WO2014146501A1 - Self-charging super capacitor - Google Patents

Self-charging super capacitor Download PDF

Info

Publication number
WO2014146501A1
WO2014146501A1 PCT/CN2014/070174 CN2014070174W WO2014146501A1 WO 2014146501 A1 WO2014146501 A1 WO 2014146501A1 CN 2014070174 W CN2014070174 W CN 2014070174W WO 2014146501 A1 WO2014146501 A1 WO 2014146501A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercapacitor
electrode
charging
nano
insulating layer
Prior art date
Application number
PCT/CN2014/070174
Other languages
French (fr)
Chinese (zh)
Inventor
徐传毅
赵豪
吴宝荣
郝立星
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2014146501A1 publication Critical patent/WO2014146501A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • This invention relates to the field of nanotechnology and, more particularly, to a self-charging supercapacitor.
  • Supercapacitors also known as electrochemical capacitors, are an electrochemical energy storage device between a conventional capacitor and a battery. Supercapacitors have higher electrostatic capacity than conventional capacitors; supercapacitors have higher power density and longer cycle life than batteries. Supercapacitors combine the advantages of both and are a promising energy storage device.
  • Existing supercapacitors are mainly composed of an electrode, an electrolyte, and a separator.
  • the electrode includes an electrode active material and a collector.
  • the role of the collector is to reduce the internal resistance of the electrode, requiring a large contact area with the electrode, a small contact resistance, and high corrosion resistance, stable performance in the electrolyte, and no chemical reaction.
  • the object of the present invention is to provide a self-charging supercapacitor that achieves self-charging of a supercapacitor without the aid of an external power source, in view of the deficiencies of the prior art.
  • the present invention provides a self-charging supercapacitor comprising:
  • At least one nano-friction generator that converts mechanical energy into electrical energy, each nano-friction generator having two output electrodes for outputting electrical signals;
  • a charging circuit module connected to an output electrode of the at least one nano-friction generator for regulating conversion of an electrical signal output by the nano-friction generator; a super capacitor connected to the charging circuit module and receiving an electrical signal output by the charging circuit module and storing.
  • the super capacitor includes: a substrate;
  • a separator on the substrate, a first electrode of the supercapacitor, a second electrode of the supercapacitor, and a first current collector, a second current collector; and two pad sheets on the first current collector and the second current collector, respectively;
  • An encapsulation layer that encapsulates the electrolyte
  • the diaphragm is disposed between the first electrode of the supercapacitor and the second electrode of the supercapacitor, the first current collector is connected to the first electrode of the supercapacitor, and the second current collector is connected to the second electrode of the supercapacitor
  • the charging circuit module is connected to the first current collector and the second current collector.
  • the at least one nano-friction generator is disposed on one side of the ultracapacitor, and the at least one nano-friction generator shares the substrate with the supercapacitor.
  • the at least one nano-friction generator is disposed on two sides of the supercapacitor, and at least one nano-friction generator disposed on a lower side of the supercapacitor shares the substrate with the supercapacitor, and is disposed at the An insulating layer is further disposed between the at least one nano-friction generator on the upper side of the supercapacitor and the supercapacitor.
  • the supercapacitor includes: a first current collector, a supercapacitor first electrode, a separator, a supercapacitor second electrode and a second current collector, and an encapsulation layer, which are sequentially stacked in parallel; the charging circuit module and the The first current collector and the second current collector are connected.
  • the at least one nano-friction generator is disposed on one side of the ultra-capacitor, and an insulation layer is further disposed between the at least one nano-friction generator and the super capacitor.
  • the at least one nano-friction generator is disposed on two sides of the ultra-capacitor, and at least one nano-friction generator disposed on a lower side of the supercapacitor is further provided with a first insulation between the super-capacitor a layer, at least one nano-friction disposed on an upper side of the supercapacitor A second insulating layer is further disposed between the generator and the super capacitor.
  • the nano friction generator has multiple, and the array is arranged in the same layer or different layers to form a parallel structure.
  • nano-friction generators disposed on the underside of the supercapacitor, and the arrays are arranged in the same layer or different layers to form a parallel structure; and/or nano-friction disposed on the upper side of the supercapacitor
  • generators there are a plurality of generators, and the arrays are arranged in the same layer or different layers to form a parallel structure.
  • the supercapacitor is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • One of a conductive type asymmetric supercapacitor, an all-solid activated carbon, and a lithium ion battery hybrid asymmetric supercapacitor is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapaci
  • the material of the substrate is selected from the group consisting of polyethylene terephthalate, silicon, and silicon dioxide.
  • the material of the two cushion sheets is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate.
  • One of the rubbers is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate.
  • One of the rubbers is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate.
  • the material of the separator is self-oxidized graphite, polyvinyl alcohol-sulfuric acid system, polyvinyl alcohol-phosphoric acid system, 1-butyl, 3-mercaptoimidazole bistrifluorodecylsulfonyl sulfonimide- Smoke silica gel system, polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-trimethylsilyl alcohol system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, poly Ethyl decyl acrylate-ethylene carbonate-propylene carbonate-lithium perchlorate system, decyl methacrylate-ethylene carbonate-propylene carbonate-sodium perchlorate system, polyethylene oxide-polyethylene glycol- One of a lithium trifluoromethanelithinate system, a polydecyl methacrylate-ethylene carbonate-propylene carbonate-t
  • the encapsulating layer is made of aluminum plastic film, polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer, polydecyl methacrylate, polyfluorene.
  • aluminum plastic film polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer, polydecyl methacrylate, polyfluorene.
  • polyethylene polyethylene
  • polypropylene polyvinyl chloride
  • polystyrene acrylonitrile-butadiene-styrene copolymer
  • polydecyl methacrylate polyfluorene.
  • aldehyde a polycarbonate
  • polyamide film polyamide film
  • the materials of the first current collector and the second current collector are selected from one of copper, silver, aluminum, and nickel; the first electrode of the supercapacitor and the second electrode of the supercapacitor are selected from the group consisting of graphene , activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer and lithium ion battery electrode One of the materials.
  • the first electrode of the supercapacitor and the second electrode of the supercapacitor are: a parallel structure, a multi-column parallel structure, an interdigitated structure, a serpentine structure, a spiral structure, a dendritic structure, a spiral dendritic structure or a fingerprint structure .
  • the charging circuit module includes:
  • a rectifier circuit module coupled to an output electrode of the at least one nano-friction generator for rectifying an electrical signal output by the at least one nano-friction generator
  • a filter circuit module connected to the rectifier circuit module for filtering a unidirectional pulsed direct current outputted by the rectifier circuit module to obtain a direct current signal, wherein the filter circuit module outputs the direct current signal to the super capacitor.
  • the charging circuit module further includes: a charging control module and a switch/transformer module; the charging control module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the charging control module and The supercapacitor is connected to receive a charging voltage fed back by the supercapacitor; the charging control module is connected to the switch/transformer module, and the charging control module obtains a control signal according to the direct current signal and the charging voltage, Outputting the control signal to the switch/transformer module;
  • the switch/transformer module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the switch/transformer module is connected to the super capacitor, and the switch/transformer module is based on the received control signal Switching is performed and the DC signal outputted by the filter circuit module is subjected to a voltage transformation process and output to the super capacitor.
  • the charging circuit module further includes: a generator control module; the generator control module is connected to the super capacitor, and receives a charging voltage fed back by the super capacitor; the generator control module and the nanometer A friction generator is connected, and the generator control module outputs a signal to stop the power generation to the nano friction generator according to the charging voltage.
  • the nano-friction generator includes: a first electrode, a first polymer insulating layer, and a second electrode, which are sequentially stacked; wherein the first electrode is disposed in the first polymer a first side surface of the insulating layer; and a second side surface of the first polymer insulating layer is disposed toward the second electrode, the first electrode and the second electrode constituting the nano-friction The output electrode of the generator.
  • the first polymer polymer insulating layer is provided with a micro/nano structure on a surface facing the second electrode.
  • the nano friction generator further includes: a second polymer insulating layer disposed between the second electrode and the first polymer insulating layer, wherein the second electrode is disposed at a first side surface of the second polymer insulating layer; and a second side surface of the second polymer insulating layer is opposite to a second side surface of the first polymer insulating layer Settings.
  • At least one of the two faces disposed opposite to each of the first polymer insulating layer and the second polymer insulating layer is provided with a micro/nano structure.
  • the nano-friction generator further includes: an intermediate film layer disposed between the first polymer insulating layer and the second polymer insulating layer, wherein the intermediate film layer a polymer film layer, and the first polymer polymer insulating layer is opposite to at least one of a face of the intermediate film layer and an intermediate film layer with respect to a face of the first polymer polymer insulating layer and/or
  • the second polymer insulating layer is provided with a micro/nano structure on at least one of a surface of the intermediate film layer and a surface of the intermediate film layer and the second polymer insulating layer.
  • the nano-friction generator includes: a first electrode, a first polymer insulating layer, an intervening electrode layer, a second polymer insulating layer, and a second electrode; a first electrode is disposed on the first side surface of the first polymer insulating layer; the second electrode is disposed on the first side surface of the second polymer insulating layer, the intervening electrode a layer is disposed between the second side surface of the first polymer insulating layer and the second side surface of the second polymer insulating layer, and the first polymer insulating layer is opposite a surface of the intervening electrode layer and at least one of a surface of the intervening electrode layer with respect to the first polymer insulating layer and/or a surface of the second polymer insulating layer with respect to the intervening electrode layer
  • the intervening electrode layer is provided with a micro/nano structure on at least one of the faces of the second polymer insulating layer, and the first electrode and the second electrode are connected to form the nano-friction with the intervening electrode
  • the nano-friction generator functions as a charging power source, which converts the mechanical energy into electrical energy, and then adjusts the electric energy signal by the charging circuit module.
  • the section is converted and output to the supercapacitor for storage, thereby realizing self-charging of the supercapacitor.
  • FIG. 1 is a block diagram showing the principle structure of a self-charging supercapacitor provided by the present invention
  • FIG. 2 is a schematic perspective view of a first embodiment of a self-charging supercapacitor according to the present invention
  • FIG. 3 is a schematic cross-sectional view of a first embodiment of a self-charging supercapacitor according to the present invention
  • FIG. 4a to FIG. a schematic plan view of the structure between the second electrode of the supercapacitor;
  • FIG. 5 is a schematic diagram of a circuit principle of a first embodiment of a self-charging supercapacitor provided by the present invention
  • FIG. 6 is another schematic diagram of the circuit principle of the first embodiment of the self-charging supercapacitor provided by the present invention.
  • Figure 7 is a schematic view showing a plurality of nano-friction generators arranged side by side in the same layer
  • FIG. 8 is a schematic perspective view of a second embodiment of a self-charging supercapacitor provided by the present invention
  • FIG. 9 is a cross-sectional view of a second embodiment of a self-charging supercapacitor provided by the present invention
  • FIG. 10 is a self-charging supercapacitor provided by the present invention.
  • FIG. 11 is a schematic cross-sectional view of a third embodiment of a self-charging supercapacitor according to the present invention
  • FIG. 12 is a schematic perspective view of a fourth embodiment of a self-charging supercapacitor provided by the present invention
  • FIGS. 14a and 14b are respectively a perspective structural view and a cross-sectional structural view of a first structure of a nano-friction generator;
  • 15a and 15b respectively show a schematic perspective view and a cross-sectional structural view of a second structure of a nano-friction generator
  • 16a and 16b respectively show a schematic perspective view and a cross-sectional structural view of a third structure of a nano-friction generator
  • 17a and 17b are respectively a perspective structural view and a cross-sectional structural view showing a fourth structure of a nano-friction generator.
  • FIG. 1 is a block diagram showing the principle structure of a self-charging supercapacitor provided by the present invention.
  • the self-charging supercapacitor includes a nano-friction generator 11, a charging circuit module 12, and a supercapacitor 13.
  • Figure 1 is only a schematic diagram.
  • a self-charging supercapacitor may include one or more nano-friction generators, each having two output electrodes for outputting electrical signals.
  • the output electrode of the nano-friction generator 11 is connected to the charging circuit module 12, and the charging circuit module 12 is connected to the supercapacitor 13.
  • the basic working principle of the self-charging supercapacitor is: under the action of an external force, the nano-friction generator 11 undergoes mechanical deformation to convert mechanical energy into electrical energy; after that, the output electrode of the nano-friction generator 11 outputs an electrical signal to the charging circuit module. 12; The charging circuit module 12 adjusts and converts the electrical signal to output to the ultracapacitor 13, and the supercapacitor 13 receives the adjusted converted electrical signal and stores it for use by an external electrical device.
  • FIG. 2 is a schematic perspective structural view of a first embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 2, the self-charging supercapacitor includes: a supercapacitor 21 and a nano-friction generator 22 disposed on one side of the supercapacitor 21.
  • the nano friction generator 22 is placed on the bottom layer, the super capacitor 21 is disposed on the upper surface of the nano friction generator 22, and the nano friction generator 22 is formed integrally with the super capacitor 21.
  • the charging circuit module is not shown in FIG.
  • the two output electrodes of the nano-friction generator 22 are connected to the charging circuit module, and the charging circuit module is connected to the supercapacitor 21 to realize the storage of electric energy.
  • the ultracapacitor 21 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • the ultracapacitor 21 is selected from an all solid state symmetrical graphene supercapacitor.
  • the structure of the supercapacitor is illustrated by taking an all-solid-state symmetrical graphene supercapacitor as an example.
  • the supercapacitor includes: a substrate 31, a diaphragm 32 on the substrate 31, a supercapacitor first electrode 33, a supercapacitor second electrode 34, a first current collector 35, a second current collector 36, and two pads.
  • the separator 32 is graphite oxide
  • the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are graphene
  • the first current collector 35 and the second current collector 36 are metal strips.
  • the diaphragm 32 is disposed between the supercapacitor first electrode 33 and the supercapacitor second electrode 34.
  • the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are located on both sides of the diaphragm 32; the first current collector 35 passes through the conductive paste Connected to the supercapacitor first electrode 33, the second current collector 36 is connected to the supercapacitor second electrode 34 via a conductive paste.
  • the first current collector 35 is located outside the supercapacitor first electrode 33, and the second current collector 36 is located.
  • Two cushion sheets 37 are provided on the two current collectors, and the two cushion sheets 37, the diaphragm 32, the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are formed with a cavity 38 for filling the electrolysis liquid.
  • the encapsulation layer 39 encapsulates the electrolyte to form a very thin supercapacitor.
  • the nano-friction generator in Fig. 3 is a layered structure including: a friction electrode 30A, a polymer polymer insulating layer 30B, and an electrode 30C.
  • the nano friction generator and the super capacitor share the substrate 31.
  • the structure of the nano-friction generator will be described in detail later.
  • the material of the substrate 31 is selected from one of polyethylene terephthalate (PET), silicon (Si), and silicon dioxide (SiO 2 ).
  • the material of the first current collector 35 and the second current collector 36 is selected from one of copper, silver, aluminum and nickel.
  • the PVA system when used as an electrolyte, it may be copper or silver, etc., and is used as an electrolysis in an ionic liquid system.
  • the liquid may be aluminum or nickel.
  • the material of the supercapacitor first electrode 33 and the supercapacitor second electrode 34 is selected from the group consisting of graphene, activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer, and lithium ion battery electrode material.
  • the material of the separator 32 may be selected from the group consisting of graphite oxide, PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-H 3 P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-mercaptoimidazole.
  • the material of the two cushion sheets 37 is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate rubber. .
  • the electrolyte is solid or colloidal.
  • the electrolyte system is PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-3 ⁇ 4P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-fluorenyl Imidazole bistrifluorodecylsulfonylsulfonimide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-trimethylsilyl) Alcohol) system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate-ethylene carbonate-propylene carbonate-perchloric acid Lithium) system, PMMA-EC-PC-NaC10 4 (poly(al
  • the encapsulating layer 39 is made of aluminum plastic film, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS).
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PMMA polydecyl methacrylate
  • POM polyacetal
  • PC polycarbonate
  • PA polyamide
  • FIGS. 4a to 4h are schematic plan views of the structure between the first electrode of the supercapacitor and the second electrode of the supercapacitor.
  • 4a shows a parallel structure in which the supercapacitor first electrode 41A and the supercapacitor second electrode 41B are parallel with a diaphragm 41C therebetween.
  • Figure 4b shows a multi-column parallel structure in which the electrodes 42A have multiple columns and are parallel to each other.
  • FIG. 4c shows an interdigitated structure in which a separator 43C is provided between the supercapacitor first electrode 43A and the supercapacitor second electrode 43B, and such an interdigitated structure is shown in Fig. 3.
  • Figure 4d shows a serpentine structure, supercapacitor A separator is provided between the one electrode 44A and the second electrode 44B of the supercapacitor.
  • Fig. 4e shows a spiral structure, and a separator between the supercapacitor first electrode 45A and the supercapacitor second electrode 45B.
  • Figure 4f shows a dendritic structure with a separator between the supercapacitor first electrode 46A and the supercapacitor second electrode 46B.
  • Figure 4g shows a spiral dendritic structure with a separator between the supercapacitor first electrode 47A and the supercapacitor second electrode 47B.
  • Figure 4h shows the fingerprint structure, with the separator between the supercapacitor first electrode 48A and the supercapacitor second electrode 48B.
  • the above all-solid-state symmetrical graphene supercapacitor is preferably prepared by a laser method, and the steps thereof include:
  • the Hummers method is applied dropwise onto a PET substrate to dry the moisture leaving the golden brown graphite oxide
  • FIG. 5 is a schematic diagram of a circuit principle of a first embodiment of a self-charging supercapacitor provided by the present invention.
  • Fig. 5 shows the internal structure of the charging circuit module and its connection relationship with the nano-friction generator and the supercapacitor.
  • the charging circuit module includes: a rectifier circuit module 51 and a filter circuit module 52.
  • the rectifier circuit module 51 is connected to the output electrode of the at least one nano-friction generator, and performs rectification processing on the electrical signal output by the at least one nano-friction generator.
  • the two input ends 51A and 51B of the rectifier circuit module 51 are respectively connected to the two of the nano friction generators 53.
  • the output electrodes receive the electrical signals output by the nano-friction generator 53.
  • the two output electrodes of the plurality of nano-friction generators are connected in parallel and then connected to the two input terminals 51A and 51B of the rectifier circuit module 51.
  • the two output terminals 51C and 51D of the rectifier circuit module 51 are connected to the filter circuit module 52, and the rectifier circuit module 51 outputs the one-way pulsed direct current obtained by rectifying the electrical signal output from the nano-friction generator 53 to the filter circuit module 52.
  • the filter circuit module 52 is connected to the super capacitor 54.
  • the filter circuit module 52 filters the unidirectional pulse DC output from the rectifier circuit module 51 to obtain a DC signal to be output to the super capacitor 54.
  • the filter circuit module 52 has two terminals. Specifically, the first end 52A of the filter circuit module 52 is connected to the output terminal 51D of the rectifier circuit module 51, and the second end 52B of the filter circuit module 52 is connected to the output terminal 51C of the rectifier circuit module 51.
  • the first end 52A of the filter circuit module 52 is fluidly coupled to the first current collector of the supercapacitor, and the second end 52B of the filter circuit module 52 is coupled to the second current collector of the supercapacitor.
  • the second end 52B of the filter circuit module 52 is typically grounded.
  • the nano-friction generator when an external force acts on the nano-friction generator, the nano-friction generator is mechanically deformed, thereby generating an alternating pulse electric signal.
  • the pulsed electrical signal of the alternating current is first input to the rectifier circuit module, and is rectified by the rectifier circuit module to obtain a unidirectional pulsating direct current.
  • the one-way pulsating direct current is input to the filter circuit module for filtering, and the interference clutter in the unidirectional pulsating direct current is filtered to obtain a direct current signal.
  • this DC signal is directly input to the supercapacitor for charging.
  • the advantages of the above circuit are: (1) According to the size of the electric energy generated by the nano-friction generator and the size of the supercapacitor capacitor and the charging voltage, by adjusting the relevant parameters of the filter circuit module, the maximum utilization of the nano-friction generator can be utilized. Electrical energy, improve energy conversion efficiency; (2) Depending on the application environment, the nano-friction generator generates a wide range of voltage amplitudes, which can be adjusted to the voltage charged by the supercapacitor by adjusting the relevant parameters of the filter circuit module. Overcoming the uncertainty of the voltage generated by the nano-friction generator.
  • FIG. 6 is another schematic diagram of the circuit principle of the first embodiment of the self-charging supercapacitor provided by the present invention.
  • Figure 6 shows The internal structure of the preferred charging circuit module and its connection relationship with the nano-friction generator and the supercapacitor.
  • the charging circuit module includes a charging control module 63 and a switching/transforming module 64 in addition to the rectifier circuit module 61 and the filter circuit module 62.
  • the functions of the rectifier circuit module 61 and the filter circuit module 62 are described above, and are not described again.
  • the charging control module 63 is connected to the filter circuit module 62, and receives the DC voltage signal U1 outputted by the filter circuit module 62.
  • the charging control module 63 is connected to the super capacitor 65, and receives the charging voltage U fed back by the super capacitor 65.
  • the charging voltage U is super.
  • the voltage signal formed between the two current collectors of the capacitor 65; the charging control module 63 is also connected to the switch/transformer module 64, and the charging control module 63 obtains a control signal according to the DC voltage signal U1 and the charging voltage U, to switch/transform Module 64 outputs a control signal.
  • the switch/transformer module 64 is connected to the filter circuit module 62, and receives the DC voltage signal U1 output by the filter circuit module 62.
  • the switch/transformer module 64 is also connected to the super capacitor 65, and the switch/transformer module 64 performs the control signal according to the received control signal.
  • the switching and switching of the DC voltage signal output from the filter circuit module 62 are adjusted to accommodate the voltage U2 that charges the supercapacitor 65.
  • the difference from FIG. 5 is that the DC voltage signal U1 obtained by the filtering process is input to the charging control module 63, and the charging control module 63 determines the time according to the magnitude of the DC voltage signal U1.
  • the supercapacitor 65 is charged; and the state of charge of the supercapacitor 65 is closely monitored, and the switch/transformer module 64 is controlled in accordance with the state of charging of the supercapacitor 65.
  • the output voltage of the filter circuit module 62 is a gradually increasing output voltage. This output voltage is increased to the voltage limiting voltage.
  • This voltage limiting voltage is a circuit protection voltage to prevent the circuit from being damaged due to excessive voltage.
  • the charging control module 63 controls the switching/transforming module 64 to charge the super capacitor 65.
  • the operating power source is also derived from the nano-friction generator, so a charging control module 63 is specifically provided.
  • the startup voltage after the output voltage of the filter circuit module 62 reaches the startup voltage, the charging control module 63 drives the switch/transformer module 64 to initiate charging.
  • Another function of the charging control module 63 is to adjust the DC voltage signal U1 according to the size of the filtered DC voltage signal U1 and the charging voltage U of the supercapacitor 65, and adjust to the voltage U2 for charging the super capacitor 65, and Selective drive switch / transformer module 64 The supercapacitor 65 is charged.
  • the capacity C of the supercapacitor is a fixed value.
