WO2014141424A1 - 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置 - Google Patents

噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置 Download PDF

Info

Publication number
WO2014141424A1
WO2014141424A1 PCT/JP2013/057156 JP2013057156W WO2014141424A1 WO 2014141424 A1 WO2014141424 A1 WO 2014141424A1 JP 2013057156 W JP2013057156 W JP 2013057156W WO 2014141424 A1 WO2014141424 A1 WO 2014141424A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
flow path
fluid
spray nozzle
medium
Prior art date
Application number
PCT/JP2013/057156
Other languages
English (en)
French (fr)
Inventor
洋文 岡▲崎▼
折井 明仁
倉増 公治
祐樹 近藤
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to PCT/JP2013/057156 priority Critical patent/WO2014141424A1/ja
Priority to PCT/JP2014/056896 priority patent/WO2014142305A1/ja
Publication of WO2014141424A1 publication Critical patent/WO2014141424A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/044Slits, i.e. narrow openings defined by two straight and parallel lips; Elongated outlets for producing very wide discharges, e.g. fluid curtains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0433Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0491Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid the liquid and the gas being mixed at least twice along the flow path of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet

Definitions

  • the present invention relates to a two-fluid spray nozzle that atomizes a spray fluid (liquid) with a spray medium (gas), and in particular, a spray nozzle that atomizes a liquid fuel spray fluid with a spray medium, and a spray
  • the present invention relates to a burner having a nozzle and a combustion apparatus having a burner having a spray nozzle.
  • a floating combustion method in which fuel is horizontally burned in a furnace space (hereinafter referred to as a furnace) provided in a boiler that is a combustion apparatus is often used.
  • a liquid fuel such as fuel oil
  • the fuel is atomized by a spray nozzle and floated in a furnace and burned.
  • Such a spray nozzle is used as a spray nozzle in a combustion apparatus using liquid fuel as a main fuel. Further, even in a combustion apparatus that uses solid fuel as the main fuel, such as pulverized coal, when liquid fuel is used for auxiliary combustion for start-up or flame stabilization, it is installed in the combustion apparatus and used as a spray nozzle.
  • Patent Document 1 discloses a so-called intermediate mixing type or Y jet type spray nozzle that mixes liquid fuel and a spray medium in the middle of a flow path as an example of a spray nozzle. Has been.
  • Patent Document 1 The spray nozzle disclosed in Patent Document 1 is simple in shape and suitable for large capacity, but since the atomization characteristics vary depending on the flow rate of liquid fuel in particular, the operation state with good atomization performance may be narrow. It becomes a problem.
  • Non-patent Document 1 A burner using a pilot burner or an ignition torch having a spray nozzle for forming a small-volume spray and a plurality of spray nozzles having a spray nozzle for spraying a larger amount of liquid fuel than the ignition torch is disclosed.
  • Non-Patent Document 1 uses a small-volume spray nozzle when the amount of liquid fuel is small as in ignition, and a large-capacity spray nozzle when the amount of liquid fuel is large. Regardless of the load range, the spray pressure and the amount of spray medium used are adjusted so that atomization of the spray is within an appropriate range, thereby achieving both large capacity and stable combustion.
  • Patent Document 2 discloses a spray nozzle that is an example of a method for handling a wide load range with one spray nozzle.
  • a configuration of the spray nozzle is disclosed in which a plurality of liquid fuel pipes are provided to the spray nozzle having a plurality of outlet holes, and each is connected to the outlet hole.
  • Patent Document 1 shows a method of atomizing liquid fuel even when the ratio of the spray medium is out of the proper range, but the momentum of the liquid fuel or spray medium is more than the design range. Under low load conditions, the energy of the fluid is lowered and the atomization performance is deteriorated. For this reason, the load range in which dust can be reduced is limited.
  • Patent Document 2 shows a configuration of a spray nozzle that is provided with a plurality of liquid fuel pipes and is connected to each of the outlet holes for a spray nozzle having a plurality of outlet holes.
  • An object of the present invention is to sufficiently mix a finely mixed fluid and a combustion gas in which liquid fuel and a spray medium are mixed around a spray nozzle over a wide load range from a low load to a high load. It is possible to realize a combustion apparatus including a spray nozzle that suppresses the generation of dust and CO (carbon monoxide) combustion emissions, a burner that includes the spray nozzle, and a burner that includes the spray nozzle.
  • a combustion apparatus including a spray nozzle that suppresses the generation of dust and CO (carbon monoxide) combustion emissions, a burner that includes the spray nozzle, and a burner that includes the spray nozzle.
  • the spray nozzle of the present invention is provided with a spray fluid flow path for supplying a spray fluid to the inlet side of the spray nozzle and a spray medium flow path for supplying a spray medium for spraying the spray fluid.
  • a spray nozzle that ejects a mixed fluid obtained by mixing the spray fluid flowing in the spray fluid flow path and the spray medium flowing in the spray medium flow path to the outside from a plurality of outlet holes opened at the tip of the spray nozzle.
  • the first branch flow channel branched from the spray fluid flow channel downstream of the spray fluid flow channel and the spray medium flow channel branched from the spray medium flow channel downstream of the spray fluid flow channel.
  • a second branch flow path is disposed, and the first branch flow path is disposed so that the first branch flow path and the second branch flow path are connected inside the spray nozzle.
  • Spray fluid flowing down the path and the second branch flow path The mixed fluid mixed with the spraying medium flowing down is configured to flow down, and the mixing of the sprayed fluid and the spraying medium on the downstream side of the second branch channel near the tip of the spray nozzle.
  • Plural pairs of opposed flow paths for causing the fluid to flow down and collide with each other are disposed, and the opposed flow path is formed in the outlet hole so that the mixed fluid collided in the opposed flow path is ejected from the outlet hole to the outside.
  • a gas-liquid separation mechanism that separates the gas and liquid of the spray fluid and the spray medium is formed inside the spray medium flow path, and the flow path is branched into a plurality of downstream sides of the gas-liquid separation mechanism.
  • a branching portion is provided, and the plurality of branching portions are connected to different outlet holes through the opposing flow paths arranged on the downstream side.
  • the spray nozzle of the present invention is provided with a spray fluid flow path for supplying a spray fluid to the inlet side of the spray nozzle and a spray medium flow path for supplying a spray medium for spraying the spray fluid.
  • Spray that ejects a mixed fluid which is a mixture of a spray fluid flowing through the provided spray fluid flow path and a spray medium flowing through the spray medium flow path, from a plurality of outlet holes opened at the tip of the spray nozzle.
  • a first branch channel branched from the spray fluid channel downstream of the spray fluid channel inside the spray nozzle and a branch from the spray medium channel downstream of the spray medium channel
  • Each of the second branch flow paths is disposed so that the first branch flow path and the second branch flow path are connected to each other inside the spray nozzle.
  • Spray fluid flowing down the flow path and the second branch The mixed fluid mixed with the spraying medium flowing down the passage is configured to flow down, and the spraying fluid and the spraying medium are mixed on the downstream side of the second branch channel near the tip of the spraying nozzle.
  • a plurality of opposed flow paths for causing the mixed fluid to flow down and collide with each other are disposed, and the opposed flow path is disposed at the outlet so that the mixed fluid collided in the opposed flow path is ejected to the outside from the outlet hole.
  • a gas-liquid separation mechanism that separates the gas-liquid of the spray fluid and the spray medium is formed inside the spray fluid flow path, and the flow path is divided into a plurality of flow paths downstream of the gas-liquid separation mechanism.
  • a plurality of branch portions branched to each other are connected to different outlet holes through the opposed flow passages arranged on the downstream side.
  • the burner provided with the spray nozzle of the present invention is provided with a spray fluid flow path for supplying a spray fluid to the inlet side of the spray nozzle, and a spray medium flow path for supplying a spray medium for spraying the spray fluid,
  • a mixed fluid obtained by mixing the spray fluid flowing in the spray fluid flow path provided in the spray nozzle and the spray medium flowing in the spray medium flow path is exposed to the outside from a plurality of outlet holes opened at the tip of the spray nozzle.
  • a spray nozzle for jetting wherein the spray nozzle is disposed in the spray nozzle at a downstream side of the spray fluid flow path downstream from the spray fluid flow path and at a downstream side of the spray medium flow path.
  • a passage is connected to each of the outlet holes, and a gas-liquid separation mechanism for separating the gas-liquid of the spray fluid and the spray medium is formed inside the spray-medium medium flow path and flows downstream of the gas-liquid separation mechanism.
  • a burner provided with a spray nozzle configured to connect a plurality of branch sections that branch into a plurality of paths, and to connect the plurality of branch sections to different outlet holes through the opposing flow paths disposed on the downstream side.
  • the fuel as a spray fluid Disposed the fuel supply system for supplying the mist nozzle, characterized in that the steam or compressed air were provided with the spray nozzles spray medium supply system for supplying to the atomizing medium used for spraying of the atomizing fluid.
  • the burner provided with the spray nozzle of the present invention is provided with a spray fluid flow path for supplying a spray fluid to the inlet side of the spray nozzle, and a spray medium flow path for supplying a spray medium for spraying the spray fluid,
  • the mixed fluid obtained by mixing the spray fluid flowing in the spray fluid flow path provided in the spray nozzle and the spray medium flowing in the spray medium flow path is externally provided through a plurality of outlet holes opened at the tip of the spray nozzle.
  • a second branch passage branched from the medium flow passage is provided, and the first branch passage and the second branch passage are connected inside the spray nozzle.
  • the mixed fluid mixed with the spray medium flowing down the second branch flow path is configured to flow down, and the spray fluid and the spray are arranged downstream of the second branch flow path near the tip of the spray nozzle.
  • a plurality of opposed flow paths for causing the mixed fluid mixed with the working medium to flow down and collide with each other, and the mixed fluid collided in the opposed flow path is ejected to the outside from the outlet hole.
  • a counter-flow channel is connected to each of the outlet holes, and a gas-liquid separation mechanism for separating the gas-liquid of the spray fluid and the spray medium is formed inside the spray fluid channel, and on the downstream side of the gas-liquid separation mechanism
  • a burner provided with a spray nozzle configured to connect a plurality of branch portions branching into a plurality of flow paths, and to connect the plurality of branch sections branched to the different outlet holes through the opposing flow paths disposed on the downstream side.
  • the fuel as a spray fluid before Fuel supply system for supplying to the spray nozzle was arranged, characterized in that the steam or compressed air were provided with the spray nozzles spray medium supply system for supplying to the atomizing medium used for spraying of the atomizing fluid.
  • a combustion apparatus including a burner having a spray nozzle according to the present invention includes a spray fluid flow path for supplying a spray fluid to an inlet side of the spray nozzle, and a spray medium flow path for supplying a spray medium for spraying the spray fluid.
  • a plurality of opposing flow paths are provided in which the mixed fluid in which the fluid and the spray medium are mixed face down to collide with each other, and the mixed fluid that has collided in the opposed flow path is ejected to the outside from the outlet hole.
  • the opposed flow path is connected to the outlet hole, and a gas-liquid separation mechanism for separating the vapor and liquid of the spray fluid and the spray medium is formed inside the spray medium flow path, and the gas-liquid separation mechanism
  • a spray nozzle configured to connect a plurality of branch portions that are branched into a plurality of flow paths on the downstream side, and to connect the plurality of branched branches to different outlet holes through the opposed flow paths disposed on the downstream side.
  • a combustion device equipped with a burner A combustion furnace for burning fuel, a fuel supply system for supplying fuel to the combustion furnace, a combustion gas supply system for supplying combustion gas to the combustion furnace, the fuel supply system, and the combustion gas supply system Connected to the burner for burning the fuel provided on the furnace wall of the combustion furnace, a heat exchanger for recovering heat from the combustion exhaust gas generated in the combustion furnace, and the heat recovery combustion exhaust gas to the outside of the combustion furnace It has a flue to supply to.
  • a combustion apparatus including a burner having a spray nozzle according to the present invention includes a spray fluid flow path for supplying a spray fluid to an inlet side of the spray nozzle, and a spray medium flow path for supplying a spray medium for spraying the spray fluid. And a plurality of mixed fluids obtained by mixing the spray fluid flowing in the spray fluid flow path provided in the spray nozzle and the spray medium flowing in the spray medium flow path are opened at the tip of the spray nozzle.
  • a second branch flow path branched from the spray medium flow path is provided on each side, and the first branch flow path and the second branch flow path are connected inside the spray nozzle. Arranged to flow through the first branch channel.
  • a plurality of opposing flow paths are provided in which the mixed fluid in which the spray fluid and the spray medium are mixed to flow down and collide with each other, and the mixed fluid that has collided in the counter flow path is ejected to the outside from the outlet hole.
  • the opposing flow path is connected to the outlet hole to form a gas-liquid separation mechanism for separating the gas-liquid of the spray fluid and the spray medium inside the spray fluid flow path, and the gas-liquid separation mechanism
  • a spray nozzle configured to connect a plurality of branch portions that are branched into a plurality of flow paths on the downstream side, and to connect the plurality of branched branches to different outlet holes through the opposed flow paths disposed on the downstream side.
  • Combustion device equipped with a burner having A combustion furnace that burns fuel, a fuel supply system that supplies fuel to the combustion furnace, a combustion gas supply system that supplies combustion gas to the combustion furnace, the fuel supply system, and the combustion gas supply A burner that is connected to the system and burns fuel provided on the furnace wall of the combustion furnace, a heat exchanger that recovers heat from the combustion exhaust gas generated in the combustion furnace, and a heat exchanger that recovers the heat recovered combustion exhaust gas in the combustion furnace It has a flue to supply to the outside.
  • the finely mixed fluid in which the liquid fuel and the spray medium are mixed and the combustion gas are sufficiently mixed around the spray nozzle over a wide load range from a low load to a high load.
  • Sectional drawing which shows the structure of the front-end
  • Explanatory drawing which shows the condition of the driving condition at the time of the high load of the spray nozzle which is a comparative example, and a low load.
  • Explanatory drawing which shows the condition of the driving condition at the time of the high load of the spray nozzle which is 1st Example of this invention, and a low load.
  • Sectional drawing which shows the structure of the front-end
  • the spray nozzle 1 according to the first embodiment of the present invention shown in FIGS. 1 and 2 is a spray nozzle 1 for atomizing a liquid fuel spray fluid with a spray medium, and the structure of the spray nozzle 1 is the spray nozzle 1.
  • a liquid fuel flow path 2 for supplying a liquid fuel 2a serving as a spray fluid
  • a spray medium flow path 3 for supplying a spray medium 3b on the upstream side of the nozzle 1, and the spray nozzle
  • a plurality of lower outlet holes 4 and upper outlet holes 5 for ejecting a finely mixed fluid as a fan-type spray by colliding the mixed fluid obtained by joining the liquid fuel 2a and the spraying medium 3b with the tip of the downstream side of 1 Each has.
  • the liquid fuel flow path 2 for supplying the liquid fuel 2 a provided on the upstream side of the spray nozzle 1 is a plurality of one inclined flow path 16 and the other inclined flow path 17 in the upper half on the downstream side of the spray nozzle 1. Are branched into a plurality of channels, one inclined channel 14 and the other inclined channel 15 in the lower half of the downstream side of the spray nozzle 1.
  • the spraying medium flow path 3 for supplying the spraying medium 3b provided on the upstream side of the spray nozzle 1 is a gas-liquid separation mechanism that separates gas and liquid into the spraying medium flow path 3 in response to low load.
  • the space part which comprises 6a is provided, and the gas-liquid isolate
  • the flow path is branched downstream of the lower branching portion 7 of the spray medium flow path 3, and the straight flow path 10 along the axial direction of the spray nozzle 1 and the lower branching portion 7 to the spray nozzle 1.
  • a plurality of flow paths including a bent flow path 9 which is bent after extending downward in the outer peripheral direction and which is a flow path along the axial direction of the spray nozzle 1 is provided.
  • the flow path is similarly branched downstream of the upper branch portion 8 of the spray medium flow path 3, and the straight flow path 12 along the axial center direction of the spray nozzle 1 and the spray nozzle 1 from the upper branch portion 8.
  • a plurality of flow paths including a bent flow path 11 which is bent after extending upward in the outer peripheral direction and which is a flow path along the axial direction of the spray nozzle 1 is provided.
  • the flow paths branched from the liquid fuel flow path 2 and the spray medium flow path 3 are merged on the downstream side of the flow path to form the liquid fuel flow path 2.
  • the lower outlet hole 4 and the upper outlet provided in the inclined surface 25 of the tip portion of the spray nozzle 1 are mixed fluid in which the supplied liquid fuel 2a and the spray medium 3b supplied to the spray medium flow path 3 merge. It collides in the opposing flow path in the spray nozzle 1 in the vicinity of the hole 5 to make it fine, and the mixed fluid of the fine liquid fuel 2a and the spray medium 3b is mixed with the lower outlet hole 4 and the upper outlet hole 5. It is configured to be ejected as a fan-type spray from the outside.
  • the mixed fluid collides in the opposed flow paths 18, 19, 20, and 21 in the spray nozzle 1, so that the spray ejected from the outlet holes 4 and 5 is opposed to the counter flow.
  • the fan spray expands in a direction orthogonal to the flow direction of the flow path.
  • a space serving as a gas-liquid separation mechanism 6a for separating gas and liquid is formed inside the spray medium flow path 3, and the gas-liquid separation is provided downstream of the space of the gas-liquid separation mechanism 6a.
  • An upper branching portion 8 and a lower branching portion 7 for separating the gas and liquid branched by the mechanism 6a are formed.
  • the downstream side of the upper branching portion 8 is a straight flow path disposed toward the tip of the spray nozzle 1 along the axial direction of the spray nozzle 1 along the bent flow path 11 along the outer peripheral direction of the spray nozzle 1.
  • the fluid is made fine by colliding with each other, and the mixed fluid of the refined liquid fuel 2a and the spray medium 3b is ejected from the upper outlet hole 5 to the outside as a fan-type spray 34.
  • downstream side of the lower branch 7 is a straight flow arranged toward the tip of the spray nozzle 1 along the bent flow path 9 along the outer peripheral direction of the spray nozzle 1 and the axial direction of the spray nozzle 1.
  • the mixed fluid in which the liquid fuel 2a and the spray medium 3b are merged in the opposed flow paths 18 and 19 that are branched along the inclined surface 25 of the tip of the spray nozzle 1 that is branched to the passage 10 and further downstream. are made to collide with each other and refined, and the mixed fluid of the refined liquid fuel 2a and the atomizing medium 3b is ejected from the lower outlet hole 4 to the outside as a fan-shaped spray 33.
  • a spray medium flow path 3 that is formed on the center side of the spray nozzle 1 and supplies the spray medium 3b, and the spray medium flow path, upstream of the spray nozzle 1 of the first embodiment shown in FIG.
  • An annular liquid fuel flow path 2 that is formed concentrically with the spraying medium flow path 3 and that supplies the liquid fuel 2a is disposed on the outer peripheral side of the sprayer 3.
  • FIG. 2 is a plan view of the spray nozzle when the tip of the spray nozzle 1 of the present embodiment shown in FIG. 1 is viewed from the tip side. Further, the cross-sectional position of the cross-sectional view of the spray nozzle 1 shown in FIG. 1 is indicated by an arrow AA in FIG.
  • the liquid fuel flow path 2 and the spraying medium flow path 3 shown in FIG. 1 are a liquid fuel supply system for supplying the liquid fuel 2a to the liquid fuel flow path 2 on the upstream side thereof, and the spraying medium 3b as the spraying medium.
  • a spray medium supply system for supplying the flow path 3 and a purge gas supply system for supplying a purge gas are connected to each other, but the illustration is omitted here.
  • the spray medium flow path 3 for supplying the spray medium 3b is connected to the axial center side of the spray nozzle 1.
  • the liquid fuel flow path 2 for supplying the liquid fuel 2a concentrically with the spray medium flow path 3 is annularly disposed on the outer peripheral side of the spray medium flow path 3. ing.
  • the liquid fuel flow path 2 is disposed on the center side which is the axial center side of the spray nozzle 1, and the spray medium flow concentrically with the liquid fuel flow path 2 on the outer peripheral side of the liquid fuel flow path 2.
  • the liquid fuel flow path 2 for supplying the liquid fuel 2a and the spray medium flow path 3 for supplying the spray medium 3b are disposed downstream of the spray nozzle 1 as described above.
  • Each of the liquid fuel channels 2 is branched into a plurality of flow channels, and the branched flow channel of the liquid fuel flow channel 2 and the branched flow channel of the spraying medium flow channel 3 are connected downstream of the spray nozzle 1 to spray the liquid fuel 2a.
  • the mixed fluid joined with the working medium 3b is refined, and finally the upper outlet hole 5 provided on the inclined surface 25 at the tip of the spray nozzle 1 located on the downstream side of the spray nozzle 1 and the spray nozzle 1
  • the refined mixed fluid is ejected to the outside as fan-shaped sprays 33 and 34 from the lower outlet hole 4 provided at the lower portion of the inclined surface 25 at the tip of the nozzle.
  • the connection state of each flow path disposed inside the spray nozzle 1 of the present embodiment will be described.
  • the lower outlet hole 4 and the upper outlet hole 5 are each provided in a total of two, but the lower outlet hole 4 and the upper outlet hole are shown. Two or more 5 may be provided.
  • the liquid fuel 2a is fed to the liquid fuel flow.
  • the flow rate adjusting valves 54, 55 and the like provided in the spray medium supply system 45 for supplying the liquid fuel supply system 44 supplied to the passage 2 and the spray medium 3b to the mist medium flow path 3 are operated, respectively.
  • the flow rates of the liquid fuel 2a and the spray medium 3b are adjusted, Both the liquid fuel 2 a and the spray medium 3 b are configured to be supplied to the spray medium flow path 3.
  • the flow rate adjustment provided in the liquid fuel supply system 44 that supplies the liquid fuel 2a and the spray medium supply system 45 that supplies the spray medium 3b is high.
