WO2014142491A1 - 스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치 - Google Patents

스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치 Download PDF

Info

Publication number
WO2014142491A1
WO2014142491A1 PCT/KR2014/001954 KR2014001954W WO2014142491A1 WO 2014142491 A1 WO2014142491 A1 WO 2014142491A1 KR 2014001954 W KR2014001954 W KR 2014001954W WO 2014142491 A1 WO2014142491 A1 WO 2014142491A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
compensation
cell
state
message
Prior art date
Application number
PCT/KR2014/001954
Other languages
English (en)
French (fr)
Inventor
최혜영
정재훈
이은종
조희정
한진백
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP14763829.0A priority Critical patent/EP2975886B1/en
Priority to CN201480013434.3A priority patent/CN105144799B/zh
Priority to KR1020157022090A priority patent/KR20150135225A/ko
Priority to JP2015561277A priority patent/JP6462597B2/ja
Priority to US14/770,772 priority patent/US9681347B2/en
Publication of WO2014142491A1 publication Critical patent/WO2014142491A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a small cell-based wireless access system, and more particularly, to a method and apparatus for determining an energy saving compensation cell for a small cell to be turned on and off when the small cell is dynamically turned on and off.
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • wireless access systems have various types of small cells, such as small cells (eg, micro cells, pico cells, femto cells, etc.).
  • small cells eg, micro cells, pico cells, femto cells, etc.
  • the structure of the wireless access network is changing as it works with (Macro Cell). This is because a high data rate is provided in terms of end user terminals (UEs) in a situation where a multi-layer cell of a vertical layer in which a conventional macro cell is basically involved is mixed, thereby providing a quality of experience (QoE). Aims to promote).
  • UEs end user terminals
  • the appearance of such a small cell can have a great impact on the current remote area network (RAN).
  • the on-off characteristic of the small cell may affect the arrangement of the macrocell in view of energy saving.
  • An object of the present invention is to provide a method for efficiently managing the power of a small cell in a small cell environment.
  • Another object of the present invention is to provide methods for determining a compensation cell for compensating coverage of an on-off cell when the on-off cell is dynamically turned on or off.
  • Still another object of the present invention is to provide a method for minimizing interference generated in a neighboring cell due to the increase or decrease of power when the small cell is on or off.
  • the present invention relates to a small cell-based wireless access system, and more particularly, to a method and apparatus for determining an energy saving compensation cell for a small cell to be turned on and off when the small cell is dynamically turned on and off.
  • a method for determining an energy saving (ES) compensation cell in a wireless access system includes: transmitting an ES compensation candidate request message to determine whether an ES compensation state can be switched from a first base station to a second base station; And an ES candidate cell response message indicating receiving an ES compensation candidate response message indicating switching to an ES compensation state from a second base station and an ES status cell list indicating a third base station to additionally switch to an ES state from the second base station. And receiving an ES compensation cell based on the ES compensation candidate response message and the cell list. At this time, the first base station is an on-off cell to switch to the ES state.
  • ES energy saving
  • the method includes transmitting an ES compensation cell indicator message including timer information indicating when to enter an ES compensation state to inform an ES compensation cell determined by the first base station, and the first base station transmitting an ES compensation state from the ES compensation cell.
  • the method may further include receiving an ES compensation completion indicator message indicating that the switching is completed, and switching to an ES state after the first base station receives the ES compensation completion indicator message.
  • the ES compensation complete indicator message includes timer information indicating the time to enter the ES state
  • the first base station may switch to the ES state before the timer information expires.
  • the first base station can transmit an ES state transition message for instructing one or more terminals in the cell area of the first base station to perform a handover to the ES compensation cell.
  • the ES candidate cell indicator message further includes an ES compensation cell list indicating one or more fourth base stations to transition to the ES compensation state, wherein the first base station is an ES compensation cell based on the ES status cell list and the ES compensation cell list. Can be determined.
  • the first base station, the second base station, the third base station and the fourth base station may be small cells included in one small cell cluster.
  • a small cell cluster may be defined as a group of small cells covering each traffic dense area (eg, a hotspot).
  • the second base station may be a neighbor base station of the first base station
  • the third base station may be a neighbor base station of the second base station
  • the fourth base station may be a neighbor base station of the third base station.
  • a first base station for determining an energy saving (ES) compensation cell in a wireless access system may include a transmitter, a receiver and a processor for determining an ES compensation cell.
  • ES energy saving
  • the processor controls and transmits an ES compensation candidate request message to the second base station to determine whether the switch to the ES compensation state is possible; Control and receive an ES compensation candidate response message indicating a transition from the second base station to an ES compensation state; Control and receive an ES candidate cell indicator message including an ES state cell list indicating third base stations to additionally transition to an ES state from a second base station; It may be configured to determine the ES compensation cell based on the ES compensation candidate response message and the cell list.
  • the first base station may be an on-off cell to switch to the ES state.
  • the processor transmits an ES compensation cell indicator message including timer information indicating a time to enter an ES compensation state by controlling a transmitter to inform the ES compensation cell determined by the processor; Controlling and receiving an ES compensation complete indicator message indicating that the transition from the ES compensation cell to the ES compensation state is completed; And may be configured to transition to an ES state after receiving an ES compensation complete indicator message.
  • the ES compensation complete indicator message includes timer information indicating a time to enter the ES state
  • the first base station may switch to the ES state before the timer information expires.
  • the processor may be further configured to transmit an ES state transition message for instructing one or more terminals in the cell area of the first base station to perform a handover to the ES compensation cell.
  • the ES candidate cell indicator message further includes an ES compensation cell list indicating one or more fourth base stations to transition to the ES compensation state, wherein the first base station is an ES compensation cell based on the ES status cell list and the ES compensation cell list. Can be determined.
  • the first base station, the second base station, the third base station and the fourth base station may be small cells included in one small cell cluster.
  • the second base station may be a neighbor base station of the first base station
  • the third base station may be a neighbor base station of the second base station
  • the fourth base station may be a neighbor base station of the third base station.
  • a compensation cell for compensating coverage of the on-off cell can be efficiently determined.
  • the interference generated in the neighboring cells may be minimized due to the increase or decrease of power.
  • FIG. 1 is a diagram illustrating a network structure of an E-UMTS.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FIG. 3 is a diagram illustrating a control plane and a user plane (U-Plane, User-Plane) structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard. .
  • FIG. 4 is a diagram illustrating an example of heterogeneous network deployment.
  • FIG. 5 is a diagram illustrating an example of network deployment in accordance with various processing capacity requests for energy saving purposes.
  • FIG. 5A illustrates a peak traffic environment
  • FIG. 5B illustrates an off-peak traffic environment.
  • FIG. 6 is a diagram illustrating one method of adjusting an compensation cell by an on-off cell as a one-step power adjustment method.
  • FIG. 7 is a diagram illustrating another one of an on-off cell determining a compensation cell as a one-step power adjustment method.
  • FIG. 9 is a diagram illustrating one method of determining a compensation cell by an on-off cell as a multi-step power adjustment method.
  • FIG. 10 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method. Referring to FIG. 10
  • FIG. 11 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method.
  • FIG. 12 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method.
  • the apparatus described with reference to FIG. 13 is a means by which the methods described with reference to FIGS. 1 to 12 may be implemented.
  • Embodiments of the present invention relate to a method and apparatus for dynamically controlling power for a small cell in a small cell based network system.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of a network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a terminal in a network consisting of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • the term terminal may also be referred to as a mobile station (MS), a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, or an advanced mobile station (AMS). ), Etc. may be substituted.
  • MS mobile station
  • UE user equipment
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • Etc. may be substituted.
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a terminal may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a terminal may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), and single carrier frequency division multiple access (SC-FDMA). It can be used in various radio access systems such as.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • UMTS is a third generation (3G) asynchronous mobile communication system that operates on European system-based Broadband Code Division Multiple Access (WCDMA), Global System for Mobile Communications (GSM) and General Packet Radio Service (GPRS).
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • E-UTRA Evolved UTRA
  • the "cell” described in the embodiments of the present invention may be basically configured by a combination of downlink resources and optionally uplink resources.
  • linking between a carrier frequency for downlink resources and a carrier frequency for uplink resources is specified in system information (SI) transmitted as downlink resources.
  • SI system information
  • the small cell cluster may be defined as a group of small cells that cover each traffic density area (eg, a hotspot).
  • messages having the same name are composed of fields or parameters having the same message format and performing the same function unless otherwise defined.
  • FIG. 1 is a diagram illustrating a network structure of an E-UMTS.
  • the E-UMTS system is an evolution from the WCDMA UMTS system and is undergoing basic standardization work in the 3rd Generation Partnership Project (3GPP).
  • E-UMTS is also called a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • an E-UMTS is mainly composed of an access gateway (AG) located at an end of a user equipment (UE), a base station, and an network (E-UTRAN) and connected to an external network.
  • AG access gateway
  • UE user equipment
  • E-UTRAN network
  • a base station can transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the AG may be divided into a part that handles user traffic and a part that handles control traffic.
  • a new interface may be used to communicate with each other between the AG for processing new user traffic and the AG for controlling traffic.
  • One or more cells exist in one eNB.
  • An interface for transmitting user traffic or control traffic may be used between eNBs.
  • CN Core Network
  • AG manages the mobility of the terminal in units of a tracking area (TA).
  • the TA is composed of a plurality of cells, and when the UE moves from one TA to another, the AG notifies the AG of the change of the TA.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the E-UTRAN system is an evolution from the existing UTRAN system.
  • the E-UTRAN consists of base stations (eNBs) and the eNBs are connected via an X2 interface.
  • X2 user plane interface (X2-U) is defined between eNBs.
  • the X2-U interface provides non guaranteed delivery of user plane PDUs.
  • An X2 control plane interface (X2-CP) is defined between two neighboring eNBs.
  • X2-CP performs functions such as context transfer between eNBs, control of user plane tunnel between source eNB and target eNB, delivery of handover related messages, and uplink load management.
  • the eNB is connected to the terminal through a wireless interface and is connected to the Evolved Packet Core (EPC) through the S1 interface.
  • the S1 user plane interface (S1-U) is defined between the eNB and the S-GW (Serving Gateway).
  • the S1 control plane interface (S1-MME) is defined between the eNB and the Mobility Management Entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, MME load balancing function, and the like.
  • EPS evolved packet system
  • NAS non-access stratum
  • FIG. 3 is a diagram illustrating a control plane and a user plane (U-Plane, User-Plane) structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard. .
  • the air interface protocol is horizontally composed of a physical layer, a data link layer, and a network layer, and vertically a user plane for transmitting data information. It is divided into User Plane and Control Plane for Control Signaling.
  • the protocol layer of FIG. 2 is based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (first layer). Three layers).
  • OSI Open System Interconnection
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the functionality of the RLC layer may be implemented as a functional block inside the MAC. In this case, the RLC layer may not exist.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit an IP packet such as IPv4 or IPv6 over a narrow bandwidth interface. .
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane, and the configuration, re-configuration, and release of radio bearers (RBs) are performed. It is in charge of controlling logical channels, transport channels and physical channels.
  • RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
  • the RRC layer exchanges RRC messages between the terminal and the network. If there is an RRC connected (RRC Connected) between the RRC layer of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the eNB is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 4 is a diagram illustrating an example of heterogeneous network deployment.
  • micro cells and pico cells which are small cells for low power / near-field communication, are used in a homogeneous network based on macro cells in order to more stably guarantee data services such as multimedia.
  • pico cells which are small cells for low power / near-field communication
  • a base station managing and covering a macro cell is defined as a macro base station (MeNB: Macro eNodeB), and a terminal operating in a macro cell of the macro base station is defined as a macro UE (MUE).
  • a base station managing and covering a picocell is called a pico base station (PeNB: Pico eNodeB), and a terminal scheduled in a pico cell of the pico base station is called a pico UE (PUE: Pico UE).
  • a base station that manages and covers a femtocell is called a femto base station (FeNB: Femto eNodeB), and a terminal scheduled from the femto base station is called a femto terminal.
  • FeNB Femto eNodeB
  • a terminal scheduled from the femto base station is called a femto terminal.
  • a plurality of microcells may coexist in one macro cell.
  • the microcells are allocated resources according to cell coordination and serve the corresponding UEs.
  • the microcells are divided into two types according to the connection method.
  • Open access subscriber group (OSG) type In the case of an OSG type microcell, a cell allowing a connection of an existing macro UE or other micro UEs can be handed over to its own cell or macrocell.
  • the OSG type may be referred to as a non close access subscriber group (NCSG).
  • CSG Cellular access Subscriber Group
  • a CSG type microcell means a cell which does not allow access of an existing macro terminal or other micro terminals without authentication. Therefore, handover to its own cell or macro base station is impossible.
  • Operation And Management (O & M) in mobile networks can contribute to energy savings by allowing operators to establish policies that maintain coverage, throughput and quality of service while minimizing energy consumption.
  • the impacts allowed on coverage, processing capacity and quality of service are determined by the policies of the operators.
  • ES cell When a specific cell is switched to an energy saving (ES) state, neighboring cells that cover the load of the ES cell instead of the ES state cell (hereinafter, referred to as ES cell) are needed. All traffic to the ES cell must be transferred to other overlay cells or umbrella cells before entering the ES state. However, the introduction of ES cells should not create coverage holes in the network or add excessive load to nearby cells.
  • ES cell energy saving
  • a cell in an ES state should not be considered a cell outage or fault condition.
  • the IRP manager shall not alarm for any conditions that arise as a result of the UE moving to the ES cell.
  • reusable energy sources eg wind, solar energy, etc.
  • ESM energy saving management
  • FIG. 5 is a diagram illustrating an example of network deployment in accordance with various processing capacity requests for energy saving purposes.
  • FIG. 5A illustrates a peak traffic environment
  • FIG. 5B illustrates an off-peak traffic environment.
  • operators may dynamically configure coverage of small cells in order to use smaller coverage areas per cell to increase processing capacity per geographic area in peak traffic environments.
  • some base stations may provide coverage for other nearby cells that transition to an energy saving state at off-pick time.
  • the base stations to switch to the ES state instructs the terminals currently associated to perform the handover to other neighbor cells.
  • the ES cells can then adjust the transmit power and other configuration parameters for their cell at off pick time.
  • modifying radio parameters to enable energy saving states and increase coverage for other cells at a particular base station depends on the relationships of other nearby cells, such as other nearby cells and frequency layouts (e.g., interference control, etc.). Can affect Based on certain scenarios, activating an energy saving state at the base station can result in a change of all radio-transmit-related functions in the area. For example, it may result in reduced energy consumption and implicitly additional energy savings.
  • Energy saving management may lead to an ideal result for the off-peak time shown in FIG.
  • one base station remains powered on (shown in an ES-Compensate state) and takes over coverage of neighboring base stations in an energy saving state (shown as eSaving).
  • the terminal may power on in the area of the base station in the ES state
  • only base stations overlaid by other base stations ie, service by one base station
  • the receiving area may also be covered by another base station
  • legacy systems eg, 2G / 3G systems
  • wireless coverage may be covered by an E-UTRAN having a different frequency. That is, the baseband overlay between frequency bands.
  • Base stations used in embodiments of the present invention may be classified into macrocells (wide area base stations), microcells (medium range base stations), picocells (local base stations), and femtocells (specialized for home base stations). This category of base stations can be applied to improve the inter-band base station overlay scenario.
  • the power of the cell may be turned on or off in consideration of the load of the cell for energy saving (ES) or interference adjustment / removal.
  • ES energy saving
  • interference adjustment / removal For example, different aspects of network load in a particular time and space appear, and signals transmitted by cells without a load (eg, synchronization signals and reference signals) are not only an energy waste but also an interference signal to adjacent cells. Works.
  • signals transmitted by cells without a load eg, synchronization signals and reference signals
  • the cell power can be turned on and off for the purpose of coordinating / removing the ES.
  • “off” the power of the cell may include both the case of completely turning off the power of a specific function or a network element of the cell, and the case of limiting the use of some radio resources. That is, in embodiments of the present invention, the range of turning off the power of the cell is not limited.
  • the cell when the cell is powered off, the cell may not perform both the downlink signal transmission and the uplink signal, or may perform only one of the downlink signal transmission and the uplink signal reception. have. For example, DL signal transmission may be performed and UL signals may not be received.
  • “On” power of a cell may include both a case where a cell in an off state completely turns on power of a specific function or a network element, a case in which some radio resources are used, and the like.
  • the cell when the cell is powered on, the cell may perform both downlink signal transmission and uplink signal reception, or only one of downlink signal transmission and uplink signal reception. For example, DL signal transmission may be performed and UL signals may not be received.
  • the on or off of the cell described in the embodiments of the present invention can be applied irrespective of such DL / UL signal transmission and reception.
  • the cell used in the embodiments of the present invention may be applied to both macrocells and small cells (eg, microcells, picocells, femtocells, etc.).
  • the fluctuation of the interference can be very large depending on the frequency of the cell power on and off.
  • interference fluctuation can be very large depending on the frequency of the cell power on and off.
  • interference between cells may be increased.
  • interference received by neighboring cells using the same frequency as that cell may increase.
  • the effect of interference caused by neighboring cells becomes greater as the specific cell turns on.
  • the amount of interference received by neighboring cells using the same frequency as the specific cell may be reduced.
  • the cell When the cell is turned on / off by adjusting the power of the cell, the cell can save energy. However, due to cell on / off, interference applied to other cells in the vicinity may be very large, and thus the effect on neighboring cells as well as the corresponding cell should be considered. In addition, due to power control of an arbitrary cell, some terminals may experience RLF (Radio Link Failure), so the effect on the terminal should be considered.
  • RLF Radio Link Failure
  • the cell area may be a coverage hole.
  • embodiments of the present invention provide a method for determining neighbor cells to compensate for coverage of an on-off cell when a cell to switch to an ES state turns power on / off.
  • a cell for turning on or off a cell to switch to an ES state may be defined as an on-off cell, an energy saving (ES) cell, a first cell, or a first base station.
  • a cell for compensating for coverage of an on / off cell may be defined as a compensation cell, an ES compensated cell, a second cell, or a second base station.
  • a cell for coordination with a macro cell ie, a small cell cluster header
  • the configuration of such cells may be configured by O & M when the on-off cell and the compensation cell are installed, by a macro cell or a network, or by a distribution method with small cells around. Information on such a small cell configuration may be exchanged when forming a backhaul between cells, or may be exchanged through signaling with other cells for dynamic cell on / off.
  • the neighboring compensation cells may switch to the ES compensation state to cover existing coverage of the cells turned off.
  • the power regulation of the on-off cells switching to the ES state and the compensation cells switching to the ES compensation state may be controlled in one step or multi-step.
  • the compensation cells around the on-off cells first switch to the ES compensation state before the on-off cells turn off and switch to the ES state, so that the coverage of the on-off cell can be covered. After that, the on-off cells transition to the ES state.
  • the on-off cells and the compensation cells can gradually turn on and off the coverage of the on-off cell by adjusting the power in the multi-step. That is, when the on-off cell is turned off, the compensation cell which covers a portion of the coverage to the ES compensation state is covered, and the power of the on-off cells may be gradually reduced.
  • a centralized method may be considered in which a central controller controls the operations of on and off cells and compensation cells.
  • load information and the like of all the cells must be transmitted to the controller. Therefore, such a centralization method may increase signal overhead and increase network load and complexity.
  • the backhaul between the macrocell, the small cell, and the small cell may be configured as a non-ideal backhaul or may not be configured as a backhaul. Therefore, in the case of the centralized method, it may not be possible to guarantee the delay during network adjustment, and the macro cell or the network may not adjust all the small cells. That is, in the situation where the small cell is dynamically turned on and off to save network energy, the area to be controlled / adjusted due to the small cell on and off may be limited when considering the coverage of the small cell.
  • FIG. 6 is a diagram illustrating one method of adjusting an compensation cell by an on-off cell as a one-step power adjustment method.
  • the first base station eNB1 is an on-off cell for turning off power
  • the second base station eNB2 and the third base station eNB3 form a small cell cluster with the first base station. That is, the second base station and / or the third base station may be an ES compensation cell or an on-off cell.
  • each of the second base station and the third base station is illustrated one by one.
  • the first base station which is an on-off cell, may determine to enter the off state of the cell, that is, enter the ES state when the load of the corresponding cell is low or no (S601).
  • the first base station requests ES compensation candidates from its neighbor cell, its small cell cluster unit, or predefined cells within the cluster to determine which cells are available for the ES compensation candidate cells that can be switched to the ES compensation state. candidate request) message can be sent.
  • the first base station transmits an ES compensation candidate request message to a second base station that is a neighbor base station (S603).
  • the ES compensation candidate request message includes a message type field (that is, an indicator indicating that the ES compensation candidate request message), a cell identifier (Cell ID) of a source eNB, a cell identifier of a destination eNB, and a source. Load information of the base station and the like.
  • the second base station receives the ES compensation candidate request message, the second base station confirms its load status and indicates whether it can operate as an ES compensation cell (ES compensated candidate response message) Send to the first base station. That is, the second base station may transmit an ES compensation candidate response message to the first base station when it determines that the cell of the first base station can be compensated by expanding its cell to cover the cell coverage of the first base station ( S605).
  • the ES compensation candidate response message may include a message type field (ie, an indicator indicating that the ES compensation candidate response message), a cell identifier (Cell ID) of the source base station, and a cell identifier of the target base station.
  • a message type field ie, an indicator indicating that the ES compensation candidate response message
  • Cell ID cell identifier
  • an ES compensated candidate failure message is sent in step S605 in response to the ES compensation candidate request message. Can be transferred. For example, if the capacity of the second base station cannot transition to the ES compensation state (i.e. its maximum transmit power level is low), or if the second base station also decides to switch to the ES state, The base station cannot switch to the ES compensation state.
  • the ES compensation candidate failure message may include a message type field (ie, an indicator indicating an ES compensation candidate failure message), a cell identifier of a source base station, a cell identifier of a target base station, a cause field indicating a cause of compensation failure, and the like. That is, compensation failure causes may be mapped to specific values according to a predefined method, and corresponding specific values may be mapped to the cause field according to a predefined method.
  • the first base station can check whether there are cells that can be switched to the ES compensation state by performing steps S603 and S605.
  • the first base station may determine all of the one or more second base stations that have transmitted the ES compensation candidate response message as ES compensation candidate cells, which are candidate cells capable of switching to the ES compensation state.
  • the first base station may determine only ES cells suitable for a predetermined specific condition among one or more second base stations which have transmitted the ES compensation candidate response message to determine the ES compensation candidate cells.
  • the first base station may determine the base station with the strongest signal among the second base stations or base stations whose signal strength exceeds a specific threshold value as an ES compensation candidate cell (S607).
  • the first base station may transmit an ES compensated candidate cell (s) indicator message to indicate one or more second base stations determined as ES compensation candidate cells (ES compensation candidate cell (s) indicator) (S609).
  • the ES compensation candidate cell indicator message may include a message type field (ie, an indicator indicating that the message is an ES compensation candidate cell indicator message), a cell identifier of a source base station, a cell identifier of a target base station, and the like. Steps S607 and S609 may be selectively performed.
  • An ES candidate request message may be transmitted to one or more third base stations in order to check whether there are more on-off cells to switch to the ES state in the vicinity (S611).
  • the one or more third base stations are small cells predefined in the neighbor cell of the second base station, the small cells of the small cell cluster to which the second base station belongs, or the small cell cluster (for example, configuration information of the macro cell).
  • the ES candidate request message may be composed of a message type field (ie, an indicator indicating that the ES candidate request message), a cell identifier of the source base station, a cell identifier of the destination base station, and the like.
  • the third base station having a low load or no load may decide to enter an ES state.
  • the third base station transmits an ES candidate response message to the second base station to inform that the third base station enters the ES state as a response to the ES candidate request message (S613).
