个第二电极电性连接至所有第一电极中的至少一个第一电极。
作为一种可选的实施方式, 所述盖部件为导电材料制作的盖部件, 所述密 闭腔体的内表面附有至少一个第一电极, 包括:
所述绝缘腔体的内表面附有至少一个第一电极; 所述密闭腔体的外表面附有至少一个第二电极, 包括:
所述绝缘腔体的外表面附有至少一个第二电极;
所述绝缘腔体的外表面还附有至少一个第三电极,所述至少一个第三电极 和所述盖部件电性连接。
作为一种可选的实施方式, 所述至少一个第三电极和所述盖部件电性连 接, 包括:
所述至少一个第三电极和所述盖部件通过过孔中填充的导电材料电性连 接一起。
作为一个可选的实施方式 ,所述至少一个第二电极电性连接至所述至少一 个第一电极, 包括:
所述至少一个第二电极通过过孔中填充的导电材料电性连接至所述至少 一个第一电极。
作为一个可选的实施方式, 所述绝缘腔体包括封接层、底层和位于所述封 接层和所述底层之间的至少一个腔体层,所述封接层包括通过高温进行钎焊的 焊料层或者平行封焊的金属层。
相较现有技术, 本申请通过将气体放电管结构调整为上盖和绝缘基座,在 绝缘基座的底面的内侧面和外侧面分别进行电极的集成,有效提高了气体放电 管的放电效果, 大大筒化了多端对地气体放电管的制备工序和流程, 制备工序 大大筒化, 实现气体放电管的批量生产和高度集成性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术二极管气体放电管的结构示意图;
图 2是现有技术四端对地气体放电管的结构示意图;
图 3是本申请集成气体放电管较佳实施例的结构示意图;
图 4是本申请图 3中绝缘基座一个较佳实施例的空腔结构俯视图; 图 5是本申请图 4中绝缘基座的集成电极层较佳实施例的底面外侧面结构 示意图;
图 6是本申请图 4中绝缘基座的集成电极层较佳实施例的底面内侧面结构 示意图;
图 7是本申请图 4中绝缘基座较佳实施例的分层结构示意图;
图 8是本申请图 3中绝缘基座另一个较佳实施例的空腔结构俯视图; 图 9是本申请图 8中绝缘基座较佳实施例的分层结构示意图;
图 10为本申请实施例提供的集成气体放电管的放电原理示意图。 具体实施方式
为了使本申请所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结合附图及实施例, 对本申请进行进一步详细说明。
作为一个较佳实施例, 本申请提供一种集成气体放电管, 该集成气体放电 管包括: 上盖, 及带有集成多个电极的底面的绝缘基座, 绝缘基座具有空腔结 构, 上盖与绝缘基座密封形成一空腔, 空腔中填充惰性气体。 其中, 上盖可以 是导电上盖, 也可以是绝缘上盖。
当上盖是导电上盖时,导电上盖可作为绝缘基座的底面多个电极的共用电 极, 此时, 绝缘基座的底面的外侧面的至少一个电极与导电上盖电连接。
当上盖是绝缘上盖时,可以在绝缘基座的空腔结构任意适用的位置设置至 少一个绝缘基座的底面多个电极的共用电极, 例如, 在空腔结构的侧壁上设置 至少一个共用电极,或者, 在空腔结构中间的某个位置设置至少一个导电层作 为共用电极。此时, 绝缘基座的底面的外侧面的至少一个电极与共用电极电连 接。
当上盖是绝缘上盖时,可以在绝缘基座的空腔结构中不设置绝缘基座的底 面多个电极的共用电极, 此时, 绝缘基座的底面的外侧面的至少两个电极与绝 缘基座的底面的内侧面的至少两个电极分别对应电连接,形成至少两个对应电 极。 例如, 以两个对应电极为例, 绝缘基座的底面的外侧面的至少两个电极 XI和 X2 , 绝缘基座的底面的内侧面的至少两个电极 Y1和 Y2 , 其中, XI与 Y1电连接, X2与 Y2电连接, XI与 Y1形成第一对应电极, X2与 Y2形成第 二对应电极, 第一对应电极与第二对应电极相互之间形成放电。 本实施例中, 绝缘基座的底面多个电极共用同一存储惰性气体的密闭腔 体,具有电性连接关系的绝缘基座的底面的外侧面的电极和绝缘基座的底面的 内侧面的电极原理上构成一个气体放电管, 即一路气体放电管, 该集成气体放 电管的空腔结构中具有多个位于底面的内侧面的多个电极,与绝缘基座的底面 的外侧面的多个电极存在电性连接关系, 则原理上构成多路气体放电管, 该多 路气体放电管共用同一密闭腔体,则集成的气体放电管受到过电压击打时开始 放电, 放电后多路气体放电管能够实现气体、 初次电子, 气体电子、 气体离子 的交换及迁移。 具体来讲可参照图 10 所示的示意图, 图 10为本申请实施例 提供的集成气体放电管的放电原理示意图, 如图 10 所示, 每一路放电管通过 共同的腔体中的电子、离子迁移点燃整个腔体,触发了其他路放电管同时动作, 从而能泄放更大的雷电或过电压电流,进一步的可以减少单路放电管损坏的几 以及在本实施例中,共同的密闭腔体能够保持各路放电管在雷击或过电压 时动作的一致性, 因此可以有效防止两路放电管的不一致性产生的共模转差 模, 从而保护后级电路免遭损坏。
