WO2014142590A1 - Poly lactic acid modifier, method for preparing poly lactic acid modifier, method for modifying poly lactic acid using same, biodegradable foam composition using modified poly lactic acid, and foam for shoes using biodegradable foam composition - Google Patents

Poly lactic acid modifier, method for preparing poly lactic acid modifier, method for modifying poly lactic acid using same, biodegradable foam composition using modified poly lactic acid, and foam for shoes using biodegradable foam composition Download PDF

Info

Publication number
WO2014142590A1
WO2014142590A1 PCT/KR2014/002138 KR2014002138W WO2014142590A1 WO 2014142590 A1 WO2014142590 A1 WO 2014142590A1 KR 2014002138 W KR2014002138 W KR 2014002138W WO 2014142590 A1 WO2014142590 A1 WO 2014142590A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
bis
tertbutylperoxy
formula
modified
Prior art date
Application number
PCT/KR2014/002138
Other languages
French (fr)
Korean (ko)
Inventor
최면천
Original Assignee
Choi Myeoncheon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130026591A external-priority patent/KR101563397B1/en
Priority claimed from KR1020130050990A external-priority patent/KR101455528B1/en
Application filed by Choi Myeoncheon filed Critical Choi Myeoncheon
Publication of WO2014142590A1 publication Critical patent/WO2014142590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/107Nitroso compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides

Definitions

  • the present invention relates to a modifier of polylactic acid, and more particularly, to a polylactic acid modifier to modify polylactic acid and to use it as a biodegradable foam, a method for preparing a polylactic acid modifier, a polylactic acid modifier using the same, and a modified A biodegradable foam composition using polylactic acid and a shoe foam using the biodegradable foam composition.
  • Polylactic acid (PLA, poly (lactic acid), polylactic acid) is a biodegradable thermoplastic polyester with great potential to replace traditional petrochemical polymers. Possible polymer material.
  • Polylactic acid has the property of rapidly degrading and reproducing carbon dioxide under certain composting conditions, thus providing a more disposal option for these resins than most other organic polymers.
  • polylactic acid exhibits superior thermal processing properties in comparison to biopolymers such as polyethylene glycol and polycaprolactone in addition to the eco-friendliness, biocompatibility, and resource savings of biopolymers. Therefore, the use has been expanded to general consumption materials such as surgical sutures and prosthetics utilizing biocompatibility and bioabsorbability of polylactic acid, as well as packaging materials utilizing biodegradability, processability and transparency.
  • These packaging sectors include various rigid or semi-rigid articles such as 'clamshell' containers, prepared foods and other food serving trays and bottles or other containers.
  • Polylactic acid material has problems such as cracking point, slow decomposition rate, and hydrophobic point.
  • polylactic acid has high tensile strength, elastic modulus, and low elongation, and thus has poor impact resistance, thereby making it an obstacle to application to various packaging materials and elastic materials.
  • the slow biodegradation characteristics have a problem in the application to various general consumer goods as well as medical materials. Therefore, various attempts have been made to improve the impact resistance as well as the decomposition rate.
  • an object of the present invention is to improve the flexibility and biodegradability and can be used under various conditions, polylactic acid modifier, polylactic acid modifier manufacturing method, polylactic acid modified method using the same, modified polylactic acid
  • the present invention provides a biodegradable foam composition and a shoe foam using the biodegradable foam composition.
  • the modifier of polylactic acid according to the present invention is characterized in that it is composed of a compound of the following formula (1) in modifying polylactic acid using a modifier to polylactic acid (Poly Lactic Acid).
  • R 1 and R 2 are composed of one of the following Chemical Formulas 2 to 7)
  • R 3 is hydrogen or methyl group
  • R 4 is hydrogen or alkyl group of C 1 to C 8
  • n is 1 to 20
  • R 5 is hydrogen or an alkyl group of C 1 to C 8 , n is 1 to 20)
  • R 6 is hydrogen or an alkyl group of C 1 to C 8 , l + m + n is 3 to 20)
  • R 7 and R 8 are hydrogen or an alkyl group having 1 to C 8 , and l + m + n is 3 to 20.
  • R 9 and R 10 are hydrogen or a methyl group
  • R 11 is hydrogen or an alkyl group of C 1 to C 8
  • m + n is 2 to 20
  • R 12 and R 13 are hydrogen or a methyl group
  • R 14 is hydrogen or an alkyl group having 1 to 8 , 1 + m is 2 to 20, n is 1 to 5)
  • any one of polyethylene glycol monool, polyethylene glycol diol, polyethylene glycol triol and male anhydride is formed by the esterification reaction.
  • the method for modifying polylactic acid according to the present invention is a method for modifying polylactic acid, wherein the polylactic acid is modified using the above-described modifier.
  • polylactic acid reforming method according to the present invention is characterized by further adding an initiator during the polymerization to react.
  • the initiator 2,2 azobis (2,4-dimethylvaleronitrile), 2,2- azobisisobutyronitrile, 2,2- azodi (2-methylbutylonitrile), 1, 1-azobis (cyanacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5- Bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoylperoxide, bis (Tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, tertbutylperoxy It is characterized by being
  • the biodegradable foam composition according to the present invention is characterized by comprising the above-described modified polylactic acid and a mixed base and constituted by their foam polymerization.
  • the mixed base material is characterized by consisting of at least one of ethylene vinyl acetate copolymer, styrene isoprene styrene copolymer or ethylene methacrylate copolymer.
  • the polymerization is characterized in that it further comprises a cross-linking initiator and a blowing agent.
  • the crosslinking initiator is 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl -Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5 Trimethylchlorohexane, tertbutylperoxybenzoate, lauryl peroxide and dicumyl peroxide.
  • the blowing agent is characterized by comprising at least one of an azodicarbonamide-based blowing agent or a dinitrosopentamethylenetetraamine-based blowing agent.
  • the shoe foam according to the present invention is characterized by comprising the biodegradable foam composition described above.
  • Another embodiment of the method for modifying polylactic acid according to the present invention is characterized by polymerizing polylactic acid (Poly Lactic Acid) into a molecule having a double bond and modifying it.
  • Poly Lactic Acid Poly Lactic Acid
  • the polymerization reaction is characterized in that the reaction is carried out dry.
  • the polylactic acid reforming method according to the present invention is characterized by further adding an initiator during the polymerization and reacting it.
  • the initiator is 2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisotropyronitrile, 2,2-azodi (2-methylbutylonitrile), 1,1- Azobis (cyanacyclohexane), dimethyl-2,2- azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis ( Tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoylperoxide, bis (tert Butyl peroxy isopropyl) benzene, butyl 4, 4-bis (tertbutyl peroxy) valerate, 1, 1-bis (tertbutyl peroxy) 3, 3, 5- trimethylchlorohexane, tert butyl peroxy benzoate , Lauryl peroxide, di
  • biodegradable foam composition according to the present invention is characterized by comprising the above-mentioned modified polylactic acid and a mixed base and constituted by their foam polymerization.
  • the mixed base material is characterized by consisting of at least one of ethylene vinyl acetate copolymer, styrene isoprene styrene copolymer or ethylene methacrylate copolymer.
  • the polymerization is characterized in that it further comprises a cross-linking initiator and a blowing agent.
  • the crosslinking agent is 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutylperoxybenzoate, lauryl peroxide, dicumyl peroxide, characterized in that it is composed of one or more.
  • the blowing agent is characterized by comprising at least one of an azodicarbonamide-based blowing agent or a dinitrosopentamethylenetetraamine-based blowing agent.
  • the foam for shoes according to the present invention is characterized by including the biodegradable foam composition described above.
  • a polylactic acid modifier a polylactic acid modifier production method, a polylactic acid modification method using the same, a biodegradable foam composition using the modified polylactic acid, and a shoe foam using the biodegradable foam composition have the following effects.
  • Figure 2 shows the mechanism by which a preferred embodiment of the modifier of polylactic acid according to the present invention is synthesized.
  • Figure 3 is a view showing the modification of the polylactic acid according to the present invention
  • FIG. 4 is a view showing a nuclear magnetic resonance spectrometer measurement results of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 20 )
  • Figure 4 is a view showing the infrared spectroscopy (FT-IR) measurement results of the composition blended polyethylene glycol acrylate to the polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) of Comparative Example 3 Simple blend, (c) modified polylactic acid of Example 20)
  • FT-IR infrared spectroscopy
  • FIG. 6 is a view showing a solvent extraction result of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 19, (c ) Simple blend of Comparative Example 4, (d) modified polylactic acid of Example 20, (e) simple blend of Comparative Example 3)
  • FIG. 7 is a view showing the differential scanning calorimetry (DSC Thermogram) measurement results of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) Example 19 Modified polylactic acid, (c) modified polylactic acid of Example 20, (d) modified polylactic acid of Example 21, (e) modified polylactic acid of Example 22)
  • DSC Thermogram differential scanning calorimetry
  • FIG. 8 is a view showing the results of measurement of biodegradability of a composition blended polyethylene glycol acrylate to polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 19, ( c) modified polylactic acid of Example 20, (d) modified polylactic acid of Example 21, (e) modified polylactic acid of Example 22)
  • FIG. 9 is a view showing a molecule of another embodiment for modifying the polylactic acid according to the present invention.
  • the constitution of the polylactic acid reforming method according to the present invention is characterized in that the polylactic acid (Poly Lactic Acid) is modified using polyethylene glycol maleate (Poly Ethylene Glycol Maleate).
  • polylactic acid is a polyester synthesized by polycondensation of lactic acid or ring-opening polymerization of lactide, and the intermediate of polyamide and polyethylene terephthalate (PET). It has physical properties and is mainly composed of natural vegetable sugar components obtained from potatoes and corn, which have high biodegradability but generally have high hardness, low elasticity, and poor durability.
  • the polymer can be synthesized in the form of poly-L-lactic acid, poly-D-lactic acid and poly-DL-lactic acid, depending on the steric structure of the monomer used in the synthesis.
  • poly-L-lactic acid (PLLA) synthesized using pure L-lactic acid or L-lactide is called crystalline polylactic acid because of its crystallinity, and mixed with D-lactic acid or D-lactide
  • PDLA amorphous polylactic acid
  • the initiator thermally decomposes to form a radical, and the radical forms hydrogen of the carbon to which the methyl group of the polylactic acid is bonded. It is taken away to form radicals on the polylactic acid chain.
  • a radical polymerization reaction by polyethylene glycol maleate occurs in the radical on the polylactic acid to produce a modified polylactic acid in which branched chains formed by monomers are formed on the polylactic acid chain.
  • the polylactic acid is due to the branches of the polyethylene glycol maleate, as shown in Figure 1, the tensile strength is lowered, the elastic modulus is lowered, the elongation is increased.
  • the polyethylene glycol maleate may be any material as long as it has a maleate group and can cause grafting coplolymerization to the polylactic acid.
  • any material may be applied as long as the material has the following formula (1).
  • R 1 and R 2 are composed of one of the following Chemical Formulas 2 to 7)
  • R 3 is hydrogen or methyl group
  • R 4 is hydrogen or alkyl group of C 1 to C 8
  • n is 1 to 20
  • R 5 is hydrogen or an alkyl group of C 1 to C 8 , n is 1 to 20)
  • R 6 is hydrogen or an alkyl group of C 1 to C 8 , l + m + n is 3 to 20)
  • R 7 and R 8 are hydrogen or an alkyl group having 1 to C 8 , and l + m + n is 3 to 20.
  • R 9 and R 10 are hydrogen or a methyl group
  • R 11 is hydrogen or an alkyl group of C 1 to C 8
  • m + n is 2 to 20
  • R 12 and R 13 are hydrogen or a methyl group
  • R 14 is hydrogen or an alkyl group having 1 to 8 , 1 + m is 2 to 20, n is 1 to 5)
  • an initiator may be further added and reacted during the polymerization.
  • the mechanism for synthesizing polyethylene glycol maleate, the modifier of the present invention is as shown in FIG. Any one of polyethylene glycol monool, polyethylene glycol diol, and polyethylene glycol triol may be mixed with maleic anhydride and then heated to esterify to produce a modifier of Chemical Formula 1, which is the modifier of the present invention.
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 98 g of maleic anhydride and 124 g of ethylene glycol are added to the flask, followed by stirring while passing nitrogen gas at a flow rate of 100 ml / min.
  • the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed.
  • MEGMA Ethylene glycol maleate
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 49 g of maleic anhydride and 150 g of triethylene glycol were added to the flask, and the mixture was stirred while passing nitrogen gas at a flow rate of 100 ml / min, and gradually heated. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed.
  • Triethylene glycol maleate (TEGMA) was obtained after completion of the reaction.
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 24.5 g of maleic anhydride and 200 g of polyethylene glycol (molecular weight 400) were added to the flask, and the mixture was stirred while passing nitrogen gas at a flow rate of 100 ml / min, and gradually heated. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. After the reaction was completed, polyethylene glycol maleate (PEG400MA) was obtained.
  • PEG400MA polyethylene glycol maleate
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 12.25 g of maleic anhydride and 250 g of polyethylene glycol (molecular weight 1000) are added to the flask, and the mixture is stirred while passing nitrogen gas at a flow rate of 100 ml / min and gradually heating. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. After the reaction was completed, polyethylene glycol maleate (PEG1000MA) was obtained.
  • PEG1000MA polyethylene glycol maleate
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 49 g of maleic anhydride and 192 g of tripropylene glycol were added to the flask, followed by stirring while passing nitrogen gas at a flow rate of 100 ml / min.
  • the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed.
  • Tripropylene glycol maleate (TPGMA) was obtained after completion
  • a 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction.
  • 24.5 g of maleic anhydride and 200 g of polyethylene glycol monomethyl ether (molecular weight 400) are added to the flask, and the mixture is heated while stirring while flowing nitrogen gas at a flow rate of 100 ml / min.
  • the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed.
  • Polyethylene glycol monomethyl ether maleate (MPEG400MA) was obtained after completion
  • PLA polylactic acid
  • a kneader which is a compound kneader
  • EGMA ethylene glycol maleate
  • DCP dicumyl peroxide
  • PLA polylactic acid
  • a kneader which is a compound kneader
  • TEGMA triethylene glycol maleate
  • DCP dicumyl peroxide
  • PVA polylactic acid
  • PEG400MA polyethylene glycol maleate
  • DCP dicumyl peroxide
  • PVA polylactic acid
  • PEG1000MA polyethylene glycol maleate
  • DCP dicumyl peroxide
  • PLA polylactic acid
  • TPGMA tripropylene glycol maleate
  • DCP dicumylperoxide
  • PLA polylactic acid
  • MPEG400MA polyethylene glycol monomethyl ether maleate
  • DCP dicumylperoxide
  • the biodegradable foam compositions may comprise polylactic acid (PLA), modified polylactic acid (PLEA), mixed substrates, crosslinking initiators and blowing agents.
  • the modified polylactic acid may be modified crystalline polylactic acid (PLLEA) or modified amorphous polylactic acid (PDLEA).
  • PLEA modified crystalline polylactic acid
  • PLEA modified amorphous polylactic acid
  • the mixed base may be an ethylene vinyl acetate copolymer (EVA, Ethylene-Vinyl Acetate copolymer), styrene isoprene styrene copolymer (SIS, Styrene-Isoprene Styrene copolymer) or ethylene methacrylate copolymer (EMA, Ethylene-Methacrylate copolymer) It may be used, which is a resin that is widely used as a foam because of excellent compressive strain, impact absorption, mechanical strength and the like.
  • EVA Ethylene-Vinyl Acetate copolymer
  • SIS Styrene-Isoprene Styrene copolymer
  • EMA Ethylene-Methacrylate copolymer
  • the crosslinking initiator may be an organic peroxide crosslinking initiator.
  • organic peroxide crosslinking initiator for example, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutyl peroxybenzoate, lauryl peroxide, dicumyl peroxide can be used.
  • the blowing agent may be used alone or in combination with an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  • an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  • Kumyang Chemical's JTR series may be used.
  • Example 14 Example 15
  • Example 16 Example 17
  • Example 18 Comparative Example 1 PLA 1) 30 PL-EGMA 2) 30 PL-TEGMA 3) 30 PL-PEG400MA 4) 30 PL-PEG1000MA 5) 30 PL-TPGMA 6) 30 PL-MPEG400MA 7) 30 EVA 8) 70 70 70 70 70 DCP 9) 0.7 0.7 0.7 0.7 0.7 0.7 JTR 10) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
  • Comparative Example 1 30 parts by weight of polylactic acid (PLA) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PVA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 13 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-EGMA) modified by Example 7 and 70 parts by weight of ethylene vinyl acetate (EVA) compound was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-EGMA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 14 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-TEGMA) modified by Example 8, 70 parts by weight of ethylene vinyl acetate (EVA) compound was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-TEGMA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 15 kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-PEG400MA), 70 parts by weight of ethylene vinyl acetate (EVA) modified by Example 9 was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-PEG400MA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 16 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-PEG1000MA) modified by Example 10, 70 parts by weight of ethylene vinyl acetate (EVA) compound was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-PEG1000MA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 17 was kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-TPGMA) modified by Example 11, 70 parts by weight of ethylene vinyl acetate (EVA) compound was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-TPGMA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 18 kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-MPEG400MA), 70 parts by weight of ethylene vinyl acetate (EVA) modified by Example 11 compound was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PL-MPEG400MA polylactic acid
  • EVA ethylene vinyl acetate
  • Example 14 Example 15
  • Example 16 Example 17
  • Example 18 Comparative Example 1 importance (g / cm -3 ) 0.21 0.22 0.22 0.23 0.22 0.22 0.21
  • the tensile strength (kg / cm 2 ) 25 26 27 30 25 26 18
  • Elongation % 415 420 427 390
  • 410 420
  • Tear strength (kg / cm) 14.7 15.3 15.6 15.7 14.9 15.2 9.3 Hardness Type D 52
  • 56 61 51 54
  • Examples 13 to 18 have a higher tensile strength, a higher elongation, and a larger elastic force. That is, the modified polylactic acid (PL-EGMA, PL-TEGMA, PL-PEG400MA, PL-PEG1000MA, PL-TPGMA, PL-MPEG400MA) shows soft physical properties, so it can be used as a foam material because of its excellent durability and flexibility. It can be seen that it is modified.
  • a plasticizer may be further added during the preparation of the biodegradable foam composition.
  • the plasticizer is a hydroxycarboxylic acid ester-based plasticizer, which may be used alone in tributyl o-acetylcitrate, triethyl oacetylcitrate, and tributyl citrate. Or in combination.
  • the constitution of the polylactic acid reforming method according to another embodiment of the present invention is to modify the polylactic acid by polymerizing it with a molecule having a double bond.
  • polylactic acid is a polyester synthesized by polycondensation of lactic acid or ring-opening polymerization of lactide, and the intermediate of polyamide and polyethylene terephthalate (PET). It has physical properties and is mainly composed of natural vegetable sugar components obtained from potatoes and corn, which have high biodegradability but generally have high hardness, low elasticity, and poor durability.
  • the polymer can be synthesized in the form of poly-L-lactic acid, poly-D-lactic acid and poly-DL-lactic acid, depending on the steric structure of the monomer used in the synthesis.
  • poly-L-lactic acid (PLLA) synthesized using pure L-lactic acid or L-lactide is called crystalline polylactic acid because of its crystallinity, and mixed with D-lactic acid or D-lactide
  • PDLA amorphous polylactic acid
  • the initiator is pyrolyzed to form a radical, and the radical is formed of a carbon to which a methyl group of the polylactic acid is bonded.
  • the hydrogen is taken away to form radicals on the polylactic acid chain.
  • a radical polymerization reaction by a monomer having a double bond in the radical on the polylactic acid may occur to produce a modified polylactic acid in which branched chains formed by monomers are formed on the polylactic acid chain.
  • the polymerization reaction is carried out dry because no other solvent is used during the reaction.
  • the polylactic acids Due to the branches of the double bond molecule, the polylactic acids have a lower tensile strength, a lower elastic modulus, and a higher elongation as shown in FIG. 6.
  • the molecules having the double bond may be applied to any material that can cause grafting coplolymerization to the polylactic acid.
  • an initiator may be further added and reacted during the polymerization.
  • Example 21 Example 22
  • Example 23 PLLA 1) 100 80 90 90 80 70 60 PDLA 2) 80 PEGA 3) 20 10 10 20 30 40 20 DCP 4) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
  • Comparative Example 2 was prepared by 0.1 to 2mm sheet by hot pressing at 180 °C 100 parts by weight of pure crystalline polylactic acid (PLLA, Natureworks, 4032D) using a hot press.
  • PLLA pure crystalline polylactic acid
  • Comparative Example 3 80 parts by weight of crystalline polylactic acid (PLLA) was melted and heated at 180 ° C. in a kneader compound kneader, and then 20 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes to prepare a simple blending compound. Prepared. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PLLA crystalline polylactic acid
  • PEGA polyethylene glycol acrylate
  • Comparative Example 4 90 parts by weight of crystalline polylactic acid (PLLA) was melted by heating to 180 in a compound kneader kneader, and then 10 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes to prepare a simple blending compound. It was. The compound thus prepared was thermally compressed at 180 using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PLLA crystalline polylactic acid
  • PEGA polyethylene glycol acrylate
  • Example 19 90 parts by weight of crystalline polylactic acid (PLLA) was heated and melted at 180 ° C. in a kneader, which is a compound kneader, and 10 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PLLA crystalline polylactic acid
  • PEGA polyethylene glycol acrylate
  • DCP dicumylperoxide
  • Example 20 80 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after adding 20 parts by weight of polyethylene glycol acrylate (PEGA). Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • DCP dicumylperoxide
  • Example 21 70 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after 30 parts by weight of polyethylene glycol acrylate (PEGA) was added. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PLLA crystalline polylactic acid
  • PEGA polyethylene glycol acrylate
  • DCP dicumylperoxide
  • the compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • Example 22 60 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then 40 parts by weight of polyethylene glycol acrylate (PEGA) was kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PLLA crystalline polylactic acid
  • PEGA polyethylene glycol acrylate
  • DCP dicumylperoxide
  • Example 23 80 parts by weight of amorphous polylactic acid (PDLA) was melted by heating to 180 in a compound kneader kneader, and then 40 parts by weight of polyethylene glycol acrylate (PEGA) was kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending for 180 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 using a hot press to prepare a sheet of 0.1 to 2 mm.
  • PDLA amorphous polylactic acid
  • PEGA polyethylene glycol acrylate
  • DCP dicumylperoxide
  • Comparative Examples 2 to 4 and Examples 19 to 23 as described above were subjected to structural analysis, solvent extraction, thermomechanical analysis, tensile property analysis, and biodegradation property analysis, respectively.
  • PLA polylactic acid
  • PEGA polyethylene glycol acrylate
  • NMR nuclear magnetic resonance spectroscopy
  • FTIR Fourier transform infrared spectroscopy
  • Solvent extraction is carried out using polylactic acid (SLA) using soxhlet method using polylactic acid (PLA), modified polylactic acid (PLEA) and polylactic acid (PLA) / polyethylene glycol acrylate (PEGA) simple blend. The amount of acrylate unbound in PLA) was confirmed.
  • Example 19 modified by a reactive blend of polylactic acid (PLA) and polyethylene glycol acrylate (PEGA) (Comparative Example 4, comparison) Compared with Example 3), the modification was effectively performed because the amount of the solvent dissolved and extracted by the solvent was very small.
  • PLA polylactic acid
  • PEGA polyethylene glycol acrylate
  • DSC differential scanning calorimetry
  • the glass transition temperature is falling as more polyethylene glycol acrylate (PEGA) is added, and in the case of modified polylactic acid (PLEA) as compared to pure polylactic acid (PLA), the glass transition phenomenon is clear. It is not clearly distinguished and appears in a wide range. This result shows that the acrylate grafted to polylactic acid (PLA) weakens the rigidity of the polylactic acid (PLA) chain so that the modified polylactic acid has soft physical properties at room temperature.
  • PEGA polyethylene glycol acrylate
  • PDA modified polylactic acid
  • PLA polylactic acid
  • Tensile properties were analyzed by using a universal testing machine (UTM) to measure the tensile strength, modulus and elongation of the modified polylactic acid.
  • UPM universal testing machine
  • Example 19 Example 20
  • Example 21 Example 22
  • Example 23 The tensile strength MPa 51 49 37 28 14 35 Modulus of elasticity MPa 1290 1070 880 690 440 760 Elongation % 4.6 6.1 9.5 10.8 17.8 11.3
  • the modified polylactic acid shows a small tensile strength and elastic modulus, and it can be seen that the elongation is increased, and this tendency increases as the amount of added polyethylene glycol acrylate is increased. It can be seen that the increase. From this result, it can be seen that the modified polylactic acid shows soft and flexible physical properties compared to pure polylactic acid.
  • Biodegradation characterization was performed by measuring modified polylactic acid (PLEA) having a thickness of 0.1 mm and a size of 2 * 2 cm in a NaHCO 3 / NaOH buffer solution having a pH of 10.7 to measure the degradation rate in the aqueous base solution.
  • PPA modified polylactic acid
  • the biodegradable foam compositions may comprise polylactic acid (PLA), modified polylactic acid (PLEA), mixed substrates, crosslinking initiators and blowing agents.
  • the modified polylactic acid may be modified crystalline polylactic acid (PLLEA) or modified amorphous polylactic acid (PDLEA).
  • PLEA modified crystalline polylactic acid
  • PLEA modified amorphous polylactic acid
  • the mixed base may be an ethylene vinyl acetate copolymer (EVA, Ethylene-Vinyl Acetate copolymer), styrene isoprene styrene copolymer (SIS, Styrene-Isoprene Styrene copolymer) or ethylene methacrylate copolymer (EMA, Ethylene-Methacrylate copolymer) It may be used, which is a resin that is widely used as a foam because of excellent compressive strain, impact absorption, mechanical strength and the like.
  • EVA Ethylene-Vinyl Acetate copolymer
  • SIS Styrene-Isoprene Styrene copolymer
  • EMA Ethylene-Methacrylate copolymer
  • the crosslinking initiator may be an organic peroxide crosslinking initiator.
  • organic peroxide crosslinking initiator for example, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutyl peroxybenzoate, lauryl peroxide, dicumyl peroxide can be used.
  • the blowing agent may be used alone or in combination with an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  • an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  • Kumyang Chemical's JTR series may be used.
  • Example 29 PLLA 1) 30 PLLEA20 2) 10 20 30 50 70 PDLEA20 3) 30 EVA 4) 70 90 80 70 50 30 70 Crosslinking initiator 5) 0.7 0.7 0.7 0.7 0.7 Blowing agent 6) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
  • Comparative Example 5 30 parts by weight of crystalline polylactic acid (PLLA) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLLA crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 24 10 parts by weight of modified crystalline polylactic acid (PLLEA20) and 90 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 25 20 parts by weight of modified crystalline polylactic acid (PLLEA20) and 80 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 26 30 parts by weight of modified crystalline polylactic acid (PLLEA20) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 27 50 parts by weight of modified crystalline polylactic acid (PLLEA20) and 50 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 28 70 parts by weight of modified crystalline polylactic acid (PLLEA20) and 30 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 29 30 parts by weight of modified amorphous polylactic acid (PDLEA20) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLEA20 modified amorphous polylactic acid
  • EVA ethylene vinyl acetate
  • Examples 24 to 29 can be seen that the tensile strength is high, the elongation is increased, the elastic force is also large. That is, since the modified polylactic acid shows soft physical properties, it can be seen that it is modified to be used as a foam material because of its excellent durability and flexibility.
  • Example 31 Example 32 PLVA20 1) 30 PLEM20 2) 30 PLVU2 03) 30 EVA 4) 70 70 70 Crosslinking initiator 5) 0.7 0.7 0.7 Blowing agent 6) 4.5 4.5 4.5 4.5
  • it may comprise a modified polylactic acid (PLVA, PLEM, PLAU), mixed base, crosslinking initiator and blowing agent.
  • PLVA polylactic acid
  • PLEM PLEM
  • PLAU polylactic acid
  • composition of the polylactic acid reforming method according to the present invention is modified by polymerizing polylactic acid (Poly Lactic Acid) with vinyl acetate, polyvinyl glycol maleate or allyl polyurethane. It is.
  • the polylactic acid was prepared in the same manner as in Example 20 except that vinyl acetate, polyethylene glycol maleate or allyl polyurethane was used instead of the polyethylene glycol acrylate used in Example 2.
  • Example 30 parts by weight of crystalline polylactic acid (PLVA20) modified with vinyl acetate and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees using a kneader, which is a compound kneader, to prepare a compound. .
  • a kneader which is a compound kneader
  • blowing agent 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • Example 31 30 parts by weight of crystalline polylactic acid (PLEM20) modified with polyethylene glycol maleate and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees using a kneader, which is a compound kneader, for 5 minutes. Prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLM20 crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 32 30 parts by weight of crystalline polylactic acid (PLAU20) modified with allyl polyurethane and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. It was. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
  • PLAU20 crystalline polylactic acid
  • EVA ethylene vinyl acetate
  • Example 12 Example 13, and Example 14, which are different from each other, will be described in detail.
  • Example 32 importance g / cm 3 0.22 0.20 0.20 The tensile strength kg / cm 2 26 22 23 Elongation % 420 460 450 Tear strength kg / cm 15.3 13.2 13.6 Elasticity % 39 35 38
  • Examples 30 to 32 can be seen that the tensile strength is high, the elongation is increased, the elastic force is also large. That is, since the modified polylactic acid (PLVA20, PLEM20, PLAU20) shows a soft physical properties, it can be seen that it is modified to be used as a foam material with excellent durability and flexibility.
  • PLVA20, PLEM20, PLAU20 shows a soft physical properties, it can be seen that it is modified to be used as a foam material with excellent durability and flexibility.
  • a plasticizer may be further added during the preparation of the biodegradable foam composition.
  • the plasticizer is a hydroxycarboxylic acid ester-based plasticizer, which may be used alone in tributyl o-acetylcitrate, triethyl oacetylcitrate, and tributyl citrate. Or in combination.
  • a polylactic acid modifier in the present invention, a polylactic acid modifier, a polylactic acid modifier manufacturing method, a polylactic acid reforming method using the same, a biodegradable foam composition using a modified polylactic acid and a shoe foam using a biodegradable foam composition than the use of polylactic acid in tensile strength and It has low elastic modulus, high elongation, soft properties, excellent durability and flexibility, and excellent biodegradability, so it can be used as a foam material for biodegradable shoe midsole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to a method for modifying a poly lactic acid and a biodegradable foam composition using the same. The method for modifying a poly lactic acid is characterized in that the poly lactic acid polymerizes to be modified into a molecule having a double bond, and the biodegradable foam composition is characterized by being produced through mixing and polymerization of the modified poly lactic acid and a mixing substance.