  • the ES candidate response message may include a message type field (ie, an indicator indicating that the message is an ES candidate response message), a cell identifier of a source base station, a cell identifier of a target base station, and the like.
  • a message type field ie, an indicator indicating that the message is an ES candidate response message
  • the third base stations may transmit an ES candidate failure message to the second base station instead of the ES candidate response message in step S613 to indicate that the base station does not enter the ES state.
  • the ES candidate failure message may include a message type field (ie, an indicator indicating that the ES candidate failure message), a cell identifier of the source base station, a cell identifier of the target base station, and a cause field for indicating a cause of failure of the ES state transition.
  • the cause field may indicate a reason such as a heavy load of a cell or a lack of processing capacity due to dynamic on / off of a cell as a cause of an ES state transition failure.
  • the ES compensation cell ie, the second base station
  • the ES compensation cell Upon receiving the ES candidate response message, the ES compensation cell (ie, the second base station) sends an ES candidate cell indicator message including information about the third base stations to enter the ES state, to the first base station. Can be transmitted (S615).
  • the ES candidate cell indicator message includes a message type field (ie, an indicator indicating that the message is an ES candidate cell indicator message), a cell identifier for the cells that sent the ES candidate response message (ie, one or more third base stations), a source base station. It may include a cell identifier of, a cell identifier of the target base station and the like.
  • the first base station receiving the ES candidate cell indicator message may determine one or more ES compensation cells.
  • the third base stations that want to switch to the ES state around the ES compensation candidate cells may determine the ES compensation candidate cell having the largest number as the ES compensation cell (S617).
  • the first base station transmits an ES compensated cell indicator message to the one or more second base stations (that is, ES compensation cells) determined as the ES compensation cell to inform that the base station is determined to be an ES compensation cell. It transmits (S619).
  • the ES compensation cell indicator message includes a message type field (ie, an indicator indicating that the message is an ES compensation cell indicator message), a cell identifier of a source base station, a cell identifier of a target base station, and a timer indicating when and when an ES compensation cell switches to an ES compensation state.
  • Information e.g, a power value of the ES compensation cell, etc.
  • ES state cell list information indicating the third base stations to be switched to the ES state.
  • the second base station switches to the ES compensation state to cover the cell area of the first base station and / or the third base stations indicated in the ES state cell spreadsheet at the time and time indicated by the timer information. At this time, the second base station can extend the coverage by adjusting the transmit power to the power magnitude value indicated in the power parameter (S621).
  • the ES compensated complete indicator indicates that the second base station that has entered the ES compensated state can compensate for the cell coverage of the first base station and / or the third base station by switching to the ES compensated state. ) Transmits the message to the first base station and / or the third base station (S623a, S623b).
  • the ES compensation complete indicator message includes a message type field (ie, an indicator indicating that the ES compensation complete indicator), a cell identifier of the source base station, a cell identifier of the target base station, timer information indicating when and time to switch to the ES state, and an ES compensation completion indicator. It may include the cell identifier of the cell (ie, the second base station) that transmits the message.
  • the first base station and / or the third base station receiving the ES compensation complete indicator message may transmit an ES state transition message to inform the UEs serving the cell as the serving cell to switch to the ES state. (Not shown).
  • the ES state transition message includes a message type field (indicator indicating that it is an ES state transition message), timer information indicating a time and time to switch to the ES state, a cell list indicating ES compensation cells (second base stations), and the like.
  • the ES state transition message may be transmitted through the RRC signal.
  • the UE may know that the serving cell (eg, the first base station or the third base station) will switch to the ES state. Accordingly, the UE may perform handover to the ES compensation cell before the time and time indicated by the timer information included in the ES state transition message in its serving cell expire.
  • the serving cell eg, the first base station or the third base station
  • the first base station and / or the third base station transitioning to the ES state may perform a procedure for handing over the UE having its cell as the serving cell to the ES compensation cells before switching to the ES state.
  • the first base station and / or the third base station that has received the ES compensation completion indicator message may switch to the ES state before the timer time expires at the time indicated by the timer information (S625a, S625b). .
  • the first base station and / or the third base station may transmit an ES complete indicator message to the second base station indicating completion of the ES state transition to the ES compensation cell (not shown). ).
  • the ES completion indicator message may include a message type field (ie, an indicator indicating that the ES completion indication message), a cell identifier of the source base station, a cell identifier of the target base station, and the like.
  • the cell identifier used in the embodiments of the present invention includes a physical cell identifier (PCID) or a global cell identifier (GCID). Also, steps S607 and S609 of FIG. 6 may be selectively performed. If the steps S607 and S609 are not performed, the ES candidate request message is checked to determine whether there are cells to which the one or more second base stations that have received the ES compensation candidate request message in step S603 additionally enter the ES state. It can transmit to one or more third base stations. The operation then refers to the steps described in FIG. 6.
  • PCID physical cell identifier
  • GCID global cell identifier
  • All processes shown in FIG. 6 may be performed to determine cells (that is, second base stations) that are to be switched to the ES compensation state from the first base station determined to switch to the ES state. However, in such a case, signaling overhead that needs to be transmitted and received between cells may increase.
  • all of the cells (eg, the third base station) determined to enter the ES state perform the process of FIG. 6, several ES compensation cells may be determined for each cell determined to enter the ES state.
  • the ES compensation cells determined through the process as shown in FIG. 6 switch to the ES compensation state, that is, when the ES compensation cells use high transmission power to extend coverage, inter-cell interference may increase.
  • timer information may be included in messages transmitted to determine cells to transition to an ES compensation state (eg, an ES compensation candidate request message, an ES compensation candidate cell indicator message, and / or an ES candidate request message, etc.).
  • an ES compensation state eg, an ES compensation candidate request message, an ES compensation candidate cell indicator message, and / or an ES candidate request message, etc.
  • the cells that have received such messages have decided to switch to their ES state after receiving the message and before the time indicated by the timer information has elapsed, determining cells to switch to the ES compensation state from neighboring cells. It can be set not to perform the above-described process.
  • FIG. 7 is a diagram illustrating another one of an on-off cell determining a compensation cell as a one-step power adjustment method.
  • FIG. 7 The basic assumption of FIG. 7 is the same as that of FIG. 6. Therefore, the description of FIG. 7 will be described only for the parts different from FIG. 6. That is, the description of the steps S701 to S709 is replaced with the description of the steps S601 to S609 of FIG. 6.
  • the second base station which is an ES compensation cell, transmits an ES candidate request message to determine whether to switch to an additional ES state to neighboring base stations, small cell cluster units belonging to the second base station, or predefined small cells in the cluster. (S711).
  • the ES candidate request message may include a type field indicating that the message is an ES candidate request message, a cell identifier of the source base station, a cell identifier of the target base station, and a cell identifier of the first base station to switch to the ES state.
  • one or more third base stations may determine whether to switch to the ES state based on their load state. For example, the base stations among the third base stations may be switched to the ES state when the load is less than the reference value or the base stations without the load are not loaded.
  • the third base station to switch to the ES state may transmit an ES candidate response message in response to the ES candidate request message.
  • the third base station can recognize that the first base station is a cell that determines the ES compensation cell based on the cell identifier of the first base station included in the ES candidate request message, and will switch to the ES state. Accordingly, the third base station may transmit an ES candidate response message to the first base station (S713).
  • the third base stations that have decided not to switch to the ES state may transmit the ES candidate failure message to the first base station in step S713.
  • the ES candidate failure message indicates a message type field (ie, an indicator indicating that the ES candidate failure message), a cell identifier of the source base station, a cell identifier of the destination base station, a cell identifier of the cell that transmitted the ES candidate request message, and a cause indicating the cause of the ES failure.
  • a message type field ie, an indicator indicating that the ES candidate failure message
  • the cause field may be for reasons such as a heavy load of a cell or no capacity for dynamic on / off of a cell.
  • the first base station After receiving the ES candidate response message from the third base station, the first base station can determine the second base station to operate as an ES compensation cell in the cluster to which the first base station belongs (S715).
  • FIG. 8 shows an example of a small cell cluster structure.
  • 8A is a diagram illustrating a one-step power adjustment process
  • FIG. 8B is a diagram illustrating a multistep power adjustment process.
  • a cell in the middle is an ES compensation cell
  • a cell in an intermediate layer is an on-off cell to enter an ES state.
  • the ES compensation cell when the ES compensation cell is determined using the method described with reference to FIGS. 6 to 7, the ES compensation cell extends coverage to compensate for the area provided by the existing on / off cell and then turns on and off. The cell immediately turns off the power to enter the ES state.
  • the transmission power must be increased before the cells that switch to the ES state are switched to the ES in order to cover all of the on / off cells which are to be switched to the ES state. This operation can seriously generate interference for the on-off cell and the neighbor cells to be switched to the ES state.
  • the compensation cell to switch to the ES compensation state and the on-off cells to switch to the ES state can be controlled to adjust the power in a multi-step. That is, by setting the coverage area where the compensation cell and the on-off cell overlap in multiple steps than when the one-step power control method is applied, the influence of the interference can be reduced.
  • the on / off cell may gradually reduce power in several steps (three steps in FIG. 8) without immediately turning off the power.
  • the ES compensation cell may increase the transmission power in several steps.
  • the cells located at the outermost side may also operate as an ES compensation cell. This multi-step power regulation is to minimize the interference to the neighboring base station.
  • both the compensation cell to switch to the ES compensation state and the on-off cells to switch to the ES state gradually increases and decreases the transmission power. Therefore, in order to cover the coverage of on-off cells, unlike the conventional one-step power control method, all neighboring cells of all on-off cells that switch to the ES state may need to switch to the ES compensation state.
  • a process of asking whether the neighbor cells of the on-off cells which switch to the ES state may switch to the ES compensation state may be added. That is, the multi-step power adjustment method may operate similarly to the one-step power adjustment method except for the additional process.
  • a process of inquiring whether the neighbor cells of the on-off cells which switch to the ES state may switch to the ES compensation state may be performed.
  • a process of asking whether neighboring cells switch to the ES compensation state may be performed.
  • FIG. 9 is a diagram illustrating one method of determining a compensation cell by an on-off cell as a multi-step power adjustment method.
  • the first base station eNB1 is an on-off cell for turning off power
  • the second base station eNB2, the third base station eNB3, and the fourth base station eNB4 form a small cell cluster with the first base station.
  • the second base station, the third base station and / or the fourth base station may be an ES compensation cell or an on-off cell.
  • the second base station, the third base station, and the fourth base station are illustrated one by one, but a plurality of them may be used.
  • FIG. 9 shows the ES of neighboring cells (eg, the fourth base station) of cells (eg, the third base station) which further transition to the ES state before determining the ES compensation cell in the first base station which is the on-off cell. It relates to a method for performing a process of checking whether or not to switch to a compensation state.
  • a process of checking whether there is a small cell capable of becoming an ES compensation cell in addition to the second base station in the small cell cluster may be added in the process of performing the one-step power adjustment method described with reference to FIG. 6.
  • the third base station receiving the ES candidate request message in step S911 may transmit an ES compensate candidate request message for inquiring whether the fourth base station can switch to the ES compensation state.
  • the fourth base station may be a neighbor cell, cells in a small cell cluster unit to which the third base station belongs, or small cells predefined (eg, a cell configured from a macro cell) within the cluster (S913).
  • an ES compensation candidate response message indicating that the fourth base station can be switched to the ES compensation state may be transmitted to the third base station (S915).
  • the message format for the ES compensation candidate request message and the ES compensation candidate response message may be configured in the same format as the messages used in steps S603 and S605.
  • steps S917 to S931 may also be performed similarly to steps S615 to S625 described with reference to FIG. 6.
  • steps S615 to S625 described with reference to FIG. 6.
  • the third base station may transmit an ES candidate response message to the second base station, further including an ES compensation candidate cell list indicating the ES compensation candidate cells among the one or more fourth base stations.
  • the second base station may transmit an ES candidate cell indicator message including the ES compensation cell list and the ES state cell list for the third base stations to enter the ES state to the first base station. have.
  • the first base station may determine one or more ES compensation cells based on the ES compensation candidate cell list and the ES state cell list. For example, the first base station may determine the second base station and the fourth base station, which have many cells that switch to the ES state nearby, as ES compensation cells.
  • the first base station transmits an ES compensated cell (s) indicator message to inform that the second base station and the fourth base station are determined as ES compensation cells in steps S923a and S923b.
  • the first base station may transmit an ES cell (s) indicator message to inform that the third base station has been determined as the ES cell.
  • the ES cell indicator message may include a message type field (ie, an indicator indicating that the message is an ES cell indicator message), a cell identifier of a source base station, a cell identifier of a target base station, and the like (not shown). .
  • the first base station determines the transmission power to be reduced by itself and gives power to the second base station, the third base station, and the fourth base station about the power information and ES compensation for the transmission power to be reduced by the first base station.
  • Power information on transmit power that cells should increase and / or information about transmit power that a third base station should decrease as an ES cell may be additionally transmitted (not shown).
  • the second base station and the fourth base station that have received the ES compensation cell indicator message may switch to the ES compensation state before the timer expires based on the timer information included in the message (S925a, S925b).
  • the second base station and the fourth base station transmit an ES compensation complete indicator message to the first base station and / or the third base station.
  • the first base station switches to the ES state after receiving the ES compensation complete indicator message (S931a).
  • the third base station may switch to the ES state after receiving the ES compensation completion indicator message from the second base station that has transmitted the ES candidate request message and the fourth base station which has received the ES compensation candidate request message (S931b). .
  • the first base station and the third base station may switch to the ES state until the timer expires at the time indicated by the timer information based on the timer information included in the ES compensation complete indicator message.
  • the first base station and the third base station may transmit an ES state transition message to terminals having their cell as a serving cell (not shown).
  • the ES state transition message may include a message type field (indicator indicating that it is an ES state transition message), timer information indicating a time and time of transition to the ES state, a compensation cell list indicating ES compensation cells, and the like.
  • the ES state transition message may be transmitted to the terminal through the RRC signal.
  • the UE may know that the serving cell receiving the current service switches to the ES state after the time indicated by the timer information. Therefore, the UE may perform handover from its serving cell to the ES compensation cell before the timer expires.
  • the on-off cells that is, the first base station and the third base station
  • the on-off cells may perform a procedure for performing a HO to the ES compensation cell by the UE serving as its serving cell before switching to the ES state.
  • the second base station and / or the fourth base station switched to the ES compensation state may transmit the ES compensation completion indicator message to the first base station and / or the third base station which transmitted the ES compensation cell indicator message (S927a, S927b, S929a, S929b).
  • the first base station and / or the third base station which has received the ES compensation complete indication message may switch to the ES state (S931a and S931b).
  • the cell transmitting the ES compensation candidate request message mentioned above switches to an ES state among cells adjacent to the ES compensation code cells (for example, neighbor cells, cells in a small cell cluster unit, or small cells predefined within the cluster). By acquiring information about whether there are cells, cells which switch to an actual ES compensation state among ES compensation candidate cells may be determined.
  • cells adjacent to the ES compensation code cells for example, neighbor cells, cells in a small cell cluster unit, or small cells predefined within the cluster.
  • FIG. 10 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method. Referring to FIG. 10
  • the second base station transmits an ES candidate request message to the third base station.
  • the ES candidate request message may include information about the first base station (that is, the source base station) that transmitted the ES compensation candidate request message.
  • the third base station transmits an ES compensation candidate request message to a neighbor base station, a cell in the small cell cluster to which the third base station belongs, or a cell set by the macro base station (ie, the fourth base station) among the cells in the cluster. It is possible to inquire whether it is possible to switch to the compensation state (S1013).
  • the fourth base station may transmit an ES compensation candidate response message to the third base station (S1015).
  • the third base station receiving the ES compensation candidate response message may directly transmit the ES candidate response message to the first base station that is the on-off cell.
  • the ES candidate response message may include a compensation cell list indicating cells that switch to the ES compensation state among the fourth base stations (S1017).
  • the first base station receiving the ES candidate response message may determine the ES compensation cell in consideration of the compensation cell list and additionally the base stations to be switched to the ES state (S1019).
  • FIG. 11 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method.
  • FIG. 11 relates to a method of performing a process of asking whether neighboring cells of the cells which switch to the ES state after the ES compensation cell is determined by the first base station that is the on-off cell switch the ES compensation state.
  • the first base station After performing steps S1101 to S1115, the first base station, which is an on-off cell, may determine a compensation cell to switch to the ES compensation state in step S1117.
  • steps S1101 to S1117 are the same as steps S601 to S617 of FIG. 6.
  • the first base station transmits an ES compensation cell indicator message to inform the one or more second base stations determined as the ES compensation cell that it has been determined as the ES compensation cell (S1119).
  • the second base station Upon receiving the ES compensation cell indicator message, the second base station transmits the ES cell indicator message to the third base stations which have transmitted the ES candidate response message in step S1113.
  • the ES cell indicator message may include a message type field (ie, an indicator indicating that the message is an ES cell indicator message), a cell identifier of a source base station, a cell identifier of a target base station, etc. (S1121).
  • the third base station can recognize that the cell can switch to the ES state. Accordingly, the third base stations may determine neighbor cells of the third base stations, small cells of the small cell cluster to which the third base station belongs, or small cells predefined in the cluster to check whether there are more on-offsets to switch to the ES compensation state.
  • the ES compensation candidate request message may be transmitted to the clients (S1123).
  • the ES compensation candidate request message may be configured to include a field indicating a cell identifier of the second base station that transmitted the ES cell indicator message in the message format described with reference to FIG. 6.
  • the first base station determines the transmit power to be reduced by itself and informs the second base station about the power information about the transmit power to be reduced by the first base station and the transmit power that the second base station should increase.
  • the power information and / or the information about the transmission power that should be reduced by the third base station as an ES cell may be additionally transmitted.
  • the second base station may additionally transmit power information on the transmission power to be increased or power information on the transmission power to be increased by the third base station to the third base station (not shown).
  • the ES compensation candidate request message may further include a cell identifier of the second base station that has transmitted the ES cell indicator message and power information on the transmission power that should be increased by the third base station in the ES compensation candidate request message format described with reference to FIG. 6. Can be configured.
  • the cells capable of switching to the ES compensation state may transmit the ES compensation candidate response message to the third base station and / or the ES cell indicator message which transmitted the ES compensation candidate request message. It can transmit to the transmitted second base station (S1125a, S1125b).
  • the second base station determined as the compensation cell may switch to the ES compensation state after receiving the ES compensation candidate response message from the fourth base station additionally switched to the ES compensation state for multi-step power adjustment (S1127a).
  • the fourth base station transitions to the ES compensation state after transmitting the ES compensation candidate response message to the second base station and the third base station (S1127b).
  • the second base station and the fourth base station that have switched to the ES compensation state may transmit the ES compensation completion indicator message to the first base station and the third base station, which are on / off cells to be switched to the ES state, to inform that the switch has been made to the ES compensation state (S1129a, S1129b, S1131a, S1131b).
  • the first base station which has transmitted the ES compensation cell indicator message switches to the ES state after receiving the ES compensation completion message from the second base station and the fourth base station which have switched to the ES compensation state (S1133a).
  • the third base station receiving the ES candidate request message switches to the ES state after receiving the ES compensation complete indicator message from the second base station sending the ES candidate request message and the fourth base station sending the ES compensation candidate response message. It is possible (S1133b).
  • the first base station and / or the third base station that have received the ES compensation complete indicator message may transmit an ES state transition message to terminals in their cell area, respectively (not shown).
  • the ES state transition message may include a message type field (an indicator indicating that the ES state transition message), a timer indicating the ES state transition time point, a cell list indicating one or more ES compensation cells, and the like.
  • the ES state transition message may be transmitted through the RRC signal.
  • the UE receiving the ES state transition message should recognize that the first and / or third base station serving cells will be turned off after the time indicated by the timer information, and should perform handover from the serving cell to the ES compensation cell. It can be seen.
  • the first base station and the third base station that switch to the ES state may instruct the UEs serving as their serving cells to handover to the ES compensation cell before switching to the ES state.
  • a third base station that has transmitted an ES compensation candidate request message includes cells adjacent to ES compensation candidate cells (for example, neighbor cells, small cells of a small cell cluster to which the third base station belongs, or a predetermined small cell in a cluster). Information on whether there are cells to be switched to the ES state. Accordingly, the third base station can use the various embodiments of the present invention described above to determine the cells that switch to the actual ES compensation state among the ES compensation candidate cells.
  • FIG. 12 is a diagram illustrating another method of determining an compensation cell by an on-off cell as a multi-step power adjustment method.
  • the second base station transmits an ES candidate request message to the third base station in order to check whether there are more on-off cells to switch to the ES state.
  • the ES candidate request message may include information about the first base station (that is, the source base station) that transmitted the ES compensation candidate request message.
  • the third base station determines to switch to the ES state, the third base station transmits an ES candidate response message to the first base station in step S1213. If the third base station determines not to switch to the ES state, the third base station transmits an ES candidate response failure message to the first base station in step S1213.
  • the apparatus described with reference to FIG. 13 is a means by which the methods described with reference to FIGS. 1 to 12 may be implemented.
  • a user equipment may operate as a transmitter in uplink and a receiver in downlink.
  • an e-Node B eNB
  • eNB e-Node B
  • the terminal and the base station may include a transmitting module (Tx module: 1340, 1350) and a receiving module (Rx module: 1350, 1370) to control the transmission and reception of information, data, and / or messages, respectively.
  • Tx module: 1340, 1350 transmitting module
  • Rx module: 1350, 1370 receiving module
  • Antennas 1300 and 1310 for transmitting and receiving data and / or messages.
  • the terminal and the base station may each include processors 1320 and 1330 for performing the above-described embodiments of the present invention, and memories 1380 and 1390 that may temporarily or continuously store processing of the processor. Can be.
  • Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus.
  • the processor of the base station may determine the ES compensation cell by combining the methods disclosed in the above paragraphs 1 to 2.
  • the ES compensation cell may perform a process of checking whether there are more small cells to switch to the ES state in the neighboring base station. If the multi-step power adjustment is performed, the base station may additionally perform a process of checking whether there are additional small cells to switch to the ES compensation state among neighboring small cells.
  • FIG. 13 illustrates a device configuration for a terminal and a base station
  • the device configuration may be used as a device configuration between the base station and the base station.
  • embodiments of the present invention describe an ES compensation cell determination method between base stations, embodiments of the present invention may be performed between two or more base stations. For details, refer to the embodiments described with reference to FIGS. 6 to 12.
  • the transmitting module and the receiving module included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Duplex) may perform packet scheduling and / or channel multiplexing.
  • the terminal and the base station of FIG. 13 may further include a low power radio frequency (RF) / intermediate frequency (IF) module.
  • RF radio frequency
  • IF intermediate frequency
  • the transmitting module and the receiving module may be called a transmitter receiver, respectively, and may be called a transceiver when used together.
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Multi Mode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • software code may be stored in the memory units 1380 and 1390 and driven by the processors 1320 and 1330.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.