以下结合图 3至图 9例图所示, 详细阐述当上盖是导电上盖,且导电上盖 作为绝缘基座的底面多个电极的共用电极时的结构特征,以及阐述如何在绝缘 基座的底面多个电极与共用电极之间形成电连接关系。对本领域的技术人员来 说, 参照下述该具体结构的例图示例描述, 可以轻易实现 "当上盖是绝缘上盖 时,可以在绝缘基座的空腔结构任意适用的位置设置至少一个绝缘基座的底面 多个电极的共用电极", 以及 "当上盖是绝缘上盖时, 可以在绝缘基座的空腔 结构中不设置绝缘基座的底面多个电极的共用电极, 此时, 绝缘基座的底面的 外侧面的至少两个电极与绝缘基座的底面的内侧面的至少两个电极分别对应 电连接, 形成至少两个对应电极" 的技术方案, 在此不做赞述。
参见图 3所示, 是本申请集成气体放电管较佳实施例的结构示意图。
该集成气体放电管包括导电上盖 7 , 及带有集成多个电极的底面的绝缘基 座 8。 该绝缘基座 8具有空腔结构(例如, 图 4或者图 8所示;), 该导电上盖 7 与该绝缘基座 8形成一密闭空腔。该绝缘基座 8可以是一个整体结构, 也可以 是一个多层结构。
该绝缘基座 8的材料可以是陶瓷或者其他任意适用的绝缘材质。 该导电上盖 7的材料可以整体是导电材质,也可以是绝缘材质表面包裹有 导电层。
实施例一: 该绝缘基座 8具有多层结构, 该绝缘基座 8的多层结构包括集 成有多个放电电极的底面,底面上部的至少一个腔体层, 及腔体层上部的焊料 层。例如图 7示例所示, 该绝缘基座 8的多层结构包括集成有多个放电电极的 底面 80, 底面 80上部的三个腔体层(例如, 腔体层 83、 腔体层 84及腔体层 85 ,其中,最上部的腔体层 85的上表面带有金属化层),及三个腔体层(例如, 腔体层 83、 腔体层 84及腔体层 85 )上部的焊料层 86, 至少一个腔体层具有 至少一个垂直方向及 /或横向的导电带 (以半圆柱状为例, 例如, 图 7所示, 腔体层 84具有的多个垂直方向的导电带 10, 腔体层 83具有的多个横向的导 电带 11 ), 该导电上盖 7密封于焊料层 86上形成一密闭空腔。 具体的焊料层 为通过高温进行钎焊的焊料层, 即基座上进行金属化,通过焊料将基座上的金 属与上盖通过高温进行钎焊。 或者, 将此焊料层替换成平行封焊的金属层, 即 基座上进行金属化, 焊接有金属, 以使该金属与上盖进行平行封焊。 需要强调 的是, 对本领域的技术人员来说, 在实施例一中, 该绝缘基座 8的底面 80上 部可以只有一个腔体层, 也可以有多个腔体层, 形成的密闭空腔用于填充惰性 气体。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即 为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中, 侧壁的电极延伸部 分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的部 分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使放 电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
实施例二: 该绝缘基座 8具有多层结构, 该绝缘基座 8的多层结构包括集 成有多个放电电极的底面,底面上部的至少一个腔体层,腔体层上部的焊料层, 及焊料层上部的金属环。 例如图 9示例所示, 该绝缘基座 8的多层结构包括集 成有多个放电电极的底面 80 , 底面 80上部的三个腔体层(例如, 腔体层 83、 腔体层 84及腔体层 87 ), 最上部的腔体层 87的上表面带有焊料层 89 ,及焊料 层 89上部的金属环 88 ,至少一个腔体层具有至少一个垂直方向及 /或横向的导 电带 (以半圆柱状为例, 例如, 图 9所示, 腔体层 84具有的多个垂直方向的 导电带 10 , 腔体层 83具有的多个横向的导电带 11 ), 该导电上盖 7密封于金 属环 88上形成一密闭空腔。 具体的焊料层为通过高温进行钎焊的焊料层, 即 基座上进行金属化,通过焊料将基座上的金属与上盖通过高温进行钎焊。