WO2014141547A1 - Device and method for producing lithium ion secondary battery - Google Patents

Device and method for producing lithium ion secondary battery Download PDF

Info

Publication number
WO2014141547A1
WO2014141547A1 PCT/JP2013/082324 JP2013082324W WO2014141547A1 WO 2014141547 A1 WO2014141547 A1 WO 2014141547A1 JP 2013082324 W JP2013082324 W JP 2013082324W WO 2014141547 A1 WO2014141547 A1 WO 2014141547A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
secondary battery
lithium ion
current collector
electrode material
Prior art date
Application number
PCT/JP2013/082324
Other languages
French (fr)
Japanese (ja)
Inventor
千恵美 窪田
昌作 石原
菊池 廣
高原 洋一
正志 西亀
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020157013558A priority Critical patent/KR101697249B1/en
Priority to CN201380066009.6A priority patent/CN104871360A/en
Publication of WO2014141547A1 publication Critical patent/WO2014141547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a technique for manufacturing a lithium ion secondary battery, and more particularly to a technique effective when applied to the manufacture of an electrode plate of a lithium ion secondary battery.
  • Patent Document 1 Japanese Patent No. 3539911
  • Patent Document 1 states that “a method for producing a coating sheet coated with at least an active material, a binder and a solvent, wherein the coating film is at a temperature below the boiling point of the solvent contained in the coating. Heating the coating sheet at a temperature lower than the temperature below the boiling point of the solvent so as to maintain a uniform state of the first step of heating the sheet and the distribution of the binder in the coating film. A second step of heating and a third step of heating the coating sheet at a temperature equal to or higher than the temperature lower than the boiling point of the solvent. Through the third step, the coating sheet is the second step. It is described as “a method for producing a coating film sheet in which a state in which the distribution of the binder in the coating film is made uniform by the process is maintained” is described.
  • lithium ion secondary batteries have the advantages of high energy density, long cycle life, low self-discharge characteristics, and high operating voltage, so that they can be used in digital cameras, notebook personal computers, mobile phones, etc. Widely used in portable electronic devices.
  • lithium ion secondary batteries capable of realizing high capacity, high output, and high energy density as electric vehicle batteries and power storage batteries.
  • the development of an electric vehicle that uses a motor as a power source and a hybrid vehicle that uses both an engine (internal combustion engine) and a motor as power sources are being developed. Yes.
  • Lithium ion secondary batteries are also attracting attention as power sources for such electric vehicles and hybrid vehicles.
  • lithium ion secondary batteries are also becoming increasingly important for applications such as solar power generation and power storage for effective use of nighttime power.
  • the positive electrode plate and the negative electrode plate are wound or laminated via a separator that prevents contact between both electrode plates. And after accommodating this winding body or laminated body in a battery exterior container, electrolyte solution is inject
  • an electrode slurry is prepared by kneading an active material capable of releasing and occluding lithium ions by charge / discharge and a conductive additive powder with a binder, a solvent, etc., and this slurry is applied using a coating means such as a die coater. Apply thinly and evenly on the metal foil that is the current collector foil. Thereafter, the solvent contained in the slurry on the metal foil (hereinafter, the coating slurry before drying is referred to as a coating film) is dried to form an electrode film and manufacture an electrode plate.
  • an electrode is manufactured through a series of steps including production of a slurry-like electrode material, application of the electrode material to a current collector foil and drying, or a combination of these steps. It is necessary to manufacture a board. However, since the production of such an electrode plate requires a considerable economic burden, the improvement is desired, and the maintenance and management of the quality of the electrode plate is also desired.
  • Patent Document 1 proposes a method of dividing the drying process into a plurality of processes having different application temperatures.
  • this method includes a drying step at a low temperature, the drying rate of the electrode cannot be increased, and the productivity is lowered. Furthermore, it is not easy to make the binder concentration distribution uniform by drying by evaporation of the solvent from the surface of the coating film.
  • the present invention maintains / improves the quality of an electrode plate by manufacturing an electrode plate in which the binder is almost uniformly distributed in the electrode film at a low cost while improving productivity. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus capable of performing the above, and a lithium ion secondary battery using the electrode plate.
  • the present application includes a plurality of means for solving the above problems. At least a coating portion for applying a slurry-like electrode material containing a positive or negative active material, a binder, a solidifying agent, and a first solvent to the surface of the current collector foil, and the surface of the current collector foil.
  • a solidification chamber for solidifying the slurry-like electrode material, and a liquid component contained in the electrode material solidified in the solidification chamber are removed, and the electrode material is removed.
  • the solidification chamber has a contact width of the solidified liquid along a direction orthogonal to a conveying direction of the current collector foil, which is equal to or greater than a width of the slurry-like electrode material applied to the surface of the current collector foil. It is a manufacturing apparatus of a lithium ion secondary battery provided with the solidification liquid contact mechanism prescribed
  • High quality lithium ion secondary batteries can be manufactured at low cost while improving productivity.
  • FIG. 1 is a schematic cross-sectional view showing a solidification chamber of an electrode plate manufacturing apparatus in Example 1.
  • FIG. FIG. 3 is a plan view of a main part of a current collector foil showing a spray pattern of a solidified liquid in Example 1.
  • 3 is a graph showing a flow rate distribution of a solidified liquid in Example 1.
  • A is a top view of the spray mask provided in the solidification chamber of the electrode plate manufacturing apparatus in Example 2
  • (b) is a sectional view of the spray mask.
  • (A) is a top view of the spray mask provided in the solidification chamber of the electrode plate manufacturing apparatus in Example 3,
  • (b) is a sectional view of the spray mask.
  • It is a whole block diagram which shows the conventional single-side coating type electrode plate manufacturing apparatus.
  • It is a whole block diagram which shows the conventional sequential double coated electrode plate manufacturing apparatus.
  • the electrode material used to form the electrode film constituting the positive electrode or negative electrode of a lithium ion secondary battery is composed of an active material capable of releasing and occluding lithium ions by charging and discharging, and a conductive auxiliary powder. It is a high-viscosity slurry liquid that is kneaded and dispersed with a binder, a solvent, and the like.
  • the slurry-like electrode described above is applied to the surface of the current collector foil 55 supplied from the current collector foil roll 53 using a coating means 52 such as a die coater installed in the coating unit 51. Apply the material thinly and evenly.
  • the current collector foil 55 coated with the slurry-like electrode material (coating film) is dried by a roller transport system 54 for transporting the current collector foil 55 at a constant speed while being in contact with the back surface of the current collector foil 55.
  • the solvent component contained in the coating film is heated and evaporated to dry the electrode material, and the electrode film is formed on the surface of the current collector foil 55.
  • the current collector foil 55 is wound around the electrode roll 57 and conveyed to the next step.
  • a normal electrode plate manufacturing process such a process is separately performed on the front surface and the back surface of the current collector foil 55 to manufacture an electrode plate having electrode films formed on both surfaces of the current collector foil 55.
  • the conveying speed of the current collector foil in the drying process of the manufacturing apparatus is about 1 to 100 m / min, and the observation speed is about 1 to 100 minutes.
  • the transport speed in the drying chamber is slow, so that drying at a relatively low temperature with a reduced evaporation rate of the solvent becomes possible. Therefore, it is possible to cope with even a small drying room, and the quality of the electrode plate to be manufactured is easily stabilized.
  • a method of abruptly drying the solvent at a high temperature may be considered in order to increase the productivity of the electrode plate and reduce the equipment cost and running cost by reducing the size of the drying chamber.
  • the surface of the coating film is dried first, and the composition of the electrode material varies between the inside and the surface of the coating film, or cracks occur on the surface of the coating film. .
  • the electrode plate manufacturing process and equipment are generally constructed by adjusting the two in the middle of both extremes and empirically obtaining the optimum value. Therefore, it has been required to realize an electrode plate manufacturing method that can be applied and dried at high speed and can stabilize the quality of the electrode plate.
  • FIG. 10 shows a conventional sequential double-side coated electrode plate manufacturing apparatus.
  • the coating means 52A such as a die coater installed in the coating section 51A
  • the above-described slurry-like electrode material is thinly and uniformly applied to the surface of the current collector foil 55 supplied from the current collector foil roll 53.
  • a hot-air drying furnace showing a current collecting foil 55 coated with a slurry-like electrode material as a drying chamber 56A by a roller conveying system 54A that conveys the current collecting foil 55 at a constant speed while being in contact with the back surface of the current collecting foil 55.
  • a roller conveying system 54A that conveys the current collecting foil 55 at a constant speed while being in contact with the back surface of the current collecting foil 55.
  • the solvent component contained in the coating film is heated and evaporated to dry and solidify the electrode material, and the electrode film is formed on the surface of the current collector foil 55.
  • a series of steps so far are the same as the example of FIG.
  • the current collector foil 55 on which the electrode film is formed is conveyed to the next coating unit 51 ⁇ / b> B without being wound around the electrode roll 57,
  • the slurry-like electrode material is thinly and uniformly applied to the back surface of the current collector foil 55 using the coating means 52B.
  • the current collector foil 55 is sent to the next hot air drying furnace shown as the drying chamber 56B by the roller transport system 54B that transports the current collector foil 55 at a constant speed while being in contact with the surface of the current collector foil 55.
  • the solvent component contained in the coating film applied to the back surface of the current collector foil 55 is heated and evaporated to dry and solidify the electrode material, and an electrode film is formed on the back surface of the current collector foil 55. Thereby, an electrode plate having electrode films formed on both surfaces of the current collector foil 55 is manufactured. Thereafter, the current collector foil 55 is wound around the electrode roll 57 and conveyed to the next step.
  • FIG. 11 shows a double-sided coating batch drying type manufacturing apparatus proposed for solving the above-mentioned problems.
  • a first coating means 52A for applying a slurry-like electrode material to the surface of the current collector foil 55 and a second electrode for applying a slurry-like electrode material to the back surface of the current collector foil 55 are applied to the coating unit 51 of this manufacturing apparatus.
  • Coating means 52B In this manufacturing apparatus, the electrode material is thinly and uniformly applied to the front surface and the back surface of the current collector foil 55 supplied from the current collector foil roll 53 using the two coating means 52A and 52B.
  • the solvent component in the coating film is heated and evaporated in a hot-air drying furnace shown as the drying chamber 56 to dry and solidify the electrode material, thereby forming an electrode film.
  • a hot-air drying furnace shown as the drying chamber 56 to dry and solidify the electrode material, thereby forming an electrode film.
  • the slurry-like electrode material coated on the current collector foil is directly introduced into the drying chamber and dried.
  • the manufacturing method according to the present embodiment includes a solidification step of solidifying the slurry-like electrode material before conveying it to the drying step.
  • a solidification step of solidifying the slurry-like electrode material By providing this solidification step, various problems caused by drying the slurry-like electrode material as it is in the drying step can be solved simultaneously.
  • FIG. 1 is an overall configuration diagram showing a single-side coating type electrode plate manufacturing apparatus according to the present embodiment.
  • an electrode material for forming the positive electrode or the negative electrode of the lithium ion secondary battery is prepared, and this electrode material is used in the electrode plate manufacturing apparatus shown in FIG.
  • the coating means 12 such as a die coater installed in the coating unit 11 is filled.
  • the electrode material in the present embodiment includes at least a positive electrode or negative electrode active material powder capable of releasing and occluding lithium ions by charging and discharging, and optionally a conductive agent powder, and further between the powder components or powder after drying.
  • the above-described high-viscosity slurry-like electrode material is thinly and uniformly applied to the surface of the current collector foil 15 supplied from the current collector foil roll 13 using the coating means 12 installed in the coating unit 11. To do. This process is referred to as a coating process.
  • the current collector foil 15 is introduced into the solidification chamber 18 by the roller transport system 14 that transports the current collector foil 15 at a constant speed while being in contact with the back surface of the current collector foil 15 coated with the electrode material.
  • the coating film is solidified by bringing the solidified liquid that is the second solvent in the form of the above into contact with the surface of the coating film.
  • the solidified liquid that is the second solvent of the present embodiment has the property that the solidifying agent contained in the electrode material is insoluble, and the first solvent It is necessary to have the property of mutual dissolution.
  • the second solvent When the second solvent comes into contact with the surface of the coating film, the second solvent penetrates into the coating film while being mutually dissolved with the first solvent in the coating film.
  • the solubility of the solidifying agent decreases, so that the solidifying agent precipitates in the coating film, and the precipitated solidifying agent and active material particles contained in the coating film, etc. And the whole coating film is solidified.
  • This process is referred to as a solidification process. Normally, this solidification process is much shorter than the time required for drying, etc., so various components in the coating film are instantaneously fixed, and their concentration distribution and composition fluctuations may occur. Absent.
  • a solidification step is performed in which the solidified liquid as the second solvent is brought into contact with the surface of the coating film, and the coating film is solidified.
  • the components in the electrode material may flow out to the non-coated portion of the surface 15.
  • a current collecting tab for charging and outputting electricity from the electrode plate is attached to the electrode plate of a normal lithium ion secondary battery, so an electrode film is not formed on the entire surface of the current collecting foil, and both ends in the width direction. The part is exposed. Therefore, also in the present embodiment, in the coating process, the electrode material is not applied to the entire surface of the current collector foil, and both ends in the width direction are left uncoated. If the electrode material adheres to this non-coated part, more specifically, the current collector tab mounting position, the current collector tab attachment failure and the resistance between the current collector foil and current collector tab will increase. There is a risk that the characteristics of
  • a spray nozzle (not shown in FIG. 1) for spraying the solidified liquid onto the surface of the coating film is provided in the solidification chamber 18. It is provided inside.
  • the position and amount of spraying can be controlled by the form of the spray nozzle, so the solidified liquid is contacted to the coating film without exceeding the mounting position of the current collecting tab. Can be made.
  • the current collector foil 15 holding the solidified coating film is carried into the drying chamber 16 by the roller conveyance system 14.
  • the electrode component of the lithium ion secondary battery is formed by heating and evaporating the solvent component in the coating film to dry the electrode material and forming an electrode film on the surface of the current collector foil 15 by a known method such as hot air drying. Manufacture a board. This process is referred to as a drying process.
  • the current collector foil 15 is wound around the electrode roll 17 and conveyed to the next step.
  • the current collection foil 15 is conveyed using the contact-type roller conveyance system 14 which contacts the current collection foil 15. be able to. That is, in this embodiment, since it is not necessary to use a complicated and expensive non-contact type conveyance system, an inexpensive drying chamber 16 using a contact type roller conveyance system 14 is employed. This advantage is particularly high when the electrode materials applied on both surfaces of the current collector foil 15 are dried together, but of course does not exclude the use of a non-contact type transport system.
  • the liquid coating film is not dried, but the coating film solidified in the solidification chamber 18 may be dried. Rapid drying is possible in a short time while preventing fluctuations and fluctuations in the thickness of the coating film.
  • the drying equipment can be downsized without reducing the quality of the electrode film.
  • the drying chamber 16 of the present embodiment shown in FIG. 1 has a structure such as a hot-air drying furnace similar to the conventional drying chamber shown in FIGS. 9 to 11, but has a structure in the drying chamber as compared with the conventional drying chamber.
  • the conveyance path can be shortened.
  • a spinel-structured lithium-containing composite oxide containing manganese is excellent in thermal stability, and thus a highly safe battery can be manufactured.
  • the positive electrode active material only the above-mentioned spinel-structured lithium-containing composite oxide containing manganese may be used, but it may be used in combination with other positive electrode active materials.
  • a positive electrode active material for example, olivine type represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.) Compounds and the like.
  • the lithium-containing transition metal oxide having a layered structure LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
  • Examples of the active material for the negative electrode used in the present embodiment include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite, graphitizable carbonaceous materials such as coke obtained by firing pitch, Examples thereof include carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by low-temperature firing of furyl alcohol resin (PFA), polyparaphenylene (PPP), and phenol resin.
  • PFA furyl alcohol resin
  • PPP polyparaphenylene
  • lithium or a lithium-containing compound can also be used as the negative electrode active material.
  • Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium, such as Si and Sn.
  • an oxide-based material such as Sn oxide or Si oxide can be used.
  • the conduction aid used in the present embodiment is usually used as an electron conduction aid to be contained in the positive electrode film, for example, carbon black, acetylene black, ketjen black, graphite, carbon fiber, carbon nanotube, etc.
  • the carbon material is preferable.
  • acetylene black or ketjen black is particularly preferable from the viewpoint of the amount of addition and conductivity, and the productivity of the coating electrode material slurry.
  • Such a conductive additive may be contained in the negative electrode film, or may be preferably contained in the negative electrode film.
  • the binder used in this embodiment preferably contains a binder for binding the active material and the conductive additive.
  • a binder for example, a polyvinylidene fluoride polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer), a rubber polymer, or the like is preferably used. Two or more of these polymers may be used in combination.
  • the binder used in the present embodiment is preferably provided in the form of a solution dissolved in a solvent.
  • Examples of the fluorine-containing monomer group for synthesizing the polyvinylidene fluoride-based polymer include vinylidene fluoride, a mixture of vinylidene fluoride and other monomers, and a monomer mixture containing 80% by mass or more of vinylidene fluoride. It is done.
  • Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.
  • Examples of the rubber polymer include styrene butadiene rubber (SBR), ethylene propylene diene rubber, and fluorine rubber.
  • the binder used in the present embodiment may be added separately from the component having the performance as a solidifying agent, or the binder itself may have a function as a solidifying agent.
  • the binder is added separately from the component having the performance as a solidifying agent, the above-mentioned polymer material having the property of binding the active material and the conductive assistant is preferably used as the binder, but it is not necessarily in the form of a solution dissolved in a solvent. However, it may be in the form of an emulsion in which a polymer material is dispersed in a solvent.
  • the content of the binder in the electrode material is 0.1% by mass or more, more preferably 0.3% by mass or more and 10% by mass or less, more preferably 5%, based on the dried electrode film. It is desirable that it is less than mass%. If the binder content is too low, not only will the coating film solidify in the solidification process, but the mechanical strength of the electrode film obtained after drying will be insufficient, causing the electrode film to peel from the current collector foil. There is. On the other hand, if the binder content is too large, the amount of the active material in the electrode film decreases, and the battery capacity may be lowered.
  • the current collector foil used in the present embodiment is not limited to a sheet-like foil, and a pure metal or alloy conductive material such as aluminum, copper, stainless steel, titanium, etc. is used as its base, and a net, punch Metal foil, foam metal, foil processed into a plate shape, or the like can also be used.
  • the thickness of the substrate is, for example, 5 ⁇ m to 30 ⁇ m, more preferably 8 ⁇ m to 16 ⁇ m.
  • Examples of the method for applying the slurry-like electrode material of the present embodiment to the surface of the current collector foil include various application methods such as an extrusion coater, a reverse roller, a doctor blade, and an applicator.
  • first solvent and second solvent used in the present embodiment are appropriately selected and used.
  • a solvent should be selected on the basis of the solubility of the solidifying agent of the present embodiment, or the components of the binder that also serves as the solidifying agent, and the mutual solubility of the solvent.
  • Examples of the first solvent include aprotic polar solvents represented by N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate, dimethylformamide, ⁇ -butyrolactone, and the like, or a mixed solution containing two or more of these.
  • Examples of the second solvent include protic solvents represented by water, ethanol, isopropyl alcohol, acetic acid, and the like, or a mixed solution containing two or more of these, but are limited to the examples given here. Is not to be done. In some cases, it is possible to select aliphatic saturated hydrocarbons, aliphatic amines, esters, ethers, various halogen-based solvents, and the like as the second solvent. Further, in some cases, it is possible to select to exchange the first solvent and the second solvent. The selection of the solvent depends on the selection of the solidifying component used for the electrode film and the combination of the two types of solvents.
  • the solidification chamber of the present embodiment includes a solidification liquid supply device for bringing the solidification liquid made of the second solvent into contact with the coating film on the current collector foil containing the first solvent. Further, the solidification chamber has a solidification liquid in which the contact area of the solidification liquid is not less than the end of the application width in the direction perpendicular to the conveyance direction of the current collector foil and within the current collection tab attachment position of the non-application part of the current collector foil A contact mechanism is provided. Specifically, it is a method in which the solidified liquid is brought into contact with the coating film surface using a spray nozzle provided in the solidified liquid supply device, and only in the above-described spray region by adjusting the type and arrangement of the spray nozzle. Contact the solidified solution.
  • the solidification step includes a method of controlling the contact area of the solidified liquid by attaching a spray mask between the spray nozzle and the coating film.
  • the method of controlling the contact region of the solidified liquid ejected from the spray nozzle with the spray mask can control the spray region more easily than the method of controlling the spray region by the type and arrangement of the spray nozzle. A more specific configuration of the solidification device will be clarified in Examples described later.
  • the method for drying the solidified coating film is not limited to general hot air drying. That is, a heating method of irradiating electromagnetic waves such as infrared rays, far infrared rays or visible light may be used, or a dielectric heating method using a high frequency electric field may be used. Furthermore, an induction heating method using a change in magnetic flux can be used, or a contact heating method using a heating roll or a hot plate incorporating a heater can be used.
  • the lithium ion secondary battery that can be provided by the present embodiment can be manufactured in the same manner as a conventional lithium ion secondary battery except that it includes positive and negative electrode plates manufactured by the above-described method. . That is, there is no particular limitation on the structure and size of the battery outer container that houses these electrode plates, or the structure of the wound body or laminate including the positive and negative electrode plates as main components.
  • the manufacture of the present embodiment that can maintain / improve the quality of the electrode plate by manufacturing the electrode plate in which the binder is almost uniformly distributed in the electrode film at a low cost while improving the productivity.
  • the method and the manufacturing apparatus have been described, preferred examples for realizing the present embodiment will be described below.
  • Example 1 In the first embodiment, the spray nozzle is placed in the solidification chamber so that the contact width of the solidified liquid along the direction orthogonal to the conveying direction of the current collector foil is equal to or larger than the width of the coating film and within the current collecting tab attachment position.
  • An electrode plate manufacturing apparatus in which is disposed will be described.
  • the solidification chamber 18 of the first embodiment is surrounded by an outer wall 21 made of metal or synthetic resin, and a space isolated from the outside is provided on the conveyance path of the current collector foil 15. It has been.
  • the current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
  • the spray pattern 33 of the solidified liquid 24 sprayed on the surface of the coating film 22 is a current collecting tab in which the spray region end in the coating film width direction is installed at a non-coating portion of the current collecting foil 15. It is inside the attachment position 28. Therefore, the electrode material component in the coating film 22 does not flow out to the current collecting tab attachment position 28.
  • the shape of the spray pattern 33 is not limited to the elliptical shape shown in FIG. 3 as long as the end of the spray region in the application width direction is inside the current collecting tab attachment position 28. It may be a combined pattern or the like. Furthermore, the flow rate distribution in the spray region has a uniform flow rate distribution as shown in FIG. 4, and the position where the flow rate is 50% of the flow rate at the center of the spray nozzle 23 is equal to or greater than the end of the coating film width.
  • the spray region having such a uniform flow distribution may be realized by a single nozzle or by combining a plurality of nozzles. By using the spray nozzle 23 having such a spray pattern and flow rate distribution, the solidified liquid can be brought into contact with the coating film surface evenly, and the in-plane uniformity of the electrode film can be improved.
  • a one-fluid nozzle that ejects only a liquid and a two-fluid nozzle that ejects a mixture of liquid and gas can be used. From the viewpoint of reducing the impact when water contacts the coating film solidified by spraying, a two-fluid nozzle capable of spraying finer droplets is desirable. Further, by setting the average particle diameter D50 of the spray particles sprayed from the spray nozzle 23 to 20 ⁇ m or less, more preferably 10 ⁇ m or less, damage such as coating film defects can be prevented.
  • the injection pattern of a single nozzle a flat pattern, a straight pattern, a full cone pattern, or the like can be used depending on the shape of the nozzle orifice.
  • the flow rate distribution it is sufficient that the uniform flow rate distribution shown in FIG. 4 is formed when the nozzles are combined, and the nozzle alone has a spray nozzle having various flow rate distributions such as a mountain-shaped flow rate distribution and an equal flow rate distribution. Can be used.
  • the spray hitting force per unit area is preferably adjusted to 5 g / cm or less, more preferably 1 g / cm from the viewpoint of damage to the coating film.
  • lithium nickel cobalt manganate as a lithium transition metal composite oxide
  • Graphite powder and acetylene black which are conductive assistants
  • PVdF polyvinylidene fluoride
  • NMP first N-methyl-2-pyrrolidone
  • the viscosity of the positive electrode slurry measured with a rotational viscometer was about 10 Pa ⁇ s.
  • the kneaded positive electrode slurry was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 ⁇ m and a width of 200 mm with an applicator so as to have a thickness of 100 ⁇ m and a width of 150 mm.
  • the current collecting tab attachment position in the non-application part was 15 mm from the coating film terminal.
  • the above process is a coating process for applying a slurry-like electrode material on the surface of the current collector foil.
  • the aluminum foil coated with the electrode material was carried into the solidification chamber 18 shown in FIG. 2, and the electrode material was solidified by spraying the solidified liquid onto the coating film surface.
  • Pure water was used as the solidified liquid
  • an internal mixing type two-fluid nozzle was used as the spray nozzle.
  • the average particle diameter D50 of the spray particles ejected from the two-fluid nozzle was 10 ⁇ m.
  • the distance from the spray nozzle to the coating film was 100 mm, the spray pressure was 0.1 MPa, and the spray hitting force was adjusted to 1 g / cm.
  • the spray pattern was a full cone circular shape, the spray area was 80 mm in diameter, and the 50% flow area was 70 mm.
  • Two spray nozzles were arranged in the width direction of the coating film and sprayed onto the coating film surface.
  • the above process is a solidification process in which the electrode material is solidified by bringing the solidified liquid composed of the second solvent different from the first solvent contained in the electrode material into contact with the electrode material.
  • the above solidification phenomenon is a phenomenon in which water adhering by spraying penetrates while mutually dissolving with NMP in the coating film, and the solubility of the binder contained in the coating film decreases due to an increase in the moisture concentration in the coating film. It is.
  • the deposited binder bonds the positive electrode particles and the like, and solidifies the coating film. Since the electrode material solidified in this way loses fluidity and adhesiveness and is held on the aluminum foil, it can sufficiently withstand a contact-type conveying method in which a roller is brought into contact.
  • the aluminum foil holding the solidified coating film is transported to a drying chamber and dried in a hot air drying oven at 120 ° C. for 10 minutes to evaporate and remove pure water and NMP contained in the solidified coating film.
  • the positive electrode plate for lithium ion secondary batteries was manufactured.
  • the above process is a drying process in which the solvent component is removed from the electrode material and dried.
  • the amount of the binder on the aluminum foil side was 5.2%, the surface side was 4.4%, and the aluminum foil side The amount of the binder was 16% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
  • Example 2 In the second embodiment, the spray nozzle is placed in the solidification chamber so that the contact width of the solidified liquid along the direction orthogonal to the conveying direction of the current collector foil is equal to or greater than the width of the coating film and within the current collector tab attachment position.
  • An electrode plate manufacturing apparatus in which a spray mask is disposed will be described.
  • the solidification chamber 18 of the second embodiment is surrounded by an outer wall 21 made of metal or synthetic resin, as in the first embodiment.
  • An isolated space is provided.
  • the current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
  • the spray nozzle 23 of the second embodiment the same type of spray nozzle as that described in the first embodiment can be used. However, unlike the first embodiment, the spray nozzle 23 is disposed between the spray nozzle 23 and the roller conveyance system 14. Since the spray area is determined by the spray mask 29 arranged in the above, the shape of the spray pattern is not limited.
  • Fig. 6 shows an example of a spray mask.
  • the spray mask 29 provided with an opening in the center has an inclined portion 30 that is high on the center side and low on the outer peripheral side so that excessive solidified liquid does not flow to the coating film side.
  • an example of the linear inclined portion 30 has been described.
  • the spray mask 29 in which the inclined portion 30 has a round (R) may be used.
  • a discharge groove 31 for discharging the excessive solidified liquid to the outside is provided on the outer periphery of the spray mask 29.
  • the positive electrode slurry prepared in Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 ⁇ m and a width of 200 mm with an applicator so as to have a thickness of 100 ⁇ m and a width of 150 mm.
  • the current collecting tab attachment position in the non-application part was 15 mm from the coating film terminal.
  • the aluminum foil coated with the electrode material was carried into the solidification chamber 18 shown in FIG. 2, and the electrode material was solidified by spraying the solidified liquid onto the coating film surface.
  • Pure water was used as the solidified liquid
  • an internal mixing type two-fluid nozzle was used as the spray nozzle.
  • the average particle diameter D50 of the spray particles ejected from the two-fluid nozzle was 10 ⁇ m.
  • the distance from the spray nozzle to the coating film was 100 mm, the spray pressure was 0.1 MPa, and the spray hitting force was adjusted to 1 g / cm.
  • the spray pattern was a full cone circular shape, the spray area was 100 mm in diameter, and the 50% flow area was 80 mm.
  • Two spray nozzles were arranged in the width direction of the coating film, a spray mask was attached between the spray nozzle and the coating film, and the surface of the coating film was sprayed.
  • the opening diameter of the spray mask was 100 mm in the coating width direction and 50 mm in the transport direction.
  • the aluminum foil holding the solidified coating film is transported to a drying chamber and dried in a hot air drying oven at 120 ° C. for 10 minutes to evaporate and remove pure water and NMP contained in the solidified coating film.
  • the positive electrode plate for lithium ion secondary batteries was manufactured.
  • the amount of the binder on the aluminum foil side was 5.0%, the surface side was 4.3%, and the aluminum foil side The amount of the binder was 14% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
  • Example 3 an electrode plate manufacturing apparatus in which a heater is attached to the spray mask used in the second embodiment will be described.
  • the solidification chamber 18 of the second embodiment is surrounded by a metal or synthetic resin outer wall 21 as in the second embodiment, and a space isolated from the outside is provided on the conveyance path of the current collector foil 15. ing.
  • the current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
  • a spray mask 29 with a built-in heater is disposed between the spray nozzle 23 and the roller conveyance system 14.
  • Fig. 7 shows an example of a spray mask.
  • the spray mask 29 has an inclined portion 30 that is high on the center side and low on the outer peripheral side so that excessive solidified liquid does not flow to the coating film side.
  • a heater 32 is built in the inclined portion 30.
  • the spray mask 29 in which the inclined portion 30 is rounded (R) may be used.
  • a discharge groove 31 for discharging the excessive solidified liquid is provided on the outer periphery of the spray mask 29.
  • the amount of the binder on the aluminum foil side was 5.2%, the surface side was 4.5%, and the aluminum foil side The amount of the binder was 15% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
  • Comparative Example 1 the positive electrode slurry of Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 ⁇ m with an applicator so as to have a thickness of 100 ⁇ m. NMP contained in the film was removed by evaporation to produce a positive electrode plate for a lithium ion secondary battery.
  • the manufacturing method of Comparative Example 1 corresponds to a conventional manufacturing method.
  • the amount of the binder on the aluminum foil side was decreased as compared with the vicinity of the surface. Specifically, the amount of binder on the aluminum foil side was 2.2%, the surface side was 6.5%, and the aluminum foil side was 66% less.
  • Example 2 the positive electrode slurry of Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 ⁇ m with an applicator so as to have a thickness of 100 ⁇ m, and immersed in pure water for 20 seconds to solidify the electrode material. Then, it dried at 120 degreeC for 10 minute (s) in the hot air drying furnace, the pure water and NMP which were contained in the coating film were removed by evaporation, and the positive electrode plate for lithium ion secondary batteries was manufactured.
  • the manufacturing method of this comparative example 2 is a manufacturing method which does not consider the outflow of the electrode material in the solidification process.
  • the amount of the binder on the aluminum foil side was increased as compared with the vicinity of the surface. Specifically, the amount of binder on the aluminum foil side was 5.3%, the surface side was 4.0%, and the aluminum foil side was 25% more. Moreover, the binder which is an electrode material had adhered from the observation result of the current collection tab attachment position surface.
  • Comparative Example 1 since the coating film is in a liquid state at the start of drying, movement of components such as a binder, that is, convection and diffusion occurs in the film, and it is estimated that the distribution of the electrode material is biased after drying.
  • the coating film was solidified in the solidification step, and at the same time, the components were fixed and the distribution was reduced because the components did not move during drying.
  • concentration on the side of current collection foil becomes relatively high, the adhesiveness of an electrode film and current collection foil became good, and the effect which the durability of a lithium ion secondary battery improved was acquired.
  • the contact roller transport system 14 can be used even in the case of double-sided batch application as shown in FIG. Can be used.
  • the present invention can be used for manufacturing a lithium ion secondary battery.

