WO2014146416A1 - 一种用于电力线载波通信的数字前端系统及其实现方法 - Google Patents

一种用于电力线载波通信的数字前端系统及其实现方法 Download PDF

Info

Publication number
WO2014146416A1
WO2014146416A1 PCT/CN2013/084385 CN2013084385W WO2014146416A1 WO 2014146416 A1 WO2014146416 A1 WO 2014146416A1 CN 2013084385 W CN2013084385 W CN 2013084385W WO 2014146416 A1 WO2014146416 A1 WO 2014146416A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
signal
complex baseband
equivalent complex
receiver
Prior art date
Application number
PCT/CN2013/084385
Other languages
English (en)
French (fr)
Inventor
高鸿坚
布米勒•歌德
刘伟麟
杨冰
李建岐
Original Assignee
国家电网公司
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院 filed Critical 国家电网公司
Publication of WO2014146416A1 publication Critical patent/WO2014146416A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5433Remote metering

Definitions

  • the invention relates to the field of power communication supporting a smart grid, and particularly relates to a digital front end system for supporting equal-time baseband orthogonal frequency division multiplexing OFDM modulation for power line carrier communication and an implementation method thereof.
  • Background technique
  • Power line carrier communication channels are more complex and variable than other communication systems.
  • the power line carrier communication channel has frequency selectivity, time-varying, colored background noise, narrow-band interference, and multiple impulse noises, which are mainly caused by various electrical appliances connected to the power line.
  • CE European Union, CONFORMITE EU OPEE NE
  • EMC electromagnetic compatibility
  • the digital front end of the traditional OFDM-based power line communication system does not use digital mixing.
  • the frequency converter directly modulates and processes the digital signal at the baseband, and the transmitting end maps the signal to the subcarrier to be used, and the used subcarrier directly corresponds to the frequency band used for information transmission.
  • the OFDM symbol is subjected to oversampling and low-pass filtering, and then directly transmitted to the digital-to-analog converter.
  • the digital front end in the form of an equivalent complex baseband is widely used in the field of wireless communications. Unlike the traditional digital front-end structure, at the transmitting end, the digital front end in the form of an equivalent complex baseband uses a digital mixer to move the signal from the baseband into the passband. Conversely, at the receiving end, the digital mixer is used to communicate. The number is moved to the baseband to form an equivalent baseband signal for processing, thereby reducing the sampling rate requirement of the receiver and the difficulty of the filter design.
  • an object of the present invention is to provide a digital front end system supporting equivalent complex baseband orthogonal frequency division multiplexing OFDM modulation for power line carrier communication, and another object is to provide a power line carrier.
  • the method for realizing the digital front end system of communication the invention combines the digital front end of the equivalent complex baseband form with the Nyquist window method, has the support band selection, supports the bandwidth configuration, suppresses the out-of-band interference, and reduces the out-of-band energy of the transmission signal. And to suppress the characteristics of narrowband interference in the band.
  • a digital front end system for power line carrier communication includes a transmitter and a receiver that perform communication in sequence;
  • the transmitter includes an inverse Fourier transform module that sequentially performs communication, and windowing Module I, an interpolation filter, a mixer I, and a digital-to-analog converter;
  • the receiver includes an analog-to-digital converter, a mixer II, a decimation filter, a windowing module II, and a Fourier transform module that sequentially communicate.
  • the inverse Fourier transform module implements transforming a transform modulation symbol into an equivalent complex baseband signal in a time domain;
  • the windowing module 1 is configured to reduce an equivalent complex baseband orthogonal frequency division multiplexing OFDM and a subcarrier signal.
  • the interpolation filter is a cascade mode for stepwise increasing a sampling rate of an equivalent complex baseband signal;
  • the mixer I implementing conversion of an equivalent complex baseband signal to a digital bandpass signal;
  • Digital to analog converters are used to convert digital bandpass signals to analog signals.
  • the receiver implements an operation opposite to the transmitter, the analog to digital converter converts the analog signal into a digital band pass signal; and the mixer ⁇ converts the digital band pass signal to the equivalent complex baseband signal
  • the decimation filter is a cascade mode for stepwise reducing a sampling rate of an equivalent complex baseband signal; the windowing module is configured to suppress in-band narrowband interference of an equivalent complex baseband signal; the Fourier transform module A transformation of an equivalent complex baseband signal to a modulation symbol is implemented.
  • the input signal of the receiver that is, the analog signal is converted into a digital band-pass signal by an analog-to-digital converter, and the digital band-pass signal is converted into an equivalent complex baseband signal by a mixer; the equivalent complex baseband signal passes
  • the first rate conversion factor is! ⁇ Extracted low-pass filter and M-stage cascaded decimation filter with a rate conversion factor of 2, downsampled to an equivalent complex baseband signal with a sampling frequency of ⁇ ; perform Nyquist window windowing and Fourier transform Processing, get the modulation No.; from 1 kHz to 50 megahertz.
  • both the windowing module I and the windowing module ⁇ adopt a raised cosine windowing module (the raised cosine window is a kind of Nyquist window);
  • the configuration of the center frequency point of the digital front end system is implemented; by changing the cascade number of the transmitter interpolation filter and the interpolation multiple, the pair is realized.
  • different out-of-band rejection effects are achieved by varying the number of filter stages of the receiver decimation filter and the order of each stage of the filter, in combination with the oversampling gain. (Different out-of-band suppression effects can achieve out-of-band rejection of more than 100 decibels.)
  • the present invention is directed to a method for implementing a digital front end system for power line carrier communication based on another object, the improvement being that the digital front end system for the method comprises a transmitter and a receiver that perform communication in sequence;