或者, 将此焊料层替换成平行封焊的金属层, 即基座上进行金属化, 焊接有金属, 以 使该金属与上盖进行平行封焊。 需要强调的是, 对本领域的技术人员来说, 在 实施例一中, 该绝缘基座 8的底面 80上部可以只有一个腔体层, 也可以有多 个腔体层, 形成的密闭空腔用于填充惰性气体。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体实现可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中,侧壁的电极延伸 部分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的 部分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使 放电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
实施例三: 该绝缘基座 8具有整体结构 (图中未示出), 该绝缘基座 8包 括形成整体的底面和腔体, 及焊料层, 其中, 底面集成有多个放电电极, 腔体 的上部是焊料层, 腔体具有至少一个垂直方向及 /或横向的导电带 (以半圆柱 状为例), 该导电上盖 7密封于焊料层上形成一密闭空腔, 形成的密闭空腔用 于填充惰性气体。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体实现可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中,侧壁的电极延伸 部分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的 部分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使 放电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
实施例四: 该绝缘基座 8具有整体结构 (图中未示出), 该绝缘基座 8包 括形成整体的底面和腔体, 焊料层, 及金属环, 其中, 底面集成有多个放电电 极,腔体的上部是焊料层,腔体具有至少一个垂直方向及 /或横向的导电带(以 半圆柱状为例), 焊料层上部是金属环, 该导电上盖 7密封于金属环上形成一 密闭空腔, 形成的密闭空腔用于填充惰性气体。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即 为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中, 侧壁的电极延伸部 分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的部 分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使放 电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
以下对该绝缘基座 8的底面 80进行示例性的阐述。
参见图 5所示,是本申请图 4中绝缘基座的集成电极层较佳实施例的底面 外侧面结构示意图。
该绝缘基座 8的底面 80外侧面集成有至少两个电极,图中以底面 80外侧 面 82集成 6个电极为例 (电极 Al、 电极 Bl、 电极 Cl、 电极 Dl、 电极 El、 电极 F1 ); 在本申请的其他实施例中, 底面 80外侧面 82集成任意多个电极, 例 口, 2个电极、 3个电极、 4个电极、 5个电极、 7个电极、 8个电极、 9个 电极等任意适用数量的电极。
参见图 6所示,是本申请图 4中绝缘基座的集成电极层较佳实施例的底面 内侧面结构示意图。
该绝缘基座 8的底面 80内侧面集成有至少一个电极,图中以底面 80内侧 面 81集成 4个电极为例 (电极 A、 电极 B、 电极 C、 电极 D ); 在本申请的其 他实施例中, 底面 80内侧面 81集成任意多个电极, 例如, 2个电极、 3个电 极、 4个电极、 5个电极、 7个电极、 8个电极、 9个电极等任意适用数量的电 极。