  • the charging control module 63 adjusts the circuit in the switch/transformer module 64 based on the charging voltage U fed back by the supercapacitor 65 and the numerical value of the DC voltage signal U1 outputted by the filter circuit module 62.
  • the conversion of the voltages U1 to U2 yields the real-time charging voltage U2 of the supercapacitor 65. There is a corresponding charging match between U2 and U to ensure the highest energy conversion efficiency.
  • the charging control module 63 compares the charging voltage U fed back by the supercapacitor 65 with U0. If U is less than U0, it indicates that the supercapacitor 65 is not fully charged and needs to continue charging; U is equal to U0, indicating that the supercapacitor 65 is full. At the same time, the charging control module 63 compares the DC voltage signal U1 outputted by the filter circuit module 62 with U0. If U1 is greater than U0, the charging control module 63 outputs a control signal to control the switch/transformer module 64 to perform step-down processing on U1.
  • the real-time charging voltage U2 of the supercapacitor 65 if U1 is less than U0, the charging control module 63 outputs a control signal to control the switching/transforming module 64 to perform a step-up process on U1 to obtain a real-time charging voltage U2 of the supercapacitor 65.
  • the charging control module 63 compares the charging voltage U fed back by the currently charging supercapacitor with its full voltage U0, and if U has reached U0, the charging control module 63 outputs a control signal to control the switching/changing
  • the voltage module 64 switches the switch to the next supercapacitor and continues to charge the next supercapacitor.
  • the charging circuit module may further include a generator control module 66.
  • the generator control module 66 is coupled to the supercapacitor 65 to receive a charging voltage U fed back by the supercapacitor 65, the charging voltage U being a voltage signal formed between the two current collectors of the supercapacitor 65; the generator control module 66 is also The nano-friction generator is connected to output a signal to stop the power generation to the nano-friction generator.
  • a full voltage is obtained, which is fed back to the generator control module 66, and the generator control module 66 will The m friction generator is turned off, thereby stopping power generation.
  • the advantages of the circuit shown in Figure 6 are: (1) Due to the uncertainty of the external force acting on the nano-friction generator, the magnitude of the alternating current generated by the nano-friction generator is also uncertain, and the circuit can convert the uncertain voltage value. It is suitable for the charging voltage of supercapacitor and has strong adaptability.
  • the charging control module is specially designed in the circuit, the charging voltage is adjusted according to the real-time voltage of the supercapacitor, making super The real-time voltage of the capacitor maintains a dynamic matching relationship with the charging voltage, so that the electric energy emitted by the nano-friction generator is maximized to the supercapacitor, and the maximum energy storage effect is achieved; (3) according to the filling of the supercapacitor, The generator control module controls the operation of the nano-friction generator to extend the service life of the nano-friction generator; (4) When charging multiple supercapacitors, one of them will automatically switch to the next supercapacitor when it is full. Charging.
  • the self-charging supercapacitor provided by the embodiment is not limited to including a single nano-friction generator, and a plurality of nano-friction generators may be disposed on one side of the supercapacitor. Specifically, there are a plurality of nano-friction generators disposed on one side of the super capacitor, and the arrays of the nano-friction generators are arranged in the same layer or different layers, and their corresponding output electrodes are connected together to form a parallel structure. The arrangement can be seen in Figure 7.
  • multiple parallel nano-friction generators can increase the current output to achieve better charging effect; and because of multiple nano-friction generators Evenly arranged, it can make it evenly stressed and has a good linear superposition effect.
  • FIG. 8 is a schematic perspective structural view of a second embodiment of a self-charging supercapacitor provided by the present invention.
  • the self-charging supercapacitor includes: a supercapacitor 81 and nano-friction generators 82 and 83 disposed on both sides of the supercapacitor 81, similar to a "sandwich" structure.
  • the nano friction generator 82 is disposed on the lower side of the super capacitor 81
  • the nano friction generator 83 is disposed on the upper side of the super capacitor 81.
  • the supercapacitor 81 is formed integrally with the nano friction generators 82 and 83 on the upper and lower sides.
  • the charging circuit module is not shown in FIG.
  • the two output electrodes of the nano-friction generators 82 and 83 are connected in parallel to the charging circuit module, and the charging circuit module is connected to the two current collectors of the super capacitor 81 to realize the storage of electric energy.
  • the supercapacitor 81 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal.
  • the ultracapacitor 81 is selected from an all solid state symmetrical graphene supercapacitor.
  • FIG. 9 is a schematic cross-sectional view showing a second embodiment of a self-charging supercapacitor provided by the present invention.
  • the structure of the supercapacitor 81 is the same as that described in the first embodiment, and the materials which are included in the device are also the same as those described in the first embodiment, and will not be described again.
  • the nano-friction generators 82 and 83 are layered and will be described in detail later.
  • the nano-friction generator 82 shares a substrate with the supercapacitor 81, and an insulating layer 90 is further disposed between the nano-friction generator 83 and the supercapacitor 81.
  • nano-friction generator and the super-capacitor share the substrate, there is no need to add a barrier layer.
  • an insulating layer is needed to prevent conduction.
  • the charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again.
  • the self-charging supercapacitor provided in this embodiment is not limited to including two upper and lower nano-friction generators, and a plurality of nano-friction generators may be disposed on the upper side and/or the lower side of the supercapacitor, specifically, disposed on the underside of the supercapacitor
  • the arrangement can be referred to Figure 7.
  • a plurality of nano-friction generators connected in parallel can increase the output of current to achieve better charging effect; and because a plurality of nano-friction generators are evenly arranged, the force can be uniform and have a good linear superposition effect.
  • FIG. 10 is a schematic perspective structural view of a third embodiment of a self-charging supercapacitor provided by the present invention.
  • the self-charging supercapacitor includes: a supercapacitor 101 and a nano-friction generator 102 disposed on the side of the supercapacitor 101, and an insulating layer 103 is further disposed between the nano-friction generator 102 and the ultracapacitor 101.
  • the nano-friction generator 102 is placed on the bottom layer, the insulating layer 103 is located on the upper surface of the nano-friction generator 102, and the supercapacitor 101 is located on the upper surface of the insulating layer 103.
  • the supercapacitor 101, the insulating layer 103, and the nano-friction generator 102 are formed in one piece.
  • the charging circuit module is not shown in FIG.
  • the two output electrodes of the nano-friction generator 102 are connected to the charging circuit module, and the charging circuit module is further connected to the two current collectors of the super capacitor 101. Thereby realizing the storage of electrical energy.
  • the supercapacitor 101 is an all-solid supercapacitor selected from the group consisting of a fully solid symmetrical graphene supercapacitor, an all solid state symmetrical activated carbon supercapacitor, an all solid activated carbon and a metal oxide asymmetric supercapacitor, and an all solid activated carbon.
  • asymmetrical supercapacitors mixed with a conductive polymer asymmetric supercapacitor, an all solid state activated carbon, and a lithium ion battery Preferably, the ultracapacitor 101 is selected from an all solid state symmetrical graphene supercapacitor.
  • the supercapacitor includes: a first current collector 111, a supercapacitor first electrode 112, a separator 113, a supercapacitor second electrode 114, and a second current collector 115 which are sequentially stacked in parallel, and the supercapacitor further includes a package.
  • Layer (not shown in Figure 11).
  • the insulating layer 103 is in contact with the first current collector 111.
  • the nano-friction generator 102 in Fig. 11 is a layered structure, and its specific structure will be described in detail later.
  • the materials of the first current collector 111 and the second current collector 115 are selected from one of copper, silver, aluminum, and nickel.
  • the material of the supercapacitor first electrode 112 and the supercapacitor second electrode 114 is selected from the group consisting of graphene, activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer, and lithium ion battery material.
  • the material of the separator 113 may be selected from the group consisting of graphite oxide, PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-H 3 P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-mercaptoimidazole Bis-trifluorofluorenyl sulfonyl imide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-tridecylsilanol System, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate-ethylene carbonate-propylene carbonate-lithium perchlorate) System, PMMA-EC-PC-NaC10 4 (poly(dec
  • the electrolyte is solid or colloidal, the electrolyte system is PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system; PVA-3 ⁇ 4P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-fluorenyl Imidazole bistrifluorodecylsulfonylsulfonimide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-oxime) Imidazolium tetrafluoroborate-trimethylsilyl alcohol) system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate) -ethylene carbonate-propylene carbonate-lithium perchlorate system, PMMA-EC-PC-NaC10 4 (poly(mercapto
  • the encapsulating layer is made of aluminum plastic film, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), One of polydecyl methacrylate (PMMA), polyfurfural (POM), polycarbonate (PC), and polyamide (PA).
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PMMA polydecyl methacrylate
  • POM polyfurfural
  • PC polycarbonate
  • PA polyamide
  • the charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again.
  • the charging circuit module is coupled to the first current collector 111 and the second current collector 115 described above.
  • the self-charging supercapacitor provided in this embodiment is not limited to including a single nano-friction generator, and a plurality of nano-friction generators may be disposed on one side of the super-capacitor. Specifically, how many nano-friction generators are disposed on one side of the supercapacitor
  • the nano-friction generator arrays are arranged in the same layer or different layers, and their corresponding output electrodes are connected together to form a parallel structure. The arrangement can be seen in Figure 7.
  • multiple parallel nano-friction generators can increase the current output to achieve better charging effect; and because of multiple nano-friction generators Evenly arranged, it can make it evenly stressed and has a good linear superposition effect.
  • FIG. 12 is a schematic perspective structural view of a fourth embodiment of a self-charging supercapacitor provided by the present invention.
  • the self-charging supercapacitor includes: a supercapacitor 121 and nano-friction generators 122 and 123 disposed on both sides of the supercapacitor 121.
  • the nano-friction generator 122 is disposed on the lower side of the supercapacitor 121, and the first insulating layer 124 is further disposed between the nano-friction generator 122 and the ultra-capacitor 121.
  • the nano-friction generator 123 is disposed on the upper side of the supercapacitor 121.
  • a second insulating layer 125 is further disposed between the nano friction generator 123 and the ultracapacitor 121.
  • the supercapacitor 121 is formed integrally with the nano friction generators 122 and 123 on the upper and lower sides, and the first insulating layer 124 and the second insulating layer 125.
  • the charging circuit module is not shown in FIG. The two output electrodes of the nano friction generators 122 and 123 are connected in parallel to the charging circuit module, and the charging circuit The module is then coupled to the two current collectors of the supercapacitor 121 to effect storage of electrical energy.
  • the supercapacitor 121 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon.
  • the ultracapacitor 121 is selected from an all solid state symmetrical graphene supercapacitor.
  • FIG. 13 is a schematic cross-sectional view showing a fourth embodiment of a self-charging supercapacitor provided by the present invention.
  • the structure of the supercapacitor 121 is the same as that described in the third embodiment, and the materials which are included in the device are also the same as those described in the third embodiment, and are not described herein again.
  • the nano-friction motors 122 and 123 are layered and will be described in detail later.
  • a first insulating layer 124 is disposed between the nano-friction generator 122 and the ultracapacitor 121, and a second insulating layer 125 is disposed between the nano-friction generator 123 and the super-capacitor 121.
  • the charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again.
  • the self-charging supercapacitor provided in this embodiment is not limited to including two upper and lower nano-friction generators, and a plurality of nano-friction generators may be disposed on the upper side and/or the lower side of the supercapacitor, specifically, disposed on the underside of the supercapacitor
  • the arrangement can be referred to Figure 7.
  • a plurality of nano-friction generators connected in parallel can increase the output of current to achieve better charging effect; and because a plurality of nano-friction generators are evenly arranged, the force can be uniform and have a good linear superposition effect.
  • the first structure of the nano-friction generator is shown in Figures 14a and 14b.
  • 14a and 14b are respectively a perspective structural view and a cross-sectional structural view showing a first structure of a nano-friction generator.
  • the nano-friction generator includes: a first electrode 141, a first polymer insulating layer 142, and a second electrode 143 which are sequentially stacked.
  • the first electrode 141 is disposed on the first side surface of the first polymer insulating layer 142; and the first polymer insulating layer 142
  • the second side surface is in frictional contact with the surface of the second electrode 143 and induces a charge at the second electrode and the first electrode. Therefore, the first electrode 141 and the second electrode 143 described above constitute two output electrodes of the nano friction generator.
  • a micro-nano structure 144 is further provided on the second side surface of the first polymer insulating layer 142 (i.e., the surface opposite to the second electrode 143). Therefore, when the nano-friction generator is pressed, the opposing surfaces of the first polymer-polymer insulating layer 142 and the second electrode 143 can better contact the friction and are induced at the first electrode 141 and the second electrode 143. More charge. Since the second electrode 143 is mainly used for rubbing with the first polymer polymer insulating layer 142, the second electrode 143 may also be referred to as a friction electrode.
  • the micro-nano structure 144 can adopt the following two possible implementation manners:
  • the micro-nano structure is a very small concave-convex structure of a micrometer or a nanometer.
  • the uneven structure can increase frictional resistance and improve power generation efficiency.
  • the uneven structure can be formed directly at the time of film preparation, and the surface of the first polymer insulating layer can be formed into an irregular concave-convex structure by a grinding method.
  • the uneven structure may be a concave-convex structure of a semicircular shape, a striped shape, a cubic shape, a quadrangular pyramid shape, or a cylindrical shape.
  • the micro/nano structure is a nano-scale pore structure
  • the material used for the first polymer insulating layer is preferably polyvinylidene fluoride (PVDF), and the thickness thereof is 0.5-1.2 mm (preferably 1.0 mm).
  • a plurality of nanopores are disposed on a surface of the second electrode.
  • the size of each nanopore that is, the width and depth, can be selected according to the needs of the application.
  • the preferred size of the nanopore is: 10-100 nm in width and 4-50 ⁇ in depth.
  • the number of nanopores can be adjusted according to the required output current value and voltage value.
  • the nanopores are uniformly distributed with a pore spacing of 2-30 ⁇ m, and more preferably have a uniform distribution of average pore spacing of 9 ⁇ m.
  • Figs. 14a and 14b The working principle of the nano-friction generator shown in Figs. 14a and 14b will be specifically described below.
  • the layers of the nano-friction generator are bent downward, the surface of the second electrode 143 and the first polymer-polymer insulating layer 142 in the nano-friction generator rub against each other to generate an electrostatic charge, and the generation of the static charge causes the first electrode
  • the capacitance between the 141 and the second electrode 143 is changed, resulting in a potential difference between the first electrode 141 and the second electrode 143.
  • the charging circuit module and the super capacitor constitute an external circuit of the nano friction generator, and the nano friction generator
  • the two output electrodes are equivalent to being connected by an external circuit.
  • the metal rubs against the polymer, and the metal is more likely to lose electrons. Therefore, the friction between the metal electrode and the polymer can improve the energy output. Therefore, correspondingly, in the nano-friction generator shown in FIG. 14a and FIG.
  • the second electrode is required to be rubbed as a friction electrode (ie, metal) with the first high-molecular polymer, so that the material thereof may be selected from metal or Alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese, phase, tungsten or vanadium; the alloy may be an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum alloy , copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, milling alloys or niobium alloys.
  • the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese, phase, tungsten or vanadium
  • the alloy may
  • the first electrode may be selected from a metal or an alloy.
  • the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese, molybdenum, tungsten or vanadium;
  • the alloy may be aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, copper Alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy, may also be selected from indium tin oxide
  • Non-metallic materials such as graphene, silver nanowire film.
  • the second structure of the nano-friction generator is shown in Figures 15a and 15b.
  • 15a and 15b are respectively a perspective structural view and a cross-sectional structural view showing a second structure of a nano-friction generator.
  • the nano-friction generator includes: a first electrode 151, a first polymer insulating layer 152, a second polymer insulating layer 154, and a second electrode 153 which are sequentially stacked.
  • the first electrode 151 is disposed on the first side surface of the first polymer insulating layer 152; the second electrode 153 is disposed on the first side surface of the second polymer insulating layer 154; The second side surface of the high molecular polymer insulating layer 152 is in contact with the second side surface of the second polymer insulating layer 154 and induces electric charges at the first electrode 151 and the second electrode 153.
  • the first electrode 151 and the second electrode 153 constitute two output electrodes of the nano friction generator.
  • At least one of the two faces of the first polymer-polymer insulating layer 152 and the second polymer-polymer insulating layer 154 are provided with a micro-nano structure.
  • a micro-nano structure 155 is provided on the surface of the first polymer insulating layer 152. Therefore, when the nano-friction generator is squeezed, the opposing surfaces of the first polymer insulating layer 152 and the second polymer insulating layer 154 can better contact the friction, and at the first electrode 151 and the second More charge is induced at the electrode 153.
  • the above micro-nano structure can be referred to the above description, and details are not described herein again.
  • the operation of the nano-friction generator shown in Figures 15a and 15b is similar to that of the nano-friction generator shown in Figures 14a and 14b. The only difference is that when the layers of the nano-friction generator shown in FIGS. 15a and 15b are bent, the surfaces of the first polymer-polymer insulating layer 152 and the second polymer-polymer insulating layer 154 are rubbed against each other to generate Static charge. Therefore, the working principle of the nano-friction generator shown in Figs. 15a and 15b will not be described here.
  • the nano-friction generator shown in Figs. 15a and 15b mainly generates an electric signal by friction between a polymer (first polymer polymer insulating layer) and a polymer (second polymer insulating layer).
  • the material used for the first electrode and the second electrode may be indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, Copper, titanium, chromium, selenium, iron, manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys , cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the first polymer insulating layer and the second polymer insulating layer are respectively selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, and poly Amide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film , cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film , polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol film, neoprene film, D Diene
  • the materials of the first polymer insulating layer and the second polymer insulating layer may be the same or different. However, if the two layers of polymer insulation are made of the same material, the amount of charge that causes triboelectric charging is small. Therefore, it is preferable that the material of the first polymer insulating layer and the second polymer insulating layer are different.
  • the nano-friction generator can also be implemented with a third structure, as shown in Figures 16a and 16b.
  • 16a and 16b are respectively a perspective structural view and a cross-sectional structural view showing a third structure of the nano-friction generator.
  • the third structure adds an intervening film layer to the second structure, that is, the third structure of the nano-friction generator includes a first electrode 161 which is sequentially stacked, and the first high The molecular polymer insulating layer 162, the intermediate film layer 160, the second polymer insulating layer 164, and the second electrode 163.
  • the first electrode 161 is disposed on the first side surface of the first polymer insulating layer 162; the second electrode 163 is disposed on the first side surface of the second polymer insulating layer 164, and the intermediate film The layer 160 is disposed between the second side surface of the first polymer insulating layer 162 and the second side surface of the second polymer insulating layer 164.
  • at least one of the two faces opposite to each other of the intermediate film layer 160 and the first polymer insulating layer 162 is provided with a micro/nano structure 165, and/or the intermediate film layer 160 and the second high
  • the micro-nano structure 165 is disposed on at least one of the two faces of the molecular polymer insulating layer 164.
  • the material of the nano-friction generator shown in FIG. 16a and FIG. 16b can be selected by referring to the material of the nano-friction generator of the second structure described above.
  • the intermediate film layer may also be selected from the group consisting of transparent high-polymer polyethylene terephthalate (PET), polydisiloxane (PDMS), polystyrene (PS), and polyacrylonitrile. Any of ester (PMMA), polycarbonate (PC), and liquid crystal polymer (LCP).
  • the material of the first polymer polymer insulating layer and the second polymer polymer insulating layer is preferably a transparent high polymer polyethylene terephthalate (PET); wherein, the intermediate film layer
  • PET transparent high polymer polyethylene terephthalate
  • the material is preferably polydithiosiloxane (PDMS).
  • PDMS polydithiosiloxane
  • the materials of the first polymer polymer insulating layer, the second polymer polymer insulating layer, and the intermediate film layer may be the same or different. However, if the material of the three-layer polymer insulating layer is the same, the amount of charge that causes triboelectric charging is small.
  • the material of the intermediate film layer is different from that of the first polymer insulating layer and The second polymer polymer insulation layer, and the first polymer polymer
  • the material of the edge layer and the second polymer insulating layer are preferably the same, so that the material type can be reduced and the production of the present invention can be made more convenient.
  • the intervening film layer 160 is a layer of polymeric film, and thus substantially similar to the implementation shown in Figures 15a and 15b, still through the polymer (intermediate film layer) And the friction between the polymer (the second polymer insulation layer) to generate electricity.
  • the intervening film layer is easy to prepare and has stable performance.
  • the nano friction generator can also be implemented by using a fourth structure, as shown in FIG. 17a and FIG. 17b, including: a first electrode 171, a first polymer insulating layer 172, and an intervening electrode layer 170, which are sequentially stacked.
  • the intermediate electrode layer 170 is disposed between the second side surface of the first polymer insulating layer 172 and the second side surface of the second polymer insulating layer 174.
  • the first polymer polymer insulating layer 172 is provided with a micro-nano structure on at least one of the surface of the inter-electrode layer 170 and the surface of the inter-electrode layer 170 opposite to the first polymer insulating layer 172 (not shown)
  • the second polymer insulating layer 174 is provided with a micro/nano structure on at least one of the surface of the intermediate electrode layer 170 and the surface of the intermediate electrode layer 170 and the second polymer insulating layer 174 (not shown) ).
  • electrostatic charges are generated by friction between the inter-electrode electrode layer 170 and the first polymer-polymer insulating layer 172 and the second polymer-polymer insulating layer 174, thereby placing the intervening electrode layer 170 and the first electrode.
  • a potential difference is generated between the 171 and the second electrode 173.
  • the first electrode 171 and the second electrode 173 are connected in series as one output electrode of the nano-friction generator; the intermediate electrode layer 170 is the other output electrode of the nano-friction generator.
  • the materials of the first polymer insulating layer, the second polymer insulating layer, the first electrode and the second electrode may refer to the nano friction of the second structure described above.
  • the material of the generator is selected.
  • the intervening electrode layer may be selected from a conductive film, a conductive polymer, a metal material, the metal material includes a pure metal and an alloy, and the pure metal is selected from the group consisting of gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese.
  • the alloy may be selected from light alloys (aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, etc.), heavy non-ferrous alloys (copper alloys, alloys, manganese alloys, nickel alloys, etc.), low melting point alloys (lead, tin, cadmium, antimony, indium, gallium and their alloys), refractory Alloys (tungsten alloys, molybdenum alloys, niobium alloys, tantalum alloys, etc.).
  • the thickness of the intervening electrode layer 80 is preferably 100 ⁇ m to 500 ⁇ m, more preferably 200 ⁇ m.
  • the self-charging supercapacitor provided by the invention can realize self-charging function, and the self-charging supercapacitor can be arbitrarily bent and deformed by using flexible material, so that the self-charging supercapacitor of the invention can be adapted to different applications and environments.
  • the present invention provides a high capacity retention rate and can achieve more efficient charge and discharge, and is an excellent energy storage device.
  • the self-charging supercapacitor provided by the present invention has flexible, ingenious structure and better performance, and the shape and size can be processed according to the needs of the user, and is more convenient.

