WO2014141331A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2014141331A1
WO2014141331A1 PCT/JP2013/005732 JP2013005732W WO2014141331A1 WO 2014141331 A1 WO2014141331 A1 WO 2014141331A1 JP 2013005732 W JP2013005732 W JP 2013005732W WO 2014141331 A1 WO2014141331 A1 WO 2014141331A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
upper bearing
main shaft
rotary compressor
rib
Prior art date
Application number
PCT/JP2013/005732
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 薬師寺
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13877835.2A priority Critical patent/EP2942526B1/en
Priority to CN201380071045.1A priority patent/CN104937274B/en
Publication of WO2014141331A1 publication Critical patent/WO2014141331A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a rotary compressor that can suppress vibration of a shaft that rotates integrally with a rotor of a motor.
  • the rotary compressor used in the refrigeration apparatus includes a cylinder 2 having a cylindrical inner wall surface and a piston rotor provided eccentrically with respect to the center of the cylinder 2. 3 is provided.
  • the piston rotor 3 is provided on a main shaft 4 provided along the central axis of the cylinder 2.
  • the main shaft 4 is provided so as to be rotatable around its central axis via an upper bearing 5A and a lower bearing 5B fixed to the cylinder 2.
  • a rotor 6 ⁇ / b> A of a motor 6 is fixed to the main shaft 4.
  • a stator 6B fixed to the inner peripheral surface of the hermetic container 1 is disposed.
  • the main shaft 4 When the stator 6B is energized, the main shaft 4 is rotationally driven together with the rotor 6A, and the piston rotor 3 is Swivel inside.
  • the rotary compressor sucks the refrigerant into a compression chamber formed between the cylinder 2 and the piston rotor 3, and compresses the refrigerant by reducing the volume of the compression chamber by the rotation of the piston rotor 3.
  • the rotary compressor gas-liquid separates the refrigerant by the accumulator 8 and then sucks and compresses the refrigerant.
  • Patent Document 1 proposes to reduce the vibration transmitted from the upper bearing to the sealed container by interposing a casting support member effective in vibration damping between the sealed container and the upper bearing.
  • Patent Documents 2 and 3 propose reducing vibration by forming ribs in the upper bearing.
  • the present invention has been made based on such a problem, and an object thereof is to provide a rotary compressor capable of effectively reducing vibration while minimizing an increase in weight.
  • the rotary compressor of the present invention is rotatably supported by each of a rotary compression mechanism that compresses and discharges a supplied refrigerant, an upper bearing and a lower bearing provided across the rotary compression mechanism, and an upper bearing and a lower bearing.
  • a main shaft that passes through the rotary compression mechanism, an electric motor that rotates the main shaft about its central axis, a muffler that is fixed to the upper bearing and into which refrigerant discharged from the rotary compression mechanism flows, and rotary compression A mechanism, an upper bearing, a lower bearing, a main shaft, an electric motor, and a sealed container that accommodates the muffler therein.
  • At least one of the muffler and the upper bearing has a fixing point for fixing the upper bearing to the sealed container and the main shaft.
  • a stiffening body extending along a radial line connecting the center is provided.
  • a stiffening member is provided on at least one of the muffler and the upper bearing as a reinforcing member for the large strain region, thereby improving the rigidity of the main shaft and reducing the vibration of the main shaft.
  • the stiffening body in the present invention includes all structural parts for increasing the moment of section of the muffler and the upper bearing and improving the rigidity against bending and torsion, and is typically a rib.
  • the stiffening rib can be formed integrally with the muffler, or the stiffening rib is formed separately from the muffler, and the separate stiffening rib is fixed to the muffler. You can also When the stiffening body is formed integrally with the muffler, a refrigerant flow path (first refrigerant flow path) through which the refrigerant discharged from the inside of the muffler into the sealed container passes can be formed in the stiffening body. .
  • This form has the advantage that the muffler can be integrally formed by sheet metal processing, including the stiffener and the refrigerant flow path.
  • the stiffening rib when the stiffening rib is formed separately from the muffler, the refrigerant flow path (second refrigerant flow path) through which the refrigerant discharged from the muffler into the sealed container passes is replaced with the stiffening body. Avoiding it can form a muffler. This configuration is effective when a stiffening body having a shape that cannot be formed integrally with the muffler is required.
  • the rigidity with respect to the main shaft is improved while minimizing an increase in weight, The vibration of the main shaft can be reduced.
  • the compressor 10 according to the first embodiment of the present invention will be described.
  • the compressor 10 is characterized in that the vibration of the main shaft 23 is reduced by integrally forming a rib 56 corresponding to a stiffening body on a muffler 50A described later.
  • the configuration of the compressor 10 will be described, and then the operation and effect of the compressor 10 will be described.
  • the compressor 10 is a so-called two-cylinder type compressor in which disk-shaped cylinders 20 ⁇ / b> A and 20 ⁇ / b> B are provided in two upper and lower stages inside a cylindrical sealed container 11.
  • a cylindrical cylinder inner wall surface 20S is formed in each of the cylinders 20A and 20B.
  • Cylindrical piston rotors 21A and 21B each having an outer diameter smaller than the inner diameter of the cylinder inner wall surface 20S are arranged inside the cylinders 20A and 20B.
  • the piston rotors 21A and 21B are inserted and fixed to the eccentric shaft portions 40A and 40B of the main shaft 23 along the central axis of the sealed container 11, respectively.
  • spaces R each having a crescent-shaped cross section are formed between the cylinder inner wall surfaces 20S of the cylinders 20A and 20B and the outer peripheral surfaces of the piston rotors 21A and 21B.
  • the upper-stage piston rotor 21A and the lower-stage piston rotor 21B are provided so that their phases are different from each other by 180 °.
  • a disk-shaped partition plate 24 is provided between the upper and lower cylinders 20A and 20B. The partition plate 24 partitions the space R in the upper cylinder 20A and the space R in the lower cylinder 20B into the compression chamber R1 and the compression chamber R2 without communicating with each other.
  • the upper and lower cylinders 20A and 20B are provided with blades (not shown) for dividing the compression chambers R1 and R2 into two, respectively.
  • the blade is held in an insertion groove formed extending in the radial direction of the cylinders 20A and 20B so as to be able to advance and retract in a direction approaching and separating from the piston rotors 21A and 21B.
  • the cylinders 20A and 20B are formed with discharge holes (not shown) for discharging the refrigerant at predetermined positions, and the discharge holes are provided with reed valves (not shown). When the pressure of the compressed refrigerant reaches a predetermined value, the reed valve is pushed open to discharge the refrigerant to the outside of the cylinders 20A and 20B.
  • the main shaft 23 is rotatably supported around its central axis by an upper bearing 29A fixed to the cylinder 20A and a lower bearing 29B fixed to the cylinder 20B.
  • the main shaft 23 includes eccentric shaft portions 40A and 40B that are offset in a direction orthogonal to the central axis of the main shaft 23.
  • the eccentric shaft portions 40A and 40B have outer diameters slightly smaller than the inner diameters of the piston rotors 21A and 21B. Accordingly, when the main shaft 23 rotates, the eccentric shaft portions 40A and 40B rotate around the central axis of the main shaft 23, and the upper and lower piston rotors 21A and 21B roll eccentrically in the cylinders 20A and 20B. At this time, the blade tip described above advances and retreats following the movement of the piston rotors 21A and 21B, and is always pressed against the piston rotors 21A and 21B.
  • the main shaft 23 protrudes and extends upward from the upper bearing 29A, and a rotor 37 of an electric motor 36 for rotating the main shaft 23 is integrally provided in the protruding portion.
  • a stator 38 is fixed to the inner peripheral surface of the sealed container 11 so as to face the outer peripheral portion of the rotor 37.
  • the upper bearing 29A includes a base 291A and a sleeve 292A that rises vertically from the base 291A.
  • the base portion 291A and the sleeve 292A are formed so that their axial centers coincide with each other, and a receiving surface 293A on which the main shaft 23 is supported is formed around the axial center.
