WO2016167559A1 - 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치 - Google Patents

단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치 Download PDF

Info

Publication number
WO2016167559A1
WO2016167559A1 PCT/KR2016/003870 KR2016003870W WO2016167559A1 WO 2016167559 A1 WO2016167559 A1 WO 2016167559A1 KR 2016003870 W KR2016003870 W KR 2016003870W WO 2016167559 A1 WO2016167559 A1 WO 2016167559A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
wlan
network
information
traffic steering
Prior art date
Application number
PCT/KR2016/003870
Other languages
English (en)
French (fr)
Inventor
김상원
정성훈
이영대
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/566,297 priority Critical patent/US10567998B2/en
Publication of WO2016167559A1 publication Critical patent/WO2016167559A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0838User device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for enabling or inactivating terminal-based traffic steering in a wireless communication system and an apparatus for supporting the same.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • an uplink channel or a downlink channel needs to be estimated for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • fading occurs due to a multipath time delay.
  • the process of restoring the transmission signal by compensating for the distortion of the signal caused by a sudden environmental change due to fading is called channel estimation.
  • channel estimation it is necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells.
  • channel estimation is generally performed by using a reference signal (RS) that the transceiver knows from each other.
  • RS reference signal
  • the terminal may perform the measurement in the following three ways.
  • RSRP reference signal received power
  • RSSI Received signal strength indicator
  • RSRQ reference symbol received quality
  • N may be a variable (eg, the number of PRBs) or a function related to the bandwidth for measuring the RSSI.
  • the wireless communication system may support providing a service to a terminal through a plurality of access networks.
  • the terminal may be provided with a service from a 3GPP access network such as a mobile wireless communication system, and may also be provided with a service from a non-3GPP access network such as a worldwide interoperability for microwave access (WiMAX) or a wireless local area network (WLAN). .
  • a 3GPP access network such as a mobile wireless communication system
  • a non-3GPP access network such as a worldwide interoperability for microwave access (WiMAX) or a wireless local area network (WLAN).
  • the UE may establish a connection with the 3GPP access network and receive a service.
  • traffic overload occurs in the 3GPP access network, it is possible to improve the overall network efficiency by allowing the terminal to process the traffic to be processed through another access network, that is, a non-3GPP access network.
  • traffic steering can be handled variably through 3GPP access networks and / or non-GPP access networks, referred to as traffic steering.
  • the terminal may be configured with a policy for interworking 3GPP access networks and non-3GPP access networks, such as ANDSF (Access Network Discovery and Selection Functions), which is managed separately from the interworking policy set by the network. do.
  • ANDSF Access Network Discovery and Selection Functions
  • the terminal supports the terminal-based traffic steering of the Rel-12 and the RAN / WLAN aggregation of the Rel-12
  • the terminal-based traffic of the Rel-12 Manipulation and Rel-13's RAN / WLAN aggregation may conflict.
  • the traffic controlled by the network is re-adjusted by terminal-based traffic steering with the RAN / WLAN aggregation start command of Rel-13.
  • the present invention proposes a method for preventing a collision between terminal-based traffic steering of Rel-12 and RAN / WLAN aggregation of Rel-13 by activating or deactivating terminal-based traffic steering, and an apparatus supporting the same.
  • a method for enabling or disabling terminal-based traffic steering in a wireless communication system may perform terminal-based traffic steering, and transmit WLAN offloading information indicating a radio access network (RAN) / WLAN (Wireless Local Area Network) interworking state to the network.
  • Traffic steering may be traffic steering based on RAN rules or Access Network Discovery and Selection Functions (ANDSF).
  • the terminal may further include receiving a traffic steering inactivation message from a network, wherein the traffic steering inactivation message may be a message prohibiting the terminal based traffic steering.
  • the terminal may further include stopping the terminal-based traffic steering.
  • the terminal may further comprise steering the traffic steered to the WLAN to the RAN.
  • the terminal further includes receiving a traffic steering activation message from a network, wherein the traffic steering activation message may be a message allowing the terminal based traffic steering.
  • the traffic steering active message may be a terminal specific message.
  • the terminal may further include receiving a RAN / WLAN aggregation start command from the network. If there is traffic steered in the WLAN, the terminal may further include stopping the terminal based traffic steering. The terminal may further comprise steering the traffic steered to the WLAN to the RAN.
  • the terminal may further include receiving a RAN / WLAN aggregation stop command from the network.
  • the WLAN offloading information may include serving AP information, APN information steered by the WLAN, PDN information steered by the WLAN, radio bearer information steered by the WLAN, EPS bearer information steered by the WLAN, and offloading to the WLAN.
  • APN information PDN information that can be offloaded to the WLAN
  • radio bearer information that can be offloaded to the WLAN radio bearer information that can be offloaded to the WLAN
  • EPS bearer information that can be offloaded to the WLAN
  • QoS information of traffic steered to the WLAN It may include at least one.
  • the WLAN offloading information may include an amount of data transmitted or received for a predefined time.
  • the WLAN offloading information is determined after the terminal initiates an RRC connection establishment procedure, after the terminal successfully completes an RRC connection establishment procedure, after the terminal receives the WLAN offloading information request from the network, or The terminal may be transmitted to the network after receiving the RAN / WLAN aggregation command.
  • the WLAN offloading information may be transmitted to the network when an event report condition for WLAN measurement is satisfied or the WLAN offloading information is changed.
  • a terminal for activating or deactivating terminal-based traffic steering in a wireless communication system is provided.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • ANDSF Access Network Discovery and Selection Functions
  • FIG. 1 shows a structure of an LTE system.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • FIG 3 shows an air interface protocol of an LTE system for a user plane.
  • FIG. 4 illustrates a procedure in which a UE in an RRC idle state, which is initially powered on, registers with a network through a cell selection process and reselects a cell if necessary.
  • 5 shows a process of establishing an RRC connection.
  • 11 shows an example of deleting a measurement object.
  • WLAN wireless local area network
  • FIG. 13 shows an example of an environment in which a 3GPP access network and a WLAN access network coexist.
  • 16 illustrates a method of enabling / disabling terminal based traffic steering according to an embodiment of the present invention.
  • 17 is a block diagram of a method for activating / deactivating terminal based traffic steering according to an embodiment of the present invention.
  • FIG. 18 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • FIG. 1 shows a structure of an LTE system.
  • Communication networks are widely deployed to provide various communication services such as IMS and Voice over internet protocol (VoIP) over packet data.
  • VoIP Voice over internet protocol
  • an LTE system structure includes one or more UEs 10, an evolved-UMTS terrestrial radio access network (E-UTRAN), and an evolved packet core (EPC).
  • the terminal 10 is a communication device moved by a user.
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • wireless device a wireless device.
  • the E-UTRAN may include one or more evolved node-eB (eNB) 20, and a plurality of terminals may exist in one cell.
  • the eNB 20 provides an end point of a control plane and a user plane to the terminal.
  • the eNB 20 generally refers to a fixed station communicating with the terminal 10, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • One eNB 20 may be arranged per cell. There may be one or more cells within the coverage of the eNB 20.
  • One cell may be configured to have one of bandwidths such as 1.25, 2.5, 5, 10, and 20 MHz to provide downlink (DL) or uplink (UL) transmission service to various terminals. In this case, different cells may be configured to provide different bandwidths.
  • DL means communication from the eNB 20 to the terminal 10
  • UL means communication from the terminal 10 to the eNB 20.
  • the transmitter may be part of the eNB 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the eNB 20.
  • the EPC may include a mobility management entity (MME) that functions as a control plane, and a system architecture evolution (SAE) gateway (S-GW) that functions as a user plane.
  • MME mobility management entity
  • SAE system architecture evolution gateway
  • S-GW gateway
  • the MME / S-GW 30 may be located at the end of the network and is connected to an external network.
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information may be mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint.
  • the MME / S-GW 30 provides the terminal 10 with the endpoint of the session and the mobility management function.
  • the EPC may further include a packet data network (PDN) -gateway (GW).
  • PDN-GW is a gateway with PDN as an endpoint.
  • the MME includes non-access stratum (NAS) signaling to the eNB 20, NAS signaling security, access stratum (AS) security control, inter CN (node network) signaling for mobility between 3GPP access networks, idle mode terminal reachability ( Control and execution of paging retransmission), tracking area list management (for terminals in idle mode and active mode), P-GW and S-GW selection, MME selection for handover with MME change, 2G or 3G 3GPP access Bearer management, including roaming, authentication, and dedicated bearer settings, SGSN (serving GPRS support node) for handover to the network, public warning system (ETWS) and commercial mobile alarm system (PWS) It provides various functions such as CMAS) and message transmission support.
  • NAS non-access stratum
  • AS access stratum
  • inter CN node network
  • MME selection for handover with MME change
  • 2G or 3G 3GPP access Bearer management including roaming, authentication, and dedicated bearer settings
  • SGSN serving GPRS support no
  • S-GW hosts can be based on per-user packet filtering (eg, through deep packet inspection), legal blocking, terminal IP (Internet protocol) address assignment, transport level packing marking in DL, UL / DL service level charging, gating and It provides various functions of class enforcement, DL class enforcement based on APN-AMBR.
  • MME / S-GW 30 is simply represented as a "gateway", which may include both MME and S-GW.
  • An interface for user traffic transmission or control traffic transmission may be used.
  • the terminal 10 and the eNB 20 may be connected by the Uu interface.
  • the eNBs 20 may be interconnected by an X2 interface. Neighboring eNBs 20 may have a mesh network structure by the X2 interface.
  • the eNBs 20 may be connected with the EPC by the S1 interface.
  • the eNBs 20 may be connected to the EPC by the S1-MME interface and may be connected to the S-GW by the S1-U interface.
  • the S1 interface supports a many-to-many-relation between eNB 20 and MME / S-GW 30.
  • the eNB 20 may select for the gateway 30, routing to the gateway 30 during radio resource control (RRC) activation, scheduling and transmission of paging messages, scheduling channel information (BCH), and the like.
  • RRC radio resource control
  • BCH scheduling channel information
  • the gateway 30 may perform paging initiation, LTE idle state management, user plane encryption, SAE bearer control, and encryption and integrity protection functions of NAS signaling in the EPC.
  • FIG. 2 shows an air interface protocol of an LTE system for a control plane.
  • 3 shows an air interface protocol of an LTE system for a user plane.
  • the layer of the air interface protocol between the UE and the E-UTRAN is based on the lower three layers of the open system interconnection (OSI) model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). Hierarchical).
  • the air interface protocol between the UE and the E-UTRAN may be horizontally divided into a physical layer, a data link layer, and a network layer, and vertically a protocol stack for transmitting control signals.
  • Layers of the radio interface protocol may exist in pairs in the UE and the E-UTRAN, which may be responsible for data transmission of the Uu interface.
  • the physical layer belongs to L1.
  • the physical layer provides an information transmission service to a higher layer through a physical channel.
  • the physical layer is connected to a higher layer of a media access control (MAC) layer through a transport channel.
  • Physical channels are mapped to transport channels.
  • Data may be transmitted between the MAC layer and the physical layer through a transport channel.
  • Data between different physical layers, that is, between the physical layer of the transmitter and the physical layer of the receiver may be transmitted using radio resources through a physical channel.
  • the physical layer may be modulated using an orthogonal frequency division multiplexing (OFDM) scheme, and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical layer uses several physical control channels.
  • a physical downlink control channel (PDCCH) reports resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH), and hybrid automatic repeat request (HARQ) information related to the DL-SCH to the UE.
  • the PDCCH may carry an uplink grant to report to the UE regarding resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCH and is transmitted every subframe.
  • a physical hybrid ARQ indicator channel (PHICH) carries a HARQ ACK (non-acknowledgement) / NACK (non-acknowledgement) signal for UL-SCH transmission.
  • a physical uplink control channel (PUCCH) carries UL control information such as HARQ ACK / NACK, a scheduling request, and a CQI for downlink transmission.
  • the physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the physical channel includes a plurality of subframes in the time domain and a plurality of subcarriers in the frequency domain.
  • One subframe consists of a plurality of symbols in the time domain.
  • One subframe consists of a plurality of resource blocks (RBs).
  • One resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols of the corresponding subframe for the PDCCH.
  • the first symbol of the subframe may be used for the PDCCH.
  • the PDCCH may carry dynamically allocated resources, such as a physical resource block (PRB) and modulation and coding schemes (MCS).
  • a transmission time interval (TTI) which is a unit time at which data is transmitted, may be equal to the length of one subframe.
  • One subframe may have a length of 1 ms.
  • a DL transport channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a DL-SCH for transmitting user traffic or control signals. And the like.
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH supports dynamic link adaptation and dynamic / semi-static resource allocation by varying HARQ, modulation, coding and transmit power.
  • the DL-SCH may enable the use of broadcast and beamforming throughout the cell.
  • System information carries one or more system information blocks. All system information blocks can be transmitted in the same period. Traffic or control signals of a multimedia broadcast / multicast service (MBMS) are transmitted through a multicast channel (MCH).
  • MCH multicast channel
  • the UL transport channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message, a UL-SCH for transmitting user traffic or a control signal, and the like.
  • the UL-SCH can support dynamic link adaptation due to HARQ and transmit power and potential changes in modulation and coding.
  • the UL-SCH may enable the use of beamforming.
  • RACH is generally used for initial connection to a cell.
  • the MAC layer belonging to L2 provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer also provides a logical channel multiplexing function by mapping from multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the logical channel may be divided into a control channel for information transmission in the control plane and a traffic channel for information transmission in the user plane according to the type of information to be transmitted. That is, a set of logical channel types is defined for other data transfer services provided by the MAC layer.
  • the logical channel is located above the transport channel and mapped to the transport channel.
  • the control channel is used only for conveying information in the control plane.
  • the control channel provided by the MAC layer includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a dedicated control channel (DCCH).
  • BCCH is a downlink channel for broadcasting system control information.
  • PCCH is a downlink channel used for transmitting paging information and paging a terminal whose cell-level location is not known to the network.
  • CCCH is used by the terminal when there is no RRC connection with the network.
  • MCCH is a one-to-many downlink channel used to transmit MBMS control information from the network to the terminal.
  • DCCH is a one-to-one bidirectional channel used by the terminal for transmitting dedicated control information between the terminal and the network in an RRC connection state.
  • the traffic channel is used only for conveying information in the user plane.
  • the traffic channel provided by the MAC layer includes a dedicated traffic channel (DTCH) and a multicast traffic channel (MTCH).
  • DTCH is used for transmission of user information of one UE in a one-to-one channel and may exist in both uplink and downlink.
  • MTCH is a one-to-many downlink channel for transmitting traffic data from the network to the terminal.
  • the uplink connection between the logical channel and the transport channel includes a DCCH that can be mapped to the UL-SCH, a DTCH that can be mapped to the UL-SCH, and a CCCH that can be mapped to the UL-SCH.
  • the downlink connection between the logical channel and the transport channel is a BCCH that can be mapped to a BCH or DL-SCH, a PCCH that can be mapped to a PCH, a DCCH that can be mapped to a DL-SCH, a DTCH that can be mapped to a DL-SCH, MCCH that can be mapped to MCH and MTCH that can be mapped to MCH.
  • the RLC layer belongs to L2.
  • the function of the RLC layer includes adjusting the size of the data by segmentation / concatenation of the data received from the upper layer in the radio section such that the lower layer is suitable for transmitting data.
  • the RLC layer is divided into three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM). Provides three modes of operation.
  • TM transparent mode
  • UM unacknowledged mode
  • AM acknowledged mode
  • AM RLC provides retransmission through automatic repeat request (ARQ) for reliable data transmission.
  • ARQ automatic repeat request
  • the function of the RLC layer may be implemented as a functional block inside the MAC layer, in which case the RLC layer may not exist.
  • the packet data convergence protocol (PDCP) layer belongs to L2.
  • the PDCP layer introduces an IP packet, such as IPv4 or IPv6, over a relatively low bandwidth air interface to provide header compression that reduces unnecessary control information so that the transmitted data is transmitted efficiently. Header compression improves transmission efficiency in the wireless section by transmitting only the information necessary for the header of the data.