Abstract

Provided is a device for producing a lithium ion secondary battery that comprises at least: a coating unit that applies an electrode material slurry containing an active material for a positive electrode or a negative electrode, a binder, a solidification agent, and a first solvent to the surface of a current collector foil (15); a solidification chamber (18) that brings a solidification liquid (24) into contact with the coating film (22) that has been applied to the surface of the current collector foil (15) and solidifies the coating film (22); and a drying chamber that removes a liquid component contained in the coating film (22) that has solidified in the solidification chamber (18) and dries the coating film (22). The solidification chamber (18) is provided with a spray nozzle (23) that sets the contact width of the solidification liquid (24) along a direction that is orthogonal to the conveyance direction of the current collector foil (15) to be greater than the width of the coating film (22) that is applied to the surface of the current collector foil (15) and within a current collector tab attachment position of the current collector foil (15).

Description

リチウムイオン二次電池の製造装置および製造方法Lithium ion secondary battery manufacturing apparatus and manufacturing method
 本発明は、リチウムイオン二次電池の製造技術に関し、特に、リチウムイオン二次電池の電極板の製造に適用して有効な技術に関する。 The present invention relates to a technique for manufacturing a lithium ion secondary battery, and more particularly to a technique effective when applied to the manufacture of an electrode plate of a lithium ion secondary battery.
 本発明の技術分野の背景技術として、特許3953911号公報(特許文献1)がある。この公報には、「少なくとも活物質材料、結着剤および溶媒を含有する塗料が塗布された塗膜シートの製造方法であって、前記塗料に含まれる前記溶媒の沸点未満の温度で前記塗膜シートを加熱する第1の工程と、前記塗膜内における前記結着剤の分布が均一化された状態を保つように、前記溶媒の沸点未満の前記温度より低い温度で前記塗膜シートを加熱する第2の工程と、前記塗膜シートを、前記溶媒の沸点未満の前記温度以上の温度で加熱する第3の工程とを備え、前記第3の工程を通して、前記塗膜シートは前記第2の工程によって前記塗膜内における前記結着剤の分布が均一化された状態が保たれている、塗膜シートの製造方法」と記載されている。 As a background art in the technical field of the present invention, there is Japanese Patent No. 3539911 (Patent Document 1). This publication states that “a method for producing a coating sheet coated with at least an active material, a binder and a solvent, wherein the coating film is at a temperature below the boiling point of the solvent contained in the coating. Heating the coating sheet at a temperature lower than the temperature below the boiling point of the solvent so as to maintain a uniform state of the first step of heating the sheet and the distribution of the binder in the coating film. A second step of heating and a third step of heating the coating sheet at a temperature equal to or higher than the temperature lower than the boiling point of the solvent. Through the third step, the coating sheet is the second step. It is described as “a method for producing a coating film sheet in which a state in which the distribution of the binder in the coating film is made uniform by the process is maintained” is described.
特許第3953911号公報Japanese Patent No. 3953911
 携帯電子機器の発達に伴い、これらの携帯電子機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、リチウムイオン二次電池は、エネルギー密度が高く、サイクルライフが長いと共に、自己放電性が低く、かつ、作動電圧が高いという利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話機等の携帯電子機器に多用されている。 With the development of portable electronic devices, small secondary batteries that can be repeatedly charged are used as power supply sources for these portable electronic devices. Among them, lithium ion secondary batteries have the advantages of high energy density, long cycle life, low self-discharge characteristics, and high operating voltage, so that they can be used in digital cameras, notebook personal computers, mobile phones, etc. Widely used in portable electronic devices.
 さらに、近年では、電気自動車用電池や電力貯蔵用電池として、高容量、高出力、かつ、高エネルギー密度を実現できる大型のリチウムイオン二次電池の研究開発が進められている。特に、自動車産業においては、環境問題に対応するために、動力源としてモータを使用する電気自動車や、動力源としてエンジン(内燃機関)とモータとの両方を使用するハイブリッド車の開発が進められている。リチウムイオン二次電池は、このような電気自動車やハイブリッド車の電源としても注目されている。さらに、リチウムイオン二次電池は、太陽光発電や夜間電力を有効利用するための電力貯蔵等の用途としての重要性も増してきている。 Furthermore, in recent years, research and development of large-sized lithium ion secondary batteries capable of realizing high capacity, high output, and high energy density as electric vehicle batteries and power storage batteries have been promoted. In particular, in the automobile industry, in order to cope with environmental problems, the development of an electric vehicle that uses a motor as a power source and a hybrid vehicle that uses both an engine (internal combustion engine) and a motor as power sources are being developed. Yes. Lithium ion secondary batteries are also attracting attention as power sources for such electric vehicles and hybrid vehicles. Furthermore, lithium ion secondary batteries are also becoming increasingly important for applications such as solar power generation and power storage for effective use of nighttime power.
 リチウムイオン二次電池は、正極板と負極板を両電極板の接触を防止するセパレータを介して捲回または積層されている。そして、この捲回体または積層体を電池外装容器に収納した後、電池外装容器内に電解液が注入されるようになっている。 In the lithium ion secondary battery, the positive electrode plate and the negative electrode plate are wound or laminated via a separator that prevents contact between both electrode plates. And after accommodating this winding body or laminated body in a battery exterior container, electrolyte solution is inject | poured in a battery exterior container.
 上記した正、負の電極板は、一般に以下の方法で製造される。まず、充放電によりリチウムイオンの放出・吸蔵が可能な活物質と導電助剤の粉末とを、バインダや溶剤等と混練した電極スラリを作製し、このスラリをダイコータ等の塗工手段を用いて集電箔である金属箔上に薄く、均一に塗布する。その後、金属箔上のスラリ(以後、乾燥前の塗布スラリを塗布膜と記す)中に含まれる溶剤を乾燥させることにより、電極膜を形成し、電極板を製造する。 The above-described positive and negative electrode plates are generally manufactured by the following method. First, an electrode slurry is prepared by kneading an active material capable of releasing and occluding lithium ions by charge / discharge and a conductive additive powder with a binder, a solvent, etc., and this slurry is applied using a coating means such as a die coater. Apply thinly and evenly on the metal foil that is the current collector foil. Thereafter, the solvent contained in the slurry on the metal foil (hereinafter, the coating slurry before drying is referred to as a coating film) is dried to form an electrode film and manufacture an electrode plate.
 上記のように、リチウムイオン二次電池の製造においては、スラリ状の電極材料の製造、集電箔への電極材料の塗布および乾燥を含む一連の工程を経て、またはこれらの工程を組み合わせて電極板を製造する必要がある。しかしながら、こうした電極板の製造には相当の経済的負担が必要となるために、その改善が望まれており、かつ、電極板の品質の維持、管理についても改善が望まれている。 As described above, in the production of a lithium ion secondary battery, an electrode is manufactured through a series of steps including production of a slurry-like electrode material, application of the electrode material to a current collector foil and drying, or a combination of these steps. It is necessary to manufacture a board. However, since the production of such an electrode plate requires a considerable economic burden, the improvement is desired, and the maintenance and management of the quality of the electrode plate is also desired.
 中でも、電極材料の塗布膜を乾燥する工程では、品質の良い電極板を製造するため、および製造時の安全性を確保するために、乾燥に可成りの時間やコストをかけることが一般的である。すなわち、塗布膜の乾燥工程では、塗布膜への熱の供給に伴う塗布膜表面からの溶剤蒸発によって乾燥が進行する。しかし、このときの溶剤蒸発速度があまりに大きいと、塗布膜面内で均一な乾燥ができなくなる点や、電極材料の厚さ方向の組成が不均一、不安定になる点等が周知となっており、乾燥工程の制約から製造設備に大きな負担が発生する場合があった。 In particular, in the process of drying the coating film of the electrode material, in order to produce a high-quality electrode plate and to ensure safety during production, it is common to spend considerable time and cost for drying. is there. That is, in the coating film drying process, the drying proceeds by evaporation of the solvent from the surface of the coating film accompanying the supply of heat to the coating film. However, if the solvent evaporation rate at this time is too high, it becomes well known that uniform drying cannot be performed within the coating film surface, and that the composition in the thickness direction of the electrode material is non-uniform and unstable. In some cases, a large burden is generated on the manufacturing equipment due to restrictions on the drying process.
 そこで、上記の問題を解決するために、特許文献1では乾燥工程を塗布温度の異なる複数工程に分ける方法が提案されている。しかしながら、この方法には低温での乾燥工程が含まれるため、電極の乾燥速度を速めることができず、生産性が低下する。さらに、塗布膜の表面からの溶媒蒸発による乾燥では、バインダの濃度分布を均一化することは容易ではない。 Therefore, in order to solve the above problems, Patent Document 1 proposes a method of dividing the drying process into a plurality of processes having different application temperatures. However, since this method includes a drying step at a low temperature, the drying rate of the electrode cannot be increased, and the productivity is lowered. Furthermore, it is not easy to make the binder concentration distribution uniform by drying by evaporation of the solvent from the surface of the coating film.
 上記問題点に鑑み、本発明は、電極膜内でバインダがほぼ均一に分布した電極板を低コストで、かつ生産性を向上しつつ製造することにより、電極板の品質を維持/向上させることができる製造方法および製造装置、並びにその電極板を用いたリチウムイオン二次電池を提供することを目的とする。 In view of the above problems, the present invention maintains / improves the quality of an electrode plate by manufacturing an electrode plate in which the binder is almost uniformly distributed in the electrode film at a low cost while improving productivity. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus capable of performing the above, and a lithium ion secondary battery using the electrode plate.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、
 少なくとも、正極または負極の活物質、バインダ、固化剤、および第1の溶剤を含むスラリ状の電極材料を集電箔の表面に塗布する塗工部と、前記集電箔の表面に塗布された前記スラリ状の電極材料に固化液を接触させることにより、前記スラリ状の電極材料を固化させる固化室と、前記固化室において固化された前記電極材料に含まれる液体成分を除去して前記電極材料を乾燥させる乾燥室と、を有し、
 前記固化室は、前記集電箔の搬送方向に直交する方向に沿った前記固化液の接触幅を、前記集電箔の表面に塗布された前記スラリ状の電極材料の幅以上、前記集電箔の集電タブ取り付け位置以内に規定する固化液接触機構を備える、リチウムイオン二次電池の製造装置である。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems.
At least a coating portion for applying a slurry-like electrode material containing a positive or negative active material, a binder, a solidifying agent, and a first solvent to the surface of the current collector foil, and the surface of the current collector foil. By bringing a solidified liquid into contact with the slurry-like electrode material, a solidification chamber for solidifying the slurry-like electrode material, and a liquid component contained in the electrode material solidified in the solidification chamber are removed, and the electrode material is removed. A drying chamber for drying,
The solidification chamber has a contact width of the solidified liquid along a direction orthogonal to a conveying direction of the current collector foil, which is equal to or greater than a width of the slurry-like electrode material applied to the surface of the current collector foil. It is a manufacturing apparatus of a lithium ion secondary battery provided with the solidification liquid contact mechanism prescribed | regulated within the current collection tab attachment position of foil.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 高品質のリチウムイオン二次電池を低コストで、生産性を向上しつつ製造することができる。 High quality lithium ion secondary batteries can be manufactured at low cost while improving productivity.
実施の形態における片面塗布型電極板製造装置を示す全体構成図である。It is a whole lineblock diagram showing the single-sided application type electrode board manufacturing device in an embodiment. 実施例1における電極板製造装置の固化室を示す概略断面図である。1 is a schematic cross-sectional view showing a solidification chamber of an electrode plate manufacturing apparatus in Example 1. FIG. 実施例1における固化液の噴霧パターンを示す集電箔の要部平面図である。FIG. 3 is a plan view of a main part of a current collector foil showing a spray pattern of a solidified liquid in Example 1. 実施例1における固化液の流量分布を示すグラフである。3 is a graph showing a flow rate distribution of a solidified liquid in Example 1. 実施例2における電極板製造装置の固化室を示す概略断面図である。It is a schematic sectional drawing which shows the solidification chamber of the electrode plate manufacturing apparatus in Example 2. (a)は、実施例2における電極板製造装置の固化室に設けられた噴霧マスクの平面図、(b)は、同じく噴霧マスクの断面図である。(A) is a top view of the spray mask provided in the solidification chamber of the electrode plate manufacturing apparatus in Example 2, (b) is a sectional view of the spray mask. (a)は、実施例3における電極板製造装置の固化室に設けられた噴霧マスクの平面図、(b)は、同じく噴霧マスクの断面図である。(A) is a top view of the spray mask provided in the solidification chamber of the electrode plate manufacturing apparatus in Example 3, (b) is a sectional view of the spray mask. 両面塗布一括乾燥型電極板製造装置の固化室を示す概略断面図である。It is a schematic sectional drawing which shows the solidification chamber of a double-side coating batch drying type electrode plate manufacturing apparatus. 従来の片面塗布型電極板製造装置を示す全体構成図である。It is a whole block diagram which shows the conventional single-side coating type electrode plate manufacturing apparatus. 従来の逐次両面塗布型電極板製造装置を示す全体構成図である。It is a whole block diagram which shows the conventional sequential double coated electrode plate manufacturing apparatus. 従来の両面塗布一括乾燥型製造装置を示す全体構成図である。It is a whole block diagram which shows the conventional double-side coating batch drying type | mold manufacturing apparatus.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。さらに、実施の形態を説明する図面においては、構成を分かり易くするために、平面図であってもハッチングを付す場合や、断面図であってもハッチングを省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary. Furthermore, in the drawings for describing the embodiments, hatching may be applied even in a plan view or hatching may be omitted even in a cross-sectional view for easy understanding of the configuration.
 まず、従来の一般的なリチウムイオン二次電池の電極板製造装置について、図9~図11を用いて説明する。 First, a conventional general electrode plate manufacturing apparatus for a lithium ion secondary battery will be described with reference to FIGS.
 リチウムイオン二次電池の正極または負極を構成する電極膜を形成するために用いる電極材料は、充放電によりリチウムイオンの放出・吸蔵が可能な活物質および導電助剤の粉末を、これら粉末を結着させるためのバインダや溶剤等と混練・分散した高粘度スラリ状の液体である。 The electrode material used to form the electrode film constituting the positive electrode or negative electrode of a lithium ion secondary battery is composed of an active material capable of releasing and occluding lithium ions by charging and discharging, and a conductive auxiliary powder. It is a high-viscosity slurry liquid that is kneaded and dispersed with a binder, a solvent, and the like.
 まず、図9に示すように、塗工部51に設置されたダイコータ等の塗工手段52を用いて、集電箔ロール53から供給される集電箔55の表面に上記したスラリ状の電極材料を薄く、均一に塗布する。続いて、集電箔55の裏面に接しながら集電箔55を一定速度で搬送するためのローラー搬送系54によって、スラリ状の電極材料(塗布膜)が塗布された集電箔55を乾燥室56として示す熱風乾燥炉に送る。乾燥室56では、塗布膜中に含まれる溶剤成分を加熱蒸発して電極材料を乾燥させ、集電箔55の表面に電極膜を形成する。その後、集電箔55を電極ロール57に巻取って次工程に搬送する。通常の電極板製造工程では、このような工程を集電箔55の表面と裏面に対して別々に行い、集電箔55の両面に電極膜が形成された電極板を製造する。 First, as shown in FIG. 9, the slurry-like electrode described above is applied to the surface of the current collector foil 55 supplied from the current collector foil roll 53 using a coating means 52 such as a die coater installed in the coating unit 51. Apply the material thinly and evenly. Subsequently, the current collector foil 55 coated with the slurry-like electrode material (coating film) is dried by a roller transport system 54 for transporting the current collector foil 55 at a constant speed while being in contact with the back surface of the current collector foil 55. Send to a hot air drying oven shown as 56. In the drying chamber 56, the solvent component contained in the coating film is heated and evaporated to dry the electrode material, and the electrode film is formed on the surface of the current collector foil 55. Thereafter, the current collector foil 55 is wound around the electrode roll 57 and conveyed to the next step. In a normal electrode plate manufacturing process, such a process is separately performed on the front surface and the back surface of the current collector foil 55 to manufacture an electrode plate having electrode films formed on both surfaces of the current collector foil 55.