  • the transmitter includes an inverse Fourier transform module, a windowing module I, an interpolation filter, a mixer I, and a digital-to-analog converter that perform communication in sequence;
  • the receiver includes an analog-to-digital converter that sequentially performs communication, a mixer II, Decimation filter, windowing module II and Fourier transform module;
  • the implementation method includes the following steps:
  • the step (1) comprises the following steps:
  • the modulation symbols are respectively mapped onto the subcarriers, and the equivalent complex baseband signals converted into the time domain are processed by the inverse Fourier transform module;
  • the complex baseband signal is oversampled to 2 M ⁇ f s by an interpolating low pass filter having an M-level rate conversion factor of 2, where M is an integer and 0 ⁇ M ⁇ 9;
  • Waveform, the sampling rate of the equivalent complex baseband signal is ⁇ ⁇ 2 ⁇ ⁇ f s ;
  • the equivalent complex baseband signal is determined by the carrier frequency point!
  • the mixer is upconverted to become a digital bandpass signal;
  • the digital band pass signal is converted into an analog signal by a digital-to-analog converter.
  • the step (2) comprises the following steps:
  • the digital band pass signal is further converted into an equivalent complex baseband signal by a mixer II;
  • the equivalent complex baseband signal is downsampled to a sampling frequency of f by a decimation low pass filter having a first rate conversion factor of R a and a decimation low pass filter having a rate conversion factor of 2 cascaded by M stages.
  • s equivalent complex baseband signal; ⁇ 4> of the complex baseband equivalent signal performs Nyquist windowing and window Fourier transform processing to obtain modulation symbols.
  • the present invention combines the advantages of equivalent complex baseband and windowing technologies: support band selection, support bandwidth configuration, suppress out-of-band interference, reduce out-of-band energy of the transmitted signal, and suppress in-band narrowband interference.
  • the digital front end system provided by the present invention can realize the configuration of the system center frequency point by combining the equivalent complex baseband method and changing the frequency of the digital mixer, thereby enabling the system to have the ability to communicate channel conditions such as noise and attenuation according to the power line. In case, choose the best center frequency to communicate.
  • the digital front-end system provided by the present invention can realize the configuration of the system bandwidth by combining the equivalent complex baseband method and changing the cascaded number of the digital cascade filter or the interpolation and extraction multiples, thereby enabling the system to have different capabilities according to different applications. , grid structure and channel conditions, choose the most appropriate system bandwidth for communication.
  • the receiver provided by the present invention can achieve different out-of-band suppression effects by combining the equivalent complex baseband method and changing the filter stage number of the cascade filter and the order of each stage filter, combined with the oversampling gain. Up to 100 dB of out-of-band rejection can be achieved.
  • the transmitter provided by the present invention reduces the out-of-band energy of the OFDM signal transmitted by the OFDM method by windowing, thereby reducing the interference that may be caused to other systems.
  • the transmitter provided by the present invention can reduce the number of subcarriers of the notch by using windowing method to reduce the out-of-band energy of the signal transmitted by each sub-carrier when using the notch technique to reduce the interference that may be caused to the radio station. , thereby improving spectrum utilization.
  • the receiver provided by the present invention suppresses in-band narrowband interference by windowing, and can minimize the influence of in-band narrowband interference on reception performance of adjacent subcarriers.
  • FIG. 1 is a structural diagram of a digital front end system provided by the present invention.
  • FIG. 2 is a structural diagram of a transmitter in a digital front end system provided by the present invention.
  • FIG. 3 is a diagram showing an example of a structure of a transmitter in a digital front end system provided by the present invention
  • FIG. 4 is a structural diagram of a receiver in a digital front end system provided by the present invention.
  • FIG. 5 is a diagram showing an example of a structure of a receiver in a digital front end system provided by the present invention.
  • FIG. 6 is a schematic diagram of a raised cosine window of a transmitter and a receiver provided by the present invention
  • Figure 7 is a schematic view showing the overlapping of symbols after windowing provided by the present invention.
  • Figure 9 is a comparison of window function versus in-band interference suppression provided by the present invention. detailed description
  • the structure of the digital front end system provided by the present invention is as shown in FIG. 1 , which includes a transmitter and a receiver which perform communication in sequence; the structure diagram of the transmitter in the digital front end system provided by the present invention is as shown in FIG. 2 , and includes an inverse Fourier transform.
  • Module a windowing module I, a series of cascaded interpolation filters, a mixer I module and a digital to analog converter (DAC).
  • the inverse Fourier transform module implements the transformation of the modulation symbol to the equivalent complex baseband signal in the time domain
  • the windowing module I is used to reduce the out-of-band energy of the equivalent complex baseband signal
  • the cascade interpolation filter stepwisely increases the equivalent complex baseband signal.
  • the sampling rate, the mixer I realizes the conversion of the equivalent complex baseband signal to the band-pass signal
  • the digital-to-analog converter converts the band-pass digital signal into an analog signal.
  • the structure example of the transmitter in the digital front-end system provided by the present invention is shown in FIG. 3, and the center frequency can be selected from 0 Hz to 25 megahertz, and the bandwidth support is flexible between 7.8 kHz and 10 megahertz. Configuration.
  • the digital front end structure of the transmitter includes an inverse Fourier transform (IFFT) module, a raised cosine window windowing module, an interpolation low pass filter with a rate conversion factor of 2, and a rate conversion factor of 3.
  • IFFT inverse Fourier transform
  • DAC digital to analog converter
  • the sampling rate of the complex complex baseband signal is R a * 2 M * f s ; finally, the equivalent complex baseband signal is f from the carrier frequency.