  • the liquid fuel 2a is supplied to the liquid fuel flow path 2 of the spray nozzle 1 through the liquid fuel supply system 44, and the spray medium 3b is supplied to the spray medium flow path 3 of the spray nozzle 1 through the spray medium supply system 45, respectively. It is configured so that it can be supplied.
  • the internal structure of the spray nozzle 1 of this embodiment is such that the fluid of both the liquid fuel 2a and the spray medium 3b is supplied to the spray medium flow path 3 in response to a low load.
  • separates a gas-liquid is provided in the inside of this,
  • the downstream of the space part of the gas-liquid separation mechanism 6a formed in the inside of this spraying medium flow path 3 is provided.
  • the flow passage On the downstream side of the lower branching portion 7, the flow passage is further branched, and the straight flow passage 10 disposed toward the front end side along the axial direction of the spray nozzle 1, and the spray nozzle from the lower branching portion 7. 1 is provided with a plurality of flow paths branched into a bent flow path 9 which is bent after extending downward in the outer peripheral direction and which is disposed toward the tip along the axial center direction of the spray nozzle 1. ing.
  • the downstream side of the upper branching portion 8 is further branched from the flow path, and the straight passage 12 disposed toward the tip along the axial center direction of the spray nozzle 1 and the upper branching portion 8.
  • a plurality of flow paths which are bent after extending upward in the outer peripheral direction of the spray nozzle 1 and branching into a bent flow path 11 which is a flow path arranged toward the tip along the axial center direction of the spray nozzle 1 It has.
  • the liquid fuel 2a is disposed annularly concentrically with the fog medium flow path 3.
  • the liquid fuel flow path 2 for supplying water is branched on the downstream side of the spray nozzle 1, and is branched from the liquid fuel flow path 2 and is arranged along the axial center direction of the spray nozzle 1 toward the tip.
  • Each of the plurality of flow paths is provided with the other inclined flow path 16 that is inclined to the outer peripheral side so as to be connected to the straight flow path portion of the path 11.
  • the liquid fuel flow path 2 for supplying water is branched on the downstream side of the spray nozzle 1, and is branched from the liquid fuel flow path 2 and is arranged along the axial center direction of the spray nozzle 1 toward the tip.
  • Each of the plurality of flow paths is provided with the other inclined flow path 14 that is inclined to the outer peripheral side so as to be connected to the straight flow path portion of the path 9.
  • one inclined flow path 16 branched from the liquid fuel flow path 2 for supplying the liquid fuel 2a and inclined toward the outer peripheral side is used for spraying.
  • the spray medium 3b flowing down the straight flow path portion of the bent flow path 11 and the liquid fuel 2a flowing down the inclined flow path 16 Is connected to the straight flow path portion of the bent flow path 11, and one opposed flow path 20 is allowed to flow from the outer peripheral side of the tip of the spray nozzle 1 toward the axial center side. It arrange
  • the other branch flow channel 17 branched from the liquid fuel flow channel 2 for supplying the liquid fuel 2a and inclined toward the axial center side, A spray medium 3b connected to the downstream side of the straight flow path 12 along the axial direction of the spray nozzle 1 for supplying the spray medium 3b and flowing down the straight flow path 12 downstream of the straight flow path 12;
  • the mixed fluid joined with the liquid fuel 2a flowing down the other branch flow path 17 is connected to the straight flow path 12, and flows down from the axial center side of the tip of the spray nozzle 1 toward the outer peripheral side.
  • the other counter flow channel 21 is disposed along the inclined surface 25 at the tip of the spray nozzle 1.
  • one inclined flow path 14 branched from the liquid fuel flow path 2 for supplying the liquid fuel 2a and inclined toward the outer peripheral side is sprayed.
  • Liquid fuel which is connected to the downstream side of the straight flow path portion of the bent flow path 9 for supplying the medium 3b and flows down the straight flow path portion of the bent flow path 9 and the inclined flow path 14
  • the converging fluid joined with 2a is connected to the straight flow path portion of the bent flow path 9, and one counter flow path 18 that flows down from the outer peripheral side of the spray nozzle 1 toward the axial center side is used as the spray nozzle. 1 is disposed along the inclined surface 25 of the tip portion.
  • the other branch flow channel 15 branched from the liquid fuel flow channel 2 for supplying the liquid fuel 2a and inclined toward the axial center side is:
  • the other fluid that is joined to the straight flow passage 10 and is made to flow down from the axial center side of the spray nozzle 1 toward the outer peripheral side is joined to the joined fluid that has joined the liquid fuel 2a flowing down the other branch flow passage 15.
  • the flow path 19 is disposed along the inclined surface 25 at the tip of the spray nozzle 1.
  • the combined fluid of the liquid fuel 2a flowing down the one opposing flow path 18 and the spray medium 3b and the combined fluid of the liquid fuel 2a flowing down the other counter flow path 19 and the spraying medium 3b are Liquid droplets of the mixed fluid of the liquid fuel 2a and the atomizing medium 3b mixed and refined by the collision are mixed in the counter flow channels 18 and 19 in a counter flow, and the counter flow flows. It is arranged in a direction orthogonal to the path 18 and the opposed flow path 19, and is configured to be ejected to the outside as a fan-shaped spray 34 from the lower outlet hole 4 opened in the inclined surface 25 formed at the tip of the spray nozzle 1. ing.
  • the structure of the spray nozzle 1 according to the first embodiment shown in FIG. 1 includes an outer partition wall 22 having a truncated cone-shaped inclined surface 25 as an internal structure downstream of the spray nozzle 1, and the inclined flow paths 14-17. , The bent flow paths 9 and 11, the straight flow paths 10 and 12, and the inner structure 23 provided with the opposing flow paths 18 to 21, respectively. However, this is not an essential condition for the spray nozzle 1 of this embodiment.
  • the liquid fuel that supplies the liquid fuel 2a to the liquid fuel flow path 2 based on the control signal output from the control device 100 corresponding to the load L.
  • the flow control valves 54 and 55 provided in the spray medium supply system 45 for supplying the supply system 44 and the spray medium 3 b to the fog medium flow path 3 are respectively operated to control the spray nozzle 1 through the liquid fuel supply system 44.
  • Liquid fuel 2 a is supplied to the liquid fuel flow path 2, and a gas spray medium 3 b such as air or steam is supplied to the spray medium flow path 3 of the spray nozzle 1 through the spray medium supply system 45.
  • One of the opposing flow paths 20 disposed along the inclined surface 25 of the tip of the spray nozzle 1 on the downstream side of the bent flow path 11 becomes a mixed fluid of the spray medium 3b, and the tip of the spray nozzle 1 It flows down towards the part.
  • the other opposing flow path 21 disposed along the inclined surface 25 of the tip portion of the spray nozzle 1 on the downstream side of the straight flow path 12 becomes a mixed fluid, and the axial center side of the tip portion of the spray nozzle 1 Flows down toward the outer periphery.
  • the combined fluid of the liquid fuel 2a and the spray medium 3b flowing down the one opposing flow path 20 and the combined fluid of the liquid fuel 2a and the spray medium 3b flowing down the other counter flow path 21 are counter flowed.
  • the liquid droplets of the mixed fluid of the liquid fuel 2a and the atomizing medium 3b, which flow down in the opposing flow paths 20 and 21 and are further mixed and refined by collision with each other, are converted into the opposing flow paths 20 and 21.
  • the liquid fuel 2a flowing down the liquid fuel flow path 2 below the spray nozzle 1 and flowing through one inclined flow path 14 branched from the liquid fuel flow path 2 flows into the spray medium flow path 3 of the spray nozzle 1.
  • One of the opposing flow paths 18 disposed along the inclined surface 25 at the tip of the spray nozzle 1 on the downstream side of the bent flow path 9 becomes a mixed fluid of the fuel 2a and the spray medium 3b. It flows down toward the tip of 1.
  • the other opposed flow path 19 disposed along the inclined surface 25 of the tip portion of the spray nozzle 1 on the downstream side of the straight flow path 10 becomes a mixed fluid, and the axial center side of the tip portion of the spray nozzle 1 Flows down toward the outer periphery.
  • the combined fluid of the liquid fuel 2a and the spray medium 3b flowing down the one opposing flow path 18, and the combined fluid of the liquid fuel 2a and the spray medium 3b flowing down the other counter flow path 19 are counterflowed.
  • the liquid droplets of the mixed fluid of the liquid fuel 2a and the atomizing medium 3b, which flow down in the opposing flow paths 18 and 19 and are further mixed and refined by collision with each other, are converted into the opposing flow paths 18 and 19 Since it is ejected to the outside as the fan-shaped spray 33 from the lower outlet hole 4 disposed in the direction orthogonal to the opposed flow path 19 and opened in the inclined surface 25 formed at the tip of the spray nozzle 1, the liquid fuel 2a and the spray The atomization of the fluid mixture with the working medium 3b can be promoted.
  • the spray nozzle 1 of the present embodiment having the above-described configuration can promote atomization of the mixed fluid of the liquid fuel 2a and the spray medium 3b when the spray nozzle 1 is operated at a high load.
  • the fluid mixed with 3b is sprayed in the direction perpendicular to the flow direction of the opposite flow path (the arrangement direction of the opposite flow path through which the mixed fluid flows) due to mutual collision (the direction of the line BB in FIG. 2).
  • Fan-shaped sprays 33 and 34 which are droplets of the finely mixed fluid are formed from the lower outlet hole 4 and the upper outlet hole 5 which are opened in the inclined surface 25 at the tip of each, and are ejected to the outside.
  • the spray nozzle 1 shown in this embodiment from the shape of the fan sprays 33 and 34 is generally called a fan spray spray nozzle.
  • the fan spray type spray nozzle is a counter flow path 20, 21 in which the mixing of the liquid fuel 2 a and the spray medium 3 b is arranged along the inclined surface 25 at the tip of the spray nozzle 1 in the vicinity of the outlet holes 4, 5. Further, since it is promoted by the collision of the mixed fluids inside the opposed flow paths 18 and 19, the atomization performance for refining the liquid fuel 2a is high even with a low spray pressure of the spray medium 3b and a small spray medium flow rate.
  • the spray nozzle 1 of this embodiment When the spray nozzle 1 of this embodiment is operated in a low load operation, as shown in FIG. 6, it corresponds to the load L as in the embodiment of the burner having the spray nozzle which is a third embodiment described later. Then, based on the control signal output from the control device 100, the fuel supply system 44 for supplying the liquid fuel 2a to the liquid fuel flow path 2, and the spray medium for supplying the spray medium 3b to the mist medium flow path 3 The flow control valves 54 and 55 provided in the medium supply system 45 are respectively operated, and the flow control valves 52 and 53 provided in the branch systems 44a and 45a are operated, so that the spray nozzle 1 and the spray nozzle 1 are operated.
  • the supply of the liquid fuel 2a to the liquid fuel flow path 2 of the spray nozzle 1 of the first embodiment is closed, and the spray nozzle 1 mist medium
  • the flow rate of the liquid fuel 2a and the atomizing medium 3b is adjusted in the flow path 3, and the liquid fuel 2a is guided through the branch system 44a branched from the liquid fuel supply system 44 and connected to the atomizing medium supply system 45.
  • the liquid fuel 2 a and the spray medium 3 b are both configured to be supplied to the spray medium flow path 3.
  • both the liquid fuel 2a and the gas spray medium 3b such as air or steam are supplied to the spray medium flow path 3 of the spray nozzle 1, and the spray nozzle 1
  • the supply of the liquid fuel 2a is closed to the liquid fuel flow path 2, or a small amount of the spray medium 3b is supplied to stop the supply of the liquid fuel 2a.
  • the mixed fluid of the liquid fuel 2 a and the spray medium 3 b flowing down the spray medium flow path 3 of the spray nozzle 1 is a gas provided inside the spray medium flow path 3. Separation is performed by the difference in specific gravity in the space portion forming the liquid separation mechanism 6a.
  • the liquid fuel 2a having a high specific gravity separated in the space forming the gas-liquid separation mechanism 6a mainly flows into the lower branching portion 7 located on the downstream side of the gas-liquid separation mechanism 6a.
  • the curved flow path 9 and the straight flow path 10 branched from the flow path flow down, and the one opposed flow path 18 and the other opposed flow path 19 connected to the curved flow path 9 and the straight flow path 10 flow down.
  • the liquid fuel 2a refined by the liquid fuel 2a refined by the lower outlet hole 4 provided at the lower portion of the inclined surface 25 at the tip of the spray nozzle 1 located downstream of the spray nozzle 1 is obtained.
  • the light specific gravity spray medium 3b separated in the space forming the gas-liquid separation mechanism 6a mainly flows into the upper branching portion 8 located on the downstream side of the gas-liquid separation mechanism 6a.
  • the bent flow path 11 and the straight flow path 12 branched from the flow 8 flow down, and the one opposed flow path 20 and the other opposed flow path 21 connected to the bent flow path 11 and the straight flow flow path 12 flow down, respectively.
  • the light specific gravity spray medium 3b flowing down the one opposed flow channel 20 and the other opposed flow channel 21 is an upper portion of the inclined surface 25 at the tip of the spray nozzle 1 located downstream of the spray nozzle 1. Is ejected to the outside from the upper outlet hole 5 provided in A part of the spray medium 3b may flow into the lower branching portion 7 located on the downstream side of the gas-liquid separation mechanism 6a.
  • the spray medium flow is reduced so that the pressure difference of the mixed fluid between the liquid fuel 2a and the spray medium 3b near the lower outlet hole 4 and the upper outlet hole 5 provided at the tip of the spray nozzle 1 is reduced. Even if a space portion serving as the gas-liquid separation mechanism 6a is provided inside the passage 3, a part of the spray medium 3b flows to the lower branch portion 7 provided on the downstream side of the space portion of the gas-liquid separation mechanism 6a.
  • a space for forming the gas-liquid separation mechanism 6a is provided in the spray medium flow path 3 to separate the gas and liquid using gravity.
  • other methods may be used, such as providing a swirling flow generator upstream of the lower branching portion 7 and the upper branching portion 8 to separate the gas and liquid using centrifugal force.
  • the spray nozzle 1 of the present embodiment having the above-described configuration can promote atomization of the mixed fluid of the liquid fuel 2a and the spray medium 3b even when the spray nozzle 1 is operated at a low load. .
  • the flow path breaks of the bent flow paths 9 and 11, the straight flow paths 10 and 12, the inclined flow paths 14 to 16, and the opposed flow paths 18 to 21 provided in the spray nozzle 1.
  • the areas are formed such that the flow path cross-sectional area is smaller than the flow path cross-sectional area of the space portion constituting the gas-liquid separation mechanism 6a inside the spraying medium flow path 3 on the upstream side thereof. Yes.
  • the liquid fuel 2a has a high flow velocity that flows down the bent channel 9, the straight channel 10, the inclined channels 14 to 16, and the opposed channels 18 to 21, and these flow Opposing channels 18, 19, and 20 disposed along the inclined surface 25 at the tip of the spray nozzle 1 in the vicinity of the outlet channel 4, 5 near the outlet hole 4, 5 of the spray nozzle 1.
  • 21 collide with each other in the opposed flow paths 18, 19 and 20, 21, further mixing of the liquid fuel 2a flowing down the opposed flow paths 18, 19 and 20, 21 progresses. This can contribute to atomization of the liquid fuel 2a.
  • the spray nozzle of the comparative example is obtained by deleting the gas-liquid separation mechanism 6a, the upper separator 7 and the lower separator 8 from the structure of the spray nozzle 1 of the first embodiment shown in FIG. is there. Regardless of the load, the liquid fuel 2a is in the liquid fuel flow path 2 of the spray nozzle 1, the spray medium 3b is in the bending flow paths 9, 11 from the spray medium flow path 3, and the straight flow paths 10, 12 are. Each flows in.
  • the liquid fuel 2a flows through the liquid fuel flow path 2 and the spray medium 3b flows through the spray medium flow path 3 in the spray nozzles of the comparative example and the present embodiment.
  • the gas-liquid separation mechanism 6a newly added to the spraying medium flow path 3 in the present embodiment, the upper separation part 7, and the lower separation part 8 are such that the fluid flowing through the spraying medium flow path 3 is used for spraying. Since the medium 3b is single, there is no difference in the flow of fluid from the spray nozzle of the comparative example.
  • the liquid fuel 2a flows through the liquid fuel flow path 2 and the spray medium 3b flows through the spray medium flow path 3 in the spray nozzle of the comparative example.
  • a mixed fluid of the liquid fuel 2a and the spray medium 3b flows in the spray medium flow path 3.
  • the liquid fuel 2a flows down from the liquid fuel channel 2 through the inclined channels 14-17.
  • the spray medium 3 b also flows down from the spray medium flow path 3 through the bent flow paths 9 and 11 and the straight flow paths 11 and 12.
  • the mixed fluid of the liquid fuel 2a and the spray medium 3b is ejected from all the outlet holes.
  • the flow rate of the liquid fuel 2a decreases.
  • the flow rate of the spraying medium 3b is also reduced so as to make the ratio with the spraying medium 3b the same as the high load, the flow velocity of the mixed fluid near the outlet Decreases, and the pressure in the flow path also decreases.
  • the mixed fluid of the liquid fuel 2 a and the spray medium 3 b flows down from the spray medium flow path 3 through the bent flow paths 9 and 11 and the straight flow paths 11 and 12.
  • liquid flows from the outlet hole 4 provided at one end of the spray nozzle tip by flowing down through the gas-liquid separation mechanism 6 a formed in the spray medium flow path 3, the upper separator 7, and the lower separator 8.
  • a mixed fluid of the fuel 2a and the spray medium 3b is ejected, and only the spray medium 3b is ejected from the outlet hole 5 provided at the other end of the spray nozzle.
  • the spray medium 3b In order to maintain the atomization characteristics, it is necessary to increase the injection ratio of the spray medium 3b in order to increase the flow rate of the mixed fluid.
  • the gas formed in the spray medium flow path 3 is used.
  • the ratio of the atomizing medium is 5.0% at the outlet hole 4 from which the liquid fuel 2a is ejected, which is suitable for atomization. It becomes.
  • a mixed fluid of the liquid fuel 2a and the spray medium 3b is ejected from a part of the outlet holes 4 of the spray nozzle 1 when the load is low, and the other outlets From the hole 5, only the spray medium 3b is ejected.
  • the space part which forms the gas-liquid separation mechanism 6a in the inside of the spraying medium flow path 3 which supplies both the liquid fuel 2a and the spraying medium 3b at the time of low load is formed, and this gas-liquid separation mechanism 6a
  • the amount of the spray medium 3b charged can be increased in the case of a low load.
  • the ratio of the spray medium 3b at the outlet hole 4 from which the liquid fuel 2a is ejected is suppressed.
  • the spray nozzle 1 of the present embodiment the liquid fuel 2a is sprayed at a high spray pressure and an appropriate gas-liquid ratio, and after spraying, it becomes easy to mix with the combustion gas flowing away from the spray nozzle. It is possible to suppress the generation of soot and CO (carbon monoxide) that is likely to occur when the fuel concentration is high.
  • the liquid fuel 2a is made fine and ejected from the spray nozzle 1 to the outside as a fan-shaped spray 33, the liquid fuel is disposed below the tip of the spray nozzle 1.
  • the outlet hole 4 for ejecting 2a and the outlet hole 5 for ejecting the spraying medium 3b are respectively provided on the upper side
  • the top and bottom are reversed in the middle of the flow path,
  • the arrangement positions of the flow paths 7 to 10 and the flow paths 16 to 19 are changed, for example, the outlet hole 4 for ejecting the liquid fuel 2a is provided and the outlet hole 5 for ejecting the spray medium 3b is provided on the lower side.
  • the position of the outlet hole 4 through which the liquid fuel 2a is ejected at low load can be freely changed.
  • the flow paths 9 to 12, 14 to 16, and 18 to 21 are arranged on the same cross section in the radial direction of the spray nozzle 1 so as to facilitate the description.
  • the case where the cross section of the outlet holes 4 and 5 orthogonal to the flow paths 18 to 21 is enlarged in the circumferential direction of the spray nozzle 1 is shown.
  • the flow paths 18 to 21 are arranged in the circumferential direction of the spray nozzle 1 to It is also possible to enlarge the cross section of the outlet holes 4 and 5 orthogonal to 18 to 21 in the radial direction of the spray nozzle 1. In this case, the fan-type spray from the outlet holes 4 and 5 spreads in the radial direction of the spray nozzle 1.
  • the case where the fan-shaped sprays 33 and 34 are formed and ejected from the outlet holes 4 and 5 is described.
  • the spray nozzle 1 as in the above-described embodiment is generally called a fan spray type spray nozzle because of the shape of fan spray.
  • the fan spray generated by the fan spray type spray nozzle generally has a large flow rate at the central part of the fan spray and a small flow rate at the outer edge of the fan spray. Furthermore, according to the measurement by the inventor, the particle size of the spray is relatively large at the center of the fan-shaped spray, and the particle size is small at the outer edge of the fan-shaped spray.
  • Fine particles Particles atomized to a diameter of less than 100 ⁇ m, preferably 50 ⁇ m or less (hereinafter referred to as “fine particles”) have a large surface area in the volume, and are likely to burn by being heated by heat radiation from the furnace. For this reason, by retaining these fine particles in the vicinity of the spray nozzle, the ignition of the spray is accelerated, contributing to the stabilization of the flame and the promotion of the combustion reaction.
  • the central portion of the spray has a larger flow rate than the outer peripheral portion, and the spray is difficult to spread, so that a thick liquid film is formed as compared with the outer peripheral portion. For this reason, there are many large particles (diameter 100 to 300 ⁇ m). Large particles have a higher momentum than fine particles, and are easily mixed with combustion air flowing in a remote location.
  • the spray nozzle of this embodiment can spray at a high spray pressure and an appropriate gas-liquid ratio under low-load operation conditions.
  • the characteristics can be maintained over a wide load range from low load to high load, thereby contributing to the suppression of combustion emissions.
  • FIG. 1 an example in which a fan spray type spray nozzle that performs fan-type spraying at the exit hole portion opened at the tip of the spray nozzle is shown.
  • An internal mixing type with a mixing space where the liquid fuel and the spray medium are mixed near the outlet hole at the tip of the spray nozzle, a liquid film type that induces centrifugal force near the outlet hole, and a liquid that uses high jet power A column type spray nozzle may be used.
  • the finely mixed fluid in which the liquid fuel and the spray medium are mixed and the combustion gas are sufficiently mixed around the spray nozzle over a wide load range from a low load to a high load. This makes it possible to realize a spray nozzle that suppresses the generation of dust and CO (carbon monoxide) combustion emissions.
  • the spray nozzle 1 according to the second embodiment of the present invention shown in FIGS. 4 and 5 has the same basic configuration as the spray nozzle 1 according to the first embodiment of the present invention shown in FIGS. Therefore, the description of the configuration common to both is omitted, and only different parts will be described below.