 上記のような片面塗布型電極板製造装置を用いて品質の良い電極板を製造し、かつ、製造時の安全性を確保するためには、塗布膜の乾燥にかなりの時間やコストをかけることが一般的である。すなわち、塗布膜の乾燥工程では、塗布膜への熱の供給に伴う塗布膜表面からの溶剤の蒸発によって乾燥が進行するが、その際、溶剤の蒸発速度があまりに大きいと、塗布膜面内で均一な乾燥ができなくなる、もしくは塗布膜の厚さ方向に沿った電極材料の組成が不均一、不安定になるためである。 In order to manufacture high quality electrode plates using the above-mentioned single-side coated electrode plate manufacturing equipment and to ensure safety during manufacturing, it takes considerable time and cost to dry the coating film. Is common. That is, in the coating film drying process, the drying proceeds by evaporation of the solvent from the surface of the coating film accompanying the supply of heat to the coating film. At that time, if the evaporation rate of the solvent is too high, This is because uniform drying becomes impossible or the composition of the electrode material along the thickness direction of the coating film becomes non-uniform and unstable.
 また、上記製造装置の乾燥工程における集電箔の搬送速度は、1~100m/分程度であり、観測速度としては、1~100分程度である。この搬送速度の下限に近い領域では、乾燥室内における搬送速度が遅いため、溶剤の蒸発速度を抑えた比較的低温度での乾燥が可能となる。そのため、小型の乾燥室でも対応が可能であり、かつ、製造する電極板の品質も安定し易い。 In addition, the conveying speed of the current collector foil in the drying process of the manufacturing apparatus is about 1 to 100 m / min, and the observation speed is about 1 to 100 minutes. In a region close to the lower limit of the transport speed, the transport speed in the drying chamber is slow, so that drying at a relatively low temperature with a reduced evaporation rate of the solvent becomes possible. Therefore, it is possible to cope with even a small drying room, and the quality of the electrode plate to be manufactured is easily stabilized.
 しかし、上述したような搬送速度の下限に近い領域では、電極板製造の生産性が低いため、相対的に高価な工程となってしまい、経済的に安価なリチウムイオン二次電池を市場に供給するための障害となってしまう場合もあった。 However, in the region close to the lower limit of the conveyance speed as described above, the productivity of electrode plate production is low, which makes the process relatively expensive and supplies economically inexpensive lithium ion secondary batteries to the market. In some cases, it was an obstacle to do this.
 一方、搬送速度の上限に近い領域では、電極板製造の生産性を高めることが可能であるが、電極板の品質を確保するために必要な乾燥時間を確保しようとすると、乾燥室が非常に長大となってしまう。従って、この場合は、乾燥室自体の設備コストが増大するだけでなく、大型の乾燥室を運転するための大量の熱エネルギーが必要となり、ランニングコストが増加する問題があった。 On the other hand, in the region close to the upper limit of the conveyance speed, it is possible to increase the productivity of electrode plate manufacturing, but when trying to secure the drying time necessary to ensure the quality of the electrode plate, the drying chamber is very It becomes long. Therefore, in this case, there is a problem that not only the equipment cost of the drying chamber itself increases, but also a large amount of heat energy for operating the large drying chamber is required, and the running cost increases.
 また、電極板の生産性を高め、かつ、乾燥室を小型化して設備コストおよびランニングコストを低減させるために、高温で急激に溶剤を乾燥させる方法も考えられる。しかし、このような方法では、塗布膜の表面が先に乾燥し、塗布膜の内部と表面とで電極材料の組成の変動が発生したり、塗布膜の表面にひび割れが生じる等の問題が生じる。 Also, a method of abruptly drying the solvent at a high temperature may be considered in order to increase the productivity of the electrode plate and reduce the equipment cost and running cost by reducing the size of the drying chamber. However, in such a method, the surface of the coating film is dried first, and the composition of the electrode material varies between the inside and the surface of the coating film, or cracks occur on the surface of the coating film. .
 こうした相反する課題に対し、一般的には両極端の中間領域で両者を調整し、経験的に最適値を求める方法で電極板製造工程、設備を構築している。そのため、高速で塗布・乾燥し、かつ電極板の品質を安定にできるような電極板製造方法を実現することが求められていた。 In response to these conflicting issues, the electrode plate manufacturing process and equipment are generally constructed by adjusting the two in the middle of both extremes and empirically obtaining the optimum value. Therefore, it has been required to realize an electrode plate manufacturing method that can be applied and dried at high speed and can stabilize the quality of the electrode plate.
 図10は、従来の逐次両面塗布型電極板製造装置を示している。塗工部51Aに設置されたダイコータ等の塗工手段52Aを用いて、集電箔ロール53から供給される集電箔55の表面に前述したしたスラリ状の電極材料を薄く、均一に塗布する。続いて、集電箔55の裏面に接しながら集電箔55を一定速度で搬送するローラー搬送系54Aによって、スラリ状の電極材料が塗布された集電箔55を乾燥室56Aとして示す熱風乾燥炉に送る。乾燥室56Aでは、塗布膜中に含まれる溶剤成分を加熱蒸発して電極材料を乾燥固化させ、集電箔55の表面に電極膜を形成する。ここまでの一連の工程は、図9の例と同様である。 FIG. 10 shows a conventional sequential double-side coated electrode plate manufacturing apparatus. Using the coating means 52A such as a die coater installed in the coating section 51A, the above-described slurry-like electrode material is thinly and uniformly applied to the surface of the current collector foil 55 supplied from the current collector foil roll 53. . Subsequently, a hot-air drying furnace showing a current collecting foil 55 coated with a slurry-like electrode material as a drying chamber 56A by a roller conveying system 54A that conveys the current collecting foil 55 at a constant speed while being in contact with the back surface of the current collecting foil 55. Send to. In the drying chamber 56 </ b> A, the solvent component contained in the coating film is heated and evaporated to dry and solidify the electrode material, and the electrode film is formed on the surface of the current collector foil 55. A series of steps so far are the same as the example of FIG.
 図10に示す逐次両面型電極板製造装置では、図9の例のように、電極膜が形成された集電箔55を電極ロール57に巻き取らずに次の塗工部51Bに搬送し、塗工手段52Bを用いて、集電箔55の裏面にスラリ状の電極材料を薄く、均一に塗布する。続いて、集電箔55の表面に接しながら集電箔55を一定速度で搬送するローラー搬送系54Bによって、集電箔55を乾燥室56Bとして示す次の熱風乾燥炉に送る。乾燥室56Bでは、集電箔55の裏面に塗布された塗布膜中に含まれる溶剤成分を加熱蒸発して電極材料を乾燥固化させ、集電箔55の裏面に電極膜を形成する。これにより、集電箔55の両面に電極膜が形成された電極板が製造される。その後、集電箔55を電極ロール57に巻取って次工程に搬送する。 In the sequential double-sided electrode plate manufacturing apparatus shown in FIG. 10, as in the example of FIG. 9, the current collector foil 55 on which the electrode film is formed is conveyed to the next coating unit 51 </ b> B without being wound around the electrode roll 57, The slurry-like electrode material is thinly and uniformly applied to the back surface of the current collector foil 55 using the coating means 52B. Subsequently, the current collector foil 55 is sent to the next hot air drying furnace shown as the drying chamber 56B by the roller transport system 54B that transports the current collector foil 55 at a constant speed while being in contact with the surface of the current collector foil 55. In the drying chamber 56 </ b> B, the solvent component contained in the coating film applied to the back surface of the current collector foil 55 is heated and evaporated to dry and solidify the electrode material, and an electrode film is formed on the back surface of the current collector foil 55. Thereby, an electrode plate having electrode films formed on both surfaces of the current collector foil 55 is manufactured. Thereafter, the current collector foil 55 is wound around the electrode roll 57 and conveyed to the next step.
 このような両面連続塗工の場合には、集電箔の両面に電極膜が形成された電極板を製造できるものの、それぞれの塗工に対して乾燥室が別々に必要となるため、設備が大型化し、電極板の製造コストが増大する等の問題がある。 In the case of such double-sided continuous coating, although an electrode plate having electrode films formed on both sides of the current collector foil can be produced, a separate drying chamber is required for each coating. There are problems such as an increase in size and an increase in manufacturing cost of the electrode plate.
 図11は、上記の課題を解決するために提案されている両面塗布一括乾燥型製造装置を示している。この製造装置の塗工部51には集電箔55の表面にスラリ状の電極材料を塗布する第一の塗工手段52Aと集電箔55の裏面にスラリ状の電極材料を塗布する第二の塗工手段52Bとを備えている。この製造装置では、2つの塗工手段52A、52Bを用いて、集電箔ロール53から供給される集電箔55の表面および裏面に、電極材料を薄く、均一に塗布する。続いて、乾燥室56として示す熱風乾燥炉内で塗布膜中の溶剤成分を加熱蒸発し、電極材料を乾燥固化させることによって、電極膜を形成する。このような方法により、両面に電極膜が形成された集電箔55を電極ロール57に巻取って次工程に搬送する。 FIG. 11 shows a double-sided coating batch drying type manufacturing apparatus proposed for solving the above-mentioned problems. A first coating means 52A for applying a slurry-like electrode material to the surface of the current collector foil 55 and a second electrode for applying a slurry-like electrode material to the back surface of the current collector foil 55 are applied to the coating unit 51 of this manufacturing apparatus. Coating means 52B. In this manufacturing apparatus, the electrode material is thinly and uniformly applied to the front surface and the back surface of the current collector foil 55 supplied from the current collector foil roll 53 using the two coating means 52A and 52B. Subsequently, the solvent component in the coating film is heated and evaporated in a hot-air drying furnace shown as the drying chamber 56 to dry and solidify the electrode material, thereby forming an electrode film. By such a method, the current collector foil 55 having electrode films formed on both sides is wound around the electrode roll 57 and conveyed to the next step.
 このような両面連続塗工の場合には、集電箔55の両面に塗布された電極材料の塗膜を一台の乾燥室56の内部で同時に乾燥することが可能となるので、図10の製造装置に比べて乾燥設備を原理的に半減でき、設備コストやランニングコストの削減が期待できる。 In the case of such double-sided continuous coating, it becomes possible to simultaneously dry the coating film of the electrode material applied on both sides of the current collector foil 55 within one drying chamber 56, so that FIG. Compared to manufacturing equipment, the drying equipment can be halved in principle, and equipment costs and running costs can be reduced.
 しかしながら、この方式では、図9や図10に示すような接触式で安価なローラー搬送系の利用は原理的に困難となるので、両面にスラリ状の電極材料が塗布された集電箔をどのようにして乾燥室に搬送するのかが大きな課題となる。そこで、図11の製造装置では、エアー浮上搬送系等の非接触式搬送系58が採用されている。しかし、このような非接触式の搬送系は相対的に高価であり、かつ、搬送の制御も難しい等の課題が残されている。 However, in this method, it is difficult in principle to use a contact-type and inexpensive roller transport system as shown in FIG. 9 or FIG. 10, so which current collector foil is coated with a slurry-like electrode material on both sides. Thus, it becomes a big subject whether it conveys to a drying chamber. Therefore, in the manufacturing apparatus of FIG. 11, a non-contact type conveyance system 58 such as an air levitation conveyance system is employed. However, such a non-contact type transport system is relatively expensive, and problems such as difficulty in controlling the transport remain.
 以上のように、従来の製造方法では、集電箔に塗工したスラリ状の電極材料をそのまま乾燥室に導入して乾燥する方式を採用している。 As described above, in the conventional manufacturing method, the slurry-like electrode material coated on the current collector foil is directly introduced into the drying chamber and dried.
 これに対し、本実施の形態に係る製造方法は、スラリ状の電極材料を乾燥工程に搬送する前に固化させる固化工程を備えることを特徴とする。この固化工程を備えることにより、スラリ状の電極材料をそのまま乾燥工程で乾燥させることに起因する種々の課題を同時に解決することができる。 On the other hand, the manufacturing method according to the present embodiment includes a solidification step of solidifying the slurry-like electrode material before conveying it to the drying step. By providing this solidification step, various problems caused by drying the slurry-like electrode material as it is in the drying step can be solved simultaneously.
 以下、本実施の形態によるリチウムイオン二次電池の製造装置および製造方法について図1を用いて説明する。図1は、本実施の形態における片面塗布型の電極板製造装置を示す全体構成図である。 Hereinafter, a manufacturing apparatus and a manufacturing method of a lithium ion secondary battery according to the present embodiment will be described with reference to FIG. FIG. 1 is an overall configuration diagram showing a single-side coating type electrode plate manufacturing apparatus according to the present embodiment.
 本実施の形態におけるリチウムイオン二次電池の製造工程では、まず、リチウムイオン二次電池の正極または負極を形成するための電極材料を調製し、この電極材料を図1に示す電極板製造装置の塗工部11に設置されたダイコータ等の塗工手段12に充填する。 In the manufacturing process of the lithium ion secondary battery in the present embodiment, first, an electrode material for forming the positive electrode or the negative electrode of the lithium ion secondary battery is prepared, and this electrode material is used in the electrode plate manufacturing apparatus shown in FIG. The coating means 12 such as a die coater installed in the coating unit 11 is filled.
 本実施の形態における電極材料は、少なくとも充放電によりリチウムイオンの放出・吸蔵が可能な正極または負極の活物質粉末と、場合により導電助剤の粉末とを含み、さらに乾燥後に粉末成分間もしくは粉末成分と集電箔間を結着させるためのバインダと、本実施の形態に係る固化剤とを含んでなり、これらの成分を本実施の形態に係る第1の溶剤を用いて高粘度スラリ状の電極材料として調製してなるものである。また、バインダ成分を本実施の形態の固化剤として用いることがより好ましい。 The electrode material in the present embodiment includes at least a positive electrode or negative electrode active material powder capable of releasing and occluding lithium ions by charging and discharging, and optionally a conductive agent powder, and further between the powder components or powder after drying. A binder for binding between the component and the current collector foil, and a solidifying agent according to the present embodiment. These components are formed into a high-viscosity slurry using the first solvent according to the present embodiment. It is prepared as an electrode material. Moreover, it is more preferable to use a binder component as a solidifying agent in the present embodiment.
 次に、塗工部11に設置された塗工手段12を用いて、集電箔ロール13から供給される集電箔15の表面に上記した高粘度スラリ状の電極材料を薄く、均一に塗布する。この工程を塗工工程と記す。 Next, the above-described high-viscosity slurry-like electrode material is thinly and uniformly applied to the surface of the current collector foil 15 supplied from the current collector foil roll 13 using the coating means 12 installed in the coating unit 11. To do. This process is referred to as a coating process.
 続いて、上記電極材料が塗布された集電箔15の裏面に接しながら、集電箔15を一定速度で搬送するローラー搬送系14によって、集電箔15を固化室18に導入し、本実施の形態の第2の溶剤である固化液を塗布膜の表面に接触させることによって、塗布膜を固化させる。 Subsequently, the current collector foil 15 is introduced into the solidification chamber 18 by the roller transport system 14 that transports the current collector foil 15 at a constant speed while being in contact with the back surface of the current collector foil 15 coated with the electrode material. The coating film is solidified by bringing the solidified liquid that is the second solvent in the form of the above into contact with the surface of the coating film.
 本実施の形態の第2の溶剤である固化液は、電極材料の調製に用いる第1の溶剤とは異なり、電極材料に含まれる固化剤が不溶であるという性質を有すると共に、第1の溶剤と相互溶解する性質を有することが必要である。 Unlike the first solvent used for preparing the electrode material, the solidified liquid that is the second solvent of the present embodiment has the property that the solidifying agent contained in the electrode material is insoluble, and the first solvent It is necessary to have the property of mutual dissolution.
 第2の溶剤が塗布膜の表面に接触すると、第2の溶剤は、塗布膜内の第1の溶剤と相互に溶解しながら塗布膜内に浸入する。そして、塗布膜内で第2の溶剤の濃度が増加すると、固化剤の溶解度が減少するために、塗布膜内で固化剤が析出し、析出した固化剤と塗布膜に含まれる活物質粒子等とが結着することによって塗布膜全体が固化する。この工程を固化工程と記す。通常、この固化の過程は、乾燥等に要する時間より遥かに短時間であるため、塗布膜内の各種成分は瞬間的に固定化され、それらの濃度分布や組成の変動等が発生することはない。 When the second solvent comes into contact with the surface of the coating film, the second solvent penetrates into the coating film while being mutually dissolved with the first solvent in the coating film. When the concentration of the second solvent increases in the coating film, the solubility of the solidifying agent decreases, so that the solidifying agent precipitates in the coating film, and the precipitated solidifying agent and active material particles contained in the coating film, etc. And the whole coating film is solidified. This process is referred to as a solidification process. Normally, this solidification process is much shorter than the time required for drying, etc., so various components in the coating film are instantaneously fixed, and their concentration distribution and composition fluctuations may occur. Absent.