  • the structure diagram of the receiver in the digital front end system provided by the present invention is shown in FIG. 4, and includes an analog-to-digital converter (ADC), a mixer ⁇ module, a series of cascading decimation filters, and a windowing module. And a Fourier transform module.
  • ADC analog-to-digital converter
  • the analog-to-digital converter converts the analog signal into a digital band-pass signal
  • the mixer ⁇ realizes the conversion of the digital band-pass signal to the equivalent complex baseband signal
  • the cascaded decimation filter steps down the sampling rate of the equivalent complex baseband signal step by step.
  • the window is used to suppress the in-band narrowband interference of the equivalent complex baseband signal
  • the Fourier transform module implements the transformation of the equivalent complex baseband signal to the modulation symbol.
  • the digital front end structure of the receiver includes a Fourier transform (FFT) module, a raised cosine window and window module, A decimation low-pass filter with a rate conversion factor of 2, a decimation low-pass filter with a rate conversion factor of 3, a decimation low-pass filter with a rate conversion factor of 5, and a frequency point of f.
  • FFT Fourier transform
  • ADC analog to digital converter
  • the receiver performs a reverse operation corresponding to the transmitter.
  • the input signal (analog signal) at the receiving end is converted into a digital band-pass signal by an analog-to-digital converter, and then frequency-shifted by the mixer to become an equivalent complex baseband signal.
  • the equivalent complex baseband signal is downsampled to a sampling frequency by a decimation low-pass filter with a first-rate rate conversion factor of R a and an M-stage cascaded decimation filter with a conversion factor of 2.
  • the equivalent complex baseband signal is finally, a raised cosine window windowing and Fourier transform processing are performed on the equivalent complex baseband signal to obtain a modulation symbol.
  • the transmitter structure of the present invention reduces the out-of-band energy of the transmitted signal by windowing; the receiver structure proposed by the present invention suppresses the in-band narrowband interference by windowing.
  • FIG. 6 shows a working manner of the raised cosine window in the transmitter and the receiver, wherein the upper window is a raised cosine window at the transmitting end.
  • the lower window is the raised cosine window at the receiving end.
  • the transmitter produces a complete Orthogonal Frequency Division Multiplexing (OFDM) symbol with a cyclic prefix and a cyclic suffix as shown in FIG.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Raised cosine window of the receiver can use N 5 sampling points of a cyclic prefix, cyclic postfix N 5 sampling points and the sampling points 2N 5 OFDM symbols to improve the performance of the demodulation, N cyclic prefix and N 5 5:00
  • the cyclic suffix of the point is guaranteed to be unaffected by intersymbol interference.
  • the cyclic prefix and cyclic suffix of the sampling points are used for the raised cosine window of the transmitting end.
  • the roll-off factor of the raised cosine window of the transmitter and receiver is defined as:
  • a _ Tx NN 1.
  • a _ Rx 2N 5 / N 2.
  • _ ⁇ represents the roll-off factor of the transmitter, represents the roll-off factor at the receiving end, and N represents the number of points of the Fourier transform/inverse Fourier transform.
  • Figure 9 simulates the receiver's suppression of this interference when there is strong monophonic interference between the 401th subcarrier and the 402th subcarrier. As can be seen from Figure 9, after using the raised cosine window, The interference of single-tone interference in adjacent sub-carriers is much less than when the raised cosine window is not used.
  • the present invention also provides a method for implementing a digital front end system for power line carrier communication, the implementation method comprising the following steps:
  • the modulation symbols are respectively mapped onto the subcarriers, and the equivalent complex baseband signals converted into the time domain are processed by the inverse Fourier transform module;
  • the interpolated low-pass filter of 2 is oversampled to 2 M ⁇ f s , where M is an integer and 0 ⁇ M ⁇ 9 ;
  • the equivalent complex baseband signal is determined by the carrier frequency point!
  • the mixer is upconverted to become a digital bandpass signal;
  • the digital band pass signal is converted into an analog signal by a digital-to-analog converter.
  • the digital band pass signal is further converted into an equivalent complex baseband signal by a mixer II;
  • the equivalent complex baseband signal is downsampled to a sampling frequency of f by a decimation low pass filter having a first rate conversion factor of R a and a decimation low pass filter having a rate conversion factor of 2 cascaded by M stages. s equivalent complex baseband signal;
  • ⁇ 4> Performing a raised cosine window windowing and Fourier transform processing on the equivalent complex baseband signal signal to obtain a modulation symbol.
  • the present invention uses an equivalent complex baseband technique to adjust the frequency of the digital mixer to move the system to a frequency band with good channel conditions (eg, in the frequency range of 30 kHz to 20 MHz); Flexible configuration of system bandwidth (eg, from 7.8 kHz to 10 MHz) in different cascading orders and different interpolation/decimation rates in a complex baseband structure; Passing a low-pass filter in an equivalent complex baseband structure Combined with the oversampling gain, it can achieve over 100dB rejection of out-of-band interference, which in turn can support optimal operating band selection over a wide frequency range.
  • the present invention uses a windowing method in the time domain, which can reduce the leakage of the out-of-band energy of the orthogonal frequency division multiplexing OFDM and the subcarrier at the transmitting end, thereby reducing interference to other power line communication systems.
  • the notch technique when used to reduce the interference that may be caused to the radio station, the number of subcarriers of the notch can be minimized, thereby improving spectrum utilization.
  • the energy leakage of narrowband interference on its neighboring subcarriers can be minimized, thereby reducing the impact on reception of its neighboring subcarriers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及支撑智能电网的电力通信领域,具体涉及一种用于电力线载波通信的数字前端系统及其实现方法;所述数字前端系统包括依次进行通信的发射机和接收机;发射机包括依次进行通信的逆傅立叶变换模块、加窗模块I、插值滤波器、混频器I和数模转换器;所述接收机包括依次进行通信的模数转换器、混频器II、抽取滤波器、加窗模块II和傅立叶变换模块。所述实现方法包括下述步骤:(1)将调制符号输入到发射机上转换为模拟信号;(2)将所述模拟信号输入的到接收机上转换为调制符号。本发明将等效复数基带形式的数字前端与奈奎斯特窗的方法结合,具有支持频带选择、支持带宽配置、抑制带外干扰、降低发送信号带外能量并抑制带内窄带干扰的特点。