  • the liquid fuel flow path 2 for supplying the liquid fuel 2 a serving as the spray fluid and the spray medium 3 b are supplied to the upstream side of the spray nozzle 1.
  • the liquid fuel 2a and the spray medium flow path that are provided through the liquid fuel flow path 2 to the tip of the spray nozzle downstream of the spray nozzle 1 are provided.
  • the mixed fluid obtained by joining the spraying medium 3 b supplied through 3 is made to collide with each other inside the opposed flow paths 18 and 19 and the opposed flow paths 20 and 21, and the droplets of the refined mixed fluid are fan-shaped.
  • Each has a lower outlet hole 4 and an upper outlet hole 5 that are sprayed to the outside as spray.
  • the spray medium flow path 3 that is formed on the center side of the spray nozzle 1 and supplies the spray medium 3b, and this It is formed on the outer peripheral side of the spraying medium flow path 3 so as to be concentric with the spraying medium flow path 3, and only the liquid fuel 2a is supplied at the time of high load, and the liquid fuel 2a and the spraying medium 3b at the time of low load
  • the annular liquid fuel flow paths 2 to which both are supplied are respectively disposed.
  • a swirl flow generator 62 that constitutes a gas-liquid separation mechanism that separates gas and liquid is installed inside the liquid fuel flow path 2, and an outer side branched concentrically on the downstream side of the swirl flow generator 62.
  • a branch part 64 and an inner branch part 63 are provided.
  • the outer branch 64 is branched into one inclined channel 16 and the other inclined channel 17 in the upper half on the downstream side of the spray nozzle 1.
  • the inner branch part 63 branches into the one inclined channel 14 and the other inclined channel 15 in the lower half part on the downstream side of the spray nozzle 1.
  • the inside of the spraying medium flow path 3 for supplying the spraying medium 3b provided on the center side of the spray nozzle 1 on the upstream side of the spray nozzle 1 is formed with a branching portion 8 on the downstream side.
  • the flow path branches on the downstream side of the portion 8, and the straight flow paths 10 and 12 along the axial direction of the spray nozzle 1 and the spray nozzle 1 are bent after extending downward in the outer peripheral direction of the spray nozzle 1.
  • one inclined flow path 16 branched from the outer branch section 64 formed in the liquid fuel flow path 2 is connected to the branch section 8 formed in the spray medium flow path 3. Since it is connected to the branched bent flow path 11, it becomes a mixed fluid in which the liquid fuel 2 a flowing down one inclined flow path 16 and the spray medium 3 b flowing down the bent flow path 11 are mixed.
  • the mixed fluid of the liquid fuel 2a and the spray medium 3b flows down to the opposing flow path 20 disposed along the inclined surface 25 at the tip of the spray nozzle 1 on the downstream side.
  • the other inclined flow path 17 branched from the outer branch section 64 formed in the liquid fuel flow path 2 is connected to the straight flow path 12 branched from the branch section 8 formed in the spray medium flow path 3. Therefore, the liquid fuel 2a flowing down the other inclined flow path 17 and the spray medium 3b flowing down the straight flow path 12 become a mixed fluid, and the spray nozzle 1 on the downstream side of the straight flow path 12 The mixed fluid of the liquid fuel 2a and the spray medium 3b flows down to the opposed flow path 21 disposed along the inclined surface 25 at the tip.
  • the mixed fluid in which the liquid fuel 2a and the spray medium 3b are mixed, is caused to collide with each other as an opposing flow inside the opposing flow paths 20 and 21 disposed along the inclined surface 25 at the tip of the spray nozzle 1.
  • the fluid mixture of the refined liquid fuel 2a and the atomizing medium 3b is ejected to the outside as a fan-shaped spray 34 from the upper outlet hole 5 opened in a direction orthogonal to the opposed flow path 20 and the opposed flow path 21. It is configured to do.
  • one inclined flow path 14 branched from the inner branch section 63 formed in the liquid fuel flow path 2 has a branch section 8 formed in the spray medium flow path 3. Therefore, the liquid fuel 2a flowing down one inclined channel 14 and the spray medium 3b flowing down the bent channel 9 are mixed to form a mixed fluid.
  • the mixed fluid of the liquid fuel 2a and the spray medium 3b flows down to the opposing flow path 18 disposed along the inclined surface 25 at the tip of the spray nozzle 1 on the downstream side.
  • the other inclined flow path 15 branched from the inner branch portion 63 formed in the liquid fuel flow path 2 is connected to the straight flow path 10 branched from the branch section 8 formed in the spray medium flow path 3. Therefore, the liquid fuel 2a flowing down the other inclined flow path 15 and the spray medium 3b flowing down the straight flow path 10 become a mixed fluid, and the spray nozzle 1 on the downstream side of the straight flow path 10 The mixed fluid of the liquid fuel 2a and the spray medium 3b flows down to the opposed flow path 19 disposed along the inclined surface 25 at the tip.
  • the mixed fluid in which the liquid fuel 2a and the spray medium 3b are mixed, is caused to collide with each other as an opposing flow inside the opposing flow paths 18 and 19 disposed along the inclined surface 25 at the tip of the spray nozzle 1.
  • the mixed fluid of the refined liquid fuel 2a and the atomizing medium 3b is formed as a fan-shaped spray 33 from the lower outlet hole 4 opened in the direction orthogonal to the opposed flow path 18 and the opposed flow path 19 to the outside. It is configured to erupt.
  • a swirl flow generator 62 constituting a gas-liquid separation mechanism 6b is provided inside the liquid fuel flow path 2 to separate the gas and liquid by centrifugal force.
  • the swirling flow generator 62 instead of the swirling flow generator 62, other methods such as providing a space inside the liquid fuel flow path 2 and separating the gas and liquid by gravity may be used.
  • each flow control valve of the second embodiment is operated based on the output control signal to supply the liquid fuel 2a to the liquid fuel flow path 2 of the spray nozzle 1, and air, steam, etc. to the spray medium flow path 3
  • the gas spray medium 3b is supplied, and the mixed fluid of the liquid fuel 2a and the spray medium 3b is refined and ejected to the outside as fan sprays 33 and 34 from the lower outlet hole 4 and the upper outlet hole 5, respectively. Therefore, the liquid fuel 2a can be atomized.
  • the flow control valves 54 and 55 provided in the atomizing medium supply system 45 for supplying the liquid fuel supply system 44 and the atomizing medium 3b to the atomizing medium flow path 3 are respectively operated.
  • the flow control valve 53 provided in 45a When the flow control valve 53 provided in 45a is operated, the load of the spray nozzle 1, the burner in which the spray nozzle 1 is installed, or the burner having the spray nozzle 1 is low. In this case, the supply of the spray medium 3b to the mist medium flow path 3 of the spray nozzle 1 is closed by operating each flow rate adjustment valve of the second embodiment based on the control signal output from the control device 100. In the liquid fuel flow path 2 of the spray nozzle 1, the flow rate of the liquid fuel 2a and the spray medium 3b is adjusted to guide the spray medium 3b via the branch system 45a, and the liquid fuel 2a and the spray medium 3b Both are configured to be supplied to the liquid fuel flow path 2.
  • the liquid fuel flow path 2 of the spray nozzle 1 is supplied with both the liquid fuel 2a and a gas spray medium 3b such as air or steam, and the spray of the spray nozzle 1 is sprayed.
  • the supply of the spray medium 3b is closed to the medium flow path 3, or a small amount of the spray medium 3b is supplied to stop the supply of the liquid fuel 2a.
  • both the liquid fuel 2a and the spray medium 3b are supplied to the liquid fuel flow path 2 of the spray nozzle 1, and the spray medium flow path 3 is closed or a small amount of spray is supplied.
  • Supply medium 3b
  • the mixed fluid of the liquid fuel 2a and the spray medium 3b flowing in the liquid fuel flow path 2 is separated by a swirl flow generator 62 constituting a gas-liquid separation mechanism provided in the liquid fuel flow path 2 due to a difference in specific gravity. To do.
  • the liquid fuel 2 a having a high specific gravity separated by the swirling flow generator 62 mainly flows into the outer branch portion 64 located on the downstream side of the swirling flow generator 62, and one inclined flow branched from the outer branch portion 64. Flowing down the channel 16 and the other inclined channel 17, the one opposing channel 20 connected to the bent channel 11 and the straight channel 12 connected to the inclined channel 16 and the inclined channel 17, and the other opposing side. Each of the flow paths 21 flows down.
  • the droplets of the liquid fuel 2a that have been refined by the above-described method are obtained by using the droplets of the liquid fuel 2a that have been refined from the upper outlet hole 5 provided above the inclined surface 25 at the tip of the spray nozzle 1 as a fan-type spray 34. To erupt.
  • the spray medium 3b having a light specific gravity separated by the swirling flow generator 62 mainly flows into the inner branching portion 63 located on the downstream side of the swirling flow generator 62 and branches off from the inner branching portion 63.
  • the inclined flow path 14 and the other inclined flow path 15, and the bent flow path 9 branched from the branch portion 8 of the spray medium flow path 3 connected to the inclined flow path 14 and the inclined flow path 15 and the straight flow. It connects with the path
  • the spray medium 3b having a low specific gravity flowing down the one opposing channel 18 and the other opposing channel 19 opens in a direction orthogonal to the one opposing channel 18 and the other opposing channel 19, and
  • the spray nozzle 1 is ejected to the outside from the lower outlet hole 4 provided at the lower portion of the inclined surface 25 at the tip of the spray nozzle 1.
  • a part of the spray medium 3 b may flow into the outer branch portion 64 located on the downstream side of the swirling flow generator 62.
  • the channel cross-sectional areas of the inclined channels 16 and 17, the bent channel 11, the straight channel 12, and the opposed channels 20 and 21 disposed in the spray nozzle 1 are as follows:
  • the flow passage cross-sectional areas are formed to be smaller than the flow passage cross-sectional area of the space portion constituting the branching portion 8 inside the spraying medium flow passage 3 on the upstream side thereof.
  • the flow velocity at which the mixed fluid of the liquid fuel 2a and the spray medium 3b flows down the inclined flow paths 16 to 17 and the opposed flow paths 20 and 21 is increased.
  • the liquid fuel 2a flowing through the opposed flow paths 20 and 21 disposed along the inclined surface 25 of the tip portion of the spray nozzle 1 in the vicinity of the upper outlet hole 5 of the spray nozzle 1 in the flow process and the opposed flow path 20 By colliding with each other in 21, the mixing of the liquid fuel 2a flowing down the opposed flow paths 20 and 21 further proceeds, which can contribute to atomization of the liquid fuel 2a.
  • the mixed fluid of the liquid fuel and the spray medium is ejected from all the outlet holes of the spray nozzle.
  • the medium for spraying in the upper outlet hole 4 that ejects the liquid fuel 2a to the outside as the atomized spray 34 even when the input amount of the spraying medium 3b is increased in low load operation.
  • the ratio of is suppressed.
  • the liquid fuel 2a is sprayed at a high spray pressure and an appropriate gas-liquid ratio, and it becomes easy to mix with the combustion gas flowing away from the spray nozzle after spraying.
  • soot and CO carbon monoxide
  • the finely mixed fluid in which the liquid fuel and the spray medium are mixed and the combustion gas are sufficiently mixed around the spray nozzle over a wide load range from a low load to a high load. This makes it possible to realize a spray nozzle that suppresses the generation of dust and CO (carbon monoxide) combustion emissions.
  • FIG. 6 shows a burner 30 having a spray nozzle according to a third embodiment of the present invention.
  • the burner 30 having the spray nozzle of the present embodiment shown in FIG. 6 is the spray nozzle 1 of the first embodiment shown in FIGS. 1 to 2 or the second embodiment shown in FIGS.
  • the spray nozzle 1 of an example is employ
  • the spray nozzle 1 used in the burner 30 having the spray nozzle of the present embodiment is the same as the spray nozzle 1 of the first embodiment or the spray nozzle 1 of the second embodiment as described above.
  • the description of the spray nozzle 1 used in the burner 30 provided with the spray nozzle of this embodiment is omitted.
  • the burner 30 having the spray nozzle 1 of this embodiment shown in FIG. 6 is arranged on the outer peripheral side of the spray fluid flow path 2 for supplying the liquid fuel 2 a as the spray fluid to the central shaft 31 and the spray fluid flow path 2.
  • spraying medium flow paths 3 for supplying a spraying medium 3b used for spraying the liquid fuel 2a, and the mixture of the liquid fuel 2a and the spraying medium 3b is mixed at the tip of the burner 30.
  • a spray nozzle 1 for ejecting fluid as fan sprays 33 and 34 to the outside is provided.
  • the burner 30 has an obstacle 32 for stabilizing the flame near the tip of the central shaft 31.
  • a swirling blade for generating a swirling flow a baffle plate having a slit, or the like is generally used.
  • the spray nozzle 1 is formed so as to eject fan-shaped sprays 33 and 34 to the outside.
  • the burner 30 is connected to the furnace wall 35.
  • the combustion air is divided into three flow paths from the wind box 36 and supplied into the furnace.
  • a primary flow path 37 a secondary flow path 38, and a tertiary flow path 39 from the side closer to the central axis 31 of the burner 30.
  • Combustion air is ejected from the primary flow path 37, the secondary flow path 38, and the tertiary flow path 39 into the furnace 43 as primary air 40, secondary air 41, and tertiary air 42, respectively. ing.
  • Combustion air is ejected from the spray nozzle 1 by changing the swirling force, the ejection direction, and the flow rate by a swirling flow generator, a flow direction deflecting plate, and a flow rate adjusting damper (not shown) provided in the flow paths 37 to 39.
  • Mixing with liquid fuel is adjusted to suppress generation of dust and NOx.
  • the spray nozzle 1 of the burner 30 is provided with a liquid fuel supply system 44 connected to supply liquid fuel 2a as fuel to the spray fluid flow path 2, and a spray medium 3b for use in spraying the liquid fuel 2a.
  • a spray medium supply system 45 connected so as to be supplied to the spray medium flow path 3 is provided.
  • the spray nozzle 1 of the first embodiment and the second embodiment is used.
  • the liquid fuel 2a is supplied to the spray fluid passage 2 of the spray nozzle 1.
  • flow control valves 54 and 55 are provided in the liquid fuel supply system 44 and the spray medium supply system 45, respectively.
  • the flow rate adjusting valves 54 and 55 are respectively operated by the control signals output from the control signal 100, and the liquid fuel 2a supplied to the atomizing fluid channel 2 or the atomizing medium channel 3 supplied to the atomizing medium channel 3 The flow rate of the medium 3b is adjusted.
  • the liquid fuel 2a branches off from the liquid fuel supply system 44 and sprays the liquid fuel 2a.
  • a branch flow path 44a that supplies the spray medium flow path 3 and a branch flow path 45a that branches from the spray medium supply system 45 and supplies the spray medium 3b to the spray fluid flow path 2 are disposed.
  • the flow control valves 52 and 53 are provided in the branch flow path 44a and the branch flow path 45, respectively, and are operated by a control signal output from the control device 100 when the load L is low. In addition to 55 operations The flow rate of the liquid fuel 2a supplied to the spray medium flow path 3 through the branch flow path 44a and the branch flow path 45 or the flow rate of the spray medium 3b supplied to the spray fluid flow path 2 is adjusted. .
  • the liquid fuel 2a is supplied to the spray fluid passage 2 of the spray nozzle 1 of the first embodiment, and the spray medium 3b is supplied to the spray medium passage 3 of the spray nozzle 1.
  • the flow rate adjusting valves 52 to 55 are operated as described above, and when the load is high, the spray medium 3b is supplied to the spray medium flow path 3 of the spray nozzle 1 of the second embodiment.
  • the description of operating the flow rate control valves 52 to 55 so as to supply both the liquid fuel 2a and the spray medium 3b to the spray fluid passage 2 has been made in the spray nozzle 1 of each of the previous embodiments. The description here is omitted.
  • both the liquid fuel 2a and the spray medium 3b are supplied to the spray medium flow path 3 of the spray nozzle 1 of the first embodiment, and the spray fluid flow path 2 of the spray nozzle 1 is sprayed.
  • the flow control valves 52 to 55 are operated so as to close the supply of the medium 3b, and at the time of low load, the liquid fuel 2a and the spray fuel flow are supplied to the spray fluid passage 2 of the spray nozzle 1 of the second embodiment.
  • each of the flow rate control valves 52 to 55 so as to supply both the medium 3b and close the supply of the spray medium 3b to the spray medium flow path 3 of the spray nozzle 1, Since it has already been described in the spray nozzle 1 of the embodiment, description thereof is omitted here.
  • an ignition device 46 is provided in the vicinity of the spray nozzle 1.
  • the ignition device 46 there is a method of giving energy to the oil spray particles by an electric spark.
  • the finely mixed fluid in which the liquid fuel and the spray medium are mixed and the combustion gas are sufficiently mixed around the spray nozzle over a wide load range from a low load to a high load.
  • FIG. 7 shows a furnace 43 which is a combustion apparatus provided with a burner having a spray nozzle according to a fourth embodiment of the present invention.
  • the furnace 43 which is a combustion apparatus provided with the burner having the spray nozzle of the present embodiment, a plurality of burners 30 having the spray nozzle are provided.
  • the plurality of burners 30 provided in the furnace 43 which is a combustion apparatus having a burner having the spray nozzle of the present embodiment shown in FIG. 7, are shown in FIGS. 1 and 2 as spray nozzles provided in the burner 30. Further, the spray nozzle 1 of the first embodiment or the spray nozzle 1 of the second embodiment shown in FIGS. 4 to 5 is employed.
  • the spray nozzle 1 used in the burner 30 installed in the furnace 43 which is a combustion apparatus including the burner having the spray nozzle of the present embodiment, is the spray nozzle 1 of the first embodiment or the second embodiment. Since the same thing as the spray nozzle 1 is employ
  • the combustion air supplied to the furnace 43 is the air serving as the burner 30 and the supply system downstream of the burner 30. Each is supplied from the supply port 47 into the furnace 43.
  • the combustion air is divided into the burner 30 and the air supply port 47 and supplied to the furnace 43, whereby the temperature of the flame formed by burning the fuel in the furnace 43 by the burner 30 is reduced.
  • the NOx concentration at the outlet of the furnace 43 can be reduced as compared with the case where all the combustion air is supplied from the burner 30 to the furnace.
  • the combustion air supplied to the furnace 43 not only supplies the combustion air from the burner 30, but also supplies the remaining combustion air from the air supply port 47 of the furnace 43. It can be made to burn, and it becomes possible to reduce an unburned part.
  • the combustion gas 48 generated by burning the fuel in the furnace 43 heats the heat exchanger 49 disposed in the upper portion of the furnace 43 to generate steam, and is then disposed downstream of the heat exchanger 49. It passes through the flues 50 and is discharged from the chimney 51 to the atmosphere.
  • the furnace 43 which is a combustion apparatus including a burner having a spray nozzle of the present embodiment
  • a plurality of spray nozzles 1 provided in the burner 30 shown in FIG. 6 are shown in FIGS. Since the spray nozzle 1 of the embodiment or the spray nozzle 1 of the second embodiment shown in FIGS. 4 to 5 is adopted, a plurality of spray nozzles 1 arranged according to the supply amount of liquid fuel corresponding to the load are used. Of these channels, the channel to be used differs depending on the load state.
  • the liquid fuel supply system 44 is operated by operating the flow rate control valve 52 provided in the branch system 44 a branched from the liquid fuel supply system 44 of the spray nozzle 1. Then, the liquid fuel 2a is supplied to the spraying medium flow path 3 through the branch system 44a and mixed with the spraying medium 3b supplied through the spraying medium supply system 45.
  • the spray medium supply system 45 of the spray nozzle 1 not only supplies the spray medium 3 b to the spray medium flow path 3 but also the flow rate provided in the branch system 45 a branched from the spray medium supply system 45.
  • the control valve 53 is operated to supply a small amount of the spray medium 3b to the liquid fuel flow path 2 through the spray medium supply system 45 and the branch system 45a.
  • the spray medium 3b is supplied to the liquid fuel flow path 2 of the spray nozzle 1 to prevent the liquid fuel 2a from remaining or solidified in the liquid fuel flow path 2 and the resulting blockage of the flow path. I can do it. In this case, it is desirable to use air as the atomizing medium 3b rather than vapor that easily liquefies in a small amount.
  • a flow rate adjusting valve 54 provided in the liquid fuel supply system 44 and a flow rate adjusting valve 55 provided in the spray medium supply system 45 by a control signal output from the control device 100 is supplied from the liquid fuel supply system 44 to the liquid fuel flow path 2 of the spray nozzle 1, and the spray medium is supplied from the spray medium supply system 45 to the spray medium flow path 3 of the spray nozzle 1.
  • 3b Adjust the supply flow rate.
  • the liquid fuel 2a is supplied to the spray fluid passage 2 of the spray nozzle 1 of the first embodiment and the spray medium 3b is supplied to the spray medium passage 3 of the spray nozzle 1 when the load is high.
  • a description of operating each of the flow rate control valves 52 to 55, and supplying a spray medium 3b to the spray medium flow path 3 of the spray nozzle 1 of the second embodiment and a spray fluid flow of the spray nozzle 1 at a high load The explanation for operating the flow rate control valves 52 to 55 so as to supply both the liquid fuel 2a and the spray medium 3b to the passage 2 has already been explained in the spray nozzle 1 of each of the previous embodiments. Description is omitted.
  • both the liquid fuel 2a and the spray medium 3b are supplied to the spray medium flow path 3 of the spray nozzle 1 of the first embodiment, and the spray fluid flow path 2 of the spray nozzle 1 is sprayed.
  • the flow control valves 52 to 55 are operated so as to close the supply of the medium 3b, and at the time of low load, the liquid fuel 2a and the spray fuel flow are supplied to the spray fluid passage 2 of the spray nozzle 1 of the second embodiment.
  • each of the flow rate control valves 52 to 55 so as to supply both the medium 3b and close the supply of the spray medium 3b to the spray medium flow path 3 of the spray nozzle 1, Since it has already been described in the spray nozzle 1 of the embodiment, description thereof is omitted here.
  • the flow rate adjusting valve 53 is operated from the spray medium supply system 45 to supply a part of the spray medium 3b to the liquid fuel flow path 2 and remain in the flow path.
  • the liquid fuel 2a is removed.
  • the combustion apparatus including the burner 30 having the spray nozzle 1 of the third embodiment and the burner 30 having the spray nozzle 1 of the present embodiment shown in FIG. Since it is possible to spray from the nozzle 1 with a high spray pressure and an appropriate gas-liquid ratio, the characteristics of spraying at the center and outer periphery of the fan spray 33 are maintained over a wide load range and combustion Contributes to emission control.
  • the ignition device 46 is disposed in the vicinity of the outlet holes 4 and 5 of the spray nozzle 1 that ejects the liquid fuel 2a, it can cover a wide load range from a low load ignition operation to a high load. Therefore, it is possible to cope with one spray nozzle 1.
  • the burner 30 provided with the spray nozzle 1 is provided on one furnace wall 35 of the furnace 43 in the present embodiment, the burner 30 provided with the spray nozzle 1 is provided on the furnace wall 35 of a plurality of wall surfaces.
  • the spray nozzle 1 of the first embodiment shown in FIGS. 1 to 2 or the spray nozzle 1 of the second embodiment shown in FIGS. Can be applied to the combustion apparatus of this embodiment.
  • the finely mixed fluid in which the liquid fuel and the spray medium are mixed and the combustion gas are sufficiently mixed around the spray nozzle over a wide load range from a low load to a high load.