 このように、上記固化室18の内部では、塗布膜の表面に第2の溶剤である固化液を接触させ、塗布膜を固化させる固化工程が行われるが、接触の方法によっては、集電箔15の表面の非塗布部に電極材料中の成分が流出することが懸念される。通常のリチウムイオン二次電池の電極板には、電極板から電気を充電、出力するための集電タブを取り付けることから、集電箔の表面全体に電極膜を形成せず、幅方向の両端部分は露出した状態となる。そのため、本実施の形態においても、塗工工程において、集電箔の表面全体に電極材料を塗布せず、幅方向の両端は非塗布のままとする。この非塗布部分、より具体的には集電タブの取り付け位置に電極材料が付着していると、集電タブの取り付け不良や、集電箔と集電タブ間の抵抗が増大し、電池としての特性が低下する恐れがある。 As described above, in the solidification chamber 18, a solidification step is performed in which the solidified liquid as the second solvent is brought into contact with the surface of the coating film, and the coating film is solidified. There is a concern that the components in the electrode material may flow out to the non-coated portion of the surface 15. A current collecting tab for charging and outputting electricity from the electrode plate is attached to the electrode plate of a normal lithium ion secondary battery, so an electrode film is not formed on the entire surface of the current collecting foil, and both ends in the width direction. The part is exposed. Therefore, also in the present embodiment, in the coating process, the electrode material is not applied to the entire surface of the current collector foil, and both ends in the width direction are left uncoated. If the electrode material adheres to this non-coated part, more specifically, the current collector tab mounting position, the current collector tab attachment failure and the resistance between the current collector foil and current collector tab will increase. There is a risk that the characteristics of
 本実施の形態の固化工程では、集電箔の幅方向の両端を非塗布とするために、塗布膜の表面に固化液を噴霧する噴霧ノズル(図1には示さない)を固化室18の内部に設けている。噴霧ノズルを用いた固化液の接触方法では、噴霧ノズルの形態によって、噴霧する位置や量を制御することが可能なため、集電タブの取り付け位置を越えることなく、塗布膜に固化液を接触させることができる。 In the solidification process of the present embodiment, in order to make the both ends in the width direction of the current collector foil uncoated, a spray nozzle (not shown in FIG. 1) for spraying the solidified liquid onto the surface of the coating film is provided in the solidification chamber 18. It is provided inside. In the contact method of the solidified liquid using the spray nozzle, the position and amount of spraying can be controlled by the form of the spray nozzle, so the solidified liquid is contacted to the coating film without exceeding the mounting position of the current collecting tab. Can be made.
 本実施の形態では、上記した固化室18における固化工程に続いて、固化した塗布膜を保持した集電箔15をローラー搬送系14によって乾燥室16に搬入する。そして、熱風乾燥等の周知の方法により、塗布膜中の溶剤成分を加熱蒸発して電極材料を乾燥させ、集電箔15の表面に電極膜を形成することで、リチウムイオン二次電池の電極板を製造する。この工程を乾燥工程と記す。その後、集電箔15を電極ロール17に巻取って次工程に搬送する。 In the present embodiment, following the solidification step in the solidification chamber 18 described above, the current collector foil 15 holding the solidified coating film is carried into the drying chamber 16 by the roller conveyance system 14. Then, the electrode component of the lithium ion secondary battery is formed by heating and evaporating the solvent component in the coating film to dry the electrode material and forming an electrode film on the surface of the current collector foil 15 by a known method such as hot air drying. Manufacture a board. This process is referred to as a drying process. Thereafter, the current collector foil 15 is wound around the electrode roll 17 and conveyed to the next step.
 このように、本実施の形態では、塗布膜の乾燥工程に先立って塗布膜を固化させるため、集電箔15と接触する接触式のローラー搬送系14を使用して集電箔15を搬送することができる。すなわち、本実施の形態では、複雑、かつ、高価な非接触式搬送系を用いる必要がないので、接触式のローラー搬送系14を使用した安価な乾燥室16を採用している。この利点は、集電箔15の両面に塗布した電極材料を一括して乾燥する場合に、特に高い効果を発揮するが、もちろん、非接触式搬送系の使用を排除するものではない。 Thus, in this Embodiment, in order to solidify a coating film prior to the drying process of a coating film, the current collection foil 15 is conveyed using the contact-type roller conveyance system 14 which contacts the current collection foil 15. be able to. That is, in this embodiment, since it is not necessary to use a complicated and expensive non-contact type conveyance system, an inexpensive drying chamber 16 using a contact type roller conveyance system 14 is employed. This advantage is particularly high when the electrode materials applied on both surfaces of the current collector foil 15 are dried together, but of course does not exclude the use of a non-contact type transport system.
 また、本実施の形態の乾燥工程では、液体状の塗布膜を乾燥するのではなく、固化室18で固化した塗布膜を乾燥すればよいため、従来は乾燥時に変動していた電極材料の組成変動や、塗布膜の膜厚の変動等を防止しながら、短時間での急速乾燥が可能となる。 Further, in the drying process of the present embodiment, the liquid coating film is not dried, but the coating film solidified in the solidification chamber 18 may be dried. Rapid drying is possible in a short time while preventing fluctuations and fluctuations in the thickness of the coating film.
 かかる本実施の形態の特徴により、搬送路が短い乾燥室16を用いた場合、または搬送速度が速い搬送系を用いた場合であっても、電極膜の品質を低下させることなく乾燥設備を小型化することが可能となる。すなわち、図1に示す本実施の形態の乾燥室16は、図9~図11に示した従来の乾燥室と同様、熱風乾燥炉等の構造を有するが、従来の乾燥室に比べて乾燥室内における搬送路を短くできる。 Due to the characteristics of this embodiment, even when the drying chamber 16 with a short conveying path is used or when a conveying system with a high conveying speed is used, the drying equipment can be downsized without reducing the quality of the electrode film. Can be realized. That is, the drying chamber 16 of the present embodiment shown in FIG. 1 has a structure such as a hot-air drying furnace similar to the conventional drying chamber shown in FIGS. 9 to 11, but has a structure in the drying chamber as compared with the conventional drying chamber. The conveyance path can be shortened.
 以下では、本実施の形態におけるリチウムイオン電池の電極膜を形成するために用いる電極材料の組成について説明する。 Hereinafter, the composition of the electrode material used for forming the electrode film of the lithium ion battery in the present embodiment will be described.
 本実施の形態で用いる正極の活物質としては、コバルト酸リチウム、マンガンを含有するスピネル構造のリチウム含有複合酸化物、もしくはニッケル、コバルト、マンガンを含んでなる複合酸化物、あるいはオリビン型リン酸鉄に代表されるオリビン型化合物等が挙げられるが、これらに限定されるものではない。特に、マンガンを含有するスピネル構造のリチウム含有複合酸化物は、熱的安定性に優れているため、安全性の高い電池を作製することができる。 As an active material of the positive electrode used in the present embodiment, lithium cobaltate, lithium-containing composite oxide having a spinel structure containing manganese, composite oxide containing nickel, cobalt, manganese, or olivine-type iron phosphate Olivine type compounds represented by the above, but are not limited thereto. In particular, a spinel-structured lithium-containing composite oxide containing manganese is excellent in thermal stability, and thus a highly safe battery can be manufactured.
 正極の活物質としては、上記したマンガンを含有するスピネル構造のリチウム含有複合酸化物のみを用いてもよいが、他の正極用活物質と併用してもよい。このような正極用活物質としては、例えば、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Ti等)で表わされるオリビン型化合物等が挙げられる。また、層状構造のリチウム含有遷移金属酸化物の具体例として、LiCoOやLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)等の他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5等)等が挙げられる。 As the positive electrode active material, only the above-mentioned spinel-structured lithium-containing composite oxide containing manganese may be used, but it may be used in combination with other positive electrode active materials. As such a positive electrode active material, for example, olivine type represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.) Compounds and the like. As specific examples of the lithium-containing transition metal oxide having a layered structure, LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
 本実施の形態で用いる負極の活物質としては、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛等の黒鉛材料、ピッチを焼成して得られるコークス等の易黒鉛化性炭素質材料、フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素等の難黒鉛化性炭素質材料等の炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li-Al等のリチウム合金や、Si、Sn等のようなリチウムとの合金化が可能な元素を含む合金が挙げられる。さらに、Sn酸化物やSi酸化物等の酸化物系材料を用いることも可能である。 Examples of the active material for the negative electrode used in the present embodiment include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite, graphitizable carbonaceous materials such as coke obtained by firing pitch, Examples thereof include carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by low-temperature firing of furyl alcohol resin (PFA), polyparaphenylene (PPP), and phenol resin. In addition to the carbon material, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium, such as Si and Sn. Furthermore, an oxide-based material such as Sn oxide or Si oxide can be used.
 本実施の形態で用いる導電助剤は、通常、正極の電極膜に含有させる電子伝導助剤として用いるものであり、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト、カーボンファイバ、カーボンナノチューブ等の炭素材料が好ましい。これらの炭素材料の中でも、添加量と導電性の効果、および塗布用電極材料スラリの製造性の点から、アセチレンブラックまたはケッチェンブラックが特に好ましい。かかる導電助剤は、負極の電極膜に含有させることも可能であり、また、負極の電極膜に含有させて好ましい場合もある。 The conduction aid used in the present embodiment is usually used as an electron conduction aid to be contained in the positive electrode film, for example, carbon black, acetylene black, ketjen black, graphite, carbon fiber, carbon nanotube, etc. The carbon material is preferable. Among these carbon materials, acetylene black or ketjen black is particularly preferable from the viewpoint of the amount of addition and conductivity, and the productivity of the coating electrode material slurry. Such a conductive additive may be contained in the negative electrode film, or may be preferably contained in the negative electrode film.
 本実施の形態で用いるバインダは、上記の活物質および導電助剤を結着させるためのバインダを含有していることが好ましい。かかるバインダとしては、例えば、ポリビニリデンフルオライド系ポリマー(主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素モノマー群の重合体)や、ゴム系ポリマー等が好適に用いられる。これらのポリマーは、2種以上を併用してもよい。また、本実施の形態で用いるバインダは、溶媒に溶解した溶液の形態で供されるものが好ましい。 The binder used in this embodiment preferably contains a binder for binding the active material and the conductive additive. As such a binder, for example, a polyvinylidene fluoride polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer), a rubber polymer, or the like is preferably used. Two or more of these polymers may be used in combination. Further, the binder used in the present embodiment is preferably provided in the form of a solution dissolved in a solvent.
 上記ポリビニリデンフルオライド系ポリマーを合成するための含フッ素モノマー群としては、ビニリデンフルオライド、ビニリデンフルオライドと他のモノマーとの混合物で、ビニリデンフルオライドを80質量%以上含有するモノマー混合物等が挙げられる。上記他のモノマーとしては、例えば、ビニルフルオライド、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等が挙げられる。また、上記ゴム系ポリマーとしては、例えば、スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム、フッ素ゴム等が挙げられる。 Examples of the fluorine-containing monomer group for synthesizing the polyvinylidene fluoride-based polymer include vinylidene fluoride, a mixture of vinylidene fluoride and other monomers, and a monomer mixture containing 80% by mass or more of vinylidene fluoride. It is done. Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether. Examples of the rubber polymer include styrene butadiene rubber (SBR), ethylene propylene diene rubber, and fluorine rubber.
 本実施の形態で用いるバインダは、固化剤としての性能を有する成分とは別個に加えてもよく、バインダ自体が固化剤としての機能を有していてもよい。バインダを固化剤としての性能を有する成分と別個に加える場合、バインダは活物質および導電助剤を結着する性質を持つ上記ポリマー材料が好適に使用されるが、必ずしも溶剤に溶解した溶液の形態である必要はなく、溶剤中にポリマー材料を分散させたエマルジョンの形態であってもよい。 The binder used in the present embodiment may be added separately from the component having the performance as a solidifying agent, or the binder itself may have a function as a solidifying agent. When the binder is added separately from the component having the performance as a solidifying agent, the above-mentioned polymer material having the property of binding the active material and the conductive assistant is preferably used as the binder, but it is not necessarily in the form of a solution dissolved in a solvent. However, it may be in the form of an emulsion in which a polymer material is dispersed in a solvent.
 電極材料中における上記バインダの含有量は、乾燥後の電極膜を基準として、0.1質量%以上、より好ましくは0.3質量%以上であり、かつ、10質量%以下、より好ましくは5質量%以下であることが望ましい。バインダの含有量が少なすぎると、固化工程での塗布膜の固化が不十分となるばかりでなく、乾燥後に得られる電極膜の機械的強度が不足し、電極膜が集電箔から剥離する問題がある。他方、バインダの含有量が多すぎると、電極膜中の活物質の量が減少し、電池容量が低くなる恐れがある。 The content of the binder in the electrode material is 0.1% by mass or more, more preferably 0.3% by mass or more and 10% by mass or less, more preferably 5%, based on the dried electrode film. It is desirable that it is less than mass%. If the binder content is too low, not only will the coating film solidify in the solidification process, but the mechanical strength of the electrode film obtained after drying will be insufficient, causing the electrode film to peel from the current collector foil. There is. On the other hand, if the binder content is too large, the amount of the active material in the electrode film decreases, and the battery capacity may be lowered.
 本実施の形態で用いる集電箔は、シート状の箔に限定されるものではなく、その基体として、アルミニウム、銅、ステンレス鋼、チタン等の純金属もしくは合金性導電材料を用い、網、パンチドメタル、フォームメタル、または板状に加工した箔等を用いることもできる。基体の厚みは、例えば、5μm~30μm、より好ましくは8μm~16μmである。 The current collector foil used in the present embodiment is not limited to a sheet-like foil, and a pure metal or alloy conductive material such as aluminum, copper, stainless steel, titanium, etc. is used as its base, and a net, punch Metal foil, foam metal, foil processed into a plate shape, or the like can also be used. The thickness of the substrate is, for example, 5 μm to 30 μm, more preferably 8 μm to 16 μm.
 集電箔の表面に本実施の形態のスラリ状電極材料を塗布する方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーター等をはじめ、各種塗布方法が挙げられる。 Examples of the method for applying the slurry-like electrode material of the present embodiment to the surface of the current collector foil include various application methods such as an extrusion coater, a reverse roller, a doctor blade, and an applicator.
 本実施の形態で用いる2種類の溶剤(第1の溶剤および第2の溶剤)は、両者を適切に選択して使うことが重要である。かかる溶剤は、本実施の形態の固化剤、もしくは固化剤を兼用するバインダの成分の溶解性、および溶剤相互の溶解性に基いて選択されるべきである。 It is important that the two types of solvents (first solvent and second solvent) used in the present embodiment are appropriately selected and used. Such a solvent should be selected on the basis of the solubility of the solidifying agent of the present embodiment, or the components of the binder that also serves as the solidifying agent, and the mutual solubility of the solvent.
 第1の溶剤としては、N-メチルピロリドン、ジメチルスルホキシド、プロピレンカーボネート、ジメチルホルムアミド、γ-ブチロラクトン等に代表される非プロトン性極性溶剤、もしくはこれらの中の2種以上を含む混合液が挙げられる。また、第2の溶剤としては、水、エタノール、イソプロピルアルコール、酢酸等に代表されるプロトン性溶剤、もしくはこれらの中の2種以上を含む混合液が挙げられるが、ここに挙げた例に限定されるものではない。場合によっては、第2の溶剤として、脂肪族飽和炭化水素、脂肪族アミン類、エステル類、エーテル類、ハロゲン系各種溶剤等の選択も可能である。さらに、場合によっては、第1の溶剤と第2の溶剤とを交換する選択も可能である。かかる溶剤の選択は、電極膜に用いる固化成分の選択とそれに合致した2種の溶剤の組み合わせに依存するのである。 Examples of the first solvent include aprotic polar solvents represented by N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate, dimethylformamide, γ-butyrolactone, and the like, or a mixed solution containing two or more of these. . Examples of the second solvent include protic solvents represented by water, ethanol, isopropyl alcohol, acetic acid, and the like, or a mixed solution containing two or more of these, but are limited to the examples given here. Is not to be done. In some cases, it is possible to select aliphatic saturated hydrocarbons, aliphatic amines, esters, ethers, various halogen-based solvents, and the like as the second solvent. Further, in some cases, it is possible to select to exchange the first solvent and the second solvent. The selection of the solvent depends on the selection of the solidifying component used for the electrode film and the combination of the two types of solvents.
