WO2014146422A1 - Procédé pour mesurer et calculer une température d'enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension - Google Patents

Procédé pour mesurer et calculer une température d'enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension Download PDF

Info

Publication number
WO2014146422A1
WO2014146422A1 PCT/CN2013/084963 CN2013084963W WO2014146422A1 WO 2014146422 A1 WO2014146422 A1 WO 2014146422A1 CN 2013084963 W CN2013084963 W CN 2013084963W WO 2014146422 A1 WO2014146422 A1 WO 2014146422A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
rotor
resistance
rotor winding
winding
Prior art date
Application number
PCT/CN2013/084963
Other languages
English (en)
Chinese (zh)
Inventor
许其品
袁亚洲
刘光权
耿敏彪
朱宏超
徐其质
安宁
王亚婧
万泉
仇志刚
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2014146422A1 publication Critical patent/WO2014146422A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Definitions

  • the invention provides a method for improving the calculation accuracy of the resistance of the rotor winding by optimizing the linear coefficient of the resistance of the rotor winding and the temperature, reasonably selecting the measuring point, considering the influencing factors of the outer loop, and considering the rotor voltage and the rotor current.
  • the sampling is performed by filtering and fault tolerance, and belongs to the field of electrical engineering.
  • the temperature of the large generator rotor is an important monitoring parameter for the safe operation of the generator.
  • the measurement methods include direct measurement method and indirect measurement method.
  • the direct measurement method is more reliable, but the implementation is more difficult, and the equipment is safely operated and repaired. Adding new difficulties.
  • the basic principle of the indirect measurement method is based on the resistance temperature characteristics of the copper conductor. Since the real-time monitoring values of the excitation voltage and the excitation current are required, the method of using the excitation software to calculate the rotor winding temperature has been widely used, and its implementation is relatively easy. No special maintenance is required.
  • the implementation of this method requires a linear coefficient of resistance and temperature, as well as real-time samples of the excitation voltage and excitation current, where the calculation of the linear coefficient is mostly achieved by absolute zero and the maximum temperature of the winding or the resistance at full load.
  • the sampling, algorithm, and output link errors all cause inaccurate temperature calculations. Therefore, improving the accuracy of sampling, calculation, and output is related to accurate measurement of rotor winding temperature.
  • the technical problem to be solved by the invention is to improve from sampling, algorithm and output simultaneously.
  • a method for calculating a rotor winding temperature of a large hydroelectric generating set characterized in that: the following steps are included:
  • the foregoing method for calculating the rotor winding temperature of a large hydro-generator set is characterized in that: in the step (1): pre-measuring the rotor rotor winding shutdown state temperature 7 ⁇ port idling temperature ⁇ and the corresponding rotor resistance Value and, using the measured value according to the formula ⁇ _ ⁇ 2 _ ⁇
  • the foregoing method for calculating the rotor winding temperature of a large hydro-generator set is characterized in that: in the step (2): the resistance value of the rotor is calculated by sampling the excitation voltage and the excitation current, and is subtracted in the calculation.
  • the external loop resistance is characterized in that: in the step (2): the resistance value of the rotor is calculated by sampling the excitation voltage and the excitation current, and is subtracted in the calculation. The external loop resistance.
  • the foregoing method for calculating the rotor winding temperature of a large hydro-generator set is characterized in that: the excitation phase of the rotor excitation voltage and the excitation current of the rotor are fault-tolerant, and the rotor is excited.
  • the voltage is calculated by the trigger angle and the anode voltage.
  • the voltage is sampled three times in one sampling period, and the third time is used as a referee function.
  • the first and second samples are fault-tolerant, and the third time is selected.