Description

폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체Modifiers of polylactic acid, methods of preparing polylactic acid modifiers, methods of modifying polylactic acid using the same, biodegradable foam compositions using modified polylactic acid, and shoe foams using biodegradable foam compositions
본 발명은 폴리락트산의 개질제에 관한 것으로, 더욱 상세하게는 폴리락트산을 개질하여, 이를 생분해성 발포체로 사용하도록 제조하는 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체에 관한 것이다. The present invention relates to a modifier of polylactic acid, and more particularly, to a polylactic acid modifier to modify polylactic acid and to use it as a biodegradable foam, a method for preparing a polylactic acid modifier, a polylactic acid modifier using the same, and a modified A biodegradable foam composition using polylactic acid and a shoe foam using the biodegradable foam composition.
폴리락트산(PLA, poly(lactic acid), 폴리유산)는 전통적인 석유화학계 고분자를 대체할 수 있는 잠재력이 큰 생분해성 열가소성 폴리에스터로 현재까지 가장 많이 연구되고 있고 또한 용도개발이 활발하게 진행중에 있는 재생 가능한 고분자 소재이다. Polylactic acid (PLA, poly (lactic acid), polylactic acid) is a biodegradable thermoplastic polyester with great potential to replace traditional petrochemical polymers. Possible polymer material.
폴리락트산은 특정 비료화(composting) 조건하에 빠르게 분해되어 이산화탄소를 재생산할 수 있는 특성을 가지고 있어서 대부분의 다른 유기 폴리머에 비해 이들 수지에 대한 보다 처분이 자유로운(disposal) 옵션을 제공할 수 있다. 또한, 폴리락트산은 바이오고분자가 보편적이고 갖고 있는 환경친화성, 생체적합성 및 자원절약성에 덧붙여 폴리에틸렌글리콜, 폴리카프로락톤 등과 같은 바이오고분자에 비해 우수한 열 가공특성을 나타낸다. 따라서, 폴리락트산의 생체적합성 및 생체흡수성을 활용한 수술용 봉합사 및 보철재를 비롯하여 생분해성, 가공성, 투명성을 활용하는 포장재료 등 일반 소비재료로 용도가 확대되고 있다. 이들 포장 분야에는 ' 클램쉘(clamshell) ' 용기, 조제식품 및 다른 음식 제공 트레이 및 병 또는 기타 용기와 같은 다양한 경식(rigid) 또는 반-경식 물품을 포함한다. Polylactic acid has the property of rapidly degrading and reproducing carbon dioxide under certain composting conditions, thus providing a more disposal option for these resins than most other organic polymers. In addition, polylactic acid exhibits superior thermal processing properties in comparison to biopolymers such as polyethylene glycol and polycaprolactone in addition to the eco-friendliness, biocompatibility, and resource savings of biopolymers. Therefore, the use has been expanded to general consumption materials such as surgical sutures and prosthetics utilizing biocompatibility and bioabsorbability of polylactic acid, as well as packaging materials utilizing biodegradability, processability and transparency. These packaging sectors include various rigid or semi-rigid articles such as 'clamshell' containers, prepared foods and other food serving trays and bottles or other containers.
그러나, 상술한 바와 같은 종래 기술에서는 다음과 같은 문제점이 있다. However, the above-described prior art has the following problems.
폴리락트산 소재의 경우 잘 깨지는 점, 분해속도가 느린 점, 소수성인 점 등의 문제점을 가지고 있다. 특히 폴리락트산은 인장강도와 탄성률이 높고 신장률이 낮아 내충격성이 나쁘기 때문에 다양한 포장재 재료나 탄성재료로의 응용에 장애요인이 되고 있다. 또한 느린 생분해 특성은 의료용 소재는 물론 다양한 일반 소비재로의 응용에 문제점을 가지고 있다. 따라서 내충격성 향상은 물론 분해속도 향상을 위한 다양한 시도들이 이루어지고 있다. Polylactic acid material has problems such as cracking point, slow decomposition rate, and hydrophobic point. In particular, polylactic acid has high tensile strength, elastic modulus, and low elongation, and thus has poor impact resistance, thereby making it an obstacle to application to various packaging materials and elastic materials. In addition, the slow biodegradation characteristics have a problem in the application to various general consumer goods as well as medical materials. Therefore, various attempts have been made to improve the impact resistance as well as the decomposition rate.
상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 유연성 및 생분해성이 개선되고 다양한 조건에서 사용할 수 있는 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체를 제공하는 것이다. In order to solve the above problems, an object of the present invention is to improve the flexibility and biodegradability and can be used under various conditions, polylactic acid modifier, polylactic acid modifier manufacturing method, polylactic acid modified method using the same, modified polylactic acid The present invention provides a biodegradable foam composition and a shoe foam using the biodegradable foam composition.
본 발명에 의한 폴리락트산의 개질제는, 폴리락트산(Poly Lactic Acid)에 개질제를 사용하여 폴리락트산을 개질함에 있어서, 하기 화학식 1의 화합물로 구성되는 것을 특징으로 한다. The modifier of polylactic acid according to the present invention is characterized in that it is composed of a compound of the following formula (1) in modifying polylactic acid using a modifier to polylactic acid (Poly Lactic Acid).
[ 화학식 1 ] [ Formula 1]
Figure PCTKR2014002138-appb-I000001
Figure PCTKR2014002138-appb-I000001
(R1과 R2는 다음의 화학식 2 내지 화학식 7 중 하나로 구성된다)(R 1 and R 2 are composed of one of the following Chemical Formulas 2 to 7)
[ 화학식 2 ][Formula 2]
Figure PCTKR2014002138-appb-I000002
Figure PCTKR2014002138-appb-I000002
(화학식 2에서 R3는 수소 또는 메틸기이고, R4는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 2, R 3 is hydrogen or methyl group, R 4 is hydrogen or alkyl group of C 1 to C 8 , n is 1 to 20)
[ 화학식 3 ][Formula 3]
Figure PCTKR2014002138-appb-I000003
Figure PCTKR2014002138-appb-I000003
(화학식 3에서 R5는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 3, R 5 is hydrogen or an alkyl group of C 1 to C 8 , n is 1 to 20)
[ 화학식 4 ][Formula 4]
Figure PCTKR2014002138-appb-I000004
Figure PCTKR2014002138-appb-I000004
(화학식 4에서 R6은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 4, R 6 is hydrogen or an alkyl group of C 1 to C 8 , l + m + n is 3 to 20)
[ 화학식 5 ][Formula 5]
Figure PCTKR2014002138-appb-I000005
Figure PCTKR2014002138-appb-I000005
(화학식 5에서 R7과 R8은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 5, R 7 and R 8 are hydrogen or an alkyl group having 1 to C 8 , and l + m + n is 3 to 20.)
[ 화학식 6 ][Formula 6]
Figure PCTKR2014002138-appb-I000006
Figure PCTKR2014002138-appb-I000006
(화학식 6에서 R9와 R10은 수소 또는 메틸기이고, R11은 수소 또는 C1 내지 C8인 알킬기이고, m+n은 2 내지 20이다)(In Formula 6, R 9 and R 10 are hydrogen or a methyl group, R 11 is hydrogen or an alkyl group of C 1 to C 8 , m + n is 2 to 20)
[ 화학식 7 ][Formula 7]
Figure PCTKR2014002138-appb-I000007
Figure PCTKR2014002138-appb-I000007
(화학식 7에서 R12와 R13은 수소 또는 메틸기이고, R14은 수소 또는 C1 내지 C8인 알킬기이고, 1+m은 2 내지 20이고, n은 1 내지 5이다)(In formula 7, R 12 and R 13 are hydrogen or a methyl group, R 14 is hydrogen or an alkyl group having 1 to 8 , 1 + m is 2 to 20, n is 1 to 5)
본 발명에 의한 폴리락트산의 개질제 제조방법은, 폴리락트산(Poly Lactic Acid)에 개질제를 사용하여 폴리락트산을 개질함에 있어서, 폴리에틸렌글리콜모노올, 폴리에틸렌글리콜디올, 폴리에틸렌글리콜트리올 중 어느 하나와 무수말레산이 에스테르화 반응에 의해 형성되는 것을 특징으로 한다. In the method for producing a polylactic acid modifier according to the present invention, in modifying polylactic acid by using a modifier to polylactic acid, any one of polyethylene glycol monool, polyethylene glycol diol, polyethylene glycol triol and male anhydride The acid is formed by the esterification reaction.
본 발명에 의한 폴리락트산이 개질방법은, 폴리락트산을 상술한 개질제를 이용하여 개질하는 것을 특징으로 하는 폴리락트산의 개질방법.The method for modifying polylactic acid according to the present invention is a method for modifying polylactic acid, wherein the polylactic acid is modified using the above-described modifier.
그리고, 본 발명에 의한 폴리락트산 개질방법은, 중합시 개시제를 더 투입하여 반응시키는 것을 특징으로 한다. In addition, the polylactic acid reforming method according to the present invention is characterized by further adding an initiator during the polymerization to react.
또한, 상기 개시제는, 2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2- 아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 사용되는 것을 특징으로 한다. In addition, the initiator, 2,2 azobis (2,4-dimethylvaleronitrile), 2,2- azobisisobutyronitrile, 2,2- azodi (2-methylbutylonitrile), 1, 1-azobis (cyanacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5- Bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoylperoxide, bis (Tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, tertbutylperoxy It is characterized by being used as one or more of benzoate, lauryl peroxide, dicumyl peroxide.
본 발명에 의한 생분해성 발포체 조성물은, 상술한 개질된 폴리락트산과, 혼합기재를 포함하고, 이들의 발포 중합에 의해 구성되는 것을 특징으로 한다. The biodegradable foam composition according to the present invention is characterized by comprising the above-described modified polylactic acid and a mixed base and constituted by their foam polymerization.
상기 혼합기재는, 에틸렌비닐아세테이트 공중합체, 스티렌이소프렌스티렌 공중합체 또는 에틸렌메타크릴레이트 공중합체 중 하나 이상으로 이루어지는 것을 특징으로 한다. The mixed base material is characterized by consisting of at least one of ethylene vinyl acetate copolymer, styrene isoprene styrene copolymer or ethylene methacrylate copolymer.
상기 중합시 가교개시제 및 발포제를 더 포함하여 구성되는 것을 특징으로 한다. The polymerization is characterized in that it further comprises a cross-linking initiator and a blowing agent.
상기 가교개시제는, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 구성되는 것을 특징으로 한다. The crosslinking initiator is 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl -Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5 Trimethylchlorohexane, tertbutylperoxybenzoate, lauryl peroxide and dicumyl peroxide.
상기 발포제는, 아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제 중 하나 이상으로 구성되는 것을 특징으로 한다. The blowing agent is characterized by comprising at least one of an azodicarbonamide-based blowing agent or a dinitrosopentamethylenetetraamine-based blowing agent.
그리고, 본 발명에 의한 신발용 발포체는, 상술한 생분해성 발포체 조성물을 포함하여 구성되는 것을 특징으로 한다. The shoe foam according to the present invention is characterized by comprising the biodegradable foam composition described above.
본 발명에 의한 폴리락트산의 개질방법의 다른 실시예는, 폴리락트산(Poly Lactic Acid)를 이중결합을 가지는 분자로 중합하여 개질하는 것을 특징으로 한다. Another embodiment of the method for modifying polylactic acid according to the present invention is characterized by polymerizing polylactic acid (Poly Lactic Acid) into a molecule having a double bond and modifying it.
상기 이중결합을 가지는 분자는, 아크릴레이트 (Acrylate, CH2=CH-CO-), 메타크릴레이트 (Methacrylate, CH2=C(CH3)-CO-), 비닐(Vinyl, CH2=CH- 또는 -CH=CH-), 말리에이트 (Maleate, -CO-CH=CH-CO-), 스티렌 (styrene, CH2=CH(C6H5)), 알릴 (Allyl, CH2=CH-O-) 중 하나 이상이 포함되어 있는 분자인 것을 특징으로 한다. The molecule having the double bond is an acrylate (CH 2 = CH-CO-), methacrylate (Methacrylate, CH 2 = C (CH 3 ) -CO-), vinyl (Vinyl, CH 2 = CH- Or -CH = CH-), maleate (Maleate, -CO-CH = CH-CO-), styrene (styrene, CH 2 = CH (C 6 H 5 )), allyl (Allyl, CH 2 = CH-O It is characterized in that the molecule containing at least one of-).
상기 중합반응은, 건식으로 반응이 이루어지는 것을 특징으로 한다. The polymerization reaction is characterized in that the reaction is carried out dry.
그리고, 본 발명에 의한 폴리락트산의 개질방법은, 중합시 개시제를 더 투입하여 반응시키는 것을 특징으로 한다. The polylactic acid reforming method according to the present invention is characterized by further adding an initiator during the polymerization and reacting it.
상기 개시제는, 2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2- 아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 사용되는 것을 특징으로 한다. The initiator is 2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisotropyronitrile, 2,2-azodi (2-methylbutylonitrile), 1,1- Azobis (cyanacyclohexane), dimethyl-2,2- azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis ( Tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoylperoxide, bis (tert Butyl peroxy isopropyl) benzene, butyl 4, 4-bis (tertbutyl peroxy) valerate, 1, 1-bis (tertbutyl peroxy) 3, 3, 5- trimethylchlorohexane, tert butyl peroxy benzoate , Lauryl peroxide, dicumyl peroxide, characterized in that used as one or more.
그리고, 본 발명에 의한 생분해성 발포체 조성물은, 상술한 개질된 폴리락트산과, 혼합기재를 포함하고, 이들의 발포 중합에 의해 구성되는 것을 특징으로 한다. In addition, the biodegradable foam composition according to the present invention is characterized by comprising the above-mentioned modified polylactic acid and a mixed base and constituted by their foam polymerization.
상기 혼합기재는, 에틸렌비닐아세테이트 공중합체, 스티렌이소프렌스티렌 공중합체 또는 에틸렌메타크릴레이트 공중합체 중 하나 이상으로 이루어지는 것을 특징으로 한다. The mixed base material is characterized by consisting of at least one of ethylene vinyl acetate copolymer, styrene isoprene styrene copolymer or ethylene methacrylate copolymer.
상기 중합시 가교개시제 및 발포제를 더 포함하여 구성되는 것을 특징으로 한다. The polymerization is characterized in that it further comprises a cross-linking initiator and a blowing agent.
상기 가교제는, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 구성되는 것을 특징으로 한다. The crosslinking agent is 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutylperoxybenzoate, lauryl peroxide, dicumyl peroxide, characterized in that it is composed of one or more.
상기 발포제는, 아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제 중 하나 이상으로 구성되는 것을 특징으로 한다.The blowing agent is characterized by comprising at least one of an azodicarbonamide-based blowing agent or a dinitrosopentamethylenetetraamine-based blowing agent.
그리고, 본 발명에 의한 신발용 발포체는 상술한 생분해성 발포체 조성물을 포함하여 구성되는 것을 특징으로 한다. In addition, the foam for shoes according to the present invention is characterized by including the biodegradable foam composition described above.
본 발명인 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체에서는 다음과 같은 효과가 있다. In the present invention, a polylactic acid modifier, a polylactic acid modifier production method, a polylactic acid modification method using the same, a biodegradable foam composition using the modified polylactic acid, and a shoe foam using the biodegradable foam composition have the following effects.
폴리락트산을 사용할 때 보다 인장강도 및 탄성률은 낮아지고, 신장률은 높아져 부드러운 물성을 보이며, 내구성과 유연성이 우수하고 생분해특성이 우수하여 생분해성 신발 중창용 발포재료로서 사용이 가능하다. When polylactic acid is used, tensile strength and elastic modulus are lower, elongation is higher, soft physical properties are shown, and durability and flexibility are excellent, and biodegradation properties are excellent, so it can be used as foam material for biodegradable shoe midsole.
도 1은 본 발명에 의한 폴리락트산의 개질과정을 보이는 도면1 is a view showing the modification of the polylactic acid according to the present invention
도 2는 본 발명에 의한 폴리락트산의 개질제의 바람직한 실시예가 합성되는 메커니즘을 보인 도면Figure 2 shows the mechanism by which a preferred embodiment of the modifier of polylactic acid according to the present invention is synthesized.