  • the PDCP layer provides security. Security functions include encryption to prevent third party inspection and integrity protection to prevent third party data manipulation.
  • the radio resource control (RRC) layer belongs to L3.
  • the RRC layer at the bottom of L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages through the RRC layer.
  • the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of RBs.
  • RB is a logical path provided by L1 and L2 for data transmission between the terminal and the network. That is, RB means a service provided by L2 for data transmission between the UE and the E-UTRAN. Setting up an RB means defining the characteristics of the radio protocol layer and channel to provide a particular service, and determining each specific parameter and method of operation.
  • RBs may be classified into two types: signaling RBs (SRBs) and data RBs (DRBs).
  • SRBs signaling RBs
  • DRBs data RBs
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • the RLC and MAC layers may perform functions such as scheduling, ARQ and HARQ.
  • the RRC layer (ended at the eNB at the network side) may perform functions such as broadcast, paging, RRC connection management, RB control, mobility function, and UE measurement report / control.
  • the NAS control protocol (terminated at the gateway's MME at the network side) may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging initiation at LTE_IDLE, and security control for signaling between the terminal and the gateway.
  • the RLC and MAC layer may perform the same function as the function in the control plane.
  • the PDCP layer may perform user plane functions such as header compression, integrity protection and encryption.
  • the RRC state indicates whether the RRC layer of the UE is logically connected with the RRC layer of the E-UTRAN.
  • the RRC state may be divided into two types, such as an RRC connected state (RRC_CONNECTED) and an RRC idle state (RRC_IDLE).
  • RRC_CONNECTED RRC connected state
  • RRC_IDLE RRC idle state
  • the E-UTRAN cannot grasp the terminal of the RRC_IDLE, and manages the terminal in units of a tracking area in which a core network (CN) is larger than a cell. That is, the terminal of the RRC_IDLE is only identified as a unit of a larger area, and in order to receive a normal mobile communication service such as voice or data communication, the terminal must transition to RRC_CONNECTED.
  • CN core network
  • the terminal may receive a broadcast of system information and paging information.
  • the terminal may be assigned an identification (ID) that uniquely designates the terminal in the tracking area, and perform public land mobile network (PLMN) selection and cell reselection.
  • ID an identification
  • PLMN public land mobile network
  • the UE may have an E-UTRAN RRC connection and an RRC context in the E-UTRAN to transmit data to the eNB and / or receive data from the eNB.
  • the terminal may report channel quality information and feedback information to the eNB.
  • the E-UTRAN may know the cell to which the UE belongs. Therefore, the network may transmit data to the terminal and / or receive data from the terminal, and the network may inter-RAT with a GSM EDGE radio access network (GERAN) through mobility of the terminal (handover and network assisted cell change (NACC)). radio access technology (cell change indication), and the network may perform cell measurement for a neighboring cell.
  • GSM EDGE radio access network GERAN
  • NACC network assisted cell change
  • the UE designates a paging DRX cycle.
  • the UE monitors a paging signal at a specific paging occasion for each UE specific paging DRX cycle.
  • Paging opportunity is the time interval during which the paging signal is transmitted.
  • the terminal has its own paging opportunity.
  • the paging message is sent across all cells belonging to the same tracking area. If the terminal moves from one tracking area to another tracking area, the terminal sends a tracking area update (TAU) message to the network to update the location.
  • TAU tracking area update
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell and then stays in RRC_IDLE in that cell. When it is necessary to establish an RRC connection, the terminal staying in the RRC_IDLE may make an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and may transition to the RRC_CONNECTED. The UE staying in RRC_IDLE needs to establish an RRC connection with the E-UTRAN when uplink data transmission is necessary due to a user's call attempt or when a paging message is received from the E-UTRAN and a response message is required. Can be.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have the context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • FIG. 4 illustrates a procedure in which a UE in an RRC idle state, which is initially powered on, registers with a network through a cell selection process and reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the UE Whenever a cell is selected, the UE does not register with the accessing network, and if the information of the network (eg, Tracking Area Identity; TAI) received from the system information is different from the network information known to the network, the UE does not register with the network. do.
  • TAI Tracking Area Identity
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • 5 shows a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify the RRC connection. It is used to configure / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE transmits an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • the terminal selects / reselects a cell of an appropriate quality and performs procedures for receiving a service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment and in selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having the same center-frequency as the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell using a RAT different from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the highest ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with parameters (for example, frequency-specific offset) used for cell reselection for each frequency.
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • Rs is a ranking indicator of the serving cell
  • Rn is a ranking indicator of the neighbor cell
  • Qmeas s is a quality value measured by the UE for the serving cell
  • Qmeas n is a quality value measured by the UE for the neighbor cell
  • Qhyst is The hysteresis value, Qoffset, for the ranking is the offset between two cells.
  • the ranking index Rs of the serving cell and the ranking index Rn of the neighboring cell change in a similar state, the ranking ranking is constantly changed as a result of the fluctuation, and the terminal may alternately select two cells.
  • Qhyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures the Rs of the serving cell and the Rn of the neighboring cell according to the above equation, regards the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell. If the reselected cell is not a regular cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the terminal stops use of all radio bearers which have been set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S710).
  • SRB 0 Signaling Radio Bearer # 0
  • AS access stratum
  • each sublayer and physical layer are set to a default configuration.
  • the UE maintains an RRC connection state.
  • the UE performs a cell selection procedure for performing an RRC connection reestablishment procedure (S720).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the terminal After performing the cell selection procedure, the terminal checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S730). If it is determined that the selected cell is an appropriate E-UTRAN cell, the terminal transmits an RRC connection reestablishment request message to the cell (S740).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S750).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S760).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal perform the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • the terminal receives measurement configuration information from the base station (S810).
  • a message including measurement setting information is called a measurement setting message.
  • the terminal performs the measurement based on the measurement configuration information (S820). If the measurement result satisfies the reporting condition in the measurement configuration information, and reports the measurement result to the base station (S830).
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting information may include the following information.
  • the measurement object includes at least one of an intra-frequency measurement object that is an object for intra-cell measurement, an inter-frequency measurement object that is an object for inter-cell measurement, and an inter-RAT measurement object that is an object for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • the report setting information may consist of a list of report settings.
  • Each reporting setup may include a reporting criterion and a reporting format.
  • the reporting criterion is a criterion that triggers the terminal to transmit the measurement result.
  • the reporting criteria may be a single event for the measurement reporting period or the measurement report.
  • the report format is information on what type the terminal configures the measurement result.
  • Measurement identity information This is information about a measurement identifier that associates a measurement object with a report configuration, and allows the terminal to determine what type and when to report to which measurement object.
  • the measurement identifier information may be included in the measurement report message to indicate which measurement object the measurement result is and in which reporting condition the measurement report occurs.
  • Quantitative configuration information information on a parameter for setting filtering of a measurement unit, a reporting unit, and / or a measurement result value.
  • Measurement gap information Information about a measurement gap, which is a section in which a UE can only use measurement without considering data transmission with a serving cell because downlink transmission or uplink transmission is not scheduled. .
  • the terminal has a measurement target list, a measurement report configuration list, and a measurement identifier list to perform a measurement procedure.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • Table 1 lists the events that result in measurement reporting. If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • measurement identifier 1 901 connects an intra-frequency measurement object and report setting 1.
  • the terminal performs intra frequency measurement
  • report setting 1 is used to determine a criterion and a report type of the measurement result report.
  • the measurement identifier 2 902 is connected to the intra-frequency measurement object like the measurement identifier 1 901, but is connected to the setting 2 by viewing the intra-frequency measurement object.
  • the terminal performs the measurement, and report setting 2 is used to determine the criteria and report type of the measurement result report.
  • the terminal transmits the measurement result even if the measurement result for the intra-frequency measurement object satisfies any one of the report setting 1 and the report setting 2.
  • Measurement identifier 3 903 connects inter-frequency measurement object 1 and report configuration 3.
  • the terminal reports the measurement result when the measurement result for the inter-frequency measurement object 1 satisfies the reporting condition included in the report configuration 1.
  • Measurement identifier 4 904 connects inter-frequency measurement object 2 and report configuration 2.
  • the terminal reports the measurement result if the measurement result for the inter-frequency measurement object 2 satisfies the reporting condition included in the report configuration 2.
  • the measurement target, report setting, and / or measurement identifier may be added, changed, and / or deleted. This may be indicated by the base station sending a new measurement configuration message to the terminal, or by sending a measurement configuration change message.
  • FIG. 10 shows an example of deleting a measurement identifier. If measurement identifier 2 902 is deleted, measurement for the measurement object associated with measurement identifier 2 902 is stopped and no measurement report is transmitted. The measurement object or report setting associated with the deleted measurement identifier may not be changed.
  • FIG. 11 shows an example of deleting a measurement object. If the inter-frequency measurement object 1 is deleted, the terminal also deletes the associated measurement identifier 3 903. The measurement for the inter-frequency measurement object 1 is stopped and no measurement report is transmitted. However, the report setting associated with the deleted inter-frequency measurement object 1 may not be changed or deleted.
  • the terminal If the reporting configuration is removed, the terminal also removes the associated measurement identifier. The terminal stops measuring the associated measurement object by the associated measurement identifier. However, the measurement object associated with the deleted report setting may not be changed or deleted.
  • the measurement report may include a measurement identifier, a measured quality of the serving cell, and a measurement result of a neighboring cell.
  • the measurement identifier identifies the measurement object for which the measurement report is triggered.
  • the measurement result of the neighbor cell may include the cell identifier of the neighbor cell and the measured quality.
  • the measured quality may include at least one of Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
  • 12 illustrates a structure of a wireless local area network (WLAN).
  • WLAN wireless local area network
  • 12 (a) illustrates the structure of an infrastructure network of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
  • 12 (b) shows an independent BSS.
  • IEEE Institute of Electrical and Electronic Engineers
  • the WLAN system may include one or more basic service sets (BSSs) 1200 and 1205.
  • the BSSs 1200 and 1205 are a set of APs and STAs such as an access point 1225 and an STA1 (Station 1200-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 1205 may include one or more STAs 1205-1 and 1205-2 that can be coupled to one AP 1230.
  • the infrastructure BSS may include at least one STA, APs 1225 and 1230 for providing a distribution service, and a distribution system (DS) 1210 for connecting a plurality of APs.
  • STA station-to-live
  • APs 1225 and 1230 for providing a distribution service
  • DS distribution system
  • the distributed system 1210 may implement an extended service set (ESS) 1240 which is an extended service set by connecting various BSSs 1200 and 1205.
  • ESS 1240 may be used as a term indicating one network in which one or several APs 1225 and 1230 are connected through a distributed system 1210.
  • APs included in one ESS 1240 may have the same service set identification (SSID).
  • SSID service set identification
  • the portal 1220 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (eg, 802.X).
  • a network between the APs 1225 and 1230 and a network between the APs 1225 and 1230 and the STAs 1200-1, 1205-1 and 1205-2 may be implemented.
  • a network that performs communication by establishing a network even between STAs without APs 1225 and 1230 is defined as an ad-hoc network or an independent basic service set (BSS).
  • BSS basic service set
  • an independent BSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 1250-1, 1250-2, 1250-3, 1255-1, and 1255-2 are managed in a distributed manner. In the IBSS, all STAs 1250-1, 1250-2, 1250-3, 1255-1, and 1255-2 may be configured as mobile STAs, and are not allowed to access a distributed system, and thus are self-contained. network).
  • a STA is any functional medium that includes a medium access control (MAC) and physical layer interface to a wireless medium that conforms to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • 3GPP has standardized ANDSF (Access Network Discovery and Selection Functions) for discovering and selecting accessible access networks by introducing interworking with non-3GPP access networks (eg, WLANs) from Rel-8.
  • ANDSF provides access network discovery information (for example, WLAN, WiMAX location information, etc.) accessible from the location of the terminal, inter-system mobility policies (ISMP) that can reflect the policy of the operator, and inter-system routing. It transmits an Inter-System Routing Policy (ISRP), and based on this information, the UE can determine which IP traffic to transmit via which access network.
  • the ISMP may include a network selection rule for the terminal to select one active access network connection (eg, WLAN or 3GPP).
  • the ISRP may include network selection rules for the terminal to select one or more potential activated access network connections (eg, both WLAN and 3GPP).
  • Inter-system routing policies include MAPCON (Multiple Access PDN Connectivity), IFOM (IP Flow Mobility), and non-seamless WLAN offloading.
  • MAPCON Multiple Access PDN Connectivity
  • IFOM IP Flow Mobility
  • OMA DM Open Mobile Alliance Device Management
  • the ANDSF server determines the access point name (APN) information to perform offloading, routing rules between access networks, time of day when the offloading method is applied, and access network to offload. Provide information, etc.
  • APN access point name
  • IFOM supports more flexible and granular unit of IP flow unit mobility and seamless offloading than MAPCON. Unlike the MAPCON, the technical characteristics of IFOM can be accessed through different access networks even when the terminal is connected to the packet data network using the same access point name (APN), and the unit of mobility and offloading is a packet data network (PDN). By moving to a specific service IP traffic flow unit instead of), it has the flexibility of service provision.
  • the ANDSF server can determine the IP flow information to perform offloading, routing rules between access networks, time of day when the offloading method is applied, and access area (Validity Area) information to be offloaded. to provide.
  • Non-seamless WLAN offloading refers to a technique that not only redirects certain specific IP traffic to WLAN, but also completely offloads the traffic so that it does not go through the EPC. It does not anchor the P-GW to support mobility, so offloaded IP traffic cannot be seamlessly moved back to the 3GPP access network.
  • the ANDSF server provides information similar to the information provided to the terminal to perform IFOM.
  • FIG. 13 shows an example of an environment in which a 3GPP access network and a WLAN access network coexist.
  • a cell 1 centered on a base station 1 1310 and a cell 2 centered on a base station 2 1320 are deployed as a 3GPP access network.
  • BSS Basic Service Set
  • AP Access Point
  • BSS3 centering on AP3 1350 present in 2 is deployed. The coverage of the cell is shown by the solid line and the coverage of the BSS is shown by the dotted line.
  • the terminal 1300 is configured to perform communication through a 3GPP access network and a WLAN access network.
  • the terminal 1300 may be called a station.
  • the terminal 1300 may establish a connection with the BS1 1310 in cell 1 to process traffic through the 3GPP access network.
  • the terminal 1300 may enter the coverage of the BSS1 while moving within the coverage of the cell 1 and discover the BSS1 through scanning.
  • the terminal 1300 may connect with the WLAN access network through an association and authentication procedure with the AP1 1330 of the BSS1. Accordingly, the terminal 1300 may process the traffic through the 3GPP access network and the WLAN access network. Meanwhile, when the terminal 1300 moves out of coverage of the BSS1, the connection with the WLAN access network may be terminated.
  • the terminal 1300 may continuously move within the coverage of Cell 1 and move near the boundary of Cell 1 and Cell 2, and may enter the coverage of BSS2 and discover BSS2 through scanning. In this case, the terminal 1300 may connect with the WLAN access network by performing the association and authentication procedure with the AP2 1340 of the BSS2. On the other hand, since the terminal 1300 in coverage of BSS2 is located at the boundary between cell 1 and cell 2, the quality of service through the 3GPP access network may not be good. In this case, the terminal 1300 may operate to intensively process traffic through the WLAN access network.
  • the terminal 1300 may terminate the connection with the WLAN access network and process traffic through the cell 2 based 3GPP access network. have.
  • the terminal 1300 may enter the coverage of the BSS3 while moving within the coverage of the cell 2 and discover the BSS1 through scanning.
  • the terminal 1300 may connect with the WLAN access network through the association and authentication procedure with the AP3 1350 of the BSS3. Accordingly, the terminal 1300 may process the traffic through the 3GPP access network and the WLAN access network.
  • the terminal may adaptively handle traffic through the 3GPP access network and / or the non-3GPP access network.
