WO2012126200A1 - 接收信号的方法及系统、收发信号的方法及系统 - Google Patents

接收信号的方法及系统、收发信号的方法及系统 Download PDF

Info

Publication number
WO2012126200A1
WO2012126200A1 PCT/CN2011/074406 CN2011074406W WO2012126200A1 WO 2012126200 A1 WO2012126200 A1 WO 2012126200A1 CN 2011074406 W CN2011074406 W CN 2011074406W WO 2012126200 A1 WO2012126200 A1 WO 2012126200A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
intermediate frequency
filtered
filter
Prior art date
Application number
PCT/CN2011/074406
Other languages
English (en)
French (fr)
Inventor
黄旭
彭宏利
禹忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012126200A1 publication Critical patent/WO2012126200A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • H04L27/063Superheterodyne receivers

Definitions

  • the present invention relates to signal processing technologies in the field of wireless communications, and in particular, to a method and system for receiving signals, and a method and system for transmitting and receiving signals. Background technique
  • Wireless communication systems are rapidly evolving around the world, while wireless spectrum resources are becoming increasingly tight. All countries and regions have carried out spectrum division and application under the unified coordination of ITU. In order to ensure the normal development of various applications, it is necessary to divide the isolation bands between the frequency bands occupied by each application. Carrying any useful information is wasteful in nature.
  • the width of the isolation strip depends not only on the characteristics of the application using this frequency band, but also on the performance of current RF filters.
  • the 20Mhz frequency band of Frequency Division Duplexing (FDD) is adjacent to the 20Mhz frequency band of Time Division Duplexing (TDD), and is required for co-location common station.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the abstraction is to solve the problem of adjacent frequency coexistence interference.
  • the commonly used method is to filter out the out-of-band interference in the RF section. This method is subject to the performance of the filter. The rectangular factor is not very high, so there must be an isolation to offset the slow reduction of out-of-band rejection.
  • 2G, 3G, 4G and other communication systems use double-sideband modulation, and the information in the double-band modulation is redundant. It is very useful to use this redundant frequency band to combat adjacent-frequency coexistence interference.
  • the RF segment filter does not have the effect of filtering out the single sideband signal, but only in the digital domain.
  • the theory of single sideband modulation technology on the basis of digital-to-analog conversion, digital signal processing and other technologies, the method to solve the problem of adjacent-frequency coexistence interference will be Very meaningful and worth exploring.
  • the 2600MHz frequency band international organizations divide it into a frequency band of 2500MHz ⁇ 2570MHz for the FDD-LTE uplink frequency band, a frequency band of 2570MHz ⁇ 2620MHz for the TDD-LTE frequency band, and a frequency band of 2620MHz ⁇ 2670MHz for the FDD-LTE downlink frequency band.
  • the development of China's leading TDD system how to maximize the possible use of the 50MHz TDD band while keeping the existing FDD specifications and equipment unchanged, is a major technical problem, and it is important in the current bandwidth shortage situation. significance. Summary of the invention
  • the main object of the present invention is to provide a method and system for receiving signals, a method and system for transmitting and receiving signals, which can eliminate adjacent frequency coexistence interference and improve utilization of frequency bands.
  • the invention provides a method for receiving a signal, comprising:
  • the intermediate frequency signal processed by the sampling and digital filtering is subjected to down-conversion processing and filtering processing to obtain an original transmitted baseband signal.
  • the single sideband signal obtained by the filtering process is:
  • the RF bandpass filter with a high-end cutoff frequency greater than fcl to filter the sum S1(t)+S2(t) of the signals of two adjacent coexisting wireless communication systems, and filter the upper side of the signal S1(t)
  • the signal S2(t) is completely filtered out to obtain a single sideband signal Ssl(t); where fcl is the carrier frequency of the signal Sl(t).
  • the single sideband signal obtained by the filtering process is:
  • the digital frequency converter performs down-conversion processing on the single sideband signal Ssl(t) or Ss2(t) obtained after the filtering process, and changes the single sideband signal into the intermediate frequency signal Sfl(t) or Sf2(t).
  • the sampling and digital filtering processing on the intermediate frequency signal is: the digital-to-analog converter performs sampling processing on the intermediate frequency signal Sfl(t) or S(t) obtained by down-converting processing, to obtain an intermediate frequency.
  • the 1/2 or IF of the bandwidth is greater than or equal to 1/2 of the bandwidth of the signal S2(t).
  • the obtained baseband signal that is originally transmitted is:
  • the digital frequency converter performs down-conversion on the intermediate frequency signal S 1 half (n) or S2half(n) subjected to sampling and digital filtering, and respectively down-converts the signals Slhalf(n) and S2half(n) with the image frequency. After convergence, the signals Slhalf(n) and S2half(n) that are combined with the image frequency are filtered by a low-pass filter to obtain original transmitted baseband signals SB1(n) and SB2(n).
  • the invention also provides a method for transmitting and receiving signals, comprising:
  • the signal of the in-phase component and the signal of the quadrature component are digitally upconverted to obtain an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the quadrature component; an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the quadrature component A sideband is completely filtered or partially filtered to obtain a filtered intermediate frequency signal; a digital-to-analog conversion is performed on the filtered intermediate frequency signal to obtain an analog baseband signal; and the analog baseband signal is subjected to up-conversion mixing processing to obtain an RF Signal; filtering and amplifying the RF signal and transmitting it;
  • one of the two received signals is filtered out, and the frequency band adjacent to all the filtered signals in the other signal is filtered to obtain a filtered single sideband signal.
  • the original transmitted baseband signal is obtained.
  • the present invention also provides a system for receiving a signal, comprising: an RF band pass filter, a frequency converter, a digital to analog converter, a digital filter, a digital frequency converter, and a low pass filter; wherein
  • An RF bandpass filter is used to filter out one of the received two signals, and filter the frequency band adjacent to all the filtered signals in the other signal to obtain a filtered single sideband signal.
  • a frequency converter configured to perform a down conversion process on the single sideband signal to obtain an intermediate frequency signal
  • a digital to analog converter configured to perform sampling on the intermediate frequency signal
  • a digital filter for performing digital filtering on the IF signal after sampling
  • Digital frequency converter for down-converting the intermediate frequency signal processed by sampling and digital filtering
  • a low-pass filter is used to filter the down-converted intermediate frequency signal to obtain the original transmitted baseband signal.
  • the present invention also provides a system for transmitting and receiving signals, including: a transmitting subsystem and a receiving subsystem; wherein
  • a transmitting subsystem configured to digitally up-convert the signal of the in-phase component and the signal of the quadrature component to obtain an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the quadrature component; and the intermediate frequency signal of the in-phase component and the intermediate frequency signal of the quadrature component
  • a sideband is completely filtered or partially filtered to obtain a filtered intermediate frequency signal; a digital-to-analog conversion is performed on the filtered intermediate frequency signal to obtain an analog baseband signal; and the analog baseband signal is subjected to up-conversion mixing processing to obtain an RF Signal; filtering and amplifying the RF signal and transmitting it;
  • a receiving subsystem configured to filter out one of the received two signals, and filter a frequency band adjacent to the all filtered signals in the other signal to obtain a filtered single sideband signal No. down-converting the single sideband signal to obtain an intermediate frequency signal; performing sampling and digital filtering processing on the intermediate frequency signal; performing down-conversion processing and filtering processing on the intermediate frequency signal processed by the sampling and digital filtering, The original transmitted baseband signal is obtained.
  • the receiving subsystem further includes: an RF band pass filter, a frequency converter, a digital to analog converter, a digital filter, a digital frequency converter, and a low pass filter;
  • An RF bandpass filter is used to filter out one of the received two signals, and filter the frequency band adjacent to all the filtered signals in the other signal to obtain a filtered single sideband signal.
  • a frequency converter configured to perform a down conversion process on the single sideband signal to obtain an intermediate frequency signal
  • a digital to analog converter configured to perform sampling on the intermediate frequency signal
  • a digital filter for performing digital filtering on the IF signal after sampling
  • Digital frequency converter for down-converting the intermediate frequency signal processed by sampling and digital filtering
  • a low-pass filter is used to filter the down-converted intermediate frequency signal to obtain the original transmitted baseband signal.
  • the method and system for receiving signals and the method and system for transmitting and receiving signals perform digital up-conversion processing on signals of in-phase components and signals of orthogonal components at a signal transmitting end to obtain an intermediate frequency signal of an in-phase component and orthogonality