도 3은 본 발명에 의한 폴리락트산의 개질과정을 보이는 도면Figure 3 is a view showing the modification of the polylactic acid according to the present invention
도 4는 본 발명에 의한 폴리락트산에 폴리에틸렌글리콜아크릴레이트를 블랜드한 조성물의 핵자기 공명 분광계 측정 결과를 보인 도면((a) 비교예 2의 순수 폴리락트산, (b) 실시예 20의 개질 폴리락트산)4 is a view showing a nuclear magnetic resonance spectrometer measurement results of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 20 )
도 4는 본 발명에 의한 폴리락트산에 폴리에틸렌글리콜아크릴레이트를 블랜드한 조성물의 적외선 분광기(FT-IR) 측정 결과를 보인 도면((a) 비교예 2의 순수 폴리락트산, (b) 비교예 3의 단순 블랜드, (c) 실시예 20의 개질 폴리락트산)Figure 4 is a view showing the infrared spectroscopy (FT-IR) measurement results of the composition blended polyethylene glycol acrylate to the polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) of Comparative Example 3 Simple blend, (c) modified polylactic acid of Example 20)
도 6은 본 발명에 의한 폴리락트산에 폴리에틸렌글리콜아크릴레이트를 블랜드한 조성물의 솔벤트 추출결과를 보인 도면((a) 비교예 2의 순수 폴리락트산, (b) 실시예 19의 개질 폴리락트산, (c) 비교예 4의 단순 블랜드, (d) 실시예 20의 개질 폴리락트산, (e) 비교예 3의 단순 블랜드)6 is a view showing a solvent extraction result of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 19, (c ) Simple blend of Comparative Example 4, (d) modified polylactic acid of Example 20, (e) simple blend of Comparative Example 3)
도 7은 본 발명에 의한 폴리락트산에 폴리에틸렌글리콜아크릴레이트를 블랜드한 조성물의 시차주사열량계(DSC Thermogram) 측정 결과를 보인 도면((a) 비교예 2의 순수 폴리락트산, (b) 실시예 19의 개질 폴리락트산, (c) 실시예 20의 개질 폴리락트산, (d) 실시예 21의 개질 폴리락트산, (e) 실시예 22의 개질 폴리락트산)7 is a view showing the differential scanning calorimetry (DSC Thermogram) measurement results of a composition in which polyethylene glycol acrylate is blended with polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) Example 19 Modified polylactic acid, (c) modified polylactic acid of Example 20, (d) modified polylactic acid of Example 21, (e) modified polylactic acid of Example 22)
도 8은 본 발명에 의한 폴리락트산에 폴리에틸렌글리콜아크릴레이트를 블랜드한 조성물의 생분해성 측정 결과를 보인 도면((a) 비교예 2의 순수 폴리락트산, (b) 실시예 19의 개질 폴리락트산, (c) 실시예 20의 개질 폴리락트산, (d) 실시예 21의 개질 폴리락트산, (e) 실시예 22의 개질 폴리락트산)8 is a view showing the results of measurement of biodegradability of a composition blended polyethylene glycol acrylate to polylactic acid according to the present invention ((a) pure polylactic acid of Comparative Example 2, (b) modified polylactic acid of Example 19, ( c) modified polylactic acid of Example 20, (d) modified polylactic acid of Example 21, (e) modified polylactic acid of Example 22)
도 9는 본 발명에 의한 폴리락트산의 개질을 위한 다른 실시예의 분자를 보인 도면9 is a view showing a molecule of another embodiment for modifying the polylactic acid according to the present invention
이하, 본 발명에 의한 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체의 바람직한 실시예가 첨부된 도면을 참고하여 상세하게 설명한다. Hereinafter, preferred embodiments of the polylactic acid modifier, polylactic acid modifier manufacturing method, polylactic acid reforming method using the same, biodegradable foam composition using the modified polylactic acid and shoe foam using the biodegradable foam composition is attached. It will be described in detail with reference to the drawings.
본 발명에 의한 폴리락트산의 개질방법의 구성은, 폴리락트산(Poly Lactic Acid)을 리에틸렌글리콜말리에이트(Poly Ethylene Glycol Maleate)을 이용하여 개질하는 것을 특징으로 한다. The constitution of the polylactic acid reforming method according to the present invention is characterized in that the polylactic acid (Poly Lactic Acid) is modified using polyethylene glycol maleate (Poly Ethylene Glycol Maleate).
먼저, 폴리락트산(Poly Lactic Acid)는 유산(lactic acid)의 중축합 또는 락티드(Lactide)의 개환중합에 의해 합성되는 폴리에스터로서 폴리아미드(Polyamide)와 폴리에틸렌테레프탈레이트(PET)의 중간 정도의 물성을 갖고 있으며, 주로 감자와 옥수수로부터 얻어지는 천연 식물성 당 성분을 원료로 하므로 생분해도가 높지만 일반적으로 경도가 높고, 탄성이 낮으며, 내구성이 떨어지는 특성이 있다. First, polylactic acid is a polyester synthesized by polycondensation of lactic acid or ring-opening polymerization of lactide, and the intermediate of polyamide and polyethylene terephthalate (PET). It has physical properties and is mainly composed of natural vegetable sugar components obtained from potatoes and corn, which have high biodegradability but generally have high hardness, low elasticity, and poor durability.
합성에 사용된 모노머의 입체 구조에 따라 고분자는 폴리-L-락트산, 폴리-D-락트산 및 폴리-DL-락트산 형태로 합성이 가능하다. 이 중에서 순수 L-락트산 또는 L-락티드를 사용하여 합성한 폴리-L-락트산(PLLA)은 결정성을 가지고 있어서 결정성 폴리락트산으로 불리며 여기에 D-락트산 또는 D-락티드를 혼합사용하여 제조한 폴리-DL-락트산은 무정형 폴리락트산(PDLA)으로서 제조되어 있다. The polymer can be synthesized in the form of poly-L-lactic acid, poly-D-lactic acid and poly-DL-lactic acid, depending on the steric structure of the monomer used in the synthesis. Among them, poly-L-lactic acid (PLLA) synthesized using pure L-lactic acid or L-lactide is called crystalline polylactic acid because of its crystallinity, and mixed with D-lactic acid or D-lactide The prepared poly-DL-lactic acid is prepared as amorphous polylactic acid (PDLA).
상기 폴리락트산을 폴리에틸렌글리콜말리에이트와 열 개시제가 포함된 상태에서 가열하게 되면, 도 1에 도시된 바와 같이, 개시제가 열분해되어 라디칼을 형성하고 이 라디칼이 폴리락트산의 메틸기가 결합된 탄소의 수소를 빼앗아가 폴리락트산 사슬상에 라디칼을 형성하게 된다. When the polylactic acid is heated in a state in which polyethylene glycol maleate and a thermal initiator are included, as shown in FIG. 1, the initiator thermally decomposes to form a radical, and the radical forms hydrogen of the carbon to which the methyl group of the polylactic acid is bonded. It is taken away to form radicals on the polylactic acid chain.
상기 폴리락트산 상의 라디칼에서 폴리에틸렌글리콜말리에이트에 의한 라디칼 중합반응이 일어나 폴리락트산 사슬에 모노머에 의한 가지모양의 사슬이 형성된 개질 폴리락트산을 제조할 수 있다. A radical polymerization reaction by polyethylene glycol maleate occurs in the radical on the polylactic acid to produce a modified polylactic acid in which branched chains formed by monomers are formed on the polylactic acid chain.
이 때, 상기 투입된 이중결합 분자의 양을 변경할 경우 개질 폴리락트산의 물성을 조절할 수 있으며 투입된 개시제의 종류 및 양에 따라 반응온도 및 반응속도의 조절이 가능하다. At this time, when changing the amount of the double bond molecule added, it is possible to control the physical properties of the modified polylactic acid and to control the reaction temperature and reaction rate according to the type and amount of the initiator.
상기 폴리락트산들은 상기 폴리에틸렌글리콜말리에이트의 가지들로 인해, 도 1에 도시된 바와 같이, 인장강도가 낮아지고, 탄성률이 낮아지며, 신장률은 높아지게 된다. The polylactic acid is due to the branches of the polyethylene glycol maleate, as shown in Figure 1, the tensile strength is lowered, the elastic modulus is lowered, the elongation is increased.
여기서, 상기 폴리에틸렌글리콜말리에이트는, 말리에이트 기를 가지고, 상기 폴리락트산에 가지중합반응(grafting coplolymerization)을 일으킬 수 있는 소재라면 어떤 것이라도 적용 가능하다.The polyethylene glycol maleate may be any material as long as it has a maleate group and can cause grafting coplolymerization to the polylactic acid.
구체적으로 예를 들면, 다음의 화학식 1을 가지는 물질이면 어떤 것이라도 적용될 수 있다. Specifically, for example, any material may be applied as long as the material has the following formula (1).
[ 화학식 1 ] [ Formula 1]
Figure PCTKR2014002138-appb-I000008
Figure PCTKR2014002138-appb-I000008
(R1과 R2는 다음의 화학식 2 내지 화학식 7 중 하나로 구성된다)(R 1 and R 2 are composed of one of the following Chemical Formulas 2 to 7)
[ 화학식 2 ][Formula 2]
Figure PCTKR2014002138-appb-I000009
Figure PCTKR2014002138-appb-I000009
(화학식 2에서 R3는 수소 또는 메틸기이고, R4는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 2, R 3 is hydrogen or methyl group, R 4 is hydrogen or alkyl group of C 1 to C 8 , n is 1 to 20)
[ 화학식 3 ][Formula 3]
Figure PCTKR2014002138-appb-I000010
Figure PCTKR2014002138-appb-I000010
(화학식 3에서 R5는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 3, R 5 is hydrogen or an alkyl group of C 1 to C 8 , n is 1 to 20)
[ 화학식 4 ][Formula 4]
Figure PCTKR2014002138-appb-I000011
Figure PCTKR2014002138-appb-I000011
(화학식 4에서 R6은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 4, R 6 is hydrogen or an alkyl group of C 1 to C 8 , l + m + n is 3 to 20)
[ 화학식 5 ][Formula 5]
Figure PCTKR2014002138-appb-I000012
Figure PCTKR2014002138-appb-I000012
(화학식 5에서 R7과 R8은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 5, R 7 and R 8 are hydrogen or an alkyl group having 1 to C 8 , and l + m + n is 3 to 20.)
[ 화학식 6 ][Formula 6]
Figure PCTKR2014002138-appb-I000013
Figure PCTKR2014002138-appb-I000013
(화학식 6에서 R9와 R10은 수소 또는 메틸기이고, R11은 수소 또는 C1 내지 C8인 알킬기이고, m+n은 2 내지 20이다)(In Formula 6, R 9 and R 10 are hydrogen or a methyl group, R 11 is hydrogen or an alkyl group of C 1 to C 8 , m + n is 2 to 20)
[ 화학식 7 ][Formula 7]
Figure PCTKR2014002138-appb-I000014
Figure PCTKR2014002138-appb-I000014
(화학식 7에서 R12와 R13은 수소 또는 메틸기이고, R14은 수소 또는 C1 내지 C8인 알킬기이고, 1+m은 2 내지 20이고, n은 1 내지 5이다)(In formula 7, R 12 and R 13 are hydrogen or a methyl group, R 14 is hydrogen or an alkyl group having 1 to 8 , 1 + m is 2 to 20, n is 1 to 5)
그리고, 상기 중합시 개시제를 더 투입하여 반응시킬 수 있다. 상기 개시제는, 아조그룹(-N=N-)을 포함하는 아조계 화합물, 과산화물기(-O-O-)를 포함하는 유기과산화물, 하이드로과산화물 (-COOH), 퍼설페이트계 (S2O8 -2), 유기금속 화합물일 수 있으며 구체적으로 2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2-아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드, 하이드로젠퍼옥사이드, 포타슘퍼설페이트, 에틸은, 프로필은, 부틸은 중 하나 이상으로 사용되는 것을 특징으로 할 수 있다. In addition, an initiator may be further added and reacted during the polymerization. The initiator is an azo compound containing an azo group (-N = N-), an organic peroxide containing a peroxide group (-OO-), hydroperoxide (-COOH), persulfate-based (S 2 O 8 -2) ), Which may be an organometallic compound, specifically 2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisotropyronitrile, 2,2-azodi (2-methylbutyronitrile ), 1,1-azobis (cyanacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl Peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, Tert-butyl peroxy benzoate, lauryl peroxide, dicumyl peroxide, DE peroxide, potassium persulfate, are ethyl, propyl, the butyl may be characterized in that the use of one or more of the.
다음으로, 폴리에틸렌글리콜말리에이트인 상기 화학식 1의 개질제를 합성하는 방법에 대해 상세하게 설명한다. Next, the method for synthesizing the modifier of Formula 1, which is polyethylene glycol maleate, will be described in detail.
본 발명의 개질제인 폴리에틸렌글리콜말리에이트를 합성하기 위한 메커니즘은 도 2에 도시된 바와 같다. 폴리에틸렌글리콜모노올, 폴리에틸렌글리콜디올, 폴리에틸렌글리콜트리올 중 어느 하나를 무수말렌산을 혼합한 후 가열시켜 에스테르화 반응시켜 본 발명의 개질제인 상기 화학식 1의 개질제를 제조할 수 있다. The mechanism for synthesizing polyethylene glycol maleate, the modifier of the present invention is as shown in FIG. Any one of polyethylene glycol monool, polyethylene glycol diol, and polyethylene glycol triol may be mixed with maleic anhydride and then heated to esterify to produce a modifier of Chemical Formula 1, which is the modifier of the present invention.
보다 구체적으로 설명하면, 본 발명에서는 개질제로 폴리에틸렌글리콜말리에이트를 사용하여 실험을 하고 있으며, 먼저, 다양한 폴리에틸렌글리콜말리에이트의 합성한 실험 내용을 실시예 1 내지 실시예 6에서와 같이 상세하게 설명한다. More specifically, in the present invention, experiments using polyethylene glycol maleate as a modifier are described. First, the experimental details of the synthesis of various polyethylene glycol maleates will be described in detail as in Examples 1 to 6. .
[ 실시예 1 ]Example 1
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 98g, 에틸렌글리콜 124g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 옅은 호박색의 점도가 낮은 에틸렌글리콜말리에이트(MEGMA)를 얻었다. A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 98 g of maleic anhydride and 124 g of ethylene glycol are added to the flask, followed by stirring while passing nitrogen gas at a flow rate of 100 ml / min. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. Ethylene glycol maleate (MEGMA) with a light amber viscosity was obtained after completion | finish of reaction.
[ 실시예 2 ]Example 2
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 49g, 트리에틸렌글리콜 150g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 트리에틸렌글리콜말리에이트(TEGMA)를 얻었다. A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 49 g of maleic anhydride and 150 g of triethylene glycol were added to the flask, and the mixture was stirred while passing nitrogen gas at a flow rate of 100 ml / min, and gradually heated. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. Triethylene glycol maleate (TEGMA) was obtained after completion of the reaction.
[ 실시예 3 ]Example 3
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 24.5g, 폴리에틸렌글리콜(분자량 400) 200g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 폴리에틸렌글리콜말리에이트(PEG400MA)를 얻었다. A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 24.5 g of maleic anhydride and 200 g of polyethylene glycol (molecular weight 400) were added to the flask, and the mixture was stirred while passing nitrogen gas at a flow rate of 100 ml / min, and gradually heated. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. After the reaction was completed, polyethylene glycol maleate (PEG400MA) was obtained.
[ 실시예 4 ]Example 4
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 12.25g, 폴리에틸렌글리콜(분자량 1000) 250g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 폴리에틸렌글리콜말리에이트(PEG1000MA)를 얻었다.A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 12.25 g of maleic anhydride and 250 g of polyethylene glycol (molecular weight 1000) are added to the flask, and the mixture is stirred while passing nitrogen gas at a flow rate of 100 ml / min and gradually heating. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. After the reaction was completed, polyethylene glycol maleate (PEG1000MA) was obtained.
[ 실시예 5 ]Example 5
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 49g, 트리프로필렌글리콜 192g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 트리프로필렌글리콜말리에이트(TPGMA)를 얻었다.A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 49 g of maleic anhydride and 192 g of tripropylene glycol were added to the flask, followed by stirring while passing nitrogen gas at a flow rate of 100 ml / min. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. Tripropylene glycol maleate (TPGMA) was obtained after completion | finish of reaction.
[ 실시예 6 ]Example 6