  • the above-mentioned ANDSF may be set as a policy for interworking between 3GPP access networks and non-3GPP access networks.
  • the UE may process the traffic of the 3GPP access network through the non-3GPP access network or the 3GPP access network according to the corresponding policy.
  • an interworking policy other than ANDSF may be set in the terminal.
  • an interworking policy reflecting measurement parameters such as load and signal quality of 3GPP access network and / or WLAN access network is defined, hereinafter referred to as RAN policy.
  • the traffic steering rule according to the RAN policy is hereinafter referred to as RAN rule.
  • the RAN rule may be provided to the terminal with at least one RAN rule parameter for traffic steering evaluation according to the RAN rule.
  • the RAN rule and the RAN rule parameters may be set as follows.
  • the RAN rule may indicate whether traffic steering to the WLAN is allowed.
  • the RAN rule may indicate a traffic steering evaluation condition, which is a condition where the terminal is allowed or required to perform traffic steering from the 3GPP access network to the WLAN access network.
  • Conditions according to the RAN rule may involve evaluation of measurement results for an LTE cell.
  • a condition according to the RAN rule may involve the evaluation of measurement results for the WLAN.
  • the evaluation may be to compare the measurement result with a RAN rule parameter (eg, measurement threshold value, etc.) indicated in the traffic steering information.
  • a RAN rule parameter eg, measurement threshold value, etc.
  • RSRP measured value (measured_RSRP) ⁇ low RSRP threshold (Threshold_RSRP_low)
  • 3GPP load measurement (measured_3GPPLoad)> high 3GPP load threshold (Threshold_3GPPLoad_High)
  • WLAN load measurement value (measured_WLANLoad) ⁇ low WLAN load threshold (Threshold_WLANLoad_low)
  • WLAN signal strength measurement (measured_WLANsignal)> high WLAN signal strength threshold (Threshold_WLANsignal_high)
  • RSRP Measured Value (measured_RSRP)> High RSRP Threshold (Threshold_RSRP_high)
  • 3GPP load measurement (measured_3GPPLoad) ⁇ low 3GPP load threshold (Threshold_3GPPLoad_High)
  • WLAN load measurement (measured_WLANLoad)> high WLAN load threshold (Threshold_WLANLoad_high)
  • WLAN signal strength measurement value (measured_WLANsignal) ⁇ low WLAN signal strength threshold value (Threshold_WLANsignal_low)
  • the traffic steering evaluation condition may be set by combining the one or more conditions with and / or.
  • the traffic steering evaluation condition implemented by combining one or more conditions may be implemented as follows.
  • the RAN rule may indicate a condition under which the terminal is allowed or required to perform traffic steering from the WLAN access network to the 3GPP access network.
  • the RAN rule may indicate the target WLAN access network where the terminal is allowed or required to perform traffic steering from the 3GPP access network.
  • the RAN rule may indicate the type of traffic that is allowed to route to the WLAN access network. Or, the RAN rule may indicate one or more traffics that are allowed to route to the WLAN access network, that is, can only be serviced by the 3GPP access network.
  • the ANDSF set in the terminal may include a legacy ANDSF and / or enhanced ANDSF (enhanced ANDSF).
  • the legacy ANDSF may be defined as an ANDSF that does not contain the same ANDSF Management Object (MO) as the corresponding parameter defined in the RAN rule parameter.
  • an enhanced ANDSF may be defined as an ANDSF that includes the same ANDSF MO as the corresponding parameter defined within the RAN rule parameter.
  • FIG. 14 shows an example of a legacy ANDSF for MAPCON
  • FIG. 15 shows an example of an enhanced ANDSF for MAPCON.
  • the legacy ANDSF does not include RAN rule parameters such as RSRP and WLAN signal level as an ANDSF MO.
  • the enhanced ANDSF includes RSRP, RSRQ, and offload preference as an ANDSF MO.
  • the ANDSF may include a WLAN signal level (e.g. RSSI, RSCP), a WLAN load level, a WLAN backhaul data rate, a WLAN backhaul load, and the like as an ANDSF MO.
  • the enhanced ANDSF may specify traffic steering evaluation conditions with respect to each ANDSF MO.
  • the traffic steering evaluation condition specified by the enhanced ANDSF may be set similarly to the traffic steering evaluation condition related to the RAN rule parameter set by the RAN rule, and a detailed description thereof will be omitted.
  • the Rel-12 WLAN AP and the Rel-13 WLAN AP may be arranged together around the terminal.
  • the Rel-12 WLAN AP may refer to a WLAN AP supporting terminal-based traffic steering
  • the Rel-13 WLAN AP may refer to a WLAN AP supporting network-based RAN / WLAN aggregation.
  • the terminal-based traffic steering may be that the terminal performs the traffic steering based on the RAN rule or ANDSF by the terminal itself.
  • the network-based RAN / WLAN aggregation may be one in which the network controls traffic by itself by transmitting an RAN / WLAN aggregation command.
  • a Rel-12 WLAN AP and a Rel-13 WLAN AP are co-located around a terminal, and the terminal supports both terminal-based traffic steering of Rel-12 and RAN / WLAN aggregation of Rel-13.
  • the terminal steers some traffic to the WLAN AP through terminal-based traffic steering of Rel-12, the terminal may receive a RAN / WLAN aggregation start command from the network.
  • the terminal since the terminal may be connected to only one WLAN AP, even if the RAN / WLAN aggregation start command is received, the terminal may not execute the RAN / WLAN aggregation start command.
  • the Rel-13 RAN / WLAN aggregation start command may cause a problem that the traffic controlled by the network is readjusted by the terminal-based traffic control, and the like.
  • the present invention proposes a method for solving the above problems and an apparatus supporting the same.
  • the terminal controls some traffic to the WLAN by the terminal-based traffic steering, and the terminal is still transmitting / receiving data through the WLAN, the terminal sends WLAN offloading information to the network. Can be transmitted.
  • the WLAN offloading information may be information indicating a RAN / WLAN interworking state to the network.
  • the terminal based traffic steering may be traffic steering based on RAN rules or ANDSF.
  • the RAN rule may be broadcast by SIB 17 or terminal specific message.
  • (2) WLAN offloading information may include the following information.
  • SSID Service Set Identifier
  • BSSID Basic Service Set Identifier
  • HESSID Homogeneous Extended Service Set Identifier
  • Domain Name List Operating Class and / or Channel Number
  • APN / PDN steered by WLAN according to RAN rules or ANDSF
  • APN / PDN / Wireless Bearer or EPS Bearer that can be offloaded to WLAN
  • the amount of data the amount of data transmitted and / or received for a predefined time or the amount of data stored in the buffer
  • the Qos information is a Packet Delay Budget (PDB) (upper bound of allowable delay time at the terminal), Packet Error Loss Rate (PELR) or Access categories (ie, include at least one of audio, video, best effort, and background)
  • PDB Packet Delay Budget
  • PELR Packet Error Loss Rate
  • Access categories ie, include at least one of audio, video, best effort, and background
  • the terminal may transmit the WLAN offloading information to the network.
  • the UE After the UE initiates an RRC connection establishment procedure (for example, when transmitting an RRC connection establishment complete message),
  • the WLAN offloading information is changed (e.g., some traffic needs to be steered from and / or to the WLAN according to RAN rules or ANDSF, or the WLAN connection is broken);
  • the WLAN offloading information is included in the WLAN measurement report message, or the WLAN offloading information is the WLAN measurement report message. Can be sent to the network after is sent to the network).
  • the network receiving the WLAN offloading information from the terminal may explicitly allow or prohibit the terminal-based traffic steering by indicating a traffic steering activation command or a traffic steering deactivation command.
  • the network receiving the WLAN offloading information from the terminal may implicitly inhibit the terminal-based traffic steering by instructing the RAN / WLAN aggregation start command.
  • the explicit or implicit instructions of the network are discussed in detail in the following steps.
  • the network may transmit a traffic steering inactivity message to the terminal.
  • the traffic steering deactivation message may be a message for prohibiting terminal based traffic steering.
  • the terminal receiving the traffic steering deactivation message may not apply the RAN rule or ANDSF broadcasted from the serving cell in order not to perform the traffic steering to / from the WLAN by itself.
  • the terminal may be a terminal supporting RAN / WLAN aggregation defined in Rel-13. This may mean that the terminal performs traffic steering to / from the WLAN only when the terminal receives the traffic steering command from the network.
  • the terminal receiving the traffic steering inactivity message may steer all traffic of the WLAN to the RAN. Through this, the network can know all data to be offloaded.
  • the network may transmit a traffic steering activation message to the terminal.
  • the traffic steering active message may be a message allowing terminal-based traffic steering.
  • the terminal receiving the traffic steering activation message may continue to steer the traffic to / from the WLAN by itself.
  • the traffic steering inactive message and the traffic steering active message may be terminal only (i.e., terminal specific message) or multiple terminal sharing (i.e. cell specific message) to the cell.
  • the network may transmit a RAN / WLAN aggregation start command to the terminal.
  • the RAN / WLAN aggregation start command may be supported at the Rel-13 terminal.
  • the RAN / WLAN aggregation start command may be a command for prohibiting terminal-based traffic steering. However, depending on whether there is traffic in progress in the WLAN, the terminal receiving the RAN / WLAN aggregation start command may activate terminal-based traffic steering.
  • the terminal may deactivate the terminal-based traffic steering by itself.
  • the terminal may transmit WLAN offloading information to the network so that the network deactivates terminal-based traffic steering. That is, after the RAN / WLAN aggregation command is applied, if there is some ongoing traffic transmission / reception in the WLAN, terminal-based traffic steering may be prohibited.
  • the terminal based traffic steering may be traffic steering based on RAN rules or ANDSF. The forbidden terminal based traffic steering may be resumed as the network sends a stop RAN / WLAN aggregation command to the terminal.
  • the terminal may activate the terminal-based traffic steering by itself.
  • the terminal may steer all traffic of the WLAN to the RAN.
  • the terminal may transmit WLAN offloading information to the network without serving AP information.
  • Step 2-B may be performed only when the terminal cannot support both RAN rules / ANDSF and RAN / WLAN aggregation at the same time.
  • Step 2-B may be performed by the terminal communicating with the WLAN AP according to the RAN rule or ANDSF only when the network configures the aggregation of the AP and the LTE through the RAN / WLAN aggregation start command.
  • the terminal may perform traffic steering with LTE according to RAN rules or ANDSF.
  • 16 illustrates a method of enabling / disabling terminal based traffic steering according to an embodiment of the present invention.
  • the terminal may receive a WLAN measurement setting from the network (S1610).
  • the terminal that has received the measurement configuration may perform WLAN measurement (S1620).
  • the terminal may transmit the WLAN measurement report to the network (S1630).
  • the WLAN measurement report may include WLAN offloading information.
  • the terminal may transmit the WLAN offloading information to the network after transmitting the WLAN measurement report to the network.
  • the WLAN offloading information may be information indicating a RAN / WLAN interworking state.
  • the WLAN offloading information is transmitted when the WLAN measurement report event condition is satisfied.
  • the condition for transmitting the WLAN offloading information may vary.
  • the WLAN offloading information may be transmitted after the UE initiates an RRC connection establishment procedure.
  • the WLAN offloading information may be transmitted after the terminal receives the RAN / WLAN aggregation command.
  • the WLAN offloading information may include serving AP information, RAN rules, or the amount of APN / PDN information or data steered according to ANDSF. Based on the WLAN offloading information, the network may determine whether to perform or stop terminal based traffic steering.
  • the network may decide to perform RAN / WLAN aggregation / interworking (S1640).
  • the terminal may receive a RAN / WLAN aggregation / interworking start command from the network (S1650). Upon receiving the RAN / WLAN aggregation / interworking start command, the terminal may control all traffic of the WLAN by LTE and deactivate the terminal-based traffic steering. That is, the terminal may no longer perform traffic steering based on RAN rules or ANDSF.
  • the terminal may transmit RAN / WLAN aggregation / interworking start completion to the network (S1660).
  • the network may then send the WLAN reconfiguration complete to the WLAN AP.
  • the terminal may receive a RAN / WLAN aggregation / interwork stopping command from the network (S1670).
  • the terminal receiving the RAN / WLAN aggregation / interwork interruption command may activate the terminal-based traffic steering.
  • the terminal may transmit RAN / WLAN aggregation / interworking stop completion to the network (S1680).
  • RAN / WLAN aggregation / interworking may be used in the same concept as RAN / WLAN aggregation.
  • the network determines whether to allow or prohibit the UE from performing UE-based traffic steering, so that the UE performs RAN / WLAN aggregation defined in Rel-13. It may be possible to solve the problem of performing redundant traffic steering.
  • 17 is a block diagram of a method for activating / deactivating terminal based traffic steering according to an embodiment of the present invention.
  • the terminal may perform terminal-based traffic steering (S1710).
  • the terminal based traffic steering may be traffic steering based on RAN rules or ANDSF.
  • the terminal may transmit WLAN offloading information indicating the RAN / WLAN interworking state to the network (S1720).
  • the WLAN offloading information may include serving AP information.
  • the WLAN offloading information may include APN information steered to the WLAN.
  • the WLAN offloading information may include PDN information steered to the WLAN.
  • the WLAN offloading information may include radio bearer information to be steered to the WLAN.
  • the WLAN offloading information may include EPS bearer information to be steered to the WLAN.
  • the WLAN offloading information may include APN information that may be offloaded to the WLAN.
  • the WLAN offloading information may include PDN information that may be offloaded to the WLAN.
  • the WLAN offloading information may include radio bearer information that may be offloaded to the WLAN.
  • the WLAN offloading information may include EPS bearer information that may be offloaded to the WLAN.
  • the WLAN offloading information may include QoS information of traffic steered to the WLAN.
  • the WLAN offloading information may include an amount of data transmitted or received for a predefined time.
  • the WLAN offloading information may include the amount of data stored in
  • the WLAN offloading information may be transmitted to the network after the terminal initiates an RRC connection establishment procedure.
  • the WLAN offloading information may be transmitted to the network after the terminal successfully completes an RRC connection establishment procedure.
  • the WLAN offloading information may be transmitted to the network after the terminal receives the WLAN offloading information request from the network.
  • the WLAN offloading information may be transmitted to the network after the terminal receives the RAN / WLAN aggregation command.
  • the WLAN offloading information may be transmitted to the network when an event report condition for WLAN measurement is satisfied.
  • the WLAN offloading information may be transmitted to the network when the WLAN offloading information is changed.
  • the terminal receives a traffic steering inactivation message from a network, and the traffic steering inactivation message may be a message forbidding the terminal-based traffic steering.
  • the terminal may stop the terminal-based traffic control.
  • the terminal may steer the traffic steered to the WLAN to the RAN.
  • the terminal receives a traffic steering activation message from a network, but the traffic steering activation message may be a message allowing the terminal-based traffic steering.
  • the traffic steering active message may be a terminal specific message.
  • the traffic steering active message may be a cell specific message.
  • the terminal may receive a RAN / WLAN aggregation start command from the network. If there is traffic steered in the WLAN, the terminal may stop the terminal-based traffic steering. In addition, the terminal may steer the traffic steered to the WLAN to the RAN.
  • the terminal may receive an RAN / WLAN aggregation stop command from the network.
  • the terminal may resume the terminal-based traffic control.
  • FIG. 18 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 1800 includes a processor 1801, a memory 1802, and a transceiver 1803.
  • the memory 1802 is connected to the processor 1801 and stores various information for driving the processor 1801.
  • the transceiver 1803 is connected to the processor 1801 to transmit and / or receive a radio signal.
  • the processor 1801 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1801.
  • the terminal 1810 includes a processor 1811, a memory 1812, and a transceiver 1813.
  • the memory 1812 is connected to the processor 1811 and stores various information for driving the processor 1811.
  • the transceiver 1813 is coupled to the processor 1811 to transmit and / or receive wireless signals.