  • the value of the rotor excitation voltage needs to be filtered to avoid the instantaneous jitter of the rotor voltage during operation or the interference jitter of the measurement link, which brings errors to the measurement of the rotor resistance; the current sampling fault tolerance is to compare whether the two measurement channels are similar. If it is not similar, it is compared with the theoretical value, and if it is close to the theoretical value, the theoretical value is calculated by the active reactive power and the terminal voltage.
  • the foregoing method for calculating the rotor winding temperature of a large hydro-generator set is characterized in that: when measuring the rotor resistance of the rotor winding of the generator, the resistance of the rotor winding of the generator is measured at the connection between the slip ring and the rotor winding, On the outgoing side of the generator DC magnetic circuit breaker
  • the foregoing method for calculating the rotor winding temperature of a large hydro-generator set is characterized in that: in the step (3): theoretically, the critical temperature of copper entering the superconducting state is close to an absolute zero-273 ° C, but actually -234.
  • the resistance of the copper conductor is very small at 5 °C, so the industrial calculation takes -234.
  • 5 °C is the zero resistance temperature of the copper conductor, that is, the intersection of the linear extension line and the abscissa in Figure 1, by the rotor winding
  • T f K x R f -K 2 (D where ⁇ - rotor winding temperature
  • the calculation of the resistance of the rotor winding takes into account the influence of the external loop, and the calculation is more accurate.
  • the resistance of the rotor winding at normal temperature is measured from the connection of the rotor slip ring.
  • the calculation of the linear coefficient of the rotor winding temperature and resistance is more accurate.
  • the rotor temperature at ambient temperature and no-load state is selected to calculate the coefficient.
  • the measurement of excitation voltage and excitation current of the rotor has filtering and fault tolerance. At the same time, the output result also needs to be fault-tolerant. If it does not meet the linear ratio, if the deviation of the temperature and current set by the parameter is too much, re-pair The voltage and current are sampled or rounded off.
  • the present invention corrects the fault-tolerant and calculation method for calculating the rotor temperature-related parameters, so that the rotor winding temperature is closer to the actual value, reflecting the actual heat generation of the rotor winding.
  • DRAWINGS Figure 1 is a graph showing the relationship between copper conductor resistance and temperature in the present invention.
  • Figure 2 is a schematic diagram of the rotor circuit of the present invention.
  • Figure 3 is a logic diagram of rotor voltage sampling tolerance and filtering.
  • Figure 1 is a graph showing the relationship between the resistance of a copper conductor and its temperature. It can be seen that at normal temperature (except for high temperature and very low temperature), the resistance of the copper conductor has a good linear relationship with its temperature, which is approximately straight, and its slope depends on copper. The size and structure of the conductor. The characteristics of the copper material determine that the resistance temperature characteristic line of any copper conductor passes through the point ( _234 ⁇ 5 , 0) in Figure 1 ( according to the relationship diagram of Figure 1, as long as the slope of the rotor winding resistance temperature characteristic line is obtained, Calculate the resistance value of the rotor at a certain temperature, and then calculate the corresponding rotor temperature value.
  • the temperature of the rotor in the normal temperature state and the operating state and its corresponding resistance value and the resistance value are measured, that is, the two points and the slope of the temperature characteristic line in Fig. 1 can be determined. According to the equal slope, other points on the characteristic line ( 7 , ⁇ are satisfied:
  • the calculation of ⁇ ' can enter the rotor winding temperature and resistance through the normal temperature state.
  • Figure 2 shows the rotor circuit schematic
  • the excitation regulator is added with a millivolt signal generator to calibrate the excitation voltage and the excitation current respectively.
  • the DC magnetic circuit breaker of the generator is disconnected, and the cable at point A is uncoupled to disconnect the de-excitation resistor.
  • Two WHM-5 type digital display wet and dry thermometers are placed on the rotor pole of the generator upper wind tunnel, and the average temperature is taken as the generator rotor winding ambient temperature.