  • the outer peripheral surface of the base 291A is fixed to the inner peripheral surface of the sealed container 11 at three fixing points F. Fixing is performed, for example, by welding or fastening with bolts.
  • the lower bearing 29B includes a base 291B and a sleeve 292B that rises vertically from the base 291B.
  • the base 291 ⁇ / b> B and the sleeve 292 ⁇ / b> B are formed so that their axes coincide with each other, and a receiving surface 293 ⁇ / b> B for supporting the main shaft 23 is formed around the axis.
  • the upper bearing 29A and the lower bearing 29B are disposed so that the base portion 291A and the base portion 291B face each other, and the upper bearing 29A supports the main shaft 23 between the cylinder 20A and the electric motor 36. A portion of the main shaft 23 that protrudes downward from the cylinder 20B is supported by the lower bearing 29B.
  • the upper bearing 29A has a discharge hole (not shown) that communicates with a discharge hole formed in the cylinder 20A, and the refrigerant that has passed through the cylinder 20A is discharged into the later-described muffler 50A through the discharge hole. Is done.
  • the lower bearing 29B includes a discharge hole (not shown) that communicates with a discharge hole formed in the cylinder 20B, and the refrigerant that has passed through the cylinder 20B passes through the discharge hole to form a muffler 50B described later. It is discharged inside.
  • Compressor 10 has muffler 50A mounted on upper bearing 29A and muffler 50B mounted on lower bearing 29B.
  • the refrigerant that has passed through the upper bearing 29A and the lower bearing 29B flows into the muffler 50A and the muffler 50B, respectively, the pulsating component is removed.
  • the refrigerant from which the pulsating component has been removed flows upward through the discharge path formed in the muffler 50A and the muffler 50B.
  • Openings 12A and 12B are formed on the side of the sealed container 11 at positions facing the outer peripheral surfaces of the cylinders 20A and 20B.
  • suction ports 30A and 30B are formed at positions facing the openings 12A and 12B to communicate with a predetermined position on the cylinder inner wall surface 20S.
  • an accumulator 14 for gas-liquid separation of the refrigerant prior to supply to the compressor 10 is fixed to the hermetic container 11 via a stay 15.
  • the accumulator 14 is provided with suction pipes 16A and 16B for letting the compressor 10 suck the refrigerant in the accumulator 14.
  • the distal ends of the suction pipes 16A and 16B are connected to the suction ports 30A and 30B through the openings 12A and 12B.
  • the compressor 10 takes in the refrigerant into the accumulator 14 from the suction port 14a of the accumulator 14, separates the refrigerant in the accumulator 14, and sucks the gas phase from the suction pipes 16A and 16B into the cylinders 20A and 20B.
  • the gas is supplied to compression chambers R1 and R2 that are internal spaces of the cylinders 20A and 20B through the ports 30A and 30B. Then, when the piston rotors 21A and 21B roll eccentrically, the volumes of the compression chambers R1 and R2 gradually decrease and the refrigerant is compressed.
  • the compressed refrigerant passes through the upper bearing 29A and the muffler 50A on the side of the cylinder 20A, and passes through the lower bearing 29B and the muffler 50B on the side of the cylinder 20B. It is discharged to the outside of the muffler 50A and the muffler 50B.
  • the refrigerant passes through the electric motor 36 and is then discharged to the piping constituting the refrigeration cycle via the discharge port 42 provided in the upper part.
  • the muffler 50A attached to the upper bearing 29A has a function of supporting the main shaft 23 in addition to the upper bearing 29A.
  • the muffler 50 ⁇ / b> A has a support function for the main shaft 23, thereby reducing vibration of the main shaft 23.
  • the muffler 50A has the following configuration in order to exhibit this function.
  • the muffler 50 ⁇ / b> A includes a flange 51, a cup 52 that rises from the flange 51, and a sleeve 53 that rises from the cup 52.
  • the flange 51, the cup 52, and the sleeve 53 can be integrally formed by subjecting a flat metal plate such as an aluminum alloy plate to sheet metal processing.
  • the flange 51 is a portion provided to fix the muffler 50A to the upper bearing 29A, and is a flat member having a circular outer shape.
  • the flange 51 is abutted against the upper surface of the upper bearing 29 ⁇ / b> A without any gap, and is fixed to the upper bearing 29 ⁇ / b> A at three locations by bolts B penetrating the flange 51.
  • the portion of the flange 51 where the bolt B is fixed corresponds to the diaphragm 59 in which the side wall 54 of the cup 52 is recessed toward the center in the radial direction.
  • the cup 52 includes a hollow cylindrical side wall 54 and a top plate 55 that covers an opening formed at the tip of the side wall 54.
  • the top plate 55 has a ring shape having an outer periphery and an inner periphery, and the outer peripheral side is connected to the side wall 54 and the inner peripheral side is connected to the sleeve 53.
  • the top plate 55 includes ribs 56 that are formed integrally with the top plate.
  • the rib 56 is provided along the radial direction of the top plate 55, and is formed in a U-shape by bending a part of the top plate 55 upward and turning it back. Therefore, the inside of the rib 56 communicates with the inside of the cup 52.
  • the ribs 56 are provided at three locations at intervals in the circumferential direction. When the end on the outer peripheral side of each rib 56 is extended outward in the radial direction, a fixed point F for fixing the upper bearing 29A to the sealed container 11 is reached. Further, when the inner peripheral end of each rib 56 is extended inward in the radial direction, the central axis of the main shaft 23 is reached.
  • the rib 56 is provided corresponding to the line segment connecting the central axis of the main shaft 23 and the fixed point F (almost along the line segment).
  • the rib 56 is formed continuously from the top plate 55 to the lower end of the side wall 54, and is formed continuously from the top plate 55 to the upper end of the sleeve 53. That is, the rib 56 is provided from the lower end of the cup 52 to the upper end of the sleeve 53, and contributes to improving the rigidity of the cup 52 and the sleeve 53.
  • the sleeve 53 rises vertically from the inner periphery of the top plate 55, while its upper end is opened. An inner peripheral surface of the sleeve 53 is in contact with an outer peripheral surface of the sleeve 292A of the upper bearing 29A, and supports the sleeve 292A from the periphery. As described above, since the rib 56 is provided from the lower end to the upper end of the sleeve 53, the sleeve 53 has higher rigidity than the rib 56 is not provided.
  • the muffler 50A supports the main shaft 23 via the upper bearing 29A by the sleeve 53 while alleviating a large distortion in the region along the radial direction from the fixed point F to the central axis of the main shaft 23 that occurs in the upper bearing 29A.
  • the swing of the main shaft 23 can be reduced.
  • the compressor 10 can suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14 by increasing the rigidity of the muffler 50A with almost no increase in weight.
  • the muffler 50A supplements a part of the rigidity required for the upper bearing 29A, an effect of reducing the rigidity of the upper bearing 29A and reducing the weight of the upper bearing 29A can be expected.
  • the inside of the rib 56 communicates with the inside of the muffler 50A. Therefore, the refrigerant that has passed through the cylinder 20A and has flowed into the muffler 50A flows through the refrigerant flow path (first refrigerant flow path) 61 inside the rib 56, and finally flows through the rib 56 of the sleeve 53. As a result, it is discharged from the upper end into the closed container 11. Therefore, the refrigerant flowing into the muffler 50A is discharged in a smooth flow along the main shaft 23, and thus the pressure loss of the discharged refrigerant is small.
  • the space between the electric motor 36 and the stator 38 is separated in the radial direction, and the discharged refrigerant is less likely to vibrate the stator 38. This also allows the compressor 10 to reduce noise due to vibration.
  • the compressor 10 includes the three ribs 56 corresponding to the three fixed points F, but the present invention is not limited to this, and is less than three, or four or more. It is allowed to provide a rib. For example, when there are three fixed points F and only the distortion in the region from the specific one fixed point F toward the inner periphery increases, ribs are provided only in the region corresponding to the fixed point F. This option is realistic.