Description

一种用于电力线载波通信的数字前端系统及其实现方法 技术领域
本发明涉及支撑智能电网的电力通信领域, 具体涉及一种用于电力线载波通信的支撑等 效复数基带正交频分复用 OFDM调制的数字前端系统及其实现方法。 背景技术
与其他通信系统相比, 电力线载波通信信道更加复杂多变。 电力线载波通信信道具有频 率选择性、 时变性、 具有有色的背景噪声、 窄带干扰和多种脉冲噪声, 这些特性主要是由连 接在电力线上的各种电器所引起的。 举例而言, 欧洲的 CE (欧洲统一, CONFORMITE EU OPEE NE) 认证仅测量测试电器在 150千赫兹以上的电磁兼容 (EMC) 特性, 因此, 150 千赫兹以下的噪声非常高。 同时, 随着传输距离、 电网结构、 信道阻抗和频率而变化的 衰减也是电力线载波通信的重要影响因素。 另外, 在智能电网系统中, 不同的组织会提供不 同的应用, 如高级测量体系 (AMI)、 电网自动化等, 并且不同服务所要求的服务质量也相差 甚远, 这就需要在电网中分割频段进行实现。 因此, 多种电力线通信系统可能会工作在同一 段电力线下, 一个系统的信号对另外的系统而言会成为干扰, 而这种带外干扰的能量甚至会 大于信号本身的能量。
可见, 应对电力线通信系统信道上的噪声和衰减对于保证电力线通信系统的可靠性至关 重要。 因此, 一个具有鲁棒性的电力线通信系统需要支持对频点和带宽的灵活选择, 支持对 带外噪声的抑制以提高可用的频带范围, 降低带外发送功率以减少对相邻系统的干扰, 并能 够在最大程度上降低带内窄带干扰对与其相邻正交频分复用 OFDM子载波接收性能的影响。 为了避免使用十分复杂的模拟前端来达到以上目的, 需要结合最新的现有技术研究能够支撑 以上功能的数字前端结构。
由于电力线载波通信使用的频段频率较低, 通常在几十千赫兹到几十兆赫兹之间, 因此, 传统的基于正交频分复用 (OFDM) 的电力线通信系统的数字前端不使用数字混频器, 而是 直接在基带对数字信号进行调制和处理, 发射端将信号映射到需要使用的子载波上, 所使用 的子载波直接对应着信息传输所使用的频段。 OFDM符号经过逆傅立叶变换后, 进行过采样 和低通滤波处理, 然后直接发射至数模转换器。 这种传统的数字前端无法实现保证在具有较 小的子载波间隔的同时提高可用频带范围, 尤其是在使用中心频点较高(如 10兆赫兹) 的窄 带 OFDM进行通信时, 系统的复杂度会大大提高。 等效复数基带形式的数字前端广泛的用于无线通信领域。 与传统的数字前端结构不同, 在发射端, 等效复数基带形式的数字前端使用数字混频器将信号从基带搬移到通带内, 相反 的, 在接收端, 使用数字混频器将带通信号搬移到基带, 形成等效的基带信号进行处理, 从 而降低了对接收机采样速率的要求和滤波器设计的难度, 但等效复数基带形式的数字前端目 前还没有被用于电力线载波通信领域。奈奎斯特窗函数的方法已被用于无线通信 OFDM系统 的接收端处理, 但在电力线载波通信系统中还未被提出。 发明内容
针对现有技术的不足, 本发明的目的是提供一种用于电力线载波通信的支撑等效复数基 带正交频分复用 OFDM调制的数字前端系统,另一目的是提供一种用于电力线载波通信的数 字前端系统的实现方法, 本发明将等效复数基带形式的数字前端与奈奎斯特窗的方法结合, 具有支持频带选择、 支持带宽配置、 抑制带外干扰、 降低发送信号带外能量并抑制带内窄带 干扰的特点。
本发明的目的是采用下述技术方案实现的:
一种用于电力线载波通信的数字前端系统, 其改进之处在于, 所述数字前端系统包括依 次进行通信的发射机和接收机; 所述发射机包括依次进行通信的逆傅立叶变换模块、 加窗模 块 I、 插值滤波器、 混频器 I和数模转换器; 所述接收机包括依次进行通信的模数转换器、 混 频器 II、 抽取滤波器、 加窗模块 II和傅立叶变换模块。
优选的, 所述逆傅立叶变换模块实现变换调制符号到时域的等效复数基带信号的变换; 所述加窗模块 I用于降低等效复数基带正交频分复用 OFDM及子载波信号的带外能量; 所述 插值滤波器为级联模式, 用于分步提高等效复数基带信号的采样率; 所述混频器 I实现等效 复数基带信号到数字带通信号的转换;所述数模转换器用于将数字带通信号转换为模拟信号。
优选的, 所述接收机实现与发射机相反的操作, 所述模数转换器将模拟信号转换为数字 带通信号; 所述混频器 Π实现数字带通信号到等效复数基带信号的转换; 所述抽取滤波器为 级联模式, 用于分步降低等效复数基带信号的采样率; 所述加窗模块 Π用于抑制等效复数基 带信号的带内窄带干扰; 所述傅立叶变换模块实现等效复数基带信号到调制符号的变换。
较优选的, 所述接收机的输入信号即模拟信号通过模数转换器转换为数字带通信号, 数 字带通信号再通过混频器 Π变频成为等效复数基带信号; 等效复数基带信号通过一级速率变 换因子为!^的抽取低通滤波器和 M级级联的速率变换因子为 2的抽取低通滤波器, 降采样 至采样频率为 ^的等效复数基带信号; 执行奈奎斯特窗加窗和傅立叶变换处理, 得到调制符 号; 其中 从1千赫兹到 50兆赫兹。 较优选的, 加窗模块 I和加窗模块 Π均采用升余弦加窗模块 (升余弦窗是奈奎斯特窗的 一种); 插值滤波器采用速率变换因子为 Ra插值低通滤波器, Ra=2、 3 或 5; 抽取滤波器采 用速率变换因子为 Ra抽取低通滤波器, Ra=2、3或 5;混频器 I和混频器 II均采用频点为 1 的 混频器; 其中 f。从 0赫兹到 25兆赫兹。 优选的, 通过改变混频器 I和混频器 Π的频率, 用于实现对数字前端系统中心频点的配 置; 通过改变所述发射机插值滤波器的级联级数和插值倍数, 实现对发射机带宽的配置; 通 过改变所述接收机抽取滤波器的级联级数和抽取倍数, 实现对接收机带宽的配置; 其中发射 机带宽和接收机的带宽均从 7.8千赫兹到 25兆赫兹; 插值倍数和抽取倍数的取值均与速率变 换因子 Ra相同, Ra=2、 3或 5。 优选的, 通过改变接收机抽取滤波器的滤波器级数和每级滤波器的阶数, 结合过采样增 益, 用于实现不同的带外抑制效果。(不同的带外抑制效果如最高可以实现超过 100分贝的带 外抑制。)