Abstract

본 발명의 일 실시예로서 무선 접속 시스템에서 에너지 절약(ES) 보상셀을 결정하는 방법은, 제1기지국에서 제2기지국으로 ES 보상 상태로 전환이 가능한지 확인하기 위해 ES 보상 후보 요청 메시지를 전송하는 단계와 제2기지국으로부터 ES 보상 상태로 전환함을 나타내는 ES 보상 후보 응답 메시지를 수신하는 단계와 제2기지국으로부터 추가적으로 ES 상태로 전환할 제3기지국들을 나타내는 ES 상태 셀 리스트를 포함하는 ES 후보셀 지시자 메시지를 수신하는 단계와 ES 보상 후보 응답 메시지 및 셀 리스트를 기반으로 ES 보상셀을 결정하는 단계를 포함할 수 있다.

Description

스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치
본 발명은 스몰셀 기반의 무선 접속 시스템에 관한 것으로, 특히 스몰셀이 동적으로 온오프하는 경우 온오프하는 스몰셀에 대한 에너지 절약 보상셀을 결정하는 방법 및 장치에 관한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
최근 무선 접속 시스템들은 다양한 형태의 작은 크기의 스몰셀(Small Cell: 예를 들어, 마이크로셀(Micro Cell), 피코셀(Pico Cell), 펨토셀(Femto cell) 등)들이 상대적으로 큰 크기의 매크로셀(Macro Cell)과 연동하는 형태로 무선 접속망 구조가 변화하고 있다. 이는 종래의 매크로셀이 기본적으로 관여하는 수직적인 계층의 다계층 셀이 혼재하는 상황에서 최종 사용자 단말(UE: User Equipment)들의 관점에서는 높은 데이터 전송율을 제공받음으로써, 체감품질(QoE: Quality of Experience)을 증진하려고 함을 목적으로 한다.
현재 3GPP(3rd Generation Partnership Project) 표준화 범주 중 하나인 E-UTRA 및 E-UTRAN SI을 위한 스몰 셀 향상(Small Cell Enhancements for E-UTRA and E-UTRAN SI; e.g., RP-122033 문서 참조)에 따르면, 저전력 노드(Low Power Node)들을 사용하는 댁내/외(Indoor/Outdoor) 시나리오들을 향상시키기 위한 논의가 스몰셀 향상(Small Cell Enhancement)이라는 주제로 논의되고 있다. 또한, 이를 위한 시나리오들과 요구사항들이 3GPP TR 36.932규격에 기술되어 있다.
이와 같은 트랜드를 고려할 때, 향후 많은 수의 스몰셀들이 매크로셀 내에 배치됨에 따라 최종 UE들은 네트워크에 물리적으로 더 가까이 위치하게 될 것이다. 따라서, 차세대 무선 접속망에서는 종래와 같은 물리적 셀 기반의 통신이 아닌 UE 중심의 존(Zone)을 통한 통신이 가능할 것으로 예상된다. 이와 같은 용량 증진을 위한 UE 중심의 존을 통한 통신이 이루어지기 위해서는 지금까지의 물리적 셀과 같은 서비스 제공 단위와는 차별화되는 UE 중심의 존과 같은 서비스 제공 단위를 구현하기 위한 기술적인 이슈들이 도출되고, 해결되어야 할 것이다.
또한 이러한 스몰셀의 등장은 현재의 원거리 통신망(RAN: Remote Area Network)에 큰 영향을 줄 수 있다. 특히, 에너지 절약의 관점에서 스몰셀의 온오프 특성은 매크로셀의 배치에 영향을 미칠 수 있다.
본 발명의 목적은 스몰셀 환경에서 스몰셀의 전력을 효율적으로 관리하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 온오프 셀이 동적으로 온 또는 오프하는 경우, 온오프 셀의 커버리지를 보상해주기 위한 보상 셀을 결정하는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 스몰셀이 온오프시 전력의 증감으로 인해 인근 셀에 발생되는 간섭을 최소화하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상술한 방법들을 지원하는 장치들을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 스몰셀 기반의 무선 접속 시스템에 관한 것으로, 특히 스몰셀이 동적으로 온오프하는 경우 온오프하는 스몰셀에 대한 에너지 절약 보상셀을 결정하는 방법 및 장치에 관한 것이다.
본 발명의 일 양태로서 무선 접속 시스템에서 에너지 절약(ES) 보상셀을 결정하는 방법은, 제1기지국에서 제2기지국으로 ES 보상 상태로 전환이 가능한지 확인하기 위해 ES 보상 후보 요청 메시지를 전송하는 단계와 제2기지국으로부터 ES 보상 상태로 전환함을 나타내는 ES 보상 후보 응답 메시지를 수신하는 단계와 제2기지국으로부터 추가적으로 ES 상태로 전환할 제3기지국들을 나타내는 ES 상태 셀 리스트를 포함하는 ES 후보셀 지시자 메시지를 수신하는 단계와 ES 보상 후보 응답 메시지 및 셀 리스트를 기반으로 ES 보상셀을 결정하는 단계를 포함할 수 있다. 이때, 제1기지국은 ES 상태로 전환할 온오프 셀이다.
상기 방법은 제1기지국이 결정한 ES 보상셀을 알려주기 위해 ES 보상 상태로 진입할 시점을 나타내는 타이머 정보를 포함하는 ES 보상 셀 지시자 메시지를 전송하는 단계와 제1기지국이 ES 보상셀로부터 ES 보상 상태로 전환을 완료하였음을 나타내는 ES 보상 완료 지시자 메시지를 수신하는 단계와 제1기지국이 ES 보상 완료 지시자 메시지를 수신한 이후 ES 상태로 전환하는 단계를 더 포함할 수 있다.
이때, ES 보상 완료 지시자 메시지는 ES 상태로 진입할 시점을 나타내는 타이머 정보를 포함하고, 제1기지국은 타이머 정보가 만료되기 전에 상기 ES 상태로 전환할 수 있다.
또한, 제1기지국은 ES 보상 완료 지시자 메시지를 수신한 이후, 제1기지국의 셀 영역에 속한 하나 이상의 단말들에게 ES 보상셀로 핸드오버를 수행하도록 지시하는 ES 상태 전환 메시지를 전송할 수 있다.
또한, ES 후보셀 지시자 메시지는 추가적으로 ES 보상 상태로 전환할 하나 이상의 제4기지국들을 나타내는 ES 보상 셀 리스트를 더 포함하고, 제1기지국은 ES 상태 셀 리스트 및 ES 보상 셀 리스트를 기반으로 ES 보상셀을 결정할 수 있다.
이때, 제1기지국, 제2기지국, 제3기지국 및 제4기지국은 하나의 스몰셀 클러스터 내에 포함된 스몰셀들일 수 있다. 본 발명의 실시예들에서, 스몰셀 클러스터란 각각의 트래픽 밀집 영역 (예를 들어, 핫스팟(Hotspot))을 커버하는 스몰셀들의 그룹으로 정의될 수 있다.
또는, 제2기지국은 제1기지국의 인근 기지국이고, 제3기지국은 제2기지국의 인근 기지국이고, 제4기지국은 제3기지국의 인근 기지국일 수 있다.
본 발명의 다른 양태로서 무선 접속 시스템에서 에너지 절약(ES) 보상셀을 결정하기 위한 제1기지국은 송신기, 수신기 및 ES 보상셀을 결정하기 위한 프로세서를 포함할 수 있다.
이때, 프로세서는 제2기지국으로 ES 보상 상태로 전환이 가능한지 확인하기 위해 ES 보상 후보 요청 메시지를 송신기를 제어하여 전송하고; 제2기지국으로부터 ES 보상 상태로 전환함을 나타내는 ES 보상 후보 응답 메시지를 수신기를 제어하여 수신하고; 제2기지국으로부터 추가적으로 ES 상태로 전환할 제3기지국들을 나타내는 ES 상태 셀 리스트를 포함하는 ES 후보셀 지시자 메시지를 수신기를 제어하여 수신하며; ES 보상 후보 응답 메시지 및 셀 리스트를 기반으로 ES 보상셀을 결정하도록 구성될 수 있다. 제1기지국은 ES 상태로 전환할 온오프 셀일 수 있다.
상기 프로세서는 프로세서가 결정한 상기 ES 보상셀을 알려주기 위해 송신기를 제어하여 ES 보상 상태로 진입할 시점을 나타내는 타이머 정보를 포함하는 ES 보상 셀 지시자 메시지를 전송하고; ES 보상셀로부터 ES 보상 상태로 전환을 완료하였음을 나타내는 ES 보상 완료 지시자 메시지를 수신기를 제어하여 수신하되; ES 보상 완료 지시자 메시지를 수신한 이후 ES 상태로 전환하도록 구성될 수 있다.
이때, ES 보상 완료 지시자 메시지는 ES 상태로 진입할 시점을 나타내는 타이머 정보를 포함하고, 제1기지국은 타이머 정보가 만료되기 전에 ES 상태로 전환할 수 있다.
이때, 프로세서는 ES 보상 완료 지시자 메시지를 수신한 이후, 제1기지국의 셀 영역에 속한 하나 이상의 단말들에게 ES 보상셀로 핸드오버를 수행하도록 지시하는 ES 상태 전환 메시지를 전송하도록 더 구성될 수 있다.
또한, ES 후보셀 지시자 메시지는 추가적으로 ES 보상 상태로 전환할 하나 이상의 제4기지국들을 나타내는 ES 보상 셀 리스트를 더 포함하고, 제1기지국은 ES 상태 셀 리스트 및 ES 보상 셀 리스트를 기반으로 ES 보상셀을 결정할 수 있다.
이때, 제1기지국, 제2기지국, 제3기지국 및 제4기지국은 하나의 스몰셀 클러스터 내에 포함된 스몰셀들일 수 있다.
또는, 제2기지국은 제1기지국의 인근 기지국이고, 제3기지국은 제2기지국의 인근 기지국이고, 제4기지국은 제3기지국의 인근 기지국일 수 있다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
첫째, 스몰셀 환경에서 스몰셀의 전력을 효율적으로 관리할 수 있다.
둘째, 스몰셀 환경에서 온오프 셀이 동적으로 온 또는 오프하는 경우, 온오프 셀의 커버리지를 보상해주기 위한 보상 셀을 효율적으로 결정할 수 있다.
셋째, 스몰셀이 온오프시 전력의 증감으로 인해 인근 셀에 발생되는 간섭을 최소화할 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
도 1은 E-UMTS의 네트워크 구조를 나타내는 도면이다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 나타내는 도면이다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(U-Plane, User-Plane) 구조를 나타내는 도면이다.
도 4는 이기종 네트워크 배치의 일례를 나타내는 도면이다.
도 5는 에너지 절약 목적의 다양한 처리 용량 요구에 따른 네트워크 배치의 일례를 나타내는 도면이다. 특히, 도 5(a)는 픽 트래픽 (Peak traffic) 환경을 나타내고, 도 5(b)는 오프 픽 트래픽(Off-peak traffic) 환경을 나타낸다.
도 6은 원스텝 전력 조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 하나를 나타내는 도면이다.
도 7은 원스텝 전력 조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 다른 하나를 나타내는 도면이다.
도 8은 스몰셀 클러스터 구조의 일례를 나타낸다.
도 9는 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 하나를 나타내는 도면이다.
도 10은 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 다른 하나를 나타내는 도면이다.
도 11은 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 또 다른 하나를 나타내는 도면이다.
도 12는 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 또 다른 하나를 나타내는 도면이다.
도 13에서 설명한 장치는 도 1 내지 도 12에서 설명한 방법들이 구현될 수 있는 수단이다.
본 발명의 실시예들은 스몰셀 기반의 네트워크 시스템에서 스몰셀에 대한 전력을 동적으로 제어하는 방법 및 장치에 관한 것이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 단말이라는 용어는 이동국(MS: Mobile Station), UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal), 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 단말이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 단말이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. UMTS는 유럽 시스템 기반 광대역코드분할다중접속(WCDMA), 이동통신용글로벌시스템(GSM) 및 일반패킷무선서비스(GPRS)에서 동작하는 3세대(3G) 비동기식 이동 통신 시스템이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA(Evolved UTRA)를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
본 발명의 기술적 특징들을 명확하게 설명하기 위해, 3GPP LTE/LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 특징들은 이에 제한되지 않는다. 또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 특징을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 본 발명의 실시예들에서 설명하는 ‘셀’은 기본적으로 하향링크 자원(Downlink Resource)들과 선택적으로 상향링크 자원(Uplink Resource)들의 조합으로 구성될 수 있다. 이때, 하향링크 자원들을 위한 반송파 주파수(Carrier Frequency)와 상향링크 자원들을 위한 반송파 주파수(Carrier Frequency) 간의 연계(Linking)는 하향링크 자원들로 전달되는 시스템 정보(SI: System Information)에 명시된다.
또한, 스몰셀 클러스터란 각각의 트래픽 밀집 영역 (예를 들어, 핫스팟(Hotspot))을 커버하는 스몰셀들의 그룹으로 정의될 수 있다.
또한, 동일한 이름을 갖는 메시지들은 별도의 정의가 없는한 동일한 메시지 포맷을 가지고 동일한 기능을 수행하는 필드들 또는 파라미터들로 구성된다.
1. 3GPP LTE/LTE-A 시스템
1.1 LTE/LTE-A 네트워크 구조
이하에서는 본 발명의 실시예들이 사용될 수 있는 3GPP LTE/LTE-A 시스템에서 사용될 수 있는 네트워크 구조에 대해서 설명한다.
도 1은 E-UMTS의 네트워크 구조를 나타내는 도면이다.
E-UMTS 시스템은 WCDMA UMTS 시스템에서 진화한 시스템으로 3GPP(3rd Generation Partnership Project)에서 기초적인 표준화 작업을 진행하고 있다. E-UMTS는 LTE(Long Term Evolution) 시스템이라 불리기도 한다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 크게 단말(User Equipment; UE)과 기지국, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)로 구성된다. 통상적으로 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시 송신할 수 있다. AG는 사용자 트래픽 처리를 담당하는 부분과 제어용 트래픽을 처리하는 부분으로 나누어 질 수도 있다. 이때, 새로운 사용자 트래픽 처리를 위한 AG와 제어용 트래픽을 처리하는 AG 사이에 새로운 인터페이스를 사용하여 서로 통신할 수 있다. 하나의 eNB에는 하나 이상의 셀(cell)이 존재한다. eNB 간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. CN(Core Network)은 AG와 UE의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. E-UTRAN과 CN을 구분하기 위한 인터페이스가 사용될 수 있다. AG는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다. TA는 복수의 셀들로 구성되며, 단말은 특정 TA에서 다른 TA로 이동할 경우, AG에게 자신이 위치한 TA가 변경되었음을 알려준다.
도 2는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)의 네트워크 구조를 나타내는 도면이다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템이다. E-UTRAN은 기지국(eNB)들로 구성되고 eNB들은 X2 인터페이스를 통해 연결된다. X2 사용자 평면 인터페이스(X2-U)는 eNB들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU의 비보장 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 eNB 사이에 정의된다. X2-CP는 eNB 간의 컨텍스트(context) 전달, 소스 eNB와 타겟 eNB 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다.
eNB는 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(Evolved Packet Core)에 연결된다. S1 사용자 평면 인터페이스(S1-U)는 eNB와 S-GW(Serving Gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 eNB와 MME(Mobility Management Entity) 사이에 정의된다. S1 인터페이스는 EPS(Evolved Packet System) 베어러 서비스 관리 기능, NAS(Non-Access Stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다.
도 3은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(U-Plane, User-Plane) 구조를 나타내는 도면이다.