  • the compressor 10 corresponds to an example in which each of the ribs 56 extends to a fixed point F, but the present invention is not limited to this. Even if the extension line of the rib is slightly deviated from the fixed point F, it is clear that the shaft rigidity of the main shaft 23 can be improved if even a part of the rib overlaps with a large strain region.
  • the present invention defines that a part or all of the ribs overlap in a large strain area as being along a radial line segment connecting the fixed point F and the center, and a rib corresponding to this definition. Forming.
  • the rib 56 is most preferably provided continuously from the lower end of the cup 52 to the upper end of the sleeve 53.
  • this is only a preferable form.
  • ribs are provided on any part extending from the cup 52 to the sleeve 53, such as an example in which the sleeve 53 and the side wall 54 are provided only, or an example in which only the sleeve 53 and the top plate 55 are provided. Can be provided.
  • the sleeve 53 of the muffler 50 ⁇ / b> A is in contact with the upper bearing 29 ⁇ / b> A except for the gaps inside the ribs 56, but the present invention is not limited to this.
  • the rib 56 also serves as the refrigerant flow path 61 for discharging the refrigerant to the outside of the muffler 50A, it is not necessary to provide another discharge hole for discharging the refrigerant. Therefore, in order to increase the shaft rigidity of the main shaft 23, the space inside the ribs 56 is removed, and the upper shaft 29A is contacted.
  • the rib 56 is formed integrally with the muffler 50A.
  • the compressor 110 of the second embodiment is manufactured by separately forming the rib 57 from the muffler 50A, as shown in FIG. Join to the muffler 50A.
  • known means such as welding, brazing, and adhesion can be applied.
  • the rib 57 since the inside of the rib 57 and the inside of the muffler 50A are partitioned by the top plate 55, the rib 57 does not function as a coolant passage. Therefore, as shown in FIG. 4, a discharge hole (second refrigerant flow path) 60 as a refrigerant passage is formed in the top plate 55.
  • a gap corresponding to the discharge hole may be provided between the sleeve 53 and the sleeve 292A of the upper bearing 29A.
  • the compressor 110 includes the ribs 57, it is possible to suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14 as in the first embodiment.
  • the rib 56 is formed integrally with the muffler 50A, the shape and size of the rib 56 may be restricted from the viewpoint of workability. For example, when the rib 56 has to be raised, integral molding may be difficult.
  • the rib 57 manufactured as a separate body has almost no such restriction, and can accommodate various shapes and dimensions required. In the form in which the rib and the top plate are manufactured separately, it is preferable that the rib extends to the flange 51 in order to improve rigidity.
  • the ribs 56 and 57 are provided on the muffler 50A.
  • the compressor 120 of the third embodiment is provided with the rib 58 on the upper bearing 29A as shown in FIG.
  • the positions where the ribs 58 are provided are the same as those in the first embodiment and the second embodiment.
  • the rib 58 of the upper bearing 29A interferes with the muffler 50A (not shown)
  • processing for avoiding the interference is performed on the muffler 50A.
  • the muffler 50A is provided with a structure for discharging the refrigerant from the muffler 50A by providing the discharge hole 60 provided in the second embodiment.
  • the compressor 120 includes the rib 58, it is possible to suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14, as in the first embodiment.
  • the compressor 120 is provided with the rib 58 on the upper bearing 29A that is thicker than the muffler 50A, the degree to which the rigidity with respect to the main shaft is improved is increased, and vibration can be more effectively suppressed.
  • the thickness of the upper bearing 29A is reduced in order to reduce the weight, it is effective to provide the ribs 58 in order to ensure the rigidity of the bearing itself.
  • the present invention has been described based on the embodiment.
  • the configuration described in the above embodiment may be selected or changed to another configuration as long as it does not depart from the gist of the present invention.
  • a two-cylinder type compressor is taken as an example, but the present invention is not limited to this.
  • the present invention can be applied to a one-cylinder type compressor, a scroll compression mechanism, and a rotary
  • the present invention can also be applied to a composite type compressor combined with a compression mechanism.
  • the stiffening rib extended along the radial line segment which connects the fixing point which fixes an upper bearing to an airtight container, and the center of a main axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A rotary compressor is provided with: an upper bearing (29A) and a lower bearing (29B), which are provided so as to sandwich a rotary compression mechanism; a main shaft (23) which is rotatably supported by both the upper bearing (29A) and the lower bearing (29B) and which penetrates through the rotary compression mechanism; an electric motor (36) which rotationally drives the main shaft (23) about the axis of the main shaft (23); and a muffler (50A) which is affixed to the upper bearing (29A) and into which a refrigerant discharged from the rotary compression mechanism flows. The muffler (50A) has formed thereon a rib (56) which extends along the radial line which connects the affixation point (F) at which the upper bearing (29A) is affixed to a hermetic container (11) and the center of the main shaft (23).

Description

ロータリー圧縮機Rotary compressor
 本発明は、モータのロータと一体となって回転するシャフトの振動を抑制できるロータリー圧縮機に関する。 The present invention relates to a rotary compressor that can suppress vibration of a shaft that rotates integrally with a rotor of a motor.
 冷凍装置に用いられるロータリー圧縮機は、図6に示すように、密閉容器1の内部に、円筒状の内壁面を有したシリンダ2と、シリンダ2の中心に対して偏心して設けられたピストンロータ3と、を備えている。ピストンロータ3は、シリンダ2の中心軸線に沿って設けられた主軸4に設けられている。主軸4は、シリンダ2に固定された上部軸受5A、下部軸受5Bを介してその中心軸線周りに回転自在に設けられている。主軸4には、モータ6のロータ6Aが固定されている。ロータ6Aの外周側には、密閉容器1の内周面に固定されたステータ6Bが配置され、ステータ6Bに通電されることによって、ロータ6Aとともに主軸4が回転駆動され、ピストンロータ3がシリンダ2の内部で旋回する。
 ロータリー圧縮機は、シリンダ2とピストンロータ3との間に形成された圧縮室に冷媒を吸い込み、ピストンロータ3の回転により圧縮室の容積を減少させることで冷媒を圧縮する。ロータリー圧縮機は、アキュムレータ8により冷媒を気液分離してから、冷媒を吸込んで圧縮する。
As shown in FIG. 6, the rotary compressor used in the refrigeration apparatus includes a cylinder 2 having a cylindrical inner wall surface and a piston rotor provided eccentrically with respect to the center of the cylinder 2. 3 is provided. The piston rotor 3 is provided on a main shaft 4 provided along the central axis of the cylinder 2. The main shaft 4 is provided so as to be rotatable around its central axis via an upper bearing 5A and a lower bearing 5B fixed to the cylinder 2. A rotor 6 </ b> A of a motor 6 is fixed to the main shaft 4. On the outer peripheral side of the rotor 6A, a stator 6B fixed to the inner peripheral surface of the hermetic container 1 is disposed. When the stator 6B is energized, the main shaft 4 is rotationally driven together with the rotor 6A, and the piston rotor 3 is Swivel inside.
The rotary compressor sucks the refrigerant into a compression chamber formed between the cylinder 2 and the piston rotor 3, and compresses the refrigerant by reducing the volume of the compression chamber by the rotation of the piston rotor 3. The rotary compressor gas-liquid separates the refrigerant by the accumulator 8 and then sucks and compresses the refrigerant.
 ロータリー圧縮機は、主軸4が回転することに伴い、振動が発生し、例えばその振動が密閉容器1、アキュムレータ8と順に伝わり、騒音を発生させることがある。したがって、これまでロータリー圧縮機の振動を低減する種々の提案がなされている。
 例えば、特許文献1は、振動減衰に効果のある鋳物製の支持部材を、密閉容器と上部軸受の間に介在させることで、上部軸受から密閉容器に伝達する振動を低減することを提案している。また、特許文献2,3には、上部軸受にリブを形成することで、振動を低減することを提案している。
In the rotary compressor, vibration is generated as the main shaft 4 rotates. For example, the vibration is transmitted to the sealed container 1 and the accumulator 8 in order, and noise may be generated. Therefore, various proposals have been made to reduce the vibration of the rotary compressor.