方式一: 底面 80外侧面 82 集成的每个电极都具备至少一个(图中以 2 个为例) 穿过底面 80的过孔 9 (过孔的形状可以是圆形柱孔、 椭圆形柱孔、 方形柱孔等任意形柱孔), 过孔 9用于填充导电材料以与底面 80内侧面 81的 对应电极或导电上盖 7相互导电,底面 80外侧面 82集成的至少一个电极 (例 如, 图 5所示的电极 El、 电极 F1 )通过过孔 9中填充的导电材料与导电上盖 7相互导电, 底面 80外侧面 82集成的至少一个电极 (例如, 图 5所示的电极 Al、 电极 Bl、 电极 Cl、 电极 D1 )通过过孔 9 中填充的导电材料与底面 80 内侧面 81的对应电极(例如, 图 6所示的电极 A、 电极 B、 电极 C、 电极 D, 其中, 电极 A与电极 A1相互对应, 电极 B与电极 B1相互对应, 电极 C与电 极 C1相互对应, 电极 D与电极 D1相互对应)相互导电。 方式二: 底面 80外侧面 82集成的电极(例如, 图 5所示的电极 Al、 电 极 Bl、 电极 Cl、 电极 D1 ), 与底面 80内侧面 81的对应电极(例如, 电极 A 与电极 A1相互对应, 电极 B与电极 B1相互对应, 电极 C与电极 C1相互对 应, 电极 D与电极 D1相互对应)或者导电上盖 7之间, 有一导电层使得底面 80外侧面 82的电极与底面 80内侧面 81的对应电极或者导电上盖 7相互导电, 导电层是通过在表面埋设或印刷的形式形成,在此不做赞述。导电层的形成方 式与方式一中的在过孔 9中填充导电材料形成导电柱的方式有所区别。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即 为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中, 侧壁的电极延伸部 分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的部 分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使放 电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
如果采用上述方式一的导电柱方式, 则需注意:
若该绝缘基座 8具有多层结构, 则底面 80上部所有腔体层都应有对应的 过孔 9与导电上盖 7相互导电的底面 80外侧面 82集成的电极的过孔 9相互对 应, 在底面 80上部所有腔体层的过孔 9底面 80外侧面 82集成的电极的过孔 9都填充导电材料后, 导电上盖 7与对应的底面 80外侧面 82集成的电极相互 导电。 例如图 7所示, 腔体层 83、 腔体层 84及腔体层 85上的过孔 9与底面 80的过孔 9形成对应关系。 本申请较佳实施例还提供一种具备多层结构的集成气体放电管的制备方 法, 包括:
进行绝缘材质浆料的配置, 将配置好的绝缘材质浆料流延成生片; 在生片上生成导电柱或导电层; 多个生片叠层进行共烧并电镀, 以生成集成气体放电管的绝缘基座; 进行上盖与绝缘基座的密封及填充惰性气体。
进一步的, 在生片上生成导电柱的优选步骤包括: 在生片上冲过孔; 在过 孔中填充导电材料。 进一步地, 在生片上生成导电层的优选步骤为: 在生片表面埋设或印刷导 电材料。
需要强调的是,上述具备多层结构的集成气体放电管的制备方法适用于单 个集成气体放电管的制备, 也适用于多个集成气体放电管的单次批量制备。
在将制备方法应用于多个集成气体放电管的单次批量制备时,多个生片叠 层进行共烧并电镀, 以生成集成气体放电管的绝缘基座的步骤进一步包括: 对 共烧并电镀后的产品进行切割分离, 以产生单个集成气体放电管的绝缘基座。
对本领域的技术人员来说,集成气体放电管的装配方法包含但不限于上述 步骤。 本申请实施例还提供一种气体放电管, 包括: 由盖部件和绝缘腔体形成的 一个存储惰性气体的密闭腔体; 密闭腔体的内表面附有至少一个第一电极, 密 闭腔体的外表面附有至少一个第二电极,所有第二电极中的至少一个第二电极 电性连接至所有第一电极中的至少一个第一电极。 本实施例提供的一个绝缘 腔体即为一个绝缘基座。
作为一种可选的实施方式, 密闭腔体的内表面附有一个第一电极, 密闭腔 体的外表面附有一个第二电极,该第二电极通过一过孔中填充的导电材料电性 连接至该第一电极。
作为一种可选的实施方式, 密闭腔体的内表面附有一个第一电极, 密闭腔 体的外表面附有两个第二电极,其中一个或者两个第二电极可通过相同或者不 同过孔中填充的导电材料电性连接至该第一电极。
其中, 密闭腔体中的第一电极的个数不受本实施例的限制, 密闭腔体的外 表面附有的第二电极的个数也不受本实施例的限制。