  • the intermediate frequency signal of the component filtering or partially filtering out one sideband of the intermediate frequency signal of the in-phase component and the intermediate frequency signal of the orthogonal component to obtain the filtered intermediate frequency signal; performing digital-to-analog conversion on the filtered intermediate frequency signal, Obtaining an analog baseband signal; performing an up-conversion mixing process on the analog baseband signal to obtain a radio frequency signal; filtering and amplifying the radio frequency signal and transmitting, and using the above processing process, a single sideband RF signal can be formed at the transmitting end, and transmitting After the signal, there is no energy leakage into the frequency band of the signal of the adjacent frequency coexistence system, thereby affecting the signal quality, and the effect that the two adjacent frequency coexistence systems can coexist well is achieved
  • one of the two received signals is filtered out, and the frequency band adjacent to all the filtered signals in the other signal is filtered out to obtain a filtered single sideband signal;
  • the single sideband signal is subjected to down-conversion processing to obtain an intermediate frequency signal;
  • the intermediate frequency signal is subjected to sampling and digital filtering processing;
  • the intermediate frequency signal processed by the sampling and digital filtering is subjected to down-conversion processing and filtering processing to obtain an original transmission.
  • FIG. 1 is a schematic flow chart of a method for implementing a signal transmission according to the present invention
  • Figure 2 is a first exemplary diagram of the spectrum in the present invention.
  • Figure 3 is a second exemplary diagram of the spectrum in the present invention.
  • FIG. 4 is a schematic flow chart of a method for implementing a signal according to the present invention.
  • Figure 5 is a third exemplary diagram of the spectrum in the present invention.
  • Figure 6 is a fourth exemplary diagram of the spectrum in the present invention.
  • Figure 7 is a fifth exemplary diagram of the spectrum in the present invention.
  • Figure 8 is a sixth exemplary diagram of the spectrum in the present invention.
  • Figure 9 is a seventh exemplary diagram of the spectrum in the present invention.
  • FIG. 10 is a schematic structural diagram of a system for transmitting and receiving signals according to the present invention. detailed description
  • the basic idea of the present invention is: at the transmitting end of the signal, digitally up-converting the signal of the in-phase component and the signal of the quadrature component to obtain the intermediate frequency signal and the quadrature component of the in-phase component.
  • Frequency signal all sidebands of the intermediate frequency signal of the in-phase component and the intermediate frequency signal of the quadrature component are all filtered out or partially filtered to obtain a filtered intermediate frequency signal; and the filtered intermediate frequency signal is digital-to-analog converted to obtain a simulation Baseband signal; up-converting and mixing the analog baseband signal to obtain a radio frequency signal; filtering and amplifying the radio frequency signal and transmitting; at the receiving end of the signal, filtering out one of the received two signals, Filtering a frequency band adjacent to all filtered signals in another signal to obtain a filtered single sideband signal; performing down-conversion processing on the single sideband signal to obtain an intermediate frequency signal; performing the intermediate frequency signal on the intermediate frequency signal Sample and digital filtering processing; down-converting and filtering
  • the present invention provides a method for transmitting a signal, wherein the signal includes an OFDM modulated signal, a Quadrature Amplitude Modulation (QAM) signal, and a Quadrature Phase Shift Keying (QPSK) modulated signal, etc.
  • the OFDM modulation signal is taken as an example for description, but is not limited to the OFDM modulation signal.
  • FIG. 1 is a schematic flowchart of a method for implementing a signal transmission according to the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Perform digital up-conversion processing on the signal of the in-phase component and the signal of the quadrature component to obtain an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the quadrature component;
  • I(n) and Q(n) are used as signals to be processed, where I(n) and Q(n) are signals of the in-phase component and the components of the orthogonal component, respectively, generally OFDM
  • the time-domain data after shaping and filtering has been performed in the modulation technology.
  • the time domain data is a discrete-time signal, which is input to a digital-to-analog converter (DAC, Digital-to-Analog Converter) for digital-to-analog conversion.
  • DAC Digital-to-Analog Converter
  • Baseband signal in this embodiment, it is assumed that the bandwidth of the analog baseband signal corresponding to I(n) and Q(n) is B, and the I(n) and Q(n) sample rate is Sa;
  • the digital inverter is used to digitally up-convert I(n) and Q(n), that is, I(n) and Q(n) respectively and cos[(Wn)n Multiplied by sin[(Wn)n] to obtain the intermediate frequency signal Iw(n) of the in-phase component and the intermediate frequency signal Qw(n) of the quadrature component after digitally up-converting I(n) and Q(n)
  • the digital frequency converter can be realized by digital signal processing chip or digital circuit.
  • Step 102 Filter or partially filter a sideband of the intermediate frequency signal of the in-phase component and the intermediate frequency signal of the quadrature component to obtain a filtered intermediate frequency signal.
  • the intermediate frequency signal Iw(n) of the in-phase component and the intermediate frequency signal Qw(n) of the orthogonal component are filtered by the digital filter F1(n), and one sideband of Iw(n) and Qw(n) is used. All of the filtered or partially filtered, and then the filtered two signals are added to obtain the filtered intermediate frequency signal S(n); in this embodiment, the upper sideband is completely filtered as an example, S ( The spectrum of n) is shown in Fig. 2; here, one sideband of Iw(n) and Qw(n) can be either the upper sideband or the lower sideband; the above digital filter Fl(n) can be applied to any suitable one.
  • the method is not limited to the finite impulse response (FI, Finite Impulse Response) type of filtering, but also the Infinite Impulse Response (IIR), or the Fast Fourier Transform (FFT, Fast Fourier)
  • FI finite impulse response
  • IIR Infinite Impulse Response
  • FFT Fast Fourier Transform
  • IFFT inverse Fast Fourier transform
  • Step 103 Perform digital-to-analog conversion on the filtered intermediate frequency signal to obtain an analog baseband signal.
  • the filtered intermediate frequency signal S(n) is input to the DAC, and the DAC performs digital-to-analog conversion on S(n) to convert S(n) into an analog baseband signal S(t), the S(t)
  • Step 104 Perform an up-conversion mixing process on the analog baseband signal to obtain a radio frequency signal. Specifically, in order to change the lower carrier frequency of the analog baseband signal to a higher radio frequency, the analog baseband signal S needs to be used by the mixer. (t) performing up-conversion mixing processing to obtain a radio frequency signal Srf(t); wherein, the local oscillator frequency is rf-mf, and the target carrier frequency is rf.
  • Step 105 Perform filtering and amplification processing on the radio frequency signal, and then transmit;
  • the radio frequency signal Srf(t) is filtered by using a band pass filter to obtain a modulated single sideband radio frequency signal Sc(t) or a vestigial sideband radio frequency signal Sc(t), which is further subjected to amplification processing, and finally And feeding to the antenna for transmission, belonging to the prior art, will not be described here; here, the spectrum of the band pass filter, Srf(t) and Sc(t) is shown in FIG.
  • FIG. 4 is a schematic flowchart of a method for implementing a received signal according to the present invention. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Filter out one of the received two signals, and filter out a frequency band adjacent to all the filtered signals in the other signal to obtain a filtered single sideband signal;
  • one receiving end can correspond to multiple sending ends, so that signals sent by multiple sending ends can be received at the receiving end of the signal; in this embodiment, two adjacent wireless communication systems coexisting
  • the signals are S1(t) and S2(t), respectively, wherein the carrier frequency of the signal S1(t) is fcl, the bandwidth is 10MHz, the carrier frequency of the signal S2(t) is fc2, and the bandwidth is 20MHz, as shown in FIG.
  • the RF bandpass filter filter1 with a high-end cutoff frequency greater than fcl is used to filter the sum of the signals of two adjacent coexisting wireless communication systems, that is, S1(t)+S2(t), as shown in FIG.
  • the upper sideband of the signal S1(t) is the frequency band adjacent to the signal S2(t), so the upper sideband of the signal S1(t) is filtered out, the lower sideband of the signal S1(t) is reserved, and the signal S2(t) Is regarded as the adjacent frequency coexistence interference signal of the signal Sl(t) and is completely filtered by the RF band pass filter filterl, and finally obtains the single sideband signal Ssl(t); or, for the wireless communication system to which the S2(t) belongs
  • the RF bandpass filter filter2 with a low-end cutoff frequency less than fc2 is used to filter the sum of the signals of two adjacent coexisting wireless communication systems, that is, S1(t)+S2(t), and the signal S2(t)
  • the lower sideband is the frequency band adjacent to the signal S1(t), so the lower sideband of the signal S2(t) is filtered out, the upper sideband of the signal S2(t) is retained, and the signal S
  • Step 402 Down-converting the filtered single sideband signal to obtain an intermediate frequency signal; specifically, the receiving end is based on an ADC (Analog-to-Digital Converter) performance (such as bandwidth, maximum sampling) The rate, etc.) determines the intermediate frequency IF, where IF is greater than or equal to 1/2 of the bandwidth of the signal Sl(t) or IF is greater than or equal to 1/2 of the bandwidth of the signal S2(t); the frequency converter will obtain a single sideband signal after filtering Ssl(t) or Ss2(t) is subjected to down-conversion processing, and the single sideband signal is changed to the intermediate frequency signal Sfl(t) or the intermediate frequency signal Sf2(t);