For example, Patent Document 1 proposes to reduce the vibration transmitted from the upper bearing to the sealed container by interposing a casting support member effective in vibration damping between the sealed container and the upper bearing. Yes. Patent Documents 2 and 3 propose reducing vibration by forming ribs in the upper bearing.
特開平6-26478号公報JP-A-6-26478 特開平7-133781号公報JP 7-133781 A 特開昭59-182691号公報JP 59-182691 A
 以上のようにこれまで多くの提案がなされているが、振動の原因は広範にわたるために、振動の問題は尽きない。ロータリー圧縮機の構成要素、特に、振動の主たる原因である主軸を支持する上部軸受及び下部軸受の剛性を高くすることは、振動低減に有効である。ところが、ロータリー圧縮機には、他の多くの装置、機器と同様に、軽量化が要求されているが、構成要素の剛性を高くすると一般的には重量が増えるので、この要求を満足するのは容易でない。
 そこで本発明は、このような課題に基づいてなされたもので、重量の増加を最小限に抑えながらも、効果的に振動を低減できるロータリー圧縮機を提供することを目的とする。
As described above, many proposals have been made so far, but since the cause of vibration is wide-ranging, the problem of vibration is not exhaustive. Increasing the rigidity of the components of the rotary compressor, particularly the upper and lower bearings that support the main shaft that is the main cause of vibration, is effective in reducing vibration. However, the rotary compressor, like many other devices and equipment, is required to be lighter. However, if the rigidity of the component is increased, the weight generally increases, so this requirement is satisfied. Is not easy.
Therefore, the present invention has been made based on such a problem, and an object thereof is to provide a rotary compressor capable of effectively reducing vibration while minimizing an increase in weight.
 本発明のロータリー圧縮機は、供給された冷媒を圧縮して吐出するロータリー圧縮機構と、ロータリー圧縮機構を挟んで設けられる上部軸受及び下部軸受と、上部軸受及び下部軸受の各々に回転自在に支持され、ロータリー圧縮機構を貫通する主軸と、主軸をその中心軸線の周りに回転駆動させる電動モータと、上部軸受に固定され、ロータリー圧縮機構から吐出される冷媒が内部に流入するマフラと、ロータリー圧縮機構、上部軸受、下部軸受、主軸、電動モータ、およびマフラを内部に収容する密閉容器と、を備え、マフラ及び上部軸受の少なくとも一方に、上部軸受を密閉容器に固定する固定点と前記主軸の中心とを結ぶ径方向の線分に沿って延びる補剛体が設けられていることを特徴とする。
 詳しくは後述するが、上部軸受には、上記固定点から主軸の中心に向かう領域に他の領域よりも大きい歪みが生ずる。そこで本発明は、この歪みの大きい領域に対する補強部材として、マフラ及び上部軸受の少なくとも一方に補剛体を設けることで、主軸に対する剛性を向上して、主軸の振動を低減する。しかも、本発明は、補剛体を設けるだけで足りるので、圧縮機の重量増加を最小限に抑えることができる。
 本発明における補剛体は、マフラ、上部軸受の断面二次モーメントを増やし、曲げ及びねじりに対する剛性を向上するための構造部分全般を包含し、典型的にはリブが該当する。
The rotary compressor of the present invention is rotatably supported by each of a rotary compression mechanism that compresses and discharges a supplied refrigerant, an upper bearing and a lower bearing provided across the rotary compression mechanism, and an upper bearing and a lower bearing. A main shaft that passes through the rotary compression mechanism, an electric motor that rotates the main shaft about its central axis, a muffler that is fixed to the upper bearing and into which refrigerant discharged from the rotary compression mechanism flows, and rotary compression A mechanism, an upper bearing, a lower bearing, a main shaft, an electric motor, and a sealed container that accommodates the muffler therein. At least one of the muffler and the upper bearing has a fixing point for fixing the upper bearing to the sealed container and the main shaft. A stiffening body extending along a radial line connecting the center is provided.
As will be described in detail later, in the upper bearing, a larger distortion occurs in the region from the fixed point toward the center of the main shaft than in other regions. Therefore, according to the present invention, a stiffening member is provided on at least one of the muffler and the upper bearing as a reinforcing member for the large strain region, thereby improving the rigidity of the main shaft and reducing the vibration of the main shaft. Moreover, since the present invention only needs to provide a stiffening body, an increase in the weight of the compressor can be minimized.
The stiffening body in the present invention includes all structural parts for increasing the moment of section of the muffler and the upper bearing and improving the rigidity against bending and torsion, and is typically a rib.
 マフラに補剛リブを設ける場合には、マフラと一体的に補剛リブを形成することができるし、マフラとは別体として補剛リブを形成し、別体の補剛リブをマフラに固定することもできる。
 マフラと一体的に補剛体を形成する場合には、マフラの内部から密閉容器の内部に吐出される冷媒が通過する冷媒流路(第1の冷媒流路)を補剛体に形成することができる。この形態は、補剛体及び冷媒流路を含めて、板金加工によりマフラを一体的に形成できる利点がある。
 また、マフラとは別体として補剛リブを形成する場合には、マフラの内部から密閉容器の内部に吐出される冷媒が通過する冷媒流路(第2の冷媒流路)を、補剛体を避けて、マフラに形成することができる。この形態は、マフラと一体的に形成することができない形状の補剛体が必要な場合に有効である。
When providing a stiffening rib on the muffler, the stiffening rib can be formed integrally with the muffler, or the stiffening rib is formed separately from the muffler, and the separate stiffening rib is fixed to the muffler. You can also
When the stiffening body is formed integrally with the muffler, a refrigerant flow path (first refrigerant flow path) through which the refrigerant discharged from the inside of the muffler into the sealed container passes can be formed in the stiffening body. . This form has the advantage that the muffler can be integrally formed by sheet metal processing, including the stiffener and the refrigerant flow path.
Further, when the stiffening rib is formed separately from the muffler, the refrigerant flow path (second refrigerant flow path) through which the refrigerant discharged from the muffler into the sealed container passes is replaced with the stiffening body. Avoiding it can form a muffler. This configuration is effective when a stiffening body having a shape that cannot be formed integrally with the muffler is required.
 本発明によれば、歪みの大きい領域に対応して、マフラ及び上部軸受の少なくとも一方に補剛体を設けるだけであるから、重量の増加を最小限に抑えつつ、主軸に対する剛性を向上して、主軸の振動を低減することができる。 According to the present invention, since only a stiffening body is provided on at least one of the muffler and the upper bearing corresponding to a large strain region, the rigidity with respect to the main shaft is improved while minimizing an increase in weight, The vibration of the main shaft can be reduced.
本発明の第1実施形態に係るロータリー圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the rotary compressor which concerns on 1st Embodiment of this invention. 図1に示すロータリー圧縮機のロータリー機構の近傍を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vicinity of the rotary mechanism of the rotary compressor shown in FIG. 図1に示すロータリー圧縮機のロータリー機構の近傍を示す横断面図である。It is a cross-sectional view which shows the vicinity of the rotary mechanism of the rotary compressor shown in FIG. 本発明の第2実施形態に係るロータリー圧縮機を示し、(a)は図3に対応する横断面図、(b)は図2に対応する縦断面図である。The rotary compressor which concerns on 2nd Embodiment of this invention is shown, (a) is a cross-sectional view corresponding to FIG. 3, (b) is a longitudinal cross-sectional view corresponding to FIG. 本発明の第3実施形態に係るロータリー圧縮機を示し、(a)は図3に対応する横断面図、(b)は図2に対応する縦断面図である。The rotary compressor which concerns on 3rd Embodiment of this invention is shown, (a) is a cross-sectional view corresponding to FIG. 3, (b) is a longitudinal cross-sectional view corresponding to FIG. 従来のロータリー圧縮機の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional rotary compressor.