本实施例中, 所有第一电极共用同一存储惰性气体的密闭腔体, 具有电性 连接关系的第一电极和第二电极原理上构成一个气体放电管,即一路气体放电 管,如果该密闭腔体附带多个第一电极以及附带与多个第一电极分别具有电性 连接关系的多个第二电极, 则原理上构成多路气体放电管, 等价于多个气体放 电管集成在一起且共用同一密闭腔体,则气体放电后多路气体放电管能够实现 气体、初次电子, 气体电子、 气体离子的交换及迁移。 具体来讲可参照图 10 , 图 10为本申请实施例提供的集成气体放电管的放电原理示意图, 如图 10 所 示, 每一路放电管通过共同的腔体中的电子、 离子迁移点燃整个腔体, 触发了 其他路放电管同时动作,从而能泄放更大的雷电或过电压电流, 进一步的可以 减少单路放电管损坏的几率。
以及在本实施例中,共同的密闭腔体能够保持各路放电管在雷击或过电压 时动作的一致性, 因此可以有效防止两路放电管的不一致性产生的共模转差 模, 从而保护后级电路免遭损坏。
作为一种可选的实施方式, 密闭腔体的外表面附有至少一个第二电极, 包 括:
绝缘腔体的外表面和 /或者盖部件的外侧壁和 /或者盖部件的顶端外表面附 有至少一个第二电极。
作为一种可选的实施方式, 密闭腔体的内表面附有至少一个第一电极, 包 括: 绝缘腔体的内表面和 /或者盖部件的底端的表面附有至少一个第一电极。
作为一种可选的实施方式, 盖部件为绝缘材料制作而成的盖部件。
作为一种可选的实施方式,盖部件为导电材料制作的盖部件, 密闭腔体的 内表面附有至少一个第一电极, 包括:
绝缘腔体的内表面附有至少一个第一电极;
密闭腔体的外表面附有至少一个第二电极, 包括:
绝缘腔体的外表面附有至少一个第二电极;
绝缘腔体的外表面还附有至少一个第三电极,至少一个第三电极和盖部件 电性连接。
作为一种可选的实施方式, 至少一个第三电极和盖部件电性连接, 包括: 至少一个第三电极和盖部件通过过孔中填充的导电材料电性连接一起。 作为一种可选的实施方式,至少一个第二电极电性连接至至少一个第一电 极, 包括:
至少一个第二电极通过过孔中填充的导电材料电性连接至该至少一个第 一电极。
作为一种可选的实施方式, 绝缘腔体包括封接层、底层和位于封接层和底 层之间的至少一个腔体层,封接层包括通过高温进行钎焊的焊料层或者平行封 焊的金属层。具体的焊料层为通过高温进行钎焊的焊料层, 即基座上进行金属 化, 通过焊料将基座上的金属与上盖通过高温进行钎焊。 或者, 将此焊料层替 换成平行封焊的金属层, 即基座上进行金属化, 焊接有金属, 以使该金属与上 盖进行平行封焊。
作为一种可选的实施方式,底面的外表面的至少一个电极延伸至绝缘基座 的侧壁。 具体可参照图 3或者图 5示出的绝缘基座 8的侧面阴影结构 91 , 即 为电极延伸至绝缘基座的侧壁的延伸部分。在本实施例中, 侧壁的电极延伸部 分主要是方便在进行产品的贴片锡焊过程中,便于通过焊锡延伸至的侧壁的部 分焊锡,检测锡焊的效果是否合格, 同时在进行二次锡焊之前便于起焊以使放 电管便于脱离焊盘的情况下, 不损伤产品, 提高产品使用率。
以上仅为本申请的优选实施例, 并非因此限制本申请的专利范围,凡是利 用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运 用在其他相关的技术领域, 均同理包括在本申请的专利保护范围内。

Claims

权 利 要 求
1、 一种集成气体放电管, 其特征在于, 包括上盖, 及带有集成多个电极 的底面的绝缘基座, 该绝缘基座具有空腔结构, 该上盖与该绝缘基座密封形成 一空腔, 所述底面分内侧面和外侧面, 所述内侧面集成有至少一个电极, 所述 外侧面集成有至少两个电极,所述底面外侧面的至少一个电极与所述内侧面的 至少一个电极对应并电连接。
2、 如权利要求 1所述的集成气体放电管, 其特征在于, 所述绝缘基座具 有多层结构, 包括所述底面、所述底面上部的至少一个腔体层及腔体层上部的 封接层, 所述封接层包括通过高温进行钎焊的焊料层或者平行封焊的金属层。
3、 如权利要求 2所述的集成气体放电管, 其特征在于, 至少一个腔体层 具有至少一个垂直方向及 /或横向的导电带。
4、 如权利要求 1所述的集成气体放电管, 其特征在于, 所述绝缘基座具 有整体结构, 包括所述底面, 与所述底面形成整体的腔体, 及腔体上部的封接 层, 所述封接层包括通过高温进行钎焊的焊料层或者平行封焊的金属层。
5、 如权利要求 4所述的集成气体放电管, 其特征在于, 所述腔体具有至 少一个垂直方向及 /或横向的导电带。
6、 如权利要求 2-5任一权利要求所述的集成气体放电管, 其特征在于, 所述上盖是导电上盖, 所述外侧面的至少一个电极与导电上盖电连接。