Abstract

 噴霧ノズルに噴霧流体流路と噴霧用媒体流路を備え、噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路から分岐した第2の分岐流路を配設し、第1の分岐流路と第2の分岐流路とを接続して噴霧流体と噴霧用媒体を混合した混合流体を流下させ、噴霧ノズル先端部近傍に混合流体を対向して流下させ衝突させる対向流路を複数対配設し、この対向流路を複数の出口孔に接続させて混合流体を出口孔から外部に噴出するように構成し、噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に気液分離機構の下流側に流路を複数に分岐する分岐部を設け、この分岐部を異なる出口孔にそれぞれ接続したことを特徴とする。 液体出口孔の液体燃料は高い噴霧圧と適正な気液比で噴霧し、噴霧後に離れた位置を流れる燃焼用気体と混合し易くなるので、燃料濃度が高い場合に発生しやすいばいじんやCOの生成を抑制できる。

Description

噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置
 本発明は、噴霧流体(液体)を噴霧用媒体(気体)で微粒化する二流体噴霧ノズルに係るものであり、特に、液体燃料の噴霧流体を噴霧用媒体で微粒化させる噴霧ノズルと、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置に関するものである。
 発電用のボイラのように高出力、高負荷の燃焼装置では、燃料を燃焼装置であるボイラに設けた火炉空間(以下、火炉と記す)で水平燃焼させる浮遊燃焼方式が多く採用される。燃料として燃料油のように液体燃料を燃焼させる場合、燃料を噴霧ノズルで微粒化して火炉内に浮遊させ燃焼させる。
 このような噴霧ノズルは、液体燃料を主燃料とする燃焼装置で噴霧ノズルとして使用される。また、微粉炭のように固体燃料を主燃料として使用する燃焼装置でも、起動や火炎安定化用の助燃用として液体燃料を使用する場合に、燃焼装置に設置して噴霧ノズルとして使用される。
 ところで、液体燃料の燃焼では、主に下記の3項目を満たすことが求められる。
(1)高い燃焼効率。
(2)ばいじん、一酸化炭素や窒素酸化物に代表される燃焼排出物の低減。
(3)燃焼装置の大型化に伴う噴霧ノズルの大容量化と、広い燃焼負荷範囲での安定燃焼。
 前記(1)、(2)に対して、液体燃料の噴霧の微粒化を噴霧用媒体の使用によって適正に行うことが望ましい。液体燃料の微粒化が悪いと燃え残りが増え、燃焼効率が低下し、ばいじんや一酸化炭素が増える。
 一方、噴霧する液体燃料を微細化し過ぎると、液体燃料と燃焼用空気との混合が進まないことから、ばいじんや一酸化炭素が増える。また、液体燃料の微粒化のために噴霧用媒体の使用量や噴霧圧を増やすと、その際のエネルギー使用量が増加する。
 特開昭61-167471号公報(特許文献1)には、噴霧ノズルの一例として、液体燃料と噴霧用媒体を流路の途中で混合するいわゆる中間混合型やYジェット型と呼ばれる噴霧ノズルが開示されている。
 前記特許文献1に開示された噴霧ノズルは、形状が簡素で大容量化に適しているが、微粒化特性が特に液体燃料の流量によって変化するので、微粒化性能の良い動作状態が狭いことが課題となる。
 前記(3)の噴霧ノズルの大容量化と、広い負荷燃焼範囲での安定燃焼への対応として、燃焼工学ハンドブック、日本機械学会(1995年)、P165、図1(非特許文献1)には、小容量の噴霧を形成する噴霧ノズルを備えたパイロットバーナや点火トーチと、点火トーチに比べて大量の液体燃料を噴霧する噴霧ノズルを備えた複数の噴霧ノズルを用いるバーナが開示されている。
 前記非特許文献1に開示されたバーナでは、点火時のように液体燃料量が少ない時は小容量向きの噴霧ノズルを用い、液体燃料量が多い時は大容量向きの噴霧ノズルを用いることで、何れの負荷帯においても噴霧圧と噴霧用媒体の使用量を調整し、噴霧の微粒化を適正な範囲に納めることで大容量化と安定燃焼を両立させている。
 特開2002-181309号公報(特許文献2)には、1つの噴霧ノズルで広い負荷範囲に対応する方法の一例である噴霧ノズルが開示されている。この特許文献2に開示された噴霧ノズルでは、複数の出口孔を有する噴霧ノズルに対し、液体燃料の配管を複数設け、それぞれ出口孔に接続する噴霧ノズルの構成が開示されている。
 一方、非特許文献1に開示されたバーナでは、複数の噴霧ノズルを用いることで装置が大型化して操作が複雑とならざるを得ないことになり、そのための配管や制御弁の設置や、これらのものを操作する操作時間が必要となる。
 この特許文献1に開示された噴霧ノズルでは、噴霧用媒体の比率が適正範囲から外れた場合でも液体燃料の微粒化を図る方法が示されるものの、液体燃料や噴霧用媒体の運動量が設計範囲より低下する低負荷の条件では、流体の有するエネルギーが低くなって微粒化性能が悪化する。このため、煤塵の低減が図れる負荷範囲は限られたものとなる。
 一方、非特許文献1に開示されたバーナでは、前述したように装置が大型化し、構造が複雑になるので、それらに伴って操作時間が増加することになる。
 また、特許文献2に示される噴霧ノズルでは、接続する液体燃料配管が複数となり、配管数が多くなり、構造が複雑となる。また、複数の液体燃料配管のリークチェックや使用前後の配管内の残留物のパージ操作が必要になり、操作時間が増えるという課題がある。
 1つの噴霧ノズルで広い負荷範囲に対応する方法の一例を特開2002-181309号公報(特許文献2)に示す。特許文献2では複数の出口孔を有する噴霧ノズルに対し、液体燃料の配管を複数設け、それぞれ出口孔に接続する噴霧ノズルの構成が示される。
 低負荷では複数の液体燃料配管のうち、出口孔の一部のみを使用し、一部の出口孔から噴霧を形成する。また、高負荷では複数の液体燃料配管の多数を使用することで液体燃料の投入量を増やす。そして、液体燃料の使用量に応じて噴霧ノズルで使用する出口孔の個数を変えるようにして、1つの噴霧ノズルで広い負荷範囲に対応している。
燃焼工学ハンドブック、日本機械学会(1995年)、P165、図1
特開昭61-167471号公報 特開2002-181309号公報
 ところで、特許文献1に示される噴霧ノズルでは、噴霧用媒体の比率が適正範囲から外れた場合でも微粒化を図る方法が示されるものの、液体燃料や噴霧用媒体の運動量が設計範囲より低下する低負荷の条件では、流体の有するエネルギーが低く、微粒化性能が悪化する。このため、煤塵の低減が図れる負荷範囲が限られるという課題がある。
 また、非特許文献1に示されるバーナでは、前述の通り、噴霧ノズルが大型化して構造が複雑になるので、これらの操作に時間を有するという課題がある。
 また、特許文献2に示される噴霧ノズルでは、噴霧ノズルに接続する液体燃料配管が複数となり、配管数が多くなることから重量が増え、構造が複雑となる。また、複数の液体燃料配管のリークチェックや使用前後の配管内の残留物のパージ操作が必要となり、操作時間が増えるという課題がある。
 本発明の目的は、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置を実現することにある。
 本発明の噴霧ノズルは、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルにおいて、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成したことを特徴とする。
 また本発明の噴霧ノズルは、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルにおいて、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成したことを特徴とする。
 本発明の噴霧ノズルを備えたバーナは、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを備えたバーナであって、前記燃料を噴霧流体として前記噴霧ノズルに供給する燃料供給系統を配設し、蒸気または圧縮空気を前記噴霧流体の噴霧に用いる噴霧用媒体として前記噴霧ノズルに供給する噴霧用媒体供給系統を配設したことを特徴とする。
 また本発明の噴霧ノズルを備えたバーナは、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを備えたバーナであって、前記燃料を噴霧流体として前記噴霧ノズルに供給する燃料供給系統を配設し、蒸気または圧縮空気を前記噴霧流体の噴霧に用いる噴霧用媒体として前記噴霧ノズルに供給する噴霧用媒体供給系統を配設したことを特徴とする。
 本発明の噴霧ノズルを有するバーナを備えた燃焼装置は、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを有するバーナを備えた燃焼装置であって、燃料を燃焼させる燃焼炉と、前記燃焼炉に燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道を有していることを特徴とする。
 また本発明の噴霧ノズルを有するバーナを備えた燃焼装置は、噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを有するバーナを備えた燃焼装置であって、燃料を燃焼させる燃焼炉と、前記燃焼炉に燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道を有していることを特徴とする。
 本発明によれば、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置が実現できる。
本発明の第1実施例である噴霧ノズルの先端部の構造を示す断面図。 図1に示した第1実施例の噴霧ノズルを先端部から見た正面図。 比較例である噴霧ノズルの高負荷時と低負荷時の運転条件の状況を示す説明図。 本発明の第1実施例である噴霧ノズルの高負荷時と低負荷時の運転条件の状況を示す説明図。 本発明の第2実施例である噴霧ノズルの先端部の構造を示す断面図。 図4に示した第2実施例の噴霧ノズルを先端部から見た正面図。 図1又は図4に示した実施例の噴霧ノズルを備えた本発明の第3実施例であるバーナを示す概略図。 図1又は図4に示した実施例の噴霧ノズルを有するバーナ備えた本発明の第4実施例である燃焼装置を示す概略図。
 本発明の実施例である噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを備えた燃焼装置について図面を用いて以下に説明する。
 本発明の第1実施例である噴霧ノズルについて図1~図3を用いて説明する。
 図1及び図2に示した本発明の第1実施例である噴霧ノズル1は、液体燃料の噴霧流体を噴霧用媒体で微粒化させる噴霧ノズル1であり、噴霧ノズル1の構造は、該噴霧ノズル1の上流側に噴霧流体となる液体燃料2aを供給する液体燃料流路2と、噴霧用媒体3bを供給する噴霧用媒体流路3との2つの流路を備えており、該噴霧ノズル1の下流側の先端部に液体燃料2aと噴霧用媒体3bを合流した混合流体を衝突させて微細化した混合流体を扇型噴霧として噴出する複数の下側出口孔4及び上側出口孔5をそれぞれ備えている。
 噴霧ノズル1の上流側に備えられた液体燃料2aを供給する液体燃料流路2は、噴霧ノズル1の下流側の上半部で一方の傾斜流路16及び他方の傾斜流路17との複数の流路にそれぞれ分岐され、噴霧ノズル1の下流側の下半部で一方の傾斜流路14及び他方の傾斜流路15との複数の流路にそれぞれ分岐している。
 噴霧ノズル1の上流側に備えられた噴霧用媒体3bを供給する噴霧用媒体流路3は、低負荷時の対応として、噴霧用媒体流路3の内部に気液を分離する気液分離機構6aを構成する空間部が設けられており、この噴霧用媒体流路3の内部に形成された気液分離機構6aの空間部の下流側に、前記気液分離機構6aで分離した気液を分けて流下させる上下2つに分岐した上側分岐部8及び下側分岐部7をそれぞれ備えている。
 前記噴霧用媒体流路3の下側分岐部7の下流側では流路を分岐して、噴霧ノズル1の軸心方向に沿った直進流路10と、下側分岐部7から噴霧ノズル1の外周方向の下方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿った流路となる屈曲流路9との複数の流路を備えている。
 前記噴霧用媒体流路3の上側分岐部8の下流側でも同様に流路を分岐して、噴霧ノズル1の軸心方向に沿った直進流路12と、上側分岐部8から噴霧ノズル1の外周方向の上方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿った流路となる屈曲流路11との複数の流路を備えている。
 そして前記噴霧ノズル1の下流側では、前記液体燃料流路2及び噴霧用媒体流路3から分岐された各々の前記流路が該流路の下流側で合流して前記液体燃料流路2に供給された液体燃料2aと前記噴霧用媒体流路3に供給された噴霧用媒体3bが合流した混合流体を、噴霧ノズル1の先端部の傾斜面25に設けた下側出口孔4及び上側出口孔5の近傍となる噴霧ノズル1内の対向流路内で衝突させて微細化し、この微細化した液体燃料2aと噴霧用媒体3bとの混合流体を前記下側出口孔4及び上側出口孔5から外部に扇型噴霧として噴出するように構成している。
 前記下側出口孔4及び上側出口孔5近傍で噴霧ノズル1内の対向流路18、19及び20、21内で前記混合流体は衝突するため、出口孔4、5から噴出する噴霧は前記対向流路の流れ方向と直交する方向に拡大する扇型噴霧となる。
 このため,出口孔4、5は図1に示すように前記対向流路18、19及び20、21の流れ方向と直交する方向に開口部が拡大する形状とすると、扇型噴霧が噴霧ノズル1の外面と接触し難くなるので微粒化が進み易い。
 前記噴霧ノズル1において、噴霧用媒体流路3の内部に気液を分離する気液分離機構6aとなる空間部を形成し、この気液分離機構6aの空間部の下流側に前記気液分離機構6aで分岐した気液を区分する上側分岐部8と下側分岐部7をそれぞれ形成する。
 そして、前記上側分岐部8の下流側は噴霧ノズル1の外周方向に沿った屈曲流路11と噴霧ノズル1の軸心方向に沿って噴霧ノズル1の先端部に向かって配設した直進流路12とに分岐され、更にその下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路20、21で液体燃料2aと噴霧用媒体3bとが合流した混合流体を相互に衝突させて微細化し、この微細化した液体燃料2aと噴霧用媒体3bとの混合流体を前記上側出口孔5から外部に扇型噴霧34として噴出するように構成している。
 また、前記下側分岐部7の下流側は噴霧ノズル1の外周方向に沿った屈曲流路9と噴霧ノズル1の軸心方向に沿って噴霧ノズル1の先端部に向かって配設した直進流路10とに分岐され、更にその下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路18、19で液体燃料2aと噴霧用媒体3bとが合流した混合流体を相互に衝突させて微細化し、この微細化した液体燃料2aと噴霧用媒体3bとの混合流体を前記下側出口孔4から外部に扇型噴霧33として噴出するように構成している。
 図1に示した第1実施例の噴霧ノズル1の上流側には、噴霧ノズル1の中心側に形成され、噴霧用媒体3bを供給する噴霧用媒体流路3と、この噴霧用媒体流路3の外周側に該噴霧用媒体流路3と同心円状となるように形成され、液体燃料2aを供給する環状の液体燃料流路2がそれぞれ配設されている。
 図2は、図1に示した本実施例の噴霧ノズル1の先端部を先端側から見た噴霧ノズルの平面図である。また、図1に示す噴霧ノズル1の断面図の断面位置は、図2で矢印A-Aとして示している。
 図1に示した液体燃料流路2及び噴霧用媒体流路3は、それらの上流側で液体燃料2aを液体燃料流路2に供給する液体燃料供給系統と、噴霧用媒体3bを噴霧用媒体流路3に供給する噴霧用媒体供給系統、更にはパージ用気体を供給するパージ用気体供給系統等がそれぞれ接続しているが、ここでは図示を省略する。
 図1に示す第1実施例の噴霧ノズル1について構造を詳細に説明すると、噴霧ノズル1の上流側では、噴霧用媒体3bを供給する噴霧用媒体流路3を噴霧ノズル1の軸心側となる中心側に配設し、この噴霧用媒体流路3の外周側に前記噴霧用媒体流路3と同心円状に液体燃料2aを供給する液体燃料流路2を環状に配設した構成となっている。
 尚、前記液体燃料流路2を噴霧ノズル1の軸心側となる中心側に配設し、この液体燃料流路2の外周側に前記液体燃料流路2と同心円状に前記噴霧用媒体流路3を環状に配設した逆の構成の配置や、各々別々に前記流路を噴霧ノズル1の軸方向と平行に配置した構成を採用しても良い。
 本実施例の噴霧ノズル1において、液体燃料2aを供給する液体燃料流路2及び噴霧用媒体3bを供給する前記噴霧用媒体流路3は、前述したように噴霧ノズル1の内部の下流側で複数の流路にそれぞれ分岐し、これらの液体燃料流路2の分岐した流路と噴霧用媒体流路3の分岐した流路とが噴霧ノズル1の下流側で接続して液体燃料2aと噴霧用媒体3bとが合流した混合流体を微細化し、最終的に噴霧ノズル1の下流側に位置する噴霧ノズル1の先端部の傾斜面25の上部に設けられた上側出口孔5と、噴霧ノズル1の先端部の傾斜面25の下部に設けられた下側出口孔4とから、この微細化した混合流体を扇型噴霧33、34として外部にそれぞれ噴出するように構成している。
 次に本実施例の噴霧ノズル1の内部に配設された各流路の接続状態について説明する。なお、本実施例の噴霧ノズル1では、説明のため前記下側出口孔4及び上側出口孔5はそれぞれ1個で合計2個設けた場合を示すが、前記下側出口孔4及び上側出口孔5はそれぞれ2個以上の複数個設けるようにしても良い。
 図1に示すように本実施例の噴霧ノズル1では、後述する第3実施例である噴霧ノズルを備えたバーナの実施例と同様に図6に示したように、液体燃料2aを液体燃料流路2に供給する液体燃料供給系統44及び噴霧用媒体3bを該霧用媒体流路3に供給する噴霧用媒体供給系統45に設けた流量調節弁54、55等をそれぞれ操作して、前記噴霧ノズル1や、この噴霧ノズル1を設置したバーナや、噴霧ノズルを有するバーナを備えた燃焼装置の負荷が低負荷時の場合には、液体燃料2a及び噴霧用媒体3bの流量を調節して、液体燃料2aと噴霧用媒体3bの双方を噴霧用媒体流路3に供給できるように構成している。
 即ち、負荷Lに応じて制御装置100から出力された制御信号に基づいて、液体燃料2aを供給する液体燃料供給系統44及び噴霧用媒体3bを供給する噴霧用媒体供給系統45に設けた流量調節弁54、55(図示せず)を操作して、前記噴霧ノズル1や、該噴霧ノズル1を設置したバーナや、噴霧ノズルを有するバーナを備えた燃焼装置の負荷が高負荷時の場合には、液体燃料2aを液体燃料供給系統44を通じて噴霧ノズル1の液体燃料流路2に供給すると共に、噴霧用媒体供給系統45を通じて噴霧用媒体3bを該噴霧ノズル1の噴霧用媒体流路3にそれぞれ供給できるように構成している。
