WO2014142707A1 - Hybrid drive - Google Patents

Hybrid drive Download PDF

Info

Publication number
WO2014142707A1
WO2014142707A1 PCT/RU2014/000014 RU2014000014W WO2014142707A1 WO 2014142707 A1 WO2014142707 A1 WO 2014142707A1 RU 2014000014 W RU2014000014 W RU 2014000014W WO 2014142707 A1 WO2014142707 A1 WO 2014142707A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
input
output
shaft
rotation
Prior art date
Application number
PCT/RU2014/000014
Other languages
French (fr)
Russian (ru)
Inventor
Равиль Гафиевич ХАДЕЕВ
Original Assignee
Khadeev Ravil Gafiyevitch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Khadeev Ravil Gafiyevitch filed Critical Khadeev Ravil Gafiyevitch
Publication of WO2014142707A1 publication Critical patent/WO2014142707A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/64Gearings having three or more central gears composed of a number of gear trains, the drive always passing through all the trains, each train having not more than one connection for driving another train
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes

Definitions

  • the invention relates to the field of transport engineering and can be used in the design of mechanisms in which it is necessary to widely vary the gear ratio and torque, optimizing the acceleration and control of the movement of the driven shaft at constant speed and torque on the motor shaft.
  • An example of such a mechanism may be the transmission of a vehicle and other mechanisms.
  • the objective of the invention is the implementation of a simple continuously variable transmission for acceleration and automatic control of the revolutions of the driven shaft with a change in torque and gear ratio, when the engine is operating in optimal mode, depending on their required values.
  • the use of such a transmission will simplify the acceleration process, reduce losses and save energy, as well as simplify the design of the transmission.
  • the transmission has two differential mechanisms in series, each with an input and two outputs.
  • the input of the first differential mechanism is connected to the vehicle engine, and one of its output is connected to the input of the second differential.
  • the stator of the generator is connected to the second output of the first
  • the stator forms with the rotor, the so-called, electric double-rotation machine, otherwise an electric machine with two degrees of freedom.
  • the second differential output is also connected to a controlled clutch, the counterpart of which is connected to the transmission housing, which has the ability
  • differential device the input and two outputs of which are located concentrically on a common axis.
  • One output of the second differential is connected to the driven shaft, and the second output is connected to a controlled power sliding clutch, the mating part of which is connected to the input of this
  • the power sliding clutch serves as a clutch mechanism, but it does not connect the drive and driven shafts, but only controls the operation of the differential mechanism.
  • the total maximum transmission ratio will be
  • the minimum gear ratio can be quite small, but cannot be equal to unity, since during the operation of the generator there is a mutual relative rotation between the rotor and the stator.
  • the electric current produced by the generator when controlling the operation of the first differential mechanism, is supplied to electric motors connected to the wheels of the vehicle, not connected to the driven shaft of the transmission.
  • These electric motors can be of any type, and, according to the invention, can have in their device two rotors connected by an electric induction coupling and connected by a differential mechanism.
  • the main rotor of the electric motor is connected to the input of the differential, and two of its outputs are connected: one to the shaft of the electric motor connected to the wheel, and the second to
  • Figure 1 shows the transmission from the drive shaft 1 to the driven shaft 15.
  • the drive shaft 1 is connected to the rotor of the generator 2 and to the central wheel of the first differential 4.
  • the stator of the generator 3 is connected to the carrier 5 and can rotate with it around the axis. If there is a load on the driven shaft, carrier 5 will tend to rotate in the direction opposite to the rotation of drive shaft 1, but the electrical load included in the generator circuit creates a force that carries the stator of generator 3 and the carrier 5 connected to it behind the rotor of generator 2, partially blocking the differential
  • the controlled clutch 8 can connect the carrier 5 to the transmission housing and stop the generator stator, which makes it possible to use all the energy of the vehicle’s engine to generate electricity, use the generator as an electric motor to start the vehicle’s engine, or move in “low gear” mode.
  • the rotation from the Central wheel 7 is transmitted to the Central wheel 9 of the second differential mechanism and the disc 10 of the friction clutch.
  • the response disk of the friction clutch 11 is connected to the carrier of the second differential mechanism 12 and, in the presence of friction forces in the friction clutch, when it slips blocks the second differential device, reducing the swing of the satellites 13, interconnected and freely rotating on the carrier 12, on the central wheels 9 and 14, increasing the speed of rotation of the entire differential mechanism around the axis, reducing it
  • the electric current generated by the generator is supplied to consumers, including the electric motor, the circuit of which is shown in FIG. 2.
  • the rotor of the electric motor 17 rotates freely, connected to the central gear of the planetary differential 18.
  • the winding of the rotor of the electric motor 23 is connected on one side by electric induction coupling with the stator winding 22, and on the other hand, with the winding of the auxiliary rotor 24, which forms an electric motor rotor electromagnetic clutch.
  • the rotation of the rotor 17 and the gear 18 through the satellites 19 mounted on the carrier 20, interconnected but freely rotating on the carrier transmit the rotation to the gear 21 connected to the motor shaft 16.