7、 如权利要求 6所述的集成气体放电管, 其特征在于, 所述外侧面集成 的每个电极都具备至少一个穿过所述底面的填充有导电材料的过孔,所述外侧 的至少一个
电。
9、 如权利要求 7或 8所述的集成气体放电管, 其特征在于, 所述填充有 导电材料的过孔由导电层替换。
10、 如权利要求 2-5任一权利要求所述的集成气体放电管, 其特征在于, 所述上盖是绝缘上盖,在所述绝缘基座的空腔结构的特定位置设置至少一个所 述内侧面的电极的共用电极,所述外侧面的至少一个电极与所述共用电极电连 接。
11、 如权利要求 2-5任一权利要求所述的集成气体放电管, 其特征在于, 所述上盖是绝缘上盖, 所述内侧面集成有至少两个电极, 所述外侧面的至少两 极。
12、 如权利要求 2-5任一权利要求所述的集成气体放电管, 其特征在于, 所述绝缘基座还包括所述焊料层上部的金属环。
13、 如权利要求 1至 12中任一所述的集成气体放电管, 其特征在于, 所 述底面的外表面的至少一个电极延伸至所述绝缘基座的侧壁。
14、 一种集成气体放电管的制备方法, 其特征在于, 该方法包括: 进行绝缘材质浆料的配置, 将配置好的绝缘材质浆料流延成生片; 在生片上生成导电柱或导电层; 多个生片叠层进行共烧并电镀, 以生成集成气体放电管的绝缘基座; 进行上盖与绝缘基座的密封及填充惰性气体。
15、 如权利要求 14所述的制备方法, 其特征在于, 所述在生片上生成导 电柱的步骤包括:
在生片上冲过孔;
在过孔中填充导电材料。
16、 如权利要求 14所述的制备方法, 其特征在于, 所述在生片上生成导 电层的步骤为: 在生片表面埋设或印刷导电材料。
17、 一种气体放电管, 其特征在于, 包括: 由盖部件和绝缘腔体形成的一 个存储惰性气体的密闭腔体; 所述密闭腔体的内表面附有至少一个第一电极, 所述密闭腔体的外表面附有至少一个第二电极,所有第二电极中的至少一个第 二电极电性连接至所有第一电极中的至少一个第一电极。
18、 如权利要求 17所述的气体放电管, 其特征在于, 所述盖部件为导电 材料制作的盖部件, 所述密闭腔体的内表面附有至少一个第一电极, 包括: 所述绝缘腔体的内表面附有至少一个第一电极;
所述密闭腔体的外表面附有至少一个第二电极, 包括:
所述绝缘腔体的外表面附有至少一个第二电极;
以及, 所述绝缘腔体的外表面还附有至少一个第三电极, 所述至少一个第 三电极和所述盖部件电性连接。
19、 如权利要求 18所述的气体放电管, 其特征在于, 所述至少一个第三 电极和所述盖部件电性连接, 包括:
所述至少一个第三电极和所述盖部件通过过孔中填充的导电材料电性连 接一起。
20、 如权利要求 17至 19中任一所述的气体放电管, 其特征在于, 所述至 少一个第二电极电性连接至所述至少一个第一电极, 包括:
所述至少一个第二电极通过过孔中填充的导电材料电性连接至所述至少 一个第一电极。
21、 如权利要求 17至 20中任一所述的气体放电管, 其特征在于, 所述绝缘 腔体包括封接层、 底层和位于所述封接层和所述底层之间的至少一个腔体层, 所述封接层包括通过高温进行钎焊的焊料层或者平行封焊的金属层。
PCT/CN2014/072010 2013-03-22 2014-02-13 集成气体放电管及其制备方法 WO2014146523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/779,082 US9478386B2 (en) 2013-03-22 2014-02-13 Integrated gas discharge tube and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310095077.7 2013-03-22
CN201310095077.7A CN103441053B (zh) 2013-03-22 2013-03-22 集成气体放电管及其制备方法

Publications (1)

Publication Number Publication Date
WO2014146523A1 true WO2014146523A1 (zh) 2014-09-25

Family

ID=49694741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072010 WO2014146523A1 (zh) 2013-03-22 2014-02-13 集成气体放电管及其制备方法