 本実施の形態の固化室は、上記した第1の溶剤を含んだ集電箔上の塗布膜に上記した第2の溶剤からなる固化液を接触させるための固化液供給装置を備えている。また、この固化室は、固化液の接触域を、集電箔の搬送方向と直交する方向の塗布幅末端以上、かつ、集電箔の非塗布部の集電タブ取り付け位置以内とする固化液接触機構を備えている。具体的には、固化液供給装置に設けられた噴霧ノズルを用いて、塗布膜表面に固化液を接触する方式であり、噴霧ノズルの種類および配置を調整することによって、上記した噴霧域にのみ固化液を接触させる。 The solidification chamber of the present embodiment includes a solidification liquid supply device for bringing the solidification liquid made of the second solvent into contact with the coating film on the current collector foil containing the first solvent. Further, the solidification chamber has a solidification liquid in which the contact area of the solidification liquid is not less than the end of the application width in the direction perpendicular to the conveyance direction of the current collector foil and within the current collection tab attachment position of the non-application part of the current collector foil A contact mechanism is provided. Specifically, it is a method in which the solidified liquid is brought into contact with the coating film surface using a spray nozzle provided in the solidified liquid supply device, and only in the above-described spray region by adjusting the type and arrangement of the spray nozzle. Contact the solidified solution.
 また、上記固化工程は、噴霧ノズルと塗布膜との間に噴霧マスクを取り付けて固化液の接触領域を制御する方式も含まれる。噴霧ノズルから噴出した固化液の接触領域を噴霧マスクによって制御する方式は、噴霧ノズルの種類および配置によって噴霧域を制御する方式よりも簡便に噴霧域の制御を行うことができる。固化装置のより具体的な構成については、後述した実施例において明らかになるであろう。 The solidification step includes a method of controlling the contact area of the solidified liquid by attaching a spray mask between the spray nozzle and the coating film. The method of controlling the contact region of the solidified liquid ejected from the spray nozzle with the spray mask can control the spray region more easily than the method of controlling the spray region by the type and arrangement of the spray nozzle. A more specific configuration of the solidification device will be clarified in Examples described later.
 本実施の形態では、固化工程後の乾燥工程において塗布膜中のバインダの移動が起こらないため、固化後の塗布膜を乾燥させる方法は一般的な温風乾燥に限定されるものではない。すなわち、赤外線あるいは遠赤外線もしくは可視光といった電磁波を照射する加熱方式であってもよく、あるいは高周波電場による誘電加熱方式であってもよい。さらには、磁束の変化を利用する誘導加熱方式を用いたり、ヒータを組み込んだ加熱ロールやホットプレートを利用する接触加熱方式を用いたりすることもできる。 In this embodiment, since the binder does not move in the coating film in the drying process after the solidification process, the method for drying the solidified coating film is not limited to general hot air drying. That is, a heating method of irradiating electromagnetic waves such as infrared rays, far infrared rays or visible light may be used, or a dielectric heating method using a high frequency electric field may be used. Furthermore, an induction heating method using a change in magnetic flux can be used, or a contact heating method using a heating roll or a hot plate incorporating a heater can be used.
 本実施の形態により提供され得るリチウムイオン二次電池は、上述した方法で製造される正、負の電極板を含むこと以外は、従来のリチウムイオン二次電池と同様にして製造することができる。すなわち、これらの電極板を収納する電池外装容器の構造やサイズ、あるいは正、負の電極板を主構成要素とする捲回体または積層体の構造等については、特に制限はない。 The lithium ion secondary battery that can be provided by the present embodiment can be manufactured in the same manner as a conventional lithium ion secondary battery except that it includes positive and negative electrode plates manufactured by the above-described method. . That is, there is no particular limitation on the structure and size of the battery outer container that houses these electrode plates, or the structure of the wound body or laminate including the positive and negative electrode plates as main components.
 以上、電極膜内でバインダがほぼ均一に分布した電極板を低コストで、かつ生産性を向上しつつ製造することにより、電極板の品質を維持/向上させることができる本実施の形態の製造方法および製造装置について述べたが、以下では本実施の形態を実現するための好適な実施例について説明する。 As described above, the manufacture of the present embodiment that can maintain / improve the quality of the electrode plate by manufacturing the electrode plate in which the binder is almost uniformly distributed in the electrode film at a low cost while improving the productivity. Although the method and the manufacturing apparatus have been described, preferred examples for realizing the present embodiment will be described below.
 (実施例1)
 本実施例1では、集電箔の搬送方向に直交する方向に沿った固化液の接触幅が、塗布膜の幅以上、かつ、集電タブ取り付け位置以内となるように、固化室に噴霧ノズルを配置した電極板製造装置について説明する。
(Example 1)
In the first embodiment, the spray nozzle is placed in the solidification chamber so that the contact width of the solidified liquid along the direction orthogonal to the conveying direction of the current collector foil is equal to or larger than the width of the coating film and within the current collecting tab attachment position. An electrode plate manufacturing apparatus in which is disposed will be described.
 図2に示すように、本実施例1の固化室18は、金属製あるいは合成樹脂製の外壁21で囲われており、集電箔15の搬送路上には、外部から隔離された空間が設けられている。電極材料の塗布膜22が塗布された集電箔15は、ローラー搬送系14によって、噴霧ノズル23、固化液24が貯蔵された固化液タンク25、供給ポンプ26、廃液タンク27を備えた固化室18に導入される。そして、噴霧ノズル23から供給される固化液24と接触することにより、塗布膜22が固化し、次の乾燥装置へと搬出される。 As shown in FIG. 2, the solidification chamber 18 of the first embodiment is surrounded by an outer wall 21 made of metal or synthetic resin, and a space isolated from the outside is provided on the conveyance path of the current collector foil 15. It has been. The current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
 図3に示すように、塗布膜22の表面に噴射する固化液24の噴霧パターン33は、その塗布膜幅方向の噴霧領域末端が、集電箔15の非塗布部に設置される集電タブ取り付け位置28よりも内側となっている。そのため、集電タブ取り付け位置28に塗布膜22中の電極材料成分が流出することはない。 As shown in FIG. 3, the spray pattern 33 of the solidified liquid 24 sprayed on the surface of the coating film 22 is a current collecting tab in which the spray region end in the coating film width direction is installed at a non-coating portion of the current collecting foil 15. It is inside the attachment position 28. Therefore, the electrode material component in the coating film 22 does not flow out to the current collecting tab attachment position 28.
 噴霧パターン33の形状は、塗布幅方向の噴霧領域末端が集電タブ取り付け位置28よりも内側であれば、図3に示した楕円形状に限定されず、円形形状や角型形状、あるいはそれらを組み合わせたパターン等であってもよい。さらに、噴霧領域における流量分布は、図4に示すような均等流量分布を持ち、噴霧ノズル23の中心の流量の50%流量となる位置が、塗布膜幅の末端以上としている。かかる均等流量分布をもつ噴霧領域は、単体のノズルで実現しても、複数のノズルを組み合わせて実現してもよい。かかる噴霧パターン、流量分布を持つ噴霧ノズル23を使用することで、塗布膜表面に均等に固化液を接触させることが可能となり、電極膜の面内方向の均一性を向上させることができる。 The shape of the spray pattern 33 is not limited to the elliptical shape shown in FIG. 3 as long as the end of the spray region in the application width direction is inside the current collecting tab attachment position 28. It may be a combined pattern or the like. Furthermore, the flow rate distribution in the spray region has a uniform flow rate distribution as shown in FIG. 4, and the position where the flow rate is 50% of the flow rate at the center of the spray nozzle 23 is equal to or greater than the end of the coating film width. The spray region having such a uniform flow distribution may be realized by a single nozzle or by combining a plurality of nozzles. By using the spray nozzle 23 having such a spray pattern and flow rate distribution, the solidified liquid can be brought into contact with the coating film surface evenly, and the in-plane uniformity of the electrode film can be improved.
 噴霧ノズル23の種類としては、液体のみを噴出する一流体ノズルと、液体および気体を混合して噴出する二流体ノズルとが使用できる。噴霧により固化した塗布膜に水が接触した際の衝撃を軽減する観点から、より微細な液滴を噴霧できる二流体ノズルが望ましい。また、噴霧ノズル23から噴霧される噴霧粒子の平均粒子径D50を20μm以下、より好ましくは10μm以下とすることで、塗布膜欠点等のダメージを防ぐことができる。 As the type of the spray nozzle 23, a one-fluid nozzle that ejects only a liquid and a two-fluid nozzle that ejects a mixture of liquid and gas can be used. From the viewpoint of reducing the impact when water contacts the coating film solidified by spraying, a two-fluid nozzle capable of spraying finer droplets is desirable. Further, by setting the average particle diameter D50 of the spray particles sprayed from the spray nozzle 23 to 20 μm or less, more preferably 10 μm or less, damage such as coating film defects can be prevented.
 ノズル単体の噴射パターンとしては、ノズルのオリフィスの形状により、フラットパターン、ストレートパターン、フルコーンパターン等を使用することができる。また、流量分布としては、ノズルを組み合わせた際に、図4に示した均等流量分布が形成されればよく、ノズル単体では山形流量分布、均等流量分布等の種々の流量分布を持つ噴霧ノズルを使用することができる。さらに、単位面積あたりの噴霧打力は、塗布膜へのダメージの観点から、5g/cm以下、より好ましくは1g/cmに調整することが望ましい。 As the injection pattern of a single nozzle, a flat pattern, a straight pattern, a full cone pattern, or the like can be used depending on the shape of the nozzle orifice. Further, as the flow rate distribution, it is sufficient that the uniform flow rate distribution shown in FIG. 4 is formed when the nozzles are combined, and the nozzle alone has a spray nozzle having various flow rate distributions such as a mountain-shaped flow rate distribution and an equal flow rate distribution. Can be used. Further, the spray hitting force per unit area is preferably adjusted to 5 g / cm or less, more preferably 1 g / cm from the viewpoint of damage to the coating film.
 次に、本実施例1のリチウムイオン二次電池製造に関わる各工程について、より具体的に説明する。 Next, each step relating to the production of the lithium ion secondary battery of Example 1 will be described more specifically.
 正極活物質には、リチウム遷移金属複合酸化物としてのニッケルコバルトマンガン酸リチウムを選択できる。導電助剤である黒鉛粉末およびアセチレンブラックと、固化液兼バインダであるポリフッ化ビニリデン(以下、PVdFという)とを重量比で85:8:2:5となる割合で混合し、さらに第1の溶剤であるN-メチル-2-ピロリドン(以下、NMPという)を逐次添加し、これらの成分をプラネタリーミキサーで混練して高粘度の正極スラリを調製した。正極スラリ中には、固化液兼バインダ成分がNMPに溶解していた。回転粘度計で測定した正極スラリの粘度は、約10Pa・sであった。次に、混練した正極スラリを厚さ20μm、幅200mmのアルミニウム箔(正極集電箔)に厚さ100μm、幅150mmとなるようアプリケーターで塗布した。ここで、非塗布部における集電タブ取り付け位置は塗布膜末端から15mmであった。 As the positive electrode active material, lithium nickel cobalt manganate as a lithium transition metal composite oxide can be selected. Graphite powder and acetylene black, which are conductive assistants, and polyvinylidene fluoride (hereinafter referred to as PVdF), which is a solidifying solution and binder, are mixed at a weight ratio of 85: 8: 2: 5, and the first N-methyl-2-pyrrolidone (hereinafter referred to as NMP) as a solvent was sequentially added, and these components were kneaded with a planetary mixer to prepare a highly viscous positive electrode slurry. In the positive electrode slurry, the solidifying liquid / binder component was dissolved in NMP. The viscosity of the positive electrode slurry measured with a rotational viscometer was about 10 Pa · s. Next, the kneaded positive electrode slurry was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 μm and a width of 200 mm with an applicator so as to have a thickness of 100 μm and a width of 150 mm. Here, the current collecting tab attachment position in the non-application part was 15 mm from the coating film terminal.
 以上の工程が、集電箔の表面にスラリ状の電極材料を塗布する塗工工程となる。次に、電極材料が塗布されたアルミニウム箔を、図2に示した固化室18内に搬入し、塗布膜表面に固化液を噴霧することにより電極材料を固化させた。固化液には純水を用い、噴霧ノズルには内部混合型の二流体ノズルを用いた。この二流体ノズルから噴出される噴霧粒子の平均粒子径D50は10μmであった。噴霧ノズルから塗布膜まで距離は100mm、噴霧圧力は0.1MPaとし、噴霧打力を1g/cmに調整した。噴霧パターンはフルコーンの円形形状であり、噴霧域は直径80mm、50%流量域は70mmであった。この噴霧ノズルを塗布膜の幅方向に2つ配置し、塗布膜表面に噴霧した。 The above process is a coating process for applying a slurry-like electrode material on the surface of the current collector foil. Next, the aluminum foil coated with the electrode material was carried into the solidification chamber 18 shown in FIG. 2, and the electrode material was solidified by spraying the solidified liquid onto the coating film surface. Pure water was used as the solidified liquid, and an internal mixing type two-fluid nozzle was used as the spray nozzle. The average particle diameter D50 of the spray particles ejected from the two-fluid nozzle was 10 μm. The distance from the spray nozzle to the coating film was 100 mm, the spray pressure was 0.1 MPa, and the spray hitting force was adjusted to 1 g / cm. The spray pattern was a full cone circular shape, the spray area was 80 mm in diameter, and the 50% flow area was 70 mm. Two spray nozzles were arranged in the width direction of the coating film and sprayed onto the coating film surface.
 以上の工程が電極材料に含まれる第一の溶剤とは異なる第2の溶剤からなる固化液を電極材料と接触させて電極材料を固化する固化工程となる。 The above process is a solidification process in which the electrode material is solidified by bringing the solidified liquid composed of the second solvent different from the first solvent contained in the electrode material into contact with the electrode material.
 上記固化現象は、噴霧により付着した水が塗布膜中のNMPと相互溶解しながら浸透し、塗布膜中の水分濃度が上昇することで塗布膜に含まれるバインダの溶解度が減少し、析出する現象である。析出したバインダにより、正極粒子間等が結着され、塗布膜が固化する。このようにして固化した電極材料は、流動性および粘着性がなくなり、アルミニウム箔に保持されるため、ローラーを接触させる接触式搬送方法にも十分に耐えることができる。 The above solidification phenomenon is a phenomenon in which water adhering by spraying penetrates while mutually dissolving with NMP in the coating film, and the solubility of the binder contained in the coating film decreases due to an increase in the moisture concentration in the coating film. It is. The deposited binder bonds the positive electrode particles and the like, and solidifies the coating film. Since the electrode material solidified in this way loses fluidity and adhesiveness and is held on the aluminum foil, it can sufficiently withstand a contact-type conveying method in which a roller is brought into contact.
 次に、固化した塗布膜が保持されたアルミニウム箔を乾燥室に搬送し、熱風乾燥炉中で120℃、10分間乾燥させることにより、固化した塗布膜中に含まれる純水およびNMPを蒸発除去し、リチウムイオン二次電池用正極板を製造した。以上の工程が、電極材料から溶剤成分を除去して乾燥する乾燥工程となる。 Next, the aluminum foil holding the solidified coating film is transported to a drying chamber and dried in a hot air drying oven at 120 ° C. for 10 minutes to evaporate and remove pure water and NMP contained in the solidified coating film. And the positive electrode plate for lithium ion secondary batteries was manufactured. The above process is a drying process in which the solvent component is removed from the electrode material and dried.
 本実施例1で得られた正極板の断面の厚さ方向に沿った組成分布を測定した結果、アルミニウム箔側のバインダの量は5.2%、表面側は4.4%とアルミニウム箔側のバインダ量が16%多かった。また、アルミニウム箔のタブ取り付け位置表面を観察した結果、電極材料の付着は確認されなかった。 As a result of measuring the composition distribution along the thickness direction of the cross section of the positive electrode plate obtained in Example 1, the amount of the binder on the aluminum foil side was 5.2%, the surface side was 4.4%, and the aluminum foil side The amount of the binder was 16% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
 (実施例2)
 本実施例2では、集電箔の搬送方向に直交する方向に沿った固化液の接触幅が、塗布膜の幅以上、かつ、集電タブ取り付け位置以内となるように、固化室に噴霧ノズルと噴霧マスクを配置した電極板製造装置について説明する。
(Example 2)
In the second embodiment, the spray nozzle is placed in the solidification chamber so that the contact width of the solidified liquid along the direction orthogonal to the conveying direction of the current collector foil is equal to or greater than the width of the coating film and within the current collector tab attachment position. An electrode plate manufacturing apparatus in which a spray mask is disposed will be described.
 図5に示すように、本実施例2の固化室18は、実施例1と同様、金属製あるいは合成樹脂製の外壁21で囲われており、集電箔15の搬送路上には、外部から隔離された空間が設けられている。電極材料の塗布膜22が塗布された集電箔15は、ローラー搬送系14によって、噴霧ノズル23、固化液24が貯蔵された固化液タンク25、供給ポンプ26、廃液タンク27を備えた固化室18に導入される。そして、噴霧ノズル23から供給される固化液24と接触することにより、塗布膜22が固化し、次の乾燥装置へと搬出される。 As shown in FIG. 5, the solidification chamber 18 of the second embodiment is surrounded by an outer wall 21 made of metal or synthetic resin, as in the first embodiment. An isolated space is provided. The current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