  • ADC Analog-to-Digital Converter
  • the inverter is a local oscillator signal with a frequency of (fcl-IF), and the inverter performs down-conversion processing on the single sideband signal Ssl(t) to obtain an intermediate frequency signal Sfl(t), an intermediate frequency signal.
  • the spectrum of Sfl(t) is shown in Fig. 7.
  • Step 403 Perform sampling and digital filtering on the obtained intermediate frequency signal
  • the ADC performs sampling processing on the intermediate frequency signal Sfl(t) or S(t) obtained by down-converting processing, wherein the sampling frequency needs to satisfy the Nyquist sample theorem; and the intermediate frequency signal Sfl(t) Or Sf2(t) performs the sample processing, and obtains the digital signal Sfl(n) of the intermediate frequency signal Sfl(t) or the digital signal Sf2(n) of the intermediate frequency signal Sf2(t); wherein, the ADC is a frequency of Fs clock; ⁇ Digitally filtering the digital signal Sfl(n) with the digital filter Fl(n), or digitally filtering the digital signal Sf2(n) with the digital filter F2(n) for the digital signal Sfl(n) , all the spectral components above IF are filtered out.
  • the spectral components below IF are all filtered out to obtain a digital signal Slhalf(n) or a digital signal S2half(n), and the digital signal Slhalf(n) Or the digital signal S2half(n) is a sampled and digitally filtered intermediate frequency signal; taking the processing of the digital signal Sfl(n) as an example, the spectrum of Sfl(n), the spectrum of Fl(n), and Slhalf(n) The spectrum is shown in Figure 8.
  • Step 404 performing down-conversion processing and filtering processing on the intermediate frequency signal processed by the sampling and digital filtering to obtain the original transmitted baseband signal;
  • the digital frequency converter performs down-conversion processing on the intermediate frequency signal Slhalf(n) or S2half(n) processed by sampling and digital filtering, wherein the down-converted local oscillator signal is IF(n), and the frequency is IF, corresponding The digital frequency is (IF/Fs*2 ⁇ );
  • the signals Slhalf(n) and S2half(n) which are combined with the image frequency are filtered by a low-pass filter to obtain a signal
  • the 2.6GHz frequency band is divided as follows: 2500MHz ⁇ 2570MHz
  • 2620MHz ⁇ 2690MHz is the FDD downlink frequency band
  • 2570MHz ⁇ 2620MHz is the TDD frequency band
  • the 20MHz wide signal S1(t) with fcl as the carrier frequency is the LTE FDD signal
  • the fc2 is the carrier
  • the 20MHz wide signal S2(t) of the frequency is an LTE TDD signal.
  • 10MHz in S2(t) is used as the isolation band, and the present invention is used.
  • This 10MHz isolation band can be utilized to ensure that Sl(t) and S2(t) are still in close proximity.
  • the sample rate of the signals I(n) and Q(n) is 61.536Msps, and the signals I(n) and Q(n) are digitally up-converted.
  • the single sideband signal S(n) is digital-to-analog converted to obtain a medium frequency single-sided with a carrier frequency of 15.384 MHz and a bandwidth of 10 MHz.
  • the received RF signal is input to the bandpass filter filter1.
  • the passband center frequency of the bandpass filter filter1 is set to 2553MHz, and the passband is 16MHz, that is, the passband range of the bandpass filter filterl is 2545MHz ⁇ 2661MHz; Down-converting the filtered Ssl(t) with a 2540MHz local oscillator signal to obtain a signal Sfl(t) with a carrier frequency of 20MHz; then sampling the Sfl(t) with a sampling frequency of 60Msps, Sfl(n); then Sfl(n) is filtered by 1024-order FIR filter Fl(n) to obtain Slhalf(n); and then digitally sinusoidal signal with frequency of 20Mhz is digitally down-converted to Slhalf(n). And low-pass filtering up to a frequency of 25MHz is performed to obtain SBl(n).
  • the present invention further provides a system for transmitting and receiving signals
  • FIG. 10 is a schematic structural diagram of a system for transmitting and receiving signals according to the present invention. As shown in FIG. 10, the system includes: a transmitting subsystem 101 and a receiving subsystem 102; ,
  • the transmitting subsystem 101 is configured to perform digital up-conversion processing on the signal of the in-phase component and the signal of the quadrature component to obtain an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the orthogonal component; and an intermediate frequency signal of the in-phase component and an intermediate frequency of the orthogonal component All sidebands of the signal are filtered or partially filtered to obtain the filtered intermediate frequency signal; the filtered intermediate frequency signal is digital-to-analog converted to obtain an analog baseband signal; and the analog baseband signal is subjected to up-conversion mixing processing to obtain Radio frequency signal; filtering and amplifying the radio frequency signal and transmitting;
  • the receiving subsystem 102 is configured to filter out one of the received two signals, and filter out a frequency band adjacent to all the filtered signals in the other signal to obtain a filtered single sideband signal; Performing down-conversion processing on the single sideband signal to obtain an intermediate frequency signal; performing sampling and digital filtering processing on the intermediate frequency signal; performing down-conversion processing and filtering processing on the intermediate frequency signal processed by sampling and digital filtering to obtain original The baseband signal sent.
  • the transmitting subsystem 101 further includes: a digital frequency converter 1011, a digital filter 1012, a digital to analog converter 1013, a mixer 1014, a band pass filter 1015, an amplifier 1016, and an antenna 1017;
  • the digital frequency converter 1011 is configured to perform digital up-conversion processing on the signal of the in-phase component and the signal of the quadrature component to obtain an intermediate frequency signal of the in-phase component and an intermediate frequency signal of the quadrature component;
  • the digital filter 1012 is configured to filter or partially filter out one sideband of the intermediate frequency signal of the in-phase component and the intermediate frequency signal of the quadrature component to obtain a filtered intermediate frequency signal.
  • a digital-to-analog converter 1013 configured to perform digital-to-analog conversion on the filtered intermediate frequency signal to obtain an analog baseband signal
  • a mixer 1014 configured to perform up-conversion mixing processing on the analog baseband signal to obtain a radio frequency signal
  • a band pass filter 1015 configured to filter the radio frequency signal
  • An amplifier 1016 configured to perform amplification processing on the filtered RF signal
  • the antenna 1017 is configured to transmit the amplified RF signal.
  • the receiving subsystem 102 further includes: a radio frequency band pass filter 1021, a frequency converter 1022, a digital to analog converter 1023, a digital filter 1024, a digital frequency converter 1025, and a low pass filter 1026;
  • the RF bandpass filter 1021 is configured to filter out one of the received two signals, and filter the frequency band adjacent to all the filtered signals in the other signal to obtain a filtered single sideband.
  • the frequency converter 1022 is configured to perform a down conversion process on the single sideband signal to obtain an intermediate frequency signal, and a digital to analog converter 1023, configured to perform sampling on the intermediate frequency signal;
  • the digital filter 1024 is configured to perform digital filtering processing on the IF signal after sampling;
  • the digital frequency converter 1025 is configured to perform down-conversion processing on the intermediate frequency signal processed by the sampling and digital filtering;
  • the low pass filter 1026 is configured to perform filtering processing on the down-converted intermediate frequency signal to obtain an original transmitted baseband signal.
  • the single sideband signal obtained by the filtering process is: using a radio frequency band pass filter 1021 with a high end cutoff frequency greater than fcl, and a sum S1(t)+ of signals of two adjacent coexisting wireless communication systems.
  • S2(t) performs filtering to filter out the upper sideband of the signal S1(t), and completely filters out the signal S2(t) to obtain a single sideband signal Ssl(t); wherein fcl is the signal S1(t) Or; using the RF bandpass filter 1021 with a low-end cutoff frequency less than fc2 to filter the sum S1(t)+S2(t) of the signals of two adjacent coexisting wireless communication systems, and to signal S2 ( The lower sideband of t) is filtered out, and the signal S1(t) is completely filtered to obtain a single sideband signal Ss2(t); wherein fc2 is the carrier frequency of the signal S2(t).
  • the obtained intermediate frequency signal is:
  • the frequency converter 1022 performs a down conversion process on the single sideband signal Ssl(t) or Ss2(t) obtained after the filtering process, and changes the single sideband signal into the intermediate frequency signal Sfl(t) or Sf2 ( t).
  • the sampling and digital filtering processing is performed on the intermediate frequency signal: the digital-to-analog converter 1023 performs sample processing on the intermediate frequency signal Sfl(t) or Sf2(t) obtained by down-converting processing, to obtain an intermediate frequency signal Sfl ( a digital signal Sfl(n) of t) or a digital signal S(n) of the intermediate frequency signal S(t); for the digital signal Sfl(n), the digital component 1024 is used to filter out all spectral components above the IF to obtain a digital The signal Slhalf(n); for the digital signal S(n), the digital filter 1024 is used to filter out all the spectral components below the IF to obtain a digital signal S2half(n); wherein the IF is greater than or equal to the signal S1(t) The 1/2 or IF of the bandwidth is greater than or equal to 1/2 of the bandwidth of the signal S2(t).
  • the obtained baseband signal is:
  • the digital frequency converter 1025 down-converts the intermediate frequency signal Slhalf(n) or S2half(n) processed by the sampling and digital filtering, and performs the down-converted signal Slhalf(n). After S2half(n) is merged with the image frequency respectively, the signals Slhalf(n) and S2half(n) merged with the image frequency are filtered by the low-pass filter 1026 to obtain the original transmitted baseband signal SB1(n) and SB2(n).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Superheterodyne Receivers (AREA)