Abstract

Disclosed is a self-charging super capacitor. The self-charging super capacitor comprises: at least one nanometer friction generator which is capable of converting mechanical energy into electric energy, wherein each nanometer friction generator is provided with two output electrodes which are used for outputting electrical signals; a charging circuit module which is connected to the output electrodes of the at least one nanometer friction generator and is used for adjusting and converting the electrical signals output by the nanometer friction generator; and a super capacitor which is connected to the charging circuit module and is used for receiving the electrical signals output by the charging circuit module and storing same. In the self-charging super capacitor provided in the present invention, a nanometer friction generator acts as a charging power source, and the self-charging of the super capacitor is achieved by converting mechanical energy into electric energy through the nanometer friction generator and outputting electrical signals to the super capacitor for storage after adjusting and converting same through a charging circuit module.

Description

自充电超级电容器 技术领域  Self-charging supercapacitor
本发明涉及纳米技术领域, 更具体地说, 涉及一种自充电超级电容器。  This invention relates to the field of nanotechnology and, more particularly, to a self-charging supercapacitor.
背景技术 Background technique
超级电容器也称为电化学电容器, 是介于传统电容器与电池之间的一种 电化学储能装置。 与传统电容器相比, 超级电容器拥有更高的静电容量; 与 电池相比, 超级电容器具有更高的功率密度和超长循环寿命。 超级电容器结 合了二者的优点, 是一种应用前景广阔的储能器件。  Supercapacitors, also known as electrochemical capacitors, are an electrochemical energy storage device between a conventional capacitor and a battery. Supercapacitors have higher electrostatic capacity than conventional capacitors; supercapacitors have higher power density and longer cycle life than batteries. Supercapacitors combine the advantages of both and are a promising energy storage device.
现有的超级电容器主要由电极、 电解质和隔膜组成。 其中电极包括电极 活性材料和集电极两部分。 集电极的作用是降低电极的内阻, 要求它与电极 接触面积大, 接触电阻小, 而且耐腐蚀性强, 在电解质中性能稳定, 不发生 化学反应等。  Existing supercapacitors are mainly composed of an electrode, an electrolyte, and a separator. The electrode includes an electrode active material and a collector. The role of the collector is to reduce the internal resistance of the electrode, requiring a large contact area with the electrode, a small contact resistance, and high corrosion resistance, stable performance in the electrolyte, and no chemical reaction.
虽然超级电容器性能优越, 但是其充电电源的来源单一, 不能实现自充 电, 故其使用产生了一定的局限性。 现有技术中也存在一些超级电容器, 它 们可以被制备成柔性结构, 但是制备工艺复杂, 不易被大规模加工生产。 超 级电容器作为未来一种理想的储能元件, 其结构也需要独特的设计。 因此, 为了更好的使用与应用超级电容器, 亟需解决上述问题。 发明内容  Although the supercapacitor has superior performance, its charging power source has a single source and cannot be self-charged, so its use has certain limitations. There are also some supercapacitors in the prior art which can be prepared into a flexible structure, but the preparation process is complicated and is not easily produced by large-scale processing. As an ideal energy storage component in the future, super capacitors require a unique design. Therefore, in order to better use and apply supercapacitors, it is urgent to solve the above problems. Summary of the invention
本发明的发明目的是针对现有技术的缺陷, 提出一种自充电超级电容 器, 不借助外部电源, 实现超级电容器的自充电。  SUMMARY OF THE INVENTION The object of the present invention is to provide a self-charging supercapacitor that achieves self-charging of a supercapacitor without the aid of an external power source, in view of the deficiencies of the prior art.
本发明提供了一种自充电超级电容器, 包括:  The present invention provides a self-charging supercapacitor comprising:
将机械能转换为电能的至少一个纳米摩擦发电机, 每个纳米摩擦发电机 具有用于输出电信号的两个输出电极;  At least one nano-friction generator that converts mechanical energy into electrical energy, each nano-friction generator having two output electrodes for outputting electrical signals;
与所述至少一个纳米摩擦发电机的输出电极相连的、 将所述纳米摩擦发 电机输出的电信号进行调节转换的充电电路模块; 以及 与所述充电电路模块相连的、 接收所述充电电路模块输出的电信号并进 行储存的超级电容器。 a charging circuit module connected to an output electrode of the at least one nano-friction generator for regulating conversion of an electrical signal output by the nano-friction generator; a super capacitor connected to the charging circuit module and receiving an electrical signal output by the charging circuit module and storing.
可选地, 所述超级电容器包括: 基底;  Optionally, the super capacitor includes: a substrate;
位于基底上的隔膜、 超级电容器第一电极、 超级电容器第二电极以及第 一集流体、 第二集流体; 分别位于所述第一集流体和第二集流体上的两个垫 层片;  a separator on the substrate, a first electrode of the supercapacitor, a second electrode of the supercapacitor, and a first current collector, a second current collector; and two pad sheets on the first current collector and the second current collector, respectively;
由所述两个垫层片、 所述隔膜、 所述超级电容器第一电极和超级电容器 第二电极形成的空腔, 所述空腔内填充有电解液;  a cavity formed by the two bedding sheets, the separator, the first electrode of the supercapacitor, and the second electrode of the supercapacitor, the cavity being filled with an electrolyte;
将所述电解液进行封装的封装层;  An encapsulation layer that encapsulates the electrolyte;
其中, 所述隔膜设置在所述超级电容器第一电极和超级电容器第二电极 之间, 所述第一集流体与超级电容器第一电极连接, 所述第二集流体与超级 电容器第二电极连接, 所述充电电路模块与所述第一集流体、 第二集流体连 接。  Wherein the diaphragm is disposed between the first electrode of the supercapacitor and the second electrode of the supercapacitor, the first current collector is connected to the first electrode of the supercapacitor, and the second current collector is connected to the second electrode of the supercapacitor The charging circuit module is connected to the first current collector and the second current collector.
可选地, 所述至少一个纳米摩擦发电机设置在所述超级电容器的一侧, 所述至少一个纳米摩擦发电机与所述超级电容器共用所述基底。  Optionally, the at least one nano-friction generator is disposed on one side of the ultracapacitor, and the at least one nano-friction generator shares the substrate with the supercapacitor.
可选地, 所述至少一个纳米摩擦发电机分设在所述超级电容器的两侧, 设置在所述超级电容器下侧的至少一个纳米摩擦发电机与所述超级电容器 共用所述基底, 设置在所述超级电容器上侧的至少一个纳米摩擦发电机与所 述超级电容器之间还设置有绝缘层。  Optionally, the at least one nano-friction generator is disposed on two sides of the supercapacitor, and at least one nano-friction generator disposed on a lower side of the supercapacitor shares the substrate with the supercapacitor, and is disposed at the An insulating layer is further disposed between the at least one nano-friction generator on the upper side of the supercapacitor and the supercapacitor.
可选地, 所述超级电容器包括: 依次平行层叠设置的第一集流体、 超级 电容器第一电极、 隔膜、 超级电容器第二电极和第二集流体以及封装层; 所 述充电电路模块与所述第一集流体、 第二集流体连接。  Optionally, the supercapacitor includes: a first current collector, a supercapacitor first electrode, a separator, a supercapacitor second electrode and a second current collector, and an encapsulation layer, which are sequentially stacked in parallel; the charging circuit module and the The first current collector and the second current collector are connected.
可选地, 所述至少一个纳米摩擦发电机设置在所述超级电容器的一侧, 所述至少一个纳米摩擦发电机与所述超级电容器之间还设置有绝缘层。  Optionally, the at least one nano-friction generator is disposed on one side of the ultra-capacitor, and an insulation layer is further disposed between the at least one nano-friction generator and the super capacitor.
可选地, 所述至少一个纳米摩擦发电机分设在所述超级电容器的两侧, 设置在所述超级电容器下侧的至少一个纳米摩擦发电机与所述超级电容器 之间还设置有第一绝缘层, 设置在所述超级电容器上侧的至少一个纳米摩擦 发电机与所述超级电容器之间还设置有第二绝缘层。 Optionally, the at least one nano-friction generator is disposed on two sides of the ultra-capacitor, and at least one nano-friction generator disposed on a lower side of the supercapacitor is further provided with a first insulation between the super-capacitor a layer, at least one nano-friction disposed on an upper side of the supercapacitor A second insulating layer is further disposed between the generator and the super capacitor.
可选地, 所述纳米摩擦发电机有多个, 且阵列排列在同一层或不同层, 形成并联结构。  Optionally, the nano friction generator has multiple, and the array is arranged in the same layer or different layers to form a parallel structure.
可选地, 设置在所述超级电容器下侧的纳米摩擦发电机有多个, 且阵列 排列在同一层或不同层, 形成并联结构; 和 /或, 设置在所述超级电容器上侧 的纳米摩擦发电机有多个, 且阵列排列在同一层或不同层, 形成并联结构。  Optionally, there are a plurality of nano-friction generators disposed on the underside of the supercapacitor, and the arrays are arranged in the same layer or different layers to form a parallel structure; and/or nano-friction disposed on the upper side of the supercapacitor There are a plurality of generators, and the arrays are arranged in the same layer or different layers to form a parallel structure.
可选地, 所述超级电容器为全固态超级电容器, 选自全固态对称型石墨 烯超级电容器、 全固态对称型活性炭超级电容器、 全固态活性炭与金属氧化 物非对称型超级电容器、 全固态活性炭与导电聚合物非对称型超级电容器、 全固态活性炭与锂离子电池混合非对称型超级电容器中的一种。  Optionally, the supercapacitor is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon. One of a conductive type asymmetric supercapacitor, an all-solid activated carbon, and a lithium ion battery hybrid asymmetric supercapacitor.
可选地, 所述基底的材质选自聚对苯二曱酸乙二醇酯、 硅和二氧化硅中 的一种。  Optionally, the material of the substrate is selected from the group consisting of polyethylene terephthalate, silicon, and silicon dioxide.
可选地, 所述两个垫层片的材质选自丁钠橡胶、 丁苯橡胶、 丁腈橡胶、 丁基橡胶、 硅橡胶、 聚氨酯橡胶、 异戊橡胶、 顺丁橡胶、 氟橡胶和丙烯酸酯 橡胶中的一种。  Optionally, the material of the two cushion sheets is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate. One of the rubbers.
可选地, 所述隔膜的材质为自氧化石墨、 聚乙烯醇 -硫酸体系、 聚乙烯醇 -磷酸体系、 1-丁基, 3-曱基咪唑双三氟曱基磺酰磺酰亚胺-烟雾硅胶体系、 聚 苯胺 -1—乙基, 3-曱基咪唑四氟硼酸盐-三曱基硅醇体系、 1-丁基, 3-曱基咪唑 四氟硼酸盐-硅胶体系、聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯-高氯酸锂 体系、 聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯-高氯酸纳体系、 聚氧化乙 烯-聚乙二醇-三氟曱基石黄酸锂体系、聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯 酯-高氯酸四乙基铵体系中的一种。  Optionally, the material of the separator is self-oxidized graphite, polyvinyl alcohol-sulfuric acid system, polyvinyl alcohol-phosphoric acid system, 1-butyl, 3-mercaptoimidazole bistrifluorodecylsulfonyl sulfonimide- Smoke silica gel system, polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-trimethylsilyl alcohol system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, poly Ethyl decyl acrylate-ethylene carbonate-propylene carbonate-lithium perchlorate system, decyl methacrylate-ethylene carbonate-propylene carbonate-sodium perchlorate system, polyethylene oxide-polyethylene glycol- One of a lithium trifluoromethanelithinate system, a polydecyl methacrylate-ethylene carbonate-propylene carbonate-tetraethylammonium perchlorate system.
可选地, 所述封装层的材质为铝塑膜、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚 苯乙烯、 丙烯腈 -丁二烯-苯乙烯共聚物、 聚曱基丙烯酸曱酯、 聚曱醛、 聚碳 酸酯和聚酰胺膜中的一种。  Optionally, the encapsulating layer is made of aluminum plastic film, polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer, polydecyl methacrylate, polyfluorene. One of an aldehyde, a polycarbonate, and a polyamide film.
可选地, 所述第一集流体和第二集流体的材质选自铜、 银、 铝和镍中的 一种; 所述超级电容器第一电极和超级电容器第二电极的材质选自石墨烯、 活性炭、 炭气凝胶、 碳纤维、 金属氧化物、 导电聚合物和锂离子电池电极材 料中的一种。 Optionally, the materials of the first current collector and the second current collector are selected from one of copper, silver, aluminum, and nickel; the first electrode of the supercapacitor and the second electrode of the supercapacitor are selected from the group consisting of graphene , activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer and lithium ion battery electrode One of the materials.
可选地,所述超级电容器第一电极和超级电容器第二电极为:平行结构、 多列平行结构、 交指结构、 蛇形结构、 螺旋形结构、 树枝状结构、 螺旋树枝 状结构或指纹结构。  Optionally, the first electrode of the supercapacitor and the second electrode of the supercapacitor are: a parallel structure, a multi-column parallel structure, an interdigitated structure, a serpentine structure, a spiral structure, a dendritic structure, a spiral dendritic structure or a fingerprint structure .
可选地, 所述充电电路模块包括:  Optionally, the charging circuit module includes:
与至少一个纳米摩擦发电机的输出电极相连的、 将所述至少一个纳米摩 擦发电机输出的电信号进行整流处理的整流电路模块; 以及  a rectifier circuit module coupled to an output electrode of the at least one nano-friction generator for rectifying an electrical signal output by the at least one nano-friction generator;
与所述整流电路模块相连的、 将所述整流电路模块输出的单向脉沖直流 电进行滤波处理而得到直流电信号的滤波电路模块, 所述滤波电路模块将所 述直流电信号输出给所述超级电容器。  And a filter circuit module connected to the rectifier circuit module for filtering a unidirectional pulsed direct current outputted by the rectifier circuit module to obtain a direct current signal, wherein the filter circuit module outputs the direct current signal to the super capacitor.
可选地, 所述充电电路模块还包括: 充电控制模块和开关 /变压模块; 所述充电控制模块与滤波电路模块连接, 接收所述滤波电路模块输出的 直流电信号; 所述充电控制模块与所述超级电容器连接, 接收所述超级电容 器反馈的充电电压; 所述充电控制模块与所述开关 /变压模块连接, 所述充电 控制模块根据所述直流电信号和所述充电电压得到控制信号, 向所述开关 / 变压模块输出所述控制信号;  Optionally, the charging circuit module further includes: a charging control module and a switch/transformer module; the charging control module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the charging control module and The supercapacitor is connected to receive a charging voltage fed back by the supercapacitor; the charging control module is connected to the switch/transformer module, and the charging control module obtains a control signal according to the direct current signal and the charging voltage, Outputting the control signal to the switch/transformer module;
所述开关 /变压模块与所述滤波电路模块连接,接收滤波电路模块输出的 直流电信号; 所述开关 /变压模块与所述超级电容器连接, 所述开关 /变压模 块根据接收的控制信号进行开关切换和对所述滤波电路模块输出的直流电 信号进行变压处理后输出给所述超级电容器。  The switch/transformer module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the switch/transformer module is connected to the super capacitor, and the switch/transformer module is based on the received control signal Switching is performed and the DC signal outputted by the filter circuit module is subjected to a voltage transformation process and output to the super capacitor.
可选地, 所述充电电路模块还包括: 发电机控制模块; 所述发电机控制 模块与所述超级电容器连接, 接收所述超级电容器反馈的充电电压; 所述发 电机控制模块与所述纳米摩擦发电机连接, 所述发电机控制模块根据所述充 电电压向所述纳米摩擦发电机输出停止发电的信号。  Optionally, the charging circuit module further includes: a generator control module; the generator control module is connected to the super capacitor, and receives a charging voltage fed back by the super capacitor; the generator control module and the nanometer A friction generator is connected, and the generator control module outputs a signal to stop the power generation to the nano friction generator according to the charging voltage.
可选地, 所述纳米摩擦发电机包括: 依次层叠设置的第一电极, 第一高 分子聚合物绝缘层, 以及第二电极; 其中, 所述第一电极设置在所述第一高 分子聚合物绝缘层的第一侧表面上; 且所述第一高分子聚合物绝缘层的第二 侧表面朝向所述第二电极设置, 所述第一电极和第二电极构成所述纳米摩擦 发电机的输出电极。 Optionally, the nano-friction generator includes: a first electrode, a first polymer insulating layer, and a second electrode, which are sequentially stacked; wherein the first electrode is disposed in the first polymer a first side surface of the insulating layer; and a second side surface of the first polymer insulating layer is disposed toward the second electrode, the first electrode and the second electrode constituting the nano-friction The output electrode of the generator.
可选地, 所述第一高分子聚合物绝缘层朝向第二电极的面上设有微纳结 构。  Optionally, the first polymer polymer insulating layer is provided with a micro/nano structure on a surface facing the second electrode.
可选地, 所述纳米摩擦发电机进一步包括: 设置在所述第二电极和所述 第一高分子聚合物绝缘层之间的第二高分子聚合物绝缘层, 所述第二电极设 置在所述第二高分子聚合物绝缘层的第一侧表面上; 且所述第二高分子聚合 物绝缘层的第二侧表面与所述第一高分子聚合物绝缘层的第二侧表面相对 设置。  Optionally, the nano friction generator further includes: a second polymer insulating layer disposed between the second electrode and the first polymer insulating layer, wherein the second electrode is disposed at a first side surface of the second polymer insulating layer; and a second side surface of the second polymer insulating layer is opposite to a second side surface of the first polymer insulating layer Settings.
可选地, 所述第一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对 设置的两个面中的至少一个面上设有微纳结构。  Optionally, at least one of the two faces disposed opposite to each of the first polymer insulating layer and the second polymer insulating layer is provided with a micro/nano structure.
可选地, 所述纳米摩擦发电机进一步包括: 设置在所述第一高分子聚合 物绝缘层和所述第二高分子聚合物绝缘层之间的居间薄膜层, 其中, 所述居 间薄膜层为聚合物薄膜层, 且所述第一高分子聚合物绝缘层相对所述居间薄 膜层的面和居间薄膜层相对于第一高分子聚合物绝缘层的面中的至少一个 面上和 /或所述第二高分子聚合物绝缘层相对所述居间薄膜层的面和居间薄 膜层相对第二高分子聚合物绝缘层的面中的至少一个面上设有微纳结构。  Optionally, the nano-friction generator further includes: an intermediate film layer disposed between the first polymer insulating layer and the second polymer insulating layer, wherein the intermediate film layer a polymer film layer, and the first polymer polymer insulating layer is opposite to at least one of a face of the intermediate film layer and an intermediate film layer with respect to a face of the first polymer polymer insulating layer and/or The second polymer insulating layer is provided with a micro/nano structure on at least one of a surface of the intermediate film layer and a surface of the intermediate film layer and the second polymer insulating layer.
可选地, 所述纳米摩擦发电机包括: 依次层叠设置的第一电极, 第一高 分子聚合物绝缘层, 居间电极层, 第二高分子聚合物绝缘层以及第二电极; 其中, 所述第一电极设置在所述第一高分子聚合物绝缘层的第一侧表面上; 所述第二电极设置在所述第二高分子聚合物绝缘层的第一侧表面上, 所述居 间电极层设置在所述第一高分子聚合物绝缘层的第二侧表面与所述第二高 分子聚合物绝缘层的第二侧表面之间, 且所述第一高分子聚合物绝缘层相对 所述居间电极层的面和居间电极层相对于第一高分子聚合物绝缘层的面中 的至少一个面上和 /或所述第二高分子聚合物绝缘层相对所述居间电极层的 面和居间电极层相对第二高分子聚合物绝缘层的面中的至少一个面上设有 微纳结构, 所述第一电极和第二电极相连后与所述居间电极层构成所述纳米 摩擦发电机的输出电极。  Optionally, the nano-friction generator includes: a first electrode, a first polymer insulating layer, an intervening electrode layer, a second polymer insulating layer, and a second electrode; a first electrode is disposed on the first side surface of the first polymer insulating layer; the second electrode is disposed on the first side surface of the second polymer insulating layer, the intervening electrode a layer is disposed between the second side surface of the first polymer insulating layer and the second side surface of the second polymer insulating layer, and the first polymer insulating layer is opposite a surface of the intervening electrode layer and at least one of a surface of the intervening electrode layer with respect to the first polymer insulating layer and/or a surface of the second polymer insulating layer with respect to the intervening electrode layer The intervening electrode layer is provided with a micro/nano structure on at least one of the faces of the second polymer insulating layer, and the first electrode and the second electrode are connected to form the nano-friction with the intervening electrode layer Motor output electrode.
在本发明提供的自充电超级电容器中, 纳米摩擦发电机充当了充电电源 的角色, 其通过将机械能转换为电能, 再由充电电路模块将电能信号进行调 节转换后输出给超级电容器进行储存, 从而实现了超级电容器的自充电。 附图概述 In the self-charging supercapacitor provided by the present invention, the nano-friction generator functions as a charging power source, which converts the mechanical energy into electrical energy, and then adjusts the electric energy signal by the charging circuit module. The section is converted and output to the supercapacitor for storage, thereby realizing self-charging of the supercapacitor. BRIEF abstract
图 1为本发明提供的自充电超级电容器的原理结构框图;  1 is a block diagram showing the principle structure of a self-charging supercapacitor provided by the present invention;