 以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
[第1実施形態]
 以下、本発明の第1実施形態に係る圧縮機10について説明する。圧縮機10は、後述するマフラ50Aに補剛体に相当するリブ56を一体的に形成することで、主軸23の振動を低減することを特徴とする。
 以下、圧縮機10の構成を説明し、次いで、圧縮機10の作用・効果について説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
[First Embodiment]
Hereinafter, the compressor 10 according to the first embodiment of the present invention will be described. The compressor 10 is characterized in that the vibration of the main shaft 23 is reduced by integrally forming a rib 56 corresponding to a stiffening body on a muffler 50A described later.
Hereinafter, the configuration of the compressor 10 will be described, and then the operation and effect of the compressor 10 will be described.
[圧縮機10の構成]
 圧縮機10は、図1に示すように、円筒状の密閉容器11の内部に、ディスク状のシリンダ20A、20Bが上下2段に設けられた、いわゆる2気筒タイプの圧縮機である。シリンダ20A、20Bの内部には、それぞれ、円筒状のシリンダ内壁面20Sが形成されている。シリンダ20A、20Bの内側には、各々、シリンダ内壁面20Sの内径よりも小さな外径を有する円筒状のピストンロータ21A、21Bが配置されている。ピストンロータ21A、21Bは、各々、密閉容器11の中心軸線に沿った主軸23の偏心軸部40A、40Bに挿入固定されている。これにより、シリンダ20A、20Bのシリンダ内壁面20Sとピストンロータ21A、21Bの外周面との間には、それぞれ三日月状の断面を有する空間Rが形成されている。
 ここで、上段側のピストンロータ21Aと、下段側のピストンロータ21Bとは、その位相が互いに180°だけ異なるように設けられている。
 また、上下のシリンダ20A、20Bの間には、ディスク状の仕切板24が設けられている。仕切板24により、上段側のシリンダ20A内の空間Rと、下段側のシリンダ20Bの空間Rとが互いに連通せずに圧縮室R1と圧縮室R2とに仕切られている。
[Configuration of Compressor 10]
As shown in FIG. 1, the compressor 10 is a so-called two-cylinder type compressor in which disk-shaped cylinders 20 </ b> A and 20 </ b> B are provided in two upper and lower stages inside a cylindrical sealed container 11. A cylindrical cylinder inner wall surface 20S is formed in each of the cylinders 20A and 20B. Cylindrical piston rotors 21A and 21B each having an outer diameter smaller than the inner diameter of the cylinder inner wall surface 20S are arranged inside the cylinders 20A and 20B. The piston rotors 21A and 21B are inserted and fixed to the eccentric shaft portions 40A and 40B of the main shaft 23 along the central axis of the sealed container 11, respectively. Thus, spaces R each having a crescent-shaped cross section are formed between the cylinder inner wall surfaces 20S of the cylinders 20A and 20B and the outer peripheral surfaces of the piston rotors 21A and 21B.
Here, the upper-stage piston rotor 21A and the lower-stage piston rotor 21B are provided so that their phases are different from each other by 180 °.
A disk-shaped partition plate 24 is provided between the upper and lower cylinders 20A and 20B. The partition plate 24 partitions the space R in the upper cylinder 20A and the space R in the lower cylinder 20B into the compression chamber R1 and the compression chamber R2 without communicating with each other.
 上下のシリンダ20A、20Bには、圧縮室R1、R2を、それぞれ2つに区切るブレード(図示省略)が設けられている。ブレードは、シリンダ20A、20Bの径方向に延在して形成された挿入溝に、ピストンロータ21A、21Bに対して接近・離間する方向に進退自在に保持されている。
 また、シリンダ20A、20Bは、所定の位置に、冷媒を吐出する吐出孔(図示省略)が形成されており、この吐出孔にはリード弁(図示省略)が備えられている。圧縮された冷媒の圧力が所定値に達すると、リード弁を押し開くことで、冷媒はシリンダ20A、20Bの外部に吐出される。
The upper and lower cylinders 20A and 20B are provided with blades (not shown) for dividing the compression chambers R1 and R2 into two, respectively. The blade is held in an insertion groove formed extending in the radial direction of the cylinders 20A and 20B so as to be able to advance and retract in a direction approaching and separating from the piston rotors 21A and 21B.
Further, the cylinders 20A and 20B are formed with discharge holes (not shown) for discharging the refrigerant at predetermined positions, and the discharge holes are provided with reed valves (not shown). When the pressure of the compressed refrigerant reaches a predetermined value, the reed valve is pushed open to discharge the refrigerant to the outside of the cylinders 20A and 20B.
 主軸23は、シリンダ20Aに固定された上部軸受29A、及び、シリンダ20Bに固定された下部軸受29Bにより、その中心軸線の周りに回動自在に支持されている。
 主軸23は、主軸23の中心軸線から直交する方向にオフセットした偏心軸部40A、40Bを備えている。偏心軸部40A、40Bは、ピストンロータ21A、21Bの内径よりもわずかに小さな外径を有している。これにより、主軸23が回転すると、偏心軸部40A、40Bが主軸23の中心軸線周りに旋回し、上下のピストンロータ21A、21Bがシリンダ20A、20B内で、偏心転動する。このとき、前述したブレードは、その先端がピストンロータ21A、21Bの動きに追従して進退し、ピストンロータ21A、21Bに常に押し付けられる。
The main shaft 23 is rotatably supported around its central axis by an upper bearing 29A fixed to the cylinder 20A and a lower bearing 29B fixed to the cylinder 20B.
The main shaft 23 includes eccentric shaft portions 40A and 40B that are offset in a direction orthogonal to the central axis of the main shaft 23. The eccentric shaft portions 40A and 40B have outer diameters slightly smaller than the inner diameters of the piston rotors 21A and 21B. Accordingly, when the main shaft 23 rotates, the eccentric shaft portions 40A and 40B rotate around the central axis of the main shaft 23, and the upper and lower piston rotors 21A and 21B roll eccentrically in the cylinders 20A and 20B. At this time, the blade tip described above advances and retreats following the movement of the piston rotors 21A and 21B, and is always pressed against the piston rotors 21A and 21B.
 主軸23は、上部軸受29Aから上方に突出して延びており、突出した部分には、主軸23を回転駆動させるための電動モータ36のロータ37が一体に設けられている。ロータ37の外周部に対向して、ステータ38が、密閉容器11の内周面に固定して設けられている。 The main shaft 23 protrudes and extends upward from the upper bearing 29A, and a rotor 37 of an electric motor 36 for rotating the main shaft 23 is integrally provided in the protruding portion. A stator 38 is fixed to the inner peripheral surface of the sealed container 11 so as to face the outer peripheral portion of the rotor 37.
 上部軸受29Aは、図2及び図3に示すように、基部291Aと、基部291Aから垂直に立ち上るスリーブ292Aとを備えている。基部291Aとスリーブ292Aは軸心が一致するように形成され、その軸心の周囲には主軸23が支持される受面293Aが形成されている。上部軸受29Aは、基部291Aの外周面が密閉容器11の内周面と、3箇所の固定点Fで固定されている。固定は、例えば溶接、ボルトによる締結などで行われる。
 下部軸受29Bは、基部291Bと、基部291Bから垂直に立ち上るスリーブ292Bとを備えている。基部291Bとスリーブ292Bは軸心が一致するように形成され、その軸心の周囲には主軸23が支持される受面293Bが形成されている。
 上部軸受29Aと下部軸受29Bは、互いの基部291Aと基部291Bが対向するように配置され、上部軸受29Aは主軸23をシリンダ20Aと電動モータ36の間で支持する。主軸23における、シリンダ20Bから下方に向けて突出する部分は、下部軸受29Bによって支持される。
 上部軸受29Aは、シリンダ20Aに形成された吐出孔と連通する吐出孔(図示を省略)を備えており、シリンダ20Aを通過してきた冷媒がこの吐出孔を通って後述するマフラ50Aの内部に吐出される。同様に、下部軸受29Bは、シリンダ20Bに形成された吐出孔と連通する吐出孔(図示を省略)を備えており、シリンダ20Bを通過してきた冷媒がこの吐出孔を通って後述するマフラ50Bの内部に吐出される。
2 and 3, the upper bearing 29A includes a base 291A and a sleeve 292A that rises vertically from the base 291A. The base portion 291A and the sleeve 292A are formed so that their axial centers coincide with each other, and a receiving surface 293A on which the main shaft 23 is supported is formed around the axial center. In the upper bearing 29A, the outer peripheral surface of the base 291A is fixed to the inner peripheral surface of the sealed container 11 at three fixing points F. Fixing is performed, for example, by welding or fastening with bolts.