도 3을 참조하면, 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크 계층(Data Link Layer) 및 네트워크 계층(Network Layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다. 도 2의 프로토콜 계층은 통신 시스템에서 널리 알려진 개방형 시스템간 상호 접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능이 MAC 내부의 기능 블록으로 구현될 수도 있다. 이러한 경우에 RLC 계층은 존재하지 않을 수 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 좁은 무선 인터페이스에서 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의되며, 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 E-UTRAN 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, RRC 계층은 단말과 네트워크 간에 RRC 메시지를 서로 교환한다. 단말의 RRC 계층과 무선 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다.
RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
eNB를 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어메시지를 전송하는 상향 SCH(Shared Channel)가 있다.
전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
1.2 이기종 네트워크 배치(Heterogeneous Network Deployment)
도 4는 이기종 네트워크 배치의 일례를 나타내는 도면이다.
차세대 이동 통신 시스템에서는 멀티미디어 등의 데이터 서비스를 보다 안정적으로 보장 하기 위해 매크로셀(Macro Cell) 기반의 동종 망에 저전력/근거리 통신을 위한 스몰셀(Small Cell)들인 마이크로셀(micro Cell), 피코셀(Pico Cell), 및/또는 펨토셀(Femto Cell)이 혼재한 계층적 셀 구조 (hierarchical cell structure) 혹은 이기종 셀 구조 (Heterogeneous Cell Structure)의 도입에 대한 관한 관심이 높아지고 있다.
이는 기존 기지국 배치에 대해서 매크로셀의 추가적인 설치는 시스템 성능 향상 대비 그 비용 및 복잡도 측면에서 비효율적이기 때문이다. 현재 통신 망에서 고려중인 이기 종 망의 구조는 도 4와 같은 형태로 이루어 지게 된다.
도 4에서 매크로셀을 관리 및 커버하는 기지국을 매크로 기지국(MeNB: Macro eNodeB)라 정의하고, 매크로 기지국의 매크로 셀 내에서 동작하는 단말을 매크로 단말(MUE: Macro UE)이라 정의한다. 또한, 피코셀을 관리 및 커버하는 기지국을 피코 기지국(PeNB: Pico eNodeB)이라 부르고, 피코 기지국의 피코셀 내에서 스케줄링받는 단말을 피코 단말(PUE: Pico UE)이라 부른다. 또한, 팸토셀을 관리 및 커버하는 기지국을 팸토 기지국(FeNB: Femto eNodeB)이라 부르고, 팸토 기지국으로부터 스케줄링 받는 단말을 팸토 단말이라 부른다.
도 4를 참조하면, 하나의 매크로 셀 내에는 다수 개의 마이크로셀이 공존할 수 있다. 이때, 마이크로셀들은 셀 조정(cell coordination) 방식에 따라 자원을 할당 받아 해당 UE들을 서비스한다. 이러한 마이크로셀의 종류는 접속 방식에 따라 두 가지 종류로 나누어 지게 된다.
(1) OSG(Open access Subscriber Group) 타입: OSG 타입 마이크로셀의 경우 기존 매크로 UE 또는 다른 마이크로 UE들의 접속을 허용하는 셀로서 자신의 셀 또는 매크로셀로의 핸드오버가 가능하다. OSG타입은 NCSG(Non Close access Subscriber Group)이라 부를 수 있다.
(2) CSG(Close access Subscriber Group) 타입: CSG 타입 마이크로셀의 경우 기존 매크로 단말 또는 다른 마이크로 단말들의 접속을 인증 없이는 허용하지 않는 셀을 의미한다. 따라서, 자신의 셀 혹은 매크로 기지국으로의 핸드오버가 불가능하다.
1.3 에너지 절약 (ES:Energy Saving) 상태
환경 보존 및 기후 변화 해결 문제들은 우리가 오늘날 당면한 문제들이다. 에너지 가격이 인상됨에 따라 특히 통신 환경에서 네트워크 운영자들에게 에너지 코스트를 줄이기 위한 수단으로 인센티브가 주어지고 있다.
이동 네트워크의 O&M(Operation And Management)은 커버리지, 처리용량 및 서비스 품질은 유지하되 에너지 소모는 최소화하는 정책을 수립하도록 운영자들을 허용함으로써 에너지 절약에 기여할 수 있다. 커버리지, 처리 용량 및 서비스 품질에 허용된 영향은 운영자들의 정책에 의해 결정된다.
특정 셀이 에너지 절약(ES: Energy Saving) 상태로 전환되는 경우, ES 상태의 셀(이하, ES 셀) 대신에 ES 셀의 부하를 대신 커버해줄 인근 셀들이 필요하다. ES 셀에 대한 모든 트래픽은 ES 상태로 진입하기 전에 다른 오버레이셀(overlay cell) 또는 우산 셀(umbrella cell)들로 옮겨져야 한다. 그러나, ES 셀의 도입으로 인해 네트워크 내에 커버리지 홀을 만들거나 인근 셀들에 지나친 부하를 부가해서는 안된다.
ES 상태의 셀은 아웃레이지(cell outage) 또는 고장 상태(fault condition)로 간주되어서는 안된다. UE가 ES 셀로 이동한 결과 발생하는 어떠한 조건에 대해서도 IRP 메니저에 알람을 해서는 안된다. 게다가, 에너지 절약을 위해, 재사용 가능한 에너지 소스들(예를 들어, 바람, 태양 에너지 등)이 이동 네트워크에 도입될 필요가 있다.
이하 ESM(Energy Saving Management) 컨셉은 다른 이종망(예를 들어, UMTS 및 LTE/LTE-A 시스템 등)에 적용될 수 있다. 그럼에도 불구하고, 이런 ESM 컨셉의 일부는 특정 RAT 및 네트워크 요소에 한정될 수 있으며, 특정 해결책들이 필요하다.
도 5는 에너지 절약 목적의 다양한 처리 용량 요구에 따른 네트워크 배치의 일례를 나타내는 도면이다. 특히, 도 5(a)는 픽 트래픽 (Peak traffic) 환경을 나타내고, 도 5(b)는 오프 픽 트래픽(Off-peak traffic) 환경을 나타낸다.
도 5(a)를 참조하면, 운영자들은 피크 트래픽 환경에서 지리적 영역 당 처리 용량을 늘리기 위해 셀 당 더 작은 커버리지 영역을 이용하기 위해, 스몰셀의 커버리지를 동적으로 구성할 수 있다.
이러한 경우, 몇몇 기지국들은 오프 픽 시간에 에너지 절약 상태로 전환되는 다른 인근 셀들에 대한 커버리지를 제공할 수 있다. 이를 위해, ES 상태로 전환하고자 하는 기지국들은 현재 연관되어 있는 단말들이 다른 인근 셀들로 핸드오버를 수행하도록 지시한다. 이후, ES 셀들은 오프 픽 시간에 전송 전력 및 그들의 셀에 대한 다른 구성 파라미터들을 조정할 수 있다.
그러나, 특정 기지국에서 에너지 절약 상태를 활성화하고 다른 셀들에 대한 커버리지를 증가하기 위해 무선 파라미터들을 수정하는 것은 다른 인근 셀 및 주파수 레이아웃(예를 들어, 간섭제어 등)과 같은 다른 인근 셀의 관계들에 영향을 미칠 수 있다. 특정 시나리오들에 근거하여, 기지국에서 에너지 절약 상태를 활성화하는 것은 해당 지역에서 모든 무선-전송-관계 기능들의 변경을 초래할 수 있다. 예를 들어, 에너지 소모 감소 및 암묵적으로 추가 에너지 절약을 초래할 수 있다.
상기 시나리오에 따른 에너지 절약 관리는 도 5(b)에 도시된 오프 픽 타임에 대한 이상적인 결과를 이끌 수 있다. 예를 들어, 하나의 기지국이 전력이 온된 상태로 남아있고 (ES-Compensate 상태로 도시), 에너지 절약 상태 (eSaving로 도시)인 인근 기지국들의 커버리지를 넘겨 받는다.
다른 네트워크 배치로서, 하나 이상의 기지국들이 오버레이된 상황을 가정할 수 있다. 서비스 연결성을 보장하고 서비스에 부작용을 주지 않기 위해서 (예를 들어, 단말은 ES 상태인 기지국 영역에서 전력을 온할 수 있다), 오직 다른 기지국에 의해 오버레이된 기지국만(즉, 하나의 기지국에 의해 서비스 받는 영역은 또한 다른 기지국에 의해 커버될 수 있다)이 ES 상태로 들어갈 수 있다.
이러한 시나리오에서, 레가시 시스템(예를 들어, 2G/3G 시스템)은 E-UTRAN과 함께 무선 커버리지를 제공할 수 있다. 이와 유사한 다른 예로서, 무선 커버리지는 다른 주파수를 갖는 E-UTRAN에 의해 커버될 수 있다. 즉, 주파수 대역간 기지국 오버레이이다.
본 발명의 실시예들에서 사용되는 기지국들은 매크로셀(넓은 영역 기지국), 마이크로셀(중간 범위 기지국), 피코셀(지역 기지국) 및 팸토셀(가정 기지국에 특화) 등으로 구분될 수 있다. 이러한 기지국의 카테고리는 주파수 대역간 기지국 오버레이 시나리오를 향상시키기 위해 적용될 수 있다.
2. 동적 셀 온/오프
에너지 절약(ES: Energy Saving) 또는 간섭 조정/제거 목적으로 셀의 부하 등을 고려하여 셀의 전력을 온오프 할 수 있다. 예를 들어, 특정 시간과 공간에서의 네트워크 부하(load)의 양상이 다르게 나타나고, 부하가 없는 셀이 전송하는 신호(예, 동기신호, 참조신호)는 에너지 낭비일 뿐 아니라 인접 셀에 간섭 신호로서 작용한다. 따라서, 셀의 부하가 적거나 또는 없는 경우에 ES와 간섭 조정/제거의 목적으로 셀의 전력을 온오프 할 수 있다.
이때, 셀의 전력을 “오프”한다는 의미는 셀의 특정 기능이나 네트워크 요소 등의 전력을 완전히 오프하는 경우와 일부 무선 자원의 사용을 제한하는 경우 등을 모두 포함할 수 있다. 즉, 본 발명의 실시예들에서는 셀의 전력을 오프하는 범위에 제한을 받지 않는다.
또한, 기능적인 측면에서 셀이 전력을 오프하는 경우, 셀은 하향링크 신호 전송과 상향링크 신호의 수신을 모두 수행하지 않거나, 하향링크 신호의 전송 및 상향링크 신호의 수신 중 어느 하나만을 수행할 수 있다. 예를 들어, DL 신호 전송은 수행하고, UL 신호는 수신하지 않을 수 있다.
셀의 전력을 "온"한다는 의미는 오프 상태의 셀이 특정 기능이나 네트워크 요소 등의 전력을 완전히 온하는 경우와 일부 무선 자원의 사용을 허용하는 경우 등을 모두 포함할 수 있다.
또한, 기능적인 측면에서 셀이 전력을 온하는 경우, 셀은 하향링크 신호 전송과 상향링크 신호의 수신을 모두 수행하거나, 하향링크 신호 전송과 상향링크 신호의 수신 중 어느 하나만을 수행할 수 있다. 예를 들어, DL 신호 전송은 수행하고, UL 신호는 수신하지 않을 수 있다.
물론, 본 발명의 실시예들에서 설명하는 셀의 온 또는 오프는 이와 같은 DL/UL 신호 송수신과 무관하게 적용될 수 있다. 본 발명의 실시예들에서 사용하는 셀은 매크로셀과 스몰셀(예를 들어, 마이크로셀, 피코셀, 팸토셀 등)에 모두 적용 될 수 있다.
셀의 전력을 온오프하는 경우 셀들간 간섭에 큰 영향을 줄 수 있으며, 셀 전력의 온오프 빈도에 따라서 간섭의 변동(interference fluctuation) 폭이 매우 커질 수 있다. 특히 셀들이 서로 밀집하게 배치되거나 특정 셀이 주변에 위치한 인근 셀들과 동일한 주파수 대역을 사용하는 경우에는 셀들간 간섭이 심화될 수 있다.
예를 들어, 특정 셀이 전력을 온하는 경우, 해당 셀과 동일한 주파수를 사용하는 주변 셀들이 받게 되는 간섭은 증가할 수 있다. 이때, 특정 셀과 인접한 위치에서 동일한 주파수를 사용하는 셀들이 밀집하게 배치될수록 특정 셀이 온함으로써 주변의 셀들이 받는 간섭의 영향은 더욱 커지게 된다. 또한, 특정 셀이 전력을 오프하는 경우, 특정 셀과 동일한 주파수를 사용하는 주변 셀들이 받는 간섭량은 감소할 수 있다.
셀의 전력을 조절하여 셀을 온/오프하는 경우 해당 셀은 에너지를 절약할 수 있다. 그러나, 셀 온/오프로 인해 주변의 다른 셀들에 인가되는 간섭이 매우 클 수 있으므로 해당 셀 뿐 아니라 인근 셀들에 미치는 영향도 고려되어야 한다. 또한, 임의의 셀의 전력 조절로 인해, 어떤 단말들은 RLF(Radio Link Failure)를 겪을 수 있으므로 단말에 미치는 영향도 고려해야 한다.
또한, 셀이 온/오프하는 경우 해당 셀의 커버리지를 어떤 인근 셀에서 보상할지 결정해야 한다. 왜냐하면, 어떤 셀이 오프할 때, 해당 커버리지를 보상할 인근 셀이 없는 경우 해당 셀 영역은 커버리지 홀이 될 수 있기 때문이다.
따라서, 본 발명의 실시예들에서는 ES 상태로 전환하고자 하는 셀이 전력을 온/오프할 때, 온오프셀의 오프할 커버리지를 보상할 인근 셀들을 결정하는 방법을 제공한다.
2.1 온오프 셀과 보상셀
본 발명의 실시예들에서 ES 상태로 전환하기 위해 셀의 전력을 온 또는 오프하는 셀을 온오프 셀, 에너지 절약(ES) 셀, 제1셀 또는 제1기지국이라 정의할 수 있다. 또한, 온오프 셀의 커버리지를 보상하기 위한 셀을 보상 셀, 에너지 절약 보상(ES compensate) 셀, 제2셀 또는 제2기지국이라 정의할 수 있다. 또한, 스몰셀들이 클러스터(cluster)를 구성할 때 매크로셀 과의 조정을 위한 셀 (즉, 스몰셀 클러스터 헤더((small cell cluster header)) 등을 정의할 수 있다.
이와 같은 셀들의 구성은 온오프 셀 및 보상셀이 설치되는 경우에 O&M에 의해서 구성되거나, 매크로셀 또는 네트워크에 의해 구성되거나, 또는 주변의 스몰셀들과의 분산 방법 등에 의해 구성될 수 있다. 이와 같은 스몰셀 구성에 대한 정보는 셀들간 백홀을 형성할 때 교환되거나, 동적 셀 온오프를 위해 다른 셀들과 시그널링을 통해 교환될 수 있다.
용량 제한 네트워크 케이스(Capacity-limited network use case)에서는 하나 혹은 여러 개의 온오프 셀들이 오프하는 경우에 주변에 있는 보상 셀들이 오프하는 셀들의 기존 커버리지를 커버하기 위해서 ES 보상 상태로 전환할 수 있다. 이때, ES 상태로 전환하는 온오프 셀들과 ES 보상 상태로 전환하는 보상 셀들의 전력 조절은 원스텝 또는 멀티 스텝으로 제어될 수 있다.
원스텝으로 전력이 조절되는 경우에는, 온오프 셀들이 오프하여 ES 상태로 전환하기 이전에 온오프 셀들의 주변에 있는 보상 셀들이 먼저 ES 보상 상태로 전환함으로써 온오프 셀의 커버리지를 커버할 수 있도록 하고, 이후에 온오프 셀들이 ES 상태로 전환한다.
멀티 스텝으로 전력이 조절되는 경우에는, 온오프 셀들과 보상 셀들이 멀티 스텝으로 전력을 조절함으로써 온오프셀의 커버리지를 점진적으로 온오프할 수 있다. 즉, 온오프 셀이 오프하는 경우 커버리지의 일정 부분을 ES 보상 상태로 전환한 보상셀이 커버하도록 하고, 온오프 셀들의 전력 역시 점진적으로 줄일 수 있다.
스몰셀이 밀집하여 배치되는 경우에, 온오프하는 셀들과 보상셀들의 동작을 중앙 제어기가 제어하는 집중화(centralized) 방식을 고려할 수 있다. 그러나, 집중화 방식의 경우, 모든 셀들의 부하 정보 등이 모두 제어기(controller)에 전송되어야 한다. 따라서, 이와 같은 집중화 방법은 시그널 오버헤드가 커질 수 있고 네트워크 부하와 복잡도가 높아질 수 있다. 또한, 매크로셀과 스몰셀, 스몰셀간 백홀이 비이상적 백홀로 구성되거나 또는 백홀이 구성되지 않을 수 있다. 따라서, 집중화 방식의 경우 네트워크 조정시 지연에 대한 보장을 하지 못 할 수도 있고, 매크로셀이나 네트워크가 모든 스몰셀들을 조정하지 못할 수 있다. 즉, 네트워크 에너지 절약을 위해서 스몰셀을 동적으로 온오프하는 상황에서, 스몰셀의 커버리지를 고려할 때, 스몰셀의 온오프로 인해 제어/조정되어야하는 영역은 한정적일 수 있다.
따라서, 이하에서는 분산 방식으로 기지국들 간에서 온오프 셀 및 보상셀을 결정하는 방법들에 대해서 설명한다.
2.2 원스텝 전력 조절 방법
도 6은 원스텝 전력 조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 하나를 나타내는 도면이다.
도 6에서 제1기지국(eNB1)은 전력을 오프할 온오프셀이고, 제2기지국(eNB2) 및 제3기지국(eNB3)은 제1기지국과 스몰셀 클러스터를 구성하는 것을 가정한다. 즉, 제2기지국 및/또는 제3기지국은 ES 보상셀 또는 온오프 셀이 될 수 있다. 도 6에서 제2기지국 및 제3기지국은 각각 하나씩 도시하였으나 다수개가 사용될 수 있다.
온오프셀인 제1기지국은 해당 셀의 부하가 적거나 없는 경우 셀의 오프 즉, ES 상태로 진입할 것을 결정할 수 있다 (S601).
제1기지국은 ES 보상 상태로 전환 가능한 ES 보상 후보 셀들이 어떤 셀들이 있는지를 확인하기 위해 자신의 이웃셀, 자신이 속한 스몰셀 클러스터 단위 또는 클러스터 안에서 미리 정의된 셀들에게 ES 보상 후보 요청(ES compensate candidate request) 메시지를 전송할 수 있다. 도 6에서는 제1기지국은 인근 기지국인 제2기지국으로 ES 보상 후보 요청 메시지를 전송한다 (S603).
S603 단계에서 ES 보상 후보 요청 메시지는 메시지 타입 필드(즉, ES 보상 후보 요청 메시지임을 나타내는 지시자), 소스 기지국(source eNB)의 셀 식별자(Cell ID), 대상 기지국(destination eNB)의 셀 식별자, 소스 기지국의 부하 정보 등을 포함할 수 있다.
ES 보상 후보 요청 메시지를 수신한 제2기지국은 자신의 부하(load) 상태 등을 확인하고 ES 보상셀로써의 동작 가능 여부를 나타내기 위한 응답 메시지인 ES 보상 후보 응답 메시지(ES compensate candidate response message)를 제1기지국으로 전송한다. 즉, 제2기지국은 제1기지국의 셀 커버리지를 커버하기 위해 자신의 셀을 확장함으로써 제1기지국의 셀을 보상할 수 있다고 판단하는 경우에 ES 보상 후보 응답 메시지를 제1기지국으로 전송할 수 있다 (S605).