500ml의 사구플라스크에 축합반응을 위한 교반기, 온도계, 불활성가스, 흡입관, 콘덴서를 설치한다. 플라스크에 무수말레산 24.5g, 폴리에틸렌글리콜모노메틸에테르(분자량 400) 200g 을 넣고 질소가스를 100ml/min 의 유속으로 통하면서 교반하여 서서히 가열한다. 약 1시간에 걸쳐 160℃까지 온도를 서서히 올린 후 160℃에서 축합반응을 위해 생성된 물의 양이 36ml 정도 수득되어 반응이 종료될 때까지 온도를 유지한다. 반응 종료 후 폴리에틸렌글리콜모노메틸에테르 말리에이트(MPEG400MA)를 얻었다. A 500 ml sand dune flask is equipped with a stirrer, thermometer, inert gas, suction tube and condenser for condensation reaction. 24.5 g of maleic anhydride and 200 g of polyethylene glycol monomethyl ether (molecular weight 400) are added to the flask, and the mixture is heated while stirring while flowing nitrogen gas at a flow rate of 100 ml / min. After slowly raising the temperature to 160 ° C. over about 1 hour, the amount of water produced for the condensation reaction at 160 ° C. was obtained about 36 ml, and the temperature was maintained until the reaction was completed. Polyethylene glycol monomethyl ether maleate (MPEG400MA) was obtained after completion | finish of reaction.
다음으로, 상술한 실시예 1 내지 실시예 6의 방법으로 제조된 폴리에틸렌글리콜말이에이트를 폴리락트산과 블랜딩을 실시하여, 다음과 같은 실시예 7 내지 실시예 12와 같은 개질 폴리락트산을 제조하였으며, 이를 상세하게 설명한다. Next, the polyethylene glycol malate prepared by the method of Examples 1 to 6 described above was blended with polylactic acid to prepare modified polylactic acid as in Examples 7 to 12, which was followed. It demonstrates in detail.
[ 실시예 7 ]Example 7
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 1의 에틸렌글리콜말리에이트(EGMA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-EGMA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) is melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after adding 20 parts by weight of ethylene glycol maleate (EGMA) of Example 1. Thereafter, 0.8 parts by weight of dicumyl peroxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-EGMA).
[ 실시예 8 ]Example 8
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 2의 트리에틸렌글리콜말리에이트(TEGMA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-TEGMA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) is melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after adding 20 parts by weight of triethylene glycol maleate (TEGMA) of Example 2. Thereafter, 0.8 parts by weight of dicumyl peroxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-TEGMA).
[ 실시예 9 ]Example 9
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 3의 폴리에틸렌글리콜말리에이트(PEG400MA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-PEG400MA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after 20 parts by weight of polyethylene glycol maleate (PEG400MA) of Example 3. Thereafter, 0.8 parts by weight of dicumyl peroxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-PEG400MA).
[ 실시예 10 ]Example 10
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 4의 폴리에틸렌글리콜말리에이트(PEG1000MA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-PEG1000MA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) is heated and melted at 180 ° C. in a kneader, which is a compound kneader, and then 20 parts by weight of polyethylene glycol maleate (PEG1000MA) of Example 4 is added and kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumyl peroxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-PEG1000MA).
[ 실시예 11 ]Example 11
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 5의 트리프로필렌글리콜말리에이트(TPGMA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-TPGMA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) is heated and melted at 180 ° C. in a kneader, which is a compound kneader, and then 20 parts by weight of tripropylene glycol maleate (TPGMA) of Example 5 is added and kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-TPGMA).
[ 실시예 12 ]Example 12
폴리락트산(PLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 실시예 6의 폴리에틸렌글리콜모노메틸에테르 말리에이트(MPEG400MA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산(PL-MPEG400MA)를 제조하였다. 80 parts by weight of polylactic acid (PLA) is melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after adding 20 parts by weight of polyethylene glycol monomethyl ether maleate (MPEG400MA) of Example 6. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid (PL-MPEG400MA).
그리고, 본 발명에 의한 개질된 폴리락트산을 이용하여 생분해성 발포체 조성물을 제조방법에 대해 설명한다. Then, a method for producing a biodegradable foam composition using the modified polylactic acid according to the present invention will be described.
표 3에 도시된 바와 같이, 생분해성 발포체 조성물은 폴리락트산(PLA), 개질된 폴리락트산(PLEA), 혼합기재, 가교개시제 및 발포제를 포함하여 구성될 수 있다. As shown in Table 3, the biodegradable foam compositions may comprise polylactic acid (PLA), modified polylactic acid (PLEA), mixed substrates, crosslinking initiators and blowing agents.
상기 개질 폴리락트산은 개질 결정형 폴리락트산(PLLEA) 또는 개질 무정형 폴리락트산(PDLEA)이 사용될 수 있다. The modified polylactic acid may be modified crystalline polylactic acid (PLLEA) or modified amorphous polylactic acid (PDLEA).
상기 혼합기재는 에틸렌비닐아세테이트 공중합체(EVA, Ethylene-Vinyl Acetate copolymer), 스티렌이소프렌스티렌 공중합체(SIS, Styrene-Isoprene Styrene copolymer) 또는 에틸렌메타아크리릴레이트 공중합체(EMA, Ethylene-Methacrylate copolymer)가 사용될 수 있으며, 이는 압축 변형률, 충격흡수율, 기계적 강도 등이 우수하여 발포체로 많이 사용되는 수지이다. The mixed base may be an ethylene vinyl acetate copolymer (EVA, Ethylene-Vinyl Acetate copolymer), styrene isoprene styrene copolymer (SIS, Styrene-Isoprene Styrene copolymer) or ethylene methacrylate copolymer (EMA, Ethylene-Methacrylate copolymer) It may be used, which is a resin that is widely used as a foam because of excellent compressive strain, impact absorption, mechanical strength and the like.
그리고, 상기 가교개시제는, 유기과산화물계 가교개시제를 사용할 수 있다. 예를 들면, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드를 사용할 수 있다. The crosslinking initiator may be an organic peroxide crosslinking initiator. For example, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutyl peroxybenzoate, lauryl peroxide, dicumyl peroxide can be used.
그리고, 상기 발포제는, 아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제를 단독 혹은 병용하여 사용할 수 있으며, 예를 들면 금양화학의 JTR시리즈를 이용할 수 있다. The blowing agent may be used alone or in combination with an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent. For example, Kumyang Chemical's JTR series may be used.
이하 표 1을 참조하여 비교예 1, 실시예 13 내지 18을 각각 조성을 달리하여 특성을 상세하게 비교설명한다. Hereinafter, the characteristics of Comparative Example 1 and Examples 13 to 18 will be described in detail by varying compositions.
표 1
구분 실시예 13 실시예 14 실시예 15 실시예 16 실시예 17 실시예 18 비교예 1
PLA1) 30
PL-EGMA2) 30
PL-TEGMA3) 30
PL-PEG400MA4) 30
PL-PEG1000MA5) 30
PL-TPGMA6) 30
PL-MPEG400MA7) 30
EVA8) 70 70 70 70 70 70 70
DCP9) 0.7 0.7 0.7 0.7 0.7 0.7 0.7
JTR10) 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Table 1
division Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 1
PLA 1) 30
PL-EGMA 2) 30
PL-TEGMA 3) 30
PL-PEG400MA 4) 30
PL-PEG1000MA 5) 30
PL-TPGMA 6) 30
PL-MPEG400MA 7) 30
EVA 8) 70 70 70 70 70 70 70
DCP 9) 0.7 0.7 0.7 0.7 0.7 0.7 0.7
JTR 10) 3.3 3.3 3.3 3.3 3.3 3.3 3.3
1) poly(L-lactic acid), 2) 실시예 7로부터 제조된 개질 결정성 폴리락트산, 3) 실시예 8로부터 제조된 개질 결정성 폴리락트산, 4) 실시예 9로부터 제조된 개질 결정성 폴리락트산, 5) 실시예 10으로부터 제조된 개질 결정성 폴리락트산, 6) 실시예 11로부터 제조된 개질 결정성 폴리락트산, 7) 실시예 12로부터 제조된 개질 결정성 폴리락트산, 8) ethylene-vinyl acetate (한화석유화학, EVA1328), 10) DCP, dicumylperoxide, 9) DOP, dioctylphthalate, 10) JTR, (주)금양1) poly (L-lactic acid), 2) modified crystalline polylactic acid prepared from Example 7, 3) modified crystalline polylactic acid prepared from Example 8, 4) modified crystalline polyl made from Example 9 Lactic acid, 5) modified crystalline polylactic acid prepared from Example 10, 6) modified crystalline polylactic acid prepared from Example 11, 7) modified crystalline polylactic acid prepared from Example 12, 8) ethylene-vinyl acetate (Hanhwa Petrochemical, EVA1328), 10) DCP, dicumylperoxide, 9) DOP, dioctylphthalate, 10) JTR, Geumyang
[ 비교예 1 ]Comparative Example 1
비교예 1은 폴리락트산(PLA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Comparative Example 1, 30 parts by weight of polylactic acid (PLA) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 13 ]Example 13
실시예 13은 실시예 7에 의해 개질된 폴리락트산(PL-EGMA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 13 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-EGMA) modified by Example 7 and 70 parts by weight of ethylene vinyl acetate (EVA) compound Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 14 ]Example 14
실시예 14는 실시예 8에 의해 개질된 폴리락트산(PL-TEGMA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 14 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-TEGMA) modified by Example 8, 70 parts by weight of ethylene vinyl acetate (EVA) compound Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 15 ]Example 15
실시예 15는 실시예 9에 의해 개질된 폴리락트산(PL-PEG400MA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 15 kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-PEG400MA), 70 parts by weight of ethylene vinyl acetate (EVA) modified by Example 9 Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 16 ]Example 16
실시예 16은 실시예 10에 의해 개질된 폴리락트산(PL-PEG1000MA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 16 kneaded at 180 degrees for 5 minutes using a compound kneader kneader compound 30 parts by weight of polylactic acid (PL-PEG1000MA) modified by Example 10, 70 parts by weight of ethylene vinyl acetate (EVA) compound Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 17 ]Example 17
실시예 17은 실시예 11에 의해 개질된 폴리락트산(PL-TPGMA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 17 was kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-TPGMA) modified by Example 11, 70 parts by weight of ethylene vinyl acetate (EVA) compound Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 18 ]Example 18
실시예 18은 실시예 11에 의해 개질된 폴리락트산(PL-MPEG400MA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 3.3 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. Example 18 kneaded at 180 degrees for 5 minutes using a compound kneader compound kneader 30 parts by weight of polylactic acid (PL-MPEG400MA), 70 parts by weight of ethylene vinyl acetate (EVA) modified by Example 11 compound Was prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 3.3 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
이하 표 2를 참조하여 비교예 1, 실시예 13 내지 실시예 18을 각각 조성을 달리하여 특성을 상세하게 비교설명한다. Hereinafter, with reference to Table 2, Comparative Examples 1 and 13 to 18 will be described in detail by varying the composition.
표 2
평가항목 단위 실시예 13 실시예 14 실시예 15 실시예 16 실시예 17 실시예 18 비교예 1
비중 (g/cm-3) 0.21 0.22 0.22 0.23 0.22 0.22 0.21
인장강도 (kg/cm2) 25 26 27 30 25 26 18
신장률 % 415 420 427 390 410 420 380
인열강도 (kg/cm) 14.7 15.3 15.6 15.7 14.9 15.2 9.3
경도 Type D 52 53 56 61 51 54 64
TABLE 2
Evaluation item unit Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Comparative Example 1
importance (g / cm -3 ) 0.21 0.22 0.22 0.23 0.22 0.22 0.21
The tensile strength (kg / cm 2 ) 25 26 27 30 25 26 18
Elongation % 415 420 427 390 410 420 380
Tear strength (kg / cm) 14.7 15.3 15.6 15.7 14.9 15.2 9.3
Hardness Type D 52 53 56 61 51 54 64
표 2에 도시된 바와 같이, 비교예 1에 비해, 실시예 13 내지 실시예 18은 인장강도가 높아지고, 신장률이 커져, 탄성력도 큰 것을 알 수 있다. 즉, 개질된 폴리락트산(PL-EGMA, PL-TEGMA, PL-PEG400MA, PL-PEG1000MA, PL-TPGMA, PL-MPEG400MA)는 부드러운 물성을 보이므로, 내구성과 유연성이 우수하여 발포체 소재로 사용할 수 있도록 개질되어 있음을 알 수 있다. As shown in Table 2, it can be seen that compared with Comparative Example 1, Examples 13 to 18 have a higher tensile strength, a higher elongation, and a larger elastic force. That is, the modified polylactic acid (PL-EGMA, PL-TEGMA, PL-PEG400MA, PL-PEG1000MA, PL-TPGMA, PL-MPEG400MA) shows soft physical properties, so it can be used as a foam material because of its excellent durability and flexibility. It can be seen that it is modified.
그리고, 상기 생분해성 발포체 조성물의 제조반응 중 가소제가 더 추가될 수 있다. 상기 가소제는, 하이드록시카본엑시드에스터(hydroxycarboxylic acid ester)계 가소제로써, 트리부틸아세틸시트레이트 (tributyl o-acetylcitrate), 트리에틸아세틸시트레이트 (triethyl oacetylcitrate), 트리부틸시트레이트 (tributyl citrate) 중에서 단독 혹은 병용하여 사용될 수 있다.In addition, a plasticizer may be further added during the preparation of the biodegradable foam composition. The plasticizer is a hydroxycarboxylic acid ester-based plasticizer, which may be used alone in tributyl o-acetylcitrate, triethyl oacetylcitrate, and tributyl citrate. Or in combination.
본 발명의 다른 실시예에 의한 폴리락트산의 개질방법의 구성은 폴리락트산(Poly Lactic Acid)를 이중결합을 가지는 분자로 중합하여 개질하는 것이다. The constitution of the polylactic acid reforming method according to another embodiment of the present invention is to modify the polylactic acid by polymerizing it with a molecule having a double bond.
먼저, 폴리락트산(Poly Lactic Acid)는 유산(lactic acid)의 중축합 또는 락티드(Lactide)의 개환중합에 의해 합성되는 폴리에스터로서 폴리아미드(Polyamide)와 폴리에틸렌테레프탈레이트(PET)의 중간 정도의 물성을 갖고 있으며, 주로 감자와 옥수수로부터 얻어지는 천연 식물성 당 성분을 원료로 하므로 생분해도가 높지만 일반적으로 경도가 높고, 탄성이 낮으며, 내구성이 떨어지는 특성이 있다. First, polylactic acid is a polyester synthesized by polycondensation of lactic acid or ring-opening polymerization of lactide, and the intermediate of polyamide and polyethylene terephthalate (PET). It has physical properties and is mainly composed of natural vegetable sugar components obtained from potatoes and corn, which have high biodegradability but generally have high hardness, low elasticity, and poor durability.
합성에 사용된 모노머의 입체 구조에 따라 고분자는 폴리-L-락트산, 폴리-D-락트산 및 폴리-DL-락트산 형태로 합성이 가능하다. 이 중에서 순수 L-락트산 또는 L-락티드를 사용하여 합성한 폴리-L-락트산(PLLA)은 결정성을 가지고 있어서 결정성 폴리락트산으로 불리며 여기에 D-락트산 또는 D-락티드를 혼합사용하여 제조한 폴리-DL-락트산은 무정형 폴리락트산(PDLA)으로서 제조되어 있다. The polymer can be synthesized in the form of poly-L-lactic acid, poly-D-lactic acid and poly-DL-lactic acid, depending on the steric structure of the monomer used in the synthesis. Among them, poly-L-lactic acid (PLLA) synthesized using pure L-lactic acid or L-lactide is called crystalline polylactic acid because of its crystallinity, and mixed with D-lactic acid or D-lactide The prepared poly-DL-lactic acid is prepared as amorphous polylactic acid (PDLA).