 本実施例2の噴霧ノズル23は、実施例1で記載したものと同様の種類の噴霧ノズルを使用することができるが、実施例1とは異なり、噴霧ノズル23とローラー搬送系14との間に配置した噴霧マスク29によって噴霧域を決定するため、噴霧パターンの形状に制限はない。 As the spray nozzle 23 of the second embodiment, the same type of spray nozzle as that described in the first embodiment can be used. However, unlike the first embodiment, the spray nozzle 23 is disposed between the spray nozzle 23 and the roller conveyance system 14. Since the spray area is determined by the spray mask 29 arranged in the above, the shape of the spray pattern is not limited.
 図6に噴霧マスクの一例を示す。中央部に開口を設けた噴霧マスク29は、過分な固化液が塗布膜側へ流れないように、中央部側が高く、外周側が低い傾斜部30を持つ。本実施例2では、直線状の傾斜部30の例を示したが、傾斜部30にアール(R)がついた噴霧マスク29としてもよい。また、噴霧マスク29の外周には、過分な固化液を外部に排出するための排出溝31が設けられている。かかる噴霧マスク29の使用により、より簡便に噴霧域を制御することが可能となり、集電タブ取り付け位置への電極材料の流出を防ぐことができる。 Fig. 6 shows an example of a spray mask. The spray mask 29 provided with an opening in the center has an inclined portion 30 that is high on the center side and low on the outer peripheral side so that excessive solidified liquid does not flow to the coating film side. In the second embodiment, an example of the linear inclined portion 30 has been described. However, the spray mask 29 in which the inclined portion 30 has a round (R) may be used. Further, a discharge groove 31 for discharging the excessive solidified liquid to the outside is provided on the outer periphery of the spray mask 29. By using such a spray mask 29, it becomes possible to control the spray area more easily and prevent the electrode material from flowing out to the current collecting tab mounting position.
 実施例1で調製した正極スラリを厚さ20μm、幅200mmのアルミニウム箔(正極集電箔)に厚さ100μm、幅150mmとなるようアプリケーターで塗布した。ここで、非塗布部における集電タブ取り付け位置は塗布膜末端から15mmであった。 The positive electrode slurry prepared in Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 μm and a width of 200 mm with an applicator so as to have a thickness of 100 μm and a width of 150 mm. Here, the current collecting tab attachment position in the non-application part was 15 mm from the coating film terminal.
 次に、電極材料が塗布されたアルミニウム箔を、図2に示した固化室18内に搬入し、塗布膜表面に固化液を噴霧することにより電極材料を固化させた。固化液には純水を用い、噴霧ノズルには内部混合型の二流体ノズルを用いた。この二流体ノズルから噴出される噴霧粒子の平均粒子径D50は10μmであった。噴霧ノズルから塗布膜まで距離は100mm、噴霧圧力は0.1MPaとし、噴霧打力を1g/cmに調整した。噴霧パターンはフルコーンの円形形状であり、噴霧域は直径100mm、50%流量域は80mmであった。この噴霧ノズルを塗布膜の幅方向に2つ配置し、噴霧ノズルと塗布膜との間に噴霧マスクを取り付け、塗布膜表面に噴霧した。ここで、噴霧マスクの開口径は、塗布幅方向に100mm、搬送方向に50mmとした。 Next, the aluminum foil coated with the electrode material was carried into the solidification chamber 18 shown in FIG. 2, and the electrode material was solidified by spraying the solidified liquid onto the coating film surface. Pure water was used as the solidified liquid, and an internal mixing type two-fluid nozzle was used as the spray nozzle. The average particle diameter D50 of the spray particles ejected from the two-fluid nozzle was 10 μm. The distance from the spray nozzle to the coating film was 100 mm, the spray pressure was 0.1 MPa, and the spray hitting force was adjusted to 1 g / cm. The spray pattern was a full cone circular shape, the spray area was 100 mm in diameter, and the 50% flow area was 80 mm. Two spray nozzles were arranged in the width direction of the coating film, a spray mask was attached between the spray nozzle and the coating film, and the surface of the coating film was sprayed. Here, the opening diameter of the spray mask was 100 mm in the coating width direction and 50 mm in the transport direction.
 次に、固化した塗布膜が保持されたアルミニウム箔を乾燥室に搬送し、熱風乾燥炉中で120℃、10分間乾燥させることにより、固化した塗布膜中に含まれる純水およびNMPを蒸発除去し、リチウムイオン二次電池用正極板を製造した。 Next, the aluminum foil holding the solidified coating film is transported to a drying chamber and dried in a hot air drying oven at 120 ° C. for 10 minutes to evaporate and remove pure water and NMP contained in the solidified coating film. And the positive electrode plate for lithium ion secondary batteries was manufactured.
 本実施例2で得られた正極板の断面の厚さ方向に沿った組成分布を測定した結果、アルミニウム箔側のバインダの量は5.0%、表面側は4.3%とアルミニウム箔側のバインダ量が14%多かった。また、アルミニウム箔のタブ取り付け位置表面を観察した結果、電極材料の付着は確認されなかった。 As a result of measuring the composition distribution along the thickness direction of the cross section of the positive electrode plate obtained in Example 2, the amount of the binder on the aluminum foil side was 5.0%, the surface side was 4.3%, and the aluminum foil side The amount of the binder was 14% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
 (実施例3)
 本実施例3では、実施例2で使用した噴霧マスクに加熱ヒータを取り付けた電極板製造装置について説明する。
(Example 3)
In this third embodiment, an electrode plate manufacturing apparatus in which a heater is attached to the spray mask used in the second embodiment will be described.
 本実施例2の固化室18は、実施例2と同様、金属製あるいは合成樹脂製の外壁21で囲われており、集電箔15の搬送路上には、外部から隔離された空間が設けられている。電極材料の塗布膜22が塗布された集電箔15は、ローラー搬送系14によって、噴霧ノズル23、固化液24が貯蔵された固化液タンク25、供給ポンプ26、廃液タンク27を備えた固化室18に導入される。そして、噴霧ノズル23から供給される固化液24と接触することにより、塗布膜22が固化し、次の乾燥装置へと搬出される。 The solidification chamber 18 of the second embodiment is surrounded by a metal or synthetic resin outer wall 21 as in the second embodiment, and a space isolated from the outside is provided on the conveyance path of the current collector foil 15. ing. The current collector foil 15 coated with the electrode material coating film 22 is solidified by a roller transport system 14 in a solidification chamber having a spray nozzle 23, a solidified liquid tank 25 in which a solidified liquid 24 is stored, a supply pump 26, and a waste liquid tank 27. 18 is introduced. Then, the coating film 22 is solidified by coming into contact with the solidified liquid 24 supplied from the spray nozzle 23 and is carried out to the next drying apparatus.
 噴霧ノズル23とローラー搬送系14との間には、加熱ヒータが内蔵された噴霧マスク29が配置されている。 A spray mask 29 with a built-in heater is disposed between the spray nozzle 23 and the roller conveyance system 14.
 図7に噴霧マスクの一例を示す。噴霧マスク29は、過分な固化液が塗布膜側へ流れないように、中心側が高く、外周側が低い傾斜部30を持つ。この傾斜部30には、加熱ヒータ32が内蔵されている。本実施例3では、実施例2と同様、直線状の傾斜部30の例を示したが、傾斜部30にアール(R)がついた噴霧マスク29としてもよい。また、噴霧マスク29の外周には、過分な固化液を排出するための排出溝31が設けられている。 Fig. 7 shows an example of a spray mask. The spray mask 29 has an inclined portion 30 that is high on the center side and low on the outer peripheral side so that excessive solidified liquid does not flow to the coating film side. A heater 32 is built in the inclined portion 30. In the third embodiment, as in the second embodiment, an example of the linear inclined portion 30 is shown. However, the spray mask 29 in which the inclined portion 30 is rounded (R) may be used. Further, a discharge groove 31 for discharging the excessive solidified liquid is provided on the outer periphery of the spray mask 29.
 傾斜部30に加熱ヒータ32を内蔵したことにより、噴霧マスク29の表面に噴霧された余分な固化液が蒸発するため、噴霧マスク29の表面に溜まった固化液が滴下して塗布膜に付着する現象を防ぐことができる。かかる噴霧マスクの使用により、実施例2に比べてより大量の固化液を噴霧した場合でも、噴霧域を精度よく制御し、かつ、余分な固化液の付着を防止することが可能となり、集電タブ取り付け位置への電極材料の流出の防止効果、および電極膜の面内方向の均一性を向上させることができる。 Since the heater 32 is built in the inclined portion 30, excess solidified liquid sprayed on the surface of the spray mask 29 evaporates, so that the solidified liquid collected on the surface of the spray mask 29 drops and adheres to the coating film. The phenomenon can be prevented. By using such a spray mask, even when a larger amount of solidified liquid is sprayed than in Example 2, it is possible to control the spray area with high accuracy and prevent the adhesion of excess solidified liquid. The effect of preventing the electrode material from flowing out to the tab attachment position and the uniformity in the in-plane direction of the electrode film can be improved.
 本実施例3で得られた正極板の断面の厚さ方向に沿った組成分布を測定した結果、アルミニウム箔側のバインダの量は5.2%、表面側は4.5%とアルミニウム箔側のバインダ量が15%多かった。また、アルミニウム箔のタブ取り付け位置表面を観察した結果、電極材料の付着は確認されなかった。 As a result of measuring the composition distribution along the thickness direction of the cross section of the positive electrode plate obtained in Example 3, the amount of the binder on the aluminum foil side was 5.2%, the surface side was 4.5%, and the aluminum foil side The amount of the binder was 15% more. Moreover, as a result of observing the tab attachment position surface of aluminum foil, adhesion of electrode material was not confirmed.
 (比較例1)
 ここでは、実施例1の正極スラリを厚さ20μmのアルミニウム箔(正極集電箔)に厚さ100μmとなるようアプリケーターで塗布し、そのまま熱風乾燥炉中で120℃、10分間乾燥した後、塗布膜中に含まれるNMPを蒸発除去してリチウムイオン二次電池用正極板を製造した。本比較例1の製造方法は、従来の製造方法に相当する。
(Comparative Example 1)
Here, the positive electrode slurry of Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 μm with an applicator so as to have a thickness of 100 μm. NMP contained in the film was removed by evaporation to produce a positive electrode plate for a lithium ion secondary battery. The manufacturing method of Comparative Example 1 corresponds to a conventional manufacturing method.
 本比較例1で得られた正極板の断面の厚さ方向の組成分布を測定した結果、アルミニウム箔側のバインダの量が表面近傍と比較して減少していた。具体的には、アルミニウム箔側のバインダの量は2.2%、表面側は6.5%とアルミニウム箔側が66%少なかった。 As a result of measuring the composition distribution in the thickness direction of the cross section of the positive electrode plate obtained in Comparative Example 1, the amount of the binder on the aluminum foil side was decreased as compared with the vicinity of the surface. Specifically, the amount of binder on the aluminum foil side was 2.2%, the surface side was 6.5%, and the aluminum foil side was 66% less.
 (比較例2)
 ここでは、実施例1の正極スラリを厚さ20μmのアルミニウム箔(正極集電箔)に厚さ100μmとなるようアプリケーターで塗布し、純水中に20秒間浸漬して電極材料を固化した。その後、熱風乾燥炉中で120℃、10分間乾燥し、塗布膜中に含まれる純水およびNMPを蒸発除去してリチウムイオン二次電池用正極板を製造した。本比較例2の製造方法は、固化工程における電極材料の流出を考慮しない製造方法である。
(Comparative Example 2)
Here, the positive electrode slurry of Example 1 was applied to an aluminum foil (positive electrode current collector foil) having a thickness of 20 μm with an applicator so as to have a thickness of 100 μm, and immersed in pure water for 20 seconds to solidify the electrode material. Then, it dried at 120 degreeC for 10 minute (s) in the hot air drying furnace, the pure water and NMP which were contained in the coating film were removed by evaporation, and the positive electrode plate for lithium ion secondary batteries was manufactured. The manufacturing method of this comparative example 2 is a manufacturing method which does not consider the outflow of the electrode material in the solidification process.
 本比較例2で得られた正極板断面の厚さ方向の組成分布を測定した結果、アルミニウム箔側のバインダの量が表面近傍と比較して増加していた。具体的には、アルミニウム箔側のバインダの量は5.3%、表面側は4.0%とアルミニウム箔側が25%多かった。また、集電タブ取り付け位置表面の観察結果から、電極材料であるバインダが付着していた。 As a result of measuring the composition distribution in the thickness direction of the cross section of the positive electrode plate obtained in Comparative Example 2, the amount of the binder on the aluminum foil side was increased as compared with the vicinity of the surface. Specifically, the amount of binder on the aluminum foil side was 5.3%, the surface side was 4.0%, and the aluminum foil side was 25% more. Moreover, the binder which is an electrode material had adhered from the observation result of the current collection tab attachment position surface.
 (実施例1~3の効果)
 実施例1~3のように、電極材料の乾燥工程に先立って固化工程を設けることにより、塗布膜の内部において、集電箔側のバインダ濃度と表面側バインダ濃度との差が、固化工程を設けない比較例1と比べて小さくなり、バインダの濃度分布が均一化した。
(Effects of Examples 1 to 3)
As in Examples 1 to 3, by providing the solidification step prior to the electrode material drying step, the difference between the binder concentration on the current collector foil side and the binder concentration on the surface side within the coating film is caused by the solidification step. Compared with Comparative Example 1 that was not provided, the binder concentration distribution became uniform.
 比較例1では、乾燥開始時に塗布膜が液状であるため、膜内にバインダ等の成分の移動、すなわち対流や拡散が生じ、乾燥後、電極材料の分布に偏りが生じると推定されるのに対し、実施例1~3では、固化工程で塗布膜が固化すると同時に、その成分は固定化され、乾燥時に移動しなくなるために分布の偏りが小さくなった。これにより、相対的に集電箔側のバインダ濃度が高くなるため、電極膜と集電箔との密着性が良くなり、リチウムイオン二次電池の耐久性が向上する効果が得られた。 In Comparative Example 1, since the coating film is in a liquid state at the start of drying, movement of components such as a binder, that is, convection and diffusion occurs in the film, and it is estimated that the distribution of the electrode material is biased after drying. On the other hand, in Examples 1 to 3, the coating film was solidified in the solidification step, and at the same time, the components were fixed and the distribution was reduced because the components did not move during drying. Thereby, since the binder density | concentration on the side of current collection foil becomes relatively high, the adhesiveness of an electrode film and current collection foil became good, and the effect which the durability of a lithium ion secondary battery improved was acquired.
 また、実施例1~3のように、固化液が塗布膜に接触する領域を制御することで、集電箔の非塗布部への電極材料の流出を防止できた。比較例2では、非塗布部に設置する集電タブ取り付け位置にバインダ成分が付着したことから、集電箔-集電タブ間の抵抗が増大し、リチウムイオン二次電池の容量およびサイクル特性が悪化する恐れがある。 Also, as in Examples 1 to 3, by controlling the region where the solidified liquid contacted the coating film, it was possible to prevent the electrode material from flowing out to the non-coated portion of the current collector foil. In Comparative Example 2, since the binder component adhered to the current collecting tab mounting position installed in the non-coated portion, the resistance between the current collecting foil and the current collecting tab increased, and the capacity and cycle characteristics of the lithium ion secondary battery were reduced. There is a risk of getting worse.
 さらに、本実施例1~3の特徴から、固化した塗布膜を保持した集電箔の搬送の際に、塗布膜と接触する接触式のローラー搬送系の使用も可能となる。すなわち、従来はエアー浮上の搬送系のみ使用が可能であった、図8に示すような両面一括塗布の場合においても、接触式のローラー搬送系14を使用することが可能となり、安価な乾燥室の利用が可能となる。 Furthermore, from the characteristics of the first to third embodiments, it is possible to use a contact-type roller conveyance system that comes into contact with the coating film when conveying the current collector foil holding the solidified coating film. In other words, the contact roller transport system 14 can be used even in the case of double-sided batch application as shown in FIG. Can be used.
 これまで説明してきた実施例の効果は、正極材料からなる正極電極板でのみ得られるのではなく、負極電極板でも同様の効果を得ることができる。また、いずれも本発明を実施するに当たっての具体化の一例を示したものに過ぎず、本発明は、その技術思想または主要な特徴から逸脱することなく、様々な形で実施することができる。また、本実施例1~3を組み合わせることにより、本発明を実施してもよい。 The effects of the embodiments described so far can be obtained not only with the positive electrode plate made of the positive electrode material but also with the negative electrode plate. Each of the embodiments is merely an example of implementation of the present invention, and the present invention can be implemented in various forms without departing from the technical idea or main features thereof. Further, the present invention may be implemented by combining the first to third embodiments.
 本発明は、リチウムイオン二次電池の製造に利用することができる。 The present invention can be used for manufacturing a lithium ion secondary battery.
11 塗工部
12 塗工手段
13 集電箔ロール
14 ローラー搬送系
15 集電箔
16 乾燥室
18 固化室
21 外壁
22 塗布膜
23 噴霧ノズル
24 固化液
25 固化液タンク
26 供給ポンプ
27 廃液タンク
28 集電タブ取り付け位置
29 噴霧マスク
30 傾斜部
31 排出溝
32 加熱ヒータ
51、51A、51B 塗工部
52、52A、52B 塗工手段
53 集電箔ロール
54、54A、54B ローラー搬送系
55 集電箔
56、56A、56B 乾燥室
57 電極ロール
58 非接触式搬送系
DESCRIPTION OF SYMBOLS 11 Coating part 12 Coating means 13 Current collection foil roll 14 Roller conveyance system 15 Current collection foil 16 Drying chamber 18 Solidification chamber 21 Outer wall 22 Coating film 23 Spray nozzle 24 Solidification liquid 25 Solidification liquid tank 26 Supply pump 27 Waste liquid tank 28 Collection Electric tab attachment position 29 Spray mask 30 Inclined portion 31 Discharge groove 32 Heater 51, 51A, 51B Coating portion 52, 52A, 52B Coating means 53 Current collecting foil rolls 54, 54A, 54B Roller transport system 55 Current collecting foil 56 , 56A, 56B Drying chamber 57 Electrode roll 58 Non-contact conveyance system