  • JYR-10 type transformer DC resistance fast tester is used in the slip ring and rotor winding.
  • the connection point ie, points B and C in Figure 2 is used to measure the resistance of the generator rotor winding.
  • the generator with the external circuit is measured on the outgoing side of the generator DC magnetic circuit breaker (ie, at points 0 and E in Figure 2).
  • Rotor winding resistance + Rl The rotor is heated by the excitation and excitation method.
  • the temperature of the rotor end is measured from the top of the generator rotor by the infrared point temperature gun. When the temperature reaches (between 50 and 70 degrees), the excitation current is removed, and the excitation current is immediately removed.
  • the power cabinet outlet measures the rotor loop resistance ⁇ ; Similarly, the same method can be used to measure another temperature measurement point as redundant fault tolerance.
  • the linear coefficient of temperature and resistance is determined by the two points of the loop resistance at normal temperature and the normal state of the shutdown state.
  • the two points are determined by a line, and the contact resistance of the slip ring is opposite to the rotor.
  • the critical temperature of copper entering the superconducting state is close to the absolute zero -273 ° C, but in fact the resistance of the copper conductor has been extremely small at -234.5 ° C, so in the industrial calculation, take -234.5 ° C as the zero resistance of the copper conductor.
  • the temperature that is, the intersection of the linear extension line and the abscissa in Figure 1, the zero resistance temperature determined by the copper material of the rotor winding is 234.5, but considering the existence of the contact resistance of the slip ring, the calculated rotor temperature is slightly smaller than the actual value. High, so take ⁇ 235 ⁇ 1 to offset this error.
  • the rotor excitation voltage is obtained: Ul, U2, U3 are three rotor excitation voltages taken within 20ms of one sampling period.
  • the first two acquisitions of the excitation voltage Ul, U2, when the difference does not exceed 5% U1, U1 is selected and then used as the rotor voltage after the filtering step.
  • the first two acquisitions of the excitation voltage Ul, U2 in the case of a difference of more than 5% U1, select the voltage in Ul, U2 and the third sample U3 and then pass the filter step as the rotor voltage.
  • the rotor excitation current sampling tolerance and filtering are the same as the rotor excitation voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention porte sur un procédé pour mesurer et calculer une température d'un enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension, qui comprend les étapes suivantes : (1) mesurer séparément une température d'un enroulement de rotor, dans un état d'arrêt et un état de charge nulle, d'une génératrice ainsi que de l'enroulement de rotor, et calculer pour obtenir la température de l'enroulement de rotor et un coefficient linéaire d'une résistance ; (2) obtenir, par échantillonnage, des valeurs d'échantillonnage en temps réel d'une tension d'excitation et d'un courant d'excitation pour obtenir une valeur de résistance de l'enroulement de rotor ; et (3) multiplier une valeur de résistance en temps réel de l'enroulement de rotor par la température de l'enroulement de rotor et le coefficient linéaire de la résistance, et soustraire une température de résistance nulle pour obtenir la température de l'enroulement de rotor. La mesure d'une tension de rotor et d'un courant de rotor a une fonction de filtrage et un mécanisme tolérant aux défauts, et un procédé de calcul de coefficient linéaire d'une résistance de rotor et d'une température de rotor est optimisé, et le calcul de la valeur de résistance de l'enroulement de rotor est plus proche d'une valeur réelle ; de plus, l'influence d'une perte de pression de bague glissante et d'une perte de pression de bus lors du calcul d'une température de rotor sont considérées comme permettant d'obtenir la température calculée du rotor plus proche d'une température réelle, en améliorant ainsi la précision de la mesure et du calcul de température d'un rotor.
PCT/CN2013/084963 2013-03-18 2013-10-10 Procédé pour mesurer et calculer une température d'enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension WO2014146422A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013100870359A CN103267587A (zh) 2013-03-18 2013-03-18 一种大型水轮发电机组转子绕组温度的测算方法
CN201310087035.9 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014146422A1 true WO2014146422A1 (fr) 2014-09-25