상기 폴리락트산을 이중결합을 포함하는 모노머와 열 개시제가 포함된 상태에서 가열하게 되면, 도 1에 도시된 바와 같이, 개시제가 열분해되어 라디칼을 형성하고 이 라디칼이 폴리락트산의 메틸기가 결합된 탄소의 수소를 빼앗아가 폴리락트산 사슬상에 라디칼을 형성하게 된다. When the polylactic acid is heated in a state in which a monomer including a double bond and a thermal initiator are included, as shown in FIG. 1, the initiator is pyrolyzed to form a radical, and the radical is formed of a carbon to which a methyl group of the polylactic acid is bonded. The hydrogen is taken away to form radicals on the polylactic acid chain.
상기 폴리락트산 상의 라디칼에서 이중결합을 가지는 모노머에 의한 라디칼 중합반응이 일어나 폴리락트산 사슬에 모노머에 의한 가지모양의 사슬이 형성된 개질 폴리락트산을 제조할 수 있다. A radical polymerization reaction by a monomer having a double bond in the radical on the polylactic acid may occur to produce a modified polylactic acid in which branched chains formed by monomers are formed on the polylactic acid chain.
이 때, 상기 투입된 이중결합 분자의 양을 변경할 경우 개질 폴리락트산의 물성을 조절할 수 있으며 투입된 개시제의 종류 및 양에 따라 반응온도 및 반응속도의 조절이 가능하다. 상기 중합반응은 반응 중 다른 용제(solvent)가 사용되지 않아 건식으로 반응이 이루어진다. At this time, when changing the amount of the double bond molecule added, it is possible to control the physical properties of the modified polylactic acid and to control the reaction temperature and reaction rate according to the type and amount of the initiator. The polymerization reaction is carried out dry because no other solvent is used during the reaction.
상기 폴리락트산들은 상기 이중결합 분자의 가지들로 인해, 도 6에 도시된 바와 같이, 인장강도가 낮아지고, 탄성률이 낮아지며, 신장률은 높아지게 된다. Due to the branches of the double bond molecule, the polylactic acids have a lower tensile strength, a lower elastic modulus, and a higher elongation as shown in FIG. 6.
여기서, 상기 이중결합을 가지는 분자들은, 상기 폴리락트산에 가지중합반응(grafting coplolymerization)을 일으킬 수 있는 소재라면 어떤 것이라도 적용 가능하며, 예를 들면, 아크릴레이트(Acrylate, CH2=CH-CO-), 메타크릴레이트 (Methacrylate, CH2=C(CH3)-CO-), 비닐(Vinyl, CH2=CH- 또는 -CH=CH-), 말리에이트 (Maleate, -CO-CH=CH-CO-), 스티렌 (styrene, CH2=CH(C6H5)), 알릴 (Allyl, CH2=CH-O-) 등이 포함된 분자들을 들 수 있다. Herein, the molecules having the double bond may be applied to any material that can cause grafting coplolymerization to the polylactic acid. For example, acrylate (CH 2 = CH-CO— ), Methacrylate (CH 2 = C (CH 3 ) -CO-), vinyl (Vinyl, CH 2 = CH- or -CH = CH-), maleate (Maleate, -CO-CH = CH-) CO-), styrene (styrene, CH 2 = CH (C 6 H 5 )), allyl (Allyl, CH 2 = CH-O-) and the like may include molecules.
그리고, 상기 중합시 개시제를 더 투입하여 반응시킬 수 있다. 상기 개시제는, 아조그룹(-N=N-)을 포함하는 아조계 화합물, 과산화물기(-O-O-)를 포함하는 유기과산화물, 하이드로과산화물 (-COOH), 퍼설페이트계 (S2O8 -2), 유기금속 화합물일 수 있으며 구체적으로 2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2-아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드, 하이드로젠퍼옥사이드, 포타슘퍼설페이트, 에틸은, 프로필은, 부틸은 중 하나 이상으로 사용되는 것을 특징으로 할 수 있다. In addition, an initiator may be further added and reacted during the polymerization. The initiator is an azo compound containing an azo group (-N = N-), an organic peroxide containing a peroxide group (-OO-), hydroperoxide (-COOH), persulfate-based (S 2 O 8 -2) ), Which may be an organometallic compound, specifically 2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisotropyronitrile, 2,2-azodi (2-methylbutyronitrile ), 1,1-azobis (cyanacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl Peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, Tert-butyl peroxy benzoate, lauryl peroxide, dicumyl peroxide, DE peroxide, potassium persulfate, are ethyl, propyl, the butyl may be characterized in that the use of one or more of the.
보다 구체적으로 설명하면, 본 발명에서는 아크릴레이트를 포함하는 폴리에틸렌글리콜아크릴레이트(PEGA)를 사용하여 표 3에 나타난 바와 같은 조성으로 실험한 내용을 상세하게 설명한다. More specifically, in the present invention, the content of the experiment with the composition as shown in Table 3 using polyethylene glycol acrylate (PEGA) containing acrylate will be described in detail.
표 3
구분 비교예2 비교예 3 비교예 4 실시예 19 실시예 20 실시예 21 실시예 22 실시예 23
PLLA1) 100 80 90 90 80 70 60
PDLA2) 80
PEGA3) 20 10 10 20 30 40 20
DCP4) 0.8 0.8 0.8 0.8 0.8
TABLE 3
division Comparative Example 2 Comparative Example 3 Comparative Example 4 Example 19 Example 20 Example 21 Example 22 Example 23
PLLA 1) 100 80 90 90 80 70 60
PDLA 2) 80
PEGA 3) 20 10 10 20 30 40 20
DCP 4) 0.8 0.8 0.8 0.8 0.8
1) poly(L-lactic acid), 2) poly(D,L-lactic acid), 3) polyethyleneglycol acrylate, 4) dicumyl peroxide1) poly (L-lactic acid), 2) poly (D, L-lactic acid), 3) polyethyleneglycol acrylate, 4) dicumyl peroxide
[ 비교예 2 ]Comparative Example 2
폴리락트산의 물성변화를 확인하기 위해, 비교예 2는 순수 결정성 폴리락트산(PLLA, Natureworks, 4032D)의 100중량부를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm 의 시트로 제조하였다. In order to confirm the change in the physical properties of the polylactic acid, Comparative Example 2 was prepared by 0.1 to 2mm sheet by hot pressing at 180 100 parts by weight of pure crystalline polylactic acid (PLLA, Natureworks, 4032D) using a hot press.
[ 비교예 3 ]Comparative Example 3
비교예 3은 결정성 폴리락트산(PLLA)의 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용용시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 20중량부를 투입후 5분간 혼련하여 단순 블랜딩 컴파운드를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Comparative Example 3, 80 parts by weight of crystalline polylactic acid (PLLA) was melted and heated at 180 ° C. in a kneader compound kneader, and then 20 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes to prepare a simple blending compound. Prepared. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 비교예 4 ]Comparative Example 4
비교예 4는 결정성 폴리락트산(PLLA)의 90중량부를 컴파운드 혼련기인 니더(kneeder)에서 180로 가열 용용시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 10중량부를 투입후 5분간 혼련하여 단순 블랜딩 컴파운드를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Comparative Example 4, 90 parts by weight of crystalline polylactic acid (PLLA) was melted by heating to 180 in a compound kneader kneader, and then 10 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes to prepare a simple blending compound. It was. The compound thus prepared was thermally compressed at 180 using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 실시예 19 ]Example 19
실시예 19는 결정성 폴리락트산(PLLA) 90중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 10중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Example 19, 90 parts by weight of crystalline polylactic acid (PLLA) was heated and melted at 180 ° C. in a kneader, which is a compound kneader, and 10 parts by weight of polyethylene glycol acrylate (PEGA) was added and kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 실시예 20 ]Example 20
실시예 20은 결정성 폴리락트산(PLLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 20중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Example 20, 80 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after adding 20 parts by weight of polyethylene glycol acrylate (PEGA). Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 실시예 21 ]Example 21
실시예 21은 결정성 폴리락트산(PLLA) 70중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 30중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Example 21, 70 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then kneaded for 5 minutes after 30 parts by weight of polyethylene glycol acrylate (PEGA) was added. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 실시예 22 ]Example 22
실시예 22는 결정성 폴리락트산(PLLA) 60중량부를 컴파운드 혼련기인 니더(kneeder)에서 180℃로 가열 용융시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 40중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180℃에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산를 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180℃에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Example 22, 60 parts by weight of crystalline polylactic acid (PLLA) was melted by heating at 180 ° C. in a kneader, which is a compound kneader, and then 40 parts by weight of polyethylene glycol acrylate (PEGA) was kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending at 180 ° C. for 10 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 ° C. using a hot press to prepare a sheet of 0.1 to 2 mm.
[ 실시예 23 ]Example 23
실시예 23은 무정형 폴리락트산(PDLA) 80중량부를 컴파운드 혼련기인 니더(kneeder)에서 180로 가열 용융시킨 후 폴리에틸렌글리콜아크릴레이트(PEGA) 40중량부를 투입 후 5분간 혼련한다. 그 후 개시제인 디큐밀퍼옥사이드(dicumylperoxide, DCP)를 0.8중량부를 추가로 투입한 후 180에서 10분간 반응성 블랜딩(reactive blending)를 실시하여 개질 폴리락트산을 제조하였다. 이렇게 제조된 상기 컴파운드를 핫프레스를 이용하여 180에서 열압착하여 0.1 내지 2mm의 시트로 제조하였다. In Example 23, 80 parts by weight of amorphous polylactic acid (PDLA) was melted by heating to 180 in a compound kneader kneader, and then 40 parts by weight of polyethylene glycol acrylate (PEGA) was kneaded for 5 minutes. Thereafter, 0.8 parts by weight of dicumylperoxide (DCP), which is an initiator, was further added, followed by reactive blending for 180 minutes to prepare modified polylactic acid. The compound thus prepared was thermally compressed at 180 using a hot press to prepare a sheet of 0.1 to 2 mm.
상술한 바와 같은 비교예 2 내지 비교예 4 및 실시예 19 내지 23를 각각 구조분석, 용매추출, 열측성분석, 인장특성분석, 생분해특성분석을 하였다. Comparative Examples 2 to 4 and Examples 19 to 23 as described above were subjected to structural analysis, solvent extraction, thermomechanical analysis, tensile property analysis, and biodegradation property analysis, respectively.
1. 구조분석1. Structural Analysis
구조분석은, 개질 폴리락트산(PLA)의 구조분석을 위하여, 핵자기공명분광계(NMR)와 푸리에 변환적외분광기(FTIR)을 이용하여 폴리락트산(PLA)가 폴리에틸렌글리콜아크릴레이트(PEGA)로 개질되었는지 유무를 확인하여 도 4 및 도 5에 도시된 바와 같은 결과를 얻었다. Structural analysis was performed to determine whether polylactic acid (PLA) was modified with polyethylene glycol acrylate (PEGA) using nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR) for structural analysis of modified polylactic acid (PLA). The presence or absence of the result was obtained as shown in FIGS. 4 and 5.
도 4에 도시된 바와 같이, (a)폴리락트산의 반응성 블랜드에 의해 (B)개질된 폴리락트산의 경우 3.6ppm 부근에서 폴리에틸렌글리콜아크릴레이트(PEGA)의 메틸렌(methylene) 구조에 의한 피크가 새롭게 발생하는 것으로부터 폴리락트산(PLA) 반응성 블랜드 후에 아크릴레이트에 의해 개질되었음을 확인할 수 있다. As shown in FIG. 4, in the case of polylactic acid (B) modified by a reactive blend of polylactic acid, a peak due to a methylene structure of polyethylene glycol acrylate (PEGA) is newly generated at 3.6 ppm. It can be seen that the modified by acrylate after the polylactic acid (PLA) reactive blend.
또한, 도 5에 도시된 바와 같이, (a)폴리락트산(PLA), (b)폴리락트산(PLA)/폴리에틸렌글리콜아크릴레이트(PEGA) 단순블랜드의 경우 2900cm-1 에서 새롭게 나타난 피크로부터 폴리에틸렌아크릴레이트가 첨가됨을 확인할 수 있으며, 또한 단순블랜드(b)의 1640cm-1 부근에서 발견된 C=C 이중결합피크가 반응성 블랜드(c)에서 사라지는 것으로부터 아크릴레이트 모노머의 이중결합이 라이칼 반응에 의해 고분자화되었음을 확인할 수 있다. In addition, as shown in Figure 5, (a) polylactic acid (PLA), (b) polylactic acid (PLA) / polyethylene glycol acrylate (PEGA) in the case of a simple blend of polyethylene acrylate from the newly appeared peak at 2900 cm -1 It can be seen that the C = C double bond peak found near 1640 cm −1 of the simple blend (b) disappears from the reactive blend (c), and thus the double bond of the acrylate monomer is polymerized by the lycal reaction. Can be confirmed.
2. 용매 추출2. Solvent Extraction
용매 추출은, 폴리락트산(PLA), 개질폴리락트산(PLEA) 및 폴리락트산(PLA)/폴리에틸렌글리콜아크릴레이트(PEGA) 단순블랜드를 메탄올 용매를 사용하여 속실렛(soxhlet)법을 이용하여 폴리락트산(PLA)에 미결합된 아크릴레이트의 양을 확인하였다. Solvent extraction is carried out using polylactic acid (SLA) using soxhlet method using polylactic acid (PLA), modified polylactic acid (PLEA) and polylactic acid (PLA) / polyethylene glycol acrylate (PEGA) simple blend. The amount of acrylate unbound in PLA) was confirmed.
도 6에 도시된 바와 같이, 폴리락트산(PLA)와 폴리에틸렌글리콜아크릴레이트(PEGA)의 반응성 블랜드에 의해 개질된 폴리락트산(실시예 19, 실시예 20)의 경우 이의 단순블랜드(비교예 4, 비교예 3)와 비교해서 솔벤트에 의해 녹아 추출되는 양이 상당히 적은 것으로부터 개질이 효과적으로 일어났음을 알 수 있다. As shown in FIG. 6, in the case of polylactic acid (Example 19, Example 20) modified by a reactive blend of polylactic acid (PLA) and polyethylene glycol acrylate (PEGA) (Comparative Example 4, comparison) Compared with Example 3), the modification was effectively performed because the amount of the solvent dissolved and extracted by the solvent was very small.
3. 열특성 분석3. Thermal Characteristic Analysis
열특성분석은, 시차주사열량측정법(DSC, differential scanning calorimetry)를 이용하여 개질 폴리락트산(PLEA)의 0℃ 에서 200℃ 사이의 열특성을 분석하였고, 유리전이온도를 측정하였다. Thermal characteristics analysis, differential scanning calorimetry (DSC, differential scanning calorimetry) was used to analyze the thermal properties of the modified polylactic acid (PLEA) from 0 ℃ to 200 ℃, the glass transition temperature was measured.
도 7에 도시된 바와 같이, 유리전이온도의 경우 첨가된 폴리에틸렌글리콜아크릴레이트(PEGA)이 많아질수록 떨어지고 있으며 순수한 폴리락트산(PLA)에 비해서 개질된 폴리락트산(PLEA)의 경우 유리전이 현상이 명확하게 구분되지 않고 넓은 범위에 걸쳐 나타나고 있다. 이 결과는 폴리락트산(PLA)에 그래프트된 아크릴레이트가 폴리락트산(PLA) 사슬의 견고성을 약화시켜 개질 폴리락트산이 상온에서 연한 물성을 가지도록 하고 있음을 알 수 있다. As shown in FIG. 7, the glass transition temperature is falling as more polyethylene glycol acrylate (PEGA) is added, and in the case of modified polylactic acid (PLEA) as compared to pure polylactic acid (PLA), the glass transition phenomenon is clear. It is not clearly distinguished and appears in a wide range. This result shows that the acrylate grafted to polylactic acid (PLA) weakens the rigidity of the polylactic acid (PLA) chain so that the modified polylactic acid has soft physical properties at room temperature.
4. 인장특성 분석4. Tensile Characteristic Analysis
인장특성 분석은 만능인장시험기(UTM, universal testing machine)을 이용하여 개질 폴리락트산의 인장강도, 탄성계수, 신장률을 측정하였다. Tensile properties were analyzed by using a universal testing machine (UTM) to measure the tensile strength, modulus and elongation of the modified polylactic acid.
표 4
평가항목 단위 비교예2 실시예19 실시예20 실시예21 실시예22 실시예23
인장강도 MPa 51 49 37 28 14 35
탄성계수 MPa 1290 1070 880 690 440 760
신장률 % 4.6 6.1 9.5 10.8 17.8 11.3
Table 4
Evaluation item unit Comparative Example 2 Example 19 Example 20 Example 21 Example 22 Example 23
The tensile strength MPa 51 49 37 28 14 35
Modulus of elasticity MPa 1290 1070 880 690 440 760
Elongation % 4.6 6.1 9.5 10.8 17.8 11.3