S605 단계에서 ES 보상 후보 응답 메시지는 메시지 타입 필드(즉, ES 보상 후보 응답 메시지 임을 나타내는 지시자), 소스 기지국의 셀 식별자 (Cell ID) 및 목적 기지국의 셀 식별자 등을 포함할 수 있다.
만약, 제2기지국이 자신의 부하 상태를 확인한 이후 제1기지국의 셀을 보상할 수 없는 경우에는 ES 보상 후보 요청 메시지에 대한 응답으로 S605 단계에서 ES 보상 후보 실패(ES compensate candidate failure message) 메시지를 전송 할 수 있다. 예를 들어, 제2기지국의 용량이 ES 보상 상태로 전환할 수 없는 경우(즉, 자신의 최대 전송 전력 레벨이 낮은 경우 등) 또는 제2기지국 역시 ES 상태로 전환하기로 결정한 경우 등에는 제2기지국은 ES 보상 상태로 전환할 수 없다.
ES 보상 후보 실패 메시지는 메시지 타입 필드(즉, ES 보상 후보 실패 메시지를 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 및 보상 실패 원인을 나타내는 원인 필드 등을 포함할 수 있다. 즉, 보상 실패 원인들은 각각 기 정의된 방법에 따라 특정 값에 매핑되고, 원인 필드에는 미리 정의된 방법에 따라 해당 특정 값이 매핑될 수 있다.
제1기지국은 S603 및 S605 단계들을 수행함으로써 ES 보상 상태로 전환 가능한 셀들이 있는지 확인할 수 있다. 이때, 제1기지국은 ES 보상 후보 응답 메시지를 전송한 하나 이상의 제2기지국들 모두를 ES 보상 상태로 전환 가능한 후보셀들인 ES 보상 후보 셀들로 결정할 수 있다. 또는, 제1기지국은 ES 보상 후보 응답 메시지를 전송한 하나 이상의 제2기지국들 중 기 정의된 특정 조건에 적합한 셀들만을 한정하여 ES 보상 후보 셀들로 결정할 수 있다. 예를 들어, 제1기지국은 제2기지국들 중에서 신호가 가장 강한 기지국 또는 신호의 세기가 특정 임계값을 넘는 기지국들을 ES 보상 후보 셀로 결정할 수 있다 (S607).
제1기지국은 ES 보상 후보 셀로 결정한 하나 이상의 제2기지국들에게 ES 보상 후보 셀임을 지시하기 위한 ES 보상 후보 셀 지시자(ES compensate candidate cell(s) indicator) 메시지를 전송할 수 있다 (S609).
ES 보상 후보 셀 지시자 메시지는 메시지 타입 필드(즉, ES 보상 후보 셀 지시자 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 등을 포함할 수 있다. S607 단계 및 S609 단계는 선택적으로 수행될 수 있다.
S609 단계에서 ES 보상 후보 셀 지시자를 수신한 제2기지국 또는 S603 단계에서 ES 보상 후보 요청 메시지를 수신한 이후 ES 보상 상태로 전환할 수 있음을 결정하고 ES 보상 후보 응답 메시지를 전송한 제2기지국은 인근에 ES 상태로 전환할 온오프셀이 더 있는지 여부를 확인하기 위해 ES 후보 요청 메시지를 하나 이상의 제3기지국들로 전송할 수 있다 (S611).
이때, 하나 이상의 제3기지국들은 제2기지국의 인근 셀, 제2기지국이 속한 스몰셀 클러스터 단위의 스몰셀들 또는 스몰셀 클러스터 안에서 미리 정의된(예를 들어, 매크로셀의 구성 정보 등) 스몰셀들이 될 수 있다. 또한, ES 후보 요청 메시지는 메시지 타입 필드(즉, ES 후보 요청 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적지 기지국의 셀 식별자 등으로 구성될 수 있다.
도 6에서 ES 후보 요청 메시지를 수신한 제3기지국들 중에서 자신의 로드가 적거나 또는 로드가 없는 제3기지국은 ES 상태로 진입하기로 결정할 수 있다. 이러한 제3기지국은 ES 후보 요청 메시지에 대한 응답으로써 제3기지국이 ES 상태로 진입함을 알려주기 위해 ES 후보 응답 메시지를 제2기지국으로 전송한다 (S613).
ES 후보 응답 메시지는 메시지 타입 필드(즉, ES 후보 응답 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 등을 포함할 수 있다.
본 발명의 다른 측면으로서, ES 후보 요청 메시지를 수신한 제3기지국들 중에서 ES 상태로 전환하지 않는 것으로 결정한 셀들이 있을 수 있다. 이러한 제3기지국들은 ES 상태로 진입하지 않음을 지시하기 위해 S613 단계에서 ES 후보 응답 메시지 대신 ES 후보 실패 메시지를 제2기지국으로 전송할 수 있다.
ES 후보 실패 메시지는 메시지 타입 필드(즉, ES 후보 실패 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 및 ES 상태 전환의 실패 원인을 나타내기 위한 원인 필드 등을 포함할 수 있다. 원인 필드는 ES 상태 전환 실패의 원인으로서 셀의 부하가 많음 또는 셀의 동적 온오프로 인한 처리 용량의 부족 등과 같은 이유 등을 나타낼 수 있다.
ES 후보 응답 메시지를 수신한 ES 보상 셀(즉, 제2기지국)은 ES 상태로 진입하고자하는 제3기지국들에 대한 정보를 포함하는 ES 후보 셀 지시자(ES candidate cell indicator) 메시지를 제1기지국으로 전송할 수 있다 (S615).
ES 후보 셀 지시자 메시지는 메시지 타입 필드(즉, 해당 메시지가 ES 후보 셀 지시자 메시지임을 나타내는 지시자), ES 후보 응답 메시지를 전송한 셀들(즉, 하나 이상의 제3기지국들)에 대한 셀 식별자, 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 등을 포함할 수 있다.
ES 후보 셀 지시자 메시지를 수신한 제1기지국은 하나 이상의 ES 보상셀들을 결정할 수 있다. 예를 들어, ES 보상 후보셀들(즉, 제2기지국들) 주변에 ES 상태로 전환하고자하는 제3기지국들이 가장 많은 ES 보상 후보셀을 ES 보상 셀로 결정할 수 있다 (S617).
또한, 제1기지국은 ES 보상셀로 결정한 하나 이상의 제2기지국들(즉, ES 보상셀들)에게 해당 기지국이 ES 보상셀로 결정되었음을 알려주기 위한 ES 보상 셀 지시자(ES compensate cell indicator) 메시지를 전송한다 (S619).
ES 보상셀 지시자 메시지는 메시지 타입 필드(즉, ES 보상 셀 지시자 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자, ES 보상셀이 ES 보상상태로 전환하는 시점 및 시간을 나타내는 타이머 정보, ES 보상셀이 전력을 조절하는데 필요한 전력 파라미터(예를 들어, ES 보상 셀의 전력 값 등), ES 상태로 전환하고자 하는 제3기지국들을 나타내는 ES 상태 셀 리스트 정보 등을 포함할 수 있다.
ES 보상 셀 지시자를 수신한 제2기지국은 타이머 정보가 나타내는 시점 및 시간에서 제1기지국 및/또는 ES 상태 셀 리시트에 표시된 제3기지국들의 셀 영역을 커버하기 위해 ES 보상 상태로 전환한다. 이때 제2기지국은 전력 파라미터에서 나타내는 전력 크기 값으로 전송 전력을 조절함으로써 커버리지를 확장할 수 있다 (S621).
ES 보상 상태로 전환한 제2기지국은 제2기지국이 ES 보상 상태로 전환함으로써 제1기지국 및/또는 제3기지국의 셀 커버리지를 보상할 수 있음을 알려주기 위해 ES 보상 완료 지시자(ES compensate complete indicator) 메시지를 제1기지국 및/또는 제3기지국으로 전송한다 (S623a, S623b).
ES 보상 완료 지시자 메시지는 메시지 타입 필드(즉, ES 보상 완료 지시자임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자, ES 상태로 전환할 시점 및 시간을 나타내는 타이머 정보, ES 보상 완료 지시자 메시지를 전송하는 셀(즉, 제2기지국)의 셀 식별자를 포함할 수 있다.
ES 보상 완료 지시자 메시지를 수신한 제1기지국 및/또는 제3기지국들은 자신의 셀을 서빙 셀로하는 단말들에게 ES 상태로 전환할 것임을 알려주기 위해 ES 상태 전환 메시지(ES state transition message)를 전송할 수 있다 (미도시).
ES 상태 전환 메시지는 메시지 타입 필드(ES 상태 전환 메시지임을 나타내는 지시자), ES 상태로 전환할 시점 및 시간을 나타내는 타이머 정보, ES 보상 셀들(제2기지국들)을 나타내는 셀 리스트 등을 포함한다. 또한, ES 상태 전환 메시지는 RRC 신호를 통해 전송될 수 있다.
ES 상태 전환 메시지를 수신한 단말은 서빙셀(예를 들어, 제1기지국 또는 제3기지국)이 ES 상태로 전환할 것임을 알 수 있다. 따라서, 단말은 자신의 서빙셀에서 ES 상태 전환 메시지에 포함된 타이머 정보가 나타내는 시점 및 시간이 만료되기 이전에 ES 보상셀로 핸드오버를 수행할 수 있다.
또한, ES 상태로 전환하는 제1기지국 및/또는 제3기지국들은 ES 상태로 전환하기 전에 자신의 셀을 서빙셀로하는 단말을 ES 보상셀들로 핸드오버 하도록 하는 절차를 수행할 수 있다.
다시 도 6을 참조하면, ES 보상 완료 지시자 메시지를 수신한 제1기지국 및/또는 제3기지국은 타이머 정보가 나타내는 시점에서 타이머 시간이 만료되기 이전에 ES 상태로 전환할 수 있다 (S625a, S625b).
제1기지국 및/또는 제3기지국들은 ES 상태로 전환이 완료된 이후에, ES 보상 셀로 ES 상태 전환의 완료를 나타내는 ES 완료 지시자 메시지(ES complete indicator message)를 제2기지국으로 전송할 수 있다 (미도시).
ES 완료 지시자 메시지는 메시지 타입 필드(즉, ES 완료 지시 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 등을 포함할 수 있다.
본 발명의 실시예들에서 사용되는 셀 식별자로는 물리 셀 식별자(PCID: Physical Cell ID) 또는 글로벌 셀 식별자(GCID: Grobal Cell ID) 등이 있다. 또한, 도 6의S607 단계 및 S609 단계는 선택적으로 수행될 수 있다. 만약, S607 단계 및 S609 단계가 수행되지 않는 경우에는, S603 단계에서 ES 보상 후보 요청 메시지를 수신한 하나 이상의 제2기지국들이 추가적으로 ES 상태로 전환할 셀이 있는지 여부를 확인하기 위해 ES 후보 요청 메시지를 하나 이상의 제3기지국들에 전송할 수 있다. 이후, 동작은 도 6에서 설명한 단계들을 참조한다.
ES 상태로 전환하고자 결정 한 제1기지국에서 ES 보상 상태로 전환해야 하는 셀들(즉, 제2기지국들)을 결정하기 위해서 도 6에서 도시한 과정을 모두 수행할 수 있다. 그러나, 이러한 경우에는 셀들간에 송수신해야하는 시그널링 오버헤드가 커질 수 있다. 또한, 추가적으로 ES 상태로 진입하고자 결정한 셀들(예를 들어, 제3기지국) 모두가 도 6의 과정을 수행하는 경우에, ES 상태로 진입하고자 결정한 셀들마다 여러 개의 ES 보상셀들이 결정될 수 있다. 또한, 도 6과 같은 과정을 통해 결정된 ES 보상셀들이 ES 보상상태로 전환하는 경우 즉, ES 보상셀들이 커버리지를 확장하기 위해 높은 전송 전력을 사용하는 경우에는 셀간 간섭이 커질 수 있다.
따라서, ES 보상 상태로 전환할 셀들을 결정하기 위해 전송되는 메시지들(예를 들어, ES 보상 후보 요청 메시지, ES 보상 후보 셀 지시자 메시지 및/또는 ES 후보 요청 메시지 등)안에 타이머 정보가 포함될 수 있다. 이와 같은 메시지들을 수신한 셀들은 해당 메시지를 수신한 이후부터 타이머 정보가 나타내는 시간이 지나기 전까지 자신의 ES 상태로 전환하고자 결정하였음에도 불구하고, 주변의 셀들 중에서 ES 보상 상태로 전환하고자 하는 셀들을 결정하기 위한 앞에서 설명한 과정을 수행하지 않도록 설정할 수 있다.
도 7은 원스텝 전력 조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 다른 하나를 나타내는 도면이다.
도 7의 기본 가정은 도 6과 동일하다. 따라서, 도 7에 대한 설명은 도 6과 다른 부분에 대해서만 설명한다. 즉, S701 단계 내지 S709 단계에 대한 설명은 도 6의 S601 단계 내지 S609 단계에 대한 설명으로 갈음한다.
ES 보상셀인 제2기지국은 주변 기지국, 제2기지국이 속한 스몰셀 클러스터 단위의 셀들 또는 클러스터 내 미리 정의된 스몰셀들에게 추가적으로 ES 상태로 전환할지 여부를 확인하기 위해 ES 후보 요청 메시지를 전송한다 (S711).
이때, ES 후보 요청 메시지에는 해당 메시지가 ES 후보 요청 메시지임을 나타내는 타입 필드, 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 및 ES 상태로 전환하고자하는 제1기지국의 셀 식별자 등이 포함될 수 있다.
ES 후보 요청 메시지를 수신한 하나 이상의 제3기지국들은 자신의 부하 상태를 기반으로 ES 상태로 전환할지 여부를 결정할 수 있다. 예를 들어, 제3기지국들 중 부하가 기준치 이하로 작거나, 부하가 없는 기지국들은 ES 상태로 전환할 수 있다. ES 상태로 전환하고자하는 제3기지국은 ES 후보 요청 메시지에 대한 응답으로 ES 후보 응답 메시지를 전송할 수 있다. 이때, 제3기지국은 ES 후보 요청 메시지에 포함된 제1기지국의 셀 식별자를 기반으로 제1기지국이 ES 보상셀을 결정하는 셀이고, ES 상태로 전환할 것임을 인식할 수 있다. 따라서, 제3기지국은 ES 후보 응답 메시지를 제1기지국으로 전송할 수 있다 (S713).
본 발명의 다른 측면으로서, ES 후보 요청 메시지를 수신한 제3기지국들 중에서 ES 상태로 전환하지 않는 것으로 결정한 제3기지국들은 S713 단계에서 ES 후보 실패 메시지를 제1기지국으로 전송할 수 있다.
ES 후보 실패 메시지는 메시지 타입 필드(즉, ES 후보 실패 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자, ES 후보 요청 메시지를 전송한 셀의 셀 식별자, ES 실패 원인을 나타내는 원인 필드 등을 포함할 수 있다. 원인 필드는 셀의 부하가 많거나 또는 셀의 동적 온오프에 대한 용량이 없는 등과 같은 이유일 수 있다.
제1기지국은 제3기지국으로부터 ES 후보 응답 메시지를 받은 이후에, 제1기지국이 속한 클러스터 내에서 ES 보상셀로 동작할 제2기지국을 결정할 수 있다 (S715).
S715 단계 내지 S723 단계에 대한 자세한 설명은 도 6의 S617 단계 내지 S625 단계에 대한 설명을 참조하도록 한다.
2.3 멀티 스텝 전력 조절 방법
도 8은 스몰셀 클러스터 구조의 일례를 나타낸다. 이때, 도 8(a)는 원스텝 전력 조절 과정을 나타내는 도면이고, 도 8(b)는 멀티스텝 전력 조절 과정을 나타내는 도면이다.
도 8(a)를 참조하면, 가장 가운데 있는 셀은 ES 보상셀이고, 중간층에 있는 셀은 ES 상태로 진입할 온오프셀인 경우를 가정한다. 도 8(a)의 경우, 도 6 내지 도 7에서 설명한 방법을 이용하여 ES 보상셀이 결정되면, ES 보상셀이 커버리지를 확장하여 기존 온오프셀이 서비스를 제공하는 영역을 보상한 후 온오프셀은 전력을 바로 오프하여 ES 상태로 진입한다.
원스텝 전력 조절의 경우에는 ES 보상 상태로 전환하는 보상셀들이 ES 상태로 전환하고자 하는 온오프셀들의 커버리지를 모두 커버하기 위해 ES 상태로 전환하는 셀들이 ES로 전환되기 전에 먼저 전송 전력을 높여야 한다. 이러한 동작은 ES 상태로 전환하고자 하는 온오프셀 및 인근셀들에 대해 간섭을 심각하게 발생시킬 수 있다.
따라서 이를 해결하기 위한 방법으로 ES 보상 상태로 전환하는 보상셀과 ES 상태로 전환하고자하는 온오프셀들이 모두 멀티 스텝으로 전력을 조절하도록 제어할 수 있따. 즉, 멀티 스텝으로 보상셀과 온오프셀이 겹치는 커버리지 영역을 원스텝 전력 제어 방법을 적용하였을 때보다 적게 설정함으로써 간섭의 영향을 줄일 수 있다.
도 8(b)를 참조하면, ES 보상셀이 결정된 이후, 온오프셀이 전력을 바로 오프하지 않고 몇 단계(도 8에서는 3단계)로 전력을 점차 줄일 수 있다. 또한, ES 보상셀 역시 몇 단계에 걸쳐 전송 전력을 높일 수 있다. 이때, 최외곽에 위치하는 셀들역시 ES 보상셀로 동작할 수 있다. 이러한 멀티 스텝 전력 조절은 인근 기지국에 미치는 간섭을 최소화하기 위함이다.
그러나 이와 같이 멀티 스텝으로 전력을 조절하는 방법을 사용하는 경우에는, ES 보상 상태로 전환하는 보상셀과 ES 상태로 전환하는 온오프셀들이 모두 전송 전력을 점진적으로 높이고 낮춘다. 따라서, 온오프 셀들의 커버리지를 커버하기 위해서는 기존의 원 스텝 전력 제어 방법과는 다르게 ES 상태로 전환하는 온오프셀들 모두의 이웃한 셀들이 모두 ES 보상 상태로 전환해야할 수 있다.
그러므로, 원스텝 전력제어 방법과 다르게 ES 상태로 전환하는 온오프셀들의 이웃셀의 ES 보상 상태 전환 여부를 물어보는 과정이 추가될 수 있다. 즉, 멀티 스텝 전력조절 방법도 추가되는 과정을 제외하고는 원스텝 전력조절 방법과 유사하게 동작할 수 있다. 이때, ES 보상셀 결정 전에 ES 상태로 전환하는 온오프셀들의 이웃셀의 ES 보상상태 전환 여부를 물어보는 과정을 수행할 수 있다. 또는, ES 보상셀 결정 후에 ES 상태로 전환하고자하는 셀들의 이웃셀의 ES 보상상태 전환 여부를 물어보는 과정이 수행될 수 있다.
이하에서는 ES 보상셀을 결정하는 과정에서 멀티 스텝으로 전력을 조절하는 방법에 대해서 설명한다.
도 9는 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 하나를 나타내는 도면이다.
도 9에서 제1기지국(eNB1)은 전력을 오프할 온오프셀이고, 제2기지국(eNB2), 제3기지국(eNB3) 및 제4기지국(eNB4)은 제1기지국과 스몰셀 클러스터를 구성하는 것을 가정한다. 즉, 제2기지국, 제3기지국 및/또는 제4기지국은 ES 보상셀 또는 온오프 셀이 될 수 있다. 도 9에서 제2기지국, 제3기지국 및 제4기지국은 각각 하나씩 도시하였으나 다수개가 사용될 수 있다.