Claims (15)

  1.  正極または負極の活物質、バインダ、固化剤、および第1の溶剤を含むスラリ状の電極材料を集電箔の表面に塗布する塗工部と、
     前記集電箔の表面に塗布された前記スラリ状の電極材料に固化液を接触させることにより、前記スラリ状の電極材料を固化させる固化室と、
     前記固化室において固化された前記電極材料に含まれる液体成分を除去して前記電極材料を乾燥させる乾燥室と、
    を有し、
     前記固化室は、前記集電箔の搬送方向に直交する方向に沿った前記固化液の接触幅を、前記集電箔の表面に塗布された前記スラリ状の電極材料の幅以上、前記集電箔の集電タブ取り付け位置以内に規定する固化液接触機構を備える、リチウムイオン二次電池の製造装置。
    A coating portion for applying a slurry-like electrode material containing a positive electrode or negative electrode active material, a binder, a solidifying agent, and a first solvent to the surface of the current collector foil;
    A solidification chamber for solidifying the slurry-like electrode material by bringing a solidified liquid into contact with the slurry-like electrode material applied to the surface of the current collector foil;
    A drying chamber for removing the liquid component contained in the electrode material solidified in the solidification chamber and drying the electrode material;
    Have
    The solidification chamber has a contact width of the solidified liquid along a direction orthogonal to a conveying direction of the current collector foil, which is equal to or greater than a width of the slurry-like electrode material applied to the surface of the current collector foil. An apparatus for producing a lithium ion secondary battery, comprising a solidified liquid contact mechanism defined within a foil current collecting tab attachment position.
  2.  請求項1記載のリチウムイオン二次電池の製造装置において、
     前記固化液接触機構は、噴霧ノズルである、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 1,
    The said solidification liquid contact mechanism is a manufacturing apparatus of a lithium ion secondary battery which is a spray nozzle.
  3.  請求項2記載のリチウムイオン二次電池の製造装置において、
     前記噴霧ノズルの噴霧領域における前記固化液の流量分布は、均等流量分布を持ち、
     前記噴霧ノズルの中心の流量の50%流量となる位置は、前記集電箔面に塗布された前記スラリ状の電極材料の幅の末端以上である、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 2,
    The flow rate distribution of the solidified liquid in the spray region of the spray nozzle has a uniform flow rate distribution,
    An apparatus for manufacturing a lithium ion secondary battery, wherein the position at which the flow rate is 50% of the flow rate at the center of the spray nozzle is equal to or more than the end of the width of the slurry-like electrode material applied to the current collector foil surface.
  4.  請求項2記載のリチウムイオン二次電池の製造装置において、
     前記噴霧ノズルと前記集電箔との間に、前記噴霧ノズルの噴霧領域を規定する噴霧マスクを設けた、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 2,
    An apparatus for manufacturing a lithium ion secondary battery, wherein a spray mask for defining a spray region of the spray nozzle is provided between the spray nozzle and the current collector foil.
  5.  請求項4記載のリチウムイオン二次電池の製造装置において、
     前記噴霧マスクは、傾斜部と、前記傾斜部の表面に付着した過分な前記固化液を排出するための排出溝とを有する、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 4,
    The said spray mask is a manufacturing apparatus of a lithium ion secondary battery which has an inclination part and the discharge groove for discharging | emitting the excessive solidified liquid adhering to the surface of the said inclination part.
  6.  請求項5記載のリチウムイオン二次電池の製造装置において、
     前記傾斜部は、加熱ヒータを内蔵する、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 5,
    The inclined part is an apparatus for manufacturing a lithium ion secondary battery in which a heater is incorporated.
  7.  請求項1記載のリチウムイオン二次電池の製造装置において、
     前記集電箔を搬送する搬送系として、前記集電箔の表面と接触する接触式のローラー搬送系を有する、リチウムイオン二次電池の製造装置。
    In the manufacturing apparatus of the lithium ion secondary battery according to claim 1,
    The manufacturing apparatus of a lithium ion secondary battery which has a contact-type roller conveyance system which contacts the surface of the said current collection foil as a conveyance system which conveys the said current collection foil.
  8. (a)少なくとも、正極または負極の活物質、バインダ、固化剤、および第1の溶剤を含むスラリ状の電極材料を集電箔の表面に塗布する工程、
    (b)前記集電箔の表面に塗布された前記スラリ状の電極材料に固化液を接触させることにより、前記スラリ状の電極材料を固化させる工程、
    (c)固化された前記電極材料に含まれる液体成分を除去して前記電極材料を乾燥させる工程、
    を有し、
     前記(b)工程では、前記集電箔の搬送方向に直交する方向に沿った前記固化液の接触幅を、前記集電箔の表面に塗布された前記スラリ状の電極材料の幅以上、前記集電箔の集電タブ取り付け位置以内とする、リチウムイオン二次電池の製造方法。
    (A) a step of applying a slurry-like electrode material containing at least a positive or negative active material, a binder, a solidifying agent, and a first solvent to the surface of the current collector foil;
    (B) a step of solidifying the slurry-like electrode material by bringing a solidified liquid into contact with the slurry-like electrode material applied to the surface of the current collector foil;
    (C) removing the liquid component contained in the solidified electrode material and drying the electrode material;
    Have
    In the step (b), the contact width of the solidified liquid along the direction orthogonal to the conveying direction of the current collector foil is equal to or greater than the width of the slurry-like electrode material applied to the surface of the current collector foil. A method for producing a lithium ion secondary battery, wherein the current collecting tab is located within the current collecting tab attachment position of the current collecting foil.
  9.  請求項8記載のリチウムイオン二次電池の製造方法において、
     前記第1の溶剤は、N-メチルピロリドン、ジメチルスルホキシド、プロピレンカーボネート、ジメチルホルムアミド、γ-ブチロラクトンに代表される非プロトン性極性溶剤、もしくはこれらの中の2種以上を含む混合液である、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 8,
    The first solvent is an aprotic polar solvent typified by N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate, dimethylformamide, γ-butyrolactone, or a mixed solution containing two or more thereof. A method for manufacturing an ion secondary battery.
  10.  請求項8記載のリチウムイオン二次電池の製造方法において、
     前記固化液は、前記スラリ状の電極材料に含まれる前記固化剤が不溶である性質と、前記スラリ状の電極材料に含まれる前記第1の溶剤と相互溶解する性質とを持つ第2の溶剤を含む、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 8,
    The solidified liquid is a second solvent having a property that the solidifying agent contained in the slurry-like electrode material is insoluble and a property that is mutually soluble with the first solvent contained in the slurry-like electrode material. A method for producing a lithium ion secondary battery, comprising:
  11.  請求項10記載のリチウムイオン二次電池の製造方法において、
     前記第2の溶剤は、水、エタノール、イソプロピルアルコール、酢酸に代表されるプロトン性溶剤、もしくはこれらの中の2種以上を含む混合液である、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 10,
    The method for producing a lithium ion secondary battery, wherein the second solvent is water, ethanol, isopropyl alcohol, a protic solvent typified by acetic acid, or a mixed solution containing two or more of these.
  12.  請求項8記載のリチウムイオン二次電池の製造方法において、
     前記スラリ状の電極材料は、導電助剤をさらに含む、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 8,
    The slurry-like electrode material is a method for producing a lithium ion secondary battery, further comprising a conductive additive.
  13.  請求項8記載のリチウムイオン二次電池の製造方法において、
     前記バインダは、ポリビニリデンフルオライド系ポリマー、ゴム系ポリマー、もしくはこれらの混合物である、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 8,
    The method for manufacturing a lithium ion secondary battery, wherein the binder is a polyvinylidene fluoride-based polymer, a rubber-based polymer, or a mixture thereof.
  14.  請求項8記載のリチウムイオン二次電池の製造方法において、
     前記バインダは、前記固化剤を兼用する、リチウムイオン二次電池の製造方法。
    In the manufacturing method of the lithium ion secondary battery according to claim 8,
    The binder is a method for producing a lithium ion secondary battery, which also serves as the solidifying agent.
  15.  請求項1記載の製造装置または請求項8記載の製造方法により得られたリチウムイオン二次電池。 A lithium ion secondary battery obtained by the production apparatus according to claim 1 or the production method according to claim 8.
PCT/JP2013/082324 2013-03-13 2013-12-02 Device and method for producing lithium ion secondary battery WO2014141547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157013558A KR101697249B1 (en) 2013-03-13 2013-12-02 Device and method for producing lithium ion secondary battery
CN201380066009.6A CN104871360A (en) 2013-03-13 2013-12-02 Device and method for producing lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050523A JP6033131B2 (en) 2013-03-13 2013-03-13 Method for manufacturing electrode plate of lithium ion secondary battery and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP2013-050523 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141547A1 true WO2014141547A1 (en) 2014-09-18