  • Processor 1811 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1811.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

무선 통신 시스템에서 단말이 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 이를 지원하는 장치가 제공된다. 상기 단말은 단말 기반 트래픽 조종을 수행하고, RAN/WLAN 인터워킹 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송하는 것을 포함하되, 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF를 기반으로 하는 트래픽 조종일 수 있다.

Description

단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 단말이 단말 기반 트래픽 조종(Traffic Steering)을 활성화 또는 비활성화하는 방법 및 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
한편, 무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 무선통신 시스템 환경에서는 다중 경로 시간 지연으로 인하여 페이딩이 발생하게 된다. 페이딩으로 인한 급격한 환경 변화에 의하여 생기는 신호의 왜곡을 보상하여 전송 신호를 복원하는 과정을 채널 추정이라고 한다. 또한 단말이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state)를 측정할 필요가 있다. 채널 추정 또는 채널 상태 측정을 위해서 일반적으로 송수신기가 상호 간에 알고 있는 참조 신호(RS; reference signal)를 이용하여 채널 추정을 수행하게 된다.
단말은 다음 3가지 방법으로 측정을 수행할 수 있다.
1) RSRP(reference signal received power): 전 대역에 걸쳐 전송되는 CRS를 운반하는 모든 RE의 평균 수신 전력을 나타낸다. 이때 CRS 대신 CSI RS를 운반하는 모든 RE의 평균 수신 전력을 측정할 수도 있다.
2) RSSI(received signal strength indicator): 전체 대역에서 측정된 수신 전력을 나타낸다. RSSI는 신호, 간섭(interference), 열 잡음(thermal noise)을 모두 포함한다.
3) RSRQ(reference symbol received quality): CQI를 나타내며, 측정 대역폭(bandwidth) 또는 서브밴드에 따른 RSRP/RSSI로 결정될 수 있다. 즉, RSRQ는 신호 대 잡음 간섭 비(SINR; signal-to-noise interference ratio)를 의미한다. RSRP는 충분한 이동성(mobility) 정보를 제공하지 못하므로, 핸드오버 또는 셀 재선택(cell reselection) 과정에서는 RSRP 대신 RSRQ가 대신 사용될 수 있다.
RSRQ = RSSI/RSSP로 산출될 수 있다. 또는 RSRQ = N*RSSI/RSSP로 산출될 수도 있다. 여기서 N은 RSSI를 측정하는 대역폭에 관련된 변수(예컨대 PRB 개수) 또는 함수일 수 있다.
한편, 무선 통신 시스템은 복수의 액세스 네트워크를 통한 서비스를 단말에 제공하는 것을 지원할 수 있다. 단말은 모바일 무선 통신 시스템과 같은 3GPP 액세스 네트워크로부터 서비스를 제공받을 수 있으며, 또한 WiMAX(Worldwide Interoperability for Microwave Access), WLAN(Wireless Local Area Network)와 같은 비-3GPP 액세스 네트워크로부터 서비스를 제공받을 수 있다.
단말은 일반적으로 3GPP 액세스 네트워크와 연결을 확립하여 서비스를 제공받을 수 있다. 한편, 3GPP 액세스 네트워크에 트래픽 과부화가 발생할 경우, 단말이 처리하고자 하는 트래픽을 다른 액세스 네트워크, 즉 비-3GPP 액세스 네트워크를 통해 처리하도록 하는 것이 네트워크 전반의 효율성을 향상시킬 수 있다. 이와 같이 트래픽이 3GPP 액세스 네트워크 및/또는 비-GPP 액세스 네트워크를 통해 가변적으로 처리될 수 있도록 하는 것을 트래픽 조종(traffic steering)이라 한다.
트래픽 조종을 위하여 단말에는 ANDSF(Access Network Discovery and Selection Functions)과 같이 3GPP 액세스 네트워크 및 비-3GPP 액세스 네트워크 연동을 위한 정책이 설정될 수 있으며, 이는 네트워크에 의해 설정되는 연동 정책과는 별개의 것으로 관리된다.
Rel-12 WLAN AP와 Rel-13 WLAN AP가 단말 주변에 함께 배치되고, 단말이 Rel-12의 단말 기반 트래픽 조종 및 Rel-13의 RAN/WLAN 집성을 지원하는 경우, Rel-12의 단말 기반 트래픽 조종과 Rel-13의 RAN/WLAN 집성이 충돌할 수 있다. 예를 들어, Rel-13의 RAN/WLAN 집성 시작 명령으로 네트워크에 의해 제어된 트래픽이 단말 기반 트래픽 조종에 의해 재 조정되는 문제 등이 발생할 수 있다. 따라서, 본 발명에서는 단말이 단말 기반 트래픽 조종을 활성화 또는 비활성화하여, Rel-12의 단말 기반 트래픽 조종과 Rel-13의 RAN/WLAN 집성의 충돌을 방지하기 위한 방법 및 이를 지원하는 장치를 제안한다.
일 실시 예에 있어서, 무선 통신 시스템에서 단말이 단말 기반 트래픽 조종(Traffic Steering)을 활성화 또는 비활성화하는 방법이 제공된다. 상기 단말은 단말 기반 트래픽 조종을 수행하고, RAN(Radio Access Network)/WLAN(Wireless Local Area Network) 인터워킹(interworking) 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송하는 것을 포함하되, 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF(Access Network Discovery and Selection Functions)를 기반으로 하는 트래픽 조종일 수 있다.
상기 단말은 네트워크로부터 트래픽 조종 비활성 메시지를 수신하는 것을 더 포함하되, 상기 트래픽 조종 비활성 메시지는 상기 단말 기반 트래픽 조종을 금지하는 메시지일 수 있다. 상기 단말은 상기 단말 기반 트래픽 조종을 중단하는 것을 더 포함할 수 있다. 상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종하는 것을 더 포함할 수 있다.
상기 단말은 네트워크로부터 트래픽 조종 활성 메시지를 수신하는 것을 더 포함하되, 상기 트래픽 조종 활성 메시지는 상기 단말 기반 트래픽 조종을 허용하는 메시지일 수 있다. 상기 트래픽 조종 활성 메시지는 단말 특정 메시지일 수 있다.
상기 단말은 네트워크로부터 RAN/WLAN 집성 시작 명령을 수신하는 것을 더 포함할 수 있다. 상기 WLAN에 조종된 트래픽이 있으면, 상기 단말은 상기 단말 기반 트래픽 조종을 중단하는 것을 더 포함할 수 있다. 상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종하는 것을 더 포함할 수 있다.
상기 단말은 네트워크로부터 RAN/WLAN 집성 중단 명령을 수신하는 것을 더 포함할 수 있다.
상기 WLAN 오프로딩 정보는 서빙 AP 정보, 상기 WLAN으로 조종된 APN 정보, 상기 WLAN으로 조종된 PDN 정보, 상기 WLAN으로 조종될 무선 베어러 정보, 상기 WLAN으로 조종될 EPS 베어러 정보, 상기 WLAN으로 오프로딩 될 수 있는 APN 정보, 상기 WLAN으로 오프로딩 될 수 있는 PDN 정보, 상기 WLAN으로 오프로딩 될 수 있는 무선 베어러 정보, 상기 WLAN으로 오프로딩 될 수 있는 EPS 베어러 정보, 상기 WLAN에 조종된 트래픽의 QoS 정보 중 적어도 어느 하나를 포함할 수 있다.
상기 WLAN 오프로딩 정보는 미리 정의된 시간 동안 전송 또는 수신되는 데이터의 양을 포함할 수 있다.
상기 WLAN 오프로딩 정보는 상기 단말이 RRC 연결 확립 절차를 개시한 이후, 상기 단말이 RRC 연결 확립 절차를 성공적으로 완료한 이후, 상기 단말이 상기 WLAN 오프로딩 정보 요청을 상기 네트워크로부터 수신한 이후, 또는 상기 단말이 RAN/WLAN 집성 명령을 수신한 이후 상기 네트워크로 전송될 수 있다.
상기 WLAN 오프로딩 정보는 WLAN 측정에 대한 이벤트 보고 조건이 만족되거나, 상기 WLAN 오프로딩 정보가 변경되면 상기 네트워크로 전송될 수 있다.
다른 실시 예에 있어서, 무선 통신 시스템에서 단말 기반 트래픽 조종(Traffic Steering)을 활성화 또는 비활성화하는 단말이 제공된다. 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 단말 기반 트래픽 조종을 수행하고, 상기 송수신기가 RAN(Radio Access Network)/WLAN(Wireless Local Area Network) 인터워킹(interworking) 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송하는 것을 제어하도록 구성되되, 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF(Access Network Discovery and Selection Functions)를 기반으로 하는 트래픽 조종일 수 있다.
단말 기반 트래픽 조종을 활성화 또는 비활성화하여, Rel-13에서 규정된 RAN/WLAN 집성과 충돌을 해결할 수 있다.
도 1은 LTE 시스템의 구조를 나타낸다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
도 4는 초기 전원이 켜진 RRC 아이들 상태의 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고, 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 5는 RRC 연결을 설정하는 과정을 나타낸다.
도 6은 RRC 연결 재구성 절차를 나타낸다.
도 7은 RRC 연결 재확립 절차를 나타낸다.
도 8은 기존의 측정 수행 방법을 나타낸다.
도 9는 단말에게 설정된 측정 설정의 일 예를 나타낸다.
도 10은 측정 식별자를 삭제하는 일 예를 나타낸다.
도 11은 측정 대상을 삭제하는 일 예를 나타낸다.
도 12는 무선랜(wireless local area network, WLAN)의 구조를 나타낸다.
도 13은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크가 공존하는 환경의 일 예를 나타낸다.
도 14는 MAPCON에 대한 레거시 ANDSF의 일 예를 나타낸다.
도 15는 MAPCON에 대한 강화된 ANDSF의 일 예를 나타낸다.
도 16은 본 발명의 일 실시 예에 따라, 단말 기반 트래픽 조종을 활성/비활성화하는 방법을 나타낸다.
도 17은 본 발명의 일 실시 예에 따라, 단말 기반 트래픽 조종을 활성/비활성화하는 방법의 블록도이다.
도 18은 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 LTE 시스템의 구조를 나타낸다. 통신 네트워크는 IMS 및 패킷 데이터를 통한 인터넷 전화(Voice over internet protocol: VoIP)와 같은 다양한 통신 서비스들을 제공하기 위하여 넓게 설치된다.
도 1을 참조하면, LTE 시스템 구조는 하나 이상의 단말(UE; 10), E-UTRAN(evolved-UMTS terrestrial radio access network) 및 EPC(evolved packet core)를 포함한다. 단말(10)은 사용자에 의해 움직이는 통신 장치이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다.
E-UTRAN은 하나 이상의 eNB(evolved node-B; 20)를 포함할 수 있고, 하나의 셀에 복수의 단말이 존재할 수 있다. eNB(20)는 제어 평면(control plane)과 사용자 평면(user plane)의 끝 지점을 단말에게 제공한다. eNB(20)는 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, BS(base station), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다. 하나의 eNB(20)는 셀마다 배치될 수 있다. eNB(20)의 커버리지 내에 하나 이상의 셀이 존재할 수 있다. 하나의 셀은 1.25, 2.5, 5, 10 및 20 MHz 등의 대역폭 중 하나를 가지도록 설정되어 여러 단말에게 하향링크(DL; downlink) 또는 상향링크(UL; uplink) 전송 서비스를 제공할 수 있다. 이때 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
이하에서, DL은 eNB(20)에서 단말(10)로의 통신을 의미하며, UL은 단말(10)에서 eNB(20)으로의 통신을 의미한다. DL에서 송신기는 eNB(20)의 일부이고, 수신기는 단말(10)의 일부일 수 있다. UL에서 송신기는 단말(10)의 일부이고, 수신기는 eNB(20)의 일부일 수 있다.
EPC는 제어 평면의 기능을 담당하는 MME(mobility management entity), 사용자 평면의 기능을 담당하는 S-GW(system architecture evolution (SAE) gateway)를 포함할 수 있다. MME/S-GW(30)은 네트워크의 끝에 위치할 수 있으며, 외부 네트워크와 연결된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지며, 이러한 정보는 주로 단말의 이동성 관리에 사용될 수 있다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. MME/S-GW(30)은 세션의 종단점과 이동성 관리 기능을 단말(10)에 제공한다. EPC는 PDN(packet data network)-GW(gateway)를 더 포함할 수 있다. PDN-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
MME는 eNB(20)로의 NAS(non-access stratum) 시그널링, NAS 시그널링 보안, AS(access stratum) 보안 제어, 3GPP 액세스 네트워크 간의 이동성을 위한 inter CN(core network) 노드 시그널링, 아이들 모드 단말 도달 가능성(페이징 재전송의 제어 및 실행 포함), 트래킹 영역 리스트 관리(아이들 모드 및 활성화 모드인 단말을 위해), P-GW 및 S-GW 선택, MME 변경과 함께 핸드오버를 위한 MME 선택, 2G 또는 3G 3GPP 액세스 네트워크로의 핸드오버를 위한 SGSN(serving GPRS support node) 선택, 로밍, 인증, 전용 베이러 설정을 포함한 베어러 관리 기능, PWS(public warning system: 지진/쓰나미 경보 시스템(ETWS) 및 상용 모바일 경보 시스템(CMAS) 포함) 메시지 전송 지원 등의 다양한 기능을 제공한다. S-GW 호스트는 사용자 별 기반 패킷 필터링(예를 들면, 심층 패킷 검사를 통해), 합법적 차단, 단말 IP(internet protocol) 주소 할당, DL에서 전송 레벨 패킹 마킹, UL/DL 서비스 레벨 과금, 게이팅 및 등급 강제, APN-AMBR에 기반한 DL 등급 강제의 갖가지 기능을 제공한다. 명확성을 위해 MME/S-GW(30)은 "게이트웨이"로 단순히 표현하며, 이는 MME 및 S-GW를 모두 포함할 수 있다.
사용자 트래픽 전송 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 단말(10) 및 eNB(20)은 Uu 인터페이스에 의해 연결될 수 있다. eNB(20)들은 X2 인터페이스에 의해 상호간 연결될 수 있다. 이웃한 eNB(20)들은 X2 인터페이스에 의한 망형 네트워크 구조를 가질 수 있다. eNB(20)들은 S1 인터페이스에 의해 EPC와 연결될 수 있다. eNB(20)들은 S1-MME 인터페이스에 의해 EPC와 연결될 수 있으며, S1-U 인터페이스에 의해 S-GW와 연결될 수 있다. S1 인터페이스는 eNB(20)와 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
eNB(20)은 게이트웨이(30)에 대한 선택, RRC(radio resource control) 활성(activation) 동안 게이트웨이(30)로의 라우팅(routing), 페이징 메시지의 스케줄링 및 전송, BCH(broadcast channel) 정보의 스케줄링 및 전송, UL 및 DL에서 단말(10)들로의 자원의 동적 할당, eNB 측정의 설정(configuration) 및 제공(provisioning), 무선 베어러 제어, RAC(radio admission control) 및 LTE 활성 상태에서 연결 이동성 제어 기능을 수행할 수 있다. 상기 언급처럼 게이트웨이(30)는 EPC에서 페이징 개시, LTE 아이들 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어 및 NAS 시그널링의 암호화와 무결성 보호 기능을 수행할 수 있다.
도 2는 제어 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다. 도 3은 사용자 평면에 대한 LTE 시스템의 무선 인터페이스 프로토콜을 나타낸다.
단말과 E-UTRAN 간의 무선 인터페이스 프로토콜의 계층은 통신 시스템에서 널리 알려진 OSI(open system interconnection) 모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층) 및 L3(제3 계층)으로 구분된다. 단말과 E-UTRAN 간의 무선 인터페이스 프로토콜은 수평적으로 물리 계층, 데이터 링크 계층(data link layer) 및 네트워크 계층(network layer)으로 구분될 수 있고, 수직적으로는 제어 신호 전송을 위한 프로토콜 스택(protocol stack)인 제어 평면(control plane)과 데이터 정보 전송을 위한 프로토콜 스택인 사용자 평면(user plane)으로 구분될 수 있다. 무선 인터페이스 프로토콜의 계층은 단말과 E-UTRAN에서 쌍(pair)으로 존재할 수 있고, 이는 Uu 인터페이스의 데이터 전송을 담당할 수 있다.