또한, 도 9의 S901 단계 내지 S911 단계에 대한 설명은 도 6에서 설명한 S601 단계 내지 S611 단계에 대한 설명과 동일하므로, 해당 설명을 참조하도록 한다.
도 9는 온오프셀인 제1기지국에서 ES 보상 셀을 결정하기 이전에 추가로 ES 상태로 전환하는 셀들(예를 들어, 제3기지국)의 이웃셀(예를 들어, 제4기지국)의 ES 보상 상태로 전환하는지 여부를 확인하는 과정을 수행하는 방법에 관한 것이다.
멀티스텝 전력조절을 위해, 도 6에서 설명한 원스텝 전력조절 방법을 수행하는 과정에서 스몰셀 클러스너 내에 제2기지국 이외에 ES 보상셀이 될 수 있는 스몰셀이 있는지 확인하는 과정이 추가될 수 있다.
예를 들어, S911 단계에서 ES 후보 요청 메시지를 수신한 제3기지국은 제4기지국으로 ES 보상 상태로 전환할 수 있는지 문의하기 위한 ES 보상 후보 요청 메시지(ES compensate candidate request message)를 전송할 수 있다. 이때, 제4기지국은 이웃셀, 제3기지국이 속한 스몰셀 클러스터 단위의 셀들 또는 클러스터 내에서 미리 정의된 스몰셀(예를 들어 마크로셀로부터 구성된 셀)들이 될 수 있다 (S913).
이때, 제4기지국이 ES 보상 상태로 전환될 수 있는 경우에는 ES 보상 상태로 전환될 수 있음을 나타내는 ES 보상 후보 응답 메시지를 제3기지국으로 전송할 수 있다 (S915).
ES 보상 후보 요청 메시지 및 ES 보상 후보 응답 메시지에 대한 메시지 포맷은 S603 단계 및 S605 단계에서 사용되는 메시지들의 포맷과 동일하게 구성될 수 있다. 또한, S917 단계 내지 S931 단계들 또한 도 6에서 설명한 S615 단계 내지 S625 단계들과 유사하게 수행될 수 있다. 이하에서는 설명의 편의를 위해 도 6과 다른 부분에 대해서만 설명을 하도록 한다.
제3기지국은 S917 단계에서 하나 이상의 제4기지국들 중 ES 보상셀이 될 수 있는 ES 보상후보셀들을 나타내는 ES 보상 후보 셀 리스트를 더 포함하는 ES 후보 응답 메시지를 제2기지국으로 전송할 수 있다.
제2기지국은 S919 단계에서 ES 보상 후보 셀 리스트 및 ES 상태로 진입하고자 하는 제3기지국들에 대한 ES 상태 셀 리스트를 포함하는 ES 후보 셀 지시자(ES candidate cell indicator) 메시지를 제1기지국으로 전송할 수 있다.
제1기지국은 S921 단계에서 ES 보상 후보 셀 리스트 및 ES 상태 셀 리스트를 기반으로 하나 이상의 ES 보상셀을 결정할 수 있다. 예를 들어, 제1기지국은 인근에 ES 상태로 전환하는 셀들이 많은 제2기지국 및 제4기지국을 ES 보상셀로 결정할 수 있다.
따라서, 제1기지국은 S923a 및 S923b 단계에서 제2기지국 및 제4기지국이 ES 보상셀로 결정되었음을 알려주기 위해 ES 보상 셀 지시자 메시지(ES compensate cell(s) indicator message)를 전송한다.
또한 제1기지국은 제3기지국이 ES 셀로 결정되었음을 알려주기 위해 ES 셀 지시자 메시지(ES cell(s) indicator message)를 전송할 수 있다. ES 셀 지시자 메시지(ES cell(s) indicator message)는 메시지 타입 필드(즉, ES 셀 지시자 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자 및 목적 기지국의 셀 식별자 등을 포함할 수 있다 (미도시).
이때, 멀티스텝 전력조절을 위해서 제1기지국은 자신이 감소 시킬 전송 전력을 결정하고 제2기지국, 제3기지국 및 제4기지국에게 제1기지국이 자신이 감소시킬 전송 전력에 대한 전력 정보, ES 보상셀들이 증가시켜야 하는 전송 전력에 대한 전력 정보 및/또는 제3기지국이 ES 셀로써 감소시켜야 하는 전송 전력에 대한 정보를 추가적으로 전송해 줄 수 있다 (미도시).
이후, ES 보상 셀 지시자 메시지를 수신한 제2기지국 및 제4기지국은 해당 메시지에 포함된 타이머 정보를 기반으로 타이머가 만료되기 전에 ES 보상 상태로 전환할 수 있다 (S925a, S925b).
또한, 제2기지국 및 제4기지국은 ES 보상 상태로의 전환이 완료되면, 제1기지국 및/또는 제3기지국으로 ES 보상 완료 지시자 메시지를 전송한다.
제1기지국은 ES 보상 완료 지시자 메시지를 수신받은 이후에 ES 상태로 전환한다 (S931a). 또한, 제3기지국은 ES 후보 요청 메시지를 전송한 제2기지국과 ES 보상 후보 요청 메시지를 수신한 제4기지국으로부터 ES 보상 완료 지시자 메시지를 모두 수신한 이후에 ES 상태로 전환할 수 있다 (S931b).
이때, 제1기지국 및 제3기지국은 ES 보상 완료 지시자 메시지에 포함되는 타이머 정보에 기반하여, 타이머 정보가 나타내는 시점에서 타이머 만료전까지 ES 상태로 전환할 수 있다.
ES 보상 완료 지시자 메시지를 받은 이후 ES 상태로 전환하기 전에, 제1기지국 및 제3기지국은 자신의 셀을 서빙셀로 하는 단말들에게 ES 상태 전환 메시지를 전송할 수 있다 (미도시). ES 상태 전환 메시지는 메시지 타입 필드(ES 상태 전환 메시지임을 나타내는 지시자), ES 상태로 전환하는 시점 및 시간을 나타내는 타이머 정보, ES 보상 셀들을 나타내는 보상 셀 리스트 등을 포함할 수 있다. 이때, ES 상태 전환 메시지는 RRC 신호를 통해서 단말로 전송될 수 있다.
ES 상태 전환 메시지를 수신한 단말은 타이머 정보가 나타내는 시간 이후에 현재 서비스를 제공받는 서빙셀이 ES 상태로 전환할 것을 알 수 있다. 따라서, 단말은 타이머가 만료되기 전에 자신의 서빙셀에서 ES 보상셀로 핸드오버를 수행할 수 있다.
ES 상태로 전환하는 온오프셀(즉, 제1기지국 및 제3기지국)은 ES 상태로 전환하기 전에 자신의 셀을 서빙셀로 하는 단말을 ES 보상셀로 HO를 수행하도록 하는 절차를 수행할 수 있다. 또는, ES 보상 상태로 전환된 제2기지국 및/또는 제4기지국들은 ES 보상 셀 지시자 메시지를 전송한 제1기지국 및/또는 제3기지국으로 ES 보상 완료 지시자 메시지를 전송할 수 있다 (S927a, S927b, S929a, S929b).
ES 보상 완료 지시지 메시지를 수신한 제1기지국 및/또는 제3기지국은 ES 상태로 전환할 수 있다 (S931a, S931b).
앞에서 언급하였던 ES 보상 후보 요청 메시지를 전송한 셀이 ES 보상 부호 셀들에 인접한 셀들(예를 들어, 이웃셀, 스몰셀 클러스터 단위의 셀들 또는 클러스터 안에서 미리 정의된 스몰셀들) 중 ES 상태로 전환하는 셀들이 있는지에 여부에 대한 정보를 획득함으로써 ES 보상 후보 셀들 중에서 실제 ES 보상 상태로 전환하는 셀들을 결정할 수 있다.
도 10은 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 다른 하나를 나타내는 도면이다.
도 10의 기본 전제는 도 9와 동일하다. 따라서, 도 10에서는 도 9와 다른 부분에 대해서만 설명하도록 한다. 도 10을 참조하면, S1011 단계에서 제2기지국은 ES 후보 요청 메시지를 제3기지국으로 전송한다. 이때, ES 후보 요청 메시지에는 ES 보상 후보 요청 메시지를 전송한 제1기지국(즉, 소스 기지국)에 대한 정보가 포함될 수 있다.
이후, 제3기지국은 인근 기지국, 제3기지국이 속한 스몰셀 클러스터 내의 셀 또는 클러스터 내의 셀 중 매크로 기지국이 설정한 셀(즉, 제4기지국)로 ES 보상 후보 요청 메시지를 전송함으로써 해당 셀들이 ES 보상 상태로 전환 가능하지 여부를 문의할 수 있다 (S1013).
ES 보상 상태로 전환 가능한 경우, 제4기지국은 ES 보상 후보 응답 메시지를 제3기지국으로 전송할 수 있다 (S1015).
ES 보상 후보 응답 메시지를 수신한 제3기지국은 온오프셀인 제1기지국으로 ES 후보 응답 메시지를 바로 전송할 수 있다. 이때, ES 후보 응답 메시지에는 제4기지국들 중 ES 보상 상태로 전환하는 셀들을 나타내는 보상 셀 리스트가 포함될 수 있다 (S1017).
ES 후보 응답 메시지를 수신한 제1기지국은 보상 셀 리스트와 추가적으로 ES 상태로 전환할 기지국들을 고려하여 ES 보상 셀을 결정할 수 있다 (S1019).
이후 S1021 단계 내지 S1029 단계에 대한 설명은 도 9의 S923 단계 내지 S931 단계와 동일하므로, 도 9의 설명에 갈음한다.
도 11은 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 또 다른 하나를 나타내는 도면이다.
특히, 도 11은 온오프셀인 제1기지국에서 ES 보상셀을 결정한 이후에 ES 상태로 전환하는 셀들의 이웃셀의 ES 보상 상태 전환 여부를 물어보는 과정을 수행하는 방법에 관한 것이다.
온오프셀인 제1기지국은 S1101 단계 내지 S1115 단계를 수행한 이후, S1117 단계에서 ES 보상 상태로 전환하고자 하는 보상셀을 결정할 수 있다. 이때, S1101 단계 내지 S1117 단계는 도 6의 S601 단계 내지 S617 단계와 동일하다.
이후, 제1기지국은 ES 보상셀로 결정된 하나 이상의 제2기지국들으로 ES 보상셀로 결정되었음을 알려주기 위해 ES 보상셀 지시자 메시지를 전송한다 (S1119).
ES 보상셀 지시자 메시지를 수신한 제2기지국은 S1113 단계에서 ES 후보 응답 메시지를 전송한 제3기지국들로 ES 셀 지시자 메시지를 전송한다. ES 셀 지시자 메시지(ES cell(s) indicator message)는 메시지 타입 필드(즉, ES 셀 지시자 메시지임을 나타내는 지시자), 소스 기지국의 셀 식별자, 목적 기지국의 셀 식별자 등을 포함할 수 있다 (S1121).
ES 셀 지시자 메시지를 수신한 제3기지국들은 자신이 ES 상태로 전환할 수 있는 셀임을 인식할 수 있다. 따라서, 제3기지국들은 ES 보상 상태로 전환할 온오프셋이 더 있는지 여부를 확인하기 위해 제3기지국들의 이웃셀, 제3기지국이 속한 스몰셀 클러스터 단위의 스몰셀들 또는 클러스터 내에 미리 정의된 스몰셀들에게 ES 보상 후보 요청 메시지를 전송할 수 있다 (S1123).
이때, ES 보상 후보 요청 메시지는 도 6에서 설명한 메시지 포맷에 ES 셀 지시자 메시지를 전송한 제2기지국의 셀 식별자를 나타내는 필드가 포함되는 형태로 구성될 수 있다.
또한 멀티스텝 전력조절을 위해서 제1기지국은 자신이 감소 시킬 전송 전력을 결정하고 제2기지국에게 제1기지국이 자신이 감소시킬 전송 전력에 대한 전력 정보, 제2기지국이 증가시켜야 하는 전송 전력에 대한 전력 정보 및/또는 제3기지국이 ES 셀로써 감소시켜야 하는 전송 전력에 대한 정보를 추가적으로 전송해 줄 수 있다. 그리고 제2기지국은 제3기지국에게 자신이 증가시킬 전송 전력에 대한 전력 정보 또는 제3기지국이 증가시켜야 하는 전송 전력에 대한 전력 정보을 추가적으로 전송해 줄 수 있다 (미도시).
ES 보상 후보 요청 메시지는 도 6에서 설명한 ES 보상 후보 요청 메시지 포멧에 ES 셀 지시자 메시지를 전송한 제2기지국의 셀 식별자 및 제 3기지국이 증가시켜야 하는 전송 전력에 대한 전력 정보가 더 포함되는 형태로 구성될 수 있다.
ES 보상 후보 요청 메시지를 수신한 하나 이상의 제4기지국들 중 ES 보상 상태로 전환할 수 있는 셀들은 ES 보상 후보 응답 메시지를 ES 보상 후보 요청 메시지를 전송한 제3기지국 및/또는 ES 셀 지시자 메시지를 전송한 제2기지국으로 전송할 수 있다 (S1125a, S1125b).
보상셀로 결정된 제2기지국은 멀티 스텝 전력 조절을 위해 추가적으로 ES 보상 상태로 전환되는 제4기지국으로부터 ES 보상 후보 응답 메시지를 수신한 이후 ES 보상 상태로 전환할 수 있다 (S1127a).
또한, 제4기지국은 ES 보상 후보 응답 메시지를 제2기지국 및 제3기지국에 전송한 이후에 ES 보상 상태로 전환한다 (S1127b).
ES 보상 상태로 전환한 제2기지국 및 제4기지국은 ES 상태로 전환할 온오프 셀인 제1기지국 및 제3기지국으로 ES 보상 완료 지시자 메시지를 전송하여 ES 보상 상태로 전환되었음을 알려줄 수 있다 (S1129a, S1129b, S1131a, S1131b).
ES 보상 셀 지시자 메시지를 전송한 제1기지국은 ES 보상 상태로 전환한 제2기지국 및 제4기지국으로부터 ES 보상 완료 메시지를 수신 받은 이후 ES 상태로 전환한다 (S1133a).
ES 후보 요청 메시지를 수신한 제3기지국은 ES 후보 요청 메시지를 전송한 제2기지국 및 ES 보상 후보 응답 메시지를 전송한 제4기지국들로부터 ES 보상 완료 지시자 메시지를 모두 수신한 이후에 ES 상태로 전환할 수 있다 (S1133b).
ES 상태로 전환하기 이전에, ES 보상 완료 지시자 메시지를 수신한 제1기지국 및/또는 제3기지국은 각각 자신의 셀 영역에 있는 단말들에게 ES 상태 전환 메시지를 전송할 수 있다 (미도시).
ES 상태 전환 메시지는 메시지 타입 필드(ES 상태 전환 메시지임을 나타내는 지시자), ES 상태 전환 시점을 나타내는 타이머, 하나 이상의 ES 보상 셀들을 나타내는 셀 리스트 등을 포함할 수 있다. 또한, ES 상태 전환 메시지는 RRC 신호를 통해 전송될 수 있다.
ES 상태 전환 메시지를 수신한 단말은 타이머 정보가 나타내는 시점 이후에 서빙셀인 제1기지국 및/또는 제3기지국이 오프될 것임을 인식하고, 자신의 서빙셀에서 ES 보상셀로 핸드오버를 수행해야 함을 알 수 있다. ES 상태로 전환하는 제1기지국 및 제3기지국은 ES 상태로 전환하기 전에 자신의 셀을 서빙셀로 하는 단말들을 ES 보상셀로 핸드오버하도록 지시할 수 있다.
도 11에서는 ES 보상 후보 요청 메시지를 전송한 제3기지국은 ES 보상 후보 셀들에 인접한 셀들(예를 들어, 이웃셀, 제3기지국이 속한 스몰셀 클러스터 단위의 스몰셀들 또는 클러스터내 기설정된 스몰셀들) 중 ES 상태로 전환하려는 셀들이 있는지 여부에 대한 정보를 획득할 수 있다. 따라서, 제3기지국은 ES 보상 후보 셀들 중에서 실제 ES 보상 상태로 전환하는 셀들을 결정하기 위해 상술한 본 발명의 여러 실시예들을 이용할 수 있다.
도 12는 멀티스텝 전력조절 방법으로서 온오프셀이 보상셀을 결정하는 방법 중 또 다른 하나를 나타내는 도면이다.
도 12의 기본 전제는 도 11과 동일하다. 따라서, 도 12에서는 도 11과 다른 부분에 대해서만 설명하도록 한다. 도 12를 참조하면, S1211 단계에서 제2기지국은 인근에 ES 상태로 전환할 온오프셀이 더 있는지 여부를 확인하기 위해 ES 후보 요청 메시지를 제3기지국으로 전송한다. 이때, ES 후보 요청 메시지에는 ES 보상 후보 요청 메시지를 전송한 제1기지국(즉, 소스 기지국)에 대한 정보가 포함될 수 있다.
제3기지국이 ES 상태로 전환하는 것을 결정한 경우, 제3기지국은 S1213 단계에서 ES 후보 응답 메시지를 제1기지국으로 전송한다. 만약, 제3기지국이 ES 상태로 전환하지 않는 것으로 결정한 경우, 제3기지국은 S1213 단계에서 ES 후보 응답 실패 메시지를 제1기지국으로 전송한다.
이후, S1215 단계 내지 S1231 단계에 대한 설명은 도 11의 S1117 단계 내지 S1133 단계에 대한 설명과 동일하므로, 이에 갈음한다.
3. 구현 장치
도 13에서 설명한 장치는 도 1 내지 도 12에서 설명한 방법들이 구현될 수 있는 수단이다.
단말(UE: User Equipment)은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국(eNB: e-Node B)은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신모듈(Tx module: 1340, 1350) 및 수신모듈(Rx module: 1350, 1370)을 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(1300, 1310) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서(Processor: 1320, 1330)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(1380, 1390)를 각각 포함할 수 있다.
상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다. 예를 들어, 기지국의 프로세서는 상술한 1절 내지 2절에 개시된 방법들을 조합하여, ES 보상셀을 결정할 수 있다. 또한, ES 보상셀은 인근 기지국에 ES 상태로 전환할 스몰셀들이 더 있는지 확인하는 과정을 수행할 수 있다. 만약, 멀티 스탭 전력 조정을 수행하는 경우, 기지국은 인근 스몰셀 중 ES 보상 상태로 전환할 추가적인 스몰셀이 있는지 확인하는 과정을 추가적으로 수행할 수 있다.
또한, 도 13에서는 단말과 기지국에 대한 장치 구성을 도시하였으나, 해당 장치 구성은 기지국과 기지국 간의 장치 구성으로 사용될 수 있다. 특히, 본원 발명의 실시예들은 기지국간의 ES 보상셀 결정 방식에 대해서 설명하고 있으므로, 둘 이상의 기지국 간에서 본 발명의 실시예들이 수행될 수 있다. 상세한 내용은 도 6 내지 도 12에서 설명한 실시예들을 참조한다.
단말 및 기지국에 포함된 송신모듈 및 수신모듈은 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 13의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 더 포함할 수 있다. 이때, 송신모듈 및 수신모듈은 각각 송신기 수신기로 불릴 수 있으며, 함께 사용되는 경우 트랜시버로 불릴 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(1380, 1390)에 저장되어 프로세서(1320, 1330)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다.