Abstract

The invention relates to mechanical engineering in the transport industry. Two differential mechanisms (4, 12), each having one input and two outputs, are connected in series in a transmission. The input of the first differential mechanism (4) is connected to a motor, and one of the outputs of said first differential mechanism is connected to the input of the second differential (12). A generator rotor (2) is located on the shaft of the motor, which shaft is connected to the input of the first differential (4), and is connected to said shaft. A generator stator (3) is connected to the second output of the first differential (4) and is capable of rotating about an axis. A clutch (8) capable of being connected to the transmission box and of transforming the differential into a reduction gear is also connected to the second output. A rotation of the shaft is transmitted from the output of the first differential (4) to the input of the second differential device (12), the input and two outputs of which are arranged concentrically on a common axis. One output of the second differential is connected to a driven shaft (15), while the second output is connected to a disk (10) of a controllable high-performance slip clutch, the reciprocal disk (11) of which is connected to the input of this differential (12).

Description

Гибридный привод.  Hybrid drive.
Изобретение относится к области транспортного машиностроения и может быть использовано при конструировании механизмов, в которых необходимо в широких пределах изменять передаточное отношение и крутящий момент, оптимизирующие разгон и управление движением ведомого вала при постоянных оборотах и крутящем моменте на валу двигателя. Примером такого механизма могут быть трансмиссия транспортного средства и других механизмов. The invention relates to the field of transport engineering and can be used in the design of mechanisms in which it is necessary to widely vary the gear ratio and torque, optimizing the acceleration and control of the movement of the driven shaft at constant speed and torque on the motor shaft. An example of such a mechanism may be the transmission of a vehicle and other mechanisms.
Известны различные пути согласования передаточного отношения при передаче движения от двигателя к исполнительному механизму. Наиболее распространенным способом является зубчатый редуктор и фрикционные муфты. Эти механизмы описаны, например, в Артоболевский И.И. «Механизмы в современной технике», Том 4 «Зубчатые механизмы» и Том 5 «Фрикционные механизмы». Москва. Наука 1980г, а также в: Патент RU JV°2304735, Патент RU Ш 2333405.  There are various ways of coordinating the gear ratio when transmitting movement from the engine to the actuator. The most common way is a gear reducer and friction clutches. These mechanisms are described, for example, in Artobolevsky II. “Mechanisms in modern technology”, Volume 4 “Gear mechanisms” and Volume 5 “Friction mechanisms”. Moscow. Science 1980, and also: Patent RU JV ° 2304735, Patent RU W 2333405.
Недостатком зубчатых редукторов является то, что при их использовании передаточное отношение трансмиссии постоянно, двигатель в большинстве случаев не работает на оптимальном режиме, при этом ухудшается экономичность, увеличиваются нагрузки на двигатель и элементы трансмиссии. Внесение в конструкцию технологически сложных устройств, ступенчатых или бесступенчатых преобразователей передаточного отношения, а также специальных устройств, например, гидромоторов, приводят к удорожанию конструкции и к уменьшению степени надёжности. Недостатками известных решений описанных в Патент RU 2304735, и в Патент RU Ν» 2333405 являются сложность конструкции и неоптимальный режим работы в процессе изменения передаточного отношения.  The disadvantage of gear reducers is that when they are used, the transmission ratio of the transmission is constant, the engine in most cases does not work at the optimum mode, while the economy is deteriorating, the load on the engine and transmission elements is increasing. The introduction of technologically complex devices, stepwise or stepless transducers of gear ratio, as well as special devices, for example, hydraulic motors, into the design leads to an increase in the cost of the structure and to a decrease in the degree of reliability. The disadvantages of the known solutions described in Patent RU 2304735, and in Patent RU Ν ”2333405 are the design complexity and suboptimal mode of operation in the process of changing the gear ratio.
Задачей изобретения является осуществление простой бесступенчатой трансмиссии для разгона и автоматическим управлением оборотами ведомого вала с изменением крутящего момента и передаточного отношения, при работе двигателя на оптимальном режиме в зависимости от их потребных величин. Применение такой трансмиссии приведёт к упрощению процесса разгона, уменьшению потерь и экономии энергии, а также к упрощению конструкции трансмиссии. The objective of the invention is the implementation of a simple continuously variable transmission for acceleration and automatic control of the revolutions of the driven shaft with a change in torque and gear ratio, when the engine is operating in optimal mode, depending on their required values. The use of such a transmission will simplify the acceleration process, reduce losses and save energy, as well as simplify the design of the transmission.