Description

接收信号的方法及系统、 信号的方法及系统 技术领域
本发明涉及无线通信领域的信号处理技术, 尤其涉及一种接收信号的 方法及系统、 收发信号的方法及系统。 背景技术
无线通信系统在全球得到高速发展, 与此同时, 无线频谱资源日益紧 张。 各个国家和地区在国际电联的统一协调下, 都进行了频谱划分和应用, 为了保证各种应用的正常开展, 就必须在各应用所占用的频带之间划分出 隔离带, 这些隔离带不承载任何有用的信息, 在本质上是浪费的。 隔离带 的宽窄, 不仅取决于使用此频带的应用的特性, 也受制于当前射频滤波器 的性能。 以现在流行的 LTE 通信系统为例, 频分双工 (FDD , Frequency Division Duplexing ) 的 20Mhz 的频段与时分双工 (TDD , Time Division Duplexing ) 的 20Mhz 的频段相邻, 在共址共站的要求下, 将设立 lOMhz 左右的隔离带, 该 lOMhz的隔离带资源将足以运行一张 TDD网络。 因此, 如何利用这些被浪费的隔离带是一件非常有意义的事情。 对于此问题的解 决, 抽象出来就是解决邻频共存干扰的问题, 通常釆用的方法就是在射频 段釆用滤波器来滤除带外干扰, 该方法受制于滤波器的性能, 一般滤波器 的矩形系数都不会很高, 所以必须留有隔离带来抵消带外抑制緩慢降低的 效果。 另一方面, 2G、 3G、 4G 等通信系统都釆用的是双边带调制, 而双 边带调制中信息是有冗余的, 利用这冗余的频段来对抗邻频共存干扰其实 是非常有用的, 而射频段釆用滤波器没办法达到理想的滤出单边带信号的 效果, 而只能在数字领域才能做到。 依据单边带调制技术的理论, 在数模 转换、 数字信号处理等技术的基础上, 研究解决邻频共存干扰的方法将是 非常有意义和值得探索的。 当前, 在 2600MHz频段, 国际组织将其划分成 了 频 段 2500MHz~2570MHz 为 FDD-LTE 上 行 频 段 , 频 段 2570MHz~2620MHz 为 TDD-LTE 频段, 频段 2620MHz~2670MHz 为 FDD-LTE下行频段。我国主导 TDD系统的发展,如何在尽量保持现有 FDD 规范及设备不修改的情况下,将 50MHz的 TDD频段最大可能的利用起来, 是一大技术难题, 同时在当前带宽紧张的情况下具有重要意义。 发明内容
有鉴于此, 本发明的主要目的在于提供一种接收信号的方法及系统、 收发信号的方法及系统, 能够消除邻频共存干扰并提高频段的利用率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供一种接收信号的方法, 包括:
将收到的两个信号中的一个信号全部滤除, 将另一个信号中与全部滤 除的信号相邻的频带滤除, 得到滤波处理后的单边带信号;
对所述单边带信号进行下变频处理, 得到中频信号;
对所述中频信号进行釆样和数字滤波处理;
对经过釆样和数字滤波处理的中频信号进行下变频处理和滤波处理, 得到原始发送的基带信号。
上述方法中, 所述得到滤波处理后的单边带信号为:
釆用高端截止频率大于 fcl的射频带通滤波器,对两个相邻共存的无线 通信系统的信号的和 Sl(t)+S2(t)进行滤波, 将信号 Sl(t)的上边带滤除, 将 信号 S2(t)完全滤除,得到单边带信号 Ssl(t);其中, fcl为信号 Sl(t)的载频。
上述方法中, 所述得到滤波处理后的单边带信号为:
釆用低端截止频率小于 fc2的射频带通滤波器,对两个相邻共存的无线 通信系统的信号的和 Sl(t)+S2(t)进行滤波, 将信号 S2(t)的下边带滤除, 将 信号 Sl(t)完全滤除,得到单边带信号 Ss2(t);其中, fc2为信号 S2(t)的载频。 上述方法中, 所述得到中频信号为:
数字变频器对滤波处理后得到的单边带信号 Ssl(t)或 Ss2(t)进行下变频 处理, 将单边带信号变为中频信号 Sfl(t)或 Sf2(t)。
上述方法中, 所述对所述中频信号进行釆样和数字滤波处理为: 数模转换器对经过下变频处理后得到的中频信号 Sfl(t)或 S (t)进行釆 样处理, 得到中频信号 Sfl(t)的数字信号 Sfl(n)或中频信号 Sf2(t)的数字信 号 Sf2(n); 对于数字信号 Sfl(n), 釆用数字滤波器将 IF以上的频谱分量全 部滤除, 得到数字信号 Slhalf(n); 对于数字信号 Sf2(n), 釆用数字滤波器将 IF以下的频谱分量全部滤除, 得到数字信号 S2half(n); 其中, 所述 IF大于 等于信号 Sl(t)带宽的 1/2或 IF大于等于信号 S2(t)带宽的 1/2。
上述方法中, 所述得到原始发送的基带信号为:
数字变频器对经过釆样和数字滤波处理的中频信号 S 1 half (n)或 S2half(n)进行下变频处理, 将经过下变频处理的信号 Slhalf(n)和 S2half(n) 分别与镜像频率汇合后, 再利用低通滤波器对与镜像频率汇合的信号 Slhalf(n)和 S2half(n)进行滤波处理, 得到原始发送的基带信号 SBl(n)和 SB2(n)。
本发明还提供一种收发信号的方法, 包括:
在信号的发送端, 对同相分量的信号和正交分量的信号进行数字上变 频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量的 中频信号和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到滤 波处理后的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模拟 基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频 信号进行滤波和放大处理后发射;
在信号的接收端, 将收到的两个信号中的一个信号全部滤除, 将另一 个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信 号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信号 进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行下 变频处理和滤波处理, 得到原始发送的基带信号。
本发明还提供一种接收信号的系统, 包括: 射频带通滤波器、 变频器、 数模转换器、 数字滤波器、 数字变频器、 低通滤波器; 其中,
射频带通滤波器, 用于将收到的两个信号中的一个信号全部滤除, 将 另一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边 带信号;
变频器, 用于对所述单边带信号进行下变频处理, 得到中频信号; 数模转换器, 用于对所述中频信号进行釆样;
数字滤波器, 用于对釆样后的中频信号进行数字滤波处理;
数字变频器, 用于对经过釆样和数字滤波处理的中频信号进行下变频 处理;
低通滤波器, 用于对经过下变频处理的中频信号进行滤波处理, 得到 原始发送的基带信号。
本发明还提供一种收发信号的系统, 包括: 发送子系统、 接收子系统; 其中,
发送子系统, 用于对同相分量的信号和正交分量的信号进行数字上变 频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量的 中频信号和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到滤 波处理后的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模拟 基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频 信号进行滤波和放大处理后发射;
接收子系统, 用于将收到的两个信号中的一个信号全部滤除, 将另一 个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信 号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信号 进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行下 变频处理和滤波处理, 得到原始发送的基带信号。
上述系统中, 所述接收子系统进一步包括: 射频带通滤波器、 变频器、 数模转换器、 数字滤波器、 数字变频器、 低通滤波器; 其中,
射频带通滤波器, 用于将收到的两个信号中的一个信号全部滤除, 将 另一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边 带信号;
变频器, 用于对所述单边带信号进行下变频处理, 得到中频信号; 数模转换器, 用于对所述中频信号进行釆样;
数字滤波器, 用于对釆样后的中频信号进行数字滤波处理;
数字变频器, 用于对经过釆样和数字滤波处理的中频信号进行下变频 处理;
低通滤波器, 用于对经过下变频处理的中频信号进行滤波处理, 得到 原始发送的基带信号。