Family

ID=49011227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084963 WO2014146422A1 (fr) 2013-03-18 2013-10-10 Procédé pour mesurer et calculer une température d'enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension

Country Status (2)

Country Link
CN (1) CN103267587A (fr)
WO (1) WO2014146422A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260874A1 (fr) * 2016-06-21 2017-12-27 General Electric Company Systèmes et procédés pour déterminer la détérioration de rotor d'une machine dynamoélectrique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267587A (zh) * 2013-03-18 2013-08-28 国电南瑞科技股份有限公司 一种大型水轮发电机组转子绕组温度的测算方法
CN104101442A (zh) * 2014-07-17 2014-10-15 贵阳新光电气有限公司 发电机转子绕组温度在线监测方法
CN105115620B (zh) * 2015-07-15 2018-11-06 日立楼宇技术(广州)有限公司 三相同步门电机的绕组温度检测、及过热保护方法和系统
CN108458812B (zh) * 2017-02-20 2020-11-17 南京天擎汽车电子有限公司 电机绕组温度的获取方法和获取装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083001A (en) * 1976-12-29 1978-04-04 Westinghouse Electric Corporation Measurement of motor winding temperature
EP2108930A1 (fr) * 2008-04-09 2009-10-14 VARIAN S.p.A. Dispositif de mesure sans contact de paramètres de rotors de machines ayant une grande vitesse de rotation
DE102008040725A1 (de) * 2008-07-25 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der Rotortemperatur einer permanenterregten Synchronmaschine
CN101382458B (zh) * 2008-10-16 2010-11-10 西安理工大学 基于转子温度场模拟计算的电站锅炉空预器热点检测方法
CN101915623A (zh) * 2010-06-30 2010-12-15 上海电气电站设备有限公司 一种无刷励磁发电机转子温度测算方法
CN102564626A (zh) * 2012-02-06 2012-07-11 北京广利核系统工程有限公司 一种实时工况下无刷励磁机的转子温度测量方法
CN102661812A (zh) * 2012-05-15 2012-09-12 无锡艾柯威科技有限公司 一种提高电机绕组温度检测精度的方法
CN202563072U (zh) * 2012-03-02 2012-11-28 北京理工大学 电机绕组温升测试系统
CN103267587A (zh) * 2013-03-18 2013-08-28 国电南瑞科技股份有限公司 一种大型水轮发电机组转子绕组温度的测算方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083001A (en) * 1976-12-29 1978-04-04 Westinghouse Electric Corporation Measurement of motor winding temperature
EP2108930A1 (fr) * 2008-04-09 2009-10-14 VARIAN S.p.A. Dispositif de mesure sans contact de paramètres de rotors de machines ayant une grande vitesse de rotation
DE102008040725A1 (de) * 2008-07-25 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der Rotortemperatur einer permanenterregten Synchronmaschine
CN101382458B (zh) * 2008-10-16 2010-11-10 西安理工大学 基于转子温度场模拟计算的电站锅炉空预器热点检测方法
CN101915623A (zh) * 2010-06-30 2010-12-15 上海电气电站设备有限公司 一种无刷励磁发电机转子温度测算方法
CN102564626A (zh) * 2012-02-06 2012-07-11 北京广利核系统工程有限公司 一种实时工况下无刷励磁机的转子温度测量方法
CN202563072U (zh) * 2012-03-02 2012-11-28 北京理工大学 电机绕组温升测试系统
CN102661812A (zh) * 2012-05-15 2012-09-12 无锡艾柯威科技有限公司 一种提高电机绕组温度检测精度的方法
CN103267587A (zh) * 2013-03-18 2013-08-28 国电南瑞科技股份有限公司 一种大型水轮发电机组转子绕组温度的测算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260874A1 (fr) * 2016-06-21 2017-12-27 General Electric Company Systèmes et procédés pour déterminer la détérioration de rotor d'une machine dynamoélectrique
US10914701B2 (en) 2016-06-21 2021-02-09 General Electric Company Systems and methods for determining rotor deterioration in a dynamoelectric machine

Also Published As

Publication number Publication date
CN103267587A (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2014146422A1 (fr) Procédé pour mesurer et calculer une température d'enroulement de rotor d'un groupe électrogène à turbine hydraulique de grande dimension
CN109901069A (zh) 一种调相机转子绕组匝间短路故障诊断方法
CN107632281B (zh) 三相三线计量装置接线自动检测仪器的测控方法
BR112013014847B1 (pt) Método e aparelho para diagnose de transformador
CN110888101A (zh) 电能表异常诊断方法及装置
CN111157827B (zh) 一种基于端口电流时序特征的直流换流阀状态检测方法
CN107656203B (zh) 一种永磁同步发电机的失磁故障检测方法
CN102508008A (zh) 风力发电系统并网母线电压跌落幅相检测系统及方法
CN103454479A (zh) 信号生成装置、测定装置、漏电检测装置及信号生成方法
JP4599120B2 (ja) 電気設備の絶縁監視装置と方法
CN109638865A (zh) 一种储能变流器抑制励磁涌流的方法
CN103630779A (zh) 一种无刷励磁系统参数的实测方法
CN108896852B (zh) 一种公共接入点短路容量在线测量方法及系统
CN102928778B (zh) 一种核电站三相电动机启动综合特性测试系统
CN106124890A (zh) 一种光伏并网发电系统的反孤岛检测方法
CN109188181A (zh) 电网电压互感器二次回路中性线虚接判断方法
CN104267243B (zh) 同步发电机内电势和电抗参数的测量方法及装置
CN103134969A (zh) 一种功率因数校正器以及相电压估计方法
CN102928644B (zh) 风力发电机组并网点电压闪变检测方法及装置
CN110412353B (zh) 一种基于功率损耗的光伏电站三相变压器阻抗计算方法
TWI551874B (zh) 用於馬達變頻器之馬達效率分析方法
WO2013156052A1 (fr) Procédé pour l'estimation de paramètre de moteur dans un agencement d'onduleur commuté par charge, et agencement d'onduleur commuté par charge correspondant
Kim et al. Motor Efficiency Determination of SynRM and Measurement Uncertainty
Zhou et al. Rotor position measurement method for generator power angles
CN105277781A (zh) 一种适应变频过程的电气量相量测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879088

Country of ref document: EP

Kind code of ref document: A1