Family

ID=51536233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082324 WO2014141547A1 (en) 2013-03-13 2013-12-02 Device and method for producing lithium ion secondary battery

Country Status (4)

Country Link
JP (1) JP6033131B2 (en)
KR (1) KR101697249B1 (en)
CN (1) CN104871360A (en)
WO (1) WO2014141547A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984848B2 (en) * 2018-02-26 2021-12-22 エムテックスマート株式会社 Manufacturing method of membrane electrode assembly for fuel cells
DE102018207649A1 (en) * 2018-05-16 2019-11-21 Robert Bosch Gmbh Device for the electrochemical machining of components of a battery cell, method for operating the same and their use
WO2020139823A1 (en) * 2018-12-23 2020-07-02 Worcester Polytechnic Institute Adhesive interlayer for battery electrode through dry manufacturing
US11430974B2 (en) * 2019-05-17 2022-08-30 Ppg Industries Ohio, Inc. System for roll-to-roll electrocoating of battery electrode coatings onto a foil substrate
CN112803116B (en) * 2021-02-20 2023-04-21 天津谦同新能源科技有限公司 Lithiation treatment method of diaphragm and diaphragm material treated by lithiation treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106546A (en) * 1996-09-26 1998-04-24 Toray Ind Inc Manufacture of electrode for battery
JP2002170541A (en) * 2000-05-15 2002-06-14 Denso Corp Manufacturing method of porous membrane for nonaqueous electrolyte secondary battery, manufacturing method of electrode for nonaqueous electrolyte secondary battery, porous membrane for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolytic-solution secondary battery
JP2003217673A (en) * 2002-01-23 2003-07-31 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method for it
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2011129435A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Drying device
US20130059192A1 (en) * 2011-09-05 2013-03-07 Sony Corporation Separator and nonaqueous electrolyte battery
WO2013065478A1 (en) * 2011-10-31 2013-05-10 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing same
WO2013118380A1 (en) * 2012-02-09 2013-08-15 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing same
JP2013171643A (en) * 2012-02-20 2013-09-02 Hitachi Ltd Lithium ion battery and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100851B (en) * 1985-04-01 1988-03-30 王仲钧 Method of coating by vertical drawing liquid curtain
US20040086633A1 (en) * 2002-11-04 2004-05-06 Lemmon John P. Systems and methods for the fabrication of solid oxide fuel cell components using liquid spraying
WO2007061069A1 (en) * 2005-11-25 2007-05-31 Matsushita Electric Industrial Co., Ltd. Membrane catalyst layer assembly, membrane electrode assembly, fuel cell and fuel cell stack
JP4904807B2 (en) * 2005-12-27 2012-03-28 Tdk株式会社 Electrochemical capacitor electrode manufacturing method and electrochemical capacitor electrode manufacturing apparatus
JP5261961B2 (en) * 2007-04-06 2013-08-14 トヨタ自動車株式会社 Secondary battery positive electrode, secondary battery negative electrode, secondary battery, and vehicle
JP2011108516A (en) * 2009-11-18 2011-06-02 Teijin Ltd Electrode sheet for nonaqueous secondary battery, and nonaqueous secondary battery employing the same
JP2011187343A (en) 2010-03-09 2011-09-22 Toyota Motor Corp Method for manufacturing electrode for battery
KR101198672B1 (en) * 2010-06-10 2012-11-12 현대자동차주식회사 Method for synthesizing electrode for secondary cell, electrode synthesized by the method, and secondary cell comprising the electrode
JP5639804B2 (en) * 2010-07-13 2014-12-10 株式会社Screenホールディングス Battery manufacturing method, battery, vehicle, and electronic device
JP5622059B2 (en) * 2010-12-06 2014-11-12 トヨタ自動車株式会社 Method for producing lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106546A (en) * 1996-09-26 1998-04-24 Toray Ind Inc Manufacture of electrode for battery
JP2002170541A (en) * 2000-05-15 2002-06-14 Denso Corp Manufacturing method of porous membrane for nonaqueous electrolyte secondary battery, manufacturing method of electrode for nonaqueous electrolyte secondary battery, porous membrane for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolytic-solution secondary battery
JP2003217673A (en) * 2002-01-23 2003-07-31 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method for it
JP2004071472A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Drying device of coating sheet, and drying method of coating sheet
JP2011129435A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Drying device
US20130059192A1 (en) * 2011-09-05 2013-03-07 Sony Corporation Separator and nonaqueous electrolyte battery
WO2013065478A1 (en) * 2011-10-31 2013-05-10 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing same
WO2013118380A1 (en) * 2012-02-09 2013-08-15 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing same
JP2013171643A (en) * 2012-02-20 2013-09-02 Hitachi Ltd Lithium ion battery and method for manufacturing the same

Also Published As

Publication number Publication date
KR101697249B1 (en) 2017-01-17
CN104871360A (en) 2015-08-26
JP2014179170A (en) 2014-09-25
KR20150081301A (en) 2015-07-13
JP6033131B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5993726B2 (en) Lithium ion secondary battery
JP6033131B2 (en) Method for manufacturing electrode plate of lithium ion secondary battery and apparatus for manufacturing electrode plate of lithium ion secondary battery
KR101786774B1 (en) Lithium-ion secondary battery manufacturing method, lithium-ion secondary battery manufacturing device, and lithium-ion secondary battery
JP6301819B2 (en) Method for producing electrode for lithium ion secondary battery
JP2016122631A (en) Method of manufacturing electrode for lithium ion secondary battery
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP2015072793A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2016119261A (en) Method and device for manufacturing electrode for lithium ion secondary battery
CN108365164B (en) Method for manufacturing battery
JP6329050B2 (en) Method for producing electrode for lithium ion secondary battery
JP2016018725A (en) Method for manufacturing electrode for lithium ion secondary battery
JP2013097938A (en) Lithium-ion battery and manufacturing method thereof
JP2016115576A (en) Manufacturing method of lithium ion battery, manufacturing device of lithium ion battery and lithium ion battery
JP2014071977A (en) Method and device for manufacturing lithium ion battery
WO2013065478A1 (en) Lithium ion secondary battery and method for manufacturing same
WO2013118380A1 (en) Lithium ion secondary battery and method for manufacturing same
JP6077495B2 (en) Method for producing electrode for lithium ion secondary battery
JP5798144B2 (en) Lithium ion battery manufacturing apparatus and lithium ion battery manufacturing method
JP2015228337A (en) Method for manufacturing electrode for nonaqueous electrolyte secondary battery
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JP6081333B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery manufacturing apparatus
JP2013149407A (en) Lithium ion secondary battery and manufacturing method of the same
JP6209844B2 (en) Nonaqueous battery electrode and manufacturing method thereof
JP2017022005A (en) Manufacturing method of lithium ion battery, and manufacturing device for lithium ion battery
JP2016181445A (en) Manufacturing method of lithium ion secondary battery electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157013558

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878106

Country of ref document: EP

Kind code of ref document: A1