표 4에 도시된 바와 같이, 순수 폴리락트산에 비하여 개질된 폴리락트산의 경우 작은 인장강도 및 탄성률을 보이며, 신장률은 증가하는 것을 알 수 있으며, 첨가된 폴리에틸렌글리콜아크릴레이트의 양이 증가할수록 이러한 경향이 증가함을 알 수 있다. 이 결과로부터 개질 폴리락트산이 순수 폴리락트산에 비하여 부드럽고 유연한 물성을 보이는 것을 알 수 있다. As shown in Table 4, compared to pure polylactic acid, the modified polylactic acid shows a small tensile strength and elastic modulus, and it can be seen that the elongation is increased, and this tendency increases as the amount of added polyethylene glycol acrylate is increased. It can be seen that the increase. From this result, it can be seen that the modified polylactic acid shows soft and flexible physical properties compared to pure polylactic acid.
5. 생분해 특성분석5. Biodegradation Characterization
생분해 특성분석은, 두께가 0.1mm 이고 크기가 2*2cm 인 개질폴리락트산(PLEA)를 pH가 10.7의 NaHCO3/NaOH 버퍼 용액에 담그어 염기수용액상에서의 분해 속도를 측정하였다. Biodegradation characterization was performed by measuring modified polylactic acid (PLEA) having a thickness of 0.1 mm and a size of 2 * 2 cm in a NaHCO 3 / NaOH buffer solution having a pH of 10.7 to measure the degradation rate in the aqueous base solution.
도 7에 도시된 바와 같이, pH 10.7 수용액상에서의 생분해성 측정결과 순수 폴리락트산(PLA)에 비해서 개질된 폴리락트산(PLEA)의 생분해 특성이 우수함을 알 수 있으며, 또한 첨가된 폴리에틸렌글리콜아크릴레이트(PEGA)가 많아질수록 생분해가 더 잘 일어남을 알 수 있다. As shown in FIG. 7, it can be seen that the biodegradability of the modified polylactic acid (PLEA) is superior to pure polylactic acid (PLA) as a result of measurement of biodegradability in an aqueous solution of pH 10.7. The more PEGA), the better the biodegradation.
그리고, 본 발명에 의한 개질된 폴리락트산을 이용하여 생분해성 발포체 조성물을 제조방법에 대해 설명한다. Then, a method for producing a biodegradable foam composition using the modified polylactic acid according to the present invention will be described.
표 5에 도시된 바와 같이, 생분해성 발포체 조성물은 폴리락트산(PLA), 개질된 폴리락트산(PLEA), 혼합기재, 가교개시제 및 발포제를 포함하여 구성될 수 있다. As shown in Table 5, the biodegradable foam compositions may comprise polylactic acid (PLA), modified polylactic acid (PLEA), mixed substrates, crosslinking initiators and blowing agents.
상기 개질 폴리락트산은 개질 결정형 폴리락트산(PLLEA) 또는 개질 무정형 폴리락트산(PDLEA)이 사용될 수 있다. The modified polylactic acid may be modified crystalline polylactic acid (PLLEA) or modified amorphous polylactic acid (PDLEA).
상기 혼합기재는 에틸렌비닐아세테이트 공중합체(EVA, Ethylene-Vinyl Acetate copolymer), 스티렌이소프렌스티렌 공중합체(SIS, Styrene-Isoprene Styrene copolymer) 또는 에틸렌메타아크리릴레이트 공중합체(EMA, Ethylene-Methacrylate copolymer)가 사용될 수 있으며, 이는 압축 변형률, 충격흡수율, 기계적 강도 등이 우수하여 발포체로 많이 사용되는 수지이다. The mixed base may be an ethylene vinyl acetate copolymer (EVA, Ethylene-Vinyl Acetate copolymer), styrene isoprene styrene copolymer (SIS, Styrene-Isoprene Styrene copolymer) or ethylene methacrylate copolymer (EMA, Ethylene-Methacrylate copolymer) It may be used, which is a resin that is widely used as a foam because of excellent compressive strain, impact absorption, mechanical strength and the like.
그리고, 상기 가교개시제는, 유기과산화물계 가교개시제를 사용할 수 있다. 예를 들면, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드를 사용할 수 있다. The crosslinking initiator may be an organic peroxide crosslinking initiator. For example, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutyl peroxy) -2,5-dimethyl- Hexene, dibenzoyl peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5- Trimethylchlorohexane, tertbutyl peroxybenzoate, lauryl peroxide, dicumyl peroxide can be used.
그리고, 상기 발포제는, 아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제를 단독 혹은 병용하여 사용할 수 있으며, 예를 들면 금양화학의 JTR시리즈를 이용할 수 있다. The blowing agent may be used alone or in combination with an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent. For example, Kumyang Chemical's JTR series may be used.
이하 표 5를 참조하여 비교예 4, 실시예 6 내지 11를 각각 조성을 달리하여 특성을 상세하게 비교설명한다. Hereinafter, with reference to Table 5, Comparative Examples 4 and 6 to 11 will be described in detail by comparing the characteristics of the compositions.
표 5
구분 비교예5 실시예24 실시예25 실시예26 실시예27 실시예28 실시예29
PLLA1) 30
PLLEA202) 10 20 30 50 70
PDLEA203) 30
EVA4) 70 90 80 70 50 30 70
가교개시제5) 0.7 0.7 0.7 0.7 0.7 0.7 0.7
발포제6) 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Table 5
division Comparative Example 5 Example 24 Example 25 Example 26 Example 27 Example 28 Example 29
PLLA 1) 30
PLLEA20 2) 10 20 30 50 70
PDLEA20 3) 30
EVA 4) 70 90 80 70 50 30 70
Crosslinking initiator 5) 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Blowing agent 6) 4.5 4.5 4.5 4.5 4.5 4.5 4.5
1) poly(L-lactic acid), 2) 실시예 2로부터 제조된 개질 결정성 폴리락트산, 3) 실시예5로부터 제조된 개질 무정형 폴리락트산, 4) ethylene-vinyl acetate (한화석유화학, EVA1328), 5) DCP, dicumylperoxide, 6) DOP, dioctylphthalate, 7) JTR, (주)금양1) poly (L-lactic acid), 2) modified crystalline polylactic acid prepared from Example 2, 3) modified amorphous polylactic acid prepared from Example 5, 4) ethylene-vinyl acetate (Hanhwa Petrochemical, EVA1328) 5) DCP, dicumylperoxide, 6) DOP, dioctylphthalate, 7) JTR, Geumyang
[ 비교예 5 ]Comparative Example 5
비교예 5는 결정형 폴리락트산(PLLA) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Comparative Example 5, 30 parts by weight of crystalline polylactic acid (PLLA) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 24 ]Example 24
실시예 24는 개질 결정형 폴리락트산(PLLEA20) 10중량부, 에틸렌비닐아세테이트(EVA) 90중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 24, 10 parts by weight of modified crystalline polylactic acid (PLLEA20) and 90 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 25 ]Example 25
실시예 25는 개질 결정형 폴리락트산(PLLEA20) 20중량부, 에틸렌비닐아세테이트(EVA) 80중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 25, 20 parts by weight of modified crystalline polylactic acid (PLLEA20) and 80 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 26 ]Example 26
실시예 26은 개질 결정형 폴리락트산(PLLEA20) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 26, 30 parts by weight of modified crystalline polylactic acid (PLLEA20) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 27 ]Example 27
실시예 27은 개질 결정형 폴리락트산(PLLEA20) 50중량부, 에틸렌비닐아세테이트(EVA) 50중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 27, 50 parts by weight of modified crystalline polylactic acid (PLLEA20) and 50 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 28 ]Example 28
실시예 28은 개질 결정형 폴리락트산(PLLEA20) 70중량부, 에틸렌비닐아세테이트(EVA) 30중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 28, 70 parts by weight of modified crystalline polylactic acid (PLLEA20) and 30 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 29 ]Example 29
실시예 29는 개질 무정형 폴리락트산(PDLEA20) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 29, 30 parts by weight of modified amorphous polylactic acid (PDLEA20) and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
표 6
평가항목 단위 비교예5 실시예24 실시예25 실시예26 실시예27 실시예28 실시예29
비중 g/cm3 0.21 0.20 0.20 0.21 0.21 0.22 0.20
인장강도 kg/cm2 18 19 24 24 23 20 24
신장률 % 380 470 450 440 420 380 460
인열강도 kg/cm 9.3 8.7 11.7 14.2 12.6 9.4 13.8
탄성력 % 36 38 38 38 37 37 38
Table 6
Evaluation item unit Comparative Example 5 Example 24 Example 25 Example 26 Example 27 Example 28 Example 29
importance g / cm 3 0.21 0.20 0.20 0.21 0.21 0.22 0.20
The tensile strength kg / cm 2 18 19 24 24 23 20 24
Elongation % 380 470 450 440 420 380 460
Tear strength kg / cm 9.3 8.7 11.7 14.2 12.6 9.4 13.8
Elasticity % 36 38 38 38 37 37 38
표 6에 도시된 바와 같이, 비교예 5에 비해, 실시예 24 내지 실시예 29는 인장강도가 높아지고, 신장률이 커지며, 탄성력도 큰 것을 알 수 있다. 즉, 개질된 폴리락트산은 부드러운 물성을 보이므로, 내구성과 유연성이 우수하여 발포체 소재로 사용할 수 있도록 개질되어 있음을 알 수 있다. As shown in Table 6, compared with Comparative Example 5, Examples 24 to 29 can be seen that the tensile strength is high, the elongation is increased, the elastic force is also large. That is, since the modified polylactic acid shows soft physical properties, it can be seen that it is modified to be used as a foam material because of its excellent durability and flexibility.
그리고, 본 발명의 다른 실시예로 다른 이중결합의 성분으로 개질된 폴리락트산(PLVA, PLEM, PLAU)를 이용하여 생분해성 발포체 조성물을 제조방법에 대해 설명한다. In another embodiment of the present invention, a method for preparing a biodegradable foam composition using polylactic acid (PLVA, PLEM, PLAU) modified with other double bond components will be described.
표 7
구분 실시예30 실시예31 실시예32
PLVA201) 30
PLEM202) 30
PLVU203) 30
EVA4) 70 70 70
가교 개시제5) 0.7 0.7 0.7
발포제6) 4.5 4.5 4.5
TABLE 7
division Example 30 Example 31 Example 32
PLVA20 1) 30
PLEM20 2) 30
PLVU2 03) 30
EVA 4) 70 70 70
Crosslinking initiator 5) 0.7 0.7 0.7
Blowing agent 6) 4.5 4.5 4.5
1) 비닐아세테이트로 개질된 결정형 폴리락트산, 2) 폴리에틸렌글리콜말리에이트로 개질된 결정형 폴리락트산, 3) 알릴폴리우레탄으로 개질된 폴리락트산, 4) ethylene-vinyl acetate (한화석유화학, EVA1328), 5) DCP, dicumylperoxide, 6) DOP, dioctylphthalate, JTR, (주)금양1) crystalline polylactic acid modified with vinyl acetate, 2) crystalline polylactic acid modified with polyethylene glycol maleate, 3) polylactic acid modified with allylpolyurethane, 4) ethylene-vinyl acetate (Hanhwa Petrochemical, EVA1328), 5 ) DCP, dicumylperoxide, 6) DOP, dioctylphthalate, JTR, Geumyang
표 7에 도시된 바와 같이, 개질된 폴리락트산(PLVA, PLEM, PLAU), 혼합기재, 가교개시제 및 발포제를 포함하여 구성될 수 있다. As shown in Table 7, it may comprise a modified polylactic acid (PLVA, PLEM, PLAU), mixed base, crosslinking initiator and blowing agent.
본 발명에 의한 폴리락트산의 개질방법의 구성은, 폴리락트산(Poly Lactic Acid)를 비닐아세테이트(Vinyl acetate), 폴리에틸렌글리콜말리에이트(Poly ethylene glycol maleate) 또는 알릴폴리우레탄(Allyl polyurethane)로 중합하여 개질하는 것이다. The composition of the polylactic acid reforming method according to the present invention is modified by polymerizing polylactic acid (Poly Lactic Acid) with vinyl acetate, polyvinyl glycol maleate or allyl polyurethane. It is.
상기 폴리락트산 개질을 위하여 실시예 2에서 사용된 폴리에틸렌글리콜아크릴레이트 대신 비닐아세테이트, 폴리에틸렌글리콜말리에이트 또는 알릴폴리우레탄을 사용한 것을 제외하고는 실시예 20에서와 동일한 방법으로 제조된다. The polylactic acid was prepared in the same manner as in Example 20 except that vinyl acetate, polyethylene glycol maleate or allyl polyurethane was used instead of the polyethylene glycol acrylate used in Example 2.
[ 실시예 30 ]Example 30
실시예 30은 비닐아세테이트로 개질된 결정형 폴리락트산(PLVA20) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 30, 30 parts by weight of crystalline polylactic acid (PLVA20) modified with vinyl acetate and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees using a kneader, which is a compound kneader, to prepare a compound. . Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 31 ]Example 31
실시예 31은 폴리에틸렌글리콜말리에이트로 개질된 결정형 폴리락트산(PLEM20) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 31, 30 parts by weight of crystalline polylactic acid (PLEM20) modified with polyethylene glycol maleate and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees using a kneader, which is a compound kneader, for 5 minutes. Prepared. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
[ 실시예 32 ]Example 32
실시예 32는 알릴폴리우레탄으로 개질된 결정형 폴리락트산(PLAU20) 30중량부, 에틸렌비닐아세테이트(EVA) 70중량부를 컴파운드 혼련기인 니이더(kneader)를 이용하여 180도에서 5분간 혼련하여 컴파운드를 제조하였다. 이후 롤밀에서 상기 컴파운드 100 중량부에 대해 가교개시제 0.7 중량부, 발포제 4.5 중량부를 투입하여 균일하게 혼합시킨 후 4mm의 시트상 컴파운드를 제조한다. 이후 상기 시트상 컴파운드를 금형에 투입한후 170도, 150kg/cm2의 프레스 조건하에서 약 20분간 성형하여 발포체를 제조하였다. In Example 32, 30 parts by weight of crystalline polylactic acid (PLAU20) modified with allyl polyurethane and 70 parts by weight of ethylene vinyl acetate (EVA) were kneaded at 180 degrees for 5 minutes using a compound kneader, kneader, to prepare a compound. It was. Then, in a roll mill, 0.7 parts by weight of crosslinking initiator and 4.5 parts by weight of blowing agent are added to 100 parts by weight of the compound, and then uniformly mixed to prepare a 4 mm sheet-like compound. Thereafter, the sheet-like compound was introduced into a mold and then molded for about 20 minutes under a press condition of 170 degrees and 150 kg / cm 2 to prepare a foam.
이하 표 8을 참조하여 실시예 12, 실시예 13 및 실시예 14를 각각 조성을 달리하여 특성을 상세하게 비교설명한다. Hereinafter, with reference to Table 8, the characteristics of Example 12, Example 13, and Example 14, which are different from each other, will be described in detail.
표 8
평가항목 단위 비교예30 실시예31 실시예32
비중 g/cm3 0.22 0.20 0.20
인장강도 kg/cm2 26 22 23
신장률 % 420 460 450
인열강도 kg/cm 15.3 13.2 13.6
탄성력 % 39 35 38
Table 8
Evaluation item unit Comparative Example 30 Example 31 Example 32
importance g / cm 3 0.22 0.20 0.20
The tensile strength kg / cm 2 26 22 23
Elongation % 420 460 450
Tear strength kg / cm 15.3 13.2 13.6
Elasticity % 39 35 38
표 8에 도시된 바와 같이, 비교예 5에 비해, 실시예 30 내지 실시예 32는 인장강도가 높아지고, 신장률이 커지며, 탄성력도 큰 것을 알 수 있다. 즉, 개질된 폴리락트산(PLVA20, PLEM20, PLAU20)는 부드러운 물성을 보이므로, 내구성과 유연성이 우수하여 발포체 소재로 사용할 수 있도록 개질되어 있음을 알 수 있다. As shown in Table 8, compared with Comparative Example 5, Examples 30 to 32 can be seen that the tensile strength is high, the elongation is increased, the elastic force is also large. That is, since the modified polylactic acid (PLVA20, PLEM20, PLAU20) shows a soft physical properties, it can be seen that it is modified to be used as a foam material with excellent durability and flexibility.
그리고, 상기 생분해성 발포체 조성물의 제조반응 중 가소제가 더 추가될 수 있다. 상기 가소제는, 하이드록시카본엑시드에스터(hydroxycarboxylic acid ester)계 가소제로써, 트리부틸아세틸시트레이트 (tributyl o-acetylcitrate), 트리에틸아세틸시트레이트 (triethyl oacetylcitrate), 트리부틸시트레이트 (tributyl citrate) 중에서 단독 혹은 병용하여 사용될 수 있다. In addition, a plasticizer may be further added during the preparation of the biodegradable foam composition. The plasticizer is a hydroxycarboxylic acid ester-based plasticizer, which may be used alone in tributyl o-acetylcitrate, triethyl oacetylcitrate, and tributyl citrate. Or in combination.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.
본 발명인 폴리락트산의 개질제, 폴리락트산 개질제 제조방법, 이를 이용한 폴리락트산 개질방법, 개질된 폴리락트산을 이용한 생분해성 발포체 조성물 및 생분해성 발포체 조성물을 이용한 신발용 발포체에서는 폴리락트산을 사용할 때 보다 인장강도 및 탄성률은 낮아지고, 신장률은 높아져 부드러운 물성을 보이며, 내구성과 유연성이 우수하고 생분해특성이 우수하여 생분해성 신발 중창용 발포재료로서 사용이 가능하다. In the present invention, a polylactic acid modifier, a polylactic acid modifier manufacturing method, a polylactic acid reforming method using the same, a biodegradable foam composition using a modified polylactic acid and a shoe foam using a biodegradable foam composition than the use of polylactic acid in tensile strength and It has low elastic modulus, high elongation, soft properties, excellent durability and flexibility, and excellent biodegradability, so it can be used as a foam material for biodegradable shoe midsole.