本发明提供的接收信号的方法及系统、 收发信号的方法及系统, 在信 号的发送端, 对同相分量的信号和正交分量的信号进行数字上变频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量的中频信号 和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到滤波处理后 的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模拟基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频信号进行滤 波和放大处理后发射, 利用上述处理过程, 在发送端可以形成单边带的射 频信号, 在发射该信号之后也不会存在能量泄露到邻频共存系统的信号的 频带内, 进而影响其信号质量的情况, 达到了不设定额外隔离带且两个邻 频共存系统能够良好的共存的效果; 此外, 利用上述方法发送信号, 使得 信号的频谱的利用率进一步提高, 节省频谱资源;
在信号的接收端, 将收到的两个信号中的一个信号全部滤除, 将另一 个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信 号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信号 进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行下 变频处理和滤波处理, 得到原始发送的基带信号, 利用上述处理过程, 在 接收端可以避免邻频泄露过来的干扰, 顺利的得到原始发送的基带信号; 综上所述, 利用本发明提供的接收信号的方法及系统、 收发信号的方 法及系统, 能够消除无线通信系统邻频共存干扰, 同时能够提高频谱的利 用率。 附图说明
图 1是本发明实现发送信号的方法的流程示意图;
图 2是本发明中频谱的第一示例图;
图 3是本发明中频谱的第二示例图;
图 4是本发明实现接收信号的方法的流程示意图;
图 5是本发明中频谱的第三示例图;
图 6是本发明中频谱的第四示例图;
图 7是本发明中频谱的第五示例图;
图 8是本发明中频谱的第六示例图;
图 9是本发明中频谱的第七示例图;
图 10是本发明实现收发信号的系统的结构示意图。 具体实施方式
本发明的基本思想是: 在信号的发送端, 对同相分量的信号和正交分 量的信号进行数字上变频处理, 得到同相分量的中频信号和正交分量的中 频信号; 将同相分量的中频信号和正交分量的中频信号的一个边带全部滤 除或部分滤除, 得到滤波处理后的中频信号; 对滤波处理后的中频信号进 行数模转换, 得到模拟基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频信号进行滤波和放大处理后发射; 在信号的接收端, 将收到的两个信号中的一个信号全部滤除, 将另一个信号中与全部滤除的 信号相邻的频带滤除, 得到滤波处理后的单边带信号; 对所述单边带信号 进行下变频处理, 得到中频信号; 对所述中频信号进行釆样和数字滤波处 理; 对经过釆样和数字滤波处理的中频信号进行下变频处理和滤波处理, 得到原始发送的基带信号。
下面通过附图及具体实施例对本发明再做进一步的详细说明。
本发明提供一种发送信号的方法, 其中信号包括 OFDM调制信号、 正 交幅度调制 (QAM, Quadrature Amplitude Modulation )信号和正交相移键 控( QPSK, Quadrature Phase Shift Keying )调制信号等, 本发明中以 OFDM 调制信号为例进行说明, 但不限于 OFDM调制信号; 图 1是本发明实现发 送信号的方法的流程示意图, 如图 1所示, 该方法包括以下步骤:
步骤 101 , 对同相分量的信号和正交分量的信号进行数字上变频处理, 得到同相分量的中频信号和正交分量的中频信号;
具体的, 在信号的发送端, 将 I(n)和 Q(n)作为待处理信号, 其中 I(n) 和 Q(n)分别为同相分量的信号和正交分量的信号, 一般是 OFDM调制技术 中已经进行过成型滤波后的时域数据, 该时域数据是离散时间信号, 将被 输入到数模转换器(DAC , Digital-to-Analog Converter )进行数模转换, 转 换后得到模拟基带信号,本实施例中,设 I(n)和 Q(n)对应的模拟基带信号的 带宽为 B, 设 I(n)和 Q(n)样点率为 Sa;
对 I(n)和 Q(n)进行数字上变频处理,这里,数字上变频的数字频率根据 保留的边带确定, 数字上变频的数字频率为 Wn, 与其对应的数字上变频的 模拟频率为 mf, 其中, mf=Wn x Sa/2 7T , 如果保留的是下边带, 则 mf>B, 如果保留的是上边带, 则 mf>0.5B; 这里, 还需要确定 Wn的范围, 当最后 生成射频信号后, 两个边带之间的间隔为 2Wn, 该间隔需要足够大才能够 保证射频带通滤波器的滤波效果,例如,如果射频带通滤波器的过渡带为 G, 则对于保留的是上边带的情况, 2mf≥G , 对于保留的是下边带的情况, 2 ( mf-B ) >G;
根据确定的数字上变频的数字频率 Wn, 利用数字变频器对 I(n)和 Q(n) 进行数字上变频的处理, 即将 I(n)和 Q(n)分别与 cos[(Wn)n]和 sin[(Wn)n]相 乘, 得到对 I(n)和 Q(n)进行数字上变频处理后的同相分量的中频信号 Iw(n) 和正交分量的中频信号 Qw(n); 其中,数字变频器可以通过数字信号处理芯 片或数字电路等方式实现。
步骤 102,将同相分量的中频信号和正交分量的中频信号的一个边带全 部滤除或部分滤除, 得到滤波处理后的中频信号;
具体的, 利用数字滤波器 Fl(n)对同相分量的中频信号 Iw(n)和正交分 量的中频信号 Qw(n)进行滤波处理, 将 Iw(n)和 Qw(n)的一个边带全部滤除 或部分滤除, 然后将经过滤波处理后的两路信号相加, 得到滤波处理后的 中频信号 S(n); 本实施例中, 以将上边带全部滤除为例, S(n)的频谱如图 2 所示; 这里, Iw(n)和 Qw(n)的一个边带既可以是上边带也可以是下边带; 上述的数字滤波器 Fl(n)可以釆用任意合适的方法, 不限于有限冲激响 应 ( FIR , Finite Impulse Response )类型的滤波, 还可以釆用无限长冲激响 应(IIR, Infinite Impulse Response ), 或先进行快速傅里叶变换( FFT, Fast Fourier Transform )后变换到频域, 直接将带滤除成分置零之后, 再进行快 速傅里叶反变换(IFFT, Inverse Fast Fourier Transform ), 变换回时 i或的操 作等广义上的滤波方法。
步骤 103 ,对滤波处理后的中频信号进行数模转换,得到模拟基带信号; 具体的, 将滤波处理后的中频信号 S(n) 输入到 DAC, DAC对 S(n)进 行数模转换, 将 S(n)转换成模拟基带信号 S(t), 该 S(t)的模拟单边带信号载 频频率为 mf=Wn X Sa/2 π , 其中 Sa为 Iw(n)和 Qw(n)的样点率。
步骤 104, 对模拟基带信号进行上变频混频处理, 得到射频信号; 具体的, 为了将模拟基带信号的较低的载波频率换为较高的射频频率, 需要利用混频器对模拟基带信号 S(t)进行上变频混频处理, 得到射频信号 Srf(t); 其中, 本振频率为 rf-mf, 目标载波频率为 rf。
步骤 105, 对射频信号进行滤波和放大处理后发射;
具体的, 利用带通滤波器对射频信号 Srf(t)进行滤波, 得到调制好的单 边带射频信号 Sc(t)或残留边带射频信号 Sc(t), 后面还需要进行放大处理, 最终及馈到天线进行发射, 属于现有技术, 这里不再赘述; 这里, 带通滤 波器、 Srf(t)和 Sc(t)的频谱如图 3所示。
基于上述发送信号的方法, 本发明还提供一种接收信号的方法, 图 4 是本发明实现接收信号的方法的流程示意图, 如图 4所示, 该方法包括以 下步骤:
步骤 401 , 将收到的两个信号中的一个信号全部滤除, 将另一个信号中 与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信号;
具体的, 本实施例中, 一个接收端可以对应多个发送端, 因此在信号 的接收端可以收到多个发送端发送的信号; 本实施例中, 两个相邻共存的 无线通信系统的信号分别为 Sl(t)和 S2(t), 其中信号 Sl(t)的载频为 fcl , 带 宽为 10MHz, 信号 S2(t)的载频为 fc2, 带宽为 20MHz, 如图 5所示, 本实 施例中, fc2=fcl+20MHz, 则由于频谱的带外泄露, 信号 Sl(t)和信号 S2(t) 将有部分能量进入对方的频带内, 即无线通信系统中存在邻频共存干扰; 将收到的两个信号中的一个信号全部滤除, 将另一个信号中与全部滤 除的信号的相邻频带滤除, 具体的, 对于信号 Sl(t)所属的无线通信系统的 接收端, 釆用高端截止频率大于 fcl的射频带通滤波器 filterl , 对两个相邻 共存的无线通信系统的信号的和即 Sl(t)+S2(t)进行滤波,如图 6所示,信号 Sl(t)的上边带是与信号 S2(t)相邻的频带, 因此将信号 Sl(t)的上边带滤除, 将信号 Sl(t)的下边带保留,同时信号 S2(t)被当成信号 Sl(t)的邻频共存干扰 信号而被射频带通滤波器 filterl完全滤掉,最后得到单边带信号 Ssl(t);或, 对于 S2(t)所属的无线通信系统的接收端, 釆用低端截止频率小于 fc2的射 频带通滤波器 filter2 , 对两个相邻共存的无线通信系统的信号的和即 Sl(t)+S2(t)进行滤波, 信号 S2(t)的下边带是与信号 Sl(t)相邻的频带, 因此 将信号 S2(t)的下边带滤除, 将信号 S2(t)的上边带保留, 同时信号 Sl(t)被当 成信号 S2(t)的邻频共存干扰信号而被射频带通滤波器 filter2完全滤掉, 最 后得到单边带信号 Ss2(t)。