图 2为本发明提供的自充电超级电容器的实施例一的立体结构示意图; 图 3为本发明提供的自充电超级电容器的实施例一的截面示意图; 图 4a-图 4h为超级电容器第一电极和超级电容器第二电极之间的结构的 俯视示意图;  2 is a schematic perspective view of a first embodiment of a self-charging supercapacitor according to the present invention; FIG. 3 is a schematic cross-sectional view of a first embodiment of a self-charging supercapacitor according to the present invention; FIG. 4a to FIG. a schematic plan view of the structure between the second electrode of the supercapacitor;
图 5为本发明提供的自充电超级电容器的实施例一的一种电路原理示意 图;  5 is a schematic diagram of a circuit principle of a first embodiment of a self-charging supercapacitor provided by the present invention;
图 6为本发明提供的自充电超级电容器的实施例一的另一种电路原理示 意图;  FIG. 6 is another schematic diagram of the circuit principle of the first embodiment of the self-charging supercapacitor provided by the present invention; FIG.
图 7示出了同层并列设置多个纳米摩擦发电机的示意图;  Figure 7 is a schematic view showing a plurality of nano-friction generators arranged side by side in the same layer;
图 8为本发明提供的自充电超级电容器的实施例二的立体结构示意图; 图 9为本发明提供的自充电超级电容器的实施例二的截面示意图; 图 10为本发明提供的自充电超级电容器的实施例三的立体结构示意图; 图 11为本发明提供的自充电超级电容器的实施例三的截面示意图; 图 12为本发明提供的自充电超级电容器的实施例四的立体结构示意图; 图 13为本发明提供的自充电超级电容器的实施例四的截面示意图; 图 14a和图 14b分别示出了纳米摩擦发电机的第一种结构的立体结构示 意图和剖面结构示意图;  8 is a schematic perspective view of a second embodiment of a self-charging supercapacitor provided by the present invention; FIG. 9 is a cross-sectional view of a second embodiment of a self-charging supercapacitor provided by the present invention; FIG. 10 is a self-charging supercapacitor provided by the present invention. FIG. 11 is a schematic cross-sectional view of a third embodiment of a self-charging supercapacitor according to the present invention; FIG. 12 is a schematic perspective view of a fourth embodiment of a self-charging supercapacitor provided by the present invention; A cross-sectional view of a fourth embodiment of a self-charging supercapacitor provided by the present invention; FIGS. 14a and 14b are respectively a perspective structural view and a cross-sectional structural view of a first structure of a nano-friction generator;
图 15a和图 15b分别示出了纳米摩擦发电机的第二种结构的立体结构示 意图和剖面结构示意图;  15a and 15b respectively show a schematic perspective view and a cross-sectional structural view of a second structure of a nano-friction generator;
图 16a和图 16b分别示出了纳米摩擦发电机的第三种结构的立体结构示 意图和剖面结构示意图;  16a and 16b respectively show a schematic perspective view and a cross-sectional structural view of a third structure of a nano-friction generator;
图 17a和图 17b分别示出了纳米摩擦发电机的第四种结构的立体结构示 意图和剖面结构示意图。 本发明的较佳实施方式 17a and 17b are respectively a perspective structural view and a cross-sectional structural view showing a fourth structure of a nano-friction generator. Preferred embodiment of the invention
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明, 但本发明并不仅仅限于此。  The present invention will be described in detail by the following detailed description of the preferred embodiments of the invention, but the invention is not limited thereto.
图 1为本发明提供的自充电超级电容器的原理结构框图。 如图 1所示, 该自充电超级电容器包括纳米摩擦发电机 11、 充电电路模块 12和超级电容 器 13。 图 1仅为一示意图, 在实际中, 自充电超级电容器可以包括一个或多 个纳米摩擦发电机, 每个纳米摩擦发电机具有用于输出电信号的两个输出电 极。 纳米摩擦发电机 11的输出电极与充电电路模块 12连接, 充电电路模块 12与超级电容器 13连接。 该自充电超级电容器的基本工作原理是: 在外力 的作用下, 纳米摩擦发电机 11发生机械形变, 将机械能转换为电能; 之后, 纳米摩擦发电机 11的输出电极将电信号输出给充电电路模块 12; 充电电路 模块 12将该电信号进行调节转换后输出给超级电容器 13 ,超级电容器 13接 收该调节转换后的电信号并进行储存, 以备外部用电设备使用。  1 is a block diagram showing the principle structure of a self-charging supercapacitor provided by the present invention. As shown in FIG. 1, the self-charging supercapacitor includes a nano-friction generator 11, a charging circuit module 12, and a supercapacitor 13. Figure 1 is only a schematic diagram. In practice, a self-charging supercapacitor may include one or more nano-friction generators, each having two output electrodes for outputting electrical signals. The output electrode of the nano-friction generator 11 is connected to the charging circuit module 12, and the charging circuit module 12 is connected to the supercapacitor 13. The basic working principle of the self-charging supercapacitor is: under the action of an external force, the nano-friction generator 11 undergoes mechanical deformation to convert mechanical energy into electrical energy; after that, the output electrode of the nano-friction generator 11 outputs an electrical signal to the charging circuit module. 12; The charging circuit module 12 adjusts and converts the electrical signal to output to the ultracapacitor 13, and the supercapacitor 13 receives the adjusted converted electrical signal and stores it for use by an external electrical device.
在本实施例提供的自充电超级电容器中, 纳米摩擦发电机充当了充电电 源的角色, 其通过将机械能转换为电能, 再由充电电路模块将电能信号进行 调节转换后输出给超级电容器进行储存, 从而实现了超级电容器的自充电。 图 2为本发明提供的自充电超级电容器的实施例一的立体结构示意图。 如图 2所示, 该自充电超级电容器包括: 超级电容器 21和设置在超级电容 器 21的一侧的一个纳米摩擦发电机 22。其中,纳米摩擦发电机 22置于底层, 超级电容器 21设置在纳米摩擦发电机 22的上表面, 纳米摩擦发电机 22与 超级电容器 21形成一个整体。 图 2中未示出充电电路模块。 纳米摩擦发电 机 22 的两个输出电极与充电电路模块连接, 充电电路模块再与超级电容器 21连接, 从而实现电能的储存。  In the self-charging supercapacitor provided by the embodiment, the nano-friction generator functions as a charging power source, and converts the mechanical energy into electrical energy, and then the charging circuit module adjusts and converts the electric energy signal to output to the supercapacitor for storage. Thereby self-charging of the supercapacitor is achieved. FIG. 2 is a schematic perspective structural view of a first embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 2, the self-charging supercapacitor includes: a supercapacitor 21 and a nano-friction generator 22 disposed on one side of the supercapacitor 21. Wherein, the nano friction generator 22 is placed on the bottom layer, the super capacitor 21 is disposed on the upper surface of the nano friction generator 22, and the nano friction generator 22 is formed integrally with the super capacitor 21. The charging circuit module is not shown in FIG. The two output electrodes of the nano-friction generator 22 are connected to the charging circuit module, and the charging circuit module is connected to the supercapacitor 21 to realize the storage of electric energy.
本实施例中, 超级电容器 21 为全固态超级电容器, 选自全固态对称型 石墨烯超级电容器、 全固态对称型活性炭超级电容器、 全固态活性炭与金属 氧化物非对称型超级电容器、 全固态活性炭与导电聚合物非对称型超级电容 器、全固态活性炭与锂离子电池混合非对称型超级电容器中的一种。优选地, 超级电容器 21选自全固态对称型石墨烯超级电容器。 图 3为本发明提供的自充电超级电容器的实施例一的截面示意图。 结合 图 3 , 以全固态对称型石墨烯超级电容器为例说明超级电容器的结构。 如图 3所示, 超级电容器包括: 基底 31 , 位于基底 31上的隔膜 32、 超级电容器 第一电极 33、 超级电容器第二电极 34和第一集流体 35、 第二集流体 36, 两 个垫层片 37, 填充有电解液的空腔 38 , 将电解液进行封装的封装层 39。 其 中隔膜 32为氧化石墨, 超级电容器第一电极 33和超级电容器第二电极 34 为石墨烯, 第一集流体 35和第二集流体 36为金属带。 隔膜 32设置在超级 电容器第一电极 33和超级电容器第二电极 34之间, 图 3中超级电容器第一 电极 33和超级电容器第二电极 34位于隔膜 32两侧; 第一集流体 35通过导 电胶与超级电容器第一电极 33连接, 第二集流体 36通过导电胶与超级电容 器第二电极 34连接, 图 3中第一集流体 35位于超级电容器第一电极 33的 外侧, 第二集流体 36位于超级电容器第二电极 34的外侧。 在两个集流体上 设置有两个垫层片 37, 由这两个垫层片 37、 隔膜 32、 超级电容器第一电极 33和超级电容器第二电极 34形成有空腔 38 , 用于填充电解液。 封装层 39 将电解液进行封装, 从而形成很薄的超级电容器。 In this embodiment, the ultracapacitor 21 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon. One of a conductive type asymmetric supercapacitor, an all-solid-state activated carbon, and a lithium ion battery hybrid asymmetric supercapacitor. Preferably, the ultracapacitor 21 is selected from an all solid state symmetrical graphene supercapacitor. 3 is a schematic cross-sectional view showing a first embodiment of a self-charging supercapacitor provided by the present invention. Referring to FIG. 3, the structure of the supercapacitor is illustrated by taking an all-solid-state symmetrical graphene supercapacitor as an example. As shown in FIG. 3, the supercapacitor includes: a substrate 31, a diaphragm 32 on the substrate 31, a supercapacitor first electrode 33, a supercapacitor second electrode 34, a first current collector 35, a second current collector 36, and two pads. The layer 37, a cavity 38 filled with an electrolyte, and an encapsulation layer 39 for encapsulating the electrolyte. Wherein the separator 32 is graphite oxide, the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are graphene, and the first current collector 35 and the second current collector 36 are metal strips. The diaphragm 32 is disposed between the supercapacitor first electrode 33 and the supercapacitor second electrode 34. In FIG. 3, the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are located on both sides of the diaphragm 32; the first current collector 35 passes through the conductive paste Connected to the supercapacitor first electrode 33, the second current collector 36 is connected to the supercapacitor second electrode 34 via a conductive paste. In FIG. 3, the first current collector 35 is located outside the supercapacitor first electrode 33, and the second current collector 36 is located. The outer side of the second capacitor 34 of the supercapacitor. Two cushion sheets 37 are provided on the two current collectors, and the two cushion sheets 37, the diaphragm 32, the supercapacitor first electrode 33 and the supercapacitor second electrode 34 are formed with a cavity 38 for filling the electrolysis liquid. The encapsulation layer 39 encapsulates the electrolyte to form a very thin supercapacitor.
在图 3中的纳米摩擦发电机为层状结构, 包括: 摩擦电极 30A、 高分子 聚合物绝缘层 30B和电极 30C。 其中纳米摩擦发电机与超级电容器共用基底 31。 该纳米摩擦发电机的结构将在后面详细说明。  The nano-friction generator in Fig. 3 is a layered structure including: a friction electrode 30A, a polymer polymer insulating layer 30B, and an electrode 30C. The nano friction generator and the super capacitor share the substrate 31. The structure of the nano-friction generator will be described in detail later.
本实施例中,基底 31的材质选自聚对苯二曱酸乙二醇酯( PET )、硅( Si ) 和二氧化硅 ( Si02 ) 中的一种。 In this embodiment, the material of the substrate 31 is selected from one of polyethylene terephthalate (PET), silicon (Si), and silicon dioxide (SiO 2 ).
第一集流体 35和第二集流体 36的材质选自铜、 银、 铝和镍中的一种, 具体地, 在 PVA体系作为电解液时可为铜或银等, 在离子液体系作为电解 液时可为铝或镍等。  The material of the first current collector 35 and the second current collector 36 is selected from one of copper, silver, aluminum and nickel. Specifically, when the PVA system is used as an electrolyte, it may be copper or silver, etc., and is used as an electrolysis in an ionic liquid system. The liquid may be aluminum or nickel.
超级电容器第一电极 33和超级电容器第二电极 34的材质选自石墨烯、 活性炭、 炭气凝胶、 碳纤维、 金属氧化物、 导电聚合物和锂离子电池电极材 料中的一种。  The material of the supercapacitor first electrode 33 and the supercapacitor second electrode 34 is selected from the group consisting of graphene, activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer, and lithium ion battery electrode material.
隔膜 32的材质可以选自氧化石墨、 PVA-H2S04 (聚乙烯醇-硫酸)体系、 PVA-H3P04 (聚乙烯醇-磷酸)体系、 1-丁基, 3-曱基咪唑双三氟曱基石黄酰石黄 酰亚胺-烟雾硅胶体系、 PAN-[EMIm]BF4-TMS (聚苯胺 -1-乙基, 3-曱基咪唑 四氟硼酸盐-三曱基硅醇)体系、 1-丁基, 3-曱基咪唑四氟硼酸盐 -硅胶体系、 PMMA-EC-PC-LiC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯-高氯酸 锂)体系、 PMMA-EC-PC-NaC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯 酯 -高氯酸纳)体系、 PEO-PEG-LiCF3S03 (聚氧化乙烯-聚乙二醇-三氟曱基 磺酸锂)体系、 PMMA-EC-PC-TEAC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯- 碳酸丙烯酯 -高氯酸四乙基铵)体系中的一种。 The material of the separator 32 may be selected from the group consisting of graphite oxide, PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-H 3 P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-mercaptoimidazole. Bis-trifluorofluorenyl sulfonylurea-smoke silica system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-mercaptoimidazole Tetrafluoroborate-trimethylsilyl alcohol) system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl acrylate-carbonate) Vinyl ester-propylene carbonate-lithium perchlorate system, PMMA-EC-PC-NaC10 4 (poly(mercapto acrylate-ethylene carbonate-propylene carbonate-sodium perchlorate) system, PEO-PEG-LiCF 3 S0 3 (polyethylene oxide-polyethylene glycol-trifluoromethanesulfonate lithium) system, PMMA-EC-PC-TEAC10 4 (polydecyl methacrylate-ethylene carbonate-propylene carbonate-perchloric acid One of the tetraethylammonium) systems.
两个垫层片 37的材质选自丁钠橡胶、 丁苯橡胶、 丁腈橡胶、 丁基橡胶、 硅橡胶、 聚氨酯橡胶、 异戊橡胶、 顺丁橡胶、 氟橡胶和丙烯酸酯橡胶中的一 种。  The material of the two cushion sheets 37 is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, urethane rubber, isoprene rubber, butadiene rubber, fluororubber and acrylate rubber. .
电解液为固态或胶态, 电解液的体系为 PVA-H2S04 (聚乙烯醇-硫酸 ) 体系、 PVA-¾P04 (聚乙烯醇-磷酸)体系、 1-丁基, 3-曱基咪唑双三氟曱基 磺酰磺酰亚胺-烟雾硅胶体系、 PAN-[EMIm]BF4-TMS (聚苯胺 -1-乙基, 3-曱 基咪唑四氟硼酸盐-三曱基硅醇)体系、 1-丁基, 3-曱基咪唑四氟硼酸盐 -硅胶 体系、 PMMA-EC-PC-LiC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯- 高氯酸锂)体系、 PMMA-EC-PC-NaC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯- 碳酸丙烯酯 -高氯酸纳)体系、 PEO-PEG-LiCF3S03 (聚氧化乙烯-聚乙二醇- 三氟曱基磺酸锂)体系、 PMMA-EC-PC-TEAC104 (聚曱基丙烯酸曱酯 -碳酸 乙烯酯 -碳酸丙烯酯 -高氯酸四乙基铵)体系中的一种。 The electrolyte is solid or colloidal. The electrolyte system is PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-3⁄4P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-fluorenyl Imidazole bistrifluorodecylsulfonylsulfonimide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-trimethylsilyl) Alcohol) system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate-ethylene carbonate-propylene carbonate-perchloric acid Lithium) system, PMMA-EC-PC-NaC10 4 (poly(alkyl acrylate-ethylene carbonate-propylene carbonate-sodium perchlorate) system, PEO-PEG-LiCF 3 S0 3 (polyethylene oxide-polyethylene) a diol-lithium trifluoromethanesulfonate system, one of PMMA-EC-PC-TEAC10 4 (poly(mercapto acrylate-ethylene carbonate-propylene carbonate-tetraethylammonium perchlorate) system .
封装层 39的材质为铝塑膜、 聚乙烯(PE ) 、 聚丙烯(PP ) 、 聚氯乙烯 ( PVC ) 、 聚苯乙烯(PS ) 、 丙烯腈-丁二烯-苯乙烯共聚物 (ABS ) 、 聚曱 基丙烯酸曱酯( PMMA ) 、 聚曱醛( POM )、 聚碳酸酯( PC )和聚酰胺 ( PA ) 中的一种。  The encapsulating layer 39 is made of aluminum plastic film, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS). One of polydecyl methacrylate (PMMA), polyacetal (POM), polycarbonate (PC), and polyamide (PA).
本实施例中, 超级电容器第一电极和超级电容器第二电极之间的结构可 以有多种, 图 4a-图 4h为超级电容器第一电极和超级电容器第二电极之间的 结构的俯视示意图。 图 4a示出的是平行结构, 超级电容器第一电极 41A和 超级电容器第二电极 41B为平行的, 两者之间设有隔膜 41C。 图 4b示出的 是多列平行结构, 其中电极 42A有多列且互相平行。 图 4c示出的是交指结 构,超级电容器第一电极 43 A和超级电容器第二电极 43B之间设有隔膜 43 C , 图 3所示的就是这样的交指结构。 图 4d示出的是蛇形结构, 超级电容器第 一电极 44A和超级电容器第二电极 44B之间均为隔膜。 图 4e示出的是螺旋 形结构,超级电容器第一电极 45A和超级电容器第二电极 45B之间均为隔膜。 图 4f示出的是树枝状结构, 超级电容器第一电极 46A和超级电容器第二电 极 46B之间均为隔膜。 图 4g示出的是螺旋树枝状结构, 超级电容器第一电 极 47A和超级电容器第二电极 47B之间均为隔膜。图 4h示出的是指纹结构, 超级电容器第一电极 48A和超级电容器第二电极 48B之间均为隔膜。 In this embodiment, there may be various structures between the first electrode of the supercapacitor and the second electrode of the supercapacitor, and FIGS. 4a to 4h are schematic plan views of the structure between the first electrode of the supercapacitor and the second electrode of the supercapacitor. 4a shows a parallel structure in which the supercapacitor first electrode 41A and the supercapacitor second electrode 41B are parallel with a diaphragm 41C therebetween. Figure 4b shows a multi-column parallel structure in which the electrodes 42A have multiple columns and are parallel to each other. Fig. 4c shows an interdigitated structure in which a separator 43C is provided between the supercapacitor first electrode 43A and the supercapacitor second electrode 43B, and such an interdigitated structure is shown in Fig. 3. Figure 4d shows a serpentine structure, supercapacitor A separator is provided between the one electrode 44A and the second electrode 44B of the supercapacitor. Fig. 4e shows a spiral structure, and a separator between the supercapacitor first electrode 45A and the supercapacitor second electrode 45B. Figure 4f shows a dendritic structure with a separator between the supercapacitor first electrode 46A and the supercapacitor second electrode 46B. Figure 4g shows a spiral dendritic structure with a separator between the supercapacitor first electrode 47A and the supercapacitor second electrode 47B. Figure 4h shows the fingerprint structure, with the separator between the supercapacitor first electrode 48A and the supercapacitor second electrode 48B.
上述全固态对称型石墨烯超级电容器优选采用激光法制备, 其步骤包 括:  The above all-solid-state symmetrical graphene supercapacitor is preferably prepared by a laser method, and the steps thereof include:
( 1 )将基底(如 PET ) 粘到光盘上;  (1) sticking a substrate (such as PET) to the optical disc;
( 2 ) 将氧化石墨水溶液( l-10mg/ml , 氧化石墨的制作方法为改善的 (2) A method for preparing an aqueous graphite oxide solution (10-10 mg/ml, graphite oxide)
Hummers法)滴涂到 PET基底上, 烘干水分留下金棕色氧化石墨; The Hummers method is applied dropwise onto a PET substrate to dry the moisture leaving the golden brown graphite oxide;
( 3 )将上述光盘放入 dvd刻录机上, 进行结构制作, 生成黑色石墨烯 结构;  (3) putting the above-mentioned optical disc into a dvd recorder, and performing structural fabrication to form a black graphene structure;
( 4 )在石墨烯结构两侧用导电银胶粘贴铜带集流体;  (4) pasting the copper strip current collector with conductive silver glue on both sides of the graphene structure;
( 5 )在步骤(4 ) 的基础上放置密封用的回字形垫层片;  (5) placing a backing cushion for sealing on the basis of the step (4);
( 6 )在回字形垫层片内滴入胶状电解液并蒸发水分;  (6) dropping a colloidal electrolyte into the backing cushion layer and evaporating the water;
( 7 )整体封装得到柔性固态电解质超级电容器。  (7) The overall package yields a flexible solid electrolyte supercapacitor.
由于作用于纳米摩擦发电机的外力大小的不确定性, 使得纳米摩擦发电 机产生的交流电大小也不确定, 比如: 单个纳米摩擦发电机在外力拍打下, 可以输出几伏至上千伏的电压, 这种特殊性就要求外部电路的合理设计使其 达到稳定输出。 本发明通过充电电路模块对纳米摩擦发电机输出的电信号进 行调节转换以实现稳定输出。 图 5为本发明提供的自充电超级电容器的实施例一的一种电路原理示意 图。 图 5示出了充电电路模块的内部结构以及其与纳米摩擦发电机和超级电 容器的连接关系。 如图 5所示, 充电电路模块包括: 整流电路模块 51和滤 波电路模块 52。 其中, 整流电路模块 51与至少一个纳米摩擦发电机的输出 电极相连,将至少一个纳米摩擦发电机输出的电信号进行整流处理。具体地, 整流电路模块 51的两个输入端 51A和 51B分别连接纳米摩擦发电机 53的两 个输出电极, 接收纳米摩擦发电机 53 输出的电信号。 对于包括多个纳米摩 擦发电机的结构, 多个纳米摩擦发电机的两个输出电极并联在一起, 然后与 整流电路模块 51的两个输入端 51A和 51B连接。 Due to the uncertainty of the external force acting on the nano-friction generator, the magnitude of the alternating current generated by the nano-friction generator is also uncertain. For example, a single nano-friction generator can output a voltage of several volts to several kilovolts under external force tapping. This particularity requires a reasonable design of the external circuit to achieve a stable output. The invention adjusts and converts the electrical signal outputted by the nano friction generator through the charging circuit module to achieve stable output. FIG. 5 is a schematic diagram of a circuit principle of a first embodiment of a self-charging supercapacitor provided by the present invention. Fig. 5 shows the internal structure of the charging circuit module and its connection relationship with the nano-friction generator and the supercapacitor. As shown in FIG. 5, the charging circuit module includes: a rectifier circuit module 51 and a filter circuit module 52. The rectifier circuit module 51 is connected to the output electrode of the at least one nano-friction generator, and performs rectification processing on the electrical signal output by the at least one nano-friction generator. Specifically, the two input ends 51A and 51B of the rectifier circuit module 51 are respectively connected to the two of the nano friction generators 53. The output electrodes receive the electrical signals output by the nano-friction generator 53. For a structure comprising a plurality of nano-friction generators, the two output electrodes of the plurality of nano-friction generators are connected in parallel and then connected to the two input terminals 51A and 51B of the rectifier circuit module 51.