Claims (22)

  1. 폴리락트산(Poly Lactic Acid)에 개질제를 사용하여 폴리락트산을 개질함에 있어서,In modifying polylactic acid using a modifier to polylactic acid,
    하기 화학식 1의 화합물로 구성되는 것을 특징으로 하는 폴리락트산의 개질제.Modifier of polylactic acid, characterized in that consisting of the compound of formula (1).
    [ 화학식 1 ] [ Formula 1]
    Figure PCTKR2014002138-appb-I000015
    Figure PCTKR2014002138-appb-I000015
    (R1과 R2는 다음의 화학식 2 내지 화학식 7 중 하나로 구성된다)(R 1 and R 2 are composed of one of the following Chemical Formulas 2 to 7)
    [ 화학식 2 ][Formula 2]
    Figure PCTKR2014002138-appb-I000016
    Figure PCTKR2014002138-appb-I000016
    (화학식 2에서 R3는 수소 또는 메틸기이고, R4는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 2, R 3 is hydrogen or methyl group, R 4 is hydrogen or alkyl group of C 1 to C 8 , n is 1 to 20)
    [ 화학식 3 ][Formula 3]
    Figure PCTKR2014002138-appb-I000017
    Figure PCTKR2014002138-appb-I000017
    (화학식 3에서 R5는 수소 또는 C1 내지 C8인 알킬기이고, n은 1 내지 20이다)(In Formula 3, R 5 is hydrogen or an alkyl group of C 1 to C 8 , n is 1 to 20)
    [ 화학식 4 ][Formula 4]
    Figure PCTKR2014002138-appb-I000018
    Figure PCTKR2014002138-appb-I000018
    (화학식 4에서 R6은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 4, R 6 is hydrogen or an alkyl group of C 1 to C 8 , l + m + n is 3 to 20)
    [ 화학식 5 ][Formula 5]
    Figure PCTKR2014002138-appb-I000019
    Figure PCTKR2014002138-appb-I000019
    (화학식 5에서 R7과 R8은 수소 또는 C1 내지 C8인 알킬기이고, l+m+n은 3 내지 20이다)(In Formula 5, R 7 and R 8 are hydrogen or an alkyl group having 1 to C 8 , and l + m + n is 3 to 20.)
    [ 화학식 6 ][Formula 6]
    Figure PCTKR2014002138-appb-I000020
    Figure PCTKR2014002138-appb-I000020
    (화학식 6에서 R9와 R10은 수소 또는 메틸기이고, R11은 수소 또는 C1 내지 C8인 알킬기이고, m+n은 2 내지 20이다)(In Formula 6, R 9 and R 10 are hydrogen or a methyl group, R 11 is hydrogen or an alkyl group of C 1 to C 8 , m + n is 2 to 20)
    [ 화학식 7 ][Formula 7]
    Figure PCTKR2014002138-appb-I000021
    Figure PCTKR2014002138-appb-I000021
    (화학식 7에서 R12와 R13은 수소 또는 메틸기이고, R14은 수소 또는 C1 내지 C8인 알킬기이고, 1+m은 2 내지 20이고, n은 1 내지 5이다)(In formula 7, R 12 and R 13 are hydrogen or a methyl group, R 14 is hydrogen or an alkyl group having 1 to 8 , 1 + m is 2 to 20, n is 1 to 5)
  2. 폴리락트산(Poly Lactic Acid)에 개질제를 사용하여 폴리락트산을 개질함에 있어서,In modifying polylactic acid using a modifier to polylactic acid,
    폴리에틸렌글리콜모노올, 폴리에틸렌글리콜디올, 폴리에틸렌글리콜트리올 중 어느 하나와 무수말레산이 에스테르화 반응에 의해 형성되는 것을 특징으로 하는 폴리락트산의 개질제 제조방법.A method for producing a polylactic acid modifier, wherein any one of polyethylene glycol monool, polyethylene glycol diol, and polyethylene glycol triol and maleic anhydride are formed by an esterification reaction.
  3. 폴리락트산을 제 1항의 개질제를 이용하여 개질하는 것을 특징으로 하는 폴리락트산의 개질방법.A method for modifying polylactic acid, characterized in that the polylactic acid is modified using the modifier of claim 1.
  4. 제 3항에 있어서,The method of claim 3, wherein
    중합시 개시제를 더 투입하여 반응시키는 것을 특징으로 하는 폴리락트산의 개질방법.The method of reforming polylactic acid, characterized in that the reaction is further added to the initiator during the polymerization.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 개시제는, The initiator,
    2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2- 아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 사용되는 것을 특징으로 하는 폴리락트산의 개질방법.2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisobutyronitrile, 2,2-azodi (2-methylbutyronitrile), 1,1-azobis (sia) Nacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis (tertbutylperoxy ) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl peroxide, bis (tertbutylperoxyiso) Propyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, tertbutylperoxybenzoate, lauryl per Process for reforming polylactic acid, characterized in that used as one or more of oxides, dicumyl peroxide.
  6. 제 3항의 개질된 폴리락트산과, 혼합기재를 포함하고, 이들의 발포 중합에 의해 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising the modified polylactic acid of claim 3 and a mixed base, and constituted by their foam polymerization.
  7. 제 6항에 있어서,The method of claim 6,
    상기 혼합기재는, The mixed substrate,
    에틸렌비닐아세테이트 공중합체, 스티렌이소프렌스티렌 공중합체 또는 에틸렌메타크릴레이트 공중합체 중 하나 이상으로 이루어지는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising at least one of an ethylene vinyl acetate copolymer, a styrene isoprene styrene copolymer or an ethylene methacrylate copolymer.
  8. 제 6항에 있어서, The method of claim 6,
    상기 중합시 가교개시제 및 발포제를 더 포함하여 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.Biodegradable foam composition, characterized in that further comprises a cross-linking initiator and a blowing agent during the polymerization.
  9. 제 8항에 있어서,The method of claim 8,
    상기 가교개시제는, The crosslinking initiator,
    2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl Peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, A biodegradable foam composition comprising at least one of tertbutyl peroxybenzoate, lauryl peroxide and dicumyl peroxide.
  10. 제 8항에 있어서,The method of claim 8,
    상기 발포제는,The blowing agent,
    아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제 중 하나 이상으로 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising at least one of an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  11. 제 6항의 생분해성 발포체 조성물을 포함하여 구성되는 것을 특징으로 하는 신발용 발포체.A foam for footwear comprising the biodegradable foam composition of claim 6.
  12. 폴리락트산(Poly Lactic Acid)를 이중결합을 가지는 분자로 중합하여 개질하는 것을 특징으로 하는 폴리락트산의 개질방법.A method of modifying polylactic acid, characterized in that the polylactic acid (Poly Lactic Acid) is polymerized and modified by a molecule having a double bond.
  13. 제 12항에 있어서,The method of claim 12,
    상기 이중결합을 가지는 분자는, 아크릴레이트 (Acrylate, CH2=CH-CO-), 메타크릴레이트 (Methacrylate, CH2=C(CH3)-CO-), 비닐(Vinyl, CH2=CH- 또는 -CH=CH-), 말리에이트 (Maleate, -CO-CH=CH-CO-), 스티렌 (styrene, CH2=CH(C6H5)), 알릴 (Allyl, CH2=CH-O-) 중 하나 이상이 포함되어 있는 분자인 것을 특징으로 하는 폴리락트산의 개질방법.The molecule having the double bond is an acrylate (CH 2 = CH-CO-), methacrylate (Methacrylate, CH 2 = C (CH 3 ) -CO-), vinyl (Vinyl, CH 2 = CH- Or -CH = CH-), maleate (Maleate, -CO-CH = CH-CO-), styrene (styrene, CH 2 = CH (C 6 H 5 )), allyl (Allyl, CH 2 = CH-O -) A method for modifying polylactic acid, characterized in that the molecule contains at least one of.
  14. 제 12항에 있어서,The method of claim 12,
    상기 중합반응은,The polymerization reaction,
    건식으로 반응이 이루어지는 것을 특징으로 하는 폴리락트산의 개질방법.A method for reforming polylactic acid, characterized in that the reaction is carried out dry.
  15. 제 12항에 있어서,The method of claim 12,
    중합시 개시제를 더 투입하여 반응시키는 것을 특징으로 하는 폴리락트산의 개질방법.The method of reforming polylactic acid, characterized in that the reaction is further added to the initiator during the polymerization.
  16. 제 15항에 있어서,The method of claim 15,
    상기 개시제는, The initiator,
    2,2 아조비스(2,4-디메틸발러로니트릴), 2,2-아조비스이소브티로니트릴, 2,2-아조디(2-메틸브티로니트릴), 1,1-아조비스(시아나시클로헥산), 디메틸-2,2- 아조비스(2-메틸프로피오네이트), 1-((시아노-1-메틸에틸)아조)포름어마이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 사용되는 것을 특징으로 하는 폴리락트산의 개질방법.2,2 azobis (2,4-dimethylvaleronitrile), 2,2-azobisisobutyronitrile, 2,2-azodi (2-methylbutyronitrile), 1,1-azobis (sia) Nacyclohexane), dimethyl-2,2-azobis (2-methylpropionate), 1-((cyano-1-methylethyl) azo) formamide, 2,5-bis (tertbutylperoxy ) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl peroxide, bis (tertbutylperoxyiso) Propyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, tertbutylperoxybenzoate, lauryl per Process for reforming polylactic acid, characterized in that used as one or more of oxides, dicumyl peroxide.
  17. 제 12항의 개질된 폴리락트산과, 혼합기재를 포함하고, 이들의 발포 중합에 의해 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising the modified polylactic acid of claim 12 and a mixed base and constituted by their foam polymerization.
  18. 제 17항에 있어서,The method of claim 17,
    상기 혼합기재는, The mixed substrate,
    에틸렌비닐아세테이트 공중합체, 스티렌이소프렌스티렌 공중합체 또는 에틸렌메타크릴레이트 공중합체 중 하나 이상으로 이루어지는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising at least one of an ethylene vinyl acetate copolymer, a styrene isoprene styrene copolymer or an ethylene methacrylate copolymer.
  19. 제 17항에 있어서, The method of claim 17,
    상기 중합시 가교개시제 및 발포제를 더 포함하여 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.Biodegradable foam composition, characterized in that further comprises a cross-linking initiator and a blowing agent during the polymerization.
  20. 제 19항에 있어서,The method of claim 19,
    상기 가교제는, The crosslinking agent,
    2,5-비스(터트부틸퍼옥시)-2,5-디메틸-3-헥엔, 디터트부틸퍼옥사이드, 2,5-비스(터트부틸퍼옥시)-2,5-디메틸-헥엔, 디벤조일퍼옥사이드, 비스(터트부틸퍼옥시이소프로필)벤젠, 부틸4,4-비스(터트부틸퍼옥시)발러레이트, 1,1-비스(터트부틸퍼옥시)3,3,5-트리메틸클로로헥산, 터트부틸퍼옥시벤조에이트, 라우릴퍼옥사이드, 디큐밀퍼옥사이드 중 하나 이상으로 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.2,5-bis (tertbutylperoxy) -2,5-dimethyl-3-hexene, ditertbutyl peroxide, 2,5-bis (tertbutylperoxy) -2,5-dimethyl-hexene, dibenzoyl Peroxide, bis (tertbutylperoxyisopropyl) benzene, butyl 4,4-bis (tertbutylperoxy) valerate, 1,1-bis (tertbutylperoxy) 3,3,5-trimethylchlorohexane, A biodegradable foam composition comprising at least one of tertbutyl peroxybenzoate, lauryl peroxide and dicumyl peroxide.
  21. 제 19항에 있어서,The method of claim 19,
    상기 발포제는,The blowing agent,
    아조디카본아미드계 발포제 또는 디니트로소펜타메틸렌테트라아민계 발포제 중 하나 이상으로 구성되는 것을 특징으로 하는 생분해성 발포체 조성물.A biodegradable foam composition comprising at least one of an azodicarbonamide blowing agent or a dinitrosopentamethylenetetraamine blowing agent.
  22. 제 17항의 생분해성 발포체 조성물을 포함하여 구성되는 것을 특징으로 하는 신발용 발포체.A foam for footwear comprising the biodegradable foam composition of claim 17.
PCT/KR2014/002138 2013-03-13 2014-03-13 Poly lactic acid modifier, method for preparing poly lactic acid modifier, method for modifying poly lactic acid using same, biodegradable foam composition using modified poly lactic acid, and foam for shoes using biodegradable foam composition WO2014142590A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130026591A KR101563397B1 (en) 2013-03-13 2013-03-13 A Reforming Method of Poly Lactic Acid, A Bio Degradable Compounds for Foam Using therof and A Foam for Shoes Using therof
KR10-2013-0026591 2013-03-13
KR1020130050990A KR101455528B1 (en) 2013-05-07 2013-05-07 A Modifying Agent for Poly Lactic Acid, A Manufacturing Method of Modifying Agent for Poly Lactic Acid, A Modifying Method of Poly Lactic Acid Using thereof, A Bio Degradable Compounds for Foam Using therof and A Foam for Shoes Using therof
KR10-2013-0050990 2013-05-07