 本実施例の噴霧ノズル1の内部構造は、低負荷時の対応として、液体燃料2aと噴霧用媒体3bの双方の流体を噴霧用媒体流路3に供給させるため、前記噴霧用媒体流路3の内部に気液を分離する気液分離機構6aを構成する空間部が設けられており、この噴霧用媒体流路3の内部に形成された気液分離機構6aの空間部の下流側に、前記気液分離機構6aで分離した気液を分けて流下させる上下2つに分岐した上側分岐部8及び下側分岐部7をそれぞれ備えている。
 前記下側分岐部7の下流側は流路を更に分岐して、噴霧ノズル1の軸心方向に沿って先端側に向かって配設した直進流路10と、下側分岐部7から噴霧ノズル1の外周方向の下方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿って先端部に向かって配設した流路となる屈曲流路9とに分岐した複数の流路を備えている。
 また、前記上側分岐部8の下流側も同様に流路を更に分岐して、噴霧ノズル1の軸心方向に沿って先端部に向かって配設した直進流路12と、上側分岐部8から噴霧ノズル1の外周方向の上方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿って先端部に向かって配設した流路となる屈曲流路11とに分岐した複数の流路を備えている。
 一方、噴霧ノズル1の上流側で、該噴霧ノズル1に配設された前記噴霧用媒体流路3の外周側に該霧用媒体流路3と同心円状に環状に配設され、液体燃料2aを供給する前記液体燃料流路2は、噴霧ノズル1の下流側で分岐しており、前記液体燃料流路2から分岐して該噴霧ノズル1の軸心方向に沿って先端部に向かって配設した直進流路12に接続するように軸心側に傾斜して配設された一方の傾斜流路17と、前記液体燃料流路2から分岐して該噴霧ノズル1の外周側の屈曲流路11の直進流路部分に接続するように外周側に傾斜して配設された他方の傾斜流路16との複数の流路をそれぞれ備えている。
 また、噴霧ノズル1の上流側で、該噴霧ノズル1に配設された前記噴霧用媒体流路3の外周側に該霧用媒体流路3と同心円状に環状に配設され、液体燃料2aを供給する前記液体燃料流路2は、噴霧ノズル1の下流側で分岐しており、前記液体燃料流路2から分岐して該噴霧ノズル1の軸心方向に沿って先端部に向かって配設した直進流路10に接続するように軸心側に傾斜して配設された一方の傾斜流路15と、前記液体燃料流路2から分岐して該噴霧ノズル1の外周側の屈曲流路9の直進流路部分に接続するように外周側に傾斜して配設された他方の傾斜流路14との複数の流路をそれぞれ備えている。
 そして、噴霧ノズル1の下流側となる該噴霧ノズル1の外周側では、液体燃料2aを供給する前記液体燃料流路2から分岐して外周側に傾斜した一方の傾斜流路16は、噴霧用媒体3bを供給する屈曲流路11の直進流路部分の下流側に接続され、前記屈曲流路11の直進流路部分を流下する噴霧用媒体3bと前記傾斜流路16を流下する液体燃料2aとが合流した混合流体を、この屈曲流路11の直進流路部分と接続しており、噴霧ノズル1の先端部の外周側から軸心側に向かって流下させる一方の対向流路20を、噴霧ノズル1の先端部の傾斜面25に沿って配設している。
 また、噴霧ノズル1の下流側となる該噴霧ノズル1の軸心側では、液体燃料2aを供給する前記液体燃料流路2から分岐して軸心側に傾斜した他方の分岐流路17は、噴霧用媒体3bを供給する噴霧ノズル1の軸心方向に沿った直進流路12の下流側に接続され、前記直進流路12の下流側に該直進流路12を流下する噴霧用媒体3bと前記他方の分岐流路17を流下する液体燃料2aとが合流した混合流体を、この直進流路12と接続しており、噴霧ノズル1の先端部の軸心側から外周側に向かって流下させる他方の対向流路21を、噴霧ノズル1の先端部の傾斜面25に沿って配設している。
 そして、前記一方の対向流路20を流下する液体燃料2aと噴霧用媒体3bとの合流流体と、前記他方の対向流路21を流下する液体燃料2aと噴霧用媒体3bとの合流流体とが対向流となって前記対向流路20、21内で衝突して混合し、衝突によって混合して微細化された液体燃料2aと噴霧用媒体3bとの混合流体の液滴が、前記対向流路20及び対向流路21と直交した方向に配設され、噴霧ノズル1の先端に形成された傾斜面25に開口した上側出口孔5から外部に扇型噴霧34として噴出するように構成されている。
 同様に、噴霧ノズル1の下流側となる該噴霧ノズル1の外周側では、液体燃料2aを供給する前記液体燃料流路2から分岐して外周側に傾斜した一方の傾斜流路14は、噴霧用媒体3bを供給する屈曲流路9の直進流路部分の下流側に接続され、前記屈曲流路9の直進流路部分を流下する噴霧用媒体3bと前記傾斜流路14を流下する液体燃料2aとが合流した合流流体を、この屈曲流路9の直進流路部分と接続しており、噴霧ノズル1の外周側から軸心側に向かって流下させる一方の対向流路18を、噴霧ノズル1の先端部の傾斜面25に沿って配設している。
 また、噴霧ノズル1の下流側となる該噴霧ノズル1の軸心側では、液体燃料2aを供給する前記液体燃料流路2から分岐して軸心側に傾斜した他方の分岐流路15は、噴霧用媒体3bを供給する噴霧ノズル1の軸心方向に沿った直進流路10の下流側に接続され、前記直進流路10の下流側に該直進流路10を流下する噴霧用媒体3bと前記他方の分岐流路15を流下する液体燃料2aとが合流した合流流体を、この直進流路10と接続しており、噴霧ノズル1の軸心側から外周側に向かって流下させる他方の対向流路19を噴霧ノズル1の先端部の傾斜面25に沿って配設している。
 そして、前記一方の対向流路18を流下する液体燃料2aと噴霧用媒体3bとの合流流体と、前記他方の対向流路19を流下する液体燃料2aと噴霧用媒体3bとの合流流体とが対向流となって前記対向流路18、19内で衝突して混合し、この衝突によって混合して微細化された液体燃料2aと噴霧用媒体3bとの混合流体の液滴が、前記対向流路18及び対向流路19と直交した方向に配設され、噴霧ノズル1の先端に形成された傾斜面25に開口した下側出口孔4から外部に扇型噴霧34として噴出するように構成されている。
 なお、図1に示す第1実施例の噴霧ノズル1の構造は、噴霧ノズル1の下流側の内部構造として円錐台状の傾斜面25を有する外側の隔壁22と、前記傾斜流路14~17、屈曲流路9、11、直進流路10、12、及び対向流路18~21をそれぞれ配設した内側の構造物23とに分割可能となっており、よって前記対向流路18~21等の加工が容易となるが、このことは本実施例の噴霧ノズル1の必須条件ではない。
 次に図1及び図2に示した第1実施例の噴霧ノズル1における運転状態について説明する。
 (高負荷運用時)最初に、噴霧ノズル1に投入する液体燃料2aの流量が多い、いわゆる噴霧ノズル1や、該噴霧ノズル1を設置したバーナや燃焼装置の負荷を高負荷で運用する場合における本実施例の噴霧ノズル1の運転状態について説明する。
 高負荷運用で本実施例の噴霧ノズル1を運転する場合は、負荷Lに対応して制御装置100から出力される制御信号に基づいて、液体燃料2aを液体燃料流路2に供給する液体燃料供給系統44及び噴霧用媒体3bを該霧用媒体流路3に供給する噴霧用媒体供給系統45に設けた流量調節弁54、55をそれぞれ操作して、液体燃料供給系統44を通じて噴霧ノズル1の液体燃料流路2に液体燃料2aを供給し、噴霧用媒体供給系統45を通じて噴霧ノズル1の噴霧用媒体流路3に空気や蒸気等の気体の噴霧用媒体3bを供給する。
 噴霧ノズル1の上部の液体燃料流路2を流下して該液体燃料流路2から分岐した一方の傾斜流路16を流れる液体燃料2aは、噴霧ノズル1の噴霧用媒体流路3を流下して該噴霧用媒体流路3の下流の上部分岐部8で分岐した屈曲流路11の直進流路部分に接続し、該屈曲流路11を流れる噴霧用媒体3bと混合して液体燃料2aと噴霧用媒体3bの混合流体となって、この屈曲流路11の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設された一方の対向流路20を噴霧ノズル1の先端部に向かって流下する。
 噴霧ノズル1の上部の液体燃料流路2を流下して該液体燃料流路2から分岐した他方の傾斜流路17を流れる液体燃料2aは、噴霧ノズル1の噴霧用媒体流路3を流下して該噴霧用媒体流路3の下流の上部分岐部8で分岐した直進流路12に接続し、該直進流路12を流れる噴霧用媒体3bと混合して液体燃料2aと噴霧用媒体3bの混合流体となって、この直進流路12の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設された他方の対向流路21を噴霧ノズル1の先端部の軸心側から外周側に向かって流下する。
 そして、前記一方の対向流路20を流下する液体燃料2aと噴霧用媒体3bの合流流体と、前記他方の対向流路21を流下する液体燃料2aと噴霧用媒体3bの合流流体とが対向流となって前記対向流路20、21内で流下し、相互に衝突によって更に混合して微細化された液体燃料2aと噴霧用媒体3bとの混合流体の液滴を、前記対向流路20及び対向流路21と直交した方向に配設され、噴霧ノズル1の先端に形成された傾斜面25に開口した上側出口孔5から扇型噴霧34として外部に噴出させるので、液体燃料2aと噴霧用媒体3bとの混合流体の微粒化を促進することができる。
 同様に、噴霧ノズル1の下部の液体燃料流路2を流下して該液体燃料流路2から分岐した一方の傾斜流路14を流れる液体燃料2aは、噴霧ノズル1の噴霧用媒体流路3を流下して該噴霧用媒体流路3の下流の下部分岐部7で分岐した屈曲流路9の直進流路部分に接続し、該屈曲流路9を流れる噴霧用媒体3bと混合して液体燃料2aと噴霧用媒体3bの混合流体となって、この屈曲流路9の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設された一方の対向流路18を噴霧ノズル1の先端部に向かって流下する。
 噴霧ノズル1の下部の液体燃料流路2を流下して該液体燃料流路2から分岐した他方の傾斜流路15を流れる液体燃料2aは、噴霧ノズル1の噴霧用媒体流路3を流下して該噴霧用媒体流路3の下流の下部分岐部7で分岐した直進流路10に接続し、該直進流路10を流れる噴霧用媒体3bと混合して液体燃料2aと噴霧用媒体3bの混合流体となって、この直進流路10の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設された他方の対向流路19を噴霧ノズル1の先端部の軸心側から外周側に向かって流下する。
 そして、前記一方の対向流路18を流下する液体燃料2aと噴霧用媒体3bの合流流体と、前記他方の対向流路19を流下する液体燃料2aと噴霧用媒体3bの合流流体とが対向流となって前記対向流路18、19内を流下し、相互に衝突によって更に混合して微細化された液体燃料2aと噴霧用媒体3bとの混合流体の液滴を、前記対向流路18及び対向流路19と直交した方向に配設され、噴霧ノズル1の先端に形成された傾斜面25に開口した下側出口孔4から扇型噴霧33として外部に噴出させるので、液体燃料2aと噴霧用媒体3bとの混合流体の微粒化を促進することができる。
 即ち、上記した構成の本実施例の噴霧ノズル1は、高負荷で噴霧ノズル1を運転する場合に液体燃料2aと噴霧用媒体3bとの混合流体の微粒化を促進することが可能となる。
 上記した本実施例の噴霧ノズル1では、噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路20、21及び対向流路18、19を流下する液体燃料2aと噴霧用媒体3bとの混合流体は、相互の衝突によって対向流路の流れ方向(混合流体が流れる対向流路の配設方向)に対して直角方向(図2のB-B線の方向)に噴霧ノズル1の先端部の傾斜面25に開口した下側出口孔4及び上側出口孔5から微細化された混合流体の液滴となった扇型噴霧33、34をそれぞれ形成して外部に噴出する。
 この扇型噴霧33、34の形状から本実施例に示す噴霧ノズル1は、一般にファンスプレー型噴霧ノズルと呼ばれる。ファンスプレー型噴霧ノズルは液体燃料2aと噴霧用媒体3bとの混合が、出口孔4、5の近傍となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路20、21及び対向流路18、19の内部での混合流体同士の衝突によって促進されるので、噴霧用媒体3bの低い噴霧圧や少ない噴霧用媒体流量でも液体燃料2aを微細化する微粒化性能が高い。
 (低負荷運用時)次に、図1に示した構成の第1実施例の噴霧ノズル1に、点火時のように投入する液体燃料2aの流量が少ない、いわゆる噴霧ノズル1や、該噴霧ノズル1を設置したバーナや、噴霧ノズルを有するバーナを備えた燃焼装置の負荷が低負荷で運用する場合における本実施例の噴霧ノズル1の運転状態について説明する。
 低負荷運用で本実施例の噴霧ノズル1を運転する場合は、後述する第3実施例である噴霧ノズルを備えたバーナの実施例と同様に、図6に示したように、負荷Lに対応して制御装置100から出力される制御信号に基づいて、液体燃料2aを液体燃料流路2に供給する燃料供給系統44、及び噴霧用媒体3bを該霧用媒体流路3に供給する噴霧用媒体供給系統45に設けた流量調節弁54、55をそれぞれ操作すると共に、分岐系統44a、45aにそれぞれ設けた流量調節弁52、53を操作して、前記噴霧ノズル1や、この噴霧ノズル1を設置したバーナや、噴霧ノズル1を有するバーナを設置した燃焼装置の負荷が低負荷時には、第1実施例の噴霧ノズル1の液体燃料流路2への液体燃料2aの供給を閉止し、噴霧ノズル1の霧用媒体流路3には、液体燃料2a及び噴霧用媒体3bの流量を調節して液体燃料供給系統44から分岐して噴霧用媒体供給系統45に接続した分岐系統44aを経由して液体燃料2aを導き、液体燃料2aと噴霧用媒体3bの双方を噴霧用媒体流路3に供給できるように構成している。
 このようにして低負荷時の場合に、噴霧ノズル1の噴霧用媒体流路3には、液体燃料2aと、空気や蒸気等の気体の噴霧用媒体3bの双方を供給し、噴霧ノズル1の液体燃料流路2には液体燃料2aの供給を閉止するか、若しくは少量の噴霧用媒体3bを供給して、液体燃料2aの供給を停止する。
 このようにして低負荷時の場合に、噴霧ノズル1の噴霧用媒体流路3を流下する液体燃料2aと噴霧用媒体3bの混合流体は、噴霧用媒体流路3の内部に設けられた気液分離機構6aを形成する空間部で比重の違いにより分離する。
 前記気液分離機構6aを形成する空間部で分離した比重の重い液体燃料2aは、主に気液分離機構6aの下流側に位置する下側分岐部7に流入し、この下側分岐部7から分岐した屈曲流路9、直進流路10を流下し、この屈曲流路9及び直進流路10と接続した前記一方の対向流路18及び他方の対向流路19をそれぞれ流下する。
 そして、前記一方の対向流路18及び他方の対向流路19を流下する比重の重い液体燃料2aは前記一方の対向流路18及び他方の対向流路19を流下して相互に衝突し、衝突によって微細化された液体燃料2aの液滴が前記噴霧ノズル1の下流側に位置する噴霧ノズル1の先端部の傾斜面25の下部に設けられた下側出口孔4から微細化した液体燃料2aの液滴を扇型噴霧33として外部に噴出する。
 一方、前記気液分離機構6aを形成する空間部で分離した比重の軽い噴霧用媒体3bは、主に気液分離機構6aの下流側に位置する上側分岐部8に流入し、この上側分岐部8から分岐した屈曲流路11、直進流路12を流下し、この屈曲流路11及び直進流路12に接続した前記一方の対向流路20及び他方の対向流路21をそれぞれ流下する。
 そして、前記一方の対向流路20及び他方の対向流路21を流下する比重の軽い噴霧用媒体3bは、前記噴霧ノズル1の下流側に位置する噴霧ノズル1の先端部の傾斜面25の上部に設けられた上側出口孔5から外部に噴出する。なお、噴霧用媒体3bの一部は、気液分離機構6aの下流側に位置する下側分岐部7に流入しても良い。
 一般に、噴霧ノズル1の先端部に設けた下側出口孔4及び上側出口孔5の近傍の液体燃料2aと噴霧用媒体3bとの混合流体の圧力差が小さくなるように、前記噴霧用媒体流路3の内部に気液分離機構6aとなる空間部を設けても噴霧用媒体3bの一部が気液分離機構6aの空間部の下流側に設けた下側分岐部7に流れる。
 また、図1に示した本実施例の噴霧ノズル1では、噴霧用媒体流路3内に気液分離機構6aを形成する空間部を設けて重力を利用して気液を分離する例を示したが、下側分岐部7及び上側分岐部8の上流側に旋回流発生器を設けて遠心力を利用して気液を分離するなど、他の方法を用いても良い。
 即ち、上記した構成の本実施例の噴霧ノズル1は、低負荷で噴霧ノズル1を運転する場合にも液体燃料2aと噴霧用媒体3bとの混合流体の微粒化を促進することが可能となる。
 上述した本実施例の噴霧ノズル1においては、噴霧ノズル1に配設した屈曲流路9、11、直進流路10、12、傾斜流路14~16及び対向流路18~21の流路断面積は、それらの上流側となる前記噴霧用媒体流路3の内部の気液分離機構6aを構成する空間部の流路断面積と比べて流路断面積がそれぞれ小さくなるように形成されている。
 このため、本実施例の噴霧ノズル1では、液体燃料2aは屈曲流路9、直進流路10、傾斜流路14~16、対向流路18~21を流下する流速は高くなり、これらの流路を流れる過程やその途中の屈曲流路、噴霧ノズル1の出口孔4、5の近傍となる噴霧ノズル1の先端部の傾斜面25に沿って配設された対向流路18、19及び20、21を流れる液体燃料2aが前記対向流路18、19及び20、21内で相互に衝突することで、前記対向流路18、19及び20、21を流下する液体燃料2aの混合が更に進み、液体燃料2aの微粒化に寄与することができる。
 次に、図3A及び図3Bを用いて比較例の噴霧ノズルと本実施例の噴霧ノズル1における液体燃料2aを供給する流量が異なる高負荷時と低負荷時の2種類の運転条件の状況での噴霧状態について説明する。
 ここで、比較例の噴霧ノズルとは、図1に示す第1実施例の噴霧ノズル1の構造から、気液分離機構6aと、上側分離部7、下側分離部8をそれぞれ削除したものである。また、負荷に係らず、液体燃料2aは噴霧ノズル1の液体燃料流路2内を、噴霧用媒体3bは噴霧用媒体流路3から屈曲流路9、11内と、直進流路10、12内にそれぞれ流れる。
 液体燃料の流量が多い高負荷の条件では、比較例や本実施例の噴霧ノズルでは、液体燃料2aは液体燃料流路2を、噴霧用媒体3bは噴霧用媒体流路3を流れる。この場合、本実施例で噴霧用媒体流路3内に新たに加えた気液分離機構6aと、上側分離部7、下側分離部8は、噴霧用媒体流路3を流れる流体が噴霧用媒体3bと単一のため、比較例の噴霧ノズルとの流体の流れ方に違いは生じない。