整流电路模块 51的两个输出端 51C和 51D与滤波电路模块 52连接,整 流电路模块 51将纳米摩擦发电机 53输出的电信号进行整流处理后得到的单 向脉沖直流电输出给滤波电路模块 52。滤波电路模块 52与超级电容器 54连 接, 滤波电路模块 52将整流电路模块 51输出的单向脉沖直流电进行滤波处 理而得到直流电信号输出给超级电容器 54。  The two output terminals 51C and 51D of the rectifier circuit module 51 are connected to the filter circuit module 52, and the rectifier circuit module 51 outputs the one-way pulsed direct current obtained by rectifying the electrical signal output from the nano-friction generator 53 to the filter circuit module 52. The filter circuit module 52 is connected to the super capacitor 54. The filter circuit module 52 filters the unidirectional pulse DC output from the rectifier circuit module 51 to obtain a DC signal to be output to the super capacitor 54.
如图 5所示, 滤波电路模块 52具有两个端。 具体地, 滤波电路模块 52 的第一端 52A与整流电路模块 51的输出端 51D连接, 滤波电路模块 52的 第二端 52B与整流电路模块 51的输出端 51C连接。滤波电路模块 52的第一 端 52A与超级电容器的第一集流体连接, 滤波电路模块 52的第二端 52B与 超级电容器的第二集流体连接。 在实际应用中, 滤波电路模块 52 的第二端 52B一般接地。  As shown in Fig. 5, the filter circuit module 52 has two terminals. Specifically, the first end 52A of the filter circuit module 52 is connected to the output terminal 51D of the rectifier circuit module 51, and the second end 52B of the filter circuit module 52 is connected to the output terminal 51C of the rectifier circuit module 51. The first end 52A of the filter circuit module 52 is fluidly coupled to the first current collector of the supercapacitor, and the second end 52B of the filter circuit module 52 is coupled to the second current collector of the supercapacitor. In a practical application, the second end 52B of the filter circuit module 52 is typically grounded.
对于图 5所示的电路, 当外力作用于纳米摩擦发电机时, 会使纳米摩擦 发电机发生机械形变, 从而产生交流的脉沖电信号。 此交流的脉沖电信号首 先输入给整流电路模块, 通过整流电路模块对其进行整流, 得到单向脉动的 直流电。 此单向脉动的直流电又输入给滤波电路模块进行滤波, 将单向脉动 的直流电中的干扰杂波进行滤除, 得到直流电信号。 最后, 此直流电信号直 接输入给超级电容器进行充电。 这里可以为一个超级电容器充电, 也可以为 多个并联的超级电容器同时充电。  For the circuit shown in Fig. 5, when an external force acts on the nano-friction generator, the nano-friction generator is mechanically deformed, thereby generating an alternating pulse electric signal. The pulsed electrical signal of the alternating current is first input to the rectifier circuit module, and is rectified by the rectifier circuit module to obtain a unidirectional pulsating direct current. The one-way pulsating direct current is input to the filter circuit module for filtering, and the interference clutter in the unidirectional pulsating direct current is filtered to obtain a direct current signal. Finally, this DC signal is directly input to the supercapacitor for charging. Here you can charge one supercapacitor or multiple supercapacitors in parallel.
上述电路的优点是: ( 1 )根据纳米摩擦发电机产生电能的大小与超级 电容器电容和充电电压的大小, 通过调节滤波电路模块的相关参数, 使得能 够最大限度的利用纳米摩擦发电机所产生的电能, 提高能量转换效率; (2 ) 根据应用环境的不同, 纳米摩擦发电机产生的电压幅度范围较大, 可以通过 调节滤波电路模块的相关参数, 将其调整为适应给超级电容器充电的电压, 克服纳米摩擦发电机产生电压大小的不确定性。  The advantages of the above circuit are: (1) According to the size of the electric energy generated by the nano-friction generator and the size of the supercapacitor capacitor and the charging voltage, by adjusting the relevant parameters of the filter circuit module, the maximum utilization of the nano-friction generator can be utilized. Electrical energy, improve energy conversion efficiency; (2) Depending on the application environment, the nano-friction generator generates a wide range of voltage amplitudes, which can be adjusted to the voltage charged by the supercapacitor by adjusting the relevant parameters of the filter circuit module. Overcoming the uncertainty of the voltage generated by the nano-friction generator.
进一步的, 充电电路模块还可以采用一种更为优选的结构。 图 6为本发 明提供的自充电超级电容器的实施例一的另一种电路原理示意图。 图 6示出 了优选的充电电路模块的内部结构以及其与纳米摩擦发电机和超级电容器 的连接关系。 如图 6所示, 充电电路模块除了包括整流电路模块 61和滤波 电路模块 62之外, 还包括充电控制模块 63和开关 /变压模块 64。 其中整流 电路模块 61和滤波电路模块 62的功能参见上文, 不再赘述。 Further, the charging circuit module can also adopt a more preferable structure. FIG. 6 is another schematic diagram of the circuit principle of the first embodiment of the self-charging supercapacitor provided by the present invention. Figure 6 shows The internal structure of the preferred charging circuit module and its connection relationship with the nano-friction generator and the supercapacitor. As shown in FIG. 6, the charging circuit module includes a charging control module 63 and a switching/transforming module 64 in addition to the rectifier circuit module 61 and the filter circuit module 62. The functions of the rectifier circuit module 61 and the filter circuit module 62 are described above, and are not described again.
充电控制模块 63与滤波电路模块 62连接, 接收滤波电路模块 62输出 的直流电压信号 U1 ; 充电控制模块 63与超级电容器 65连接, 接收超级电 容器 65反馈的充电电压 U,该充电电压 U是在超级电容器 65的两个集流体 之间形成的电压信号; 充电控制模块 63还与开关 /变压模块 64连接, 充电控 制模块 63根据直流电压信号 U1和充电电压 U得到控制信号, 向开关 /变压 模块 64输出控制信号。 开关 /变压模块 64与滤波电路模块 62连接, 接收滤 波电路模块 62输出的直流电压信号 U1 ; 开关 /变压模块 64还与超级电容器 65连接, 开关 /变压模块 64根据接收的控制信号进行开关切换和对滤波电路 模块 62输出的直流电压信号进行调节处理, 调节为适应给超级电容器 65充 电的电压 U2。  The charging control module 63 is connected to the filter circuit module 62, and receives the DC voltage signal U1 outputted by the filter circuit module 62. The charging control module 63 is connected to the super capacitor 65, and receives the charging voltage U fed back by the super capacitor 65. The charging voltage U is super. The voltage signal formed between the two current collectors of the capacitor 65; the charging control module 63 is also connected to the switch/transformer module 64, and the charging control module 63 obtains a control signal according to the DC voltage signal U1 and the charging voltage U, to switch/transform Module 64 outputs a control signal. The switch/transformer module 64 is connected to the filter circuit module 62, and receives the DC voltage signal U1 output by the filter circuit module 62. The switch/transformer module 64 is also connected to the super capacitor 65, and the switch/transformer module 64 performs the control signal according to the received control signal. The switching and switching of the DC voltage signal output from the filter circuit module 62 are adjusted to accommodate the voltage U2 that charges the supercapacitor 65.
对于图 6所示的电路, 与图 5不同的是, 经过滤波处理得到的直流电压 信号 U1输入给充电控制模块 63 , 充电控制模块 63会根据此直流电压信号 U1的大小, 来决定何时对超级电容器 65充电; 并且对超级电容器 65充电 状况进行密切监视,根据超级电容器 65充电的状况来控制开关 /变压模块 64。 经过滤波电路模块 62 的输出电压是一个逐步增大的输出电压, 这个输出电 压直到增到限压电压, 这个限压电压是一个电路保护电压, 防止电路因电压 过高而损坏。  For the circuit shown in FIG. 6, the difference from FIG. 5 is that the DC voltage signal U1 obtained by the filtering process is input to the charging control module 63, and the charging control module 63 determines the time according to the magnitude of the DC voltage signal U1. The supercapacitor 65 is charged; and the state of charge of the supercapacitor 65 is closely monitored, and the switch/transformer module 64 is controlled in accordance with the state of charging of the supercapacitor 65. The output voltage of the filter circuit module 62 is a gradually increasing output voltage. This output voltage is increased to the voltage limiting voltage. This voltage limiting voltage is a circuit protection voltage to prevent the circuit from being damaged due to excessive voltage.
由于整个充电电路模块是没有外接电源的, 充电控制模块 63控制开关 / 变压模块 64给超级电容器 65充电的工作电源也是来自于纳米摩擦发电机发 的电, 因此特意在充电控制模块 63设置一个启动电压, 当滤波电路模块 62 输出电压达到该启动电压以后,充电控制模块 63才驱动开关 /变压模块 64启 动充电。  Since the entire charging circuit module has no external power supply, the charging control module 63 controls the switching/transforming module 64 to charge the super capacitor 65. The operating power source is also derived from the nano-friction generator, so a charging control module 63 is specifically provided. The startup voltage, after the output voltage of the filter circuit module 62 reaches the startup voltage, the charging control module 63 drives the switch/transformer module 64 to initiate charging.
充电控制模块 63的另一个作用是根据经过滤波得到的直流电压信号 U1 的大小和超级电容器 65充电电压 U的大小, 对直流电压信号 U1进行调节, 调节为适应超级电容器 65充电的电压 U2 , 并选择性驱动开关 /变压模块 64 给超级电容器 65充电。 Another function of the charging control module 63 is to adjust the DC voltage signal U1 according to the size of the filtered DC voltage signal U1 and the charging voltage U of the supercapacitor 65, and adjust to the voltage U2 for charging the super capacitor 65, and Selective drive switch / transformer module 64 The supercapacitor 65 is charged.
根据 C=Q U可知, 超级电容器的容量 C为一个固定值, 在给超级电容 器充电的过程中, 电荷量 Q在不断增加, 随之超级电容器的电压 U也在不 断上升。 为了更有效的给超级电容器充电, 充电控制模块 63 根据超级电容 器 65反馈的充电电压 U以及滤波电路模块 62输出的直流电压信号 U1的数 值信息, 来调节开关 /变压模块 64中的电路, 实现对电压 U1到 U2的转换, 得到超级电容器 65的实时充电电压 U2。 U2和 U之间有一个相应的充电匹 配关系, 以保证最高的能量转换效率。 举例来说, 假设超级电容器 65 的充 满电压为 U0, 充电控制模块 63将超级电容器 65反馈的充电电压 U与 U0 进行比较, 若 U小于 U0, 表明超级电容器 65还未充满, 需要继续充电; 若 U等于 U0, 表明超级电容器 65 已充满。 同时, 充电控制模块 63还将滤波 电路模块 62输出的直流电压信号 U1与 U0比较, 若 U1大于 U0, 则充电控 制模块 63输出控制信号控制开关 /变压模块 64对 U1进行降压处理, 得到超 级电容器 65的实时充电电压 U2; 若 U1小于 U0, 则充电控制模块 63输出 控制信号控制开关 /变压模块 64对 U1进行升压处理, 得到超级电容器 65的 实时充电电压 U2。  According to C=Q U, the capacity C of the supercapacitor is a fixed value. During the charging of the supercapacitor, the amount of charge Q is constantly increasing, and the voltage U of the supercapacitor is constantly rising. In order to charge the supercapacitor more efficiently, the charging control module 63 adjusts the circuit in the switch/transformer module 64 based on the charging voltage U fed back by the supercapacitor 65 and the numerical value of the DC voltage signal U1 outputted by the filter circuit module 62. The conversion of the voltages U1 to U2 yields the real-time charging voltage U2 of the supercapacitor 65. There is a corresponding charging match between U2 and U to ensure the highest energy conversion efficiency. For example, assuming that the full voltage of the supercapacitor 65 is U0, the charging control module 63 compares the charging voltage U fed back by the supercapacitor 65 with U0. If U is less than U0, it indicates that the supercapacitor 65 is not fully charged and needs to continue charging; U is equal to U0, indicating that the supercapacitor 65 is full. At the same time, the charging control module 63 compares the DC voltage signal U1 outputted by the filter circuit module 62 with U0. If U1 is greater than U0, the charging control module 63 outputs a control signal to control the switch/transformer module 64 to perform step-down processing on U1. The real-time charging voltage U2 of the supercapacitor 65; if U1 is less than U0, the charging control module 63 outputs a control signal to control the switching/transforming module 64 to perform a step-up process on U1 to obtain a real-time charging voltage U2 of the supercapacitor 65.
这里可以为一个超级电容器充电, 也可以为多个超级电容器充电, 如图 6, 示出了三个超级电容器, 这三个超级电容器并联在一起。 当为多个超级 电容器充电时, 可以逐个充满, 也可以同时充满。 逐个充满是通过以下方式 实现的: 充电控制模块 63将当前正在充电的超级电容器反馈的充电电压 U 与其充满电压 U0进行比较, 如果 U已经达到 U0, 那么充电控制模块 63输 出控制信号控制开关 /变压模块 64将开关切换到下一个超级电容器, 继续为 下一个超级电容器进行充电。  Here you can charge one supercapacitor or multiple supercapacitors, as shown in Figure 6, which shows three supercapacitors, which are connected in parallel. When charging multiple supercapacitors, you can fill them one by one or at the same time. The charging by one is achieved by the following: The charging control module 63 compares the charging voltage U fed back by the currently charging supercapacitor with its full voltage U0, and if U has reached U0, the charging control module 63 outputs a control signal to control the switching/changing The voltage module 64 switches the switch to the next supercapacitor and continues to charge the next supercapacitor.
进一步的, 为了保护纳米摩擦发电机, 充电电路模块还可以包括发电机 控制模块 66。 该发电机控制模块 66与超级电容器 65连接,接收超级电容器 65反馈的充电电压 U, 该充电电压 U是在超级电容器 65的两个集流体之间 形成的电压信号; 发电机控制模块 66还与纳米摩擦发电机连接, 向纳米摩 擦发电机输出停止发电的信号。 当超级电容器 65 充满时, 会得到一充满电 压, 该充满电压反馈给发电机控制模块 66, 进而发电机控制模块 66会将纳 米摩擦发电机关闭, 从而停止发电。 Further, to protect the nano-friction generator, the charging circuit module may further include a generator control module 66. The generator control module 66 is coupled to the supercapacitor 65 to receive a charging voltage U fed back by the supercapacitor 65, the charging voltage U being a voltage signal formed between the two current collectors of the supercapacitor 65; the generator control module 66 is also The nano-friction generator is connected to output a signal to stop the power generation to the nano-friction generator. When the supercapacitor 65 is full, a full voltage is obtained, which is fed back to the generator control module 66, and the generator control module 66 will The m friction generator is turned off, thereby stopping power generation.
图 6所示的电路的优点是: (1 ) 由于作用于纳米摩擦发电机的外力大 小的不确定, 使得纳米摩擦发电机产生的交流电大小也不确定, 此电路能将 不确定的电压值转换成适合超级电容器充电的电压值, 适应性强, 扩展了自 充电超级电容器的应用领域; (2 ) 由于电路中特别设计了充电控制模块, 根据超级电容器的实时电压来调节其充电电压, 使超级电容器的实时电压与 充电电压保持了一个动态匹配关系, 达到了使纳米摩擦发电机发出的电能最 大限度的充给了超级电容器, 实现了最大的储能效果; (3 )根据超级电容 器的充满, 发电机控制模块控制纳米摩擦发电机工作与否, 进而延长纳米摩 擦发电机的使用寿命; (4 ) 当为多个超级电容器进行充电时, 其中一个充 满时, 会自动切换到下一个超级电容器进行充电。  The advantages of the circuit shown in Figure 6 are: (1) Due to the uncertainty of the external force acting on the nano-friction generator, the magnitude of the alternating current generated by the nano-friction generator is also uncertain, and the circuit can convert the uncertain voltage value. It is suitable for the charging voltage of supercapacitor and has strong adaptability. It expands the application field of self-charging supercapacitor; (2) Because the charging control module is specially designed in the circuit, the charging voltage is adjusted according to the real-time voltage of the supercapacitor, making super The real-time voltage of the capacitor maintains a dynamic matching relationship with the charging voltage, so that the electric energy emitted by the nano-friction generator is maximized to the supercapacitor, and the maximum energy storage effect is achieved; (3) according to the filling of the supercapacitor, The generator control module controls the operation of the nano-friction generator to extend the service life of the nano-friction generator; (4) When charging multiple supercapacitors, one of them will automatically switch to the next supercapacitor when it is full. Charging.
本实施例提供的自充电超级电容器不仅限于包括单个纳米摩擦发电机, 在超级电容器的一侧还可以设置多个纳米摩擦发电机。 具体来说, 设置在超 级电容器一侧的纳米摩擦发电机有多个, 这些纳米摩擦发电机阵列排列在同 一层或不同层, 它们对应的输出电极连接在一起形成并联结构。 其排列可参 照图 7。 与单个纳米摩擦发电机产生的电压较大、 电流较小的特点相比, 平 行并联的多个纳米摩擦发电机可以增加电流的输出, 达到更好的充电效果; 而且由于多个纳米摩擦发电机均匀排列, 可使其受力均匀, 具有良好的线性 叠加效果。  The self-charging supercapacitor provided by the embodiment is not limited to including a single nano-friction generator, and a plurality of nano-friction generators may be disposed on one side of the supercapacitor. Specifically, there are a plurality of nano-friction generators disposed on one side of the super capacitor, and the arrays of the nano-friction generators are arranged in the same layer or different layers, and their corresponding output electrodes are connected together to form a parallel structure. The arrangement can be seen in Figure 7. Compared with the characteristics of large voltage and small current generated by a single nano-friction generator, multiple parallel nano-friction generators can increase the current output to achieve better charging effect; and because of multiple nano-friction generators Evenly arranged, it can make it evenly stressed and has a good linear superposition effect.
图 8为本发明提供的自充电超级电容器的实施例二的立体结构示意图。 如图 8所示, 该自充电超级电容器包括: 超级电容器 81和分设在超级电容 器 81两侧的纳米摩擦发电机 82和 83 , 类似一个 "三明治" 结构。 其中, 纳 米摩擦发电机 82设置在超级电容器 81的下侧, 纳米摩擦发电机 83设置在 超级电容器 81的上侧。 超级电容器 81与上下两侧的纳米摩擦发电机 82和 83形成一个整体。 图 8中未示出充电电路模块。 纳米摩擦发电机 82和 83各 自的两个输出电极并联在一起与充电电路模块连接, 充电电路模块再与超级 电容器 81的两个集流体连接, 从而实现电能的储存。  FIG. 8 is a schematic perspective structural view of a second embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 8, the self-charging supercapacitor includes: a supercapacitor 81 and nano-friction generators 82 and 83 disposed on both sides of the supercapacitor 81, similar to a "sandwich" structure. Among them, the nano friction generator 82 is disposed on the lower side of the super capacitor 81, and the nano friction generator 83 is disposed on the upper side of the super capacitor 81. The supercapacitor 81 is formed integrally with the nano friction generators 82 and 83 on the upper and lower sides. The charging circuit module is not shown in FIG. The two output electrodes of the nano-friction generators 82 and 83 are connected in parallel to the charging circuit module, and the charging circuit module is connected to the two current collectors of the super capacitor 81 to realize the storage of electric energy.
本实施例中, 超级电容器 81 为全固态超级电容器, 选自全固态对称型 石墨烯超级电容器、 全固态对称型活性炭超级电容器、 全固态活性炭与金属 氧化物非对称型超级电容器、 全固态活性炭与导电聚合物非对称型超级电容 器、全固态活性炭与锂离子电池混合非对称型超级电容器中的一种。优选地, 超级电容器 81选自全固态对称型石墨烯超级电容器。 In this embodiment, the supercapacitor 81 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal. One of an asymmetric asymmetric supercapacitor, an all-solid activated carbon and a conductive polymer asymmetric supercapacitor, an all-solid activated carbon and a lithium ion battery hybrid asymmetric supercapacitor. Preferably, the ultracapacitor 81 is selected from an all solid state symmetrical graphene supercapacitor.
图 9为本发明提供的自充电超级电容器的实施例二的截面示意图。 如图 9所示, 超级电容器 81的结构与实施例一所描述的相同, 其所包含的器件可 选用的材质也与实施例一所描述的相同, 在此不再赘述。 纳米摩擦发电机 82 和 83均为层状结构, 将在后面详细说明。 纳米摩擦发电机 82与超级电容器 81共用基底, 纳米摩擦发电机 83与超级电容器 81之间还设置有绝缘层 90。 此处需要说明的是, 当纳米摩擦发电机与超级电容器共用基底时, 不用加绝 缘层, 当纳米摩擦发电机与超级电容器没有共用基底时, 需要加绝缘层, 防 止导通。  FIG. 9 is a schematic cross-sectional view showing a second embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 9, the structure of the supercapacitor 81 is the same as that described in the first embodiment, and the materials which are included in the device are also the same as those described in the first embodiment, and will not be described again. The nano-friction generators 82 and 83 are layered and will be described in detail later. The nano-friction generator 82 shares a substrate with the supercapacitor 81, and an insulating layer 90 is further disposed between the nano-friction generator 83 and the supercapacitor 81. It should be noted here that when the nano-friction generator and the super-capacitor share the substrate, there is no need to add a barrier layer. When the nano-friction generator and the supercapacitor do not share a substrate, an insulating layer is needed to prevent conduction.
本实施例中充电电路模块也与实施例一中所描述的相同, 在此不再赘 述。  The charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again.