本发明基于另一目的提供的一种用于电力线载波通信的数字前端系统的实现方法, 其改 进之处在于, 所述方法用的数字前端系统包括依次进行通信的发射机和接收机; 所述发射机 包括依次进行通信的逆傅立叶变换模块、 加窗模块 I、 插值滤波器、 混频器 I和数模转换器; 所述接收机包括依次进行通信的模数转换器、 混频器 II、 抽取滤波器、 加窗模块 II和傅立叶 变换模块;
所述实现方法包括下述步骤:
( 1 ) 将调制符号输入到发射机上转换为模拟信号;
(2) 将所述模拟信号输入的到接收机上转换为调制符号。
优选的, 所述步骤 (1 ) 包括下述步骤:
A、 调制符号分别映射到子载波上, 通过逆傅立叶变换模块处理转换为时域的等效复数 基带信号;
B、 将等效复数基带信号进行升余弦窗加窗处理, 用于降低等效复数基带信号的带外能 量; 假设基带采样频率为 fs, 经过奈奎斯特窗加窗处理后的等效复数基带信号通过 M级速率 变换因子为 2的插值低通滤波器过采样至 2M · fs, 其中 M为整数且 0≤M≤9;
C、 所述等效复数基带信号再经过一级速率变换因子为 Ra, Ra=2, 3或 5的插值低通滤 波器, 等效复数基带信号的采样率为^ · 2Μ · fs ;
D、 所述等效复数基带信号由载波频点为! 的混频器上变频成为数字带通信号;
E、 所述数字带通信号经过数模转换器后将数字带通信号转换为模拟信号。
优选的, 所述步骤 (2) 包括下述步骤:
<1>输入到接收机的模拟信号通过模数转换器转换为数字带通信号;
<2>所述数字带通信号再通过混频器 II变频成为等效复数基带信号;
<3>所述等效复数基带信号通过一级速率变换因子为 Ra的抽取低通滤波器和 M级级联的 速率变换因子为 2的抽取低通滤波器, 降采样至采样频率为 fs的等效复数基带信号信号; <4>对等效复数基带信号信号执行奈奎斯特窗加窗和傅立叶变化处理, 得到调制符号。 与现有技术比, 本发明达到的有益效果是:
1、 本发明结合了等效复数基带与加窗两种技术的优势: 支持频带选择、 支持带宽配置、 抑制带外干扰、 降低发送信号带外能量并抑制带内窄带干扰。
2、本发明提供的数字前端系统通过结合等效复数基带方法并改变数字混频器的频率, 可 以实现对系统中心频点的配置, 进而使系统有能力根据电力线通信信道情况如噪声与衰减的 情况, 选择最好的中心频点进行通信。
3、本发明提供的数字前端系统通过结合等效复数基带方法并改变数字级联滤波器的级联 级数或插值、 抽取倍数, 可以实现对系统带宽的配置, 进而使系统有能力根据不同应用、 电 网结构和信道情况, 选择最合适的系统带宽进行通信。
4、本发明提供的接收机, 通过结合等效复数基带方法并改变级联滤波器的滤波器级数和 每级滤波器的阶数,结合过采样增益,可以实现不同的带外抑制效果。最高可实现超过 lOOdB 的带外抑制。
5、 本发明提供的发射机, 通过加窗的方法降低发送正交频分复用 OFDM信号的带外能 量, 从而降低了对其他系统可能造成的干扰。
6、 本发明提供的发射机, 在使用陷波技术减少对无线电台可能造成的干扰时, 通过加窗 的方法, 降低各子载波发送信号的带外能量, 可以使陷波的子载波数最小, 从而提高频谱利 用率。
7、 本发明提供的接收机, 通过加窗的方法对带内窄带干扰进行抑制, 能够在最大程度上 降低带内窄带干扰对与其相邻子载波接收性能的影响。 附图说明
图 1是本发明提供的数字前端系统结构图;
图 2是本发明提供的数字前端系统中发射机的结构图;
图 3是本发明提供的数字前端系统中发射机的结构实例图;
图 4是本发明提供的数字前端系统中接收机的结构图;
图 5是本发明提供的数字前端系统中接收机的结构实例图;
图 6是本发明提供的发射机和接收机升余弦窗示意图;
图 7是本发明提供的加窗后符号交叠示意图;
图 8是本发明提供的等效复数基带与窗函数联合方法带外抑制性能图;
图 9是本发明提供的窗函数对带内干扰抑制比较图。 具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
本发明提供的数字前端系统结构图如图 1所示, 包括依次进行通信的发射机和接收机; 本发明提供的数字前端系统中发射机的结构图如图 2所示, 包括一个逆傅立叶变换模块、 一 个加窗模块 I、 一系列级联的插值滤波器、 一个混频器 I模块和一个数模转换器 (DAC)。其 中逆傅立叶变换模块实现调制符号到时域的等效复数基带信号的变换, 加窗模块 I用于降低 等效复数基带信号的带外能量, 级联插值滤波器分步提高等效复数基带信号的采样率, 混频 器 I实现等效复数基带信号到带通信号的转换,数模转换器将带通数字信号转换为模拟信号。
实施例 1
本发明提供的数字前端系统中发射机的结构实例图如图 3所示, 可以实现中心频点在 0 赫兹到 25兆赫兹之间进行选择, 带宽支持在 7.8千赫兹到 10兆赫兹之间灵活配置。
在这种实现方式下, 发射机的数字前端结构包括一个逆傅立叶变换 (IFFT) 模块、 一个 升余弦窗加窗模块、 一个速率转换因子为 2的插值低通滤波器、 一个速率转换因子为 3的插 值低通滤波器、 一个速率转换因子为 5 的插值低通滤波器、 一个频点为 1 的混频器和一个数 模转换器 (DAC)。使 用 4096点的逆傅立叶变换模块, 调制符号分别映射到子载波 1至 410 和子载波 3687至 4096上, 通过逆傅立叶变换处理转换为时域的等效复数基带信号; 然后进 行升余弦窗加窗处理用于降低等效复数基带信号的带外能量。 假设基带采样频率为 fs, 进过 加窗处理后的等效复数基带信号通过 M 级速率变换因子为 2 的插值低通滤波器过采样至 2M * fs, 其中 M为整数且 0¾ΞΜ¾Ξ9; 然后, 等效复数基带信号再经过一级速率变换因子为 Ra ( Ra=2, 3或 5) 的插值低通滤波器, 此时等效复数基带信号的采样率为 Ra * 2M * fs ; 最后, 等效复数基带信号由载波频点为 f。=9.5MHZ的混频器上变频成为数字带通信号, 数字带通信 号经过数模转换器后转换为模拟信号。