The lower bearing 29B includes a base 291B and a sleeve 292B that rises vertically from the base 291B. The base 291 </ b> B and the sleeve 292 </ b> B are formed so that their axes coincide with each other, and a receiving surface 293 </ b> B for supporting the main shaft 23 is formed around the axis.
The upper bearing 29A and the lower bearing 29B are disposed so that the base portion 291A and the base portion 291B face each other, and the upper bearing 29A supports the main shaft 23 between the cylinder 20A and the electric motor 36. A portion of the main shaft 23 that protrudes downward from the cylinder 20B is supported by the lower bearing 29B.
The upper bearing 29A has a discharge hole (not shown) that communicates with a discharge hole formed in the cylinder 20A, and the refrigerant that has passed through the cylinder 20A is discharged into the later-described muffler 50A through the discharge hole. Is done. Similarly, the lower bearing 29B includes a discharge hole (not shown) that communicates with a discharge hole formed in the cylinder 20B, and the refrigerant that has passed through the cylinder 20B passes through the discharge hole to form a muffler 50B described later. It is discharged inside.
 圧縮機10は、上部軸受29Aにマフラ50Aを装着するとともに、下部軸受29Bにマフラ50Bを装着している。上部軸受29A、下部軸受29Bを通ってきた冷媒は、各々、マフラ50A、マフラ50Bの内部に流入すると、脈動成分が除去される。脈動成分が除去された冷媒は、マフラ50A、マフラ50Bに形成された吐出路を通って、密閉容器11の上方に向けて流入する。 Compressor 10 has muffler 50A mounted on upper bearing 29A and muffler 50B mounted on lower bearing 29B. When the refrigerant that has passed through the upper bearing 29A and the lower bearing 29B flows into the muffler 50A and the muffler 50B, respectively, the pulsating component is removed. The refrigerant from which the pulsating component has been removed flows upward through the discharge path formed in the muffler 50A and the muffler 50B.
 密閉容器11の側方には、シリンダ20A、20Bの外周面に対向する位置に、開口12A、12Bが形成されている。シリンダ20A、20Bには、開口12A、12Bに対向した位置に、シリンダ内壁面20Sの所定位置まで連通する吸入ポート30A、30Bが形成されている。 Openings 12A and 12B are formed on the side of the sealed container 11 at positions facing the outer peripheral surfaces of the cylinders 20A and 20B. In the cylinders 20A and 20B, suction ports 30A and 30B are formed at positions facing the openings 12A and 12B to communicate with a predetermined position on the cylinder inner wall surface 20S.
 圧縮機10では、圧縮機10に供給するのに先立って冷媒を気液分離するアキュムレータ14が、ステー15を介して密閉容器11に固定されている。
 アキュムレータ14には、アキュムレータ14内の冷媒を圧縮機10に吸入させるための吸入管16A、16Bが設けられている。吸入管16A、16Bの先端部は、開口12A、12Bを通して、吸入ポート30A、30Bに接続されている。
In the compressor 10, an accumulator 14 for gas-liquid separation of the refrigerant prior to supply to the compressor 10 is fixed to the hermetic container 11 via a stay 15.
The accumulator 14 is provided with suction pipes 16A and 16B for letting the compressor 10 suck the refrigerant in the accumulator 14. The distal ends of the suction pipes 16A and 16B are connected to the suction ports 30A and 30B through the openings 12A and 12B.
 圧縮機10は、アキュムレータ14の吸入口14aからアキュムレータ14の内部に冷媒を取り込み、アキュムレータ14内で冷媒を気液分離して、その気相を吸入管16A、16Bから、シリンダ20A、20Bの吸入ポート30A、30Bを介し、シリンダ20A,20Bの内部空間である圧縮室R1、R2に供給する。
 そして、ピストンロータ21A、21Bが偏心転動することにより、圧縮室R1、R2の容積が徐々に減少して冷媒が圧縮される。圧縮された冷媒は、シリンダ20Aの側については、上部軸受29A及びマフラ50Aを通過して、また、シリンダ20Bの側については、下部軸受29B及びマフラ50Bを通過して、密閉容器11の内部(マフラ50A及びマフラ50Bの外部)に吐出される。この冷媒は、電動モータ36を通過してから、上部に設けられた吐出口42を経由して冷凍サイクルを構成する配管に排出される。
The compressor 10 takes in the refrigerant into the accumulator 14 from the suction port 14a of the accumulator 14, separates the refrigerant in the accumulator 14, and sucks the gas phase from the suction pipes 16A and 16B into the cylinders 20A and 20B. The gas is supplied to compression chambers R1 and R2 that are internal spaces of the cylinders 20A and 20B through the ports 30A and 30B.
Then, when the piston rotors 21A and 21B roll eccentrically, the volumes of the compression chambers R1 and R2 gradually decrease and the refrigerant is compressed. The compressed refrigerant passes through the upper bearing 29A and the muffler 50A on the side of the cylinder 20A, and passes through the lower bearing 29B and the muffler 50B on the side of the cylinder 20B. It is discharged to the outside of the muffler 50A and the muffler 50B. The refrigerant passes through the electric motor 36 and is then discharged to the piping constituting the refrigeration cycle via the discharge port 42 provided in the upper part.
 本実施形態は、上部軸受29Aに装着されるマフラ50Aが、上部軸受29Aに加えて、主軸23を支持する機能を備えている。マフラ50Aが主軸23の支持機能を備えることで、主軸23の振動を低減する。マフラ50Aは、この機能を発揮するために、以下の構成を備えている。 In this embodiment, the muffler 50A attached to the upper bearing 29A has a function of supporting the main shaft 23 in addition to the upper bearing 29A. The muffler 50 </ b> A has a support function for the main shaft 23, thereby reducing vibration of the main shaft 23. The muffler 50A has the following configuration in order to exhibit this function.
 マフラ50Aは、図2及び図3に示すように、フランジ51と、フランジ51から立ち上がるカップ52と、カップ52から立ち上がるスリーブ53とを備えている。マフラ50Aは、偏平な金属板、例えばアルミニウム合金板に板金加工を施すことで、フランジ51、カップ52及びスリーブ53が一体的に形成できる。
 フランジ51は、マフラ50Aを上部軸受29Aに固定するのに供される部分であり、外形が円形をなす偏平な部材である。フランジ51は、上部軸受29Aの上面に隙間なく突き合わせられるとともに、フランジ51を貫通するボルトBにより上部軸受29Aに3か所で固定される。なお、フランジ51のボルトBが固定される部位は、カップ52の側壁54が径方向の中心に向けて窪んでいる絞り59に対応している。
As shown in FIGS. 2 and 3, the muffler 50 </ b> A includes a flange 51, a cup 52 that rises from the flange 51, and a sleeve 53 that rises from the cup 52. In the muffler 50A, the flange 51, the cup 52, and the sleeve 53 can be integrally formed by subjecting a flat metal plate such as an aluminum alloy plate to sheet metal processing.