本实施例提供的自充电超级电容器不仅限于包括上下两个纳米摩擦发 电机, 在超级电容器的上侧和 /或下侧可以设置多个纳米摩擦发电机, 具体来 说, 设置在超级电容器下侧的纳米摩擦发电机可以有多个, 且阵列排列在同 一层或不同层, 形成并联结构; 和 /或, 设置在超级电容器上侧的纳米摩擦发 电机可以有多个, 且阵列排列在同一层或不同层, 形成并联结构。 其排列可 参照图 7。 平行并联的多个纳米摩擦发电机可以增加电流的输出, 达到更好 的充电效果; 而且由于多个纳米摩擦发电机均匀排列, 可使其受力均匀, 具 有良好的线性叠加效果。  The self-charging supercapacitor provided in this embodiment is not limited to including two upper and lower nano-friction generators, and a plurality of nano-friction generators may be disposed on the upper side and/or the lower side of the supercapacitor, specifically, disposed on the underside of the supercapacitor There may be multiple nano-friction generators, and the arrays are arranged in the same layer or different layers to form a parallel structure; and/or, there may be multiple nano-friction generators disposed on the upper side of the supercapacitor, and the arrays are arranged in the same layer. Or different layers, forming a parallel structure. The arrangement can be referred to Figure 7. A plurality of nano-friction generators connected in parallel can increase the output of current to achieve better charging effect; and because a plurality of nano-friction generators are evenly arranged, the force can be uniform and have a good linear superposition effect.
图 10为本发明提供的自充电超级电容器的实施例三的立体结构示意图。 如图 10所示, 该自充电超级电容器包括: 超级电容器 101和设置在超级电 容器 101—侧的一个纳米摩擦发电机 102, 纳米摩擦发电机 102和超级电容 器 101之间还设有绝缘层 103。 其中, 纳米摩擦发电机 102置于底层, 绝缘 层 103位于纳米摩擦发电机 102的上表面, 超级电容器 101位于绝缘层 103 的上表面。 超级电容器 101、 绝缘层 103和纳米摩擦发电机 102形成一个整 体。 图 10中未示出充电电路模块。 纳米摩擦发电机 102的两个输出电极与 充电电路模块连接, 充电电路模块再与超级电容器 101的两个集流体连接, 从而实现电能的储存。 FIG. 10 is a schematic perspective structural view of a third embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 10, the self-charging supercapacitor includes: a supercapacitor 101 and a nano-friction generator 102 disposed on the side of the supercapacitor 101, and an insulating layer 103 is further disposed between the nano-friction generator 102 and the ultracapacitor 101. The nano-friction generator 102 is placed on the bottom layer, the insulating layer 103 is located on the upper surface of the nano-friction generator 102, and the supercapacitor 101 is located on the upper surface of the insulating layer 103. The supercapacitor 101, the insulating layer 103, and the nano-friction generator 102 are formed in one piece. The charging circuit module is not shown in FIG. The two output electrodes of the nano-friction generator 102 are connected to the charging circuit module, and the charging circuit module is further connected to the two current collectors of the super capacitor 101. Thereby realizing the storage of electrical energy.
本实施例中, 超级电容器 101为全固态超级电容器, 选自全固对称型态 石墨烯超级电容器、 全固态对称型活性炭超级电容器、 全固态活性炭与金属 氧化物非对称型超级电容器、 全固态活性炭与导电聚合物非对称型超级电容 器、全固态活性炭与锂离子电池混合非对称型超级电容器中的一种。优选地, 超级电容器 101选自全固态对称型石墨烯超级电容器。  In this embodiment, the supercapacitor 101 is an all-solid supercapacitor selected from the group consisting of a fully solid symmetrical graphene supercapacitor, an all solid state symmetrical activated carbon supercapacitor, an all solid activated carbon and a metal oxide asymmetric supercapacitor, and an all solid activated carbon. One of asymmetrical supercapacitors mixed with a conductive polymer asymmetric supercapacitor, an all solid state activated carbon, and a lithium ion battery. Preferably, the ultracapacitor 101 is selected from an all solid state symmetrical graphene supercapacitor.
图 11 为本发明提供的自充电超级电容器的实施例三的截面示意图。 如 图 11所示, 超级电容器包括: 依次平行层叠设置的第一集流体 111、 超级电 容器第一电极 112、 隔膜 113、 超级电容器第二电极 114和第二集流体 115, 另外超级电容器还包括封装层(图 11 中未示出) 。 绝缘层 103与第一集流 体 111接触连接。 图 11 中的纳米摩擦发电机 102为层状结构, 其具体结构 夺在后面详细说明。  11 is a schematic cross-sectional view showing a third embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 11, the supercapacitor includes: a first current collector 111, a supercapacitor first electrode 112, a separator 113, a supercapacitor second electrode 114, and a second current collector 115 which are sequentially stacked in parallel, and the supercapacitor further includes a package. Layer (not shown in Figure 11). The insulating layer 103 is in contact with the first current collector 111. The nano-friction generator 102 in Fig. 11 is a layered structure, and its specific structure will be described in detail later.
本实施例中, 第一集流体 111和第二集流体 115的材质选自铜、 银、 铝 和镍中的一种。  In this embodiment, the materials of the first current collector 111 and the second current collector 115 are selected from one of copper, silver, aluminum, and nickel.
超级电容器第一电极 112 和超级电容器第二电极 114 的材质选自石墨 烯、 活性炭、 炭气凝胶、 碳纤维、 金属氧化物、 导电聚合物和锂离子电池材 料中的一种。  The material of the supercapacitor first electrode 112 and the supercapacitor second electrode 114 is selected from the group consisting of graphene, activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer, and lithium ion battery material.
隔膜 113的材质可以选自氧化石墨、 PVA-H2S04 (聚乙烯醇-硫酸)体 系、 PVA-H3P04 (聚乙烯醇-磷酸)体系、 1-丁基, 3-曱基咪唑双三氟曱基石黄 酰磺酰亚胺-烟雾硅胶体系、 PAN-[EMIm]BF4-TMS (聚苯胺 -1-乙基, 3-曱基 咪唑四氟硼酸盐-三曱基硅醇)体系、 1-丁基, 3-曱基咪唑四氟硼酸盐-硅胶体 系、 PMMA-EC-PC-LiC104 (聚曱基丙烯酸曱酯 -碳酸乙烯酯 -碳酸丙烯酯 -高氯 酸锂 )体系、 PMMA-EC-PC-NaC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙 烯酯 -高氯酸纳)体系、 PEO-PEG-LiCF3S03 (聚氧化乙烯 -聚乙二醇-三氟曱 基磺酸锂 )体系、 PMMA-EC-PC-TEAC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯- 碳酸丙烯酯 -高氯酸四乙基铵)体系中的一种。 The material of the separator 113 may be selected from the group consisting of graphite oxide, PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system, PVA-H 3 P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-mercaptoimidazole Bis-trifluorofluorenyl sulfonyl imide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-mercaptoimidazole tetrafluoroborate-tridecylsilanol System, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate-ethylene carbonate-propylene carbonate-lithium perchlorate) System, PMMA-EC-PC-NaC10 4 (poly(decyl methacrylate-ethylene carbonate-propylene carbonate-sodium perchlorate) system, PEO-PEG-LiCF 3 S0 3 (polyethylene oxide-polyethylene) One of the alcohol-trifluoromethanesulfonate lithium) system, PMMA-EC-PC-TEAC104 (poly(mercapto acrylate-ethylene carbonate-propylene carbonate-tetraethylammonium perchlorate) system.
电解液为固态或胶态, 电解液的体系为 PVA-H2S04 (聚乙烯醇-硫酸) 体系; PVA-¾P04 (聚乙烯醇-磷酸)体系、 1-丁基, 3-曱基咪唑双三氟曱基 磺酰磺酰亚胺-烟雾硅胶体系、 PAN-[EMIm]BF4-TMS (聚苯胺 -1-乙基, 3-曱 基咪唑四氟硼酸盐-三曱基硅醇)体系、 1-丁基, 3-曱基咪唑四氟硼酸盐 -硅胶 体系、 PMMA-EC-PC-LiC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯- 高氯酸锂)体系、 PMMA-EC-PC-NaC104 (聚曱基丙烯酸曱酯-碳酸乙烯酯- 碳酸丙烯酯 -高氯酸纳)体系、 PEO-PEG-LiCF3S03 (聚氧化乙烯-聚乙二醇- 三氟曱基石黄酸锂)体系、 PMMA-EC-PC-TEAC104 (聚曱基丙烯酸曱酯 -碳酸 乙烯酯 -碳酸丙烯酯 -高氯酸四乙基铵)体系中的一种。 The electrolyte is solid or colloidal, the electrolyte system is PVA-H 2 S0 4 (polyvinyl alcohol-sulfuric acid) system; PVA-3⁄4P0 4 (polyvinyl alcohol-phosphoric acid) system, 1-butyl, 3-fluorenyl Imidazole bistrifluorodecylsulfonylsulfonimide-smoke silica gel system, PAN-[EMIm]BF 4 -TMS (polyaniline-1-ethyl, 3-oxime) Imidazolium tetrafluoroborate-trimethylsilyl alcohol) system, 1-butyl, 3-mercaptoimidazole tetrafluoroborate-silica gel system, PMMA-EC-PC-LiC10 4 (polydecyl methacrylate) -ethylene carbonate-propylene carbonate-lithium perchlorate system, PMMA-EC-PC-NaC10 4 (poly(mercapto acrylate-ethylene carbonate-propylene carbonate-sodium perchlorate) system, PEO-PEG -LiCF 3 S0 3 (polyethylene oxide-polyethylene glycol-trifluoromethanelithinate) system, PMMA-EC-PC-TEAC10 4 (poly(mercapto acrylate)-ethylene carbonate-propylene carbonate-high One of the tetraethylammonium chlorate systems.
封装层的材质为铝塑膜、聚乙烯(PE )、聚丙烯(PP )、聚氯乙烯(PVC )、 聚苯乙烯(PS ) 、 丙烯腈-丁二烯-苯乙烯共聚物 (ABS ) 、 聚曱基丙烯酸曱 酯 ( PMMA ) 、 聚曱醛(POM ) 、 聚碳酸酯 (PC )和聚酰胺(PA ) 中的一 种。  The encapsulating layer is made of aluminum plastic film, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), One of polydecyl methacrylate (PMMA), polyfurfural (POM), polycarbonate (PC), and polyamide (PA).
本实施例中充电电路模块也与实施例一中所描述的相同, 在此不再赘 述。 充电电路模块与上述第一集流体 111和第二集流体 115连接。  The charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again. The charging circuit module is coupled to the first current collector 111 and the second current collector 115 described above.
本实施例提供的自充电超级电容器不仅限于包括单个纳米摩擦发电机, 在超级电容器的一侧还可以设置多个纳米摩擦发电机具体来说, 设置在超级 电容器一侧的纳米摩擦发电机有多个, 这些纳米摩擦发电机阵列排列在同一 层或不同层, 它们对应的输出电极连接在一起形成并联结构。 其排列可参照 图 7。 与单个纳米摩擦发电机产生的电压较大、 电流较小的特点相比, 平行 并联的多个纳米摩擦发电机可以增加电流的输出, 达到更好的充电效果; 而 且由于多个纳米摩擦发电机均匀排列, 可使其受力均匀, 具有良好的线性叠 加效果。  The self-charging supercapacitor provided in this embodiment is not limited to including a single nano-friction generator, and a plurality of nano-friction generators may be disposed on one side of the super-capacitor. Specifically, how many nano-friction generators are disposed on one side of the supercapacitor The nano-friction generator arrays are arranged in the same layer or different layers, and their corresponding output electrodes are connected together to form a parallel structure. The arrangement can be seen in Figure 7. Compared with the characteristics of large voltage and small current generated by a single nano-friction generator, multiple parallel nano-friction generators can increase the current output to achieve better charging effect; and because of multiple nano-friction generators Evenly arranged, it can make it evenly stressed and has a good linear superposition effect.
图 12为本发明提供的自充电超级电容器的实施例四的立体结构示意图。 如图 12所示, 该自充电超级电容器包括: 超级电容器 121和分设在超级电 容器 121两侧的纳米摩擦发电机 122和 123。 其中, 纳米摩擦发电机 122设 置在超级电容器 121的下侧, 纳米摩擦发电机 122与超级电容器 121之间还 设有第一绝缘层 124; 纳米摩擦发电机 123设置在超级电容器 121的上侧, 纳米摩擦发电机 123与超级电容器 121之间还设有第二绝缘层 125。 超级电 容器 121与上下两侧的纳米摩擦发电机 122、 123以及第一绝缘层 124、 第二 绝缘层 125形成一个整体。 图 12 中未示出充电电路模块。 纳米摩擦发电机 122和 123各自的两个输出电极并联在一起与充电电路模块连接, 充电电路 模块再与超级电容器 121的两个集流体连接, 从而实现电能的储存。 FIG. 12 is a schematic perspective structural view of a fourth embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 12, the self-charging supercapacitor includes: a supercapacitor 121 and nano-friction generators 122 and 123 disposed on both sides of the supercapacitor 121. The nano-friction generator 122 is disposed on the lower side of the supercapacitor 121, and the first insulating layer 124 is further disposed between the nano-friction generator 122 and the ultra-capacitor 121. The nano-friction generator 123 is disposed on the upper side of the supercapacitor 121. A second insulating layer 125 is further disposed between the nano friction generator 123 and the ultracapacitor 121. The supercapacitor 121 is formed integrally with the nano friction generators 122 and 123 on the upper and lower sides, and the first insulating layer 124 and the second insulating layer 125. The charging circuit module is not shown in FIG. The two output electrodes of the nano friction generators 122 and 123 are connected in parallel to the charging circuit module, and the charging circuit The module is then coupled to the two current collectors of the supercapacitor 121 to effect storage of electrical energy.
本实施例中, 超级电容器 121为全固态超级电容器, 选自全固态对称型 石墨烯超级电容器、 全固态对称型活性炭超级电容器、 全固态活性炭与金属 氧化物非对称型超级电容器、 全固态活性炭与导电聚合物非对称型超级电容 器、全固态活性炭与锂离子电池混合非对称型超级电容器中的一种。优选地, 超级电容器 121选自全固态对称型石墨烯超级电容器。  In this embodiment, the supercapacitor 121 is an all-solid supercapacitor selected from the group consisting of an all-solid symmetrical graphene supercapacitor, an all-solid symmetrical activated carbon supercapacitor, an all-solid activated carbon and a metal oxide asymmetric supercapacitor, and an all-solid activated carbon. One of a conductive type asymmetric supercapacitor, an all-solid-state activated carbon, and a lithium ion battery hybrid asymmetric supercapacitor. Preferably, the ultracapacitor 121 is selected from an all solid state symmetrical graphene supercapacitor.
图 13 为本发明提供的自充电超级电容器的实施例四的截面示意图。 如 图 13所示, 超级电容器 121 的结构与实施例三所描述的相同, 其所包含的 器件可选用的材质也与实施例三所描述的相同, 在此不再赘述。 纳米摩擦发 电机 122和 123均为层状结构, 将在后面详细说明。 纳米摩擦发电机 122与 超级电容器 121之间设置有第一绝缘层 124, 纳米摩擦发电机 123与超级电 容器 121之间设置有第二绝缘层 125。  FIG. 13 is a schematic cross-sectional view showing a fourth embodiment of a self-charging supercapacitor provided by the present invention. As shown in FIG. 13, the structure of the supercapacitor 121 is the same as that described in the third embodiment, and the materials which are included in the device are also the same as those described in the third embodiment, and are not described herein again. The nano-friction motors 122 and 123 are layered and will be described in detail later. A first insulating layer 124 is disposed between the nano-friction generator 122 and the ultracapacitor 121, and a second insulating layer 125 is disposed between the nano-friction generator 123 and the super-capacitor 121.
本实施例中充电电路模块也与实施例一中所描述的相同, 在此不再赘 述。  The charging circuit module in this embodiment is also the same as that described in the first embodiment, and will not be described again.
本实施例提供的自充电超级电容器不仅限于包括上下两个纳米摩擦发 电机, 在超级电容器的上侧和 /或下侧可以设置多个纳米摩擦发电机, 具体来 说, 设置在超级电容器下侧的纳米摩擦发电机可以有多个, 且阵列排列在同 一层或不同层, 形成并联结构; 和 /或, 设置在超级电容器上侧的纳米摩擦发 电机可以有多个, 且阵列排列在同一层或不同层, 形成并联结构。 其排列可 参照图 7。 平行并联的多个纳米摩擦发电机可以增加电流的输出, 达到更好 的充电效果; 而且由于多个纳米摩擦发电机均匀排列, 可使其受力均匀, 具 有良好的线性叠加效果。  The self-charging supercapacitor provided in this embodiment is not limited to including two upper and lower nano-friction generators, and a plurality of nano-friction generators may be disposed on the upper side and/or the lower side of the supercapacitor, specifically, disposed on the underside of the supercapacitor There may be multiple nano-friction generators, and the arrays are arranged in the same layer or different layers to form a parallel structure; and/or, there may be multiple nano-friction generators disposed on the upper side of the supercapacitor, and the arrays are arranged in the same layer. Or different layers, forming a parallel structure. The arrangement can be referred to Figure 7. A plurality of nano-friction generators connected in parallel can increase the output of current to achieve better charging effect; and because a plurality of nano-friction generators are evenly arranged, the force can be uniform and have a good linear superposition effect.
下面将详细介绍自充电超级电容器中的纳米摩擦发电机的结构和工作 原理。  The structure and working principle of the nano-friction generator in self-charging supercapacitors will be described in detail below.
纳米摩擦发电机的第一种结构如图 14a和图 14b所示。 图 14a和图 14b 分别示出了纳米摩擦发电机的第一种结构的立体结构示意图和剖面结构示 意图。 该纳米摩擦发电机包括: 依次层叠设置的第一电极 141 , 第一高分子 聚合物绝缘层 142, 以及第二电极 143。 具体地, 第一电极 141设置在第一 高分子聚合物绝缘层 142的第一侧表面上; 且第一高分子聚合物绝缘层 142 的第二侧表面与第二电极 143的表面接触摩擦并在第二电极和第一电极处感 应出电荷。 因此, 上述的第一电极 141和第二电极 143构成纳米摩擦发电机 的两个输出电极。 The first structure of the nano-friction generator is shown in Figures 14a and 14b. 14a and 14b are respectively a perspective structural view and a cross-sectional structural view showing a first structure of a nano-friction generator. The nano-friction generator includes: a first electrode 141, a first polymer insulating layer 142, and a second electrode 143 which are sequentially stacked. Specifically, the first electrode 141 is disposed on the first side surface of the first polymer insulating layer 142; and the first polymer insulating layer 142 The second side surface is in frictional contact with the surface of the second electrode 143 and induces a charge at the second electrode and the first electrode. Therefore, the first electrode 141 and the second electrode 143 described above constitute two output electrodes of the nano friction generator.
为了提高纳米摩擦发电机的发电能力, 在第一高分子聚合物绝缘层 142 的第二侧表面 (即相对第二电极 143的面上)进一步设有微纳结构 144。 因 此, 当纳米摩擦发电机受到挤压时, 第一高分子聚合物绝缘层 142与第二电 极 143的相对表面能够更好地接触摩擦, 并在第一电极 141和第二电极 143 处感应出较多的电荷。 由于上述的第二电极 143主要用于与第一高分子聚合 物绝缘层 142摩擦, 因此, 第二电极 143也可以称之为摩擦电极。  In order to increase the power generation capability of the nano-friction generator, a micro-nano structure 144 is further provided on the second side surface of the first polymer insulating layer 142 (i.e., the surface opposite to the second electrode 143). Therefore, when the nano-friction generator is pressed, the opposing surfaces of the first polymer-polymer insulating layer 142 and the second electrode 143 can better contact the friction and are induced at the first electrode 141 and the second electrode 143. More charge. Since the second electrode 143 is mainly used for rubbing with the first polymer polymer insulating layer 142, the second electrode 143 may also be referred to as a friction electrode.
上述的微纳结构 144具体可以采取如下两种可能的实现方式: 第一种方 式为, 该微纳结构是微米级或纳米级的非常小的凹凸结构。 该凹凸结构能够 增加摩擦阻力, 提高发电效率。 所述凹凸结构能够在薄膜制备时直接形成, 也能够用打磨的方法使第一高分子聚合物绝缘层的表面形成不规则的凹凸 结构。 具体地, 该凹凸结构可以是半圓形、 条纹状、 立方体型、 四棱锥型、 或圓柱形等形状的凹凸结构。第二种方式为,该微纳结构是纳米级孔状结构, 此时第一高分子聚合物绝缘层所用材料优选为聚偏氟乙烯(PVDF ) , 其厚 度为 0.5-1.2mm (优选 1.0mm ) , 且其相对第二电极的面上设有多个纳米孔。 其中, 每个纳米孔的尺寸, 即宽度和深度, 可以根据应用的需要进行选择, 优选的纳米孔的尺寸为: 宽度为 10-100nm以及深度为 4-50μηι。 纳米孔的数 量可以根据需要的输出电流值和电压值进行调整, 优选的这些纳米孔是孔间 距为 2-30μηι的均匀分布, 更优选的平均孔间距为 9μηι的均匀分布。  The micro-nano structure 144 can adopt the following two possible implementation manners: In the first method, the micro-nano structure is a very small concave-convex structure of a micrometer or a nanometer. The uneven structure can increase frictional resistance and improve power generation efficiency. The uneven structure can be formed directly at the time of film preparation, and the surface of the first polymer insulating layer can be formed into an irregular concave-convex structure by a grinding method. Specifically, the uneven structure may be a concave-convex structure of a semicircular shape, a striped shape, a cubic shape, a quadrangular pyramid shape, or a cylindrical shape. In the second mode, the micro/nano structure is a nano-scale pore structure, and the material used for the first polymer insulating layer is preferably polyvinylidene fluoride (PVDF), and the thickness thereof is 0.5-1.2 mm (preferably 1.0 mm). And a plurality of nanopores are disposed on a surface of the second electrode. The size of each nanopore, that is, the width and depth, can be selected according to the needs of the application. The preferred size of the nanopore is: 10-100 nm in width and 4-50 μηι in depth. The number of nanopores can be adjusted according to the required output current value and voltage value. Preferably, the nanopores are uniformly distributed with a pore spacing of 2-30 μm, and more preferably have a uniform distribution of average pore spacing of 9 μm.