本发明提供的数字前端系统中接收机的结构图如图 4所示,包括一个模数转换器 (ADC)、 一个混频器 Π模块、 一系列级联的抽取滤波器、 一个加窗模块 Π和一个傅立叶变换模块。 其 中模数转换器将模拟信号转换为数字带通信号, 混频器 Π实现数字带通信号到等效复数基带 信号的转换, 级联的抽取滤波器分步降低等效复数基带信号的采样率, 加窗用于抑制等效复 数基带信号的带内窄带干扰, 傅立叶变换模块实现等效复数基带信号到调制符号的变换。
实施例 2
本发明提供的数字前端系统中接收机的结构实例图如图 5所示, 在这种实现方式下, 接 收机的数字前端结构包括一个傅立叶变换 (FFT) 模块、 一个升余弦窗加窗模块、 一个速率 转换因子为 2的抽取低通滤波器、 一个速率转换因子为 3的抽取低通滤波器, 一个速率转换 因子为 5的抽取低通滤波器,一个频点为 f。的混频器和一个模数转换器(ADC)。如图 5所示, 接收机执行与发送机对应的反操作。 首先, 接收端的输入信号 (模拟信号) 通过模数转换器 转换为数字带通信号, 再通过混频器下搬频成为等效复数基带信号。 然后, 等效复数基带信 号通过一级速率变换因子为 Ra的抽取低通滤波器和 M级级联的变换因子为 2的抽取低通滤 波器, 降采样至采样频率为! 的等效复数基带信号。 最后, 对等效复数基带信号执行升余弦 窗加窗和傅立叶变化处理, 得到调制符号。
本发明提出的发射机结构, 通过加窗的方法降低发送信号的带外能量; 本发明提出的接 收机结构, 通过加窗的方法对带内窄带干扰进行抑制。
实施例 3
本发明提供的发射机和接收机升余弦窗示意图如图 6所示, 图 6给出了一种升余弦窗在 发射机和接收机的工作方式, 其中上面的窗为发射端升余弦窗, 下面的窗为接收端升余弦窗。 发射机产生一个如图 6所示的具有循环前缀和循环后缀的完整的正交频分复用 (OFDM), 符 号。 接收机的升余弦窗可以利用 N5个采样点的循环前缀、 N5个采样点的循环后缀以及在 OFDM符号中的 2N5个采样点提高解调性能, N5点的循环前缀和 N5点的循环后缀要保证不 受到符号间干扰的影响。 另外, 个采样点的循环前缀和循环后缀用于发射端升余弦窗, 为 了节省时间开销, 对于两个相连的 OFDM符号, 前一个 OFDM符号的最后 个采样点与后 一个 OFDM的开始 个采样点要求交叠, 如图 7所示。 发射机和接收机升余弦窗的滚降系 数定义为:
a _ Tx = N N ①. a _ Rx = 2N5 / N ②. 其中, 《_ Γχ代表发射机的滚降系数, 代表接收端的滚降系数, N表示傅立叶变 换 /逆傅立叶变换的点数。 图 9仿真了当系统在第 401个子载波和第 402个子载波之间出现较 强的单音干扰时, 接收机对这一干扰的抑制情况, 由图 9可见, 在使用了升余弦窗后, 单音 干扰在相邻子载波的能量泄漏远远小于不使用升余弦窗时的情况。
本发明提出的接收机结构, 通过结合等效复数基带方法并改变级联滤波器的滤波器级数 和每级滤波器的阶数, 结合过采样增益, 可以实现不同的带外抑制效果。 最高可实现超过 100dB的带外抑制, 如图 8所示。 图 8给出了该系统实现的带外抑制性能, 系统中心频点为 9.5兆赫兹, 带宽为 2.5兆赫兹, 可以看到, 系统对带外信号实现了接近 100dB的衰减。
本发明还提供了一种用于电力线载波通信的数字前端系统的实现方法, 所述实现方法包 括下述步骤:
( 1 ) 将调制符号输入到发射机上转换为模拟信号;
A、 调制符号分别映射到子载波上, 通过逆傅立叶变换模块处理转换为时域的等效复数 基带信号;
B、 将等效复数基带信号进行升余弦窗加窗处理, 用于降低等效复数基带信号的带外能 量; 假设基带采样频率为 fs, 经过加窗处理后的等效复数基带信号通过 M级速率变换因子为
2的插值低通滤波器过采样至 2M · fs, 其中 M为整数且 0≤M≤9;
C、 所述等效复数基带信号再经过一级速率变换因子为 Ra, Ra=2, 3或 5的插值低通滤 波器, 等效复数基带信号的采样率为^ · 2Μ · fs ;
D、 所述等效复数基带信号由载波频点为! 的混频器上变频成为数字带通信号;
E、 所述数字带通信号经过数模转换器后将数字带通信号转换为模拟信号。
(2) 将所述模拟信号输入的到接收机上转换为调制符号-
<1>输入到接收机的模拟信号通过模数转换器转换为数字带通信号;
<2>所述数字带通信号再通过混频器 II变频成为等效复数基带信号; <3>所述等效复数基带信号通过一级速率变换因子为 Ra的抽取低通滤波器和 M级级联的 速率变换因子为 2的抽取低通滤波器, 降采样至采样频率为 fs的等效复数基带信号信号;
<4>对等效复数基带信号信号执行升余弦窗加窗和傅立叶变化处理, 得到调制符号。 本发明使用等效复数基带技术, 通过调整数字混频器的频点, 可以将系统搬移到信道条 件好的频段(如在 30千赫兹到 20兆赫兹的频率范围内进行选择); 通过等效复数基带结构中 不同级联阶数和不同的插值 /抽取率实现系统带宽的灵活配置(如从 7.8千赫兹到 10兆赫兹范 围内进行配置); 通过等效复数基带结构中的低通滤波器, 结合过采样增益, 可以对带外干扰 实现超过 100dB的抑制, 进而能够支撑在大的频率范围内最佳工作频段选择。 在此基础上, 本发明在时域上使用了加窗的方法,在发射端可以降低正交频分复用 OFDM及子载波的带外 能量的泄露, 从而减少对其他电力线通信系统的干扰, 另外, 在使用陷波技术减少对无线电 台可能造成的干扰时, 可以使陷波的子载波数最小, 从而提高频谱利用率。 在接收端可以在 最大程度上降低窄带干扰在与其相邻子载波上的能量泄漏, 从而减少对与其相邻子载波接收 的影响。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照 上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然可以对本 发明的具体实施方式进行修改或者等同替换, 而未脱离本发明精神和范围的任何修改或者等 同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求