 一方、液体燃料2aの流量が少ない低負荷の条件では、比較例の噴霧ノズルでは液体燃料2aは液体燃料流路2を、噴霧用媒体3bは噴霧用媒体流路3を流れるのに対して、本実施例の噴霧ノズルでは、液体燃料2aと噴霧用媒体3bの混合流体が噴霧用媒体流路3内を流れる。
 このため、比較例の噴霧ノズルと本実施例の噴霧ノズルでは、流体の流れ方が異なることになる。そこで、低負荷の条件について、以下に違いを示す。
 比較例の噴霧ノズルでは、液体燃料2aが液体燃料流路2から傾斜流路14~17を通って流下する。また、噴霧用媒体3bも噴霧用媒体流路3から屈曲流路9、11及び直進流路11、12を通って流下する。
 このため、比較例の噴霧ノズルでは、全ての出口孔から液体燃料2aと噴霧用媒体3bの混合流体が噴出する。低負荷の場合、液体燃料2aの流量が減るが、この際、噴霧用媒体3bとの比率を高負荷と同じに合わせようと噴霧用媒体3bの流量も減らすと、出口近傍の混合流体の流速が低下し、流路の圧力も低下する。
 よって、混合流体が出口近傍で衝突する衝突力が弱まり、微粒化が悪化する。微粒化特性を維持するためには、混合流体の流速を高めるため噴霧用媒体3bの投入比率を高める必要があるが、この場合、特許文献1に示されるように両者の混合部分での噴霧用媒体3bの比率が微粒化に適した状態とならない。
 この結果、噴霧用媒体3bの投入比率を高めても、エネルギーを有効に活用することができなくなる。また、適正な気液比の比率から外れるため微粒化特性が悪化し、燃焼排出物が増加するという課題が生じる。
 一方、本実施例の噴霧ノズルでは、液体燃料2aと噴霧用媒体3bの混合流体が噴霧用媒体流路3から屈曲流路9、11及び直進流路11、12を通って流下する。このとき、噴霧用媒体流路3に形成した気液分離機構6aと上側分離部7、下側分離部8を介して流下することで、噴霧ノズル先端部の一方に設けた出口孔4から液体燃料2aと噴霧用媒体3bの混合流体が噴出し、噴霧ノズル先端部の他方に設けた出口孔5からは噴霧用媒体3bのみが噴出する。
 前述の通り、低負荷の場合は、液体燃料2aの流量が減るが、この際、噴霧用媒体3bとの比率を高負荷と同じに合わせようと噴霧用媒体3bの流量も減らすと、出口近傍の混合流体の流速が低下し、流路の圧力も低下する。このため混合流体が出口近傍で衝突する衝突力が弱まり、微粒化が悪化する。
 微粒化特性を維持するには、混合流体の流速を高めるため噴霧用媒体3bの投入比率を高める必要があるが、本実施例の噴霧ノズルの場合では、噴霧用媒体流路3に形成した気液分離機構6aと上側分離部7、下側分離部8を介して流下させることで、液体燃料2aが噴出する出口孔4では噴霧用媒体の比率が5.0%と微粒化に適した状態となる。
 このように、低負荷で噴霧用媒体3bの投入比率を高めた場合でも、液体燃料2aの噴出する出口孔では適正な気液比の比率を守り、微粒化特性を高負荷と同様に維持することで、燃焼排出物を低減できることになる。
 一方、図3Bに示した本実施例の噴霧ノズル1では、低負荷の場合に噴霧ノズル1の一部の出口孔4から液体燃料2aと噴霧用媒体3bの混合流体が噴出し、その他の出口孔5からは噴霧用媒体3bのみが噴出する。
 このように、低負荷時に液体燃料2aと噴霧用媒体3bの双方を供給する噴霧用媒体流路3の内部に気液分離機構6aを形成する空間部を形成し、この気液分離機構6aの下流に、分離した液体燃料2aを流入する下部分岐部7及び分離した噴霧用媒体3bを流入する上部分岐部8をそれぞれ設けることで、低負荷の場合において噴霧用媒体3bの投入量を高めても液体燃料2aが噴出する出口孔4での噴霧用媒体3bの比率は抑制される。
 このため、低負荷の場合でも噴霧ノズルによる液体燃料2aの微粒化を適正な範囲に維持し易い。即ち、本実施例の噴霧ノズル1では、液体燃料2aは高い噴霧圧と適正な気液比で噴霧し、噴霧後に噴霧ノズルから離れた位置を流れる燃焼用気体と混合し易くなるので、噴霧した燃料濃度が高い場合に発生し易い煤塵やCO(一酸化炭素)の生成を抑制できる。
 尚、図1に示す第1実施例の噴霧ノズル1では、液体燃料2aを微細化して噴霧ノズル1から外部に扇型噴霧33として噴出するため、噴霧ノズル1の先端部の下側に液体燃料2aを噴出する出口孔4を、上側に噴霧用媒体3bを噴出する出口孔5をそれぞれ設けた構造を採用したが、流路の途中で上下を逆転させ、噴霧ノズル1の先端部の上側に液体燃料2aを噴出する出口孔4を設け、下側に噴霧用媒体3bを噴出する出口孔5を設けた構造とする等、流路7~10、流路16~19の配設位置を変えることで低負荷時に液体燃料2aを噴出する出口孔4の位置を自由に変更可能である。
 また、図1に示す本実施例の噴霧ノズル1では、説明を容易にするため、流路9~12、14~16、18~21を噴霧ノズル1の径方向の同一断面に配置し、対向流路18~21と直交する出口孔4、5を噴霧ノズル1の周方向に断面を拡大した場合を示すが、例えば流路18~21を噴霧ノズル1の周方向に配置し、対向流路18~21と直交する出口孔4、5を噴霧ノズル1の径方向に断面を拡大することも可能である。この場合、出口孔4、5からの扇型噴霧は噴霧ノズル1の径方向に拡がる。
 また、図1に示す本実施例の噴霧ノズル1では、説明を容易にするため、噴霧ノズル1の先端部に設けた出口孔4、5を2つとした場合を示すが、出口孔4、5を多数に増やしても良い。この場合、1つの出口孔の寸法が小さくなることで、液体燃料2aの微粒化が更に促進される。
 図1に示した本実施例の噴霧ノズル1では、液体燃料2aや、液体燃料2aと噴霧用媒体3bとの混合流体が噴霧ノズル1の先端部の出口孔近傍に配設した対向流路18、19及び対向流路20、21の内部で互いに衝突し、この衝突して微細化した液体燃料2aや、液体燃料2aと噴霧用媒体3bとの混合流体が噴霧ノズル1の先端部に設けた出口孔4、5から
扇型噴霧33、34を形成して噴出する場合について説明している。
 上記した本実施例のような噴霧ノズル1は、扇型噴霧の形状から一般にファンスプレー式噴霧ノズルと呼ぶ。
 ファンスプレー式噴霧ノズルで生成する扇型噴霧は、一般に扇型噴霧の扇型の中央部では流量が多く、扇型噴霧の外縁部では流量が少ない。さらに、発明者の測定によると、扇型噴霧の中央部で噴霧の粒子径は比較的に大きく、扇型噴霧の外縁部で粒子径は小さくなる。
 また、扇型噴霧の外縁部では噴霧が拡がり易く、薄い液膜が形成されるので、微粒子(直径100μm未満)が多くなるが、運動量が低いため微粒子は噴霧ノズルの近傍に留まりやすくなる。
 直径で100μm未満、出来れば50μm以下に微粒化させた粒子(以下、微粒子と記す)は体積に占める表面積が大きく、炉内からの熱放射により昇温して燃焼し易い。このため、これらの微粒子を噴霧ノズル近傍に滞留させることで、噴霧の着火が早まり、火炎の安定化や燃焼反応の促進に寄与する。
 一方、噴霧の中央部は外周部分に対して流量が多く、噴霧が拡がり難いため外周部分に比べて厚い液膜が形成される。このため、大粒子(直径100~300μm)が多い。大粒子は微粒子に比べて運動量が高く、離れた位置を流れる燃焼用空気と混合し易い。
 上述したように、本実施例の噴霧ノズルでは低負荷の運用条件で高い噴霧圧と適正な気液比で噴霧することが可能であることから、噴霧の中央と外周部での上記した噴霧の特徴を、低負荷から高負荷までに亘る広い負荷範囲で維持して、燃焼排出物の抑制に寄与できる。
 尚、図1に示した本実施例の噴霧ノズルでは、噴霧ノズルの先端部に開口した出口孔部分に扇型噴霧を行うファンスプレー式の噴霧ノズルを採用した例を示したが、その他に、噴霧ノズルの先端部の出口孔近くに液体燃料と噴霧用媒体とが混合する混合空間を設けた内部混合式や、出口孔近くで遠心力を誘起する液膜式、高い噴出力を利用する液柱式の噴霧ノズルを用いるようにしても良い。
 本実施例によれば、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズルが実現できる。
 次に本発明の第2実施例である噴霧ノズルについて図4~図5を用いて説明する。
 図4及び図5に示した本発明の第2実施例である噴霧ノズル1は、図1~図2に示した本発明の第1実施例である噴霧ノズル1と基本的な構成は同じであるので、両者に共通した構成の説明は省略し、相違する部分についてのみ、以下に説明する。
 図4及び図5に示した本実施例の噴霧ノズル1においても、該噴霧ノズル1の上流側に噴霧流体となる液体燃料2aを供給する液体燃料流路2と、噴霧用媒体3bを供給する噴霧用媒体流路3との2つの流路を備えており、該噴霧ノズル1の下流側となる噴霧ノズルの先端部に液体燃料流路2を通じて供給された液体燃料2aと噴霧用媒体流路3を通じて供給された噴霧用媒体3bを合流した混合流体を対向流路18、19及び対向流路20、21の内部で互いに衝突させて微細化し、この微細化した混合流体の液滴を扇型噴霧として外部に噴出する下側出口孔4及び上側出口孔5をそれぞれ備えている。
 本実施例の噴霧ノズル1の構造について更に説明すると、図4及び図5に示したように噴霧ノズル1の中心側に形成され、噴霧用媒体3bを供給する噴霧用媒体流路3と、この噴霧用媒体流路3の外周側に該噴霧用媒体流路3と同心円状となるように形成され、高負荷時に液体燃料2aのみが供給され、低負荷時に液体燃料2aと噴霧用媒体3bとの双方が供給される環状の液体燃料流路2がそれぞれ配設されている。
 前記液体燃料流路2の内部には気液を分離する気液分離機構を構成する旋回流発生器62が設置されており、この旋回流発生器62の下流側に同心円状に分岐された外側分岐部64及び内側分岐部63をそれぞれ備えている。
 この外側分岐部64は、噴霧ノズル1の下流側の上半部で一方の傾斜流路16及び他方の傾斜流路17にそれぞれ分岐している。
 また内側分岐部63は、噴霧ノズル1の下流側の下半部で一方の傾斜流路14及び他方の傾斜流路15にそれぞれ分岐している。
 一方、噴霧ノズル1の上流側となる噴霧ノズル1の中心側に備えられた噴霧用媒体3bを供給する噴霧用媒体流路3の内部は下流側に分岐部8が形成されており、この分岐部8の下流側では流路が分岐して、噴霧ノズル1の軸心方向に沿った直進流路10及び12と、噴霧ノズル1の外周方向の下方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿った流路となる屈曲流路9と、噴霧ノズル1の外周方向の上方に延びた後に屈曲して該噴霧ノズル1の軸心方向に沿った流路となる屈曲流路11をそれぞれ備えている。
 そして、噴霧ノズル1の下流側では、液体燃料流路2の内部に形成した外側分岐部64から分岐した一方の傾斜流路16が、噴霧用媒体流路3の内部に形成した分岐部8から分岐した屈曲流路11と接続しているので、一方の傾斜流路16を流下する液体燃料2aと屈曲流路11を流下する噴霧用媒体3bが混合した混合流体となり、この屈曲流路11の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路20に液体燃料2aと噴霧用媒体3bの混合流体が流下する。
 また、液体燃料流路2の内部に形成した外側分岐部64から分岐した他方の傾斜流路17が、噴霧用媒体流路3の内部に形成した分岐部8から分岐した直進流路12と接続しているので、他方の傾斜流路17を流下する液体燃料2aと直進流路12を流下する噴霧用媒体3bが混合した混合流体となり、この直進流路12の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路21に液体燃料2aと噴霧用媒体3bの混合流体が流下する。
 更に噴霧ノズル1の先端部の傾斜面25に沿って配設した前記対向流路20、21の内部で液体燃料2aと噴霧用媒体3bとが混合した混合流体を対向流として相互に衝突させて微細化し、この微細化した液体燃料2aと噴霧用媒体3bとの混合流体を前記対向流路20及び対向流路21と直交した方向に開口した上側出口孔5から外部に扇型噴霧34として噴出するように構成している。
 同様に、噴霧ノズル1の下流側では、液体燃料流路2の内部に形成した内側分岐部63から分岐した一方の傾斜流路14が、噴霧用媒体流路3の内部に形成した分岐部8から分岐した屈曲流路9と接続しているので、一方の傾斜流路14を流下する液体燃料2aと屈曲流路9を流下する噴霧用媒体3bが混合した混合流体となり、この屈曲流路9の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路18に液体燃料2aと噴霧用媒体3bの混合流体が流下する。
 また、液体燃料流路2の内部に形成した内側分岐部63から分岐した他方の傾斜流路15が、噴霧用媒体流路3の内部に形成した分岐部8から分岐した直進流路10と接続しているので、他方の傾斜流路15を流下する液体燃料2aと直進流路10を流下する噴霧用媒体3bが混合した混合流体となり、この直進流路10の下流側となる噴霧ノズル1の先端部の傾斜面25に沿って配設した対向流路19に液体燃料2aと噴霧用媒体3bの混合流体が流下する。
 更に噴霧ノズル1の先端部の傾斜面25に沿って配設した前記対向流路18、19の内部で液体燃料2aと噴霧用媒体3bとが混合した混合流体を対向流として相互に衝突させて微細化し、この微細化した液体燃料2aと噴霧用媒体3bとの混合流体を前記対向流路18及び対向流路19と直交した方向に開口した下側出口孔4から外部に扇型噴霧33として噴出するように構成している。
 なお、図4に示した本実施例の噴霧ノズル1では、前記液体燃料流路2の内部に気液分離機構6bを構成する旋回流発生器62を設けて遠心力で気液を分離する例を示しているが、旋回流発生器62の代わりに前記液体燃料流路2の内部に空間部を設けて重力で気液を分離するなど、他の方法を用いても良い。
 次に図4及び図5に示した第2実施例の噴霧ノズル1における運転状態について説明する。
本実施例の噴霧ノズル1や、該噴霧ノズル1を設置したバーナや燃焼装置の負荷を高負荷で運用する場合における本実施例の噴霧ノズル1の運転状態について説明する。
 (高負荷運用時)高負荷運用で本実施例の噴霧ノズル1を運転する場合は、図1及び図2に示した第1実施例の噴霧ノズル1の場合と同じであり、制御装置100から出力される制御信号に基づいて第2実施例の各流量調節弁を操作して、噴霧ノズル1の液体燃料流路2に液体燃料2aを供給し、噴霧用媒体流路3に空気や蒸気等の気体の噴霧用媒体3bを供給し、液体燃料2aと噴霧用媒体3bの混合流体を微細化して下側出口孔4及び上側出口孔5から扇型噴霧33、34として外部にそれぞれ噴出させているので、液体燃料2aを微粒化することができる。
 (低負荷運用時)次に、図4に示した構成の第2実施例の噴霧ノズル1に、点火時のように投入する液体燃料2aの流量が少ない、いわゆる噴霧ノズル1や、該噴霧ノズル1を設置したバーナや燃焼装置の負荷が低負荷で運用する場合における本実施例の噴霧ノズル1の運転状態について説明する。
 低負荷運用で本実施例の噴霧ノズル1を運転する場合は、後述する第3実施例である噴霧ノズルを備えたバーナの実施例と同様に、図6に示したように、制御装置100から出力される制御信号に基づいて、液体燃料供給系統44及び噴霧用媒体3bを該霧用媒体流路3に供給する噴霧用媒体供給系統45に設けた流量調節弁54、55をそれぞれ操作すると共に、液体燃料供給系統44から分岐して噴霧用媒体供給系統45に接続する分岐系統44aに設けた流量調節弁52、噴霧用媒体供給系統45から分岐して液体燃料供給系統44に接続する分岐系統45aに設けた流量調節弁53をそれぞれ操作して、前記噴霧ノズル1や、この噴霧ノズル1を設置したバーナや、噴霧ノズル1を有するバーナを備えた燃焼装置の負荷が低負荷時の場合には、制御装置100から出力される制御信号に基づいて第2実施例の各流量調節弁を操作して噴霧ノズル1の霧用媒体流路3への噴霧用媒体3bの供給を閉止し、噴霧ノズル1の液体燃料流路2には、液体燃料2a及び噴霧用媒体3bの流量を調節して分岐系統45aを経由して噴霧用媒体3bを導き、液体燃料2aと噴霧用媒体3bの双方を液体燃料流路2に供給できるように構成している。
 このようにして低負荷時の場合に、噴霧ノズル1の液体燃料流路2には、液体燃料2aと、空気や蒸気等の気体の噴霧用媒体3bの双方を供給し、噴霧ノズル1の噴霧用媒体流路3には噴霧用媒体3bの供給を閉止するか、若しくは少量の噴霧用媒体3bを供給して、液体燃料2aの供給を停止する。
 このようにして低負荷時の場合に、噴霧ノズル1の液体燃料流路2には、液体燃料2aと噴霧用媒体3bの双方を供給し、噴霧用媒体流路3は閉止、もしくは少量の噴霧用媒体3bを供給する。
 液体燃料流路2を流れる液体燃料2aと噴霧用媒体3bの混合流体は、液体燃料流路2の内部に設けられた気液分離機構を構成する旋回流発生器62にて比重の違いにより分離する。
 前記旋回流発生器62で分離した比重の重い液体燃料2aは、主に旋回流発生器62の下流側に位置する外側分岐部64に流入し、この外側分岐部64から分岐した一方の傾斜流路16及び他方の傾斜流路17を流下し、この傾斜流路16及び傾斜流路17と接続した前記屈曲流路11及び直進流路12と接続した前記一方の対向流路20及び他方の対向流路21をそれぞれ流下する。
 そして、前記一方の対向流路20及び他方の対向流路21を流下する比重の重い液体燃料2aは前記一方の対向流路20及び他方の対向流路21を流下して相互に衝突し、衝突によって微細化された液体燃料2aの液滴が前記噴霧ノズル1の先端部の傾斜面25の上部に設けられた上側出口孔5から微細化した液体燃料2aの液滴を扇型噴霧34として外部に噴出する。
 一方、前記旋回流発生器62で分離した比重の軽い噴霧用媒体3bは、主に旋回流発生器62の下流側に位置する内側分岐部63に流入し、この内側分岐部63から分岐した一方の傾斜流路14及び他方の傾斜流路15を流下し、この傾斜流路14及び傾斜流路15と接続した前記噴霧用媒体流路3の分岐部8から分岐した屈曲流路9及び直進流路10と接続し、この屈曲流路9及び直進流路10の下流側で接続した前記一方の対向流路18及び他方の対向流路19をそれぞれ流下する。
 そして、前記一方の対向流路18及び他方の対向流路19を流下する比重の軽い噴霧用媒体3bは前記一方の対向流路18及び他方の対向流路19と直交する方向に開口し、前記噴霧ノズル1の先端部の傾斜面25の下部に設けられた下側出口孔4から外部に噴出する。なお、噴霧用媒体3bの一部は、旋回流発生器62の下流側に位置する外側分岐部64に流入しても良い。
 上述した本実施例の噴霧ノズル1においては、噴霧ノズル1に配設した傾斜流路16、17、屈曲流路11、直進流路12、及び対向流路20、21の流路断面積は、それらの上流側となる前記噴霧用媒体流路3の内部の分岐部8を構成する空間部の流路断面積と比べて流路断面積がそれぞれ小さくなるように形成されている。