下面具体介绍一下图 14a和图 14b所示的纳米摩擦发电机的工作原理。 当该纳米摩擦发电机的各层向下弯曲时, 纳米摩擦发电机中的第二电极 143 与第一高分子聚合物绝缘层 142表面相互摩擦产生静电荷, 静电荷的产生会 使第一电极 141和第二电极 143之间的电容发生改变,从而导致第一电极 141 和第二电极 143之间出现电势差。 由于第一电极 141和第二电极 143作为纳 米摩擦发电机的输出电极与充电电路模块连接, 进而与超级电容器连接, 充 电电路模块和超级电容器构成纳米摩擦发电机的外电路, 纳米摩擦发电机的 两个输出电极之间相当于被外电路连通。 当该纳米摩擦发电机的各层恢复到 原来状态时, 这时形成在第一电极和第二电极之间的内电势消失, 此时已平 衡的第一电极和第二电极之间将再次产生反向的电势差。 通过反复摩擦和恢 复, 就可以在外电路中形成周期性的交流电信号。 该交流电信号经过充电电 路模块处理后转换为直流电信号, 该直流电信号输出给超级电容器进行储 存, 从而实现了超级电容器的自充电。 The working principle of the nano-friction generator shown in Figs. 14a and 14b will be specifically described below. When the layers of the nano-friction generator are bent downward, the surface of the second electrode 143 and the first polymer-polymer insulating layer 142 in the nano-friction generator rub against each other to generate an electrostatic charge, and the generation of the static charge causes the first electrode The capacitance between the 141 and the second electrode 143 is changed, resulting in a potential difference between the first electrode 141 and the second electrode 143. Since the first electrode 141 and the second electrode 143 are connected to the charging circuit module as the output electrode of the nano friction generator, and then connected to the super capacitor, the charging circuit module and the super capacitor constitute an external circuit of the nano friction generator, and the nano friction generator The two output electrodes are equivalent to being connected by an external circuit. When the layers of the nano-friction generator are restored to In the original state, the internal potential formed between the first electrode and the second electrode disappears at this time, and a reversed potential difference is again generated between the balanced first electrode and the second electrode. By repeated friction and recovery, periodic alternating current signals can be formed in the external circuit. The AC signal is processed by the charging circuit module and converted into a DC signal, which is output to the super capacitor for storage, thereby realizing self-charging of the super capacitor.
根据发明人的研究发现,金属与高分子聚合物摩擦,金属更易失去电子, 因此采用金属电极与高分子聚合物摩擦能够提高能量输出。 因此, 相应地, 在图 14a和图 14b所示的纳米摩擦发电机中, 第二电极由于需要作为摩擦电 极(即金属)与第一高分子聚合物进行摩擦, 因此其材料可以选自金属或合 金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 硒、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合 金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铣合金或钽合金。 第一电极由于不需要进行摩擦, 因此, 除了可以选用上述罗列的第二电极的材料之外, 其他能够制作电极的材料也 可以应用, 也就是说, 第一电极除了可以选自金属或合金, 其中金属可以是 金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 硒、 铁、 锰、 钼、 钨或钒; 合金可 以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌 合金或钽合金之外, 还可以选自铟锡氧化物、 石墨烯、 银纳米线膜等非金属 材料。  According to the research of the inventors, the metal rubs against the polymer, and the metal is more likely to lose electrons. Therefore, the friction between the metal electrode and the polymer can improve the energy output. Therefore, correspondingly, in the nano-friction generator shown in FIG. 14a and FIG. 14b, the second electrode is required to be rubbed as a friction electrode (ie, metal) with the first high-molecular polymer, so that the material thereof may be selected from metal or Alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese, phase, tungsten or vanadium; the alloy may be an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum alloy , copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, milling alloys or niobium alloys. Since the first electrode does not need to be rubbed, in addition to the material of the second electrode listed above, other materials capable of fabricating the electrode may be applied, that is, the first electrode may be selected from a metal or an alloy. The metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese, molybdenum, tungsten or vanadium; the alloy may be aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, copper Alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy, may also be selected from indium tin oxide Non-metallic materials such as graphene, silver nanowire film.
纳米摩擦发电机的第二种结构如图 15a和图 15b所示。 图 15a和图 15b 分别示出了纳米摩擦发电机的第二种结构的立体结构示意图和剖面结构示 意图。 该纳米摩擦发电机包括: 依次层叠设置的第一电极 151 , 第一高分子 聚合物绝缘层 152, 第二高分子聚合物绝缘层 154以及第二电极 153。 具体 地, 第一电极 151设置在第一高分子聚合物绝缘层 152的第一侧表面上; 第 二电极 153设置在第二高分子聚合物绝缘层 154的第一侧表面上; 其中, 第 一高分子聚合物绝缘层 152的第二侧表面与第二高分子聚合物绝缘层 154的 第二侧表面接触摩擦并在第一电极 151和第二电极 153处感应出电荷。其中, 第一电极 151和第二电极 153构成纳米摩擦发电机的两个输出电极。 为了提高纳米摩擦发电机的发电能力, 第一高分子聚合物绝缘层 152和 第二高分子聚合物绝缘层 154相对设置的两个面中的至少一个面上设有微纳 结构。 在图 15b中, 第一高分子聚合物绝缘层 152的面上设有微纳结构 155。 因此, 当纳米摩擦发电机受到挤压时, 第一高分子聚合物绝缘层 152与第二 高分子聚合物绝缘层 154的相对表面能够更好地接触摩擦,并在第一电极 151 和第二电极 153处感应出较多的电荷。 上述的微纳结构可参照上文的描述, 此处不再赘述。 The second structure of the nano-friction generator is shown in Figures 15a and 15b. 15a and 15b are respectively a perspective structural view and a cross-sectional structural view showing a second structure of a nano-friction generator. The nano-friction generator includes: a first electrode 151, a first polymer insulating layer 152, a second polymer insulating layer 154, and a second electrode 153 which are sequentially stacked. Specifically, the first electrode 151 is disposed on the first side surface of the first polymer insulating layer 152; the second electrode 153 is disposed on the first side surface of the second polymer insulating layer 154; The second side surface of the high molecular polymer insulating layer 152 is in contact with the second side surface of the second polymer insulating layer 154 and induces electric charges at the first electrode 151 and the second electrode 153. Wherein, the first electrode 151 and the second electrode 153 constitute two output electrodes of the nano friction generator. In order to increase the power generation capability of the nano-friction generator, at least one of the two faces of the first polymer-polymer insulating layer 152 and the second polymer-polymer insulating layer 154 are provided with a micro-nano structure. In Fig. 15b, a micro-nano structure 155 is provided on the surface of the first polymer insulating layer 152. Therefore, when the nano-friction generator is squeezed, the opposing surfaces of the first polymer insulating layer 152 and the second polymer insulating layer 154 can better contact the friction, and at the first electrode 151 and the second More charge is induced at the electrode 153. The above micro-nano structure can be referred to the above description, and details are not described herein again.
图 15a和图 15b所示的纳米摩擦发电机的工作原理与图 14a和图 14b所 示的纳米摩擦发电机的工作原理类似。 区别仅在于, 当图 15a和图 15b所示 的纳米摩擦发电机的各层弯曲时, 是由第一高分子聚合物绝缘层 152与第二 高分子聚合物绝缘层 154的表面相互摩擦来产生静电荷的。因此,关于图 15a 和图 15b所示的纳米摩擦发电机的工作原理此处不再赘述。  The operation of the nano-friction generator shown in Figures 15a and 15b is similar to that of the nano-friction generator shown in Figures 14a and 14b. The only difference is that when the layers of the nano-friction generator shown in FIGS. 15a and 15b are bent, the surfaces of the first polymer-polymer insulating layer 152 and the second polymer-polymer insulating layer 154 are rubbed against each other to generate Static charge. Therefore, the working principle of the nano-friction generator shown in Figs. 15a and 15b will not be described here.
图 15a和图 15b所示的纳米摩擦发电机主要通过聚合物 (第一高分子聚 合物绝缘层)与聚合物(第二高分子聚合物绝缘层)之间的摩擦来产生电信 号。  The nano-friction generator shown in Figs. 15a and 15b mainly generates an electric signal by friction between a polymer (first polymer polymer insulating layer) and a polymer (second polymer insulating layer).
在这种结构中, 第一电极和第二电极所用材料可以是铟锡氧化物、 石墨 烯、 银纳米线膜、 金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 硒、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  In this structure, the material used for the first electrode and the second electrode may be indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, Copper, titanium, chromium, selenium, iron, manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys , cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
上述两种结构中, 第一高分子聚合物绝缘层和第二高分子聚合物绝缘层 分别选自聚酰亚胺薄膜、苯胺曱醛树脂薄膜、聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤 维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤 维素海绵薄膜、再生海绵薄膜、聚氨酯弹性体薄膜、苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、人造纤维薄膜、聚曱基薄膜, 曱基丙烯酸酯薄膜、 聚乙烯醇薄膜、 聚乙烯醇薄膜、 聚酯薄膜、 聚异丁烯薄膜、 聚氨酯柔性海绵 薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙 烯腈氯乙烯薄膜和聚乙烯丙二酚碳酸盐薄膜中的一种。 其中, 原则上第一高 分子聚合物绝缘层和第二高分子聚合物绝缘层的材质可以相同, 也可以不 同。 但是, 如果两层高分子聚合物绝缘层的材质都相同, 会导致摩擦起电的 电荷量很小。 因此优选地, 第一高分子聚合物绝缘层与第二高分子聚合物绝 缘层的材质不同。 In the above two structures, the first polymer insulating layer and the second polymer insulating layer are respectively selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, and poly Amide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film , cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film , polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol film, neoprene film, D Diene propylene copolymer film, natural rubber film, polyacrylonitrile film, C One of a film of a nitrile vinyl chloride film and a polyethylene propylene glycol carbonate film. In principle, the materials of the first polymer insulating layer and the second polymer insulating layer may be the same or different. However, if the two layers of polymer insulation are made of the same material, the amount of charge that causes triboelectric charging is small. Therefore, it is preferable that the material of the first polymer insulating layer and the second polymer insulating layer are different.
除了上述两种结构外, 纳米摩擦发电机还可以采用第三种结构实现, 如 图 16a和图 16b所示。 图 16a和图 16b分别示出了纳米摩擦发电机的第三种 结构的立体结构示意图和剖面结构示意图。 从图中可以看出, 第三种结构在 第二种结构的基础上增加了一个居间薄膜层, 即: 第三种结构的纳米摩擦发 电机包括依次层叠设置的第一电极 161、 第一高分子聚合物绝缘层 162、 居 间薄膜层 160、 第二高分子聚合物绝缘层 164以及第二电极 163。 具体地, 第一电极 161设置在第一高分子聚合物绝缘层 162的第一侧表面上; 第二电 极 163设置在第二高分子聚合物绝缘层 164的第一侧表面上, 且居间薄膜层 160设置在第一高分子聚合物绝缘层 162的第二侧表面和第二高分子聚合物 绝缘层 164的第二侧表面之间。 其中, 所述居间薄膜层 160和第一高分子聚 合物绝缘层 162相对设置的两个面中的至少一个面上设有微纳结构 165 , 和 / 或所述居间薄膜层 160和第二高分子聚合物绝缘层 164相对设置的两个面中 的至少一个面上设有微纳结构 165 , 关于微纳结构 165的具体设置方式可参 照上文描述, 此处不再赘述。  In addition to the above two structures, the nano-friction generator can also be implemented with a third structure, as shown in Figures 16a and 16b. 16a and 16b are respectively a perspective structural view and a cross-sectional structural view showing a third structure of the nano-friction generator. As can be seen from the figure, the third structure adds an intervening film layer to the second structure, that is, the third structure of the nano-friction generator includes a first electrode 161 which is sequentially stacked, and the first high The molecular polymer insulating layer 162, the intermediate film layer 160, the second polymer insulating layer 164, and the second electrode 163. Specifically, the first electrode 161 is disposed on the first side surface of the first polymer insulating layer 162; the second electrode 163 is disposed on the first side surface of the second polymer insulating layer 164, and the intermediate film The layer 160 is disposed between the second side surface of the first polymer insulating layer 162 and the second side surface of the second polymer insulating layer 164. Wherein, at least one of the two faces opposite to each other of the intermediate film layer 160 and the first polymer insulating layer 162 is provided with a micro/nano structure 165, and/or the intermediate film layer 160 and the second high The micro-nano structure 165 is disposed on at least one of the two faces of the molecular polymer insulating layer 164. For the specific arrangement of the micro-nano structure 165, reference may be made to the above description, and details are not described herein again.
图 16a和图 16b所示的纳米摩擦发电机的材质可以参照前述的第二种结 构的纳米摩擦发电机的材质进行选择。 其中, 居间薄膜层也可以选自透明高 聚物聚对苯二曱酸乙二醇酯 (PET ) 、 聚二曱基硅氧烷(PDMS ) 、 聚苯乙 烯 (PS)、 聚曱基丙烯酸曱酯 (PMMA)、 聚碳酸酯 (PC)和液晶高分子聚合物 ( LCP ) 中的任意一种。 其中, 所述第一高分子聚合物绝缘层与第二高分子 聚合物绝缘层的材料优选透明高聚物聚对苯二曱酸乙二醇酯( PET ); 其中, 所述居间薄膜层的材料优选聚二曱基硅氧烷(PDMS ) 。 上述的第一高分子 聚合物绝缘层、 第二高分子聚合物绝缘层、 居间薄膜层的材质可以相同, 也 可以不同。 但是, 如果三层高分子聚合物绝缘层的材质都相同, 会导致摩擦 起电的电荷量很小, 因此, 为了提高摩擦效果, 居间薄膜层的材质不同于第 一高分子聚合物绝缘层和第二高分子聚合物绝缘层, 而第一高分子聚合物绝 缘层与第二高分子聚合物绝缘层的材质则优选相同,这样,能减少材料种类, 使本发明的制作更加方便。 The material of the nano-friction generator shown in FIG. 16a and FIG. 16b can be selected by referring to the material of the nano-friction generator of the second structure described above. Wherein, the intermediate film layer may also be selected from the group consisting of transparent high-polymer polyethylene terephthalate (PET), polydisiloxane (PDMS), polystyrene (PS), and polyacrylonitrile. Any of ester (PMMA), polycarbonate (PC), and liquid crystal polymer (LCP). The material of the first polymer polymer insulating layer and the second polymer polymer insulating layer is preferably a transparent high polymer polyethylene terephthalate (PET); wherein, the intermediate film layer The material is preferably polydithiosiloxane (PDMS). The materials of the first polymer polymer insulating layer, the second polymer polymer insulating layer, and the intermediate film layer may be the same or different. However, if the material of the three-layer polymer insulating layer is the same, the amount of charge that causes triboelectric charging is small. Therefore, in order to improve the friction effect, the material of the intermediate film layer is different from that of the first polymer insulating layer and The second polymer polymer insulation layer, and the first polymer polymer The material of the edge layer and the second polymer insulating layer are preferably the same, so that the material type can be reduced and the production of the present invention can be made more convenient.
在图 16a和图 16b所示的实现方式中,居间薄膜层 160是一层聚合物膜, 因此实质上与图 15a和图 15b所示的实现方式类似, 仍然是通过聚合物 (居 间薄膜层)和聚合物(第二高分子聚合物绝缘层)之间的摩擦来发电的。 其 中, 居间薄膜层容易制备且性能稳定。 另外,纳米摩擦发电机还可以采用第四种结构来实现,如图 17a和图 17b 所示, 包括:依次层叠设置的第一电极 171 , 第一高分子聚合物绝缘层 172, 居间电极层 170, 第二高分子聚合物绝缘层 174和第二电极 173; 其中, 第 一电极 171设置在第一高分子聚合物绝缘层 172的第一侧表面上; 第二电极 173设置在第二高分子聚合物绝缘层 174的第一侧表面上, 居间电极层 170 设置在第一高分子聚合物绝缘层 172的第二侧表面与第二高分子聚合物绝缘 层 174的第二侧表面之间。 其中, 第一高分子聚合物绝缘层 172相对居间电 极层 170的面和居间电极层 170相对第一高分子聚合物绝缘层 172的面中的 至少一个面上设置有微纳结构 (图未示) ; 第二高分子聚合物绝缘层 174相 对居间电极层 170的面和居间电极层 170相对第二高分子聚合物绝缘层 174 的面中的至少一个面上设置有微纳结构 (图未示) 。 在这种方式中, 通过居 间电极层 170 与第一高分子聚合物绝缘层 172 和第二高分子聚合物绝缘层 174之间摩擦产生静电荷, 由此将在居间电极层 170与第一电极 171和第二 电极 173之间产生电势差, 此时, 第一电极 171和第二电极 173串联为纳米 摩擦发电机的一个输出电极; 居间电极层 170为纳米摩擦发电机的另一个输 出电极。  In the implementation shown in Figures 16a and 16b, the intervening film layer 160 is a layer of polymeric film, and thus substantially similar to the implementation shown in Figures 15a and 15b, still through the polymer (intermediate film layer) And the friction between the polymer (the second polymer insulation layer) to generate electricity. Among them, the intervening film layer is easy to prepare and has stable performance. In addition, the nano friction generator can also be implemented by using a fourth structure, as shown in FIG. 17a and FIG. 17b, including: a first electrode 171, a first polymer insulating layer 172, and an intervening electrode layer 170, which are sequentially stacked. a second polymer insulating layer 174 and a second electrode 173; wherein the first electrode 171 is disposed on the first side surface of the first polymer insulating layer 172; and the second electrode 173 is disposed on the second polymer On the first side surface of the polymer insulating layer 174, the intermediate electrode layer 170 is disposed between the second side surface of the first polymer insulating layer 172 and the second side surface of the second polymer insulating layer 174. The first polymer polymer insulating layer 172 is provided with a micro-nano structure on at least one of the surface of the inter-electrode layer 170 and the surface of the inter-electrode layer 170 opposite to the first polymer insulating layer 172 (not shown) The second polymer insulating layer 174 is provided with a micro/nano structure on at least one of the surface of the intermediate electrode layer 170 and the surface of the intermediate electrode layer 170 and the second polymer insulating layer 174 (not shown) ). In this manner, electrostatic charges are generated by friction between the inter-electrode electrode layer 170 and the first polymer-polymer insulating layer 172 and the second polymer-polymer insulating layer 174, thereby placing the intervening electrode layer 170 and the first electrode. A potential difference is generated between the 171 and the second electrode 173. At this time, the first electrode 171 and the second electrode 173 are connected in series as one output electrode of the nano-friction generator; the intermediate electrode layer 170 is the other output electrode of the nano-friction generator.
在图 17a和图 17b所示的结构中, 第一高分子聚合物绝缘层、 第二高分 子聚合物绝缘层、 第一电极和第二电极的材质可以参照前述的第二种结构的 纳米摩擦发电机的材质进行选择。 居间电极层可以选择导电薄膜、 导电高分 子、 金属材料, 金属材料包括纯金属和合金, 纯金属选自金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 硒、 铁、 锰、 相、 钨、 钒等, 合金可以选自轻合金(铝 合金、 钛合金、 镁合金、 铍合金等) 、 重有色合金(铜合金、 辞合金、 锰合 金、 镍合金等) 、 低熔点合金(铅、 锡、 镉、 铋、 铟、 镓及其合金) 、 难熔 合金(钨合金、 钼合金、 铌合金、 钽合金等) 。 居间电极层 80 的厚度优选 100μηι-500μηι, 更优选 200 μηι。 In the structure shown in FIG. 17a and FIG. 17b, the materials of the first polymer insulating layer, the second polymer insulating layer, the first electrode and the second electrode may refer to the nano friction of the second structure described above. The material of the generator is selected. The intervening electrode layer may be selected from a conductive film, a conductive polymer, a metal material, the metal material includes a pure metal and an alloy, and the pure metal is selected from the group consisting of gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, selenium, iron, manganese. , phase, tungsten, vanadium, etc., the alloy may be selected from light alloys (aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, etc.), heavy non-ferrous alloys (copper alloys, alloys, manganese alloys, nickel alloys, etc.), low melting point alloys (lead, tin, cadmium, antimony, indium, gallium and their alloys), refractory Alloys (tungsten alloys, molybdenum alloys, niobium alloys, tantalum alloys, etc.). The thickness of the intervening electrode layer 80 is preferably 100 μm to 500 μm, more preferably 200 μm.
本发明提供的自充电超级电容器可以实现自充电功能, 由于采用柔性材 料制作, 使得整个自充电超级电容器可以任意弯曲、 变形, 从而使得本发明 的自充电超级电容器可以适应不同应用场合和环境。 另外, 本发明提供的自 的容量保持率高, 可以实现更有效的充放电,是一个优异的储能器件。 除此, 本发明提供的自充电超级电容器的结构设计灵活、 巧妙, 性能更佳, 而且形 状、 尺寸也可以根据使用者的需求加工, 更为便捷化。  The self-charging supercapacitor provided by the invention can realize self-charging function, and the self-charging supercapacitor can be arbitrarily bent and deformed by using flexible material, so that the self-charging supercapacitor of the invention can be adapted to different applications and environments. In addition, the present invention provides a high capacity retention rate and can achieve more efficient charge and discharge, and is an excellent energy storage device. In addition, the self-charging supercapacitor provided by the present invention has flexible, ingenious structure and better performance, and the shape and size can be processed according to the needs of the user, and is more convenient.
最后, 需要注意的是: 以上列举的仅是本发明的具体实施例子, 当然本 领域的技术人员可以对本发明进行改动和变型, 倘若这些修改和变型属于本 发明权利要求及其等同技术的范围之内, 均应认为是本发明的保护范围。  In the meantime, it is to be noted that the foregoing is only a specific embodiment of the present invention, and those skilled in the art can change and modify the present invention, and the modifications and variations are within the scope of the claims and the equivalents thereof. All should be considered as the scope of protection of the present invention.