The flange 51 is a portion provided to fix the muffler 50A to the upper bearing 29A, and is a flat member having a circular outer shape. The flange 51 is abutted against the upper surface of the upper bearing 29 </ b> A without any gap, and is fixed to the upper bearing 29 </ b> A at three locations by bolts B penetrating the flange 51. The portion of the flange 51 where the bolt B is fixed corresponds to the diaphragm 59 in which the side wall 54 of the cup 52 is recessed toward the center in the radial direction.
 カップ52は、中空円筒状の側壁54と、側壁54の先端に形成される開口を覆う天板55と、を備える。
 天板55は、外周と内周を有するリング状の形態をなしており、外周側が側壁54と繋がっているとともに、内周側がスリーブ53と繋がっている。
The cup 52 includes a hollow cylindrical side wall 54 and a top plate 55 that covers an opening formed at the tip of the side wall 54.
The top plate 55 has a ring shape having an outer periphery and an inner periphery, and the outer peripheral side is connected to the side wall 54 and the inner peripheral side is connected to the sleeve 53.
 天板55は、天板と一体的に形成されたリブ56を備える。
 リブ56は、天板55の径方向に沿って設けられており、天板55の一部を上方に折り曲げ、折り返すことでU字状に形成されている。したがって、リブ56の内部はカップ52の内部と連通している。
 リブ56は、周方向に間隔をあけて、3か所に設けられている。各々のリブ56の外周側の端部を径方向の外側に向けて延長すると、上部軸受29Aを密閉容器11に固定する固定点Fに達する。また、各々のリブ56の内周側の端部を径方向の内側に向けて延長すると、主軸23の中心軸に達する。つまり、リブ56は主軸23の中心軸と固定点Fを結ぶ線分に対応して(線分にほぼ沿って)設けられている。
 リブ56は、天板55から側壁54の下端まで連なって形成されているとともに、天板55からスリーブ53の上端まで連なって形成されている。つまり、リブ56はカップ52の下端からスリーブ53の上端に亘って設けられており、カップ52及びスリーブ53の剛性の向上に寄与する。
The top plate 55 includes ribs 56 that are formed integrally with the top plate.
The rib 56 is provided along the radial direction of the top plate 55, and is formed in a U-shape by bending a part of the top plate 55 upward and turning it back. Therefore, the inside of the rib 56 communicates with the inside of the cup 52.
The ribs 56 are provided at three locations at intervals in the circumferential direction. When the end on the outer peripheral side of each rib 56 is extended outward in the radial direction, a fixed point F for fixing the upper bearing 29A to the sealed container 11 is reached. Further, when the inner peripheral end of each rib 56 is extended inward in the radial direction, the central axis of the main shaft 23 is reached. In other words, the rib 56 is provided corresponding to the line segment connecting the central axis of the main shaft 23 and the fixed point F (almost along the line segment).
The rib 56 is formed continuously from the top plate 55 to the lower end of the side wall 54, and is formed continuously from the top plate 55 to the upper end of the sleeve 53. That is, the rib 56 is provided from the lower end of the cup 52 to the upper end of the sleeve 53, and contributes to improving the rigidity of the cup 52 and the sleeve 53.
 スリーブ53は、天板55の内周から垂直に立ち上がる一方、上端は開口されている。スリーブ53は、その内周面が上部軸受29Aのスリーブ292Aの外周面に接触しており、スリーブ292Aを周囲から支持している。前述したようにリブ56がスリーブ53の下端から上端に亘って設けられているので、リブ56を設けないのに比べて、スリーブ53は剛性が高い。 The sleeve 53 rises vertically from the inner periphery of the top plate 55, while its upper end is opened. An inner peripheral surface of the sleeve 53 is in contact with an outer peripheral surface of the sleeve 292A of the upper bearing 29A, and supports the sleeve 292A from the periphery. As described above, since the rib 56 is provided from the lower end to the upper end of the sleeve 53, the sleeve 53 has higher rigidity than the rib 56 is not provided.
[圧縮機10の作用・効果]
 次に、第1実施形態に係る圧縮機10の作用・効果について説明する。
 運転中の圧縮機10の歪み分布をシミュレーションにより確認したところ、上部軸受29Aでは各々の固定点Fから主軸23の中心軸に向かう径方向に沿った領域の歪みが他の領域よりも大きいことが確認されている。このことは、この歪みの大きい領域が、主軸23の支持を負担する程度が他の領域よりも大きいことを示唆している。これに対して、圧縮機10は、リブ56を備えたマフラ50Aで上部軸受29Aを介して主軸23を支持するとともに、このリブ56は上部軸受29Aの3つの固定点Fと主軸23の中心とを結ぶ径方向の線分に沿って形成されているため、振動抑制にとって最も効果的な位置に設けられていると言える。したがって、マフラ50Aは、上部軸受29Aに生じる固定点Fから主軸23の中心軸に向かう径方向に沿った領域の大きい歪みを緩和しつつ、スリーブ53により上部軸受29Aを介して主軸23を支持するので、主軸23の振れ回りを低減することができる。その結果、圧縮機10は、重量をほとんど増加させることなくマフラ50Aの剛性を高くすることで、密閉容器11からアキュムレータ14に振動が伝わることによる騒音の発生を抑えることができる。
 また、マフラ50Aが、上部軸受29Aに要求される剛性の一部を補うので、上部軸受29Aの剛性を低くして上部軸受29Aを軽量化できる効果も期待できる。
[Operation and effect of compressor 10]
Next, the operation and effect of the compressor 10 according to the first embodiment will be described.
When the strain distribution of the compressor 10 during operation is confirmed by simulation, the upper bearing 29A has a larger strain in the radial direction from each fixed point F toward the central axis of the main shaft 23 than in other regions. It has been confirmed. This suggests that the large strain region has a greater degree of support for the main shaft 23 than the other regions. On the other hand, the compressor 10 supports the main shaft 23 via the upper bearing 29A with the muffler 50A provided with the ribs 56, and the rib 56 has three fixing points F of the upper bearing 29A and the center of the main shaft 23. It can be said that it is provided at the most effective position for vibration suppression. Therefore, the muffler 50A supports the main shaft 23 via the upper bearing 29A by the sleeve 53 while alleviating a large distortion in the region along the radial direction from the fixed point F to the central axis of the main shaft 23 that occurs in the upper bearing 29A. As a result, the swing of the main shaft 23 can be reduced. As a result, the compressor 10 can suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14 by increasing the rigidity of the muffler 50A with almost no increase in weight.
Further, since the muffler 50A supplements a part of the rigidity required for the upper bearing 29A, an effect of reducing the rigidity of the upper bearing 29A and reducing the weight of the upper bearing 29A can be expected.
 マフラ50Aでは、リブ56の内側がマフラ50Aの内部に連通している。よって、シリンダ20Aを通過してマフラ50Aの内部に流入した冷媒は、リブ56の内部の冷媒流路(第1の冷媒流路)61を流れ、最終的にはスリーブ53のリブ56の内部を通り、その上端から密閉容器11の内部に吐出される。
 したがって、マフラ50Aに流入した冷媒は、主軸23に沿って滑らかな流れとなって吐出されるので、吐出される冷媒の圧力損失が小さい。
 また、主軸23の周囲から冷媒が吐出されることになるので、電動モータ36のステータ38までの間が径方向に離れており、吐出される冷媒がステータ38を加振しにくい。このことによっても、圧縮機10は、振動による騒音の低減を図ることができる。
In the muffler 50A, the inside of the rib 56 communicates with the inside of the muffler 50A. Therefore, the refrigerant that has passed through the cylinder 20A and has flowed into the muffler 50A flows through the refrigerant flow path (first refrigerant flow path) 61 inside the rib 56, and finally flows through the rib 56 of the sleeve 53. As a result, it is discharged from the upper end into the closed container 11.
Therefore, the refrigerant flowing into the muffler 50A is discharged in a smooth flow along the main shaft 23, and thus the pressure loss of the discharged refrigerant is small.