Publications (1)

Publication Number Publication Date
WO2014142590A1 true WO2014142590A1 (en) 2014-09-18

Family

ID=51537127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002138 WO2014142590A1 (en) 2013-03-13 2014-03-13 Poly lactic acid modifier, method for preparing poly lactic acid modifier, method for modifying poly lactic acid using same, biodegradable foam composition using modified poly lactic acid, and foam for shoes using biodegradable foam composition

Country Status (1)

Country Link
WO (1) WO2014142590A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409551A (en) * 2020-11-26 2021-02-26 四会市邦得利化工有限公司 Degradable polylactic resin film-forming emulsion and preparation method and application thereof
CN113943405A (en) * 2021-05-08 2022-01-18 天津科技大学 Crease self-repairing polylactic acid film
CN114106310A (en) * 2021-12-30 2022-03-01 华东理工大学 High-crystallization heat-resistant polylactic acid material and preparation method thereof
CN114685882A (en) * 2022-04-03 2022-07-01 杭州师范大学 Reactive micro-crosslinked elastomer and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079954A (en) * 2000-03-14 2002-10-19 킴벌리-클라크 월드와이드, 인크. Water-responsive films and articles comprising a blend of polylactide and polyvinyl alcohol
JP2004211041A (en) * 2002-11-15 2004-07-29 Yasuhara Chemical Co Ltd Biodegradability modifier and composition of the same
KR20110057483A (en) * 2009-11-24 2011-06-01 한국신발피혁연구소 Composition of foam midsole compound can adhere with non-uv and preparing method of foam midsole using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079954A (en) * 2000-03-14 2002-10-19 킴벌리-클라크 월드와이드, 인크. Water-responsive films and articles comprising a blend of polylactide and polyvinyl alcohol
JP2004211041A (en) * 2002-11-15 2004-07-29 Yasuhara Chemical Co Ltd Biodegradability modifier and composition of the same
KR20110057483A (en) * 2009-11-24 2011-06-01 한국신발피혁연구소 Composition of foam midsole compound can adhere with non-uv and preparing method of foam midsole using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409551A (en) * 2020-11-26 2021-02-26 四会市邦得利化工有限公司 Degradable polylactic resin film-forming emulsion and preparation method and application thereof
CN113943405A (en) * 2021-05-08 2022-01-18 天津科技大学 Crease self-repairing polylactic acid film
CN114106310A (en) * 2021-12-30 2022-03-01 华东理工大学 High-crystallization heat-resistant polylactic acid material and preparation method thereof
CN114685882A (en) * 2022-04-03 2022-07-01 杭州师范大学 Reactive micro-crosslinked elastomer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2014142590A1 (en) Poly lactic acid modifier, method for preparing poly lactic acid modifier, method for modifying poly lactic acid using same, biodegradable foam composition using modified poly lactic acid, and foam for shoes using biodegradable foam composition
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2022065843A1 (en) Biodegradable super absorbent polymer and preparation method therefor
WO2018236192A1 (en) Composition for forming environmentally friendly polyurethane foam and method for manufacturing polyurethane foam
WO2023018307A1 (en) Resin, preparation method therefor, resin composition, and molded product
WO2019093703A1 (en) Thermoplastic resin composition
WO2021054771A1 (en) Phosphorous-containing resin endcapped with unsaturated group, preparation method therefor, and resin composition comprising phosphorous-containing resin endcapped with unsaturated group
WO2021141236A1 (en) Biodegradable resin composition having improved mechanical properties, moldability, and weather resistance, and preparation method therefor
WO2018124585A1 (en) Polyester resin, preparation method therefor, and copolymer polyester film manufacturing method using same
WO2015119443A1 (en) Ester compound, plasticizer composition comprising same, method for manufacturing ester composition, and resin composition comprising ester composition
WO2022035071A1 (en) Transparent thermoplastic resin and method for preparing same
WO2023277347A1 (en) Tricyclodecane dimethanol composition and method for preparing same
WO2016122144A1 (en) Modified isobutylene-isoprene rubber, production method for same and cured material of same
WO2024128707A1 (en) Biodegradable polyester resin and preparation method therefor
WO2023121283A1 (en) Copolymer polyester resin and preparation method therefor
WO2022080938A1 (en) Polycarbonate and method for preparing same
WO2023106707A1 (en) Degradable polyester resin and manufacturing method thereof
WO2019143200A1 (en) Thermoplastic polyurethane composition for powder slush molding, preparation method therefor, and automotive interior skin material manufactured using same
WO2023075300A1 (en) Biodegradable polyester resin, manufacturing method therefor, and biodegradable polyester film including same
WO2023239039A1 (en) Biodegradable polyester resin composition, biodegradable polyester film comprising same, and biodegradable molded article comprising same
WO2023113509A1 (en) Copolymerized polyester resin and preparation method thereof
WO2024085502A1 (en) Resin composition comprising polyesteramide resin and molded article thereof
WO2024053804A1 (en) Resin and method for manufacturing same
WO2024117865A1 (en) Composition for biodegradable film, biodegradable film comprising same, and method for manufacturing biodegradable film
WO2022085845A1 (en) Naturally derived biodegradable resin composition having improved mechanical properties, formability and weather resistance and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14764839

Country of ref document: EP

Kind code of ref document: A1