Указанная цель достигается тем, что согласно изобретению, в трансмиссии последовательно включены два дифференциальных механизма, каждый имеющий вход и два выхода. Вход первого дифференциального механизма соединен с двигателем транспортного средства, а один его выход соединен с входом второго дифференциала. На валу двигателя, соединенном с входом первого дифференциала, находится соединённый с ним ротор генератора. Статор генератора соединен со вторым выходом первого This goal is achieved by the fact that according to the invention, in The transmission has two differential mechanisms in series, each with an input and two outputs. The input of the first differential mechanism is connected to the vehicle engine, and one of its output is connected to the input of the second differential. On the motor shaft, connected to the input of the first differential, there is a generator rotor connected to it. The stator of the generator is connected to the second output of the first
дифференциала и имеет возможность вращаться вокруг оси. Статор образует с ротором, так называемую, электрическую машину двойного вращения, иначе электрическую машину с двумя степенями свободы. Второй выход дифференциала также соединён с управляемой муфтой, ответная часть которой соединена с корпусом трансмиссии, имеющей возможность differential and has the ability to rotate around an axis. The stator forms with the rotor, the so-called, electric double-rotation machine, otherwise an electric machine with two degrees of freedom. The second differential output is also connected to a controlled clutch, the counterpart of which is connected to the transmission housing, which has the ability
стопорить второй выход, соединяя его с неподвижным элементом. С выхода первого дифференциала вращение вала передаётся на вход второго stop the second exit, connecting it with a fixed element. From the output of the first differential, the rotation of the shaft is transmitted to the input of the second
дифференциального устройства, вход и два выхода которого расположены концентрично на общей оси. Один выход второго дифференциала соединен с ведомым валом, а второй выход соединен с управляемой силовой муфтой скольжения, ответная часть которой соединена с входом этого differential device, the input and two outputs of which are located concentrically on a common axis. One output of the second differential is connected to the driven shaft, and the second output is connected to a controlled power sliding clutch, the mating part of which is connected to the input of this
дифференциала. Вращение от двигателя передаётся на ротор генератора и на вход первого дифференциала, затем, через его элементы на ведомый вал, который вращается в ту же сторону, в которую вращается вал двигателя, и на второй выход дифференциала, соединенный со статором генератора, который силой реакции стремится вращаться в сторону обратную направлению вращения ротора генератора, ведущего и ведомого валов. При наличии электрической нагрузки в цепи генератора, между статором и ротором в результате взаимоиндукции возникает сила увлекающая статор за ротором, частично блокирующая дифференциал и приводящая к уменьшению differential. Rotation from the engine is transmitted to the generator rotor and to the input of the first differential, then, through its elements, to the driven shaft, which rotates in the same direction that the engine shaft rotates, and to the second differential output connected to the generator stator, which tends to rotate in the direction opposite to the direction of rotation of the rotor of the generator, drive and driven shafts. In the presence of an electric load in the generator circuit, between the stator and the rotor as a result of mutual induction, a force arises which drags the stator behind the rotor, partially blocking the differential and leading to
передаточного отношения слагающегося из передачи движения через элементы дифференциала и через его вращение вокруг оси, таким образом, способствуя увеличению скорости вращения ведомого вала. При увеличении электрической нагрузки в цепи генератора, скольжение ротора и статора при постоянной нагрузке на валу будет уменьшаться, скорость вращения ведомого вала будет увеличиваться, а крутящий момент уменьшаться. Управляя электрической нагрузкой в цепи генератора можно управлять изменением оборотов и крутящего момента ведомого вала. При необходимости, второй выход дифференциала стопорится муфтой, соединяя его с корпусом, the gear ratio of the transmission of motion through the elements of the differential and through its rotation around the axis, thus contributing to an increase in the speed of rotation of the driven shaft. With an increase in the electric load in the generator circuit, the sliding of the rotor and stator with a constant load on the shaft will decrease, the rotation speed of the driven shaft will increase, and the torque will decrease. By controlling the electrical load in the generator circuit, you can control the change in speed and torque of the driven shaft. If necessary, the second differential output is locked by the coupling, connecting it to the housing,