步骤 402,对滤波处理后的单边带信号进行下变频处理,得到中频信号; 具体的, 接收端根据模数转换器(ADC, Analog-to-Digital Converter ) 的性能(如带宽、 最大釆样率等)指标确定中频频率 IF, 其中 IF大于等于 信号 Sl(t)带宽的 1/2或 IF大于等于信号 S2(t)带宽的 1/2; 变频器将滤波处 理后的得到单边带信号 Ssl(t)或 Ss2(t)进行下变频处理, 将单边带信号变为 中频信号 Sfl(t)或中频信 Sf2(t);
以信号 Sl(t)为例, 变频器为频率是 (fcl-IF)的本振信号, 变频器对单边 带信号 Ssl(t)进行下变频处理,得到中频信号 Sfl(t), 中频信号 Sfl(t)的频谱 如图 7所示。
步骤 403, 对得到的中频信号进行釆样和数字滤波处理;
具体的, ADC对经过下变频处理后得到的中频信号 Sfl(t)或 S (t)进行 釆样处理,其中,釆样频率需满足那奎斯特釆样定理;对中频信号 Sfl(t) 或 Sf2(t)进行釆样处理后, 得到中频信号 Sfl(t)的数字信号 Sfl(n)或中频信号 Sf2(t)的数字信号 Sf2(n); 其中, ADC为频率是 Fs的釆样时钟; 釆用数字滤波器 Fl(n)对数字信号 Sfl(n)进行数字滤波处理, 或釆用数 字滤波器 F2(n)对数字信号 Sf2(n)进行数字滤波处理,对于数字信号 Sfl(n), 将 IF以上的频谱分量全部滤除, 对于数字信号 Sf2(n), 将 IF以下的频谱分 量全部滤除,得到数字信号 Slhalf(n)或数字信号 S2half(n),数字信号 Slhalf(n) 或数字信号 S2half(n)是经过釆样和数字滤波后的中频信号; 以对数字信号 Sfl(n)的处理为例, Sfl(n)的频谱、 Fl(n)的频谱和 Slhalf(n)的频谱如图 8所 示。
步骤 404,对经过釆样和数字滤波处理的中频信号进行下变频处理和滤 波处理, 得到原始发送的基带信号;
具体的, 数字变频器对经过釆样和数字滤波处理的中频信号 Slhalf(n) 或 S2half(n)进行下变频处理, 其中下变频的本振信号为 IF(n), 频率为 IF, 对应的数字频率为 (IF/Fs*2 π );
将经过下变频处理的信号 Slhalf(n)和 S2half(n)分别与镜像频率汇合后, 再利用低通滤波器对与镜像频率汇合的信号 Slhalf(n)和 S2half(n)进行滤波 处理, 得到双边带信号 SBl(n)和 SB2(n); 以得到双边带信号 SBl(n)为例, 其频谱的变化如图 9所示, 此时的双边带信号 SBl(n)或 SB2(n)即是不含有 邻频干扰的且携带完整信息的原始发送的基带信号; 原始发送的基带信号 SBl(n)或 SB2(n)可以继续进行后续的通用信号的处理流程, 该处理流程包 括同步处理、 信道估计衡量、 调制解调、 信道解调和信源解调等处理过程。
实施例一
本实施例中, 以 fc 1=2560MHz、 fc2=2580MHz 的两个带宽为 20MHz 的 LTE 无线通信系统的邻频共存为例, 根据我国的频语规划, 将 2.6GHz 频段的 划 分如下 : 2500MHz~2570MHz 为 FDD 上行频 带 , 2620MHz~2690MHz为 FDD 下行频段; 2570MHz~2620MHz为 TDD频段; 以 fcl为载波频率的 20MHz宽的信号 Sl(t)为 LTE FDD信号,以 fc2为载波 频率的 20MHz宽的信号 S2(t)为 LTE TDD信号, 由于这两个信号紧邻, 按 照本发明中的技术方案,是将 S2(t)中的 10MHz用来作为隔离带, 而釆用本 发明的方法, 这 10MHz的隔离带可以利用, 保证 Sl(t) 与 S2(t)仍然紧邻。
以信号 Sl(t)的发送和接收为例:
在发送端,信号 I(n)和 Q(n)的样点率为 61.536Msps,对信号 I(n)和 Q(n) 进行数字上变频处理, 上变频的载频 Wn=0.5pi=15.384M/61.536M * 2 π; 然后进行滤波处理, 将 0.5 π至 π的分量全部滤除; 然后将信号 Ι(η)和 Q(n) 进行数字上变频处理后得到的两路信号相加, 得到样点率为 61.536Msps、 带宽为 lOMhz的单边带信号 S(n); 对单边带信号 S(n)进行数模转换, 得到 载频为 15.384MHz的、 带宽为 10MHz的中频单边带信号 S(t); 再对中频单 边带信号 S(t)进行本振频率为 2560MHz-15.384MHz=2544.616MHz的上变 频处理, 得到载频为 2560MHz、 带宽为 10MHz的射频信号 Srf(t); 最后对 射频信号 Srf(t)进行射频带通滤波, 然后进行后续放大发射处理。
在接收端, 将收到的射频信号输入带通滤波器 filterl , 该带通滤波器 filterl 的通带中心频率设置为 2553MHz, 通带为 16MHz, 即带通滤波器 filterl的通带范围为 2545MHz~2661MHz; 用 2540MHz的本振信号对滤波 后的 Ssl(t)进行下变频处理,得到载波频率为 20MHz的信号 Sfl(t); 然后用 60Msps的釆样频率对 Sfl(t)进行釆样, 得到 Sfl(n); 然后以 1024阶 FIR滤 波器 Fl(n)对 Sfl(n)进行滤波, 得到 Slhalf(n); 再以频率为 20Mhz的数字正 弦信号对 Slhalf(n)进行数字下变频处理, 并进行截至频率为 25MHz的低通 滤波, 得到 SBl(n)。
利用上述方法,避免了在 2500MHz频段上 S2(t)由于邻频泄露过来的干 扰, 顺利恢复了原始调制信号; 同时, 形成带宽为 10MHz 的单边带信号 Sl(t),发射出去后也无能量泄露到 S2(t)的频带内,而影响 S2(t)的信号质量, 达到了不设定额外隔离带宽而邻频系统却能良好共存的效果。 基于上述方法, 本发明还提供一种收发信号的系统, 图 10是本发明实 现收发信号的系统的结构示意图, 如图 10所示, 该系统包括: 发送子系统 101、 接收子系统 102; 其中,
发送子系统 101 ,用于对同相分量的信号和正交分量的信号进行数字上 变频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量 的中频信号和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到 滤波处理后的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模 拟基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射 频信号进行滤波和放大处理后发射;
接收子系统 102, 用于将收到的两个信号中的一个信号全部滤除, 将另 一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带 信号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信 号进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行 下变频处理和滤波处理, 得到原始发送的基带信号。
所述发送子系统 101进一步包括:数字变频器 1011、数字滤波器 1012、 数模转换器 1013、混频器 1014、带通滤波器 1015、放大器 1016、天线 1017; 其中,
数字变频器 1011 , 用于对同相分量的信号和正交分量的信号进行数字 上变频处理, 得到同相分量的中频信号和正交分量的中频信号;
数字滤波器 1012 , 用于将所述同相分量的中频信号和正交分量的中频 信号的一个边带全部滤除或部分滤除, 得到滤波处理后的中频信号。
数模转换器 1013 , 用于对所述滤波处理后的中频信号进行数模转换, 得到模拟基带信号;
混频器 1014, 用于对所述模拟基带信号进行上变频混频处理, 得到射 频信号; 带通滤波器 1015, 用于对所述射频信号进行滤波;
放大器 1016, 用于对滤波后的射频信号进行放大处理;
天线 1017, 用于发射经过放大处理后的射频信号。
所述接收子系统 102进一步包括:射频带通滤波器 1021、变频器 1022、 数模转换器 1023、 数字滤波器 1024、 数字变频器 1025、 低通滤波器 1026; 其中,
射频带通滤波器 1021 ,用于将收到的两个信号中的一个信号全部滤除, 将另一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单 边带信号;
变频器 1022, 用于对所述单边带信号进行下变频处理,得到中频信号; 数模转换器 1023 , 用于对所述中频信号进行釆样;
数字滤波器 1024, 用于对釆样后的中频信号进行数字滤波处理; 数字变频器 1025 , 用于对经过釆样和数字滤波处理的中频信号进行下 变频处理;
低通滤波器 1026, 用于对经过下变频处理的中频信号进行滤波处理, 得到原始发送的基带信号。