 このため、本実施例の噴霧ノズル1では、液体燃料2aと噴霧用媒体3bの混合流体が傾斜流路16~17、対向流路20、21を流下する流速は高くなり、これらの流路を流れる過程や噴霧ノズル1の上側出口孔5の近傍となる噴霧ノズル1の先端部の傾斜面25に沿って配設された対向流路20、21を流れる液体燃料2aが前記対向流路20、21内で相互に衝突することで、前記対向流路20、21を流下する液体燃料2aの混合が更に進み、液体燃料2aの微粒化に寄与することができる。
 これに対して比較例の噴霧ノズルでは、噴霧ノズルの全ての出口孔から液体燃料と噴霧用媒体の混合流体が噴出する。液体燃料の流量を減らし、かつ、噴霧の圧力を維持しようとすると、噴霧用媒体の比率(気液比)を高める必要が生じる。
 そこで、液体燃料2aの流量が少ない低負荷時の場合に液体燃料2aの流量を減らし、かつ、噴霧ノズルによる噴霧の圧力を維持しようとして噴霧用媒体の投入量を高めると、出口での混合流体の気液比が高まる。このため、微粒化が過度に進み、燃焼排出物が増加する可能性がある。
 一方、本実施例の噴霧ノズル1では、上述したように低負荷運用の場合に噴霧ノズル1の先端部の上側出口孔5から液体燃料2aと噴霧用媒体3bの混合流体を微細化した液滴を扇型噴霧34として外部に噴出させ、噴霧ノズル1の先端部の下側出口孔5からは噴霧用媒体のみが噴出するように構成している。
 噴霧用媒体3bが分離することで、低負荷運用において噴霧用媒体3bの投入量を高めても液体燃料2aを微細化した扇型噴霧34として外部に噴出する上側出口孔4での噴霧用媒体の比率は抑制される。
 このため、液体燃料2aの微粒化を負荷が低負荷から高負荷に至る広い負荷範囲に亘って適正な範囲に維持し易い。
 即ち、本実施例の噴霧ノズルでは、液体燃料2aは高い噴霧圧と適正な気液比で噴霧し、噴霧後に噴霧ノズルと離れた位置を流れる燃焼用気体と混合し易くなるので、燃料濃度が高い場合に発生し易い煤塵やCO(一酸化炭素)の生成を抑制することができる。
 また、図4及び図5に示した本実施例の噴霧ノズル1では、噴霧ノズル1の内部に設けた外側分岐部64と下側出口孔4とが対向流路20、21を通じて連通した場合を示すが、液体燃料2aが噴出する出口孔の位置は流路の設定次第で自由に設けることができる。
 また、図4及び図5に示す本実施例の噴霧ノズル1では、説明を容易にするため、出口孔4、5を合計2個設けた場合を示したが、出口孔を2個以上の複数個に増やしても良い。
 この場合、1つの出口孔の寸法が小さくなることで、液体燃料2aの微粒化が更に促進される。
 図4及び図5に示す第2実施例の噴霧ノズルでは、噴霧ノズル1の先端部に開口した出口孔4、5にファンスプレー式の噴霧ノズルを適用した例を用いたが、第1実施例の噴霧ノズルと同様に、出口孔の近くに混合空間を設けた内部混合式や、出口孔の近くで遠心力を誘起する液膜式、高い噴出力を利用する液柱式の噴霧ノズルを用いても良い。
 本実施例によれば、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズルが実現できる。
 次に本発明の第3実施例である噴霧ノズルを備えたバーナについて図6を用いて説明する。
 図6は本発明の第3実施例である噴霧ノズルを備えたバーナ30を示している。
 図6に示した本実施例の噴霧ノズルを備えたバーナ30は、噴霧ノズルに図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を採用している。
 本実施例の噴霧ノズルを備えたバーナ30に用いられた噴霧ノズル1は、上記したように第1実施例の噴霧ノズル1又は第2実施例の噴霧ノズル1と同じものを採用しているので、本実施例の噴霧ノズルを備えたバーナ30に用いられている噴霧ノズル1の説明は省略する。
 図6に示す本実施例の噴霧ノズル1を有するバーナ30は、その中心軸31に噴霧流体である液体燃料2aを供給する噴霧流体流路2と、前記噴霧流体流路2の外周側に配設されて液体燃料2aの噴霧に用いられる噴霧用媒体3bを供給する噴霧用媒体流路3をそれぞれ備えており、バーナ30の先端に液体燃料2aと噴霧用媒体3bが混合した微細化した混合流体を扇型噴霧33、34として外部に噴出する噴霧ノズル1を設けている。
 前記バーナ30は、その中心軸31の先端近くに火炎安定用の障害物32を有している。障害物32としては旋回流発生用の旋回羽根やスリットを有する邪魔板などが一般的である。噴霧ノズル1からは扇型の噴霧33、34を外部に噴出するように形成されている。
 前記バーナ30は、火炉壁35に接続されている。図6に示した本実施例の噴霧ノズルを備えたバーナ30の場合では、燃焼用空気はウインドボックス36から3つの流路に分かれて火炉内に供給される。
 これらの流路は、バーナ30の中心軸31に近い方から、1次流路37、2次流路38、3次流路39と呼ばれている。そして前記1次流路37、2次流路38、3次流路39からそれぞれ1次空気40、2次空気41、3次空気42として燃焼用空気を火炉内43に噴出するように構成している。
 燃焼用空気は前記流路37~39に設けた旋回流発生器や流れ方向偏向板、流量調整ダンパ(図示せず)によりその旋回力や噴出方向、流量を変えて、噴霧ノズル1から噴出する液体燃料との混合を調整し、ばいじんやNOxの発生を抑制している。
 バーナ30の噴霧ノズル1には、燃料である液体燃料2aを噴霧流体流路2に供給するように接続された液体燃料供給系統44と、液体燃料2aの噴霧に用いるために噴霧用媒体3bを噴霧用媒体流路3に供給するように接続された噴霧用媒体供給系統45がそれぞれ配設されている。
 本実施例の噴霧ノズルを備えたバーナには、第1実施例及び第2実施例の噴霧ノズル1が用いられるが、高負荷時には、液体燃料2aを噴霧ノズル1の噴霧流体流路2に供給すると共に、噴霧用媒体3bを噴霧ノズル1の噴霧用媒体流路3に供給することを可能にするために、前記液体燃料供給系統44及び噴霧用媒体供給系統45に流量調節弁54、55をそれぞれ設け、制御信号100から出力された制御信号によって流量調節弁54、55を操作して、噴霧流体流路2に供給される液体燃料2a、又は噴霧用媒体流路3に供給される噴霧用媒体3bの流量をそれぞれ調節するようになっている。
 そして、低負荷時には、液体燃料2aと噴霧用媒体3bの双方を第1実施例の噴霧ノズル1の噴霧用媒体流路3に供給することを可能にするために、或いは、低負荷時に、液体燃料2aと噴霧用媒体3bの双方を第2実施例の噴霧ノズル1の噴霧流体流路2に供給することを可能にするために、前記液体燃料供給系統44から分岐して液体燃料2aを噴霧用媒体流路3に供給する分岐流路44aを配設し、前記噴霧用媒体供給系統45から分岐して噴霧用媒体3bを噴霧流体流路2に供給する分岐流路45aを配設すると共に、これらの分岐流路44a及び分岐流路45に流量調節弁52、53をそれぞれ設けて、負荷Lが低負荷時に、制御装置100から出力された制御信号によって操作し、これらの流量調節弁54、55の操作に加えて、分岐流路44a及び分岐流路45を通じて噴霧用媒体流路3に供給される液体燃料2a、又は噴霧流体流路2に供給される噴霧用媒体3bの流量をそれぞれ調節するようになっている。
 そして、負荷Lが高負荷時に、第1実施例の噴霧ノズル1の噴霧流体流路2に液体燃料2aを供給すると共に、噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bを供給するように前記流量調節弁52~55をそれぞれ操作する説明、並びに、高負荷時に、第2実施例の噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bを供給すると共に、噴霧ノズル1の噴霧流体流路2に液体燃料2aと噴霧用媒体3bとの双方を供給するように前記流量調節弁52~55をそれぞれ操作する説明については、先の各実施例の噴霧ノズル1で説明済なのでここでの説明は省略する。
 同様に、低負荷時に、第1実施例の噴霧ノズル1の噴霧用媒体流路3に液体燃料2aと噴霧用媒体3bとの双方を供給すると共に、噴霧ノズル1の噴霧流体流路2に噴霧用媒体3bの供給を閉止するように前記流量調節弁52~55をそれぞれ操作する説明、並びに、低負荷時に、第2実施例の噴霧ノズル1の噴霧流体流路2に液体燃料2aと噴霧用媒体3bとの双方を供給すると共に、噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bの供給を閉止するように前記流量調節弁52~55をそれぞれ操作する説明については、先の各実施例の噴霧ノズル1で説明済なのでここでの説明は省略する。
 本実施例の噴霧ノズルを備えたバーナ30においては、噴霧ノズル1の近傍に着火装置46が設けられている。着火装置46の例として、電気火花により油噴霧粒子にエネルギーを与える方式がある。
 本実施例によれば、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズルを備えたバーナが実現できる。
 次に本発明の第4実施例である噴霧ノズルを有するバーナを備えた燃焼装置について図7を用いて説明する。
 図7は本発明の第4実施例である噴霧ノズルを有するバーナを備えた燃焼装置である火炉43を示している。本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43では、噴霧ノズルを有するバーナ30を複数備えている。
 図7に示した本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43に設けられた複数のバーナ30には、バーナ30に備えた噴霧ノズルとして、図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を採用している。
 本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43に設置したバーナ30に用いられた噴霧ノズル1は、上記したように第1実施例の噴霧ノズル1又は第2実施例の噴霧ノズル1と同じものを採用しているので、本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43に用いられている噴霧ノズル1の説明は省略する。
 図7に示した本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43において、火炉43に供給する燃焼用空気は、バーナ30と、バーナ30の下流側の供給系統となる空気供給口47からそれぞれ火炉43内に供給される。
 このように燃焼用空気をバーナ30と空気供給口47に分けて火炉43に供給することで、バーナ30によって火炉43内で燃料を燃焼して形成する火炎の温度を低減させている。
 さらに、本実施例の火炉43では、バーナ30の近傍にて空気不足の状態で燃料を燃焼させることで、燃料中に含まれる窒素分の一部が還元剤として生成し、燃焼で発生するNOxを窒素に還元する反応が生じる。
 この結果、火炉43の出口でのNOx濃度は、バーナ30から全ての燃焼用空気を火炉に供給する場合に比べて低減させることが可能となる。
 また、火炉43に供給する燃焼用空気は、バーナ30から燃焼用空気を供給するだけでなく、火炉43の空気供給口47から残りの燃焼用空気を供給するようにしているので、燃料を完全燃焼させることができ、未燃焼分を低減することが可能となる。
 そして火炉43で燃料を燃焼して発生した燃焼ガス48は、火炉43内の上部に配設した熱交換器49を加熱して蒸気を発生させた後に、熱交換器49の下流側に配設された煙道50を通り、煙突51から大気に放出される。
 本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43において、複数個設置された図6に示すバーナ30に備えられた噴霧ノズル1は、図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を採用しているので、負荷に対応した液体燃料の供給量によって噴霧ノズル1に配設された複数の流路のうち、負荷状態に応じて使用する流路が異なることになる。
 図1に示す噴霧ノズル1の場合、低負荷時の場合には、噴霧ノズル1の液体燃料供給系統44から分岐した分岐系統44aに設けた流量調節弁52を操作して、液体燃料供給系統44、分岐系統44aを介して噴霧用媒体流路3に液体燃料2aを供給し、噴霧用媒体供給系統45を通じて供給される噴霧用媒体3bと混合する。
 また、前記噴霧ノズル1の噴霧用媒体供給系統45には、噴霧用媒体流路3に噴霧用媒体3bを供給するだけでなく、噴霧用媒体供給系統45から分岐した分岐系統45aに設けた流量調節弁53を操作して、噴霧用媒体供給系統45、分岐系統45aを介して液体燃料流路2に少量の噴霧用媒体3bを供給する。
 そして低負荷時に、前記噴霧ノズル1の液体燃料流路2に噴霧用媒体3bを供給することで、液体燃料流路2への液体燃料2aの残留や固化、それに伴う流路の閉塞を防ぐことが出来る。なお、この場合、噴霧用媒体3bとしては少量では液化し易い蒸気よりも空気の使用が望ましい。
 噴霧用媒体3bとして蒸気を使用する場合は、別途空気配管を配設して空気を導入することが望ましい。
 また、負荷Lが高負荷時の場合には、制御装置100から出力される制御信号によって液体燃料供給系統44に設けた流量調節弁54と、噴霧用媒体供給系統45に設けた流量調節弁55の開度をそれぞれ調節して液体燃料供給系統44から噴霧ノズル1の液体燃料流路2に液体燃料2aを、噴霧用媒体供給系統45から噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3b供給する流量を調節する。
 そして、高負荷時に、第1実施例の噴霧ノズル1の噴霧流体流路2に液体燃料2aを供給すると共に、噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bを供給するように前記流量調節弁52~55をそれぞれ操作する説明、並びに、高負荷時に、第2実施例の噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bを供給すると共に、噴霧ノズル1の噴霧流体流路2に液体燃料2aと噴霧用媒体3bとの双方を供給するように前記流量調節弁52~55をそれぞれ操作する説明については、先の各実施例の噴霧ノズル1で説明済なのでここでの説明は省略する。
 同様に、低負荷時に、第1実施例の噴霧ノズル1の噴霧用媒体流路3に液体燃料2aと噴霧用媒体3bとの双方を供給すると共に、噴霧ノズル1の噴霧流体流路2に噴霧用媒体3bの供給を閉止するように前記流量調節弁52~55をそれぞれ操作する説明、並びに、低負荷時に、第2実施例の噴霧ノズル1の噴霧流体流路2に液体燃料2aと噴霧用媒体3bとの双方を供給すると共に、噴霧ノズル1の噴霧用媒体流路3に噴霧用媒体3bの供給を閉止するように前記流量調節弁52~55をそれぞれ操作する説明については、先の各実施例の噴霧ノズル1で説明済なのでここでの説明は省略する。
 さらに、噴霧ノズル1の起動、停止時は、噴霧用媒体供給系統45から流量調節弁53を操作して液体燃料流路2に噴霧用媒体3bの一部を供給し、流路内に残留する液体燃料2aの除去操作をする。
 なお、上述の流量調節弁54、55の操作は例示であり、他の流量調節弁を使用しても構わない。
 第3実施例の噴霧ノズル1を備えたバーナ30や、図7に示した本実施例の噴霧ノズル1を有するバーナ30を備えた燃焼装置では、低負荷時の場合には、噴霧ノズル1の下側出口孔4から微細化した混合流体の扇型噴霧33のみを外部に噴出させることになる。
 前述のように、第3実施例の噴霧ノズル1を備えたバーナ30や、図7に示した本実施例の噴霧ノズル1を有するバーナ30を備えた燃焼装置では、低負荷の運用条件で噴霧ノズル1から高い噴霧圧と適正な気液比で噴霧することが可能であることから、扇型噴霧33の中央部と外周部での噴霧の特徴を、広い負荷範囲に亘って維持し、燃焼排出物の抑制に寄与できる。
 また、本実施例の場合、液体燃料2aを噴出する噴霧ノズル1の出口孔4、5の近傍に着火装置46を配置すれば、低負荷での着火操作から高負荷までの広い負荷範囲に亘って1個の噴霧ノズル1で対応することが可能となる。
 図6に示した第3実施例の噴霧ノズル1を備えたバーナ30や、図7に示した第4実施例の噴霧ノズル1を有するバーナ30を備えた燃焼装置の火炉43では、燃料に液体燃料2aを使用する場合を示したが、主燃料として微粉炭等の固体燃料を使用し、補助燃料として液体燃料2aを使用する場合も、図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を採用することが可能である。この場合、噴霧ノズル1から液体燃料2aを火炉内に噴霧する場合に上記の効果が得られる。
 図7に示した本実施例の噴霧ノズルを有するバーナを備えた燃焼装置である火炉43の場合では、燃焼用空気をバーナ30と空気供給口47に分岐して供給する例を示したが、燃焼用空気をバーナ30のみに供給する場合も、図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を本実施例の、前記噴霧ノズル1の燃焼装置に適用することができる。
 また、本実施例では噴霧ノズル1を備えたバーナ30を火炉43の1つの火炉壁35に設けた場合を示したが、噴霧ノズル1を備えたバーナ30を複数の壁面の火炉壁35に設けた場合や火炉壁35の角部に設けた場合にも、図1~図2に示した第1実施例の噴霧ノズル1、又は図4~図5に示した第2実施例の噴霧ノズル1を本実施例の燃焼装置に適用することができる。
 本実施例によれば、低負荷から高負荷までの広い負荷範囲に亘って噴霧ノズルの周囲にまで液体燃料と噴霧用媒体が混合した微細化した混合流体と燃焼用気体とを十分に混合させることを可能にして、煤塵やCO(一酸化炭素)の燃焼排出物の生成を抑制する噴霧ノズルを有するバーナを備えた燃焼装置が実現できる。
 1:噴霧ノズル、2a:液体燃料、2:液体燃料流路、3b:噴霧用媒体、3:噴霧用媒体流路、4:下側出口孔、5:上側出口孔、6a、6b:気液分離機構、7:下側分岐部、8:上側分岐部、9、11屈曲流路、10、12:直進流路、14~17:傾斜流路、18~21:対向流路、22:隔壁、23:構造物、25:傾斜面、30:バーナ、31:中心軸、32:障害物、33、34:扇型の噴霧、35:火炉壁、36:ウインドボックス、37:1次流路、38:2次流路、39:3次流路、40:1次空気の流れ、41:2次空気の流れ、42:3次空気の流れ、43:火炉、44:液体燃料供給系統、45:噴霧用媒体供給系統、46:着火装置、47:空気投入口、48:燃焼ガスの流れ、49:熱交換器、50:煙道、51:煙突、52~55:流量調節弁、61:噴霧ノズル、62:旋回流発生器、63:内側分岐部、64:外側分岐部、100:制御装置。