Claims (14)

  1. 무선 접속 시스템에서 에너지 절약(ES) 보상셀을 결정하는 방법에 있어서,
    제1기지국에서 제2기지국으로 ES 보상 상태로 전환이 가능한지 확인하기 위해 ES 보상 후보 요청 메시지를 전송하는 단계;
    상기 제2기지국으로부터 상기 ES 보상 상태로 전환함을 나타내는 ES 보상 후보 응답 메시지를 수신하는 단계;
    상기 제2기지국으로부터 추가적으로 ES 상태로 전환할 제3기지국들을 나타내는 ES 상태 셀 리스트를 포함하는 ES 후보셀 지시자 메시지를 수신하는 단계; 및
    상기 ES 보상 후보 응답 메시지 및 상기 셀 리스트를 기반으로 상기 ES 보상셀을 결정하는 단계를 포함하되,
    상기 제1기지국은 상기 ES 상태로 전환할 온오프 셀인, ES 보상셀 결정방법.
  2. 제1항에 있어서,
    상기 제1기지국이 결정한 상기 ES 보상셀을 알려주기 위해 ES 보상 상태로 진입할 시점을 나타내는 타이머 정보를 포함하는 ES 보상 셀 지시자 메시지를 전송하는 단계;
    상기 제1기지국이 상기 ES 보상셀로부터 ES 보상 상태로 전환을 완료하였음을 나타내는 ES 보상 완료 지시자 메시지를 수신하는 단계; 및
    상기 제1기지국이 상기 ES 보상 완료 지시자 메시지를 수신한 이후 상기 ES 상태로 전환하는 단계를 더 포함하는, ES 보상셀 결정방법.
  3. 제2항에 있어서,
    상기 ES 보상 완료 지시자 메시지는 상기 ES 상태로 진입할 시점을 나타내는 타이머 정보를 포함하고,
    상기 제1기지국은 상기 타이머 정보가 만료되기 전에 상기 ES 상태로 전환하는, ES 보상셀 결정방법.
  4. 제2항에 있어서,
    상기 제1기지국은 상기 ES 보상 완료 지시자 메시지를 수신한 이후, 상기 제1기지국의 셀 영역에 속한 하나 이상의 단말들에게 상기 ES 보상셀로 핸드오버를 수행하도록 지시하는 ES 상태 전환 메시지를 전송하는 단계를 더 포함하는, ES 보상셀 결정방법.
  5. 제2항에 있어서,
    상기 ES 후보셀 지시자 메시지는 추가적으로 ES 보상 상태로 전환할 하나 이상의 제4기지국들을 나타내는 ES 보상 셀 리스트를 더 포함하고,
    상기 제1기지국은 상기 ES 상태 셀 리스트 및 상기 ES 보상 셀 리스트를 기반으로 상기 ES 보상셀을 결정하는, ES 보상셀 결정방법.
  6. 제5항에 있어서,
    상기 제1기지국, 상기 제2기지국, 상기 제3기지국 및 상기 제4기지국은 하나의 스몰셀 클러스터 내에 포함된 스몰셀들인, ES 보상셀 결정방법.
  7. 제5항에 있어서,
    상기 제2기지국은 상기 제1기지국의 인근 기지국이고,
    상기 제3기지국은 상기 제2기지국의 인근 기지국이고,
    상기 제4기지국은 상기 제3기지국의 인근 기지국인, ES 보상셀 결정방법.
  8. 무선 접속 시스템에서 에너지 절약(ES) 보상셀을 결정하기 위한 제1기지국에 있어서,
    송신기;
    수신기; 및
    상기 ES 보상셀을 결정하기 위한 프로세서를 포함하되,
    상기 프로세서는:
    제2기지국으로 ES 보상 상태로 전환이 가능한지 확인하기 위해 ES 보상 후보 요청 메시지를 상기 송신기를 제어하여 전송하고;
    상기 제2기지국으로부터 상기 ES 보상 상태로 전환함을 나타내는 ES 보상 후보 응답 메시지를 상기 수신기를 제어하여 수신하고;
    상기 제2기지국으로부터 추가적으로 ES 상태로 전환할 제3기지국들을 나타내는 ES 상태 셀 리스트를 포함하는 ES 후보셀 지시자 메시지를 상기 수신기를 제어하여 수신하며;
    상기 ES 보상 후보 응답 메시지 및 상기 셀 리스트를 기반으로 상기 ES 보상셀을 결정하도록 구성되되,
    상기 제1기지국은 상기 ES 상태로 전환할 온오프 셀인, 제1기지국.
  9. 제8항에 있어서,
    상기 프로세서가 결정한 상기 ES 보상셀을 알려주기 위해 상기 프로세서는:
    상기 송신기를 제어하여 ES 보상 상태로 진입할 시점을 나타내는 타이머 정보를 포함하는 ES 보상 셀 지시자 메시지를 전송하고;
    상기 ES 보상셀로부터 ES 보상 상태로 전환을 완료하였음을 나타내는 ES 보상 완료 지시자 메시지를 상기 수신기를 제어하여 수신하되;
    상기 ES 보상 완료 지시자 메시지를 수신한 이후 상기 ES 상태로 전환하도록 구성되는, 제1기지국.
  10. 제9항에 있어서,
    상기 ES 보상 완료 지시자 메시지는 상기 ES 상태로 진입할 시점을 나타내는 타이머 정보를 포함하고,
    상기 제1기지국은 상기 타이머 정보가 만료되기 전에 상기 ES 상태로 전환하는, 기지국.
  11. 제9항에 있어서,
    상기 프로세서는 상기 ES 보상 완료 지시자 메시지를 수신한 이후, 상기 제1기지국의 셀 영역에 속한 하나 이상의 단말들에게 상기 ES 보상셀로 핸드오버를 수행하도록 지시하는 ES 상태 전환 메시지를 전송하도록 더 구성되는, 제1기지국.
  12. 제9항에 있어서,
    상기 ES 후보셀 지시자 메시지는 추가적으로 ES 보상 상태로 전환할 하나 이상의 제4기지국들을 나타내는 ES 보상 셀 리스트를 더 포함하고,
    상기 제1기지국은 상기 ES 상태 셀 리스트 및 상기 ES 보상 셀 리스트를 기반으로 상기 ES 보상셀을 결정하는, 제1기지국.
  13. 제12항에 있어서,
    상기 제1기지국, 상기 제2기지국, 상기 제3기지국 및 상기 제4기지국은 하나의 스몰셀 클러스터 내에 포함된 스몰셀들인, 제1기지국.
  14. 제12항에 있어서,
    상기 제2기지국은 상기 제1기지국의 인근 기지국이고,
    상기 제3기지국은 상기 제2기지국의 인근 기지국이고,
    상기 제4기지국은 상기 제3기지국의 인근 기지국인, 제1기지국.
PCT/KR2014/001954 2013-03-10 2014-03-10 스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치 WO2014142491A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14763829.0A EP2975886B1 (en) 2013-03-10 2014-03-10 Method and apparatus for determining energy-saving compensation cell in small cell-based wireless access system
CN201480013434.3A CN105144799B (zh) 2013-03-10 2014-03-10 在基于小型小区的无线接入系统中用于确定节能补偿小区的方法和设备
KR1020157022090A KR20150135225A (ko) 2013-03-10 2014-03-10 스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치
JP2015561277A JP6462597B2 (ja) 2013-03-10 2014-03-10 スモールセル基盤の無線接続システムでエネルギー節約補償セルを決定する方法及び装置
US14/770,772 US9681347B2 (en) 2013-03-10 2014-03-10 Method and apparatus for determining energy-saving compensation cell in small cell-based wireless access system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361775665P 2013-03-10 2013-03-10
US61/775,665 2013-03-10