具体的, 所述得到滤波处理后的单边带信号为: 釆用高端截止频率大 于 fcl 的射频带通滤波器 1021 , 对两个相邻共存的无线通信系统的信号的 和 Sl(t)+S2(t)进行滤波,将信号 Sl(t)的上边带滤除,将信号 S2(t)完全滤除, 得到单边带信号 Ssl(t); 其中, fcl为信号 Sl(t)的载频; 或, 釆用低端截止 频率小于 fc2的射频带通滤波器 1021 , 对两个相邻共存的无线通信系统的 信号的和 Sl(t)+S2(t)进行滤波, 将信号 S2(t)的下边带滤除, 将信号 Sl(t)完 全滤除, 得到单边带信号 Ss2(t) ; 其中, fc2为信号 S2(t)的载频。
所述得到中频信号为: 变频器 1022 对滤波处理后得到的单边带信号 Ssl(t)或 Ss2(t)进行下变频处理,将单边带信号变为中频信号 Sfl(t)或 Sf2(t)。 所述对所述中频信号进行釆样和数字滤波处理为: 数模转换器 1023对 经过下变频处理后得到的中频信号 Sfl(t)或 Sf2(t)进行釆样处理, 得到中频 信号 Sfl(t)的数字信号 Sfl(n)或中频信号 S (t)的数字信号 S (n);对于数字 信号 Sfl(n), 釆用数字滤波器 1024将 IF以上的频谱分量全部滤除, 得到数 字信号 Slhalf(n); 对于数字信号 S (n), 釆用数字滤波器 1024将 IF以下的 频谱分量全部滤除, 得到数字信号 S2half(n); 其中, 所述 IF大于等于信号 Sl(t)带宽的 1/2或 IF大于等于信号 S2(t)带宽的 1/2。
所述得到原始发送的基带信号为: 数字变频器 1025对经过釆样和数字 滤波处理的中频信号 Slhalf(n)或 S2half(n)进行下变频处理, 将经过下变频 处理的信号 Slhalf(n)和 S2half(n)分别与镜像频率汇合后, 再利用低通滤波 器 1026对与镜像频率汇合的信号 Slhalf(n)和 S2half(n)进行滤波处理, 得到 原始发送的基带信号 SBl(n)和 SB2(n)。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种接收信号的方法, 其特征在于, 该方法包括:
将收到的两个信号中的一个信号全部滤除, 将另一个信号中与全部滤 除的信号相邻的频带滤除, 得到滤波处理后的单边带信号;
对所述单边带信号进行下变频处理, 得到中频信号;
对所述中频信号进行釆样和数字滤波处理;
对经过釆样和数字滤波处理的中频信号进行下变频处理和滤波处理, 得到原始发送的基带信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述得到滤波处理后的 单边带信号为:
釆用高端截止频率大于 fcl的射频带通滤波器,对两个相邻共存的无线 通信系统的信号的和 Sl(t)+S2(t)进行滤波, 将信号 Sl(t)的上边带滤除, 将 信号 S2(t)完全滤除,得到单边带信号 Ssl(t);其中, fcl为信号 Sl(t)的载频。
3、 根据权利要求 1所述的方法, 其特征在于, 所述得到滤波处理后的 单边带信号为:
釆用低端截止频率小于 fc2的射频带通滤波器,对两个相邻共存的无线 通信系统的信号的和 Sl(t)+S2(t)进行滤波, 将信号 S2(t)的下边带滤除, 将 信号 Sl(t)完全滤除,得到单边带信号 Ss2(t);其中, fc2为信号 S2(t)的载频。
4、 根据权利要求 1所述的方法, 其特征在于, 所述得到中频信号为: 数字变频器对滤波处理后得到的单边带信号 Ssl(t)或 Ss2(t)进行下变频 处理, 将单边带信号变为中频信号 Sfl(t)或 Sf2(t)。
5、 根据权利要求 1所述的方法, 其特征在于, 所述对所述中频信号进 行釆样和数字滤波处理为:
数模转换器对经过下变频处理后得到的中频信号 Sfl(t)或 S (t)进行釆 样处理, 得到中频信号 Sfl(t)的数字信号 Sfl(n)或中频信号 Sf2(t)的数字信 号 Sf2(n); 对于数字信号 Sfl(n), 釆用数字滤波器将 IF以上的频谱分量全 部滤除, 得到数字信号 Slhalf(n); 对于数字信号 Sf2(n), 釆用数字滤波器将 IF以下的频谱分量全部滤除, 得到数字信号 S2half(n); 其中, 所述 IF大于 等于信号 Sl(t)带宽的 1/2或 IF大于等于信号 S2(t)带宽的 1/2。
6、 根据权利要求 1所述的方法, 其特征在于, 所述得到原始发送的基 带信号为:
数字变频器对经过釆样和数字滤波处理的中频信号 S 1 half (n)或 S2half(n)进行下变频处理, 将经过下变频处理的信号 Slhalf(n)和 S2half(n) 分别与镜像频率汇合后, 再利用低通滤波器对与镜像频率汇合的信号 Slhalf(n)和 S2half(n)进行滤波处理, 得到原始发送的基带信号 SBl(n)和 SB2(n)。
7、 一种收发信号的方法, 其特征在于, 该方法包括:
在信号的发送端, 对同相分量的信号和正交分量的信号进行数字上变 频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量的 中频信号和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到滤 波处理后的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模拟 基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频 信号进行滤波和放大处理后发射;
在信号的接收端, 将收到的两个信号中的一个信号全部滤除, 将另一 个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信 号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信号 进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行下 变频处理和滤波处理, 得到原始发送的基带信号。
8、 一种接收信号的系统, 其特征在于, 该系统包括: 射频带通滤波器、 变频器、 数模转换器、 数字滤波器、 数字变频器、 低通滤波器; 其中, 射频带通滤波器, 用于将收到的两个信号中的一个信号全部滤除, 将 另一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边 带信号;
变频器, 用于对所述单边带信号进行下变频处理, 得到中频信号; 数模转换器, 用于对所述中频信号进行釆样;
数字滤波器, 用于对釆样后的中频信号进行数字滤波处理;
数字变频器, 用于对经过釆样和数字滤波处理的中频信号进行下变频 处理;
低通滤波器, 用于对经过下变频处理的中频信号进行滤波处理, 得到 原始发送的基带信号。
9、 一种收发信号的系统, 其特征在于, 该系统包括: 发送子系统、 接 收子系统; 其中,
发送子系统, 用于对同相分量的信号和正交分量的信号进行数字上变 频处理, 得到同相分量的中频信号和正交分量的中频信号; 将同相分量的 中频信号和正交分量的中频信号的一个边带全部滤除或部分滤除, 得到滤 波处理后的中频信号; 对滤波处理后的中频信号进行数模转换, 得到模拟 基带信号; 对模拟基带信号进行上变频混频处理, 得到射频信号; 对射频 信号进行滤波和放大处理后发射;
接收子系统, 用于将收到的两个信号中的一个信号全部滤除, 将另一 个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边带信 号; 对所述单边带信号进行下变频处理, 得到中频信号; 对所述中频信号 进行釆样和数字滤波处理; 对经过釆样和数字滤波处理的中频信号进行下 变频处理和滤波处理, 得到原始发送的基带信号。
10、 根据权利要求 9所述的系统, 其特征在于, 所述接收子系统进一 步包括: 射频带通滤波器、 变频器、 数模转换器、 数字滤波器、 数字变频 器、 低通滤波器; 其中,
射频带通滤波器, 用于将收到的两个信号中的一个信号全部滤除, 将 另一个信号中与全部滤除的信号相邻的频带滤除, 得到滤波处理后的单边 带信号;
变频器, 用于对所述单边带信号进行下变频处理, 得到中频信号; 数模转换器, 用于对所述中频信号进行釆样;
数字滤波器, 用于对釆样后的中频信号进行数字滤波处理;
数字变频器, 用于对经过釆样和数字滤波处理的中频信号进行下变频 处理;
低通滤波器, 用于对经过下变频处理的中频信号进行滤波处理, 得到 原始发送的基带信号。
PCT/CN2011/074406 2011-03-24 2011-05-20 接收信号的方法及系统、收发信号的方法及系统 WO2012126200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110072301.1A CN102694761B (zh) 2011-03-24 2011-03-24 接收信号的方法及系统、收发信号的方法及系统
CN201110072301.1 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012126200A1 true WO2012126200A1 (zh) 2012-09-27

Family

ID=46860048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074406 WO2012126200A1 (zh) 2011-03-24 2011-05-20 接收信号的方法及系统、收发信号的方法及系统

Country Status (2)

Country Link
CN (1) CN102694761B (zh)
WO (1) WO2012126200A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266338B (zh) * 2018-11-21 2021-03-30 重庆西南集成电路设计有限责任公司 一种宽带无线收发器中单频信号的产生方法
EP3982546A4 (en) * 2019-06-29 2022-06-15 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR WIRELESS COMMUNICATION AND RADIO FREQUENCY SUBSYSTEM
CN111988054B (zh) * 2020-08-28 2021-11-05 电子科技大学 用于接收物联网终端信号的信号接收系统
CN117640324A (zh) * 2022-08-12 2024-03-01 华为技术有限公司 通信方法、装置、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668656A1 (en) * 1994-02-18 1995-08-23 Sharp Kabushiki Kaisha A tuner for a satellite broadcasting receiver
CN101186802A (zh) * 2006-11-24 2008-05-28 第一毛织株式会社 多芯片封装用环氧树脂组合物以及利用该组合物的多芯片封装
CN101777930A (zh) * 2008-12-04 2010-07-14 美国博通公司 一种通信方法和通信系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045580B2 (en) * 2005-04-04 2011-10-25 Nec Corporation Band control method and communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0668656A1 (en) * 1994-02-18 1995-08-23 Sharp Kabushiki Kaisha A tuner for a satellite broadcasting receiver
CN101186802A (zh) * 2006-11-24 2008-05-28 第一毛织株式会社 多芯片封装用环氧树脂组合物以及利用该组合物的多芯片封装
CN101777930A (zh) * 2008-12-04 2010-07-14 美国博通公司 一种通信方法和通信系统

Also Published As

Publication number Publication date
CN102694761A (zh) 2012-09-26
CN102694761B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CA2681362C (en) Transceiver front end for software radio systems
EP2816771B1 (en) Transmitter and transmitting method
US6104764A (en) Radio receiving apparatus for receiving communication signals of different bandwidths
KR101050667B1 (ko) 무선 통신 시스템 및 그 시스템에서의 사용을 위한 무선디지털 수신기
US20040056785A1 (en) Integrated modulator and demodulator configuration
JP3432156B2 (ja) 変調された単側波帯信号を生成する方法および装置
WO2012126200A1 (zh) 接收信号的方法及系统、收发信号的方法及系统
CN101515807A (zh) 数字中频接收机
CN111711457A (zh) 一种通过多通道并行分段解调方式提高解调宽带的方法
KR100780668B1 (ko) 디지털 주파수 하향 변환 장치 및 방법
US9780729B2 (en) Signal frequency conversion circuit and signal frequency conversion method
CN102571653B (zh) 通信信号处理方法和通信接收机
US8660213B1 (en) Bandpass-sampling wide-band receiver
Yoshida et al. A software defined radio receiver using the direct conversion principle: implementation and evaluation
CN108199996B (zh) 基于fpga的独立边带调制信号解调方法
Xu et al. Digital Up and Down Converter in IEEE 802.16 d
CN109547043B (zh) 一种节约射频带宽的调制方法
CN116743537A (zh) 一种基于软件无线电的usb信号解调方法
CN114900405A (zh) 一种基于Soc的Acars信号解调方法
Yang et al. A direct conversion phase conjugation arithmetic for retrodirective antenna array system
JP6037503B2 (ja) 伝送装置
CN102624673A (zh) 一种正交调制信号的处理方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861844

Country of ref document: EP

Kind code of ref document: A1