Country Status (3)

Country Link
US (1) US9478386B2 (zh)
CN (1) CN103441053B (zh)
WO (1) WO2014146523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644340A3 (en) * 2015-03-17 2020-05-06 Bourns, Inc. Flat gas discharge tube devices and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441053B (zh) * 2013-03-22 2016-03-23 深圳市槟城电子有限公司 集成气体放电管及其制备方法
CN104092063A (zh) * 2014-07-07 2014-10-08 深圳市槟城电子有限公司 一种接口连接器
CN105374653A (zh) * 2015-12-04 2016-03-02 深圳市槟城电子有限公司 一种气体放电管
CN108305822B (zh) * 2018-01-23 2021-03-09 深圳市槟城电子有限公司 气体放电管、过电压保护装置及气体放电管的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726854A (en) * 1996-10-30 1998-03-10 Tekna Seal, Inc. Voltage arrestor for use with delicate electronic components
US20020008952A1 (en) * 2000-07-10 2002-01-24 Samsung Electro-Mechanics Co., Ltd. Electrostatic discharge device of surface mount type and fabricating method thereof
CN202502978U (zh) * 2012-03-07 2012-10-24 何鹉 多端平衡放电管
CN103441053A (zh) * 2013-03-22 2013-12-11 深圳市槟城电子有限公司 集成气体放电管及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135743A (ja) * 1991-11-11 1993-06-01 Yokogawa Electric Corp 微小ガス放電素子
EP0581376A1 (en) * 1992-07-28 1994-02-02 Koninklijke Philips Electronics N.V. Gas discharge lamps and method for fabricating same by micromachining technology
JP4240437B2 (ja) * 1997-12-24 2009-03-18 浜松ホトニクス株式会社 ガス放電管
CN100336245C (zh) * 1998-01-14 2007-09-05 杨泰和 储放电装置的低内阻汇流结构
SE9804538D0 (sv) * 1998-12-23 1998-12-23 Jensen Elektronik Ab Gas discharge tube
US20040252438A1 (en) * 2002-06-13 2004-12-16 Accurate Automation Corporation Method and apparatus for a subnanosecond response time transient protection device
ATE328354T1 (de) * 2002-12-11 2006-06-15 Bourns Inc Verkapseltes elektronisches bauelement und verfahren zu dessen herstellung
CN101297452A (zh) * 2005-09-14 2008-10-29 力特保险丝有限公司 充气式电涌放电器、激活化合物、点火条及相应方法