Publications (1)

Publication Number Publication Date
WO2014142491A1 true WO2014142491A1 (ko) 2014-09-18

Family

ID=51537071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001954 WO2014142491A1 (ko) 2013-03-10 2014-03-10 스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치

Country Status (6)

Country Link
US (1) US9681347B2 (ko)
EP (1) EP2975886B1 (ko)
JP (1) JP6462597B2 (ko)
KR (1) KR20150135225A (ko)
CN (1) CN105144799B (ko)
WO (1) WO2014142491A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327181B2 (en) * 2015-05-28 2019-06-18 Kyocera Corporation Communication control method, base station, and user terminal

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105323830B (zh) * 2014-07-24 2020-04-07 中兴通讯股份有限公司 节能补偿方法、节能补偿恢复方法及装置
WO2017157585A1 (en) 2016-03-17 2017-09-21 British Telecommunications Public Limited Company Cellular telecommunications network
US10728843B2 (en) 2016-09-29 2020-07-28 British Telecommunications Public Limited Company Cellular telecommunications network
GB2554451B (en) * 2016-09-29 2019-02-27 British Telecomm Cellular telecommunications network
EP3520498B1 (en) 2016-09-29 2023-03-29 British Telecommunications public limited company Cellular telecommunications network
US10728844B2 (en) 2016-09-29 2020-07-28 British Telecommunications Public Limited Company Cellular telecommunications network
GB201616530D0 (en) * 2016-09-29 2016-11-16 British Telecomm Cellular telecommunications network
US11558854B2 (en) 2017-07-18 2023-01-17 British Telecommunications Public Limited Company Cellular telecommunications network
EP3772227B1 (en) 2019-07-29 2022-07-13 British Telecommunications public limited company Cellular telecommunications network
EP3970417B1 (en) 2019-07-29 2022-11-30 British Telecommunications public limited company Initiation of transfer of user equipment to base station according to visual data
WO2021130152A1 (en) * 2019-12-27 2021-07-01 Telecom Italia S.P.A. Method for deactivating a cell site in a cellular communication system
CN113543355B (zh) * 2020-04-16 2023-08-15 中国移动通信集团设计院有限公司 一种用户随机接入的控制方法及装置
GB2596114A (en) * 2020-06-18 2021-12-22 British Telecomm Cellular telecommunications network
GB2596118B (en) * 2020-06-18 2022-07-20 British Telecomm Cellular telecommunications network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048834A (ko) * 2008-10-31 2010-05-11 엘지전자 주식회사 팸토 기지국의 전력 절약 방법
US20110237239A1 (en) * 2010-03-25 2011-09-29 Industrial Technology Research Institiute Method and apparatus for selectively muting a control channel for a femtocell for interference avoidance
KR20120113779A (ko) * 2010-01-08 2012-10-15 인터디지탈 패튼 홀딩스, 인크 기지국들 및 원격 액세스 포인트들에서의 전력 소모 관리
US20120289178A1 (en) * 2010-02-17 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Femto base station, energy-saving coordination node, wireless communication system and computer program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238595B (zh) * 2010-04-30 2014-02-26 华为技术有限公司 小区失效的处理方法及其设备
CN102378323B (zh) * 2010-08-13 2014-12-10 电信科学技术研究院 一种节能补偿方法及基站
WO2012027876A1 (zh) * 2010-08-28 2012-03-08 青岛农业大学 奶牛过瘤胃氨基酸高能复合物
CN102447545B (zh) * 2010-10-11 2014-12-24 电信科学技术研究院 节能信息传输及处理方法、系统和设备
CN102065448A (zh) * 2011-01-06 2011-05-18 大唐移动通信设备有限公司 一种覆盖区域补偿、恢复的方法及装置
CN102595564B (zh) * 2011-01-06 2016-08-24 中兴通讯股份有限公司 小区节能方法、基站及长期演进系统
CN102695251B (zh) * 2011-03-21 2016-01-20 上海贝尔股份有限公司 移动通信系统中的节能方法
CN102695253B (zh) * 2011-03-25 2016-08-03 中兴通讯股份有限公司 一种基站节能信息的传递方法及节能实现方法与系统
EP2739095A4 (en) * 2011-07-26 2015-03-11 Fujitsu Ltd LOAD COMPENSATION METHOD, MEASUREMENT METHOD FOR LOAD EVALUATION, BASE STATION, AND USER EQUIPMENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048834A (ko) * 2008-10-31 2010-05-11 엘지전자 주식회사 팸토 기지국의 전력 절약 방법
KR20120113779A (ko) * 2010-01-08 2012-10-15 인터디지탈 패튼 홀딩스, 인크 기지국들 및 원격 액세스 포인트들에서의 전력 소모 관리
US20120289178A1 (en) * 2010-02-17 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Femto base station, energy-saving coordination node, wireless communication system and computer program
US20110237239A1 (en) * 2010-03-25 2011-09-29 Industrial Technology Research Institiute Method and apparatus for selectively muting a control channel for a femtocell for interference avoidance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327181B2 (en) * 2015-05-28 2019-06-18 Kyocera Corporation Communication control method, base station, and user terminal

Also Published As

Publication number Publication date
US20160014661A1 (en) 2016-01-14
JP6462597B2 (ja) 2019-01-30
KR20150135225A (ko) 2015-12-02
EP2975886A4 (en) 2016-09-21
EP2975886B1 (en) 2018-08-15
CN105144799A (zh) 2015-12-09
JP2016513903A (ja) 2016-05-16
EP2975886A1 (en) 2016-01-20
US9681347B2 (en) 2017-06-13
CN105144799B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2014142491A1 (ko) 스몰셀 기반의 무선 접속 시스템에서 에너지 절약 보상셀을 결정하는 방법 및 장치
WO2011136565A2 (en) Apparatus and method for providing handover support information in mobile communication system
WO2018169343A1 (ko) 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
WO2017164674A1 (ko) 기지국에서 연결 모드 변경 방법 및 기지국과, 사용자기기에서 연결 모드 변경 방법 및 사용자기기
WO2015020449A1 (ko) 듀얼 커넥티비티 지원을 위한 pdcp 분산 구조의 보안 키 생성 및 관리 방안
WO2016108560A1 (en) Method and apparatus for performing inter-menb handover without senb change in wireless communication system
WO2019059673A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 장치
WO2010071312A2 (ko) 페이징 메시지 송수신 방법
WO2018182254A1 (ko) 무선 통신 시스템에서 scg 실패 정보 메시지를 전송하는 방법 및 장치
WO2012134244A2 (ko) 다중 무선접속기술을 지원하는 무선 접속 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2015026098A1 (ko) 동기 신호를 이용한 셀 정보 송수신 방법 및 이를 지원하는 장치
WO2011129648A2 (en) Apparatus and method for a handover in mobile communication system
WO2010071345A2 (en) Method of location update in a wireless communication system
WO2014142487A1 (ko) 무선접속 시스템에서 온오프 스몰셀에 대한 정보를 관리하는 방법 및 이를 지원하는 장치
WO2012091450A2 (en) Method and apparatus for requesting inter-cell interference coordination and method and apparatus for processing inter-cell interference coordination request
WO2015034195A1 (ko) 멀티 rat 환경에서 위치 갱신 (location area update) 방법 및 페이징을 송수신하는 방법
WO2017026786A1 (en) Method and apparatus for controlling wlan bearer
EP3338485A1 (en) Ue access method and apparatus
WO2017196095A2 (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
WO2014204270A1 (ko) 무선 통신 시스템에서 기지국이 커버리지 보상을 위한 신호를 전송하는 방법 및 이를 위한 장치
WO2019225900A1 (ko) 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치
WO2016167559A1 (ko) 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치
WO2018174654A1 (ko) 이종 네트워크에서의 단말의 이동성 제어 방법 및 그 장치
WO2014098393A1 (ko) 이종 네트워크 무선 통신 시스템에서 베어러 확장 제어 방법 및 그 장치
EP3482576A1 (en) Method and apparatus for controlling or paging a user equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013434.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022090

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14770772

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015561277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014763829

Country of ref document: EP