превращая дифференциал в редуктор. При этом стопорится статор генератора, и энергия двигателя тратится только на вырабатывание электрического тока, либо на запуск двигателя, так как генератор является обратимой turning the differential into a gearbox. At the same time, the generator stator stops, and the engine energy is spent only on generating electric current, either to start the engine, since the generator is reversible
электрической машиной и может быть использован для пуска двигателя, или для повышения крутящего момента на выходе при движении в режиме «пониженной передачи». С ведомого вала первого дифференциала вращение передаётся на вход второго дифференциала, один выход которого соединен с ведомым валом трансмиссии, а второй выход соединён с electric machine and can be used to start the engine, or to increase the output torque when driving in the "low gear" mode. From the driven shaft of the first differential, rotation is transmitted to the input of the second differential, one output of which is connected to the driven shaft of the transmission, and the second output is connected to
управляемой силовой муфтой скольжения, ответная часть которой driven power clutch, the counterpart of which
соединена с входом второго дифференциала и, в процессе разгона частично блокирует дифференциал, что приводит к вращению его вокруг своей оси, уменьшая при этом его суммарное передаточное отношение, состоящее из передачи движения через его элементы и через передачу вращения connected to the input of the second differential and, during acceleration, partially blocks the differential, which leads to its rotation around its axis, while reducing its total gear ratio, consisting of the transmission of motion through its elements and through the transmission of rotation
механизма вокруг своей оси. Когда всё движение передаётся через элементы дифференциала, тогда передаточное отношение этого механизма mechanism around its axis. When all movement is transmitted through the elements of the differential, then the gear ratio of this mechanism
максимальное, и крутящий момент на ведомом валу также максимальный. Когда муфта не проскальзывает, дифференциал полностью заблокирован, передаточное отношение равно единице, крутящий момент на выходе равен крутящему моменту на его входе. Силовая муфта скольжения здесь выполняет функцию механизма сцепления, но она не соединяет ведущий и ведомый валы, а только управляет работой дифференциального механизма. Общее максимальное передаточное отношение трансмиссии будет maximum, and the torque on the driven shaft is also maximum. When the clutch does not slip, the differential is completely locked, the gear ratio is unity, the output torque is equal to the torque at its input. The power sliding clutch here serves as a clutch mechanism, but it does not connect the drive and driven shafts, but only controls the operation of the differential mechanism. The total maximum transmission ratio will be
определяться произведением максимального передаточного отношения первого механизма на максимальное передаточное отношение второго. determined by the product of the maximum gear ratio of the first mechanism to the maximum gear ratio of the second.
Минимальное передаточное отношение может быть достаточно малым, но не может быть равным единице, так как при работе генератора имеет место взаимное относительное вращение между ротором и статором. The minimum gear ratio can be quite small, but cannot be equal to unity, since during the operation of the generator there is a mutual relative rotation between the rotor and the stator.
Электрический ток, произведенный генератором, при управлении работой первого дифференциального механизма подается на электродвигатели соединенные с колёсами транспортного средства, не подключенными к ведомому валу трансмиссии. Эти электродвигатели могут быть любого типа, а также, согласно изобретению, могут иметь в своём устройстве два ротора объединенных электроиндукционной связью и соединенных посредством дифференциального механизма. Основной ротор электродвигателя подключен к входу дифференциала, а два его выхода подключены: один к валу электродвигателя, соединенному с колесом, а второй к The electric current produced by the generator, when controlling the operation of the first differential mechanism, is supplied to electric motors connected to the wheels of the vehicle, not connected to the driven shaft of the transmission. These electric motors can be of any type, and, according to the invention, can have in their device two rotors connected by an electric induction coupling and connected by a differential mechanism. The main rotor of the electric motor is connected to the input of the differential, and two of its outputs are connected: one to the shaft of the electric motor connected to the wheel, and the second to