물리 계층(PHY; physical layer)은 L1에 속한다. 물리 계층은 물리 채널을 통해 상위 계층에 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(media access control) 계층과 전송 채널(transport channel)을 통해 연결된다. 물리 채널은 전송 채널에 맵핑 된다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 전송될 수 있다. 서로 다른 물리 계층 사이, 즉 송신기의 물리 계층과 수신기의 물리 계층 간에 데이터는 물리 채널을 통해 무선 자원을 이용하여 전송될 수 있다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식을 이용하여 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층은 몇몇의 물리 제어 채널(physical control channel)을 사용한다. PDCCH(physical downlink control channel)은 PCH(paging channel) 및 DL-SCH(downlink shared channel)의 자원 할당, DL-SCH와 관련되는 HARQ(hybrid automatic repeat request) 정보에 대하여 단말에 보고한다. PDCCH는 상향링크 전송의 자원 할당에 관하여 단말에 보고하기 위해 상향링크 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)은 PDCCH를 위해 사용되는 OFDM 심벌의 개수를 단말에 알려주며, 모든 서브프레임마다 전송된다. PHICH(physical hybrid ARQ indicator channel)은 UL-SCH 전송에 대한 HARQ ACK(acknowledgement)/NACK(non-acknowledgement) 신호를 나른다. PUCCH(physical uplink control channel)은 하향링크 전송을 위한 HARQ ACK/NACK, 스케줄링 요청 및 CQI와 같은 UL 제어 정보를 나른다. PUSCH(physical uplink shared channel)은 UL-SCH(uplink shared channel)를 나른다.
물리 채널은 시간 영역에서 복수의 서브프레임(subframe)들과 주파수 영역에서 복수의 부반송파(subcarrier)들로 구성된다. 하나의 서브프레임은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성된다. 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한, 각 서브프레임은 PDCCH를 위하여 해당 서브프레임의 특정 심벌들의 특정 부반송파들을 이용할 수 있다. 예를 들어, 서브프레임의 첫 번째 심벌이 PDCCH를 위하여 사용될 수 있다. PDCCH는 PRB(physical resource block) 및 MCS(modulation and coding schemes)와 같이 동적으로 할당된 자원을 나를 수 있다. 데이터가 전송되는 단위 시간인 TTI(transmission time interval)는 1개의 서브프레임의 길이와 동일할 수 있다. 서브프레임 하나의 길이는 1ms일 수 있다.
전송채널은 채널이 공유되는지 아닌지에 따라 공통 전송 채널 및 전용 전송 채널로 분류된다. 네트워크에서 단말로 데이터를 전송하는 DL 전송 채널(DL transport channel)은 시스템 정보를 전송하는 BCH(broadcast channel), 페이징 메시지를 전송하는 PCH(paging channel), 사용자 트래픽 또는 제어 신호를 전송하는 DL-SCH 등을 포함한다. DL-SCH는 HARQ, 변조, 코딩 및 전송 전력의 변화에 의한 동적 링크 적응 및 동적/반정적 자원 할당을 지원한다. 또한, DL-SCH는 셀 전체에 브로드캐스트 및 빔포밍의 사용을 가능하게 할 수 있다. 시스템 정보는 하나 이상의 시스템 정보 블록들을 나른다. 모든 시스템 정보 블록들은 같은 주기로 전송될 수 있다. MBMS(multimedia broadcast/multicast service)의 트래픽 또는 제어 신호는 MCH(multicast channel)를 통해 전송된다.
단말에서 네트워크로 데이터를 전송하는 UL 전송 채널은 초기 제어 메시지(initial control message)를 전송하는 RACH(random access channel), 사용자 트래픽 또는 제어 신호를 전송하는 UL-SCH 등을 포함한다. UL-SCH는 HARQ 및 전송 전력 및 잠재적인 변조 및 코딩의 변화에 의한 동적 링크 적응을 지원할 수 있다. 또한, UL-SCH는 빔포밍의 사용을 가능하게 할 수 있다. RACH는 일반적으로 셀로의 초기 접속에 사용된다.
L2에 속하는 MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
논리 채널은 전송되는 정보의 종류에 따라, 제어 평면의 정보 전달을 위한 제어 채널과 사용자 평면의 정보 전달을 위한 트래픽 채널로 나눌 수 있다. 즉, 논리 채널 타입의 집합은 MAC 계층에 의해 제공되는 다른 데이터 전송 서비스를 위해 정의된다. 논리채널은 전송 채널의 상위에 위치하고 전송채널에 맵핑 된다.
제어 채널은 제어 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 제어 채널은 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel) 및 DCCH(dedicated control channel)을 포함한다. BCCH는 시스템 제어 정보를 방송하기 위한 하향링크 채널이다. PCCH는 페이징 정보의 전송 및 셀 단위의 위치가 네트워크에 알려지지 않은 단말을 페이징 하기 위해 사용되는 하향링크 채널이다. CCCH는 네트워크와 RRC 연결을 갖지 않을 때 단말에 의해 사용된다. MCCH는 네트워크로부터 단말에게 MBMS 제어 정보를 전송하는데 사용되는 일대다 하향링크 채널이다. DCCH는 RRC 연결 상태에서 단말과 네트워크간에 전용 제어 정보 전송을 위해 단말에 의해 사용되는 일대일 양방향 채널이다.
트래픽 채널은 사용자 평면의 정보 전달만을 위해 사용된다. MAC 계층에 의하여 제공되는 트래픽 채널은 DTCH(dedicated traffic channel) 및 MTCH(multicast traffic channel)을 포함한다. DTCH는 일대일 채널로 하나의 단말의 사용자 정보의 전송을 위해 사용되며, 상향링크 및 하향링크 모두에 존재할 수 있다. MTCH는 네트워크로부터 단말에게 트래픽 데이터를 전송하기 위한 일대다 하향링크 채널이다.
논리 채널과 전송 채널간의 상향링크 연결은 UL-SCH에 맵핑 될 수 있는 DCCH, UL-SCH에 맵핑 될 수 있는 DTCH 및 UL-SCH에 맵핑 될 수 있는 CCCH를 포함한다. 논리 채널과 전송 채널간의 하향링크 연결은 BCH 또는 DL-SCH에 맵핑 될 수 있는 BCCH, PCH에 맵핑 될 수 있는 PCCH, DL-SCH에 맵핑 될 수 있는 DCCH, DL-SCH에 맵핑 될 수 있는 DTCH, MCH에 맵핑 될 수 있는 MCCH 및 MCH에 맵핑 될 수 있는 MTCH를 포함한다.
RLC 계층은 L2에 속한다. RLC 계층의 기능은 하위 계층이 데이터를 전송하기에 적합하도록 무선 섹션에서 상위 계층으로부터 수신된 데이터의 분할/연접에 의한 데이터의 크기 조정을 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비 확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 신뢰성 있는 데이터 전송을 위해 ARQ(automatic repeat request)를 통해 재전송 기능을 제공한다. 한편, RLC 계층의 기능은 MAC 계층 내부의 기능 블록으로 구현될 수 있으며, 이때 RLC 계층은 존재하지 않을 수도 있다.
PDCP(packet data convergence protocol) 계층은 L2에 속한다. PDCP 계층은 상대적으로 대역폭이 작은 무선 인터페이스 상에서 IPv4 또는 IPv6와 같은 IP 패킷을 도입하여 전송되는 데이터가 효율적으로 전송되도록 불필요한 제어 정보를 줄이는 헤더 압축 기능을 제공한다. 헤더 압축은 데이터의 헤더에 필요한 정보만을 전송함으로써 무선 섹션에서 전송 효율을 높인다. 게다가, PDCP 계층은 보안 기능을 제공한다. 보안기능은 제3자의 검사를 방지하는 암호화 및 제3자의 데이터 조작을 방지하는 무결성 보호를 포함한다.
RRC(radio resource control) 계층은 L3에 속한다. L3의 가장 하단 부분에 위치하는 RRC 계층은 오직 제어 평면에서만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 교환한다. RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 L1 및 L2에 의해 제공되는 논리적 경로이다. 즉, RB는 단말과 E-UTRAN 간의 데이터 전송을 위해 L2에 의해 제공되는 서비스를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 결정함을 의미한다. RB는 SRB(signaling RB)와 DRB(data RB) 두 가지로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
도 2를 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 스케줄링, ARQ 및 HARQ와 같은 기능을 수행할 수 있다. RRC 계층(네트워크 측에서 eNB에서 종료)은 방송, 페이징, RRC 연결 관리, RB 제어, 이동성 기능 및 단말 측정 보고/제어와 같은 기능을 수행할 수 있다. NAS 제어 프로토콜(네트워크 측에서 게이트웨이의 MME에서 종료)은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTE_IDLE에서 페이징 개시 및 단말과 게이트웨이 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다.
도 3을 참조하면, RLC 및 MAC 계층(네트워크 측에서 eNB에서 종료)은 제어 평면에서의 기능과 동일한 기능을 수행할 수 있다. PDCP 계층(네트워크 측에서 eNB에서 종료)은 헤더 압축, 무결성 보호 및 암호화와 같은 사용자 평면 기능을 수행할 수 있다.
이하 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태는 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적으로 연결되어 있는지 여부를 지시한다. RRC 상태는 RRC 연결 상태(RRC_CONNECTED) 및 RRC 아이들 상태(RRC_IDLE)와 같이 두 가지로 나누어질 수 있다. 단말의 RRC 계층과 E-UTRAN의 RRC 계층 간의 RRC 연결이 설정되어 있을 때, 단말은 RRC 연결 상태에 있게 되며, 그렇지 않은 경우 단말은 RRC 아이들 상태에 있게 된다. RRC_CONNECTED의 단말은 E-UTRAN과 RRC 연결이 설정되어 있으므로, E-UTRAN은 RRC_CONNECTED의 단말의 존재를 파악할 수 있고, 단말을 효과적으로 제어할 수 있다. 한편, E-UTRAN은 RRC_IDLE의 단말을 파악할 수 없으며, 핵심 망(CN; core network)이 셀보다 더 큰 영역인 트래킹 영역(tracking area) 단위로 단말을 관리한다. 즉, RRC_IDLE의 단말은 더 큰 영역의 단위로 존재만 파악되며, 음성 또는 데이터 통신과 같은 통상의 이동 통신 서비스를 받기 위해서 단말은 RRC_CONNECTED로 천이해야 한다.
RRC_IDLE 상태에서, 단말이 NAS에 의해 설정된 DRX(discontinuous reception)를 지정하는 동안에, 단말은 시스템 정보 및 페이징 정보의 방송을 수신할 수 있다. 그리고, 단말은 트래킹 영역에서 단말을 고유하게 지정하는 ID(identification)를 할당 받고, PLMN(public land mobile network) 선택 및 셀 재선택을 수행할 수 있다. 또한 RRC_IDLE 상태에서, 어떠한 RRC context도 eNB에 저장되지 않는다.
RRC_CONNECTED 상태에서, 단말은 E-UTRAN에서 E-UTRAN RRC 연결 및 RRC context를 가져, eNB로 데이터를 전송 및/또는 eNB로부터 데이터를 수신하는 것이 가능하다. 또한, 단말은 eNB로 채널 품질 정보 및 피드백 정보를 보고할 수 있다. RRC_CONNECTED 상태에서, E-UTRAN은 단말이 속한 셀을 알 수 있다. 그러므로 네트워크는 단말에게 데이터를 전송 및/또는 단말로부터 데이터를 수신할 수 있고, 네트워크는 단말의 이동성(핸드오버 및 NACC(network assisted cell change)를 통한 GERAN(GSM EDGE radio access network)으로 inter-RAT(radio access technology) 셀 변경 지시)을 제어할 수 있으며, 네트워크는 이웃 셀을 위해 셀 측정을 수행할 수 있다.
RRC_IDLE 상태에서 단말은 페이징 DRX 주기를 지정한다. 구체적으로 단말은 단말 특정 페이징 DRX 주기 마다의 특정 페이징 기회(paging occasion)에 페이징 신호를 모니터링 한다. 페이징 기회는 페이징 신호가 전송되는 동안의 시간 간격이다. 단말은 자신만의 페이징 기회를 가지고 있다.
페이징 메시지는 동일한 트래킹 영역에 속하는 모든 셀에 걸쳐 전송된다. 만약 단말이 하나의 트래킹 영역에서 다른 하나의 트래킹 영역으로 이동하면, 단말은 위치를 업데이트하기 위해 TAU(tracking area update) 메시지를 네트워크에 전송한다.
사용자가 단말의 전원을 최초로 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC_IDLE에 머무른다. RRC 연결을 맺을 필요가 있을 때, RRC_IDLE에 머무르던 단말은 RRC 연결 절차를 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED로 천이할 수 있다. RRC_IDLE에 머무르던 단말은 사용자의 통화 시도 등의 이유로 상향링크 데이터 전송이 필요할 때, 또는 E-UTRAN으로부터 페이징 메시지를 수신하고 이에 대한 응답 메시지 전송이 필요할 때 등에 E-UTRAN과 RRC 연결을 맺을 필요가 있을 수 있다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 context 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
도 4는 초기 전원이 켜진 RRC 아이들 상태의 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고, 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예: Paging)를 받기 위하여 자신의 정보(예: IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예: Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재 선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 설정하는 과정을 나타낸다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재구성 절차를 나타낸다.
RRC 연결 재구성(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 구성/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재구성에 대한 응답으로, RRC 연결 재구성의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재구성 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재 선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재 선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- 인트라-주파수(Intra-frequency) 셀 재선택: 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- 인터-주파수(Inter-frequency) 셀 재선택: 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- 인터-RAT(Inter-RAT) 셀 재선택: 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 최고 순위 셀(highest ranked cell)이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말 별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말 별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수 별 오프셋(frequency-specific offset))를 주파수 별로 제공할 수 있다.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다.
Figure PCTKR2016003870-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아 가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아 가면서 재선택 하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최고 순위(highest ranked) 셀로 간주하고, 이 셀을 재 선택한다. 만약 재 선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
도 7은 RRC 연결 재확립 절차를 나타낸다.
도 7을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S710). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정 중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 수행한다(S720). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S730). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S740).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S750).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S760).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재확립 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.
도 8은 기존의 측정 수행 방법을 나타낸다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S810). 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다(S820). 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S830). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀 내 측정의 대상인 인트라-주파수 측정 대상, 셀 간 측정의 대상인 인터-주파수 측정 대상, 및 인터-RAT 측정의 대상인 인터-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인트라-주파수 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-주파수 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 전송하는 것을 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 설정 정보는 보고 설정의 리스트로 구성될 수 있다. 각 보고 설정은 보고 기준(reporting criterion) 및 보고 포맷(reporting format)을 포함할 수 있다. 보고 기준은 단말이 측정 결과를 전송하는 것을 트리거하는 기준이다. 보고 기준은 측정 보고의 주기 또는 측정 보고를 위한 단일 이벤트일 수 있다. 보고 포맷은 단말이 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케줄링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 표 1은 측정 보고가 유발되는 이벤트이다. 단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than PCell/PSCell
Event A4 Neighbour becomes better than threshold
Event A5 PCell/PSCell becomes worse than threshold1 and neighbour becomes better than threshold2
Event A6 Neighbour becomes offset better than SCell
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
Event C1 CSI-RS resource becomes better than threshold
Event C2 CSI-RS resource becomes offset better than reference CSI-RS resource
도 9는 단말에게 설정된 측정 설정의 일 예를 나타낸다.
먼저, 측정 식별자 1(901)은 인트라-주파수 측정 대상과 보고 설정 1을 연결하고 있다. 단말은 셀 내 측정(intra frequency measurement)을 수행하며, 보고 설정 1이 측정 결과 보고의 기준 및 보고 타입을 결정하는데 사용된다.
측정 식별자 2(902)는 측정 식별자 1(901)과 마찬가지로 인트라-주파수 측정 대상과 연결되어 있지만, 인트라-주파수 측정 대상을 보고 설정 2에 연결하고 있다. 단말은 측정을 수행하며, 보고 설정 2이 측정 결과 보고의 기준 및 보고 타입을 결정하는데 사용된다.
측정 식별자 1(901)과 측정 식별자 2(902)에 의해, 단말은 인트라-주파수 측정 대상에 대한 측정 결과가 보고 설정 1 및 보고 설정 2 중 어느 하나를 만족하더라도 측정 결과를 전송한다.
측정 식별자 3(903)은 인터-주파수 측정 대상 1과 보고 설정 3을 연결하고 있다. 단말은 인터-주파수 측정 대상 1에 대한 측정 결과가 보고 설정 1에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
측정 식별자 4(904)은 인터-주파수 측정 대상 2과 보고 설정 2을 연결하고 있다. 단말은 인터-주파수 측정 대상 2에 대한 측정 결과가 보고 설정 2에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
한편, 측정 대상, 보고 설정 및/또는 측정 식별자는 추가, 변경 및/또는 삭제가 가능하다. 이는 기지국이 단말에게 새로운 측정 설정 메시지를 보내거나, 측정 설정 변경 메시지를 보냄으로써 지시할 수 있다.
도 10은 측정 식별자를 삭제하는 일 예를 나타낸다. 측정 식별자 2(902)가 삭제되면, 측정 식별자 2(902)와 연관된 측정 대상에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 삭제된 측정 식별자와 연관된 측정 대상이나 보고 설정은 변경되지 않을 수 있다.
도 11은 측정 대상을 삭제하는 일 예를 나타낸다. 인터-주파수 측정 대상 1이 삭제되면, 단말은 연관된 측정 식별자 3(903)도 또한 삭제한다. 인터-주파수 측정 대상 1에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 그러나, 삭제된 인터-주파수 측정 대상 1에 연관된 보고 설정은 변경 또는 삭제되지 않을 수 있다.
보고 설정이 제거되면, 단말은 연관된 측정 식별자 역시 제거한다. 단말은 연관된 측정 식별자에 의해 연관된 측정 대상에 대한 측정을 중단한다. 그러나, 삭제된 보고 설정에 연관된 측정 대상은 변경 또는 삭제되지 않을 수 있다.
측정 보고는 측정 식별자, 서빙 셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
도 12는 무선랜(wireless local area network, WLAN)의 구조를 나타낸다. 도 12(a)는 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 네트워크(infrastructure network)의 구조를 나타낸다. 도 12(b)는 독립 BSS를 나타낸다.
도 12(a)를 참조하면, 무선랜 시스템은 하나 또는 그 이상의 기본 서비스 세트(Basic Service Set, BSS, 1200, 1205)를 포함할 수 있다. BSS(1200, 1205)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 1225) 및 STA1(Station, 1200-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(1205)는 하나의 AP(1230)에 하나 이상의 결합 가능한 STA(1205-1, 1205-2)을 포함할 수도 있다.
인프라스트럭쳐 BSS는 적어도 하나의 STA, 분산 서비스(Distribution Service)를 제공하는 AP(1225, 1230) 및 다수의 AP를 연결시키는 분산 시스템(Distribution System, DS, 1210)을 포함할 수 있다.
분산 시스템(1210)는 여러 BSS(1200, 1205)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 1240)를 구현할 수 있다. ESS(1240)는 하나 또는 여러 개의 AP(1225, 1230)가 분산 시스템(1210)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(1240)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 1220)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 12(a)와 같은 인프라스트럭쳐 네트워크에서는 AP(1225, 1230) 사이의 네트워크 및 AP(1225, 1230)와 STA(1200-1, 1205-1, 1205-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(1225, 1230)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(1225, 1230)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set)라고 정의한다.
도 12(b)를 참조하면, 독립 BSS(independent BSS, IBSS)는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서는 STA(1250-1, 1250-2, 1250-3, 1255-1, 1255-2)들이 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(1250-1, 1250-2, 1250-3, 1255-1, 1255-2)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다.
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.
이하, 3GPP 액세스 네트워크와 다른 액세스 네트워크간 인터워킹(interworking)에 대하여 설명한다.
3GPP에서는 Rel-8부터 비-3GPP 액세스 네트워크(예를 들어, WLAN)와의 연동을 도입하면서 접속 가능한 액세스 네트워크를 발견하고, 선택하기 하기 위한 ANDSF(Access Network Discovery and Selection Functions)를 규격화하였다. ANDSF는 단말의 위치에서 접속 가능한 액세스 네트워크 발견 정보(예를 들어, WLAN, WiMAX 위치 정보 등), 사업자의 정책을 반영시킬 수 있는 시스템간 이동성 정책(Inter-System Mobility Policies; ISMP), 시스템간 라우팅 정책(Inter-System Routing Policy; ISRP)을 전달하며, 이 정보를 기반으로 단말은 어떤 IP 트래픽을 어떤 액세스 네트워크을 경유하여 전송할지 결정할 수 있다. ISMP는 단말이 하나의 활성화된(active) 액세스 네트워크 연결(예를 들어, WLAN 또는 3GPP)을 선택하는 것에 대한 네트워크 선택 규칙을 포함할 수 있다. ISRP는 단말이 잠재적인 하나 이상의 활성화된 액세스 네트워크 연결(예를 들어, WLAN과 3GPP 모두)을 선택하는 것에 대한 네트워크 선택 규칙을 포함할 수 있다. 시스템간 라우팅 정책에는 MAPCON (Multiple Access PDN Connectivity), IFOM (IP Flow Mobility), 비-심리스 WLAN 오프로딩(non-seamless WLAN offloading)이 포함된다. ANDSF와 단말 사이의 동적인 전달(dynamic provision)을 위해 OMA DM(Open Mobile Alliance Device Management) 등이 사용된다.
MAPCON은 3GPP 액세스 네트워크와 비-3GPP 액세스 네트워크를 경유하여 동시에 다수의 패킷 데이터 네트워크에 연결(multiple PDN connectivity)을 설정, 유지 및 전체 활성화된 PDN 연결(active PDN connection) 단위의 심리스 트래픽 오프로딩(seamless traffic offloading) 이 가능한 기술을 규격화 한 것이다. 이를 위해 ANDSF 서버는 오프로딩을 수행할 APN(Access Point Name) 정보, 액세스 네트워크 간의 우선순위(routing rule), 오프로딩 방법이 적용되는 시간(Time of Day) 그리고 오프로딩을 할 액세스 네트워크(Validity Area) 정보 등을 제공한다.
IFOM은 MAPCON 보다는 융통성 있고 세분화된 단위의 IP 플로우 단위의 이동성 및 심리스 오프로딩(seamless offloading)을 지원한다. IFOM의 기술적 특징은 MAPCON과 달리 단말이 같은 액세스 포인트 네임(APN)을 사용하여 패킷 데이터 네트워크에 연결되는 경우라도 서로 다른 액세스 네트워크를 통해 접속 가능하며, 이동성 및 오프로딩의 단위가 패킷 데이터 네트워크(PDN)이 아닌 특정 서비스 IP 트래픽 플로우 단위로 이동이 가능하게 함으로써, 서비스 제공의 유연성을 가진다. 이를 위해 ANDSF 서버는 오프로딩을 수행할 IP 플로우 정보, 액세스 네트워크 간의 우선순위(routing rule), 오프로딩 방법이 적용되는 시간 (Time of Day) 그리고 오프로딩을 할 액세스 네트워크(Validity Area) 정보 등을 제공한다.
비-심리스 WLAN 오프로딩은 어떤 특정 IP 트래픽의 경로를 WLAN으로 바꾸는 것뿐만 아니라 EPC를 경유하지 않도록 트래픽을 완전히 오프로딩 시키는 기술을 말한다. 이는 이동성 지원을 위해 P-GW에 앵커링(anchoring)을 하지 않기 때문에 오프로딩된 IP 트래픽을 다시 3GPP 액세스 네트워크로 끊김 없이 이동시킬 수 없다. 이를 위해 ANDSF 서버는 단말에게 IFOM을 수행하기 위해 제공하는 정보와 유사한 정보를 제공한다.
도 13은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크가 공존하는 환경의 일 예를 나타낸다.
도 13을 참조하면, 3GPP 액세스 네트워크로서 기지국 1(1310)을 중심으로 하는 셀 1과 기지국 2(1320)를 중심으로 하는 셀 2가 전개되어 있다. 또한, WLAN 액세스 네트워크로서 셀 1 내에 위치하는 액세스 포인트(Access Point; AP) 1(1330)을 중심으로 하는 BSS(Basic Service Set) 1, AP2(1340)를 중심으로 하는 BSS2가 전개되어 있으며, 셀 2 내에 존재하는 AP3(1350)을 중심으로 하는 BSS3이 전개되어 있다. 셀의 커버리지는 실선으로 도시되어 있으며, BSS의 커버리지는 점선으로 도시되어 있다.
단말(1300)은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크를 통한 통신을 수행할 수 있도록 설정된 것을 가정한다. 이 경우, 단말(1300)은 스테이션(station)이라고 불러질 수 있다.
최초, 단말(1300)은 셀 1 내에서 BS1(1310)과 연결을 확립하여 3GPP 액세스 네트워크를 통한 트래픽 처리를 할 수 있다.
단말(1300)이 셀 1의 커버리지 내에서 이동 중에 BSS1의 커버리지 내에 진입하고 스캐닝을 통해 BSS1을 발견할 수 있다. 이 경우, 단말(1300)은 BSS1의 AP1(1330)와 결합(association) 및 인증(authentication) 절차를 수행함을 통해 WLAN 액세스 네트워크와 연결할 수 있다. 이에 따라, 단말(1300)은 트래픽을 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크를 통해 처리할 수 있다. 한편, 단말(1300)이 이동하여 BSS1의 커버리지를 벗어나는 경우 WLAN 액세스 네트워크와의 연결이 종료될 수 있다.
단말(1300)이 셀 1의 커버리지 내에서 계속 이동하여 셀 1 및 셀 2의 경계 근방으로 이동할 수 있으며, BSS2의 커버리지 내에 진입하여 스캐닝을 통해 BSS2를 발견할 수 있다. 이 경우, 단말(1300)은 BSS2의 AP2(1340)와 결합 및 인증 절차를 수행하여 WLAN 액세스 네트워크와 연결할 수 있다. 한편, BSS2의 커버리지 내 단말(1300)은 셀 1 및 셀 2의 경계에 위치하므로 3GPP 액세스 네트워크를 통한 서비스 품질이 양호하지 않을 수 있다. 이 경우, 단말(1300)은 WLAN 액세스 네트워크를 통하여 집중적으로 트래픽을 처리하도록 동작할 수 있다.
단말(1300)이 이동하여 BSS2의 커버리지를 벗어나고 셀 2의 중심부로 진입하면, 단말(1300)은 WLAN 액세스 네트워크와의 연결을 종료하고 셀 2를 기반으로한 3GPP 액세스 네트워크를 통해 트래픽을 처리할 수 있다.
단말(1300)이 셀 2의 커버리지 내에서 이동 중에 BSS3의 커버리지 내에 진입하고 스캐닝을 통해 BSS1을 발견할 수 있다. 이 경우, 단말(1300)은 BSS3의 AP3(1350)와 결합 및 인증 절차를 수행함을 통해 WLAN 액세스 네트워크와 연결할 수 있다. 이에 따라, 단말(1300)은 트래픽을 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크를 통해 처리할 수 있다.
도 13의 예시에서와 같이, 3GPP 액세스 네트워크와 비-3GPP 액세스 네트워크가 공존하는 무선 통신 환경에서, 단말은 적응적으로 3GPP 액세스 네트워크 및/또는 비-3GPP 액세스 네트워크를 통해 트래픽을 처리할 수 있다.
3GPP 액세스 네트워크 및 비-3GPP 액세스 네트워크간 연동을 위한 정책으로서 위에서 언급한 ANDSF가 설정될 수 있다. 단말은 ANDSF를 설정 받으면 해당 정책에 따라 3GPP 액세스 네트워크의 트래픽을 비-3GPP 액세스 네트워크를 통해 처리하거나 또는 3GPP 액세스 네트워크를 통해 처리할 수 있다.
한편, 단말에는 ANDSF 이외의 연동 정책이 설정될 수 있다. 현재 3GPP 네트워크에서는 ANDSF 외에 WLAN을 보다 잘 활용하기 위하여 3GPP 액세스 네트워크 및/또는 WLAN 액세스 네트워크의 부하, 신호 품질 등의 측정 파라미터들을 반영한 연동 정책이 정의되고 있으며, 이하에서 이를 RAN 정책이라 한다. 또한, RAN 정책에 따른 트래픽 조종 규칙을 이하에서 RAN 규칙이라 한다.
RAN 규칙은 RAN 규칙에 따른 트래픽 조종 평가를 위한 적어도 하나의 RAN 규칙 파라미터와 함께 단말에 제공될 수 있다. RAN 규칙 및 RAN 규칙 파라미터는 아래와 같이 설정될 수 있다.
1. RAN 규칙은 WLAN로의 트래픽 조종이 허용되는지 여부를 지시할 수 있다.
2. RAN 규칙은 단말이 3GPP 액세스 네트워크로부터 WLAN 액세스 네트워크로의 트래픽 조종 수행이 허용되는 또는 요구되는 조건인 트래픽 조종 평가 조건을 지시할 수 있다. RAN 규칙에 따른 조건은 LTE 셀에 대한 측정 결과들의 평가를 수반할 수 있다. 또한, RAN 규칙에 따른 조건은 WLAN에 대한 측정 결과들의 평가를 수반할 수 있다. 평가는 상기 측정 결과와 트래픽 조종 정보 내에서 지시되는 RAN 규칙 파라미터(예를 들어, 측정 임계 값 등)와 비교하는 것일 수 있다. 아래는 단말에 의해 고려되는 트래픽 조종 조건의 예시를 나타낸다.
(1) WLAN 액세스 네트워크로의 트래픽 조종 조건
- RSRP 측정 값(measured_RSRP) < 낮은 RSRP 임계 값(Threshold_RSRP_low)
- 3GPP 부하 측정 값(measured_3GPPLoad) > 높은 3GPP 부하 임계 값(Threshold_3GPPLoad_High)
- WLAN 부하 측정 값(measured_WLANLoad) < 낮은 WLAN 부하 임계 값(Threshold_WLANLoad_low)
- WLAN 신호 세기 측정 값(measured_WLANsignal) > 높은 WLAN 신호 세기 임계 값(Threshold_WLANsignal_high)
(2) 3GPP 액세스 네트워크로의 트래픽 조종 조건
- RSRP 측정 값(measured_RSRP) > 높은 RSRP 임계 값(Threshold_RSRP_high)
- 3GPP 부하 측정 값(measured_3GPPLoad) < 낮은 3GPP 부하 임계 값(Threshold_3GPPLoad_High)
- WLAN 부하 측정 값(measured_WLANLoad) > 높은 WLAN 부하 임계 값(Threshold_WLANLoad_high)
- WLAN 신호 세기 측정 값(measured_WLANsignal) < 낮은 WLAN 신호 세기 임계 값(Threshold_WLANsignal_low)
한편, 트래픽 조종 평가 조건은 상기 하나 이상의 조건들이 and/or로 결합되어 설정될 수 있다. 예를 들어, 하나 이상의 조건이 결합되어 구현된 트래픽 조종 평가 조건은 아래와 같이 구현될 수 있다.