1、 一种用于电力线载波通信的数字前端系统, 其特征在于, 所述数字前端系统包括依次 进行通信的发射机和接收机; 所述发射机包括依次进行通信的逆傅立叶变换模块、 加窗模块
I、 插值滤波器、 混频器 I和数模转换器; 所述接收机包括依次进行通信的模数转换器、 混频 器 II、 抽取滤波器、 加窗模块 II和傅立叶变换模块。
2、 如权利要求 1所述的用于电力线载波通信的数字前端系统, 其特征在于, 所述逆傅立 叶变换模块实现变换调制符号到时域的等效复数基带信号的变换; 所述加窗模块 I用于降低 等效复数基带正交频分复用调制信号及各子载波的带外能量; 所述插值滤波器为级联模式, 用于分步提高等效复数基带信号的采样率; 所述混频器 I实现等效复数基带信号到数字带通 信号的转换; 所述数模转换器用于将数字带通信号转换为模拟信号。
3、 如权利要求 1所述的用于电力线载波通信的数字前端系统, 其特征在于, 所述接收机 实现与发射机相反的操作, 所述模数转换器将模拟信号转换为数字带通信号; 所述混频器 Π 实现数字带通信号到等效复数基带信号的转换; 所述抽取滤波器为级联模式, 用于分步降低 等效复数基带信号的采样率; 所述加窗模块 Π用于抑制等效复数基带信号的带内窄带干扰; 所述傅立叶变换模块实现等效复数基带信号到调制符号的变换。
4、 如权利要求 3所述的用于电力线载波通信的数字前端系统, 其特征在于, 所述接收机 的输入信号即模拟信号通过模数转换器转换为数字带通信号, 数字带通信号再通过混频器 Π 变频成为等效复数基带信号; 等效复数基带信号通过一级速率变换因子为!^的抽取低通滤波 器和 M级级联的速率变换因子为 2的抽取低通滤波器, 降采样至采样频率为 fs的等效复数基 带信号; 执行奈奎斯特窗加窗和傅立叶变换处理, 得到调制符号; 其中 1从1千赫兹到 50兆 赫兹。
5、 如权利要求 2或 3所述的用于电力线载波通信的数字前端系统, 其特征在于, 加窗模 块 I和加窗模块 Π均采用升余弦加窗模块; 插值滤波器采用速率变换因子为 Ra插值低通滤波 器, Ra=2、 3或 5; 抽取滤波器采用速率变换因子为 Ra抽取低通滤波器, Ra=2、 3或 5; 混 频器 I和混频器 Π均采用频点为 f。的混频器; 其中 fj人 0赫兹到 25兆赫兹。
6、 如权利要求 1所述的用于电力线载波通信的数字前端系统, 其特征在于, 通过改变混 频器 I和混频器 Π的频率, 用于实现对数字前端系统中心频点的配置; 通过改变所述发射机 插值滤波器的级联级数和插值倍数, 实现对发射机带宽的配置; 通过改变所述接收机抽取滤 波器的级联级数和抽取倍数, 实现对接收机带宽的配置; 其中发射机带宽和接收机的带宽均 从 7.8千赫兹到 25兆赫兹; 插值倍数和抽取倍数的取值均与速率变换因子 Ra相同, Ra=2、 3 或 5。
7、 如权利要求 1所述的用于电力线载波通信的数字前端系统, 其特征在于, 通过改变接 收机抽取滤波器的滤波器级数和每级滤波器的阶数, 结合过采样增益, 增加数模转换器的等 效位宽, 用于实现不同的带外抑制效果。
8、 一种用于电力线载波通信的数字前端系统的实现方法, 其特征在于, 所述方法用的数 字前端系统包括依次进行通信的发射机和接收机; 所述发射机包括依次进行通信的逆傅立叶 变换模块、 加窗模块 I、 插值滤波器、 混频器 I和数模转换器; 所述接收机包括依次进行通信 的模数转换器、 混频器 II、 抽取滤波器、 加窗模块 II和傅立叶变换模块;
所述实现方法包括下述步骤:
( 1 ) 将调制符号输入到发射机上转换为模拟信号;
(2) 将所述模拟信号输入的到接收机上转换为调制符号。
9、 如权利要求 8所述的用于电力线载波通信的数字前端系统的实现方法, 其特征在于, 所述步骤 (1 ) 包括下述步骤:
A、 调制符号分别映射到子载波上, 通过逆傅立叶变换模块处理转换为时域的等效复数 基带信号;
B、 将等效复数基带信号进行升余弦窗加窗处理, 用于降低等效复数基带正交频分复用 信号及各子载波的带外能量; 假设基带采样频率为 fs, 经过奈奎斯特窗加窗处理后的等效复 数基带信号通过 M级速率变换因子为 2的插值低通滤波器过采样至 2M · fs, 其中 M为整数 且 0<M<9;
C、 所述等效复数基带信号再经过一级速率变换因子为 Ra, Ra=2, 3或 5的插值低通滤 波器, 等效复数基带信号的采样率为^ · 2Μ · fs ;
D、 所述等效复数基带信号由载波频点为! 的混频器上变频成为数字带通信号;
E、 所述数字带通信号经过数模转换器后将数字带通信号转换为模拟信号。
10、如权利要求 8所述的用于电力线载波通信的数字前端系统的实现方法, 其特征在于, 所述步骤 (2) 包括下述步骤: <1>输入到接收机的模拟信号通过模数转换器转换为数字带通信号;
<2>所述数字带通信号再通过混频器 II变频成为等效复数基带信号;
<3>所述等效复数基带信号通过一级速率变换因子为 Ra的抽取低通滤波器和 M级级联的 速率变换因子为 2的抽取低通滤波器, 降采样至采样频率为 fs的等效复数基带信号信号; <4>对等效复数基带信号信号执行奈奎斯特窗加窗和傅立叶变化处理, 得到调制符号。
PCT/CN2013/084385 2013-03-21 2013-09-27 一种用于电力线载波通信的数字前端系统及其实现方法 WO2014146416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310091035.6A CN103259754B (zh) 2013-03-21 2013-03-21 一种用于电力线载波通信的数字前端系统及其实现方法
CN201310091035.6 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014146416A1 true WO2014146416A1 (zh) 2014-09-25