вспомогательному ротору, установленному концентрично с ротором auxiliary rotor mounted concentrically with the rotor
электродвигателя и связанному с ним электроиндукционной связью, таким образом, что оба ротора образуют электромагнитную муфту. Ротор электродвигателя при вращении увлекает за собой вспомогательный ротор, уменьшая передаточное отношение дифференциала и увеличивая скорость вращения ведомого вала. При увеличении нагрузки на ведомом валу электродвигателя скольжение роторов относительно друг друга the electric motor and the associated electric induction coupling, so that both rotors form an electromagnetic clutch. Rotor during rotation, the auxiliary rotor carries with it, reducing the differential gear ratio and increasing the speed of rotation of the driven shaft. With increasing load on the driven shaft of the electric motor, the sliding of the rotors relative to each other
увеличивается, передаточное отношение увеличивается. Обороты вала электродвигателя уменьшаются, а крутящий момент увеличивается. При постоянном крутящем моменте и оборотах ротора электродвигателя, обороты ведомого вала и крутящий момент на нём автоматически, в зависимости от требуемой величины крутящего момента, изменяются в широких пределах. При старте на ведомом валу крутящий момент increases, gear ratio increases. The revolutions of the motor shaft decrease, and the torque increases. With constant torque and rotor speed of the electric motor, the revolutions of the driven shaft and the torque on it automatically, depending on the required magnitude of the torque, vary over a wide range. When starting on a driven shaft, torque
максимальный, а обороты минимальные, величина которых, определяется параметрами элементов дифференциального устройства. maximum, and the minimum speed, the value of which is determined by the parameters of the elements of the differential device.
Изобретение поясняется чертежами. На фиг.1 показана трансмиссия от вала привода 1 до ведомого вала 15. Вал привода 1 соединен с ротором генератора 2 и с центральным колесом первого дифференциала 4. При вращении вала привода энергия двигателя передаётся через сателлиты 6, соединенные между собой, установленные и свободно вращающиеся на водиле 5, на центральное колесо 7. Статор генератора 3 соединен с водилом 5 и может вращаться с ним вокруг оси. При наличии нагрузки на ведомом валу, водило 5 будет стремиться к вращению в сторону, обратную вращению ведущего вала 1 , но включённая в цепь генератора электрическая нагрузка создаёт силу, увлекающую статор генератора 3 и соединенное с ним водило 5 за ротором генератора 2, частично блокируя дифференциальное The invention is illustrated by drawings. Figure 1 shows the transmission from the drive shaft 1 to the driven shaft 15. The drive shaft 1 is connected to the rotor of the generator 2 and to the central wheel of the first differential 4. When the drive shaft rotates, the engine energy is transmitted through satellites 6, interconnected, mounted and freely rotating on the carrier 5, on the central wheel 7. The stator of the generator 3 is connected to the carrier 5 and can rotate with it around the axis. If there is a load on the driven shaft, carrier 5 will tend to rotate in the direction opposite to the rotation of drive shaft 1, but the electrical load included in the generator circuit creates a force that carries the stator of generator 3 and the carrier 5 connected to it behind the rotor of generator 2, partially blocking the differential
устройство, увеличивая его скорость вращения вокруг оси, уменьшая его передаточное отношение и увеличивая скорость вращения ведомого вала. Изменяя электрическую нагрузку в цепи генератора, можно управлять передаточным отношением и крутящим моментом на ведомом валу этого механизма. Управляемая муфта 8 при необходимости может соединить водило 5 с корпусом трансмиссии и остановить статор генератора, что даёт возможность всю энергию двигателя транспортного средства использовать для получения электричества, использовать генератор как электродвигатель для пуска двигателя транспортного средства, либо осуществлять движение в режиме «пониженной передачи». Далее вращение с центрального колеса 7 передаётся на центральное колесо 9 второго дифференциального механизма и диск 10 фрикционной муфты. Ответный диск фрикционной муфты 11 соединен с водилом второго дифференциального механизма 12 и, при наличии сил трения во фрикционной муфте, при её проскальзывании блокирует второе дифференциальное устройство, уменьшая качение сателлитов 13, соединенных между собой и свободно вращающихся на водиле 12, по центральным колёсам 9 и 14, увеличивая скорость вращения всего дифференциального механизма вокруг оси, уменьшая его device, increasing its speed of rotation around the axis, reducing its gear ratio and increasing the speed of rotation of the driven shaft. By changing the electrical load in the