Claims (12)

  1.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、
     前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルにおいて、
     前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、
     前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、
     前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、
     前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、
     前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成したことを特徴とする噴霧ノズル。
  2.  請求項1に記載の噴霧ノズルにおいて、
     前記噴霧用媒体流路は前記噴霧ノズルの軸心側に配設し、
     前記噴霧流体流路は前記噴霧用媒体流路の外周側となる前記噴霧ノズルに配設し、
     噴霧流体と噴霧用媒体との気液を分離する前記気液分離機構として、空間部での重力を利用した分離機構、あるいは流れに対して周方向の流速成分を誘起する旋回流発生器を前記噴霧用媒体流路の内部に形成したことを特徴とする噴霧ノズル。
  3.  請求項2に記載の噴霧ノズルにおいて、
     前記噴霧用媒体流路は前記噴霧ノズルの軸心側に配設して高負荷運転時に燃料である噴霧流体を供給すると共に、低負荷運転時に燃料である前記噴霧流体と該噴霧流体の噴霧に用いる噴霧用媒体の双方を供給し、
     前記噴霧流体流路は前記噴霧用媒体流路の外周側となる前記噴霧ノズルに配設して高負荷運転時に燃料である噴霧流体を供給するように構成したことを特徴とする噴霧ノズル。
  4.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、
     前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルにおいて、
     前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、
     前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、
     前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、
     前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、
     前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成したことを特徴とする噴霧ノズル。
  5.  請求項4に記載の噴霧ノズルにおいて、
     前記噴霧用媒体流路は前記噴霧ノズルの軸心側に配設し、
     前記噴霧流体流路は前記噴霧用媒体流路の外周側となる前記噴霧ノズルに配設し、
      噴霧流体と噴霧用媒体との気液を分離する前記気液分離機構として、空間部での重力を利用した気液分離機構、あるいは流れに対して周方向の流速成分を誘起する旋回流発生器を前記噴霧流体流路の内部に設置したことを特徴とする噴霧ノズル。
  6.  請求項5に記載の噴霧ノズルにおいて、
     前記噴霧用媒体流路は前記噴霧ノズルの軸心側に配設して高負荷運転時に噴霧用媒体を供給し、
     前記噴霧流体流路は前記噴霧用媒体流路の外周側となる前記噴霧ノズルに配設して高負荷運転時に燃料である噴霧流体を供給すると共に、低負荷運転時に燃料である前記噴霧流体と該噴霧流体の噴霧に用いる噴霧用媒体の双方を供給するように構成したことを特徴とする噴霧ノズル。
  7.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを備えたバーナであって、
     前記燃料を噴霧流体として前記噴霧ノズルに供給する燃料供給系統を配設し、蒸気または圧縮空気を前記噴霧流体の噴霧に用いる噴霧用媒体として前記噴霧ノズルに供給する噴霧用媒体供給系統を配設したことを特徴とする噴霧ノズルを備えたバーナ。
  8.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを備えたバーナであって、
     前記燃料を噴霧流体として前記噴霧ノズルに供給する燃料供給系統を配設し、蒸気または圧縮空気を前記噴霧流体の噴霧に用いる噴霧用媒体として前記噴霧ノズルに供給する噴霧用媒体供給系統を配設したことを特徴とする噴霧ノズルを備えたバーナ。
  9.  請求項7に記載の噴霧ノズルを備えたバーナにおいて、
     前記バーナに備えられた噴霧ノズルに燃料である噴霧流体を供給する燃料供給系統から分岐して噴霧用媒体供給系統に接続する第1の分岐系統を配設し、
     前記バーナに備えられた噴霧ノズルに前記噴霧流体の噴霧に用いる噴霧用媒体を供給する噴霧用媒体供給系統から分岐して燃料供給系統に接続する第2の分岐系統を配設し、
     前記燃料供給系統、噴霧用媒体供給系統、第1の分岐系統、及び第2の分岐系統に流量調節弁をそれぞれ設け、
     負荷に応じてこれらの流量調節弁に対して制御信号を出力し前記流量調節弁を操作する制御装置を設置したことを特徴とする噴霧ノズルを備えたバーナ。
  10.  請求項8に記載の噴霧ノズルを備えたバーナにおいて、
     前記バーナに備えられた噴霧ノズルに燃料である噴霧流体を供給する燃料供給系統から分岐して噴霧用媒体供給系統に接続する第1の分岐系統を配設し、
     前記バーナに備えられた噴霧ノズルに前記噴霧流体の噴霧に用いる噴霧用媒体を供給する噴霧用媒体供給系統から分岐して燃料供給系統に接続する第2の分岐系統を配設し、
     前記燃料供給系統、噴霧用媒体供給系統、第1の分岐系統、及び第2の分岐系統に流量調節弁をそれぞれ設け、
     負荷に応じてこれらの流量調節弁に対して制御信号を出力し前記流量調節弁を操作する制御装置を設置したことを特徴とする噴霧ノズルを備えたバーナ。
  11.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧用媒体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを有するバーナを備えた燃焼装置であって、
     燃料を燃焼させる燃焼炉と、前記燃焼炉に燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有していることを特徴とする噴霧ノズルを有するバーナを備えた燃焼装置。
  12.  噴霧ノズルの入口側に噴霧流体を供給する噴霧流体流路と、この噴霧流体を噴霧する噴霧用媒体を供給する噴霧用媒体流路をそれぞれ設け、前記噴霧ノズルに設けた前記噴霧流体流路を流れる噴霧流体と前記噴霧用媒体流路を流れる噴霧用媒体を混合させた混合流体を前記噴霧ノズルの先端部に開口させた複数の出口孔から外部に噴出する噴霧ノズルであって、前記噴霧ノズルの内部に前記噴霧流体流路の下流側に該噴霧流体流路から分岐した第1の分岐流路と噴霧用媒体流路の下流側に該噴霧用媒体流路から分岐した第2の分岐流路をそれぞれ配設し、前記噴霧ノズルの内部で前記第1の分岐流路と前記第2の分岐流路とが接続するように配設して、前記第1の分岐流路を流下した噴霧流体と前記第2の分岐流路を流下する噴霧用媒体とが混合した混合流体が流下するように構成し、前記噴霧ノズル先端部近傍となる前記第2の分岐流路の下流側に噴霧流体と噴霧用媒体とが混合した前記混合流体を対向して流下し衝突させる対向流路を複数対配設し、前記対向流路内で衝突した前記混合流体を前記出口孔から外部に噴出するように前記対向流路を前記出口孔にそれぞれ接続させ、前記噴霧流体流路の内部に噴霧流体と噴霧用媒体との気液を分離する気液分離機構を形成すると共に該気液分離機構の下流側に流路を複数に分岐する分岐部を設け、前記複数に分岐した分岐部を下流側に配設された前記対向流路を通じてそれぞれ異なる出口孔に接続するように構成した噴霧ノズルを有するバーナを備えた燃焼装置であって、
     燃料を燃焼させる燃焼炉と、前記燃焼炉に燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有していることを特徴とする噴霧ノズルを有するバーナを備えた燃焼装置。
PCT/JP2013/057156 2013-03-14 2013-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置 WO2014141424A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/057156 WO2014141424A1 (ja) 2013-03-14 2013-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置
PCT/JP2014/056896 WO2014142305A1 (ja) 2013-03-14 2014-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057156 WO2014141424A1 (ja) 2013-03-14 2013-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置

Publications (1)

Publication Number Publication Date
WO2014141424A1 true WO2014141424A1 (ja) 2014-09-18

Family

ID=51536120

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/057156 WO2014141424A1 (ja) 2013-03-14 2013-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置
PCT/JP2014/056896 WO2014142305A1 (ja) 2013-03-14 2014-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056896 WO2014142305A1 (ja) 2013-03-14 2014-03-14 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置

Country Status (1)

Country Link
WO (2) WO2014141424A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536965B (en) * 2015-04-02 2020-02-12 Hamworthy Combustion Engineering Ltd Atomizer with an Outlet having a Non-Circular Internal and/or External Cross-Section

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105633A (ja) * 1996-06-21 1998-01-13 Mitsubishi Electric Corp スプレーチップ及びスプレー装置
JP2002181309A (ja) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd バーナ
JP2003065505A (ja) * 2001-08-27 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd バーナ
JP2012145026A (ja) * 2011-01-12 2012-08-02 Babcock Hitachi Kk 噴霧ノズル及び噴霧ノズルを有する燃焼装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153639U (ja) * 1984-09-11 1986-04-11
JP2968712B2 (ja) * 1995-12-13 1999-11-02 川崎重工業株式会社 重質油の高粘度燃焼方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105633A (ja) * 1996-06-21 1998-01-13 Mitsubishi Electric Corp スプレーチップ及びスプレー装置
JP2002181309A (ja) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd バーナ
JP2003065505A (ja) * 2001-08-27 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd バーナ
JP2012145026A (ja) * 2011-01-12 2012-08-02 Babcock Hitachi Kk 噴霧ノズル及び噴霧ノズルを有する燃焼装置

Also Published As

Publication number Publication date
WO2014142305A1 (ja) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6029375B2 (ja) 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
JP5730024B2 (ja) 噴霧ノズル及び噴霧ノズルを有する燃焼装置
JP6317631B2 (ja) 噴霧ノズル、噴霧ノズルを備えた燃焼装置、及びガスタービンプラント
JPH0820047B2 (ja) 低NOx短火炎バーナー
JP5606628B2 (ja) バーナ装置
JP6491898B2 (ja) 噴霧ノズルおよび噴霧ノズルを用いた燃焼装置、ガスタービンプラント
JP6173868B2 (ja) 噴霧ノズル及び噴霧ノズルを備えた燃焼装置
JP2008031847A (ja) ガスタービン燃焼器とその運転方法、及びガスタービン燃焼器の改造方法
JP5417258B2 (ja) 噴霧ノズルを備えた燃焼装置
WO2014141424A1 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ、及び噴霧ノズルを有するバーナを備えた燃焼装置
JP6071828B2 (ja) バーナチップ及び燃焼バーナ並びにボイラ
JP4584054B2 (ja) ガスタービン燃焼器用燃料ノズル
WO2013118665A1 (ja) 噴霧ノズル及び噴霧ノズルを備えた燃焼装置
WO2014097812A1 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ及びバーナを備えた燃焼装置
JP2013185776A (ja) 噴霧ノズル、バーナ及び燃焼装置
JP6053815B2 (ja) 噴霧ノズル、噴霧ノズルを備えたバーナ及びバーナを備えた燃焼装置
JP2013190161A (ja) 噴霧ノズル、バーナ及び燃焼装置
JP2014031988A (ja) 噴霧ノズル及びそれを備えたバーナ並びに燃焼装置
RU2116569C1 (ru) Горелка
JP3004263B1 (ja) 油焚き低NOxバーナ
JP2008304146A (ja) バーナおよびボイラ
JP2010133683A (ja) バーナチップ構造
JPH0233506A (ja) NOxおよび煤じん低減バーナ
JP2007057184A (ja) ボイラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP