WO2014141483A1 - Gas turbine equipment - Google Patents

Gas turbine equipment Download PDF

Info

Publication number
WO2014141483A1
WO2014141483A1 PCT/JP2013/057553 JP2013057553W WO2014141483A1 WO 2014141483 A1 WO2014141483 A1 WO 2014141483A1 JP 2013057553 W JP2013057553 W JP 2013057553W WO 2014141483 A1 WO2014141483 A1 WO 2014141483A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
turbine
generator
power generation
electric motor
Prior art date
Application number
PCT/JP2013/057553
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 一雄
尚弘 楠見
日野 徳昭
智道 伊藤
哲郎 森崎
コーテット アウン
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/057553 priority Critical patent/WO2014141483A1/en
Priority to JP2015505210A priority patent/JP5951885B2/en
Publication of WO2014141483A1 publication Critical patent/WO2014141483A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/024Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator

Definitions

  • the present invention relates to gas turbine equipment.
  • a gas turbine facility in which the power generation output is controlled to be constant based on the fuel flow rate to the combustor and the intake air flow rate of the compressor (see Patent Document 1).
  • Renewable energy such as wind power generation and solar power generation greatly fluctuates the power generation output due to the weather, etc., and there is a concern that the system frequency of the power system will become unstable with the introduction of a large amount of renewable energy.
  • it is necessary to supply power to the power system by generating power according to the power demand while absorbing fluctuations in renewable energy. Therefore, there is an urgent need to improve the response to the turbine output command.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas turbine facility capable of improving the response to a turbine output command.
  • an electric motor is connected to a turbine shaft of a gas turbine facility via a fluid coupling.
  • the responsiveness to the turbine output command can be improved.
  • FIG. 1 is a schematic view of a gas turbine facility according to a first embodiment of the present invention. It is the schematic of the gas turbine installation which concerns on the 2nd Embodiment of this invention. It is a functional block diagram of the gas turbine control apparatus with which the gas turbine equipment which concerns on the 2nd Embodiment of this invention was equipped. It is a flowchart showing the control procedure of the electric motor by the gas turbine control apparatus with which the gas turbine equipment which concerns on the 2nd Embodiment of this invention was equipped. It is a figure showing the behavior of the power generation output by the torque application of an electric motor, etc. It is the schematic of the gas turbine equipment which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a schematic view of gas turbine equipment according to the first embodiment of the present invention.
  • the gas turbine equipment shown in FIG. 1 includes a gas turbine 100, a generator 111, and an electric motor 114.
  • the gas turbine 100 includes a compressor 103, a combustor 105, and a turbine 109.
  • As the gas turbine 100 a uniaxial gas turbine is illustrated, but a biaxial gas turbine may be used.
  • the compressor 103 sucks and compresses air to generate compressed air 104, and supplies the generated compressed air 104 to the combustor 105.
  • An IGV (InletInGuide Vane: inlet guide vane) 102 is provided at the air intake port of the compressor 103.
  • the IGV 102 changes the amount of air flowing into the compressor 103 by rotating a plurality of vanes (not shown) to change the opening area of the air intake port of the compressor 103.
  • the combustor 105 burns the compressed air 104 from the compressor 103 together with the fuel 107 to generate combustion gas 108.
  • the flow rate of the fuel 107 combusted by the combustion gas 108 is adjusted by a fuel adjustment valve 106 provided in the fuel pipe.
  • the turbine 109 is driven by the combustion gas 108 from the combustor 105 (to obtain the rotational power of the turbine shaft 110). Rotational power obtained by the turbine 109 is transmitted to the compressor 103 and the generator 111 via the turbine shaft 110.
  • the combustion gas 108 whose energy has been recovered by the turbine 109 is discharged as exhaust 112.
  • the generator 111 is connected to the turbine shaft 110 of the gas turbine 100 and is driven by the rotational power obtained by the turbine 109 to generate AC power.
  • the single-shaft gas turbine 100 rotates with a target rotation speed corresponding to the system frequency of the power system 113 as a target, and increases the fuel flow rate when increasing the power generation output.
  • the turbine output torque
  • the load of the generator 111 current flowing through the stator, etc.
  • the power generation output of the generator 111 is sent to the power system 113 via a power cable.
  • the electric motor 114 is provided as an assist motor that changes the turbine output by applying rotational power to the turbine shaft 110 during turbine load operation.
  • the electric motor 114 may be a relatively small one having a smaller capacity than the generator 111.
  • the power source of the electric motor 114 may be electric power from the electric power system 113, a part of the power generation output by the generator 111, or electric power supplied from other power supply equipment in the plant. Further, a motor generator that is also driven as a generator can be used for the motor 114.
  • the power generation output of the motor 114 in this case may be supplied to the power system 113 after controlling the frequency as necessary, or may be used as a power source for various facilities in the plant.
  • the operation of the electric motor 114 may be automatic operation by a control device as in the following embodiment, but may be manual operation by an operator in the case of this embodiment.
  • the rotating shaft (motor shaft) 115 of the electric motor 114 is connected to the turbine shaft 110 via a fluid coupling 116.
  • the motor shaft 115 is mechanically separated from the turbine shaft 110, and transmits torque to and from the turbine shaft 110 through control oil filled in the fluid coupling 116.
  • FIG. 1 illustrates a configuration in which the generator 111 is connected to the turbine 109 side shaft end of the turbine shaft 110 and the motor 114 is connected to the compressor 103 side shaft end
  • this arrangement may be reversed. That is, the motor 114 may be connected to the shaft end of the turbine shaft 110 on the turbine 109 side, and the generator 111 may be connected to the shaft end of the compressor 103 side.
  • the motor shaft 115 is connected to the turbine shaft 110 via the fluid coupling 116.
  • the motor 114 does not need to be driven by a motor or generator, and can be driven without load (idling). good.
  • the motor shaft 115 can be disconnected via the clutch, it may be disconnected from the turbine shaft 110 when not in use. Further, when it is sufficient to improve only the responsiveness to the rapid increase in MWD, the electric motor 114 does not need a generator function.
  • the torque applied by the motor 114 to the turbine shaft 110 is reversed in the positive and negative directions. In these cases, pulsation occurs in the torsional stress acting on the turbine shaft 110, and the turbine shaft 110 may be excessively fatigued.
  • the strength of the turbine shaft 110 can be improved by changing the material, shape, and the like of the turbine shaft 110, it can lead to an increase in equipment costs.
  • the applied torque of the electric motor 114 is greatly restricted due to the limitation on the strength of the turbine shaft 110, and simply connecting the electric motor shaft 115 to the turbine shaft 110 sufficiently increases the capacity of the electric motor 114 for controlling the turbine output. There is a risk that it cannot be demonstrated.
  • the motor shaft 115 is connected to the turbine shaft 110 through the fluid coupling 116.
  • the motor shaft 115 and the turbine shaft 110 are separated mechanically, and the torque applied by the motor 114 is converted into the fluid motion of the control oil filled in the fluid coupling 116, and then the turbine. It is transmitted to the shaft 110.
  • variation of the applied torque of the electric motor 114 can be suppressed.
  • the fine pulsation of the torque component acting on the turbine shaft 110 is attenuated. This point also contributes to suppression of torsional stress.
  • the electric motor 114 has a relatively small capacity, for example, a capacity of about several percent of the generator 111, and a certain effect can be expected. Therefore, transmission between the electric motor shaft 115 and the turbine shaft 110 is possible. Torque can be suppressed, and good torque transmission efficiency can be ensured. If a fluid coupling is used to connect the rotating shaft of the generator 111 to the turbine shaft 110, the torque transmission efficiency is significantly reduced because the transmission torque is significantly larger than that of the present embodiment.
  • FIG. 2 is a schematic view of gas turbine equipment according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • This embodiment shows a specific configuration example for automatically operating the electric motor 114.
  • the gas turbine equipment shown in the figure has a configuration in which measuring instruments 201 and 202 and a gas turbine control device 203 are added to the gas turbine equipment of FIG.
  • the measuring instrument 201 measures the power generation output of the gas turbine facility
  • the measuring instrument 202 measures the rotational speed of the turbine shaft 110 and outputs it to the gas turbine control device 203.
  • the gas turbine control device 203 uses, as an input signal, a power generation output command (MWD) 204 from the outside (for example, a higher-level control device) together with the measurement signals of the measuring instruments 201 and 202, and based on these input signals, the IGV 102 and the fuel adjustment valve 106, the generator 111 and the motor 114 are controlled.
  • MWD power generation output command
  • FIG. 3 is a functional block diagram of the gas turbine control device 203 of FIG.
  • the gas turbine control device 203 includes an input unit 203a, a storage device 203b, a fuel flow control device 203c, an intake flow control device 203d, a generator control device 203e, an electric motor control device 203f, and an output unit.
  • the input unit 203a inputs the power generation output measured by the measuring instrument 201, the turbine rotational speed measured by the measuring instrument 202, and the MWD 204 as input signals, and appropriately converts them into digital signals.
  • the storage device 203b includes a plurality of areas for storing input signals input via the input unit 203a, programs and thresholds necessary for various controls, and various calculation values.
  • the fuel flow control device 203c calculates a fuel flow rate corresponding to the MWD 204 and generates an opening degree control signal 205 to the fuel adjustment valve 106.
  • the opening degree control signal 205 is calculated as a value that brings the measured value of the power generation output close to the MWD 204, for example.
  • the intake air flow rate control device 203d generates an opening degree control signal 206 to the IGV 102.
  • the opening degree control signal 206 is calculated as a value that keeps the intake air flow rate of the compressor 103 constant based on, for example, a measured value of the turbine speed.
  • the generator control device 203e generates a load control signal 208 for the generator 111.
  • the load control signal 208 is calculated as a value that brings the turbine rotational speed close to the set rotational speed based on, for example, the measured value of the turbine rotational speed.
  • the motor control device 203f generates a torque control signal 207 to the motor 114 as necessary.
  • FIG. 4 is a flowchart showing a control procedure of the electric motor 114 by the gas turbine control device 203.
  • the gas turbine control device 203 repeatedly executes the procedure shown in FIG.
  • Step S101 When the procedure of FIG. 4 is started, the gas turbine control device 203 first calculates the change rate (time change) of the MWD 204 by differentiation, and determines whether or not the calculated change rate (absolute value) is equal to or greater than the limit value.
  • the limit value for example, the maximum change rate of the power generation output that can be followed by the fuel flow rate control (or a value set lower than that with allowance) can be used. If the rate of change of the MWD 204 is below the limit value, the gas turbine control device 203 ends the procedure of FIG. This is because when the power generation output is allowed to follow the MWD 204 by the fuel flow control, the assist by the electric motor 114 is unnecessary. If the rate of change of the MWD 204 is equal to or greater than the limit value, the gas turbine control device 203 moves the procedure to step S102.
  • Steps S102 and S103 When the change rate of the MWD 204 is equal to or greater than the limit value, the gas turbine control device 203 calculates a torque control signal 207 for the motor 114 by the motor control device 203f (step S102) and outputs the torque control signal 207 to the motor 114 via the output unit 203g. (Step S103).
  • the torque control signal 207 is generated, for example, as a motor drive command value that compensates for the shortage of torque based on the difference between the turbine output change rate according to the MWD 204 and the limit value (turbine output change rate by fuel flow control). Is done.
  • the motor 114 is a motor generator, it is generated as a generator drive command value that recovers surplus torque as electric energy.
  • Steps S104 and S105 When the torque control signal 207 is output to the electric motor 114, the gas turbine control device 203 determines whether or not the rate of change of the MWD 204 is below the limit value (step S104). If the change rate of the MWD 204 is still greater than or equal to the limit value, it is necessary to continuously apply torque to the turbine shaft 110 by the electric motor 114, and the gas turbine control device 203 returns the procedure to step S102. If the change rate of the MWD 204 is below the limit value, it is not necessary to apply torque by the electric motor 114, so the gas turbine control device 203 reduces the torque control signal 207 at a predetermined rate by the electric motor control device 203f and releases the torque application. (Step S105), and the procedure of FIG.
  • FIG. 5 is a diagram showing the behavior of the power generation output due to the torque application of the electric motor 114.
  • the MWD 204 shown in the first stage of FIG. The MWD 204 increases at a large change rate at times a and b.
  • the sudden change of the MWD 204 at times a and b cannot be followed (see the dotted line).
  • the responsiveness of the power generation output is improved by temporarily applying torque to the turbine shaft 110 by the motor 114 at the times a and b, and the power generation output follows the MWD 204 well. (Refer to the second solid line).
  • torsional stress can be generated in the turbine shaft 110 by applying torque by the electric motor 114.
  • the torsional stress (see the solid line) generated in the turbine shaft 110 connected to the electric motor shaft 115 via the fluid coupling 116, and the electric motor shaft 115 are The simulation results of torsional stress (see dotted lines) that can be generated in the mechanically (rigidly) connected turbine shaft 110 are shown.
  • the torsional stress of the turbine shaft 110 can be suppressed by connecting the motor shaft 115 via the fluid coupling 116 as compared to the case where the motor shaft 115 is mechanically coupled via a normal coupling.
  • the third embodiment differs from the above-described embodiments in that the torque transmission efficiency between the motor shaft 115 and the turbine shaft 110 is controlled by controlling the amount of oil charged in the fluid coupling 116. is there.
  • FIG. 6 is a schematic view of gas turbine equipment according to the third embodiment of the present invention.
  • the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • the gas turbine equipment shown in the figure includes an oil amount adjustment valve 401.
  • the oil amount adjustment valve 401 is a control valve that adjusts the amount of control oil from a supply source (not shown) that fills the fluid coupling 116.
  • the opening degree of the oil amount adjustment valve 401 is controlled by the gas turbine control device 203A.
  • Other hardware configurations are the same as those of the gas turbine facility (see FIG. 2) according to the second embodiment.
  • FIG. 7 is a functional block diagram of the gas turbine control device 203A.
  • the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • the gas turbine control device 203A shown in FIG. 7 includes an oil amount control device 203h.
  • the oil amount control device 203h functions to change the torque transmission efficiency of the fluid coupling 116 by controlling the oil amount adjustment valve 401 in accordance with the deviation between the power generation output measured by the measuring instrument 201 and the MWD 204.
  • the configuration and functions of other functional units of the gas turbine control device 203A are the same as those of the gas turbine control device 203 (see FIG. 3) in the second embodiment.
  • FIG. 8 is a flowchart showing a control procedure of the oil amount adjustment valve 401 by the gas turbine control device 203A.
  • the gas turbine control device 203A repeatedly executes the procedure shown in the figure by the oil amount control device 203h during the turbine load operation.
  • Step S201 When the procedure of FIG. 8 is started, the oil amount control device 203h determines whether or not the setting of the automatic control mode of the oil amount adjusting valve 401 is ON based on the mode signal (step S201), and when the setting is OFF. Sets the target pressure of the control oil in the oil amount adjustment valve 401 to a set value (step S207). If the setting is ON, the oil amount control device 203h moves the procedure from step S201 to step S202.
  • the mode signal is a signal that is input from an operation panel (not shown) or the like of the gas turbine control device 203 in accordance with the operation of the operator.
  • Steps S202 and S203 When the setting is ON, the oil amount control device 203h calculates the change rate (time change) of the MWD 204 by differential calculation processing or the like, and determines whether the calculated change rate (absolute value) is equal to or greater than the limit value. (Step S202). This procedure is the same as step S101 (see FIG. 4) in the control procedure of the electric motor 114. If the MWD change rate is below the limit value, the oil amount control device 203h moves the procedure to step S207.
  • the oil amount control device 203h calculates a deviation between the measured value of the measuring instrument 201 and the MWD 204 (power generation output excess or deficiency with respect to the MWD 204) (step S203). Move.
  • Steps S204 and S205 After calculating the excess / deficiency of the power generation output, the oil amount control device 203h determines whether the excess / deficiency (absolute value) exceeds the threshold (step S204).
  • the threshold value is a setting value stored in the storage device 203b. If the excess or deficiency is less than or equal to the threshold value, the oil amount control device 203h moves the procedure to step S207. If the excess / deficiency exceeds the limit value, the oil amount control device 203h calculates the target pressure of the control oil inside the oil amount adjustment valve 401 based on the excess / deficiency magnitude. For example, the target pressure is set higher with respect to the set pressure as the power generation output is larger or deficient.
  • Step S206 If the target pressure of the control oil of the oil amount adjustment valve 401 is set in step S205 or S207, the oil amount control device 203h generates an opening degree control signal 402 corresponding to the target pressure and outputs it to the oil amount adjustment valve 401. The procedure of FIG. 8 is terminated.
  • the torque transmission rate becomes higher as the filling amount of the internal control oil is larger (the pressure is higher).
  • the smaller the amount of control oil filled (the lower the pressure) the lower the torque transmission rate and the greater the allowable deviation in the rotational speed between the turbine shaft 110 and the motor shaft 115. Therefore, in the present embodiment, the procedure of FIG. 8 is repeatedly executed during the turbine load operation. That is, when it is desired to improve the followability of the power generation output to the MWD 204, the control hydraulic pressure of the fluid coupling 116 is increased.
  • an opening degree control signal 402 for reducing the opening degree of the oil amount adjustment valve 401 is generated. Output.
  • an opening degree control signal 402 for increasing the opening degree of the oil amount adjustment valve 401 is generated and output.
  • the control hydraulic pressure of the fluid coupling 116 is decreased. The procedure for decreasing the control oil pressure is the reverse of the procedure for increasing the control oil pressure.
  • the target pressure is set when the rate of change of the MWD 204 is small and the motor 114 allows the MWD 204 to follow the power generation output without applying torque to the turn bin shaft 110, or when the power generation output with respect to the MWD 204 is small or insufficient.
  • the value is set to a value (for example, a predetermined minimum value or zero), and the control oil inside the fluid coupling 116 is reduced or completely discharged.
  • the operation procedure of the oil amount adjustment valve 401 at that time is the same as that for lowering the control oil pressure of the fluid coupling 116.
  • the follow-up performance of the power generation output with respect to, for example, the MWD 204 can be further improved or the turbine shaft 110 can be twisted.
  • the stress can be further suppressed.
  • the allowable pressure deviation of the turbine shaft 110 and the motor shaft 115 is increased by reducing the pressure of the control oil, so that the motor 114 can be operated or stopped at a low speed, and the economy is improved.
  • the oil amount adjustment valve 401 is automatically adjusted according to the change rate of the MWD 204 is described as an example.
  • the operator manually operates according to the operation state of the gas turbine power generation facility.
  • a configuration in which the opening of the oil amount adjustment valve 401 is adjusted may be employed.
  • the fourth embodiment is different from the above-described embodiments in that it includes a plurality of turbines that can rotate at different rotational speeds.
  • a case where a two-shaft gas turbine is employed is illustrated.
  • FIG. 9 is a schematic view of the gas turbine equipment according to the fourth embodiment of the present invention.
  • the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • the gas turbine 100A in the present embodiment includes two turbines, a high-pressure turbine 109a and a low-pressure turbine 109b.
  • the high-pressure turbine 109a and the low-pressure turbine 109b can be rotated at different rotational speeds because the turbine shafts 110a and 110b are separated from each other.
  • the high-pressure turbine 109 a is connected to the compressor 103 via the turbine shaft 110 a and constitutes a gas generator together with the compressor 103 and the combustor 105.
  • the electric motor 114 is connected to the turbine shaft 110a of the gas generator through a fluid coupling 116.
  • the low-pressure turbine 109b is connected to the generator 111 via the turbine shaft 110b, and serves as a power turbine that generates the power output of the generator 111.
  • the exhaust 112a of the high-pressure turbine 109a becomes the working gas of the low-pressure turbine 109b, gives rotational power to the low-pressure turbine 109b, and is discharged as the exhaust 112b.
  • measuring instruments 202a and 202b for measuring the turbine rotational speed are provided in the turbine shafts 110a and 110b, respectively.
  • the turbine rotational speed measured by the measuring instruments 202 a and 202 b is input to the gas turbine control device 203.
  • the compressor 103 is not divided. However, the compressor 103 may be divided and connected to separate turbine shafts in some cases.
  • the operating characteristics such as pressure, temperature, flow rate, and efficiency vary depending on the rotational speed of the compressor.
  • the rotational speed of the compressor matches the rotational speed of the turbine shaft.
  • the operating characteristics of the machine depend on the turbine speed.
  • the turbine shaft 110a of the gas generator to which the compressor 103 is connected is disconnected from the turbine shaft 110b of the power turbine, so the rotation speed is selected regardless of the rotation speed of the power turbine. be able to. Therefore, the rotation speed that makes the compressor 103 efficient is set as an operating condition, and for example, the deviation between the rotation speed of the gas generator measured by the measuring instrument 202a and the set rotation speed exceeds a threshold value (set value).
  • the efficiency of the gas turbine equipment can be improved by causing the rotation speed of the gas generator to approach the set rotation speed by applying torque of the electric motor 114. If a motor generator is used as the motor 114, the applied torque can be reversed in the positive and negative directions, so that the rotation speed of the compressor 103 can be adjusted not only on the rising side but also on the lowering side.
  • the motor 114 when the MWD 204 increases rapidly, the motor 114 is driven as a generator, and the rotational power of the gas generator is partially converted into electric energy to generate the power output of the generator 111. By compensating, the power generation output sent to the electric power system 113 can follow the rapid increase of the MWD 204.
  • FIG. 10 is a schematic view of a gas turbine facility according to the fifth embodiment of the present invention.
  • the same parts as those of the embodiment already described are denoted by the same reference numerals as those in the above-described drawings, and the description thereof is omitted.
  • This embodiment is a specific example of the fourth embodiment.
  • an inverter 602 is interposed between a power turbine generator 111 and an electric motor 114a.
  • the electric motor 114 a is a motor generator, and is connected to the turbine shaft 110 a of the gas generator via the fluid coupling 116 and connected to the inverter 602 via the circuit 603.
  • the inverter 602 is connected via a circuit 601 to a power transmission line that connects the generator 111 to the power system 113.
  • the generator 111 and the motor 114a are connected via a circuit 601, an inverter 602, and a circuit 603.
  • measuring devices 605-607 are provided for measuring the atmospheric temperature, atmospheric pressure, and atmospheric humidity and outputting them to the gas turbine control device 203B.
  • the gas turbine equipment of the present embodiment is provided with an oil amount adjustment valve 401.
  • the configuration and control mode of the oil amount adjustment valve 401 are the same as those of the third embodiment (see FIGS. 6 to 8). It is the same.
  • Other hardware configurations are the same as those of the gas turbine equipment (see FIG. 9) according to the fourth embodiment.
  • the motor 114a can be driven as a motor by receiving a part of the power generation output of the power generator 111 via the circuit 601, the inverter 602, and the circuit 603. Further, by driving the electric motor 114a as a generator, a part of the rotational power of the gas generator can be converted into electric energy and compensated for the output of the generator 111 via the circuit 603, the inverter 602, and the circuit 601.
  • the operation mode (generator mode / motor mode), the power generation load, and the motor load of the motor 114a are controlled by the inverter 602.
  • the inverter 602 controls the electric motor 114a in accordance with a control signal 604 from the electric motor control device 203f (see FIG. 3 or FIG.
  • the control signal 604 includes the atmospheric temperature, atmospheric pressure and atmospheric humidity measured by the measuring instruments 605-607, the turbine rotation speed measured by the measuring instruments 202a and 202b, the power generation output measured by the measuring instrument 201, and the MWD 204 as arguments. Is calculated as For example, if a table of combinations of arguments and the control signal 604 is created, the control signal 604 can be generated based on each input signal. Further, the control signal 604 can be expressed by a function having each argument as a variable, and the control signal 604 can be generated based on each input signal. The temperature of the exhaust 112b can also be used as an argument for calculating the control signal 604. The control signal 604 is not limited to these examples, and may be calculated by other methods.
  • the sixth embodiment is different from the above-described embodiments in that a renewable energy power generation device is provided.
  • FIG. 11 is a schematic view of gas turbine equipment according to the sixth embodiment of the present invention.
  • the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • the gas turbine equipment shown in the figure includes a wind power generator 701 and measuring instruments 702 and 703.
  • the wind power generator 701 is connected to a power transmission line that connects the generator 111 to the power system 113, and transmits power to the power system 113 together with the generator 111.
  • the measuring instruments 702 and 703 measure the wind direction and wind speed of natural wind, which is renewable energy converted into electric energy by the wind power generator 701, and output the measured wind direction and wind speed to the gas turbine controller 203C.
  • These measuring instruments 702 and 703 are installed at predetermined points (may be a plurality of points) that can be windward of the wind power generator 701. Further, the power generation output 704 of the wind power generator 701 measured by a power meter (not shown) is also input to the gas turbine control device 203C.
  • wind power generator 701 is used as a power generator using renewable energy
  • the present invention is not limited to this, and other renewable energy such as a solar power generator or a wave power generator.
  • a power generation device or a renewable energy power generation system combining them can also be substituted.
  • a sunshine meter or the like can be used for the measuring instruments 702 and 703.
  • a receiving apparatus that receives weather information from a weather information provider is provided with measuring instruments 702 and 703. It can also be used.
  • FIG. 12 is a functional block diagram of the gas turbine control device 203C.
  • the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
  • the gas turbine control device 203C shown in Fig. 12 includes an output prediction device 203i.
  • the output prediction device 203i predicts the power generation output fluctuation of the wind power generation device 701 using the wind direction and the wind speed measured by the measuring devices 702 and 703 as arguments. For example, the wind direction and wind speed measured by the measuring instruments 702 and 703, and the power generation output data after the set time of the wind power generator 701 are collected in advance, and the wind power generation output after the set time and the combination of the measured wind direction and wind speed If the above relationship is tabulated, the wind power generation output after the set time can be predicted based on the measurement values of the measuring instruments 702 and 703 according to the table.
  • the fluctuation range of the wind power output after the set time with respect to the current wind power output 704 of the wind power generation device 701 is predicted.
  • the value can be calculated.
  • the wind power generation output after a set time can be predicted by a physical model of the characteristics of the wind power generation apparatus 701, and the fluctuation of the wind power generation output can also be predicted.
  • the fuel flow control device 203c calculates the fuel flow rate so that the power generation output of the gas turbine equipment measured by the measuring instrument 201 approaches the MWD 204 as in the previous embodiments, and the opening control signal 205 Is output to the fuel adjustment valve 106.
  • the generator control device 203e controls the load of the generator 111 so as to suppress the change in the rotational speed of the power turbine according to the output torque (fuel flow rate) of the power turbine.
  • the motor control device 203f gives a command to the inverter 602 to control the motor 114 and absorb the excess or deficiency of the power generation output (the same procedure as in FIG. 8).
  • the intake flow control device 203d outputs an opening degree control signal 206 to the IGV 102 so as to suppress fluctuations in the intake flow rate of the compressor 103. With these controls, the power generation output follows the MWD 204.
  • the gas turbine control device 203C of the present embodiment uses the oil amount control device 203h to determine the predicted value. Based on this, the oil amount adjusting valve 401 is controlled to control the torque transmission efficiency of the fluid coupling 116 (see FIG. 13).
  • FIG. 13 is a flowchart showing a control procedure of the oil amount adjustment valve 401 by the gas turbine control device 203C.
  • the gas turbine control device 203C repeatedly executes the procedure shown in the figure during the turbine load operation by the oil amount control device 203h.
  • Steps S301-S304, S307-S309 are similar to the steps S201-S207 (see FIG. 8) described in the third embodiment. The difference is that steps S305 and S306 are added between steps S304 and S307, and step S310 is further added between steps S306 and S308.
  • Steps S305, S306, S310 When the deviation of the power generation output with respect to the MWD 204 exceeds the threshold (step S304), the oil amount control device 203h predicts the fluctuation of the wind power generation output by the output prediction device 203i (step S305). After calculating the predicted value of the wind power generation output fluctuation, the oil amount control device 203h determines whether or not the predicted value (absolute value) is less than or equal to the threshold (set value) (step S306), and the predicted value is less than or equal to the threshold. If there is, the target pressure of the control oil to be filled in the fluid coupling 116 is set in accordance with the deviation from the current power generation output MWD 204 in the same manner as in step S205 in FIG.
  • step S307 If the predicted value exceeds the threshold value, the oil amount control device 203h sets the target pressure of the control oil that fills the fluid coupling 116 based on the predicted value (step S310). For example, when the predicted value of the fluctuation of the wind power generation output exceeds the threshold value, and the fluctuation of the wind power generation output in the future (after the set time) can cause a significant excess or deficiency of the power generation output with respect to the MWD 204, further follow-up The target pressure of the control oil of the fluid coupling 116 is increased with the aim of improving the performance.
  • Step S308 is the same as the procedure of step S206 (see FIG. 8) described in the third embodiment. That is, when the target pressure of the control oil of the oil amount adjustment valve 401 is set in step S307, S309, or S310, the oil amount control device 203h generates an opening degree control signal 402 corresponding to the target pressure, and the oil amount adjustment valve 401. To end the procedure of FIG.
  • the configuration and functions of the functional units of the gas turbine control device 203C other than those described above are the same as those of the gas turbine control device 203A (see FIG. 7) of the third embodiment.
  • the power generation output measured by the measuring instrument 201 includes a wind power generation output 704 that can vary greatly depending on weather conditions, the deviation from the MWD 204 can also change drastically. For this reason, the fluctuation of the applied torque by the electric motor 114a by the gas turbine control device 203C can be intensified.
  • the torque transmission efficiency of the fluid coupling 116 by adding the fluctuation of the wind power generation output to the deviation of the power generation output with respect to the MWD 204, the power generation output including the fluctuation of the wind power generation output with respect to the MWD 204 is controlled. Be prepared for sudden changes in excess and deficiency and respond flexibly. Of course, operation with reduced torsional stress and improved economic efficiency of the turbine shaft 110a is also possible depending on the situation.
  • the control mode including the control procedure of the oil amount adjustment valve 401 of the third embodiment has been described as an example.
  • the wind power is simply It is also possible to control to increase or decrease the opening of the oil amount adjustment valve 401 depending on whether or not the predicted fluctuation range of the power generation output exceeds a threshold value.
  • the opening degree control signal is such that if the predicted fluctuation range of the wind power generation output exceeds a threshold value, the internal pressure of the fluid coupling 116 is increased more than the current level, and if it is equal to or less than the threshold value, the internal pressure of the fluid coupling 116 is decreased. 402 can also be generated.

Abstract

The present invention is equipped with: a compressor (103) that draws in and compresses air; a combustor (105) that burns compressed air (104) from the compressor (103) together with a fuel (107); a turbine (109) driven by combustion gas (112) from the combustor (105); an electric motor (114) that applies torque to the turbine shaft (110); a fluid connector (116) linking the turbine shaft (110) and the electric motor (114); and an electric motor control device (203f) that controls the electric motor (114) to apply torque to the turbine shaft (110) when a limit value for the rate of change according to control of the fuel flow rate is exceeded, thereby changing the turbine output. Thus, the responsiveness to a turbine output command can be improved.

Description

ガスタービン設備Gas turbine equipment
 本発明はガスタービン設備に関する。 The present invention relates to gas turbine equipment.
 燃焼器に対する燃料流量と圧縮機の吸気流量により発電出力を一定に制御するガスタービン設備が知られている(特許文献1等参照)。 A gas turbine facility is known in which the power generation output is controlled to be constant based on the fuel flow rate to the combustor and the intake air flow rate of the compressor (see Patent Document 1).
特開2001-123852号公報JP 2001-123852 A
 風力発電や太陽光発電といった再生可能エネルギーは天候等によって大きく発電出力が変動するため、再生可能エネルギーの大量導入に伴って、電力系統の系統周波数の不安定化が懸念されている。系統周波数の安定のためには、再生可能エネルギーの変動を吸収しつつ電力需要に合わせて発電し電力系統に電力を供給しなければならない。したがって、タービン出力指令に対する応答性の向上が急務である。 Renewable energy such as wind power generation and solar power generation greatly fluctuates the power generation output due to the weather, etc., and there is a concern that the system frequency of the power system will become unstable with the introduction of a large amount of renewable energy. In order to stabilize the grid frequency, it is necessary to supply power to the power system by generating power according to the power demand while absorbing fluctuations in renewable energy. Therefore, there is an urgent need to improve the response to the turbine output command.
 しかし、タービン出力は一般に燃料流量により制御されるため、燃料流量の制御に対して応答遅れがある。加えて、例えばタービン出力の制御の際に燃料流量が変化すれば燃焼ガス温度も変化するが、燃焼ガスの温度が急変すると燃焼ガスに晒される高温部品の温度分布が不均一になって熱応力が増大してしまう。過度な熱応力は高温部品の熱疲労、ひいては破損を招来し得る。この例を含め、信頼性の観点から燃料流量等によるタービン出力の制御には幾つかの制約がある。そのため、ガスタービン設備では燃料流量等の制限や応答遅れによりタービン出力指令の急激な変化に対応しきれない恐れがある。 However, since the turbine output is generally controlled by the fuel flow rate, there is a response delay with respect to the control of the fuel flow rate. In addition, for example, if the fuel flow rate changes during turbine output control, the combustion gas temperature also changes, but if the combustion gas temperature changes suddenly, the temperature distribution of the high-temperature parts exposed to the combustion gas becomes uneven and thermal stress Will increase. Excessive thermal stress can lead to thermal fatigue and thus failure of high temperature parts. Including this example, there are some restrictions on the control of the turbine output by the fuel flow rate or the like from the viewpoint of reliability. For this reason, gas turbine equipment may not be able to cope with sudden changes in turbine output commands due to limitations on fuel flow rate and response delays.
 本発明は上記事情に鑑みなされたもので、タービン出力指令に対する応答性を向上させることができるガスタービン設備を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas turbine facility capable of improving the response to a turbine output command.
 上記目的を達成するために、本発明は、ガスタービン設備のタービン軸に流体継手を介して電動機を連結する。 In order to achieve the above object, according to the present invention, an electric motor is connected to a turbine shaft of a gas turbine facility via a fluid coupling.
 本発明によれば、タービン出力指令に対する応答性を向上させることができる。 According to the present invention, the responsiveness to the turbine output command can be improved.
本発明の第1の実施の形態に係るガスタービン設備の概略図である。1 is a schematic view of a gas turbine facility according to a first embodiment of the present invention. 本発明の第2の実施の形態に係るガスタービン設備の概略図である。It is the schematic of the gas turbine installation which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置の機能ブロック図である。It is a functional block diagram of the gas turbine control apparatus with which the gas turbine equipment which concerns on the 2nd Embodiment of this invention was equipped. 本発明の第2の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置による電動機の制御手順を表すフローチャートである。It is a flowchart showing the control procedure of the electric motor by the gas turbine control apparatus with which the gas turbine equipment which concerns on the 2nd Embodiment of this invention was equipped. 電動モータのトルク印加による発電出力の挙動等を表した図である。It is a figure showing the behavior of the power generation output by the torque application of an electric motor, etc. 本発明の第3の実施の形態に係るガスタービン設備の概略図である。It is the schematic of the gas turbine equipment which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置の機能ブロック図である。It is a functional block diagram of the gas turbine control apparatus with which the gas turbine equipment which concerns on the 3rd Embodiment of this invention was equipped. 本発明の第3の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置による油量調整弁の制御手順を表すフローチャートである。It is a flowchart showing the control procedure of the oil quantity adjustment valve by the gas turbine control apparatus with which the gas turbine equipment which concerns on the 3rd Embodiment of this invention was equipped. 本発明の第4の実施の形態に係るガスタービン設備の概略図である。It is the schematic of the gas turbine equipment which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係るガスタービン設備の概略図である。It is the schematic of the gas turbine equipment which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係るガスタービン設備の概略図である。It is the schematic of the gas turbine equipment which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置の機能ブロック図である。It is a functional block diagram of the gas turbine control apparatus with which the gas turbine equipment which concerns on the 6th Embodiment of this invention was equipped. 本発明の第6の実施の形態に係るガスタービン設備に備えられたガスタービン制御装置による油量調整弁の制御手順を表すフローチャートである。It is a flowchart showing the control procedure of the oil quantity adjustment valve by the gas turbine control apparatus with which the gas turbine equipment which concerns on the 6th Embodiment of this invention was equipped.
 以下に図面を用いて本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 (第1の実施の形態)
 1-1.ガスタービン設備
 図1は本発明の第1の実施の形態に係るガスタービン設備の概略図である。
(First embodiment)
1-1. Gas Turbine Equipment FIG. 1 is a schematic view of gas turbine equipment according to the first embodiment of the present invention.
 図1に示したガスタービン設備は、ガスタービン100、発電機111、及び電動機114を備えている。ガスタービン100は、圧縮機103、燃焼器105、及びタービン109を備えている。ガスタービン100としては1軸式のガスタービンを例示しているが、2軸式のガスタービンであっても良い。 The gas turbine equipment shown in FIG. 1 includes a gas turbine 100, a generator 111, and an electric motor 114. The gas turbine 100 includes a compressor 103, a combustor 105, and a turbine 109. As the gas turbine 100, a uniaxial gas turbine is illustrated, but a biaxial gas turbine may be used.
 圧縮機103は、空気を吸い込んで圧縮し圧縮空気104を生成し、生成した圧縮空気104を燃焼器105に供給する。また、圧縮機103の空気取り込み口には、IGV(Inlet Guide Vane:入口案内翼)102が備えられている。IGV102は複数備わったベーン(不図示)を回転させて圧縮機103の空気取り込み口の開口面積を変化させることで、圧縮機103へ流入する空気量を変化させる。 The compressor 103 sucks and compresses air to generate compressed air 104, and supplies the generated compressed air 104 to the combustor 105. An IGV (InletInGuide Vane: inlet guide vane) 102 is provided at the air intake port of the compressor 103. The IGV 102 changes the amount of air flowing into the compressor 103 by rotating a plurality of vanes (not shown) to change the opening area of the air intake port of the compressor 103.
 燃焼器105は、圧縮機103からの圧縮空気104を燃料107とともに燃焼し、燃焼ガス108を生成する。燃焼ガス108で燃焼する燃料107の流量は燃料配管に設けられた燃料調整弁106によって調整される。 The combustor 105 burns the compressed air 104 from the compressor 103 together with the fuel 107 to generate combustion gas 108. The flow rate of the fuel 107 combusted by the combustion gas 108 is adjusted by a fuel adjustment valve 106 provided in the fuel pipe.
 タービン109は、燃焼器105からの燃焼ガス108により駆動する(タービン軸110の回転動力を得る)。タービン109で得られた回転動力は、タービン軸110を介して圧縮機103及び発電機111に伝達される。タービン109でエネルギーを回収された燃焼ガス108は排気112として排出される。 The turbine 109 is driven by the combustion gas 108 from the combustor 105 (to obtain the rotational power of the turbine shaft 110). Rotational power obtained by the turbine 109 is transmitted to the compressor 103 and the generator 111 via the turbine shaft 110. The combustion gas 108 whose energy has been recovered by the turbine 109 is discharged as exhaust 112.
 発電機111は、ガスタービン100のタービン軸110に接続されていて、タービン109で得られた回転動力によって駆動して交流電力を発生させる。発電機111の出力周波数の変動を抑制するため、1軸式のガスタービン100は電力系統113の系統周波数に応じた設定回転数を目標にして回転し、発電出力を上げる場合は燃料流量を増やしてタービン出力(トルク)を増加させ、その分だけ発電機111の負荷(固定子に流す電流等)を大きくする。発電出力を下げる場合は燃料流量を減らしてタービン出力を減少させ、その分だけ発電機111の負荷を小さくする。発電機111の発電出力は、電力ケーブルを経て電力系統113に送られる。 The generator 111 is connected to the turbine shaft 110 of the gas turbine 100 and is driven by the rotational power obtained by the turbine 109 to generate AC power. In order to suppress fluctuations in the output frequency of the generator 111, the single-shaft gas turbine 100 rotates with a target rotation speed corresponding to the system frequency of the power system 113 as a target, and increases the fuel flow rate when increasing the power generation output. Thus, the turbine output (torque) is increased, and the load of the generator 111 (current flowing through the stator, etc.) is increased accordingly. When the power generation output is lowered, the fuel flow rate is reduced to reduce the turbine output, and the load on the generator 111 is reduced accordingly. The power generation output of the generator 111 is sent to the power system 113 via a power cable.
 電動機114は、タービン負荷運転中にタービン軸110に回転動力を与えタービン出力を変更するアシストモータとして備わっている。電動機114は、発電機111よりも小容量の比較的小型のもので良い。電動機114の動力源は電力系統113からの電力でも良いし、発電機111による発電出力の一部、その他プラント内の電源設備から供給される電力でも良い。また、発電機としても駆動する電動発電機を電動機114に用いることもできる。この場合の電動機114の発電出力は、必要に応じて周波数を制御した上で電力系統113に供給しても良いし、プラント内の各種設備の動力源として使用しても良い。この電動機114の動作は、後の実施の形態のように制御装置による自動運転でも良いが、本実施の形態の場合は操作者による手動運転であっても良い。 The electric motor 114 is provided as an assist motor that changes the turbine output by applying rotational power to the turbine shaft 110 during turbine load operation. The electric motor 114 may be a relatively small one having a smaller capacity than the generator 111. The power source of the electric motor 114 may be electric power from the electric power system 113, a part of the power generation output by the generator 111, or electric power supplied from other power supply equipment in the plant. Further, a motor generator that is also driven as a generator can be used for the motor 114. The power generation output of the motor 114 in this case may be supplied to the power system 113 after controlling the frequency as necessary, or may be used as a power source for various facilities in the plant. The operation of the electric motor 114 may be automatic operation by a control device as in the following embodiment, but may be manual operation by an operator in the case of this embodiment.
 また、電動機114の回転軸(電動機軸)115は、流体継手116を介してタービン軸110に連結されている。電動機軸115はタービン軸110と機械的に切り離されていて、流体継手116の内部に充填された制御油を介してタービン軸110との間でトルクを伝達する。 Further, the rotating shaft (motor shaft) 115 of the electric motor 114 is connected to the turbine shaft 110 via a fluid coupling 116. The motor shaft 115 is mechanically separated from the turbine shaft 110, and transmits torque to and from the turbine shaft 110 through control oil filled in the fluid coupling 116.
 なお、図1ではタービン軸110のタービン109側の軸端に発電機111を、圧縮機103側の軸端に電動機114を連結した構成を例示したが、この配置は逆でも構わない。すなわち、タービン軸110のタービン109側の軸端に電動機114を、圧縮機103側の軸端に発電機111を連結した構成であっても良い。但し、この場合でも電動機軸115は流体継手116を介してタービン軸110に連結する。 Although FIG. 1 illustrates a configuration in which the generator 111 is connected to the turbine 109 side shaft end of the turbine shaft 110 and the motor 114 is connected to the compressor 103 side shaft end, this arrangement may be reversed. That is, the motor 114 may be connected to the shaft end of the turbine shaft 110 on the turbine 109 side, and the generator 111 may be connected to the shaft end of the compressor 103 side. However, even in this case, the motor shaft 115 is connected to the turbine shaft 110 via the fluid coupling 116.
 1-2.効果
 (1)応答性の向上
 電動機114のトルクは印加電圧により制御できるので、燃料流量や吸気流量を制御してタービン出力を調整する場合に比べて応答性が良い。したがって、本実施の形態によれば、例えばタービン負荷運転中にタービン出力指令(以下、MWDという)が急激に上昇し燃料流量によるタービン出力の制御では応答遅れ又は機械保護のための制限によって需要上昇にタービン出力を追従させられないような場合、電動機114をモータ駆動してタービン軸110にトルクを付加することにより、タービン出力をMWDの急増に追従させることができる。また、電動機114に電動発電機を用いれば、MWDが急激に低下して燃料流量によるタービン出力の制御では応答遅れ又は機械保護のための制限によって需要低下にタービン出力を追従させられないような場合、電動機114を発電機駆動してタービン軸110のトルクの一部を電気エネルギーに変換することにより、タービン出力をMWDの急減に追従させることができる。したがって、本実施の形態によれば、MWDに対するタービン出力の応答性を向上させることができる。
1-2. Effect (1) Improvement of responsiveness Since the torque of the motor 114 can be controlled by the applied voltage, the responsiveness is better than when the fuel flow and intake flow are controlled to adjust the turbine output. Therefore, according to the present embodiment, for example, a turbine output command (hereinafter referred to as MWD) suddenly rises during turbine load operation, and control of turbine output by fuel flow rate increases demand due to a delay in response or restrictions for machine protection. When the turbine output cannot be caused to follow, the motor output is driven by the motor 114 and torque is applied to the turbine shaft 110 so that the turbine output can follow the sudden increase in MWD. In addition, if a motor generator is used for the motor 114, the MWD is drastically decreased and the turbine output cannot be made to follow the decline in demand due to a delay in response or a limitation for machine protection in the control of the turbine output by the fuel flow rate. By driving the electric motor 114 as a generator to convert a part of the torque of the turbine shaft 110 into electric energy, the turbine output can be caused to follow the sudden decrease in MWD. Therefore, according to the present embodiment, it is possible to improve the response of turbine output to MWD.
 なお、燃料流量等によるタービン出力の調整でMWDの変動に追従できるような場合には、電動機114はモータ駆動も発電機駆動もする必要はなく、無負荷運転(空転)するようにしておけば良い。クラッチを介して電動機軸115を切り離せるようにした場合には、不使用時にはタービン軸110から切り離すようにしても良い。また、MWDの急増に対する応答性のみを改善できれば足りる場合には、電動機114に発電機機能は必要ない。 If the turbine output can be adjusted by adjusting the turbine output based on the fuel flow rate or the like, the motor 114 does not need to be driven by a motor or generator, and can be driven without load (idling). good. When the motor shaft 115 can be disconnected via the clutch, it may be disconnected from the turbine shaft 110 when not in use. Further, when it is sufficient to improve only the responsiveness to the rapid increase in MWD, the electric motor 114 does not need a generator function.
 (2)信頼性の確保
 ここで、本実施の形態では、上記電動機114の駆動時に負荷運転中のタービン軸110に外的に継続してトルクを付加することとなる。したがって、電動機軸115が印加するトルクによって加減速するタービン軸110にはねじり応力が作用する。加えて、例えば再生可能エネルギー発電装置が電力系統113を介して接続される場合には、電力系統113の周波数の変動を抑制するために、電力需要の変動に加えて再生可能エネルギー発電装置の発電出力の変動に応じて発電出力を調整する必要があるので、電動機114がタービン軸110に印加するトルクの変動も激化し得る。特に電動機114に電動発電機を用いた場合には、電動機114がタービン軸110に印加するトルクが正負逆転する。これらの場合には、タービン軸110に作用するねじり応力に脈動が生じ、タービン軸110が過度に疲労し得る。タービン軸110の素材や形状等の変更によってタービン軸110の強度を向上させることはできるが、設備費用の高騰に繋がり得る。更には、タービン軸110の強度上の制限から電動機114の印加トルクが大きく制約され、単にタービン軸110に電動機軸115を連結したというだけではタービン出力の制御のために電動機114の能力を十分に発揮させられない恐れがある。
(2) Ensuring Reliability Here, in the present embodiment, torque is continuously applied externally to the turbine shaft 110 during load operation when the electric motor 114 is driven. Accordingly, torsional stress acts on the turbine shaft 110 that is accelerated or decelerated by the torque applied by the motor shaft 115. In addition, for example, when a renewable energy power generation device is connected via the power system 113, in order to suppress the fluctuation of the frequency of the power system 113, the power generation of the renewable energy power generation apparatus in addition to the fluctuation of the power demand Since it is necessary to adjust the power generation output according to the output fluctuation, the fluctuation of the torque applied by the electric motor 114 to the turbine shaft 110 can be intensified. In particular, when a motor generator is used as the motor 114, the torque applied by the motor 114 to the turbine shaft 110 is reversed in the positive and negative directions. In these cases, pulsation occurs in the torsional stress acting on the turbine shaft 110, and the turbine shaft 110 may be excessively fatigued. Although the strength of the turbine shaft 110 can be improved by changing the material, shape, and the like of the turbine shaft 110, it can lead to an increase in equipment costs. Furthermore, the applied torque of the electric motor 114 is greatly restricted due to the limitation on the strength of the turbine shaft 110, and simply connecting the electric motor shaft 115 to the turbine shaft 110 sufficiently increases the capacity of the electric motor 114 for controlling the turbine output. There is a risk that it cannot be demonstrated.
 この点に配慮して、本実施の形態では、流体継手116を介して電動機軸115をタービン軸110に連結した。流体継手116の内部では、電動機軸115とタービン軸110は機械構造的に切り離されていて、電動機114の印加するトルクは流体継手116に充填された制御油の流体運動に変換された後、タービン軸110に伝達される。これにより、電動機114の印加トルクの変動に伴ってタービン軸110に作用するねじり応力を抑制することができる。また、タービン軸110に作用するトルク成分の細かな脈動は減衰する。この点もねじり応力の抑制に貢献する。 Considering this point, in the present embodiment, the motor shaft 115 is connected to the turbine shaft 110 through the fluid coupling 116. Inside the fluid coupling 116, the motor shaft 115 and the turbine shaft 110 are separated mechanically, and the torque applied by the motor 114 is converted into the fluid motion of the control oil filled in the fluid coupling 116, and then the turbine. It is transmitted to the shaft 110. Thereby, the torsional stress which acts on the turbine shaft 110 with the fluctuation | variation of the applied torque of the electric motor 114 can be suppressed. Further, the fine pulsation of the torque component acting on the turbine shaft 110 is attenuated. This point also contributes to suppression of torsional stress.
 また、流体継手116の内部で電動機軸115とタービン軸110は切り離されているので、電動機軸115とタービン軸110の回転数のずれが許容される。これにより、電動機軸115とタービン軸110の回転数偏差が生じる場合にもねじり応力を抑制することができる。 Further, since the electric motor shaft 115 and the turbine shaft 110 are separated inside the fluid coupling 116, a deviation in the rotational speed between the electric motor shaft 115 and the turbine shaft 110 is allowed. As a result, torsional stress can be suppressed even when there is a rotational speed deviation between the motor shaft 115 and the turbine shaft 110.
 (3)効率向上
 電動機軸115とタービン軸110の回転数偏差が許容されるので、高効率なシステムを構築することができる。例えば、電動機114及びガスタービン100の最高効率回転数が異なる場合、電動機114及びガスタービン100をそれぞれ異なる最高効率回転数で運転することができる。
(3) Efficiency improvement Since a rotational speed deviation between the motor shaft 115 and the turbine shaft 110 is allowed, a highly efficient system can be constructed. For example, when the maximum efficiency rotation speeds of the electric motor 114 and the gas turbine 100 are different, the electric motor 114 and the gas turbine 100 can be operated at different maximum efficiency rotation speeds.
 (4)発電機容量の抑制
 一般に流体継手は、伝達するトルクが大きくなるほど、トルク伝達効率が低下して運転中の制御油温度の管理が難しくなり、制御油の温度によって性能変化が大きくなることが知られている。それに対し、本実施の形態の場合、電動機114は比較的小容量、例えば発電機111の数%程度の容量のもので一定の効果が見込めるため、電動機軸115とタービン軸110との間で伝達されるトルクを抑制することができ、良好なトルク伝達効率を確保することができる。仮に発電機111の回転軸をタービン軸110に連結するのに流体継手を用いた場合、本実施の形態に比べて伝達トルクが著しく大きいためトルク伝達効率も大きく低下する。
(4) Suppressing the generator capacity Generally, the greater the torque transmitted, the lower the torque transmission efficiency and the more difficult the management of the control oil temperature during operation, and the greater the change in performance due to the temperature of the control oil. It has been known. On the other hand, in the case of the present embodiment, the electric motor 114 has a relatively small capacity, for example, a capacity of about several percent of the generator 111, and a certain effect can be expected. Therefore, transmission between the electric motor shaft 115 and the turbine shaft 110 is possible. Torque can be suppressed, and good torque transmission efficiency can be ensured. If a fluid coupling is used to connect the rotating shaft of the generator 111 to the turbine shaft 110, the torque transmission efficiency is significantly reduced because the transmission torque is significantly larger than that of the present embodiment.
 (第2の実施の形態)
 2-1.ガスタービン設備
 図2は本発明の第2の実施の形態に係るガスタービン設備の概略図である。本実施の形態において第1の実施の形態と同様のものについては同図において既出図面と同符号を付して説明を省略する。
(Second Embodiment)
2-1. Gas Turbine Equipment FIG. 2 is a schematic view of gas turbine equipment according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 本実施の形態は電動機114を自動運転するための具体的構成例を示すものである。同図に示したガスタービン設備は、計測器201,202及びガスタービン制御装置203を図1のガスタービン設備に付加した構成である。計測器201はガスタービン設備の発電出力を、計測器202はタービン軸110の回転数をそれぞれ計測してガスタービン制御装置203に出力する。ガスタービン制御装置203は、これら計測器201,202の計測信号とともに外部(例えば上位の制御装置)からの発電出力指令(MWD)204を入力信号とし、これら入力信号を基にIGV102、燃料調整弁106、発電機111及び電動機114を制御する。他のハード構成は第1の実施の形態と同様である。 This embodiment shows a specific configuration example for automatically operating the electric motor 114. The gas turbine equipment shown in the figure has a configuration in which measuring instruments 201 and 202 and a gas turbine control device 203 are added to the gas turbine equipment of FIG. The measuring instrument 201 measures the power generation output of the gas turbine facility, and the measuring instrument 202 measures the rotational speed of the turbine shaft 110 and outputs it to the gas turbine control device 203. The gas turbine control device 203 uses, as an input signal, a power generation output command (MWD) 204 from the outside (for example, a higher-level control device) together with the measurement signals of the measuring instruments 201 and 202, and based on these input signals, the IGV 102 and the fuel adjustment valve 106, the generator 111 and the motor 114 are controlled. Other hardware configurations are the same as those in the first embodiment.
 2-2.制御装置
 図3は図2のガスタービン制御装置203の機能ブロック図である。
2-2. Control Device FIG. 3 is a functional block diagram of the gas turbine control device 203 of FIG.
 同図に示したように、ガスタービン制御装置203には、入力部203a、記憶装置203b、燃料流量制御装置203c、吸気流量制御装置203d、発電機制御装置203e、電動機制御装置203f、及び出力部203gが備わっている。入力部203aは、計測器201で計測された発電出力、計測器202で計測されたタービン回転数、及びMWD204を入力信号として入力し、適宜デジタル信号化する。記憶装置203bは、入力部203aを介して入力された入力信号、各種制御に必要なプログラムや閾値、各種演算値を記憶する複数の領域を含んでいる。燃料流量制御装置203cは、MWD204に応じた燃料流量を演算し燃料調整弁106への開度制御信号205を生成する。開度制御信号205は、例えば発電出力の計測値をMWD204に近付けるような値として演算される。吸気流量制御装置203dはIGV102への開度制御信号206を生成する。開度制御信号206は、例えばタービン回転数の計測値を基に圧縮機103の吸気流量を一定に保つような値として演算される。発電機制御装置203eは発電機111への負荷制御信号208を生成する。負荷制御信号208は、例えばタービン回転数の計測値を基にタービン回転数を設定回転数に近付ける値として演算される。電動機制御装置203fは必要に応じて電動機114へのトルク制御信号207を生成する。 As shown in the figure, the gas turbine control device 203 includes an input unit 203a, a storage device 203b, a fuel flow control device 203c, an intake flow control device 203d, a generator control device 203e, an electric motor control device 203f, and an output unit. 203g. The input unit 203a inputs the power generation output measured by the measuring instrument 201, the turbine rotational speed measured by the measuring instrument 202, and the MWD 204 as input signals, and appropriately converts them into digital signals. The storage device 203b includes a plurality of areas for storing input signals input via the input unit 203a, programs and thresholds necessary for various controls, and various calculation values. The fuel flow control device 203c calculates a fuel flow rate corresponding to the MWD 204 and generates an opening degree control signal 205 to the fuel adjustment valve 106. The opening degree control signal 205 is calculated as a value that brings the measured value of the power generation output close to the MWD 204, for example. The intake air flow rate control device 203d generates an opening degree control signal 206 to the IGV 102. The opening degree control signal 206 is calculated as a value that keeps the intake air flow rate of the compressor 103 constant based on, for example, a measured value of the turbine speed. The generator control device 203e generates a load control signal 208 for the generator 111. The load control signal 208 is calculated as a value that brings the turbine rotational speed close to the set rotational speed based on, for example, the measured value of the turbine rotational speed. The motor control device 203f generates a torque control signal 207 to the motor 114 as necessary.
 2-3.制御手順
 図4はガスタービン制御装置203による電動機114の制御手順を表すフローチャートである。ガスタービン制御装置203はタービン負荷運転中に繰り返し同図の手順を実行する。
2-3. Control Procedure FIG. 4 is a flowchart showing a control procedure of the electric motor 114 by the gas turbine control device 203. The gas turbine control device 203 repeatedly executes the procedure shown in FIG.
 ・ステップS101
 図4の手順を開始すると、ガスタービン制御装置203は、まず微分演算によってMWD204の変化率(時間変化)を演算し、演算した変化率(絶対値)が制限値以上か否かを判定する。この制限値は、例えば燃料流量制御で追従し得る発電出力の最大変化率(又は余裕を見てそれよりも低めに設定した値)を用いることができる。MWD204の変化率が制限値を下回っていれば、ガスタービン制御装置203は図4の手順を終了する。燃料流量制御で発電出力をMWD204に追従させられ場合は電動機114によるアシストは不要なためである。MWD204の変化率が制限値以上であれば、ガスタービン制御装置203はステップS102に手順を移す。
Step S101
When the procedure of FIG. 4 is started, the gas turbine control device 203 first calculates the change rate (time change) of the MWD 204 by differentiation, and determines whether or not the calculated change rate (absolute value) is equal to or greater than the limit value. As this limit value, for example, the maximum change rate of the power generation output that can be followed by the fuel flow rate control (or a value set lower than that with allowance) can be used. If the rate of change of the MWD 204 is below the limit value, the gas turbine control device 203 ends the procedure of FIG. This is because when the power generation output is allowed to follow the MWD 204 by the fuel flow control, the assist by the electric motor 114 is unnecessary. If the rate of change of the MWD 204 is equal to or greater than the limit value, the gas turbine control device 203 moves the procedure to step S102.
 ・ステップS102,S103
 MWD204の変化率が制限値以上である場合、ガスタービン制御装置203は、電動機制御装置203fによって電動機114に対するトルク制御信号207を演算し(ステップS102)、出力部203gを介して電動機114に出力する(ステップS103)。トルク制御信号207は、例えばMWD204に応じたタービン出力の変化率と制限値(燃料流量制御によるタービン出力の変化率)の差分を基に、トルクの不足分を補うようなモータ駆動指令値として生成される。電動機114が電動発電機の場合は、トルクの余剰分を電気エネルギーとして回収するような発電機駆動指令値として生成される。
Steps S102 and S103
When the change rate of the MWD 204 is equal to or greater than the limit value, the gas turbine control device 203 calculates a torque control signal 207 for the motor 114 by the motor control device 203f (step S102) and outputs the torque control signal 207 to the motor 114 via the output unit 203g. (Step S103). The torque control signal 207 is generated, for example, as a motor drive command value that compensates for the shortage of torque based on the difference between the turbine output change rate according to the MWD 204 and the limit value (turbine output change rate by fuel flow control). Is done. When the motor 114 is a motor generator, it is generated as a generator drive command value that recovers surplus torque as electric energy.
 ・ステップS104,S105
 電動機114にトルク制御信号207を出力したら、ガスタービン制御装置203は、MWD204の変化率が上記制限値を下回ったか否かを判定する(ステップS104)。MWD204の変化率が依然として制限値以上であれば、継続して電動機114によりタービン軸110にトルクを印加する必要があるため、ガスタービン制御装置203はステップS102に手順を戻す。MWD204の変化率が制限値を下回っていれば、電動機114によるトルク印加の必要がなくなるため、ガスタービン制御装置203は、電動機制御装置203fによってトルク制御信号207を所定割合で減じてトルク印加を解除し(ステップS105)、図4の手順を終了する。
Steps S104 and S105
When the torque control signal 207 is output to the electric motor 114, the gas turbine control device 203 determines whether or not the rate of change of the MWD 204 is below the limit value (step S104). If the change rate of the MWD 204 is still greater than or equal to the limit value, it is necessary to continuously apply torque to the turbine shaft 110 by the electric motor 114, and the gas turbine control device 203 returns the procedure to step S102. If the change rate of the MWD 204 is below the limit value, it is not necessary to apply torque by the electric motor 114, so the gas turbine control device 203 reduces the torque control signal 207 at a predetermined rate by the electric motor control device 203f and releases the torque application. (Step S105), and the procedure of FIG.
 2-4.効果
 本実施の形態においても第1の実施の形態と同様の効果が得られる。この点について図を用いて説明する。
2-4. Effect In this embodiment, the same effect as in the first embodiment can be obtained. This point will be described with reference to the drawings.
 図5は電動モータ114のトルク印加による発電出力の挙動等を表した図である。 FIG. 5 is a diagram showing the behavior of the power generation output due to the torque application of the electric motor 114.
 ガスタービン100に同図の1段目に示すMWD204が推移したとする。MWD204は時刻a及びbに大きな変化率で増加している。2段目に示す発電機111の出力を見ると、電動機114を使用しない場合は時刻a及びbのMWD204の急変に追従しきれていない(点線参照)。それに対し、3段目に示したように時刻a及びbで電動機114によって一時的にタービン軸110にトルクを印加することで発電出力の応答性が向上し、MWD204に発電出力が良好に追従している(2段目の実線参照)。 Suppose that the MWD 204 shown in the first stage of FIG. The MWD 204 increases at a large change rate at times a and b. Looking at the output of the generator 111 shown in the second stage, when the electric motor 114 is not used, the sudden change of the MWD 204 at times a and b cannot be followed (see the dotted line). On the other hand, as shown in the third stage, the responsiveness of the power generation output is improved by temporarily applying torque to the turbine shaft 110 by the motor 114 at the times a and b, and the power generation output follows the MWD 204 well. (Refer to the second solid line).
 但し、電動機114によるトルク印加によりタービン軸110にねじり応力が発生し得ることは既に述べた。4段目には、この例の通り電動機114によりトルクを印加する場合に、流体継手116を介して電動機軸115を連結したタービン軸110に発生するねじり応力(実線参照)、及び電動機軸115を機械的に(剛的に)連結したタービン軸110に発生し得るねじり応力(点線参照)の各シミュレーション結果を示している。シミュレーション結果を見ても分かる通り、タービン軸110のねじり応力は、通常の継手を介して電動機軸115を機械的に連結した場合に比べて、流体継手116を介して連結することによって抑えられる。 However, it has already been described that torsional stress can be generated in the turbine shaft 110 by applying torque by the electric motor 114. In the fourth stage, when torque is applied by the electric motor 114 as in this example, the torsional stress (see the solid line) generated in the turbine shaft 110 connected to the electric motor shaft 115 via the fluid coupling 116, and the electric motor shaft 115 are The simulation results of torsional stress (see dotted lines) that can be generated in the mechanically (rigidly) connected turbine shaft 110 are shown. As can be seen from the simulation results, the torsional stress of the turbine shaft 110 can be suppressed by connecting the motor shaft 115 via the fluid coupling 116 as compared to the case where the motor shaft 115 is mechanically coupled via a normal coupling.
 (第3の実施の形態)
 第3の実施の形態が前述した各実施の形態と相違する点は、流体継手116に充填する油量を制御して電動機軸115とタービン軸110との間のトルク伝達効率を制御する点である。
(Third embodiment)
The third embodiment differs from the above-described embodiments in that the torque transmission efficiency between the motor shaft 115 and the turbine shaft 110 is controlled by controlling the amount of oil charged in the fluid coupling 116. is there.
 3-1.ガスタービン設備
 図6は本発明の第3の実施の形態に係るガスタービン設備の概略図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。
3-1. Gas Turbine Equipment FIG. 6 is a schematic view of gas turbine equipment according to the third embodiment of the present invention. In the present embodiment, the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 同図に示したガスタービン設備は油量調整弁401を備えている。この油量調整弁401は、流体継手116に充填する供給源(不図示)からの制御油の油量を調整する制御弁である。油量調整弁401の開度はガスタービン制御装置203Aにより制御される。その他のハード構成は第2の実施の形態に係るガスタービン設備(図2参照)と同様としてある。 The gas turbine equipment shown in the figure includes an oil amount adjustment valve 401. The oil amount adjustment valve 401 is a control valve that adjusts the amount of control oil from a supply source (not shown) that fills the fluid coupling 116. The opening degree of the oil amount adjustment valve 401 is controlled by the gas turbine control device 203A. Other hardware configurations are the same as those of the gas turbine facility (see FIG. 2) according to the second embodiment.
 3-2.制御装置
 図7はガスタービン制御装置203Aの機能ブロック図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。
3-2. Control Device FIG. 7 is a functional block diagram of the gas turbine control device 203A. In the present embodiment, the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 図7に示したガスタービン制御装置203Aは、油量制御装置203hを含んでいる。油量制御装置203hは、計測器201で計測した発電出力とMWD204との偏差に応じて油量調整弁401を制御して流体継手116のトルク伝達効率を変化させる機能を果たす。ガスタービン制御装置203Aの他の機能部の構成及び機能については、第2の実施の形態におけるガスタービン制御装置203(図3参照)と同様としてある。 The gas turbine control device 203A shown in FIG. 7 includes an oil amount control device 203h. The oil amount control device 203h functions to change the torque transmission efficiency of the fluid coupling 116 by controlling the oil amount adjustment valve 401 in accordance with the deviation between the power generation output measured by the measuring instrument 201 and the MWD 204. The configuration and functions of other functional units of the gas turbine control device 203A are the same as those of the gas turbine control device 203 (see FIG. 3) in the second embodiment.
 3-3.制御手順
 図8はガスタービン制御装置203Aによる油量調整弁401の制御手順を表すフローチャートである。ガスタービン制御装置203Aはタービン負荷運転中に油量制御装置203hによって繰り返し同図の手順を実行する。
3-3. Control Procedure FIG. 8 is a flowchart showing a control procedure of the oil amount adjustment valve 401 by the gas turbine control device 203A. The gas turbine control device 203A repeatedly executes the procedure shown in the figure by the oil amount control device 203h during the turbine load operation.
 ・ステップS201
 図8の手順を開始すると、油量制御装置203hは、モード信号を基に油量調整弁401の自動制御モードの設定がONか否かを判定し(ステップS201)、設定がOFFの場合には油量調整弁401内における制御油の目標圧力を設定値に設定する(ステップS207)。設定がONの場合には、油量制御装置203hはステップS201からステップS202に手順を移す。モード信号は、ガスタービン制御装置203の操作盤(不図示)等から操作者の操作に応じて入力される信号である。
Step S201
When the procedure of FIG. 8 is started, the oil amount control device 203h determines whether or not the setting of the automatic control mode of the oil amount adjusting valve 401 is ON based on the mode signal (step S201), and when the setting is OFF. Sets the target pressure of the control oil in the oil amount adjustment valve 401 to a set value (step S207). If the setting is ON, the oil amount control device 203h moves the procedure from step S201 to step S202. The mode signal is a signal that is input from an operation panel (not shown) or the like of the gas turbine control device 203 in accordance with the operation of the operator.
 ・ステップS202,S203
 設定がONの場合、油量制御装置203hは、微分演算処理等によってMWD204の変化率(時間変化)を演算し、演算した変化率(絶対値)が制限値以上であるか否かを判定する(ステップS202)。この手順は電動機114の制御手順におけるステップS101(図4参照)と同様である。MWD変化率が制限値を下回っていれば、油量制御装置203hは、ステップS207に手順を移す。MWD変化率が制限値以上であれば、油量制御装置203hは、計測器201の計測値とMWD204との偏差(MWD204に対する発電出力の過不足)を演算して(ステップS203)ステップS204に手順を移す。
Steps S202 and S203
When the setting is ON, the oil amount control device 203h calculates the change rate (time change) of the MWD 204 by differential calculation processing or the like, and determines whether the calculated change rate (absolute value) is equal to or greater than the limit value. (Step S202). This procedure is the same as step S101 (see FIG. 4) in the control procedure of the electric motor 114. If the MWD change rate is below the limit value, the oil amount control device 203h moves the procedure to step S207. If the MWD change rate is equal to or greater than the limit value, the oil amount control device 203h calculates a deviation between the measured value of the measuring instrument 201 and the MWD 204 (power generation output excess or deficiency with respect to the MWD 204) (step S203). Move.
 ・ステップS204,S205
 発電出力の過不足を演算したら、油量制御装置203hは、過不足(絶対値)が閾値を超えているか否かを判定する(ステップS204)。閾値は記憶装置203bに記憶された設定値である。過不足が閾値以下であれば、油量制御装置203hは、ステップS207に手順を移す。過不足が制限値を超えていれば、油量制御装置203hは、過不足の大きさを基に油量調整弁401の内部の制御油の目標圧力を演算する。例えば発電出力の過不足が大きいほど設定圧力に対して目標圧力を高く設定する。
Steps S204 and S205
After calculating the excess / deficiency of the power generation output, the oil amount control device 203h determines whether the excess / deficiency (absolute value) exceeds the threshold (step S204). The threshold value is a setting value stored in the storage device 203b. If the excess or deficiency is less than or equal to the threshold value, the oil amount control device 203h moves the procedure to step S207. If the excess / deficiency exceeds the limit value, the oil amount control device 203h calculates the target pressure of the control oil inside the oil amount adjustment valve 401 based on the excess / deficiency magnitude. For example, the target pressure is set higher with respect to the set pressure as the power generation output is larger or deficient.
 ・ステップS206
 ステップS205又はS207で油量調整弁401の制御油の目標圧力を設定したら、油量制御装置203hは、目標圧力に応じた開度制御信号402を生成し、油量調整弁401に出力して図8の手順を終了する。
Step S206
If the target pressure of the control oil of the oil amount adjustment valve 401 is set in step S205 or S207, the oil amount control device 203h generates an opening degree control signal 402 corresponding to the target pressure and outputs it to the oil amount adjustment valve 401. The procedure of FIG. 8 is terminated.
 3-4.効果
 本実施の形態によれば、第2の実施の形態と同様の効果に加え、次の効果が得られる。
3-4. Effects According to the present embodiment, the following effects are obtained in addition to the same effects as those of the second embodiment.
 ここで、流体継手116は、内部の制御油の充填量が多い(圧力が高い)程トルク伝達率が高くなる。反対に、制御油の充填量が少ない(圧力が低い)程トルク伝達率が下がり、タービン軸110と電動機軸115の回転数の許容偏差が大きくなる。そこで、本実施の形態では図8の手順をタービン負荷運転中に繰り返し実行する。すなわち、MWD204に対する発電出力の追従性を向上させたい場合には流体継手116の制御油圧力を上げる。具体的には、油量調整弁401が流体継手116からの制御油の排出管路に設けられている場合には、油量調整弁401の開度を小さくする開度制御信号402を生成し出力する。反対に油量調整弁401が流体継手116への制御油の供給管路に設けられている場合には、油量調整弁401の開度を大きくする開度制御信号402を生成し出力する。また、タービン軸110のねじり応力やその脈動を抑えたい場合、或いはタービン軸110と電動機軸115の回転数の許容偏差を広く確保したい場合には流体継手116の制御油圧力を下げる。制御油の圧力を下げる手順は制御油の圧力を上げる手順と逆の手順である。 Here, in the fluid coupling 116, the torque transmission rate becomes higher as the filling amount of the internal control oil is larger (the pressure is higher). On the other hand, the smaller the amount of control oil filled (the lower the pressure), the lower the torque transmission rate and the greater the allowable deviation in the rotational speed between the turbine shaft 110 and the motor shaft 115. Therefore, in the present embodiment, the procedure of FIG. 8 is repeatedly executed during the turbine load operation. That is, when it is desired to improve the followability of the power generation output to the MWD 204, the control hydraulic pressure of the fluid coupling 116 is increased. Specifically, when the oil amount adjustment valve 401 is provided in the discharge line for the control oil from the fluid coupling 116, an opening degree control signal 402 for reducing the opening degree of the oil amount adjustment valve 401 is generated. Output. On the contrary, when the oil amount adjustment valve 401 is provided in the control oil supply pipe to the fluid coupling 116, an opening degree control signal 402 for increasing the opening degree of the oil amount adjustment valve 401 is generated and output. Further, when it is desired to suppress the torsional stress and pulsation of the turbine shaft 110, or when it is desired to ensure a wide allowable deviation between the rotational speeds of the turbine shaft 110 and the motor shaft 115, the control hydraulic pressure of the fluid coupling 116 is decreased. The procedure for decreasing the control oil pressure is the reverse of the procedure for increasing the control oil pressure.
 なお、MWD204の変化率が小さく電動機114でターンビン軸110にトルクを印加しなくてもMWD204に発電出力を追従させられる場合、又はMWD204に対する発電出力の過不足が少ない場合には、目標圧力を設定値(例えば予め定めた最低値又はゼロ)に設定して流体継手116の内部の制御油を減少又は完全に排出させる。その際の油量調整弁401の操作手順は流体継手116の制御油の圧力を下げる場合と同じ手順である。 Note that the target pressure is set when the rate of change of the MWD 204 is small and the motor 114 allows the MWD 204 to follow the power generation output without applying torque to the turn bin shaft 110, or when the power generation output with respect to the MWD 204 is small or insufficient. The value is set to a value (for example, a predetermined minimum value or zero), and the control oil inside the fluid coupling 116 is reduced or completely discharged. The operation procedure of the oil amount adjustment valve 401 at that time is the same as that for lowering the control oil pressure of the fluid coupling 116.
 従って、本実施の形態によれば、電動機114とタービン軸110との間のトルク伝達効率を制御することにより、状況に応じて例えばMWD204に対する発電出力の追従性能をより高めたりタービン軸110のねじり応力をより抑制したりすることができる。また、必要に応じて制御油の圧力を下げてタービン軸110と電動機軸115の回転数の許容偏差を大きくすることで、電動機114を低速運転又は停止させることもでき、経済性も向上する。 Therefore, according to the present embodiment, by controlling the torque transmission efficiency between the electric motor 114 and the turbine shaft 110, the follow-up performance of the power generation output with respect to, for example, the MWD 204 can be further improved or the turbine shaft 110 can be twisted. The stress can be further suppressed. Further, if necessary, the allowable pressure deviation of the turbine shaft 110 and the motor shaft 115 is increased by reducing the pressure of the control oil, so that the motor 114 can be operated or stopped at a low speed, and the economy is improved.
 なお、本実施の形態ではMWD204の変化率等に応じて油量調整弁401を自動調整する場合を例に挙げて説明したが、ガスタービン発電設備の運転状況に応じて操作者が手動操作により油量調整弁401の開度を調整する構成とすることもできる。 In the present embodiment, the case where the oil amount adjustment valve 401 is automatically adjusted according to the change rate of the MWD 204 is described as an example. However, the operator manually operates according to the operation state of the gas turbine power generation facility. A configuration in which the opening of the oil amount adjustment valve 401 is adjusted may be employed.
 (第4の実施の形態)
 第4の実施の形態が前述した各実施の形態と相違する点は、異なる回転数で回転し得る複数のタービンを含んでいる点である。本実施の形態では2軸式ガスタービンを採用した場合を例示している。
(Fourth embodiment)
The fourth embodiment is different from the above-described embodiments in that it includes a plurality of turbines that can rotate at different rotational speeds. In this embodiment, a case where a two-shaft gas turbine is employed is illustrated.
 図9は本発明の第4の実施の形態に係るガスタービン設備の概略図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。 FIG. 9 is a schematic view of the gas turbine equipment according to the fourth embodiment of the present invention. In the present embodiment, the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 同図に示したように、本実施の形態におけるガスタービン100Aは高圧タービン109aと低圧タービン109bの2つのタービンを備えている。高圧タービン109aと低圧タービン109bは互いのタービン軸110a,110bが切り離されていて、互いに異なる回転数で回転し得る。高圧タービン109aは、タービン軸110aを介して圧縮機103と連結されていて、圧縮機103及び燃焼器105とともにガスジェネレータを構成する。電動機114は、流体継手116を介してガスジェネレータのタービン軸110aに連結されている。低圧タービン109bはタービン軸110bを介して発電機111と連結されていて、発電機111の発電出力を生み出すパワータービンの役割を果たす。高圧タービン109aの排気112aは低圧タービン109bの作動ガスとなり、低圧タービン109bに回転動力を与えて排気112bとして排出される。また、タービン軸110a,110bが異なる回転数で回転し得るので、タービン回転数を計測する計測器202a,202bがタービン軸110a,110bのそれぞれに設けられている。計測器202a,202bで計測したタービン回転数はガスタービン制御装置203に入力される。 As shown in the figure, the gas turbine 100A in the present embodiment includes two turbines, a high-pressure turbine 109a and a low-pressure turbine 109b. The high-pressure turbine 109a and the low-pressure turbine 109b can be rotated at different rotational speeds because the turbine shafts 110a and 110b are separated from each other. The high-pressure turbine 109 a is connected to the compressor 103 via the turbine shaft 110 a and constitutes a gas generator together with the compressor 103 and the combustor 105. The electric motor 114 is connected to the turbine shaft 110a of the gas generator through a fluid coupling 116. The low-pressure turbine 109b is connected to the generator 111 via the turbine shaft 110b, and serves as a power turbine that generates the power output of the generator 111. The exhaust 112a of the high-pressure turbine 109a becomes the working gas of the low-pressure turbine 109b, gives rotational power to the low-pressure turbine 109b, and is discharged as the exhaust 112b. Further, since the turbine shafts 110a and 110b can rotate at different rotational speeds, measuring instruments 202a and 202b for measuring the turbine rotational speed are provided in the turbine shafts 110a and 110b, respectively. The turbine rotational speed measured by the measuring instruments 202 a and 202 b is input to the gas turbine control device 203.
 その他のハード構成は第2の実施の形態に係るガスタービン設備(図2参照)と同様としてある。なお、本実施の形態では圧縮機103を分割構造としていないが、圧縮機103を分割して別々のタービン軸に連結したスプール式の構成にとする場合もある。 Other hardware configurations are the same as those of the gas turbine equipment (see FIG. 2) according to the second embodiment. In the present embodiment, the compressor 103 is not divided. However, the compressor 103 may be divided and connected to separate turbine shafts in some cases.
 ここで、一般に圧縮機は回転数により圧力、温度、流量、効率等の運転特性が変化するところ、1軸式のガスタービンでは圧縮機の回転数がタービン軸の回転数に一致するので、圧縮機の運転特性はタービン回転数に依存する。それに対し、本実施の形態の場合、圧縮機103を連結したガスジェネレータのタービン軸110aは、パワータービンのタービン軸110bと切り離されているので、パワータービンの回転数と無関係に回転数を選択することができる。従って、圧縮機103の効率が良好な運転条件となる回転数を設定し、例えば計測器202aで計測されたガスジェネレータの回転数と設定回転数との偏差が閾値(設定値)を超えるような場合に電動機114のトルク印加によってガスジェネレータの回転数を設定回転数に近付けるようにすることで、ガスタービン設備の効率を向上させることができる。電動機114に電動発電機を用いれば、印加トルクを正負逆転させることができるので、圧縮機103の回転数は上昇側のみでなく下降側にも調整できる。 Here, in general, the operating characteristics such as pressure, temperature, flow rate, and efficiency vary depending on the rotational speed of the compressor. In a single-shaft gas turbine, the rotational speed of the compressor matches the rotational speed of the turbine shaft. The operating characteristics of the machine depend on the turbine speed. On the other hand, in the case of the present embodiment, the turbine shaft 110a of the gas generator to which the compressor 103 is connected is disconnected from the turbine shaft 110b of the power turbine, so the rotation speed is selected regardless of the rotation speed of the power turbine. be able to. Therefore, the rotation speed that makes the compressor 103 efficient is set as an operating condition, and for example, the deviation between the rotation speed of the gas generator measured by the measuring instrument 202a and the set rotation speed exceeds a threshold value (set value). In this case, the efficiency of the gas turbine equipment can be improved by causing the rotation speed of the gas generator to approach the set rotation speed by applying torque of the electric motor 114. If a motor generator is used as the motor 114, the applied torque can be reversed in the positive and negative directions, so that the rotation speed of the compressor 103 can be adjusted not only on the rising side but also on the lowering side.
 2軸式のガスタービン100Aにおいても、電動機114を連結した場合におけるタービン軸110aのねじり応力に関連する課題は生じ得るので、流体継手116を介して電動機軸115をタービン軸110aに連結することが有意義である。流体継手116を介して電動機軸115を連結することによって、タービン軸110aに生じるねじり応力やトルク脈動を抑え、タービン軸110aの回転数の選択幅を拡大することができる。圧縮機103の効率が良くなる回転数は大気条件やMWD204によって異なるので、回転数の選択幅が広がることで圧縮機103の性能を十分に発揮させ得る。 Even in the two-shaft gas turbine 100A, problems related to the torsional stress of the turbine shaft 110a when the electric motor 114 is connected can occur, so that the motor shaft 115 can be connected to the turbine shaft 110a via the fluid coupling 116. Meaningful. By connecting the motor shaft 115 via the fluid coupling 116, the torsional stress and torque pulsation generated in the turbine shaft 110a can be suppressed, and the selection range of the rotational speed of the turbine shaft 110a can be expanded. Since the rotational speed at which the efficiency of the compressor 103 is improved varies depending on the atmospheric conditions and the MWD 204, the range of selection of the rotational speed can be widened to fully exhibit the performance of the compressor 103.
 なお、2軸式のガスタービン100Aに発明を適用した場合の特有の効果を先行して説明したが、本実施の形態によれば、前述した各実施の形態と共通する効果を得ることもできる。例えば、発電機111の発電出力の一部で電動機114を駆動する構成とすれば、MWD204の急減に発電出力が追従できないような場合には、電動機114によって発電機111の発電出力の一部をガスジェネレータの回転エネルギーに変換することで、電力系統113に送る発電出力をMWD204の急減に追従させることができる。さらに、電動機114に電動発電機を用いれば、MWD204が急増した場合には、電動機114を発電機として駆動し、ガスジェネレータの回転動力を一部電気エネルギーに変換して発電機111の発電出力を補填することによって、電力系統113に送る発電出力をMWD204の急増に追従させることができる。 In addition, although the specific effect when the invention is applied to the two-shaft gas turbine 100A has been described in advance, according to the present embodiment, it is also possible to obtain the same effect as each of the above-described embodiments. . For example, if the motor 114 is driven by a part of the power generation output of the power generator 111, if the power generation output cannot follow the sudden decrease of the MWD 204, a part of the power generation output of the power generator 111 is reduced by the motor 114. By converting the rotational energy of the gas generator, the power generation output sent to the power system 113 can follow the sudden decrease of the MWD 204. Furthermore, if a motor generator is used for the motor 114, when the MWD 204 increases rapidly, the motor 114 is driven as a generator, and the rotational power of the gas generator is partially converted into electric energy to generate the power output of the generator 111. By compensating, the power generation output sent to the electric power system 113 can follow the rapid increase of the MWD 204.
 (第5の実施の形態)
 図10は本発明の第5の実施の形態に係るガスタービン設備の概略図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。
(Fifth embodiment)
FIG. 10 is a schematic view of a gas turbine facility according to the fifth embodiment of the present invention. In the present embodiment, the same parts as those of the embodiment already described are denoted by the same reference numerals as those in the above-described drawings, and the description thereof is omitted.
 本実施の形態は第4の実施の形態の一具体例である。図10に示したガスタービン設備では、パワータービンの発電機111と電動機114aとの間にインバータ602が介在している。電動機114aは電動発電機であり、流体継手116を介してガスジェネレータのタービン軸110aに連結されるとともに、回路603を介してインバータ602に接続している。インバータ602は、発電機111を電力系統113に接続する送電線に回路601を介して接続している。回路601、インバータ602及び回路603を介して発電機111と電動機114aとを接続した構成である。また、圧縮機103の入口には、大気温度、大気圧、大気湿度を計測してガスタービン制御装置203Bにそれぞれ出力する計測器605-607が設けられている。 This embodiment is a specific example of the fourth embodiment. In the gas turbine facility shown in FIG. 10, an inverter 602 is interposed between a power turbine generator 111 and an electric motor 114a. The electric motor 114 a is a motor generator, and is connected to the turbine shaft 110 a of the gas generator via the fluid coupling 116 and connected to the inverter 602 via the circuit 603. The inverter 602 is connected via a circuit 601 to a power transmission line that connects the generator 111 to the power system 113. In this configuration, the generator 111 and the motor 114a are connected via a circuit 601, an inverter 602, and a circuit 603. Further, at the inlet of the compressor 103, measuring devices 605-607 are provided for measuring the atmospheric temperature, atmospheric pressure, and atmospheric humidity and outputting them to the gas turbine control device 203B.
 なお、本実施の形態のガスタービン設備には、油量調整弁401が備わっているが、油量調整弁401の構成や制御態様は第3の実施の形態(図6-図8参照)と同様である。その他のハード構成は第4の実施の形態に係るガスタービン設備(図9参照)と同様としてある。 The gas turbine equipment of the present embodiment is provided with an oil amount adjustment valve 401. The configuration and control mode of the oil amount adjustment valve 401 are the same as those of the third embodiment (see FIGS. 6 to 8). It is the same. Other hardware configurations are the same as those of the gas turbine equipment (see FIG. 9) according to the fourth embodiment.
 図10の構成によれば、回路601、インバータ602及び回路603を介して発電機111の発電出力の一部を受けて電動機114aを電動機として駆動することができる。また、電動機114aを発電機として駆動することでガスジェネレータの一部の回転動力を電気エネルギーに変換して回路603、インバータ602及び回路601を介して発電機111の出力に補填することができる。電動機114aの運転モード(発電機モード/電動機モード)や発電負荷及び電動機負荷はインバータ602により制御される。インバータ602は、ガスタービン制御装置203Bの電動機制御装置203f(図3又は図7参照)からの制御信号604に従って電動機114aを制御する。制御信号604は、計測器605-607で計測された大気温度、大気圧及び大気湿度、計測器202a,202bで計測されたタービン回転数、計測器201で計測された発電出力、及びMWD204を引数として演算される。例えば、各引数の組み合わせと制御信号604とのテーブルを作成しておけば、各入力信号を基に制御信号604を生成することができる。また、各引数を変数とする関数で制御信号604を表し、各入力信号を基に制御信号604を生成することもできる。排気112bの温度等も制御信号604を算出するための引数として用いることができる。制御信号604はこれらの例に限定されず、他の方法で演算するようにしても良い。 10, the motor 114a can be driven as a motor by receiving a part of the power generation output of the power generator 111 via the circuit 601, the inverter 602, and the circuit 603. Further, by driving the electric motor 114a as a generator, a part of the rotational power of the gas generator can be converted into electric energy and compensated for the output of the generator 111 via the circuit 603, the inverter 602, and the circuit 601. The operation mode (generator mode / motor mode), the power generation load, and the motor load of the motor 114a are controlled by the inverter 602. The inverter 602 controls the electric motor 114a in accordance with a control signal 604 from the electric motor control device 203f (see FIG. 3 or FIG. 7) of the gas turbine control device 203B. The control signal 604 includes the atmospheric temperature, atmospheric pressure and atmospheric humidity measured by the measuring instruments 605-607, the turbine rotation speed measured by the measuring instruments 202a and 202b, the power generation output measured by the measuring instrument 201, and the MWD 204 as arguments. Is calculated as For example, if a table of combinations of arguments and the control signal 604 is created, the control signal 604 can be generated based on each input signal. Further, the control signal 604 can be expressed by a function having each argument as a variable, and the control signal 604 can be generated based on each input signal. The temperature of the exhaust 112b can also be used as an argument for calculating the control signal 604. The control signal 604 is not limited to these examples, and may be calculated by other methods.
 このような構成によって必要に応じてタービン軸110aにトルクを印加し、MWD204の急変に追従して電力系統113に送る発電出力を変化させることができる。また、状況に応じて圧縮機103の回転数を制御して効率の最適化を図ることもできる。そして、その際のタービン軸110aのねじり応力やトルク脈動が流体継手116によって抑えられるので、発電出力の追従制御を良好に実現することができる。構成的に共通する説明済みの実施の形態と同様の効果も勿論得られる。 With this configuration, torque can be applied to the turbine shaft 110a as necessary, and the power generation output sent to the power system 113 can be changed following the sudden change of the MWD 204. Further, the efficiency can be optimized by controlling the rotation speed of the compressor 103 according to the situation. In addition, since the torsional stress and torque pulsation of the turbine shaft 110a at that time are suppressed by the fluid coupling 116, the follow-up control of the power generation output can be realized satisfactorily. Needless to say, the same effects as those of the embodiment described in common in terms of structure can also be obtained.
 (第6の実施の形態)
 第6の実施の形態が前述した各実施の形態と相違する点は、再生可能エネルギー発電装置を備えている点である。
(Sixth embodiment)
The sixth embodiment is different from the above-described embodiments in that a renewable energy power generation device is provided.
 6-1.ガスタービン設備
 図11は本発明の第6の実施の形態に係るガスタービン設備の概略図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。
6-1. Gas Turbine Equipment FIG. 11 is a schematic view of gas turbine equipment according to the sixth embodiment of the present invention. In the present embodiment, the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 同図に示したガスタービン設備は、風力発電装置701、及び計測器702,703を備えている。風力発電装置701は、発電機111を電力系統113に接続する送電線に接続していて、発電機111とともに電力系統113に送電する。計測器702,703は、風力発電装置701で電気エネルギーに変換される再生可能エネルギーである自然風の風向及び風速をそれぞれ計測しガスタービン制御装置203Cへ出力する。これら計測器702,703は風力発電装置701の風上となり得る所定の地点(複数ポイントでも良い)に設置されている。また、ガスタービン制御装置203Cには、電力計(不図示)により計測された風力発電装置701の発電出力704も入力される。 The gas turbine equipment shown in the figure includes a wind power generator 701 and measuring instruments 702 and 703. The wind power generator 701 is connected to a power transmission line that connects the generator 111 to the power system 113, and transmits power to the power system 113 together with the generator 111. The measuring instruments 702 and 703 measure the wind direction and wind speed of natural wind, which is renewable energy converted into electric energy by the wind power generator 701, and output the measured wind direction and wind speed to the gas turbine controller 203C. These measuring instruments 702 and 703 are installed at predetermined points (may be a plurality of points) that can be windward of the wind power generator 701. Further, the power generation output 704 of the wind power generator 701 measured by a power meter (not shown) is also input to the gas turbine control device 203C.
 その他のハード構成については、第5の実施の形態(図10参照)と同様とすることができる。また、本実施の形態では再生可能エネルギーを利用した発電装置として風力発電装置701を用いた場合を例示したが、これに限定されず太陽光発電装置や波力発電装置等の他の再生可能エネルギー発電装置、又はこれらを組み合わせた再生可能エネルギー発電システムで代替することもできる。例えば太陽光発電装置を用いる場合、計測器702,703に日照計等を用いることができる。また、再生可能エネルギー発電装置の発電出力変動の予測に利用できる信号をガスタービン制御装置203Cに供給する意味では、気象情報の提供機関からの気象情報を受信する受信装置等を計測器702,703に用いることもできる。 Other hardware configurations can be the same as those in the fifth embodiment (see FIG. 10). Moreover, although the case where the wind power generator 701 is used as a power generator using renewable energy is illustrated in the present embodiment, the present invention is not limited to this, and other renewable energy such as a solar power generator or a wave power generator. A power generation device or a renewable energy power generation system combining them can also be substituted. For example, when using a solar power generation device, a sunshine meter or the like can be used for the measuring instruments 702 and 703. Further, in the sense of supplying a signal that can be used to predict fluctuations in power generation output of the renewable energy power generation apparatus to the gas turbine control apparatus 203C, a receiving apparatus that receives weather information from a weather information provider is provided with measuring instruments 702 and 703. It can also be used.
 6-2.制御装置
 図12はガスタービン制御装置203Cの機能ブロック図である。本実施の形態における説明済みの実施の形態と同様の部分については同図において既出図面と同符号を付して説明を省略する。
6-2. Control Device FIG. 12 is a functional block diagram of the gas turbine control device 203C. In the present embodiment, the same parts as those in the already described embodiment are denoted by the same reference numerals as those in the previous drawings, and the description thereof is omitted.
 図12に示したガスタービン制御装置203Cは、出力予測装置203iを含んでいる。出力予測装置203iは、計測器702,703で計測された風向及び風速を引数として風力発電装置701の発電出力変動を予測する。例えば、計測器702,703で計測される風向及び風速、並びに風力発電装置701の設定時間後の発電出力のデータを予め採取し、計測される風向及び風速の組み合わせと設定時間後の風力発電出力の関係をテーブル化しておけば、テーブルに従って計測器702,703の計測値を基に設定時間後の風力発電出力を予測することができる。したがって、設定時間後の風力発電出力の予測値と風力発電出力704との差を演算することで、風力発電装置701の現在の風力発電出力704に対する設定時間後の風力発電出力の変動幅の予測値を演算することができる。計測される風向及び風速を基に風力発電装置701の特性の物理モデルで設定時間後の風力発電出力を予測し、風力発電出力の変動を予測することもできる。 The gas turbine control device 203C shown in Fig. 12 includes an output prediction device 203i. The output prediction device 203i predicts the power generation output fluctuation of the wind power generation device 701 using the wind direction and the wind speed measured by the measuring devices 702 and 703 as arguments. For example, the wind direction and wind speed measured by the measuring instruments 702 and 703, and the power generation output data after the set time of the wind power generator 701 are collected in advance, and the wind power generation output after the set time and the combination of the measured wind direction and wind speed If the above relationship is tabulated, the wind power generation output after the set time can be predicted based on the measurement values of the measuring instruments 702 and 703 according to the table. Therefore, by calculating the difference between the predicted value of the wind power generation output after the set time and the wind power output 704, the fluctuation range of the wind power output after the set time with respect to the current wind power output 704 of the wind power generation device 701 is predicted. The value can be calculated. Based on the measured wind direction and wind speed, the wind power generation output after a set time can be predicted by a physical model of the characteristics of the wind power generation apparatus 701, and the fluctuation of the wind power generation output can also be predicted.
 本実施の形態において、燃料流量制御装置203cは、前の各実施の形態と同様に計測器201で計測したガスタービン設備の発電出力がMWD204に近付くように燃料流量を演算し開度制御信号205を燃料調整弁106に出力する。発電機制御装置203eは、パワータービンの出力トルク(燃料流量)に応じてパワータービンの回転数の変化を抑制するように発電機111の負荷を制御する。電動機制御装置203fは、燃料流量制御ではMWD204に発電出力が追従しない場合にインバータ602に指令を与えて電動機114を制御し、発電出力の過不足を吸収する(図8と同様の手順)。そして、吸気流量制御装置203dは、圧縮機103の吸気流量の変動を抑制するようにIGV102に開度制御信号206を出力する。これらの制御によってMWD204に対して発電出力が追従する。 In the present embodiment, the fuel flow control device 203c calculates the fuel flow rate so that the power generation output of the gas turbine equipment measured by the measuring instrument 201 approaches the MWD 204 as in the previous embodiments, and the opening control signal 205 Is output to the fuel adjustment valve 106. The generator control device 203e controls the load of the generator 111 so as to suppress the change in the rotational speed of the power turbine according to the output torque (fuel flow rate) of the power turbine. In the fuel flow control, when the power generation output does not follow the MWD 204, the motor control device 203f gives a command to the inverter 602 to control the motor 114 and absorb the excess or deficiency of the power generation output (the same procedure as in FIG. 8). Then, the intake flow control device 203d outputs an opening degree control signal 206 to the IGV 102 so as to suppress fluctuations in the intake flow rate of the compressor 103. With these controls, the power generation output follows the MWD 204.
 このとき、本実施の形態のガスタービン制御装置203Cは、出力予測装置203iで演算した風力発電装置701の発電出力変動の予測値が設定値を超えた場合、油量制御装置203hによって当該予測値を基に油量調整弁401を制御して流体継手116のトルク伝達効率を制御する(図13参照)。 At this time, when the predicted value of the power generation output fluctuation of the wind power generator 701 calculated by the output predicting device 203i exceeds the set value, the gas turbine control device 203C of the present embodiment uses the oil amount control device 203h to determine the predicted value. Based on this, the oil amount adjusting valve 401 is controlled to control the torque transmission efficiency of the fluid coupling 116 (see FIG. 13).
 6-3.制御手順
 図13はガスタービン制御装置203Cによる油量調整弁401の制御手順を表すフローチャートである。ガスタービン制御装置203Cは、油量制御装置203hによりタービン負荷運転中に繰り返し同図の手順を実行する。
6-3. Control Procedure FIG. 13 is a flowchart showing a control procedure of the oil amount adjustment valve 401 by the gas turbine control device 203C. The gas turbine control device 203C repeatedly executes the procedure shown in the figure during the turbine load operation by the oil amount control device 203h.
 ・ステップS301-S304,S307-S309
 ステップS301-S304,S307-S309の手順は第3の実施の形態で説明したステップS201-S207の手順(図8参照)と同様である。異なる点は、ステップS304,S307の間にステップS305,S306が追加され、更にステップS306,S308の間にステップS310が追加されている点である。
Steps S301-S304, S307-S309
Steps S301-S304 and S307-S309 are similar to the steps S201-S207 (see FIG. 8) described in the third embodiment. The difference is that steps S305 and S306 are added between steps S304 and S307, and step S310 is further added between steps S306 and S308.
 ・ステップS305,S306,S310
 MWD204に対する発電出力の偏差が閾値を超えている場合(ステップS304)、油量制御装置203hは、出力予測装置203iで風力発電出力の変動を予測する(ステップS305)。風力発電出力変動の予測値を演算したら、油量制御装置203hは、予測値(絶対値)が閾値(設定値)以下であるか否かを判定し(ステップS306)、予測値が閾値以下であれば図8のステップS205と同じ要領で現在の発電出力のMWD204との偏差に応じて流体継手116に充填する制御油の目標圧力を設定する(ステップS307)。予測値が閾値を超えて入れば、油量制御装置203hは、予測値を基に流体継手116に充填する制御油の目標圧力を設定する(ステップS310)。例えば、風力発電出力の変動の予測値が閾値を超えていて、将来(設定時間後に)風力発電出力の変動に伴ってMWD204に対する発電出力の大幅な過不足が生じ得る場合には、更なる追従性の向上を目指して流体継手116の制御油の目標圧力を上げる。例えば、現在の発電出力(計測器201の計測値)のMWD204との偏差(相対値)に風力発電出力704の現在値に対する設定時間後の予測値の偏差(相対値)を加算した値(絶対値)を基に目標圧力を設定する。
Steps S305, S306, S310
When the deviation of the power generation output with respect to the MWD 204 exceeds the threshold (step S304), the oil amount control device 203h predicts the fluctuation of the wind power generation output by the output prediction device 203i (step S305). After calculating the predicted value of the wind power generation output fluctuation, the oil amount control device 203h determines whether or not the predicted value (absolute value) is less than or equal to the threshold (set value) (step S306), and the predicted value is less than or equal to the threshold. If there is, the target pressure of the control oil to be filled in the fluid coupling 116 is set in accordance with the deviation from the current power generation output MWD 204 in the same manner as in step S205 in FIG. 8 (step S307). If the predicted value exceeds the threshold value, the oil amount control device 203h sets the target pressure of the control oil that fills the fluid coupling 116 based on the predicted value (step S310). For example, when the predicted value of the fluctuation of the wind power generation output exceeds the threshold value, and the fluctuation of the wind power generation output in the future (after the set time) can cause a significant excess or deficiency of the power generation output with respect to the MWD 204, further follow-up The target pressure of the control oil of the fluid coupling 116 is increased with the aim of improving the performance. For example, a value obtained by adding a deviation (relative value) of a predicted value after a set time with respect to the current value of the wind power generation output 704 to a deviation (relative value) of the current power generation output (measured value of the measuring instrument 201) from the MWD 204 (absolute Value) based on the target value.
 ・ステップS308
 前述した通りステップS308は第3の実施の形態で説明したステップS206の手順(図8参照)と同様の手順である。すなわち、ステップS307,S309又はS310で油量調整弁401の制御油の目標圧力を設定したら、油量制御装置203hは、目標圧力に応じた開度制御信号402を生成し、油量調整弁401に出力して図13の手順を終了する。
Step S308
As described above, step S308 is the same as the procedure of step S206 (see FIG. 8) described in the third embodiment. That is, when the target pressure of the control oil of the oil amount adjustment valve 401 is set in step S307, S309, or S310, the oil amount control device 203h generates an opening degree control signal 402 corresponding to the target pressure, and the oil amount adjustment valve 401. To end the procedure of FIG.
 上記で説明した以外のガスタービン制御装置203Cの機能部の構成及び機能については、第3の実施の形態のガスタービン制御装置203A(図7参照)と同様とする。 The configuration and functions of the functional units of the gas turbine control device 203C other than those described above are the same as those of the gas turbine control device 203A (see FIG. 7) of the third embodiment.
 6-4.効果
 本実施の形態によれば、第5の実施の形態と同様の効果に加え、次の効果が得られる。
6-4. Effects According to the present embodiment, in addition to the same effects as those of the fifth embodiment, the following effects can be obtained.
 計測器201で計測される発電出力には気象状況により大きく変動し得る風力発電出力704が含まれているため、MWD204との偏差もそれだけ激しく変化し得る。そのため、ガスタービン制御装置203Cによる電動機114aによる印加トルクの変動も激化し得る。本実施の形態によれば、MWD204に対する発電出力の偏差に風力発電出力の変動を加味して流体継手116のトルク伝達効率を制御することにより、風力発電出力の変動を包含した発電出力のMWD204に対する過不足の急変に備え、そして柔軟に対応することができる。勿論、状況に応じてタービン軸110aのねじり応力の低減と経済性を高めた運転も可能である。 Since the power generation output measured by the measuring instrument 201 includes a wind power generation output 704 that can vary greatly depending on weather conditions, the deviation from the MWD 204 can also change drastically. For this reason, the fluctuation of the applied torque by the electric motor 114a by the gas turbine control device 203C can be intensified. According to the present embodiment, by controlling the torque transmission efficiency of the fluid coupling 116 by adding the fluctuation of the wind power generation output to the deviation of the power generation output with respect to the MWD 204, the power generation output including the fluctuation of the wind power generation output with respect to the MWD 204 is controlled. Be prepared for sudden changes in excess and deficiency and respond flexibly. Of course, operation with reduced torsional stress and improved economic efficiency of the turbine shaft 110a is also possible depending on the situation.
 なお、本実施の形態では第3の実施の形態の油量調整弁401の制御手順を包含する制御態様を例に挙げて説明したが、発電出力のMWD204との偏差とは無関係に、単に風力発電出力の予測変動幅が閾値を超えているか否かで油量調整弁401の開度を増減させる制御とすることもできる。例えば、風力発電出力の予測変動幅が閾値を超えていれば現在よりも流体継手116の内部圧力を上げるように、閾値以下であれば流体継手116の内部圧力を下げるように、開度制御信号402を生成することもできる。 In the present embodiment, the control mode including the control procedure of the oil amount adjustment valve 401 of the third embodiment has been described as an example. However, regardless of the deviation from the MWD 204 of the power generation output, the wind power is simply It is also possible to control to increase or decrease the opening of the oil amount adjustment valve 401 depending on whether or not the predicted fluctuation range of the power generation output exceeds a threshold value. For example, the opening degree control signal is such that if the predicted fluctuation range of the wind power generation output exceeds a threshold value, the internal pressure of the fluid coupling 116 is increased more than the current level, and if it is equal to or less than the threshold value, the internal pressure of the fluid coupling 116 is decreased. 402 can also be generated.
 (その他)
 本発明の技術的範囲は以上の実施の形態の態様に限定されるものではなく、種々の変形例が含まれ得る。例えば、前述した各実施の形態に備わった構成要素は全てが必須のものではなく、発明の要部ではない要素は適宜省略可能である。また、各実施の形態の構成要素は、機能や役割が共通する他の要素で代替することができる。また、各実施の形態は相互に又は部分的に組み合わせ可能である。
(Other)
The technical scope of the present invention is not limited to the aspect of the above embodiment, and various modifications can be included. For example, not all the constituent elements included in each of the above-described embodiments are essential, and elements that are not essential parts of the invention can be omitted as appropriate. In addition, the constituent elements of each embodiment can be replaced with other elements having a common function and role. The embodiments can be combined with each other or partially.
103      圧縮機
104      圧縮空気
105      燃焼器
107      燃料
108      燃焼ガス
109      タービン
109a     高圧タービン
109b     低圧タービン
110,110a タービン軸
111      発電機
114,114a 電動機
116      流体継手
201      計測器
203f     電動機制御装置
203h     油量制御装置
203i     出力予測装置
204      MWD(ガスタービン出力指令)
401      油量調整弁
602      インバータ
701      風力発電装置(再生可能エネルギー発電装置)
702,703  計測器
DESCRIPTION OF SYMBOLS 103 Compressor 104 Compressed air 105 Combustor 107 Fuel 108 Combustion gas 109 Turbine 109a High pressure turbine 109b Low pressure turbine 110, 110a Turbine shaft 111 Generator 114, 114a Electric motor 116 Fluid coupling 201 Measuring device 203f Electric motor control device 203h Oil quantity control device 203i Output prediction device 204 MWD (gas turbine output command)
401 Oil amount adjusting valve 602 Inverter 701 Wind power generator (renewable energy power generator)
702, 703 Measuring instrument

Claims (10)

  1.  空気を吸い込んで圧縮する圧縮機と、
     前記圧縮機からの圧縮空気を燃料とともに燃焼する燃焼器と、
     前記燃焼器からの燃焼ガスにより駆動するタービンと、
     タービン軸にトルクを印加する電動機と、
     前記タービン軸及び前記電動機を連結する流体継手と
    を備えたことを特徴とするガスタービン設備。
    A compressor that sucks in air and compresses it;
    A combustor for combusting compressed air from the compressor together with fuel;
    A turbine driven by combustion gas from the combustor;
    An electric motor for applying torque to the turbine shaft;
    A gas turbine equipment comprising a fluid coupling connecting the turbine shaft and the electric motor.
  2.  請求項1のガスタービン設備において、前記電動機が電動発電機であることを特徴とするガスタービン設備。 2. The gas turbine equipment according to claim 1, wherein the electric motor is a motor generator.
  3.  請求項1のガスタービン設備において、燃料流量制御による変化率の制限値を超えてタービン出力を変化させる場合に前記電動機を制御して前記タービン軸にトルクを印加する電動機制御装置を備えていることを特徴とするガスタービン設備。 The gas turbine equipment according to claim 1, further comprising an electric motor control device that controls the electric motor and applies torque to the turbine shaft when the turbine output is changed beyond a limit value of a change rate by fuel flow control. Gas turbine equipment characterized by
  4.  請求項1のガスタービン設備において、前記流体継手に充填する油量を調整する油量調整弁を備えていることを特徴とするガスタービン設備。 2. The gas turbine equipment according to claim 1, further comprising an oil amount adjusting valve for adjusting an oil amount filled in the fluid coupling.
  5.  請求項4のガスタービン設備において、
     タービン軸に連結した発電機と、
     前記発電機の発電出力を計測する計測器と、
     前記計測器で計測した発電出力とガスタービン出力指令との偏差に応じて前記油量調整弁を制御して前記流体継手のトルク伝達効率を変化させる油量制御装置と
    を備えていることを特徴とする前記ガスタービン設備。
    The gas turbine equipment according to claim 4,
    A generator connected to the turbine shaft;
    A measuring instrument for measuring the power generation output of the generator;
    An oil amount control device that controls the oil amount adjusting valve in accordance with a deviation between a power generation output measured by the measuring instrument and a gas turbine output command to change a torque transmission efficiency of the fluid coupling. The gas turbine equipment.
  6.  請求項5のガスタービン設備において、
     前記発電機に接続された再生可能エネルギー発電装置と、
     前記再生可能エネルギー発電装置の発電出力を予測する出力予測装置とを備え、
     前記油量調整装置が、前記出力予測装置による予測値が設定値を超えた場合に前記予測値を基に前記油量調整弁を制御することを特徴とする前記ガスタービン設備。
    The gas turbine equipment according to claim 5,
    A renewable energy power generator connected to the generator;
    An output prediction device for predicting the power generation output of the renewable energy power generation device,
    The gas turbine equipment, wherein the oil amount adjusting device controls the oil amount adjusting valve based on the predicted value when a predicted value by the output predicting device exceeds a set value.
  7.  請求項6のガスタービン設備において、
     前記再生可能エネルギー装置は風力発電装置であり、
     前記出力予測装置は、風速計で測定した風速を基に前記再生可能エネルギー発電装置の発電出力を予測する
    ことを特徴とするガスタービン設備。
    The gas turbine equipment according to claim 6, wherein
    The renewable energy device is a wind power generator;
    The output prediction device predicts a power generation output of the renewable energy power generation device based on a wind speed measured by an anemometer.
  8.  請求項1-7のいずれかのガスタービン設備において、異なる回転数で回転し得る複数のタービンを含むことを特徴とする前記ガスタービン設備。 8. The gas turbine equipment according to claim 1, comprising a plurality of turbines capable of rotating at different rotational speeds.
  9.  請求項8のガスタービン設備において、前記電動機は、前記流体継手を介してガスジェネレータのタービン軸に連結されていることを特徴とするガスタービン設備。 9. The gas turbine equipment according to claim 8, wherein the electric motor is connected to a turbine shaft of a gas generator through the fluid coupling.
  10.  請求項9のガスタービン設備において、パワータービンの発電機と前記電動機との間に介在するインバータを備えていることを特徴とする前記ガスタービン設備。 10. The gas turbine equipment according to claim 9, further comprising an inverter interposed between a power turbine generator and the electric motor.
PCT/JP2013/057553 2013-03-15 2013-03-15 Gas turbine equipment WO2014141483A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/057553 WO2014141483A1 (en) 2013-03-15 2013-03-15 Gas turbine equipment
JP2015505210A JP5951885B2 (en) 2013-03-15 2013-03-15 Gas turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057553 WO2014141483A1 (en) 2013-03-15 2013-03-15 Gas turbine equipment

Publications (1)

Publication Number Publication Date
WO2014141483A1 true WO2014141483A1 (en) 2014-09-18

Family

ID=51536176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057553 WO2014141483A1 (en) 2013-03-15 2013-03-15 Gas turbine equipment

Country Status (2)

Country Link
JP (1) JP5951885B2 (en)
WO (1) WO2014141483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129030A1 (en) * 2015-02-09 2016-08-18 三菱重工コンプレッサ株式会社 Gas turbine system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294915A (en) * 1988-05-24 1989-11-28 Toshiba Corp Gas turbine control device
JPH0861085A (en) * 1994-08-25 1996-03-05 Mitsubishi Heavy Ind Ltd Gas turbine
JPH10159586A (en) * 1996-11-28 1998-06-16 Kawasaki Steel Corp Operating method of gas turbine power generating facility and gas turbine power generating facility
JP2004506116A (en) * 2000-08-10 2004-02-26 コノコフィリップス カンパニー Compressor starting torque converter
JP2007505261A (en) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド Multi-shaft turbine generator system and control method
US7422543B2 (en) * 2005-09-14 2008-09-09 Conocophillips Company Rotation coupling employing torque converter and synchronization motor
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
JP2011247256A (en) * 2010-05-21 2011-12-08 General Electric Co <Ge> System and method for controlling integrated drive train

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294915A (en) * 1988-05-24 1989-11-28 Toshiba Corp Gas turbine control device
JPH0861085A (en) * 1994-08-25 1996-03-05 Mitsubishi Heavy Ind Ltd Gas turbine
JPH10159586A (en) * 1996-11-28 1998-06-16 Kawasaki Steel Corp Operating method of gas turbine power generating facility and gas turbine power generating facility
JP2004506116A (en) * 2000-08-10 2004-02-26 コノコフィリップス カンパニー Compressor starting torque converter
JP2007505261A (en) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド Multi-shaft turbine generator system and control method
US7422543B2 (en) * 2005-09-14 2008-09-09 Conocophillips Company Rotation coupling employing torque converter and synchronization motor
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
JP2011247256A (en) * 2010-05-21 2011-12-08 General Electric Co <Ge> System and method for controlling integrated drive train

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129030A1 (en) * 2015-02-09 2016-08-18 三菱重工コンプレッサ株式会社 Gas turbine system
JPWO2016129030A1 (en) * 2015-02-09 2017-11-02 三菱重工コンプレッサ株式会社 Gas turbine system
US20180016976A1 (en) * 2015-02-09 2018-01-18 Mitsubishi Heavy Industries Compressor Corporation Gas turbine system
US10612463B2 (en) 2015-02-09 2020-04-07 Mitsubishi Heavy Industries Compressor Corporation Gas turbine system equipped with variable speed generator connected to rotary shaft of low-pressure turbine of two-shaft gas turbine

Also Published As

Publication number Publication date
JP5951885B2 (en) 2016-07-13
JPWO2014141483A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US10995664B2 (en) Compressed air energy storage and power generation method and compressed air energy storage and power generation device
CN102177339B (en) Wind power station
US20130318965A1 (en) Supercharged Combined Cycle System With Air Flow Bypass To HRSG And Hydraulically Coupled Fan
CN110805521B (en) Novel frequency modulation control system and control method for energy storage type hydraulic wind generating set
CN104329281A (en) Variable frequency energy-saving system for movable blade adjustable type induced draft fan
JP2021511775A (en) Black start recovery
CN101680431A (en) Wind energy converter comprising a superposition gear
CN108131306A (en) A kind of more rotating speed vapour electricity dual drive systems for axial fan
US20170002745A1 (en) Control apparatus for angling guide vanes of a torque converter
Duan et al. Power balance control of micro gas turbine generation system based on supercapacitor energy storage
Wang et al. Model predictive control for power optimization in a hydrostatic wind turbine
JP2016512295A (en) Turbine of turbo compound engine with variable load and its controller
JP6951436B2 (en) Controlling power exchange from self-excited transducers
Schmitz et al. Dynamic transmission response of a hydrostatic transmission measured on a test bench
US9097235B2 (en) Wind turbine control methods and systems for cold climate and low altitude conditions
CN103306900A (en) Methods and systems for alleviating loads in off-shore wind turbines
CN103207373A (en) Test system and test method of backup power of pitch system of wind turbine generator set
JP5951885B2 (en) Gas turbine equipment
CN105024405A (en) Three-machine set drive variable-frequency generation system
CN100376065C (en) Wind power generating system based on direct current generator
CN207960984U (en) A kind of more rotating speed vapour electricity dual drive systems for axial fan
CN102157943B (en) Method for stabilizing network side voltage of wind power generator unit
Wei et al. Research on active power online optimal control for hydrostatic transmission wind turbine
JP2013219966A (en) Power generation system, and control method for power generation system
JP2015161243A (en) Power-generating system and power-generating system control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878370

Country of ref document: EP

Kind code of ref document: A1