- WLAN로 트래픽 조종을 위한 트래픽 조종 평가 조건: (measured_RSRP < Threshold_RSRP_low) and (measured_WLANLoad < Threshold_WLANLoad_low) and (measured_WLANsignal > Threshold_WLANsignal_high)
- 3GPP로 트래픽 조종을 위한 트래픽 조종 평가 조건: (measured_RSRP > Threshold_RSRP_low) or (measured_WLANLoad > Threshold_WLANLoad_high) or (measured_WLANsignal < Threshold_WLANsignal_low)
3. RAN 규칙은 단말이 WLAN 액세스 네트워크로부터 3GPP 액세스 네트워크로의 트래픽 조종 수행이 허용되는 또는 요구되는 조건을 지시할 수 있다.
4. RAN 규칙은 단말이 3GPP 액세스 네트워크로부터 트래픽 조종을 수행하는 것이 허용되거나 또는 요구되는 대상 WLAN 액세스 네트워크를 지시할 수 있다.
5. RAN 규칙은 WLAN 액세스 네트워크로 라우팅이 허용되는 트래픽 타입을 지시할 수 있다. 또는, RAN 규칙은 WLAN 액세스 네트워크로 라우팅이 허용되는, 즉 3GPP 액세스 네트워크에 의해서만 서비스될 수 있는 하나 이상의 트래픽을 지시할 수 있다.
한편, 단말에 설정되는 ANDSF는 레거시 ANDSF 및/또는 강화된 ANDSF(enhanced ANDSF)를 포함할 수 있다.
레거시 ANDSF는 RAN 규칙 파라미터 내에 정의된 해당 파라미터와 같은 ANDSF MO(Management Object)를 포함하지 않는 ANDSF로 정의될 수 있다. 레거시 ANDSF와 달리 강화된 ANDSF(enhanced ANDSF)는 RAN 규칙 파라미터 내에 정의된 해당 파라미터와 같은 ANDSF MO를 포함하는 ANDSF로 정의될 수 있다.
도 14는 MAPCON에 대한 레거시 ANDSF의 일 예를 나타내고, 도 15는 MAPCON에 대한 강화된 ANDSF의 일 예를 나타낸다.
도 14를 참조하면, 레거시 ANDSF는 ANDSF MO로서 RSRP, WLAN 신호 레벨과 같은 RAN 규칙 파라미터를 포함하고 있지 않음을 알 수 있다.
반면, 도 15를 참조하면, 강화된 ANDSF는 ANDSF MO로서 RSRP, RSRQ, 오프로드 선호(offload preference)를 포함하고 있음을 알 수 있다. 또한, ANDSF는 ANDSF MO로서 WLAN 신호 레벨(e.g. RSSI, RSCP), WLAN 부하 레벨, WLAN 백홀 데이터 레이트, WLAN 백홀 부하 등을 포함할 수 있다.
강화된 ANDSF는 각 ANDSF MO와 관련하여 트래픽 조종 평가 조건을 특정할 수 있다. 강화된 ANDSF에 의해 특정되는 트래픽 조종 평가 조건은 RAN 규칙에 의해 설정된 RAN 규칙 파라미터 관련 트래픽 조종 평가 조건과 유사하게 설정될 수 있으며, 이에 대한 상세한 설명은 생략하도록 한다.
Rel-12 WLAN AP와 Rel-13 WLAN AP는 단말 주변에 함께 배치될 수 있다. 본 발명에서 Rel-12 WLAN AP는 단말 기반 트래픽 조종을 지원하는 WLAN AP를 의미할 수 있고, Rel-13 WLAN AP는 네트워크 기반 RAN/WLAN 집성(Aggregation)을 지원하는 WLAN AP를 의미할 수 있다. 상기 단말 기반 트래픽 조종은 단말이 단말 스스로 RAN 규칙 또는 ANDSF를 기반으로 트래픽 조종을 수행하는 것일 수 있다. 상기 네트워크 기반 RAN/WLAN 집성은 네트워크가 RAN/WLAN 집성 명령(Aggregation Command)을 전송함으로써, 네트워크 스스로 트래픽을 제어하는 것일 수 있다.
예를 들어, Rel-12 WLAN AP와 Rel-13 WLAN AP가 단말 주변에 함께 배치되고, 단말은 Rel-12의 단말 기반 트래픽 조종 및 Rel-13의 RAN/WLAN 집성을 모두 지원한다고 가정하자. 상기 단말이 Rel-12의 단말 기반 트래픽 조종을 통해 WLAN AP로 일부 트래픽을 조종하였음에도 불구하고, 상기 단말은 네트워크로부터 RAN/WLAN 집성 시작 명령을 수신할 수 있다. 그러나, 상기 단말은 오직 하나의 WLAN AP에만 연결될 수 있기 때문에, 상기 RAN/WLAN 집성 시작 명령을 수신하였다고 하더라도, 상기 단말은 RAN/WLAN 집성 시작 명령을 수행할 수 없는 문제점이 발생할 수 있다. 또한, Rel-13의 RAN/WLAN 집성 시작 명령으로 네트워크에 의해 제어된 트래픽이 단말 기반 트래픽 조종에 의해 재 조정되는 문제점 등이 발생할 수 있다. 본 발명은 상술한 문제점을 해결하기 위한 방법 및 이를 지원하는 장치를 제안한다.
이하, 본 발명의 일 실시 예에 따라, 단말이 단말 기반 트래픽 조종을 활성화/비활성화하는 방법에 대하여 설명한다.
1. RAN/WLAN 인터워킹 상태 보고
(1) 단말 기반 트래픽 조종을 통해 단말이 단말 스스로 WLAN으로 일부 트래픽을 조종하고, 상기 단말이 여전히 WLAN을 통해 데이터를 송/수신하고 있으면, 상기 단말은 네트워크에게 WLAN 오프로딩 정보(WLAN offloading information)를 전송할 수 있다. 상기 WLAN 오프로딩 정보는 RAN/WLAN 인터워킹 상태를 네트워크에 지시하는 정보일 수 있다. 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF를 기반으로 하는 트래픽 조종일 수 있다. 상기 RAN 규칙은 SIB 17 또는 단말 특정 메시지에 의해 방송될 수 있다.
(2) WLAN 오프로딩 정보는 아래와 같은 정보를 포함할 수 있다.
- 서빙 AP 정보: SSID(service set identifier), BSSID(basic service set identifier), HESSID(Homogeneous Extended Service Set Identifier), 도메인 네임 리스트, 동작 클래스(Operating class) 및/또는 채널 번호(channel number)
- RAN 규칙 또는 ANDSF에 따라 WLAN으로 조종된 APN/PDN
- RAN 규칙 또는 ANDSF에 따라 WLAN으로 조종될 무선 베어러 또는 EPS 베어러
- WLAN으로 오프로딩 될 수 있는 APN/PDN/무선 베어러 또는 EPS 베어러
- 데이터의 양: 미리 정의된 시간 동안 전송 및/또는 수신되는 데이터의 양 또는 버퍼에 저장된 데이터의 양
- WLAN에서 진행중인 트래픽의 QoS 정보(상기 Qos 정보는 패킷 지연 버짓(PDB; Packet Delay Budget) (단말에서 허용 가능한 지연 시간의 상한선(upper bound)), 패킷 오류 손실률(PELR; Packet Error Loss Rate) 또는 접근 카테고리(즉, 음성, 영상, 최선의 노력(best effort) 및 백그라운드(background)) 중 적어도 어느 하나를 포함)
(3) 아래 조건 중 적어도 어느 하나를 만족하면, 단말은 네트워크에게 상기 WLAN 오프로딩 정보를 전송할 수 있다.
- 단말이 RRC 연결 확립 절차를 개시한 이후(예를 들어, RRC 연결 설정 완료 메시지를 전송한 때),
- 단말이 RRC 연결 확립 절차를 성공적으로 완료한 이후,
- 단말이 상기 WLAN 오프로딩 정보 요청을 상기 네트워크로부터 수신한 이후,
- 단말이 RAN/WLAN 집성 명령을 수신한 이후,
- 상기 WLAN 오프로딩 정보가 변경되면(예를 들어, RAN 규칙 또는 ANDSF에 따라 WLAN으로부터 및/또는 WLAN으로 일부 트래픽이 조종될 필요가 있거나, WLAN 연결이 해제되면),
- WLAN 측정에 대한 이벤트 보고 조건이 만족되면, (상기 WLAN 측정에 대한 이벤트 보고 조건이 만족되는 경우, 상기 WLAN 오프로딩 정보는 WLAN 측정 보고 메시지에 포함되거나, 상기 WLAN 오프로딩 정보는 WLAN 측정 보고 메시지가 네트워크로 전송된 이후 단말이 네트워크에게 전송할 수 있음)
(4) 단말로부터 WLAN 오프로딩 정보를 수신한 네트워크는 트래픽 조종 활성 명령 또는 트래픽 조종 비활성 명령을 지시함으로써, 명시적으로 단말 기반 트래픽 조종을 허용하거나 금지할 수 있다.
또는, 단말로부터 WLAN 오프로딩 정보를 수신한 네트워크는 RAN/WLAN 집성 시작 명령을 지시함으로써, 묵시적으로 단말 기반 트래픽 조종을 금지할 수 있다. 네트워크의 명시적 명령 또는 묵시적 명령은 이하 단계에서 구체적으로 검토한다.
2-A. 트래픽 조종 활성(activation)/비활성(deactivation) 명령 수신
(1) 네트워크는 트래픽 조종 비활성 메시지를 단말에게 전송할 수 있다. 상기 트래픽 조종 비활성 메시지는 단말 기반 트래픽 조종을 금지하는 메시지일 수 있다. 상기 트래픽 조종 비활성 메시지를 수신한 단말은 단말 스스로 WLAN으로/WLAN으로부터 트래픽 조종을 수행하지 않기 위해, 서빙 셀에서 방송된 RAN 규칙 또는 ANDSF를 적용하지 않을 수 있다. 상기 단말은 Rel-13에서 규정된 RAN/WLAN 집성을 지원하는 단말일 수 있다. 이는 단말이 네트워크로부터 트래픽 조종 명령을 수신하였을 때에만, 단말이 WLAN으로/WLAN으로부터 트래픽 조종을 수행함을 의미할 수 있다.
또한, 상기 트래픽 조종 비활성 메시지를 수신한 단말은 WLAN의 모든 트래픽을 RAN으로 조종할 수 있다. 이를 통해, 상기 네트워크는 오프로딩 시킬 모든 데이터를 알 수 있다.
(2) 네트워크는 트래픽 조종 활성 메시지를 단말에게 전송할 수 있다. 상기 트래픽 조종 활성 메시지는 단말 기반 트래픽 조종을 허용하는 메시지일 수 있다. 상기 트래픽 조종 활성 메시지를 수신한 단말은 단말 스스로 WLAN으로/WLAN으로부터 트래픽 조종을 계속 수행할 수 있다.
(3) 트래픽 조종 비활성 메시지 및 트래픽 조종 활성 메시지는 단말 전용(즉, 단말 특정 메시지)이거나 셀에 복수 단말 공용(즉, 셀 특정 메시지)일 수 있다.
2-B. RAN/WLAN 집성 명령 수신
(1) 네트워크는 RAN/WLAN 집성 시작 명령을 단말에게 전송할 수 있다. RAN/WLAN 집성 시작 명령은 Rel-13 단말에서 지원될 수 있다. 상기 RAN/WLAN 집성 시작 명령은 단말 기반 트래픽 조종을 금지하는 명령일 수 있다. 다만, WLAN에 진행 중인 트래픽이 있는지 여부에 따라, 상기 RAN/WLAN 집성 시작 명령을 수신한 단말은 단말 기반 트래픽 조종을 활성화 할 수 있다.
(2) RAN/WLAN 집성 시작 명령이 적용된 후, WLAN에 일부 진행 중인 트래픽 송/수신이 있으면, 단말은 스스로 단말 기반 트래픽 조종을 비활성화 할 수 있다. 또는, RAN/WLAN 집성 명령이 적용된 후, WLAN에 일부 진행 중인 트래픽 송/수신이 있으면, 단말은 네트워크가 단말 기반 트래픽 조종을 비활성화 하도록 네트워크로 WLAN 오프로딩 정보를 전송할 수 있다. 즉, RAN/WLAN 집성 명령이 적용된 후, WLAN에 일부 진행 중인 트래픽 송/수신이 있으면, 단말 기반 트래픽 조종이 금지될 수 있다. 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF를 기반으로 하는 트래픽 조종일 수 있다. 상기 금지된 단말 기반 트래픽 조종은 네트워크가 단말에게 RAN/WLAN 집성 중단 명령을 전송함에 따라 재개될 수 있다.
(3) RAN/WLAN 집성 시작 명령이 적용된 후, WLAN에 일부 진행 중인 트래픽 송/수신이 없으면, 단말은 스스로 단말 기반 트래픽 조종을 활성화 할 수 있다.
(4) 상기 RAN/WLAN 집성 시작 명령을 수신한 단말은 WLAN의 모든 트래픽을 RAN으로 조종할 수 있다. 그리고, 단말은 네트워크에게 서빙 AP 정보 없이 WLAN 오프로딩 정보를 전송할 수 있다.
(5) 상기 2-B 단계는 단말이 RAN 규칙/ANDSF 및 RAN/WLAN 집성 모두를 동시에 지원할 수 없는 경우에만 수행될 수 있다. 상기 2-B 단계는 네트워크가 RAN/WLAN 집성 시작 명령을 통해 AP 및 LTE의 집성을 구성한 경우에만, RAN 규칙 또는 ANDSF에 따라 WLAN AP와 통신하는 단말에 의해 수행될 수 있다. 바람직하게, 비록 단말 기반 트래픽 조종이 비활성화되더라도, 단말은 RAN 규칙 또는 ANDSF에 따라 LTE로 트래픽 조종을 수행할 수 있다.
도 16은 본 발명의 일 실시 예에 따라, 단말 기반 트래픽 조종을 활성/비활성화하는 방법을 나타낸다.
도 16을 참조하면, 단말은 네트워크로부터 WLAN 측정 설정을 수신할 수 있다(S1610).
상기 측정 설정을 수신한 단말은 WLAN 측정을 수행할 수 있다(S1620).
WLAN 측정 보고 이벤트 조건이 만족되면, 단말은 WLAN 측정 보고를 네트워크로 전송할 수 있다(S1630). 상기 WLAN 측정 보고는 WLAN 오프로딩 정보를 포함할 수 있다. 또는, 단말은 WLAN 측정 보고를 네트워크로 전송한 이후, WLAN 오프로딩 정보를 네트워크로 전송할 수 있다. 상기 WLAN 오프로딩 정보는 RAN/WLAN 인터워킹 상태를 지시하는 정보일 수 있다.
도 16의 실시 예에서, 상기 WLAN 오프로딩 정보는 WLAN 측정 보고 이벤트 조건이 만족되는 경우 전송되는 것으로 설명하였으나, 상기 WLAN 오프로딩 정보가 전송되는 조건은 다양할 수 있다. 예를 들어, 상기 WLAN 오프로딩 정보는 단말이 RRC 연결 확립 절차를 개시한 이후 전송될 수 있다. 예를 들어, 상기 WLAN 오프로딩 정보는 단말이 RAN/WLAN 집성 명령을 수신한 이후 전송될 수 있다.
상기 WLAN 오프로딩 정보는 서빙 AP 정보, RAN 규칙 또는 ANDSF에 따라 조종된 APN/PDN 정보 또는 데이터의 양 등을 포함할 수 있다. 상기 WLAN 오프로딩 정보를 기반으로 상기 네트워크는 단말 기반 트래픽 조종을 수행할지 또는 중단할지 여부를 결정할 수 있다.
네트워크는 RAN/WLAN 집성/인터워킹을 수행하기로 결정할 수 있다(S1640).
단말은 네트워크로부터 RAN/WLAN 집성/인터워킹 시작 명령을 수신할 수 있다(S1650). 상기 RAN/WLAN 집성/인터워킹 시작 명령을 수신한 단말은 WLAN의 모든 트래픽을 LTE로 조종하고, 단말 기반 트래픽 조종을 비활성화 할 수 있다. 즉, 단말은 더 이상 RAN 규칙 또는 ANDSF를 기반으로 하는 트래픽 조종을 수행하지 않을 수 있다.