generator circuit, you can control the gear ratio and torque on the driven shaft of this mechanism. The controlled clutch 8, if necessary, can connect the carrier 5 to the transmission housing and stop the generator stator, which makes it possible to use all the energy of the vehicle’s engine to generate electricity, use the generator as an electric motor to start the vehicle’s engine, or move in “low gear” mode. Next, the rotation from the Central wheel 7 is transmitted to the Central wheel 9 of the second differential mechanism and the disc 10 of the friction clutch. The response disk of the friction clutch 11 is connected to the carrier of the second differential mechanism 12 and, in the presence of friction forces in the friction clutch, when it slips blocks the second differential device, reducing the swing of the satellites 13, interconnected and freely rotating on the carrier 12, on the central wheels 9 and 14, increasing the speed of rotation of the entire differential mechanism around the axis, reducing it
передаточное отношение и увеличивая скорость вращения ведомого вала 15. При полном блокировании фрикционной муфтой второго gear ratio and increasing the rotation speed of the driven shaft 15. When the friction clutch is completely blocked by the second
дифференциального устройства его передаточное отношение равно единице. differential device its gear ratio is equal to unity.
Электрический ток, вырабатываемый генератором, поступает на потребители и в том числе, на питание электромотора, схема которого показана на фиг. 2. На валу электродвигателя 16 свободно вращается ротор электродвигателя 17, соединенный с центральной шестерней планетарного дифференциала 18. Обмотка ротора электродвигателя 23 связана с одной стороны электроиндукционной связью с обмоткой статора 22, а с другой стороны с обмоткой вспомогательного ротора 24, который образует с ротором электродвигателя электромагнитную муфту. Вращение ротора 17 и шестерни 18 через сателлиты 19, установленные на водиле 20, соединенные между собой, но свободно вращающиеся на водиле, передают вращение на шестерню 21, соединенную с валом двигателя 16. При вращении ротора электродвигателя 17 и центральной шестерни 18, при наличии нагрузки на валу 16 водило 20 и соединенный с ним вспомогательный ротор, стремится вращаться в сторону обратную направлению вращения ротора The electric current generated by the generator is supplied to consumers, including the electric motor, the circuit of which is shown in FIG. 2. On the shaft of the electric motor 16, the rotor of the electric motor 17 rotates freely, connected to the central gear of the planetary differential 18. The winding of the rotor of the electric motor 23 is connected on one side by electric induction coupling with the stator winding 22, and on the other hand, with the winding of the auxiliary rotor 24, which forms an electric motor rotor electromagnetic clutch. The rotation of the rotor 17 and the gear 18 through the satellites 19 mounted on the carrier 20, interconnected but freely rotating on the carrier, transmit the rotation to the gear 21 connected to the motor shaft 16. When the rotor of the electric motor 17 and the central gear 18 are rotated, if there is a load on the shaft 16 drove 20 and the auxiliary rotor connected to it, tends to rotate in the direction opposite to the direction of rotation of the rotor
электродвигателя, но так как он с ротором электродвигателя образует электромагнитную муфту и связан с ним индуктивно, он увлекается за ротором электродвигателя и частично блокирует дифференциал, уменьшая передаточное отношение механизма, увеличивая скорость вращения ведомого вала электродвигателя 16. При уменьшении на валу потребной нагрузки скольжение между роторами уменьшится, качение сателлитов по центральным колёсам уменьшится, передаточное отношение дифференциала уменьшится, скорость вала электродвигателя увеличится. При увеличении нагрузки на валу электродвигателя скольжение роторов увеличится, сателлиты быстрее покатятся по центральным колёсам, передаточное отношение дифференциального устройства автоматически увеличится, скорость вращения вала уменьшится, а крутящий момент увеличится. of the electric motor, but since it forms an electromagnetic clutch with the rotor of the electric motor and is connected inductively with it, it is carried away behind the electric motor rotor and partially blocks the differential, decreasing the gear ratio of the mechanism, increasing the speed of rotation of the driven shaft of the electric motor 16. When reducing the required load on the shaft, sliding between the rotors will decrease, the rolling of the satellites on the central wheels will decrease, the gear ratio of the differential will decrease, the speed of the motor shaft will increase. As the load on the motor shaft increases, the slip of the rotors will increase, the satellites will roll faster along the central wheels, the gear ratio of the differential device will automatically increase, the shaft rotation speed will decrease, and the torque will increase.

Claims

Формула изобретения Claim
1. Гибридный привод, отличающийся тем, что согласно изобретению, в трансмиссии последовательно включены два дифференциальных механизма, каждый имеющий вход и два выхода, вход первого дифференциального механизма соединен с двигателем, а один его выход соединен с входом второго дифференциала, на валу двигателя, соединенным с входом первого дифференциала, находится соединённый с валом, ротор генератора, а статор генератора соединен со вторым выходом первого дифференциала и имеет возможность вращаться вокруг оси, который также соединен с управляемой муфтой имеющей возможность останавливать его вращение, соединяя его с корпусом трансмиссии, а с выхода первого дифференциала вращение вала передаётся на вход второго дифференциального устройства, один выход которого соединен с ведомым валом, а второй выход соединен с управляемой силовой муфтой скольжения, ответная часть которой 1. Hybrid drive, characterized in that according to the invention, two differential mechanisms are sequentially included in the transmission, each having an input and two outputs, the input of the first differential mechanism is connected to the engine, and one of its outputs is connected to the input of the second differential, on the engine shaft, connected with the input of the first differential, there is a generator rotor connected to the shaft, and the generator stator is connected to the second output of the first differential and has the ability to rotate around an axis, which is also connected to a rotatable clutch having the ability to stop its rotation by connecting it to the transmission housing, and from the output of the first differential, the shaft rotation is transmitted to the input of the second differential device, one output of which is connected to the driven shaft, and the second output is connected to a controlled power sliding clutch, the reciprocal of which
соединена с входом этого дифференциала. connected to the input of this differential.
2. Гибридный привод, по пункту один, отличающийся тем, что вращение от двигателя передаётся на ротор генератора и на вход первого 2. Hybrid drive, according to paragraph one, characterized in that the rotation from the engine is transmitted to the generator rotor and to the input of the first
дифференциала, затем, через его элементы на ведомый вал, который вращается в ту же сторону, в которую вращается вал двигателя, и на второй выход дифференциала, соединенный со статором генератора, который силой реакции стремится вращаться в сторону обратную направлению вращения ротора генератора, ведущего и ведомого валов но, при наличии электрической нагрузки в цепи генератора, между статором и ротором возникает сила увлекающая статор за ротором, частично блокирующая дифференциал и приводящая к уменьшению передаточного отношения, слагающегося из передачи движения через элементы дифференциала и через его вращение вокруг оси, таким образом, способствуя увеличению скорости вращения ведомого вала. differential, then, through its elements to the driven shaft, which rotates in the same direction in which the motor shaft rotates, and to the second output of the differential, connected to the generator stator, which tends to rotate by the reaction force in the direction opposite to the rotation direction of the generator rotor, leading and driven shafts but, in the presence of an electric load in the generator circuit, between the stator and the rotor there is a force that drags the stator behind the rotor, partially blocking the differential and leading to a decrease in the gear ratio, slug shooting out the motion transmission through a differential elements and through its rotation around the axis, thereby contributing to an increase in output shaft rotational speed.
3. Гибридный привод, по пункту один, отличающийся тем, что второй выход первого дифференциала, соединенный со статором, также соединен с управляемой муфтой, ответная часть которой соединена с корпусом 3. A hybrid drive, according to one, characterized in that the second output of the first differential connected to the stator is also connected to a controllable coupling, the counterpart of which is connected to the housing
трансмиссии и имеет возможность останавливать вращение второго выхода дифференциала. transmission and has the ability to stop the rotation of the second differential output.
4. Гибридный привод, по пункту один, отличающийся тем, что с ведомого вала первого дифференциала вращение передаётся на вход второго дифференциала, один выход которого соединен с ведомым валом трансмиссии, а второй выход соединён с управляемой силовой муфтой скольжения, ответная часть которой соединена с входом второго 4. A hybrid drive, according to paragraph one, characterized in that the rotation is transmitted to the input of the second from the driven shaft of the first differential differential, one output of which is connected to the driven shaft of the transmission, and the second output is connected to a controlled power sliding clutch, the mating part of which is connected to the input of the second
дифференциала и, в процессе разгона частично, а после разгона полностью, блокирует дифференциал, что приводит к вращению его вокруг своей оси, уменьшая при этом его суммарное передаточное отношение, состоящее из передачи движения через его элементы и через передачу вращения the differential and, in the process of acceleration, partially, and after acceleration completely, blocks the differential, which leads to its rotation around its axis, while reducing its total gear ratio, consisting of the transmission of motion through its elements and through the transmission of rotation
механизма вокруг своей оси. mechanism around its axis.
5. Гибридный привод, по пункту один, отличающийся тем, что 5. Hybrid drive, according to paragraph one, characterized in that
электрический ток, от генератора поступает на потребители и, в том числе, на электродвигатели соединенные с колесами, не подключенными к трансмиссии, и согласно изобретению, имеющие в своём устройстве два ротора, объединенных электроиндукционной связью и соединенных посредством дифференциального механизма, при этом основной ротор электродвигателя подключен к входу дифференциала, а два выхода дифференциала подключены: один к валу электродвигателя, соединенному с колесом, а второй к вспомогательному ротору, установленному electric current is supplied from the generator to consumers, including electric motors connected to wheels not connected to the transmission, and according to the invention, having two rotors in their device, connected by an electric induction coupling and connected by a differential mechanism, while the main rotor of the electric motor connected to the input of the differential, and two outputs of the differential are connected: one to the shaft of the electric motor connected to the wheel, and the second to the auxiliary rotor installed
концентрично с ротором электродвигателя и связанному с ним concentric with the rotor of the electric motor and associated
электроиндукционной связью, таким образом, что оба ротора образуют электромагнитную муфту и ротор электродвигателя при вращении увлекает за собой вспомогательный ротор, частично блокируя дифференциал, уменьшая передаточное отношение механизма и увеличивая скорость вращения ведомого вала, а обороты вала электродвигателя и крутящий момент на нем зависят от соотношения силы механической нагрузки на валу электродвигателя и силы взаимоиндукции между роторами. by electric induction coupling, so that both rotors form an electromagnetic clutch and the rotor of the electric motor rotates along with the auxiliary rotor, partially blocking the differential, reducing the gear ratio of the mechanism and increasing the speed of rotation of the driven shaft, and the motor speed and torque on it depend on the ratio mechanical load on the motor shaft and mutual induction between the rotors.
PCT/RU2014/000014 2013-03-12 2014-01-14 Hybrid drive WO2014142707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013110776/11A RU2527625C1 (en) 2013-03-12 2013-03-12 Hybrid drive
RU2013110776 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014142707A1 true WO2014142707A1 (en) 2014-09-18

Family

ID=51537181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000014 WO2014142707A1 (en) 2013-03-12 2014-01-14 Hybrid drive

Country Status (2)

Country Link
RU (1) RU2527625C1 (en)
WO (1) WO2014142707A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233607A (en) * 2016-12-15 2018-06-29 佛山市净瓶泉卫浴有限公司 A kind of electric motor of automobile driving equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658226C2 (en) * 2016-11-22 2018-06-19 Равиль Гафиевич Хадеев Automatic transmission inside wheel
RU2651388C1 (en) * 2016-12-23 2018-04-19 Равиль Гафиевич Хадеев Transmission for hybrid vehicle
RU2680230C1 (en) * 2017-12-29 2019-02-18 Равиль Гафиевич Хадеев Device for managing the pressure of liquid
RU2688110C1 (en) * 2018-05-22 2019-05-17 Равиль Гафиевич Хадеев Hybrid vehicle transmission
RU2726215C1 (en) * 2019-08-05 2020-07-09 Равиль Гафиевич Хадеев Direct starting mechanism
RU2726378C1 (en) * 2020-01-20 2020-07-13 Равиль Гафиевич Хадеев Device converting rotational rate and torque of engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238898A (en) * 2004-02-24 2005-09-08 Toyota Motor Corp Hybrid vehicle driving device
US7207915B2 (en) * 2002-09-04 2007-04-24 Nissan Motor Co., Ltd. Hybrid transmission
RU2345468C2 (en) * 2007-03-26 2009-01-27 Равиль Гафиевич Хадеев Motor with transmission ratio motor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7207915B2 (en) * 2002-09-04 2007-04-24 Nissan Motor Co., Ltd. Hybrid transmission
JP2005238898A (en) * 2004-02-24 2005-09-08 Toyota Motor Corp Hybrid vehicle driving device
RU2345468C2 (en) * 2007-03-26 2009-01-27 Равиль Гафиевич Хадеев Motor with transmission ratio motor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233607A (en) * 2016-12-15 2018-06-29 佛山市净瓶泉卫浴有限公司 A kind of electric motor of automobile driving equipment

Also Published As

Publication number Publication date
RU2013110776A (en) 2014-09-20
RU2527625C1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2014142707A1 (en) Hybrid drive
US20120221197A1 (en) Electric vehicle drive system
US20120247269A1 (en) Drive device for electric vehicle
US7044877B2 (en) Two speed transmission with smooth power shift
SE0950890A1 (en) Electric drive system
JP2009126404A (en) Hybrid vehicle
JP2018114922A5 (en)
RU2518072C1 (en) Variable rom and torque two-rotor motor
RU2651388C1 (en) Transmission for hybrid vehicle
RU2688110C1 (en) Hybrid vehicle transmission
US9897178B2 (en) Manipulatable epicyclic type clutch device coupled with hybrid power train
CN106004398B (en) A kind of Two axle drive system and the electric automobile for being configured with the system
RU2730094C1 (en) Transmission for hybrid transport
RU2788457C1 (en) Electromechanical transmission for hybrid vehicles
RU2726378C1 (en) Device converting rotational rate and torque of engine
RU2790299C1 (en) Transmission for electric vehicles
WO2024014978A1 (en) Electromechanical transmission
RU2673411C1 (en) Clutch mechanism
CN207263442U (en) Driving mechanism and target detection trolley
CN210363358U (en) Automatic transmission with CVT unit, switchable transmission and motor-generator unit
RU2611667C1 (en) Torque and synchronous motor speed control device
RU2771932C1 (en) Transmission for hybrid vehicles
RU2675305C1 (en) Motor with the generator connection mechanism for the torque transformation
RU2470443C2 (en) Double-rotor electric motor with controlled shaft rotations
RU2726215C1 (en) Direct starting mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763364

Country of ref document: EP

Kind code of ref document: A1