CN202796842U (zh) * 2011-09-24 2013-03-13 爱普科斯电子(孝感)有限公司 一种多台阶瓷管及利用多台阶瓷管制成的气体放电管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726854A (en) * 1996-10-30 1998-03-10 Tekna Seal, Inc. Voltage arrestor for use with delicate electronic components
US20020008952A1 (en) * 2000-07-10 2002-01-24 Samsung Electro-Mechanics Co., Ltd. Electrostatic discharge device of surface mount type and fabricating method thereof
CN202502978U (zh) * 2012-03-07 2012-10-24 何鹉 多端平衡放电管
CN103441053A (zh) * 2013-03-22 2013-12-11 深圳市槟城电子有限公司 集成气体放电管及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644340A3 (en) * 2015-03-17 2020-05-06 Bourns, Inc. Flat gas discharge tube devices and methods

Also Published As

Publication number Publication date
US9478386B2 (en) 2016-10-25
US20160049276A1 (en) 2016-02-18
CN103441053B (zh) 2016-03-23
CN103441053A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2014146523A1 (zh) 集成气体放电管及其制备方法
CN105206423A (zh) 多层陶瓷电容器及其制造方法和具有多层陶瓷电容器的板
JP2008098394A (ja) 固体電解コンデンサ
JP2006216764A (ja) 発光素子実装用配線基板
CN209748985U (zh) 带馈通电极的陶瓷基板
JP2018170493A (ja) 積層型キャパシタ及びその製造方法
CN104589738A (zh) 多层陶瓷基板及其制造方法
US20220399436A1 (en) Capacitor
JP2012227197A (ja) 積層セラミックコンデンサ
CN103066941A (zh) 一种smd石英晶体谐振器基座及加工方法
JP2007273699A (ja) 電気二重層キャパシタ
US9030802B2 (en) Multilayer ceramic electronic component, manufacturing method thereof, and board for mounting the same
CN202750054U (zh) 一种smd石英晶体谐振器基座
CN109644559A (zh) 电子器件以及多层陶瓷基板
JP2010153796A (ja) 電子部品搭載用基板の製造方法
US9368278B2 (en) Multilayer ceramic capacitor, manufacturing method thereof, and board having the same mounted thereon
CN104541418B (zh) Esd保护装置
CN105428198B (zh) 采用高温共烧多层陶瓷工艺制作矩阵阳极及方法
JP6118170B2 (ja) 多層セラミック基板およびその製造方法
KR102595463B1 (ko) 전자 부품
JP6921104B2 (ja) 避雷器の製造方法及び避雷器
CN207186714U (zh) 多层陶瓷基板
CN104134570A (zh) 真空继电器瓷片
JP2016051710A (ja) 配線基板、電子装置および積層型電子装置
JP2010231910A (ja) 過電圧保護部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14779082

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14770041

Country of ref document: EP

Kind code of ref document: A1