단말은 네트워크에게 RAN/WLAN 집성/인터워킹 시작 완료를 전송할 수 있다(S1660). 이후, 네트워크는 WLAN AP로 WLAN 재구성 완료를 전송할 수 있다.
단말은 네트워크로부터 RAN/WLAN 집성/인터워킹 중단 명령을 수신할 수 있다(S1670). 상기 RAN/WLAN 집성/인터워킹 중단 명령을 수신한 단말은 단말 기반 트래픽 조종을 활성화 할 수 있다.
단말은 네트워크에게 RAN/WLAN 집성/인터워킹 중단 완료를 전송할 수 있다(S1680).
본 명세서에서 RAN/WLAN 집성/인터워킹은 RAN/WLAN 집성과 동일한 개념으로 사용될 수 있다.
도 16의 실시 예에 따르면, 네트워크는 단말이 단말 기반 트래픽 조종을 수행하는 것을 허용할지 또는 금지할지 여부를 결정함으로써, 단말이 Rel-13에서 규정된 RAN/WLAN 집성을 수행하고 있음에도 불구하고, 단말 기반 트래픽 조종을 중복으로 수행하는 문제점 등을 해결할 수 있을 것이다.
도 17은 본 발명의 일 실시 예에 따라, 단말 기반 트래픽 조종을 활성/비활성화하는 방법의 블록도이다.
도 17을 참조하면, 상기 단말은 단말 기반 트래픽 조종을 수행할 수 있다(S1710). 상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF을 기반으로 하는 트래픽 조종일 수 있다.
상기 단말은 RAN/WLAN 인터워킹 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송할 수 있다(S1720).
상기 WLAN 오프로딩 정보는 서빙 AP 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 조종된 APN 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 조종된 PDN 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 조종될 무선 베어러 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 조종될 EPS 베어러 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 오프로딩 될 수 있는 APN 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 오프로딩 될 수 있는 PDN 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 오프로딩 될 수 있는 무선 베어러 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN으로 오프로딩 될 수 있는 EPS 베어러 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN에 조종된 트래픽의 QoS 정보를 포함할 수 있다. 상기 WLAN 오프로딩 정보는 미리 정의된 시간 동안 전송 또는 수신되는 데이터의 양을 포함할 수 있다. 상기 WLAN 오프로딩 정보는 버퍼에 저장된 데이터의 양을 포함할 수 있다.
상기 WLAN 오프로딩 정보는 상기 단말이 RRC 연결 확립 절차를 개시한 이후 상기 네트워크로 전송될 수 있다. 상기 WLAN 오프로딩 정보는 상기 단말이 RRC 연결 확립 절차를 성공적으로 완료한 이후 상기 네트워크로 전송될 수 있다. 상기 WLAN 오프로딩 정보는 상기 단말이 상기 WLAN 오프로딩 정보 요청을 상기 네트워크로부터 수신한 이후 상기 네트워크로 전송될 수 있다. 상기 WLAN 오프로딩 정보는 상기 단말이 RAN/WLAN 집성 명령을 수신한 이후 상기 네트워크로 전송될 수 있다. 상기 WLAN 오프로딩 정보는 WLAN 측정에 대한 이벤트 보고 조건이 만족되면 상기 네트워크로 전송될 수 있다. 상기 WLAN 오프로딩 정보는 상기 WLAN 오프로딩 정보가 변경되면 상기 네트워크로 전송될 수 있다.
상기 단말은 네트워크로부터 트래픽 조종 비활성 메시지를 수신하되, 상기 트래픽 조종 비활성 메시지는 상기 단말 기반 트래픽 조종을 금지하는 메시지일 수 있다. 상기 단말은 상기 단말 기반 트래픽 조종을 중단할 수 있다. 또한, 상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종할 수 있다.
상기 단말은 네트워크로부터 트래픽 조종 활성 메시지를 수신하되, 상기 트래픽 조종 활성 메시지는 상기 단말 기반 트래픽 조종을 허용하는 메시지일 수 있다. 상기 트래픽 조종 활성 메시지는 단말 특정 메시지일 수 있다. 상기 트래픽 조종 활성 메시지는 셀 특정 메시지일 수 있다.
상기 단말은 네트워크로부터 RAN/WLAN 집성 시작 명령을 수신할 수 있다. 상기 WLAN에 조종된 트래픽이 있으면, 상기 단말은 상기 단말 기반 트래픽 조종을 중단할 수 있다. 또한, 상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종할 수 있다.
상기 단말은 네트워크로부터 RAN/WLAN 집성 중단 명령을 수신할 수 있다. 상기 단말은 상기 단말 기반 트래픽 조종을 재개할 수 있다.
도 18은 본 발명의 실시 예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(1800)은 프로세서(processor, 1801), 메모리(memory, 1802) 및 송수신기(transceiver, 1803)를 포함한다. 메모리(1802)는 프로세서(1801)와 연결되어, 프로세서(1801)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1803)는 프로세서(1801)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1801)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(1801)에 의해 구현될 수 있다.
단말(1810)은 프로세서(1811), 메모리(1812) 및 송수신기(1813)를 포함한다. 메모리(1812)는 프로세서(1811)와 연결되어, 프로세서(1811)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1813)는 프로세서(1811)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1811)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 단말의 동작은 프로세서(1811)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 단말 기반 트래픽 조종(Traffic Steering)을 활성화 또는 비활성화하는 방법에 있어서,
    단말 기반 트래픽 조종을 수행하고,
    RAN(Radio Access Network)/WLAN(Wireless Local Area Network) 인터워킹(interworking) 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송하는 것을 포함하되,
    상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF(Access Network Discovery and Selection Functions)를 기반으로 하는 트래픽 조종인 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 단말은 네트워크로부터 트래픽 조종 비활성 메시지를 수신하는 것을 더 포함하되,
    상기 트래픽 조종 비활성 메시지는 상기 단말 기반 트래픽 조종을 금지하는 메시지인 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 단말은 상기 단말 기반 트래픽 조종을 중단하는 것을 더 포함하는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종하는 것을 더 포함하는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 단말은 네트워크로부터 트래픽 조종 활성 메시지를 수신하는 것을 더 포함하되,
    상기 트래픽 조종 활성 메시지는 상기 단말 기반 트래픽 조종을 허용하는 메시지인 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 트래픽 조종 활성 메시지는 단말 특정 메시지인 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 단말은 네트워크로부터 RAN/WLAN 집성 시작 명령을 수신하는 것을 더 포함하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서,
    상기 WLAN에 조종된 트래픽이 있으면, 상기 단말은 상기 단말 기반 트래픽 조종을 중단하는 것을 더 포함하는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 단말은 상기 WLAN에 조종된 트래픽을 RAN으로 조종하는 것을 더 포함하는 것을 특징으로 하는 방법.
  10. 제 7 항에 있어서,
    상기 단말은 네트워크로부터 RAN/WLAN 집성 중단 명령을 수신하는 것을 더 포함하는 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서,
    상기 WLAN 오프로딩 정보는 서빙 AP 정보, 상기 WLAN으로 조종된 APN 정보, 상기 WLAN으로 조종된 PDN 정보, 상기 WLAN으로 조종될 무선 베어러 정보, 상기 WLAN으로 조종될 EPS 베어러 정보, 상기 WLAN으로 오프로딩 될 수 있는 APN 정보, 상기 WLAN으로 오프로딩 될 수 있는 PDN 정보, 상기 WLAN으로 오프로딩 될 수 있는 무선 베어러 정보, 상기 WLAN으로 오프로딩 될 수 있는 EPS 베어러 정보, 상기 WLAN에 조종된 트래픽의 QoS 정보 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서,
    상기 WLAN 오프로딩 정보는 미리 정의된 시간 동안 전송 또는 수신되는 데이터의 양을 포함하는 것을 특징으로 하는 방법.
  13. 제 1 항에 있어서,
    상기 WLAN 오프로딩 정보는 상기 단말이 RRC 연결 확립 절차를 개시한 이후, 상기 단말이 RRC 연결 확립 절차를 성공적으로 완료한 이후, 상기 단말이 상기 WLAN 오프로딩 정보 요청을 상기 네트워크로부터 수신한 이후, 또는 상기 단말이 RAN/WLAN 집성 명령을 수신한 이후 상기 네트워크로 전송되는 것을 특징으로 하는 방법.
  14. 제 1 항에 있어서,
    상기 WLAN 오프로딩 정보는 WLAN 측정에 대한 이벤트 보고 조건이 만족되거나, 상기 WLAN 오프로딩 정보가 변경되면 상기 네트워크로 전송되는 것을 특징으로 하는 방법.
  15. 무선 통신 시스템에서 단말 기반 트래픽 조종(Traffic Steering)을 활성화 또는 비활성화하는 단말에 있어서,
    메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는
    단말 기반 트래픽 조종을 수행하고,
    상기 송수신기가 RAN(Radio Access Network)/WLAN(Wireless Local Area Network) 인터워킹(interworking) 상태를 지시하는 WLAN 오프로딩 정보를 네트워크에게 전송하는 것을 제어하도록 구성되되,
    상기 단말 기반 트래픽 조종은 RAN 규칙 또는 ANDSF(Access Network Discovery and Selection Functions)를 기반으로 하는 트래픽 조종인 것을 특징으로 하는 단말.
PCT/KR2016/003870 2015-04-15 2016-04-14 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치 WO2016167559A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/566,297 US10567998B2 (en) 2015-04-15 2016-04-14 Method and device for activating or deactivating terminal-based traffic steering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562148148P 2015-04-15 2015-04-15
US62/148,148 2015-04-15
US201562161873P 2015-05-14 2015-05-14
US62/161,873 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016167559A1 true WO2016167559A1 (ko) 2016-10-20

Family

ID=57126718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003870 WO2016167559A1 (ko) 2015-04-15 2016-04-14 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치

Country Status (2)

Country Link
US (1) US10567998B2 (ko)
WO (1) WO2016167559A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197183B2 (en) 2016-12-01 2021-12-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement method, terminal device, and network device
WO2023286984A1 (ko) * 2021-07-14 2023-01-19 삼성전자 주식회사 인터 라디오 엑세스 기술의 측정 오브젝트에 대한 측정을 수행하는 전자 장치 및 그 동작 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272183B1 (en) * 2015-03-20 2021-07-28 Nokia Technologies Oy Optimized signaling for wlan/3gpp aggregation
US10531354B2 (en) * 2016-05-18 2020-01-07 Qualcomm Incorporated LTE's WLAN mobility set prioritization
US10104177B2 (en) * 2016-09-30 2018-10-16 Hughes Network Systems, Llc Distributed gateways with centralized data center for high throughput satellite (HTS) spot beam network
KR102552869B1 (ko) 2018-04-09 2023-07-07 삼성전자 주식회사 5g 네트워크 환경에서 lte 및 nr 액세스간 트래픽 경로 제어를 위한 기구 및 방법
WO2021168603A1 (en) * 2020-02-24 2021-09-02 Nokia Shanghai Bell Co., Ltd. Event triggered measurement for channel state information
WO2023141743A1 (en) * 2022-01-25 2023-08-03 Qualcomm Incorporated Control plane operation for disaggregated radio access network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165832A1 (en) * 2013-04-04 2014-10-09 Interdigital Patent Holdings, Inc. Methods for 3gpp wlan interworking for improved wlan usage through offload
WO2014175672A1 (en) * 2013-04-25 2014-10-30 Lg Electronics Inc. Method and apparatus for transmitting traffic indication in wireless communication system
US20150038142A1 (en) * 2013-07-31 2015-02-05 Broadcom Corporation Cellular Broadcast Enhancements for Inter-System Mobility
US20150043447A1 (en) * 2013-08-08 2015-02-12 Alexandre S. Stojanovski Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link
KR20150026759A (ko) * 2013-08-30 2015-03-11 삼성전자주식회사 무선 랜에서 다중 연결을 지원하는 방법 및 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112563A1 (ja) * 2013-01-18 2014-07-24 京セラ株式会社 セルラ通信システム、ユーザ端末、及びセルラ基地局
US9538457B2 (en) * 2014-07-14 2017-01-03 Time Warner Cable Enterprises Llc Wireless spectrum usage and control of access point probe responses
WO2016131177A1 (zh) * 2015-02-16 2016-08-25 富士通株式会社 业务转移量的控制方法、装置以及通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165832A1 (en) * 2013-04-04 2014-10-09 Interdigital Patent Holdings, Inc. Methods for 3gpp wlan interworking for improved wlan usage through offload
WO2014175672A1 (en) * 2013-04-25 2014-10-30 Lg Electronics Inc. Method and apparatus for transmitting traffic indication in wireless communication system
US20150038142A1 (en) * 2013-07-31 2015-02-05 Broadcom Corporation Cellular Broadcast Enhancements for Inter-System Mobility
US20150043447A1 (en) * 2013-08-08 2015-02-12 Alexandre S. Stojanovski Apparatus, system and method of steering data radio bearer traffic to a wireless local area network link
KR20150026759A (ko) * 2013-08-30 2015-03-11 삼성전자주식회사 무선 랜에서 다중 연결을 지원하는 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197183B2 (en) 2016-12-01 2021-12-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement method, terminal device, and network device
TWI799400B (zh) * 2016-12-01 2023-04-21 大陸商Oppo廣東移動通信有限公司 測量方法、終端設備和網路設備
WO2023286984A1 (ko) * 2021-07-14 2023-01-19 삼성전자 주식회사 인터 라디오 엑세스 기술의 측정 오브젝트에 대한 측정을 수행하는 전자 장치 및 그 동작 방법

Also Published As

Publication number Publication date
US20180092000A1 (en) 2018-03-29
US10567998B2 (en) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2016144099A1 (ko) 단말이 셀을 재 선택하는 방법 및 장치
WO2016167559A1 (ko) 단말 기반 트래픽 조종을 활성화 또는 비활성화하는 방법 및 장치
WO2016190655A1 (ko) 단말이 wlan 결합 상태를 보고하는 방법 및 장치
WO2016108504A1 (ko) 커버리지 확장 영역에 있는 단말이 측정 결과를 보고하는 방법 및 장치
WO2016175639A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2016163734A1 (ko) 커버리지 확장 레벨을 기반으로 값을 적용하는 방법 및 장치
WO2017026844A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2017026780A1 (ko) 단말이 wlan 측정 결과를 보고할지 여부를 결정하는 방법 및 장치
WO2014010892A1 (ko) 셀 대한 측정을 수행하는 방법 및 단말
WO2017030423A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2017030400A1 (ko) 무선 통신 시스템에서 사이드링크를 지원하는 단말에 의해 수행되는 동작 방법 및 상기 방법을 이용하는 단말
WO2017026836A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 단말 정보 보고 방법 및 상기 방법을 이용하는 단말
WO2016159559A1 (ko) Mcptt에서 단말이 우선 순위를 변경하는 방법 및 장치
WO2016144074A1 (ko) 페이징 시그널링을 감소시키기 위한 방법 및 장치
WO2017200299A1 (ko) 단말의 셀 재선택 절차 수행 방법 및 이를 지원하는 장치
WO2018155918A1 (ko) 단말의 이동성 히스토리를 보고하는 방법 및 이를 지원하는 장치
WO2019004667A1 (en) METHOD AND APPARATUS FOR SIGNALING MEASURING RESULT
WO2016163824A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 주파수의 선택적 우선화 방법 및 상기 방법을 이용하는 단말
WO2017048086A1 (ko) 단말이 측정 결과를 보고하는 방법 및 장치
WO2017048095A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 동작 방법 및 상기 방법을 이용하는 단말
WO2017026719A1 (ko) 단말이 셀 특정 우선순위를 기반으로 주파수 측정을 수행하는 방법 및 장치
WO2017030422A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2017078466A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는, 인터-주파수 사이드링크 동작을 위한 셀 선택/재선택 방법 및 상기 방법을 이용하는 단말
WO2016171471A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2017131495A1 (ko) 무선 통신 시스템에서 반정적 스케줄링에 따른 단말의 동작 방법 및 상기 방법을 이용하는 단말 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780282

Country of ref document: EP

Kind code of ref document: A1