Family

ID=48963457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084385 WO2014146416A1 (zh) 2013-03-21 2013-09-27 一种用于电力线载波通信的数字前端系统及其实现方法

Country Status (2)

Country Link
CN (1) CN103259754B (zh)
WO (1) WO2014146416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583754A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 通信方法和相关装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259754B (zh) * 2013-03-21 2017-06-23 国家电网公司 一种用于电力线载波通信的数字前端系统及其实现方法
CN103457638B (zh) * 2013-09-11 2015-04-22 大连理工大学 电力线通信信道突发脉冲噪声的抑制装置及其抑制方法
CN106452504B (zh) * 2015-08-07 2019-08-06 国网智能电网研究院 一种基于频率在线自定义的多频电力线载波通信网络
CN105680905B (zh) * 2016-01-15 2018-05-22 中国空间技术研究院 一种适用于任意调制度的fm、pm信号载波捕获方法
CN106656899A (zh) * 2016-12-29 2017-05-10 北京遥测技术研究所 一种船舶vdes系统的多载波vde体制调制解调实现方法
CN106789824B (zh) * 2017-01-22 2020-04-14 东南大学 一种适用于ufmc波形的功率加窗发送方法
CN107359905B (zh) * 2017-07-11 2021-07-23 吴泳澎 一种用于频分电力线载波通信的数字前端及帧检测方法
CN113098814B (zh) * 2019-12-23 2022-11-29 北京神经元网络技术有限公司 信号处理方法及装置、通信系统、电子设备及存储介质
CN112260723A (zh) * 2020-10-23 2021-01-22 全球能源互联网研究院有限公司 融合发送装置、融合接收装置、方法、融合系统及设备
CN112615648B (zh) * 2020-12-02 2023-11-10 江苏芯云电子科技有限公司 一种用于电力线载波通信Rx过程中的精准抗窄带噪声方法
CN113644924A (zh) * 2021-01-26 2021-11-12 青岛鼎信通讯股份有限公司 一种应用于10kv中压载波系统的信号接收电路
CN117544183B (zh) * 2024-01-09 2024-04-02 航天科工空间工程网络技术发展(杭州)有限公司 一种支持可变符号速率的前向中频处理系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147523A1 (en) * 2005-12-22 2007-06-28 Ren Sakata Radio communication system and apparatus
CN101252570A (zh) * 2008-04-01 2008-08-27 北京天碁科技有限公司 一种多载波接收机及其信号处理方法
CN102158456A (zh) * 2011-02-25 2011-08-17 钜泉光电科技(上海)股份有限公司 基于ofdm的电力载波通信系统及其fft窗口位置恢复方法
CN102195916A (zh) * 2010-03-15 2011-09-21 清华大学 正交频分复用(ofdm)信号的多接收机传输方法和系统
CN103259754A (zh) * 2013-03-21 2013-08-21 国家电网公司 一种用于电力线载波通信的数字前端系统及其实现方法
CN203166890U (zh) * 2013-03-29 2013-08-28 国家电网公司 一种电力线载波接收机数字前端
CN203166913U (zh) * 2013-03-29 2013-08-28 国家电网公司 一种电力线载波发射机数字前端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677324B2 (ja) * 2010-01-12 2015-02-25 レノボ・イノベーションズ・リミテッド(香港) Ofdm変調波送信装置、ofdm変調波送信方法、及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147523A1 (en) * 2005-12-22 2007-06-28 Ren Sakata Radio communication system and apparatus
CN101252570A (zh) * 2008-04-01 2008-08-27 北京天碁科技有限公司 一种多载波接收机及其信号处理方法
CN102195916A (zh) * 2010-03-15 2011-09-21 清华大学 正交频分复用(ofdm)信号的多接收机传输方法和系统
CN102158456A (zh) * 2011-02-25 2011-08-17 钜泉光电科技(上海)股份有限公司 基于ofdm的电力载波通信系统及其fft窗口位置恢复方法
CN103259754A (zh) * 2013-03-21 2013-08-21 国家电网公司 一种用于电力线载波通信的数字前端系统及其实现方法
CN203166890U (zh) * 2013-03-29 2013-08-28 国家电网公司 一种电力线载波接收机数字前端
CN203166913U (zh) * 2013-03-29 2013-08-28 国家电网公司 一种电力线载波发射机数字前端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583754A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 通信方法和相关装置

Also Published As

Publication number Publication date
CN103259754B (zh) 2017-06-23
CN103259754A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2014146416A1 (zh) 一种用于电力线载波通信的数字前端系统及其实现方法
Renfors et al. Highly adjustable multirate digital filters based on fast convolution
JP2011525758A (ja) マルチバンド直交周波数分割多重接続(ofdma)通信システム中のデータ送受信方法とそれを用いた通信装置
Shao et al. Fast-convolution implementation of filter bank multicarrier waveform processing
CN107317784B (zh) 一种多带并行滤波混合载波传输方法
CN100452652C (zh) 一种双正交滤波器设计方法及其设计装置
Renfors et al. Channel equalization in fast-convolution filter bank based receivers for professional mobile radio
CN101483632B (zh) 正交频分复用系统中利用带外导频的相位噪声校正方法
WO2014172343A1 (en) System and method for communicating with shaped cyclic time-domain waveforms
EP3086523A1 (en) Apparatus, sub-carrier module, transmitter module, method and computer program for providing an output signal for a filter module
Mowla et al. Performance improvement of PAPR reduction for OFDM signal in LTE system
CN108900461B (zh) 一种基于大规模mimo的无线通信系统宽带信号设计方法
Udayakumar et al. PAPR reduction for OQAM/OFDM signals using optimized iterative clipping and filtering technique
Renfors et al. Timing offset compensation in fast-convolution filter bank based waveform processing
US8085890B2 (en) Apparatus and method for base band filtering
CN103297379A (zh) 时变正交频分复用多载波调制系统及调制方法
Yli-Kaakinen et al. Flexible fast-convolution implementation of single-carrier waveform processing for 5G
Yli-Kaakinen et al. Multi-mode filter bank solution for broadband PMR coexistence with TETRA
WO2012126200A1 (zh) 接收信号的方法及系统、收发信号的方法及系统
CN202190289U (zh) 一种混合多址接入系统
MXPA06003286A (es) Transceptor digital de frecuencia de radio con multiples modos de formacion de imagenes.
CN108023851B (zh) 基于超奈奎斯特滤波的同步信号发送与接收装置及方法
Saber et al. On the Multiple Access Technique for 5G Wireless Networks
Wang et al. Design and implementation of F-OFDM downstream filter
Bendimerad et al. Prototype filters and filtered waveforms for radio air-interfaces: a review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878933

Country of ref document: EP

Kind code of ref document: A1