Claims

权 利 要 求 书 Claim
1、 一种自充电超级电容器, 其特征在于, 包括:  A self-charging supercapacitor characterized by comprising:
将机械能转换为电能的至少一个纳米摩擦发电机, 每个纳米摩擦发电机 具有用于输出电信号的两个输出电极;  At least one nano-friction generator that converts mechanical energy into electrical energy, each nano-friction generator having two output electrodes for outputting electrical signals;
与所述至少一个纳米摩擦发电机的输出电极相连的、 将所述纳米摩擦发 电机输出的电信号进行调节转换的充电电路模块; 以及  a charging circuit module connected to an output electrode of the at least one nano-friction generator for regulating conversion of an electrical signal output by the nano-friction motor;
与所述充电电路模块相连的、 接收所述充电电路模块输出的电信号并进 行储存的超级电容器。  a supercapacitor connected to the charging circuit module for receiving an electrical signal output by the charging circuit module and storing the electrical signal.
2、 根据权利要求 1 所述的自充电超级电容器, 其特征在于, 所述超级 电容器包括:  2. The self-charging supercapacitor of claim 1 wherein said supercapacitor comprises:
基底;  Substrate
位于基底上的隔膜、 超级电容器第一电极、 超级电容器第二电极以及第 一集流体、 第二集流体;  a separator on the substrate, a first electrode of the supercapacitor, a second electrode of the supercapacitor, and a first current collector and a second current collector;
分别位于所述第一集流体和第二集流体上的两个垫层片;  Two bedding sheets on the first current collector and the second current collector, respectively;
由所述两个垫层片、 所述隔膜、 所述超级电容器第一电极和超级电容器 第二电极形成的空腔, 所述空腔内填充有电解液;  a cavity formed by the two bedding sheets, the separator, the first electrode of the supercapacitor, and the second electrode of the supercapacitor, the cavity being filled with an electrolyte;
将所述电解液进行封装的封装层;  An encapsulation layer that encapsulates the electrolyte;
其中, 所述隔膜设置在所述超级电容器第一电极和超级电容器第二电极 之间, 所述第一集流体与超级电容器第一电极连接, 所述第二集流体与超级 电容器第二电极连接, 所述充电电路模块与所述第一集流体、 第二集流体连 接。  Wherein the diaphragm is disposed between the first electrode of the supercapacitor and the second electrode of the supercapacitor, the first current collector is connected to the first electrode of the supercapacitor, and the second current collector is connected to the second electrode of the supercapacitor The charging circuit module is connected to the first current collector and the second current collector.
3、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述至少 一个纳米摩擦发电机设置在所述超级电容器的一侧, 所述至少一个纳米摩擦 发电机与所述超级电容器共用所述基底。  3. The self-charging supercapacitor of claim 2, wherein the at least one nano-friction generator is disposed on one side of the ultracapacitor, and the at least one nano-friction generator is shared with the supercapacitor The substrate.
4、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述至少 一个纳米摩擦发电机分设在所述超级电容器的两侧, 设置在所述超级电容器 下侧的至少一个纳米摩擦发电机与所述超级电容器共用所述基底, 设置在所 述超级电容器上侧的至少一个纳米摩擦发电机与所述超级电容器之间还设 置有绝缘层。 4. The self-charging supercapacitor according to claim 2, wherein the at least one nano-friction generator is disposed on both sides of the supercapacitor, and at least one nano-friction generating power disposed on a lower side of the supercapacitor And sharing the substrate with the supercapacitor An insulating layer is further disposed between the at least one nano-friction generator on the upper side of the supercapacitor and the supercapacitor.
5、 根据权利要求 1 所述的自充电超级电容器, 其特征在于, 所述超级 电容器包括: 依次平行层叠设置的第一集流体、超级电容器第一电极、 隔膜、 超级电容器第二电极和第二集流体; 所述充电电路模块与所述第一集流体、 第二集流体连接。  5. The self-charging supercapacitor according to claim 1, wherein the supercapacitor comprises: a first current collector sequentially disposed in parallel, a supercapacitor first electrode, a separator, a supercapacitor second electrode, and a second a current collector; the charging circuit module is coupled to the first current collector and the second current collector.
6、 根据权利要求 5 所述的自充电超级电容器, 其特征在于, 所述至少 一个纳米摩擦发电机设置在所述超级电容器的一侧, 所述至少一个纳米摩擦 发电机与所述超级电容器之间还设置有绝缘层。 6. The self-charging supercapacitor of claim 5, wherein the at least one nano-friction generator is disposed on one side of the ultracapacitor, the at least one nano-friction generator and the supercapacitor An insulating layer is also provided between them.
7、 根据权利要求 5 所述的自充电超级电容器, 其特征在于, 所述至少 一个纳米摩擦发电机分设在所述超级电容器的两侧, 设置在所述超级电容器 下侧的至少一个纳米摩擦发电机与所述超级电容器之间还设置有第一绝缘 层, 设置在所述超级电容器上侧的至少一个纳米摩擦发电机与所述超级电容 器之间还设置有第二绝缘层。  7. The self-charging supercapacitor according to claim 5, wherein the at least one nano-friction generator is disposed on both sides of the supercapacitor, and at least one nano-friction generating power disposed on a lower side of the supercapacitor A first insulating layer is further disposed between the machine and the supercapacitor, and a second insulating layer is disposed between the at least one nano-friction generator disposed on the upper side of the supercapacitor and the supercapacitor.
8、 根据权利要求 3或 6所述的自充电超级电容器, 其特征在于, 所述 纳米摩擦发电机有多个, 且阵列排列在同一层或不同层, 形成并联结构。  The self-charging supercapacitor according to claim 3 or 6, wherein the plurality of nano-friction generators are arranged in a plurality of layers, and the arrays are arranged in the same layer or in different layers to form a parallel structure.
9、 根据权利要求 4或 7所述的自充电超级电容器, 其特征在于: 设置在所述超级电容器下侧的纳米摩擦发电机有多个, 且阵列排列在同 一层或不同层, 形成并联结构;  The self-charging supercapacitor according to claim 4 or 7, wherein: there are a plurality of nano-friction generators disposed on a lower side of the supercapacitor, and the array is arranged in the same layer or different layers to form a parallel structure. ;
和 /或,设置在所述超级电容器上侧的纳米摩擦发电机有多个, 且阵列排 列在同一层或不同层, 形成并联结构。  And/or, there are a plurality of nano-friction generators disposed on the upper side of the supercapacitor, and the arrays are arranged in the same layer or different layers to form a parallel structure.
10、 根据权利要求 2或 5所述的自充电超级电容器, 其特征在于, 所述 超级电容器为全固态超级电容器, 选自全固态对称型石墨烯超级电容器、 全 固态对称型活性炭超级电容器、 全固态活性炭与金属氧化物非对称型超级电 容器、 全固态活性炭与导电聚合物非对称型超级电容器、 全固态活性炭与锂 离子电池混合非对称型超级电容器中的一种。  10. The self-charging supercapacitor according to claim 2 or 5, wherein the supercapacitor is an all-solid supercapacitor selected from the group consisting of an all solid state symmetrical graphene supercapacitor, an all solid state symmetrical activated carbon supercapacitor, One of solid-state activated carbon and metal oxide asymmetric supercapacitor, all-solid activated carbon and conductive polymer asymmetric supercapacitor, all-solid activated carbon and lithium ion battery hybrid asymmetric supercapacitor.
11、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述基底 的材质选自聚对苯二曱酸乙二醇酯、 硅和二氧化硅中的一种。 11. The self-charging supercapacitor according to claim 2, wherein the material of the substrate is selected from the group consisting of polyethylene terephthalate, silicon, and silicon dioxide.
12、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述两个 垫层片的材质选自丁钠橡胶、 丁苯橡胶、 丁腈橡胶、 丁基橡胶、 硅橡胶、 聚 氨酯橡胶、 异戊橡胶、 顺丁橡胶、 氟橡胶和丙烯酸酯橡胶中的一种。 The self-charging supercapacitor according to claim 2, wherein the material of the two cushion sheets is selected from the group consisting of sodium butadiene rubber, styrene butadiene rubber, nitrile rubber, butyl rubber, silicone rubber, and urethane rubber. One of isoprene rubber, butadiene rubber, fluororubber and acrylate rubber.
13、 根据权利要求 2或 5所述的自充电超级电容器, 其特征在于, 所述 隔膜的材质为自氧化石墨、 聚乙烯醇 -硫酸体系、 聚乙烯醇 -磷酸体系、 1-丁 基, 3-曱基咪唑双三氟曱基橫酰橫酰亚胺-烟雾硅胶体系、 聚苯胺 -1-乙基, 3- 曱基咪唑四氟硼酸盐-三曱基硅醇体系、 1-丁基, 3-曱基咪唑四氟硼酸盐 -硅胶 体系、 聚曱基丙烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯-高氯酸锂体系、 聚曱基丙 烯酸曱酯-碳酸乙烯酯-碳酸丙烯酯-高氯酸纳体系、 聚氧化乙烯-聚乙二醇-三 氟曱基橫酸锂体系、 聚曱基丙烯酸曱酯 -碳酸乙烯酯 -碳酸丙烯酯 -高氯酸四乙 基按体系中的一种。  The self-charging supercapacitor according to claim 2 or 5, wherein the separator is made of self-oxidized graphite, polyvinyl alcohol-sulfuric acid system, polyvinyl alcohol-phosphoric acid system, 1-butyl, 3 - mercapto imidazolium bistrifluorofluorenyl syl- syl-imide-smoke silica system, polyaniline-1-ethyl, 3-nonyl imidazolium tetrafluoroborate-trimethylsilyl alcohol system, 1-butyl , 3-mercaptoimidazole tetrafluoroborate-silica gel system, decyl acrylate-ethylene carbonate-propylene carbonate-lithium perchlorate system, decyl acrylate-ethylene carbonate-propylene carbonate - sodium perchlorate system, polyoxyethylene-polyethylene glycol-trifluoroantimony lithium dilithate system, polydecyl methacrylate-ethylene carbonate-propylene carbonate-tetraethyl perchlorate in the system One.
14、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述封装 层的材质为铝塑膜、 聚乙烯、 聚丙烯、 聚氯乙烯、 聚苯乙烯、 丙烯腈-丁二烯 -苯乙烯共聚物、聚曱基丙烯酸曱酯、聚曱醛、聚碳酸酯和聚酰胺膜中的一种。  The self-charging supercapacitor according to claim 2, wherein the encapsulating layer is made of aluminum plastic film, polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene- One of a styrene copolymer, a polydecyl methacrylate, a polyfurfural, a polycarbonate, and a polyamide film.
15、 根据权利要求 2或 5所述的自充电超级电容器, 其特征在于, 所述 第一集流体和第二集流体的材质选自铜、 银、 铝和镍中的一种; 所述超级电 容器第一电极和超级电容器第二电极的材质选自石墨烯、活性炭、炭气凝胶、 碳纤维、 金属氧化物、 导电聚合物和锂离子电池电极材料中的一种。  The self-charging supercapacitor according to claim 2 or 5, wherein the materials of the first current collector and the second current collector are selected from one of copper, silver, aluminum and nickel; The material of the capacitor first electrode and the supercapacitor second electrode is selected from the group consisting of graphene, activated carbon, carbon aerogel, carbon fiber, metal oxide, conductive polymer, and lithium ion battery electrode material.
16、 根据权利要求 2所述的自充电超级电容器, 其特征在于, 所述超级 电容器第一电极和超级电容器第二电极为: 平行结构、 多列平行结构、 交指 结构、 蛇形结构、 螺旋形结构、 树枝状结构、 螺旋树枝状结构或指纹结构。  The self-charging supercapacitor according to claim 2, wherein the first electrode of the supercapacitor and the second electrode of the supercapacitor are: a parallel structure, a multi-column parallel structure, an interdigitated structure, a serpentine structure, a spiral Shape structure, dendritic structure, spiral dendritic structure or fingerprint structure.
17、根据权利要求 1至 7任一项所述的自充电超级电容器,其特征在于, 所述充电电路模块包括:  The self-charging supercapacitor according to any one of claims 1 to 7, wherein the charging circuit module comprises:
与至少一个纳米摩擦发电机的输出电极相连的、 将所述至少一个纳米摩 擦发电机输出的电信号进行整流处理的整流电路模块; 以及  a rectifier circuit module coupled to an output electrode of the at least one nano-friction generator for rectifying an electrical signal output by the at least one nano-friction generator;
与所述整流电路模块相连的、 将所述整流电路模块输出的单向脉沖直流 电进行滤波处理而得到直流电信号的滤波电路模块, 所述滤波电路模块将所 述直流电信号输出给所述超级电容器。 And a filter circuit module connected to the rectifier circuit module for filtering a unidirectional pulse direct current outputted by the rectifier circuit module to obtain a direct current signal, wherein the filter circuit module outputs the direct current signal to the super capacitor.
18、 根据权利要求 17所述的自充电超级电容器, 其特征在于, 所述充 电电路模块还包括: 充电控制模块和开关 /变压模块; The self-charging supercapacitor according to claim 17, wherein the charging circuit module further comprises: a charging control module and a switch/transformer module;
所述充电控制模块与滤波电路模块连接, 接收所述滤波电路模块输出的 直流电信号; 所述充电控制模块与所述超级电容器连接, 接收所述超级电容 器反馈的充电电压; 所述充电控制模块与所述开关 /变压模块连接, 所述充电 控制模块根据所述直流电信号和所述充电电压得到控制信号, 向所述开关 / 变压模块输出所述控制信号;  The charging control module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the charging control module is connected to the super capacitor, and receives a charging voltage fed back by the super capacitor; the charging control module and The switch/transformer module is connected, and the charging control module obtains a control signal according to the direct current signal and the charging voltage, and outputs the control signal to the switch/transformer module;
所述开关 /变压模块与所述滤波电路模块连接,接收滤波电路模块输出的 直流电信号; 所述开关 /变压模块与所述超级电容器连接, 所述开关 /变压模 块根据接收的控制信号进行开关切换和对所述滤波电路模块输出的直流电 信号进行变压处理后输出给所述超级电容器。  The switch/transformer module is connected to the filter circuit module, and receives a DC signal output by the filter circuit module; the switch/transformer module is connected to the super capacitor, and the switch/transformer module is based on the received control signal Switching is performed and the DC signal outputted by the filter circuit module is subjected to a voltage transformation process and output to the super capacitor.
19、 根据权利要求 18所述的自充电超级电容器, 其特征在于, 所述充 电电路模块还包括: 发电机控制模块;  The self-charging supercapacitor according to claim 18, wherein the charging circuit module further comprises: a generator control module;
所述发电机控制模块与所述超级电容器连接, 接收所述超级电容器反馈 的充电电压;  The generator control module is coupled to the ultracapacitor and receives a charging voltage fed back by the supercapacitor;
所述发电机控制模块与所述纳米摩擦发电机连接, 所述发电机控制模块 根据所述充电电压向所述纳米摩擦发电机输出停止发电的信号。  The generator control module is coupled to the nano friction generator, and the generator control module outputs a signal to stop power generation to the nano friction generator according to the charging voltage.
20、根据权利要求 1至 7任一项所述的自充电超级电容器,其特征在于, 所述纳米摩擦发电机包括: 依次层叠设置的第一电极, 第一高分子聚合物绝 缘层, 以及第二电极; 其中, 所述第一电极设置在所述第一高分子聚合物绝 缘层的第一侧表面上; 且所述第一高分子聚合物绝缘层的第二侧表面朝向所 述第二电极设置, 所述第一电极和第二电极构成所述纳米摩擦发电机的输出 电极。  The self-charging supercapacitor according to any one of claims 1 to 7, wherein the nano-friction generator comprises: a first electrode sequentially stacked, a first polymer insulating layer, and a first a second electrode; wherein the first electrode is disposed on a first side surface of the first polymer insulating layer; and a second side surface of the first polymer insulating layer faces the second The electrode is disposed, and the first electrode and the second electrode constitute an output electrode of the nano friction generator.
21、 根据权利要求 20所述的自充电超级电容器, 其特征在于, 所述第 一高分子聚合物绝缘层朝向第二电极的面上设有微纳结构。  The self-charging supercapacitor according to claim 20, wherein the first polymer polymer insulating layer is provided with a micro/nano structure on a surface facing the second electrode.
22、 根据权利要求 20所述的自充电超级电容器, 其特征在于, 所述纳 米摩擦发电机进一步包括: 设置在所述第二电极和所述第一高分子聚合物绝 缘层之间的第二高分子聚合物绝缘层, 所述第二电极设置在所述第二高分子 聚合物绝缘层的第一侧表面上; 且所述第二高分子聚合物绝缘层的第二侧表 面与所述第一高分子聚合物绝缘层的第二侧表面相对设置。 The self-charging supercapacitor according to claim 20, wherein the nano-friction generator further comprises: a second portion disposed between the second electrode and the first polymer insulating layer a polymer electrolyte layer, the second electrode is disposed on the second polymer a first side surface of the polymer insulating layer; and a second side surface of the second polymer insulating layer is disposed opposite to the second side surface of the first polymer insulating layer.
23、 根据权利要求 22所述的自充电超级电容器, 其特征在于, 所述第 一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对设置的两个面中的 至少一个面上设有微纳结构。  The self-charging supercapacitor according to claim 22, wherein at least one of the two faces of the first polymer insulating layer and the second polymer insulating layer are oppositely disposed There is a micro-nano structure.
24、 根据权利要求 22所述的自充电超级电容器, 其特征在于, 所述纳 米摩擦发电机进一步包括: 设置在所述第一高分子聚合物绝缘层和所述第二 高分子聚合物绝缘层之间的居间薄膜层, 其中, 所述居间薄膜层为聚合物薄 膜层, 且所述第一高分子聚合物绝缘层相对所述居间薄膜层的面和居间薄膜 层相对于第一高分子聚合物绝缘层的面中的至少一个面上和 /或所述第二高 分子聚合物绝缘层相对所述居间薄膜层的面和居间薄膜层相对第二高分子 聚合物绝缘层的面中的至少一个面上设有微纳结构。  The self-charging supercapacitor according to claim 22, wherein the nano-friction generator further comprises: the first polymer insulating layer and the second polymer insulating layer An intervening film layer, wherein the intervening film layer is a polymer film layer, and the first polymer polymer insulating layer is opposite to the first polymer layer with respect to the surface of the intervening film layer and the intervening film layer At least one of the faces of the insulating layer and/or at least one of the surface of the second polymer insulating layer with respect to the intermediate film layer and the face of the intermediate film layer with respect to the second polymer insulating layer A micro-nano structure is provided on one side.
25、根据权利要求 1至 7任一项所述的自充电超级电容器,其特征在于, 所述纳米摩擦发电机包括: 依次层叠设置的第一电极, 第一高分子聚合物绝 缘层, 居间电极层, 第二高分子聚合物绝缘层以及第二电极; 其中, 所述第 一电极设置在所述第一高分子聚合物绝缘层的第一侧表面上; 所述第二电极 设置在所述第二高分子聚合物绝缘层的第一侧表面上, 所述居间电极层设置 在所述第一高分子聚合物绝缘层的第二侧表面与所述第二高分子聚合物绝 缘层的第二侧表面之间, 且所述第一高分子聚合物绝缘层相对所述居间电极 层的面和居间电极层相对于第一高分子聚合物绝缘层的面中的至少一个面 上和 /或所述第二高分子聚合物绝缘层相对所述居间电极层的面和居间电极 层相对第二高分子聚合物绝缘层的面中的至少一个面上设有微纳结构, 所述 第一电极和第二电极相连后与所述居间电极层构成所述纳米摩擦发电机的 输出电极。  The self-charging supercapacitor according to any one of claims 1 to 7, wherein the nano-friction generator comprises: a first electrode sequentially stacked, a first polymer insulating layer, and an intermediate electrode a second polymer sealing layer and a second electrode; wherein the first electrode is disposed on a first side surface of the first polymer insulating layer; On the first side surface of the second polymer insulating layer, the intervening electrode layer is disposed on the second side surface of the first polymer insulating layer and the second polymer insulating layer Between the two side surfaces, and the surface of the first polymer insulating layer opposite to the intermediate electrode layer and the surface of the intervening electrode layer relative to the first polymer polymer insulating layer and/or The second polymer insulating layer is provided with a micro/nano structure on at least one of a surface of the intervening electrode layer and a surface of the interposing electrode layer and the second polymer insulating layer, An electrode and a second electrode are connected to form an output electrode of the nano friction generator with the intervening electrode layer.
PCT/CN2014/070174 2013-03-20 2014-01-06 Self-charging super capacitor WO2014146501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310090472.6 2013-03-20
CN201310090472.6A CN104064361B (en) 2013-03-20 2013-03-20 Self-charging super capacitor

Publications (1)

Publication Number Publication Date
WO2014146501A1 true WO2014146501A1 (en) 2014-09-25

Family

ID=51552029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070174 WO2014146501A1 (en) 2013-03-20 2014-01-06 Self-charging super capacitor

Country Status (2)

Country Link
CN (1) CN104064361B (en)
WO (1) WO2014146501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938323B2 (en) * 2018-04-04 2021-03-02 Research & Business Foundation Sungkyunkwan University Energy generating system with integrated energy generator and energy storage

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393658B (en) * 2014-11-17 2017-07-14 北京纳米能源与系统研究所 A kind of energy management circuit
EP3345295B1 (en) * 2015-09-04 2021-10-27 Koninklijke Philips N.V. Electrical power generation device and generation method
CN106655438B (en) * 2015-10-16 2019-07-26 北京纳米能源与系统研究所 Self-charging cloth and the method to be generated electricity using the self-charging cloth
CN105871247B (en) * 2016-04-27 2019-01-18 北京大学 The self-charging energy unit and its manufacturing method integrated based on friction generator and supercapacitor
CN108123643B (en) * 2016-11-30 2020-09-15 北京纳米能源与系统研究所 Self-charging type super capacitor based on friction nanometer generator
FR3065315A1 (en) * 2017-04-12 2018-10-19 Paris Sciences Et Lettres - Quartier Latin ENERGY CONVERTER
CN107139733A (en) * 2017-04-20 2017-09-08 百度在线网络技术(北京)有限公司 Vehicular charging method and vehicle charging system
GB2563942B (en) * 2017-06-30 2022-01-12 Zapgo Ltd Triboelectric charge harvesting device
CN107546829A (en) * 2017-08-24 2018-01-05 北京科技大学 A kind of automatically cleaning self-charging energy system and its manufacture method
CN109039141B (en) * 2018-07-13 2020-04-21 南通纺织丝绸产业技术研究院 Flexible stretchable self-charging device based on carbon fibers, preparation method and system
CN109194183B (en) * 2018-08-20 2020-02-04 南方科技大学 Device self-repairing system
CN109194186B (en) * 2018-10-26 2020-01-10 京东方科技集团股份有限公司 Friction power generation device and wearable equipment
CN111477466B (en) * 2019-01-23 2021-04-02 清华大学 Charging method of self-charging super capacitor
CN111477472B (en) * 2019-01-23 2021-04-02 清华大学 Self-charging super capacitor
CN111952079B (en) * 2019-05-17 2022-04-22 清华大学 Energy storage device capable of continuously charging
CN111952080B (en) * 2019-05-17 2022-08-16 清华大学 Energy storage device capable of being charged in situ
CN110146198B (en) * 2019-05-22 2021-11-16 厦门大学 Flexible self-powered pressure sensor
CN111106662B (en) * 2019-12-30 2023-08-15 重庆大学 Fractal structure switch capacitance transducer and friction generator power management system thereof
CN112713638A (en) * 2021-01-11 2021-04-27 中北大学 Self-powered flexible energy storage device and self-powered sensing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147101A (en) * 1993-11-24 1995-06-06 Takeda Gijutsu Kenkyusho:Kk Safety light
CN1949422A (en) * 2005-10-13 2007-04-18 Lg电子株式会社 Separator sheet and method for manufacturing electric double layer capacitor using the separator sheet
JP2010022133A (en) * 2008-07-10 2010-01-28 Daikin Ind Ltd Charger device
CN202679272U (en) * 2012-07-20 2013-01-16 纳米新能源(唐山)有限责任公司 A nanometer generator with mixed piezoelectric and triboelectric films
CN203377111U (en) * 2013-03-20 2014-01-01 纳米新能源(唐山)有限责任公司 Self-charging super capacitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563461B2 (en) * 1988-04-01 1996-12-11 松下電器産業株式会社 Electric double layer capacitor
CN101807809B (en) * 2010-05-10 2013-02-27 无锡新畅电子有限公司 Charging circuit for lead acid batteries with high power factors
JP5820158B2 (en) * 2010-08-18 2015-11-24 セイコーインスツル株式会社 Electric double layer capacitor and manufacturing method thereof
CN102074371B (en) * 2010-12-30 2013-04-03 清华大学 Three-dimensional miniature super capacitor electrode manufactured from nano porous composite material and manufacturing method thereof
CN102710166B (en) * 2012-04-13 2015-01-07 纳米新能源(唐山)有限责任公司 Friction generator
CN102683573A (en) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147101A (en) * 1993-11-24 1995-06-06 Takeda Gijutsu Kenkyusho:Kk Safety light
CN1949422A (en) * 2005-10-13 2007-04-18 Lg电子株式会社 Separator sheet and method for manufacturing electric double layer capacitor using the separator sheet
JP2010022133A (en) * 2008-07-10 2010-01-28 Daikin Ind Ltd Charger device
CN202679272U (en) * 2012-07-20 2013-01-16 纳米新能源(唐山)有限责任公司 A nanometer generator with mixed piezoelectric and triboelectric films
CN203377111U (en) * 2013-03-20 2014-01-01 纳米新能源(唐山)有限责任公司 Self-charging super capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938323B2 (en) * 2018-04-04 2021-03-02 Research & Business Foundation Sungkyunkwan University Energy generating system with integrated energy generator and energy storage

Also Published As

Publication number Publication date
CN104064361B (en) 2017-05-24
CN104064361A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2014146501A1 (en) Self-charging super capacitor
CN203377111U (en) Self-charging super capacitor
Halper et al. Supercapacitors: A brief overview
Gao et al. A survey of hybrid energy devices based on supercapacitors
CN104025345B (en) Self-charging power pack
TW201117242A (en) All solid-state electrochemical double layer supercapacitor
CN104214056B (en) Wind power generation device and wind power generation system
JP2012054552A (en) Lithium ion capacitor
CN110995050B (en) Discharging friction generator
CN103000954A (en) Energy pack
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
CN104283456B (en) Self-charging energy storage device
CN104595120B (en) Wind power generation plant
KR20160011590A (en) Silicon secondary battery
US20110043967A1 (en) Super capacitor and method of fabricating the same
CN104104122B (en) Electricity generation system
CN104104262B (en) Power generation system
WO2014166286A1 (en) Power generation system using nanometer friction generator
CN104343637B (en) Wind power generation plant
CN103855421B (en) Self-charging film lithium ion battery
CN109216753A (en) Solid lithium ion battery
EP3561917B1 (en) Electrode for power storage devices and production method for said electrode
CN104242722A (en) Wind power generation system
JP2020053400A (en) Electrode of power storage device and manufacturing method therefor
JP2018500725A (en) Quick charger for battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769697

Country of ref document: EP

Kind code of ref document: A1