Further, since the refrigerant is discharged from the periphery of the main shaft 23, the space between the electric motor 36 and the stator 38 is separated in the radial direction, and the discharged refrigerant is less likely to vibrate the stator 38. This also allows the compressor 10 to reduce noise due to vibration.
[圧縮機10の変形例]
 第1実施形態に係る圧縮機10は、3つの固定点Fに対応して3本のリブ56を備えているが、本発明はこれに限定されずに、3本未満、又は4本以上のリブを設けることを許容する。例えば、3つの固定点Fがある場合に、特定の一つの固定点Fから内周に向かう領域の歪みだけが高くなるような場合には、当該固定点Fに対応する領域だけにリブを設けるという選択肢は現実的である。
[Modification of Compressor 10]
The compressor 10 according to the first embodiment includes the three ribs 56 corresponding to the three fixed points F, but the present invention is not limited to this, and is less than three, or four or more. It is allowed to provide a rib. For example, when there are three fixed points F and only the distortion in the region from the specific one fixed point F toward the inner periphery increases, ribs are provided only in the region corresponding to the fixed point F. This option is realistic.
 圧縮機10は、各々のリブ56を延長すると固定点Fに突き当たる例に該当するが、本発明はこれに限定されない。リブの延長線上が固定点Fから少しずれていても、歪みの大きい領域にリブの一部でも重複していれば、主軸23の軸剛性を向上できることが明らかである。本発明は、歪みの大きい領域にリブの一部または全部が重複していることを、固定点Fと中心とを結ぶ径方向の線分に沿っていると定義し、この定義に該当するリブを形成することを包含する。 The compressor 10 corresponds to an example in which each of the ribs 56 extends to a fixed point F, but the present invention is not limited to this. Even if the extension line of the rib is slightly deviated from the fixed point F, it is clear that the shaft rigidity of the main shaft 23 can be improved if even a part of the rib overlaps with a large strain region. The present invention defines that a part or all of the ribs overlap in a large strain area as being along a radial line segment connecting the fixed point F and the center, and a rib corresponding to this definition. Forming.
 次に、圧縮機10において、リブ56がカップ52の下端からスリーブ53の上端に亘って連続的に設けられることが最も好ましい。しかし、これはあくまで好ましい形態にすぎず、例えば、スリーブ53と側壁54のみに設ける例、スリーブ53と天板55のみに設ける例、など、カップ52からスリーブ53に亘るいずれかの部分にリブを設けることができる。 Next, in the compressor 10, the rib 56 is most preferably provided continuously from the lower end of the cup 52 to the upper end of the sleeve 53. However, this is only a preferable form. For example, ribs are provided on any part extending from the cup 52 to the sleeve 53, such as an example in which the sleeve 53 and the side wall 54 are provided only, or an example in which only the sleeve 53 and the top plate 55 are provided. Can be provided.
 圧縮機10は、マフラ50Aのスリーブ53が、リブ56の内部の空隙を除いて、上部軸受29Aに接触しているが、本発明はこれに限定されない。例えば、リブ56が形成されている部分だけを、上部軸受29Aに接触して支持する構造とすることもできる。なお、本実施形態は、リブ56が冷媒をマフラ50Aの外部に吐出させる冷媒流路61を兼ねるので、他に冷媒を吐出させる吐出孔を設ける必要がない。そこで、主軸23の軸剛性を高くするために、リブ56の内部の空隙を除いて、上部軸受29Aに接触させている。 In the compressor 10, the sleeve 53 of the muffler 50 </ b> A is in contact with the upper bearing 29 </ b> A except for the gaps inside the ribs 56, but the present invention is not limited to this. For example, it is also possible to adopt a structure in which only the portion where the rib 56 is formed is supported in contact with the upper bearing 29A. In the present embodiment, since the rib 56 also serves as the refrigerant flow path 61 for discharging the refrigerant to the outside of the muffler 50A, it is not necessary to provide another discharge hole for discharging the refrigerant. Therefore, in order to increase the shaft rigidity of the main shaft 23, the space inside the ribs 56 is removed, and the upper shaft 29A is contacted.
[第2実施形態]
 第1実施形態は、リブ56をマフラ50Aと一体的に形成したが、第2実施形態の圧縮機110は、リブ57をマフラ50Aと別体として作製しておき、図4に示すように、マフラ50Aに接合する。接合は、溶接、ろう付け、接着などの公知の手段を適用できる。この場合、リブ57の内部とマフラ50Aの内部は天板55で仕切られるので、リブ57は冷媒の通路として機能しない。したがって、図4に示すように、天板55に冷媒の通路としての吐出孔(第2の冷媒流路)60を形成する。ただし、スリーブ53と上部軸受29Aのスリーブ292Aとの間に吐出孔に相当する隙間を設けてもよい。
[Second Embodiment]
In the first embodiment, the rib 56 is formed integrally with the muffler 50A. However, the compressor 110 of the second embodiment is manufactured by separately forming the rib 57 from the muffler 50A, as shown in FIG. Join to the muffler 50A. For joining, known means such as welding, brazing, and adhesion can be applied. In this case, since the inside of the rib 57 and the inside of the muffler 50A are partitioned by the top plate 55, the rib 57 does not function as a coolant passage. Therefore, as shown in FIG. 4, a discharge hole (second refrigerant flow path) 60 as a refrigerant passage is formed in the top plate 55. However, a gap corresponding to the discharge hole may be provided between the sleeve 53 and the sleeve 292A of the upper bearing 29A.
 圧縮機110は、リブ57を備えているので、第1実施形態と同様に、密閉容器11からアキュムレータ14に振動が伝わることによる騒音の発生を抑えることができる。
 リブ56をマフラ50Aと一体的に形成する場合には、加工性の観点からリブ56の形状・寸法の制約があり得る。例えばリブ56を高くしなければならない場合には、一体的な成形が困難なこともある。しかし、別体として作製されるリブ57は、このような制約はほとんどないので、必要とされる種々の形状・寸法に対応できる。
 また、リブと天板が別体として作製される形態では、剛性向上のためにフランジ51までリブが延びている方が好ましい。
Since the compressor 110 includes the ribs 57, it is possible to suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14 as in the first embodiment.
When the rib 56 is formed integrally with the muffler 50A, the shape and size of the rib 56 may be restricted from the viewpoint of workability. For example, when the rib 56 has to be raised, integral molding may be difficult. However, the rib 57 manufactured as a separate body has almost no such restriction, and can accommodate various shapes and dimensions required.
In the form in which the rib and the top plate are manufactured separately, it is preferable that the rib extends to the flange 51 in order to improve rigidity.
[第3実施形態]
 第1実施形態および第2実施形態では、リブ56,57をマフラ50Aに設けたが、第3実施形態の圧縮機120は、図5に示すように、上部軸受29Aにリブ58を設ける。リブ58を設ける位置は、第1実施形態、第2実施形態と同様である。
 なお、図示を省略するマフラ50Aに上部軸受29Aのリブ58が干渉する場合には、マフラ50Aに干渉を避けるための加工を施す。また、マフラ50Aには、第2実施形態に設けた吐出孔60を設けるなどして、マフラ50Aから冷媒を吐出させる構成を備える。 
[Third Embodiment]
In the first embodiment and the second embodiment, the ribs 56 and 57 are provided on the muffler 50A. However, the compressor 120 of the third embodiment is provided with the rib 58 on the upper bearing 29A as shown in FIG. The positions where the ribs 58 are provided are the same as those in the first embodiment and the second embodiment.
In addition, when the rib 58 of the upper bearing 29A interferes with the muffler 50A (not shown), processing for avoiding the interference is performed on the muffler 50A. Further, the muffler 50A is provided with a structure for discharging the refrigerant from the muffler 50A by providing the discharge hole 60 provided in the second embodiment.
 圧縮機120は、リブ58を備えているので、第1実施形態と同様に、密閉容器11からアキュムレータ14に振動が伝わることによる騒音の発生を抑えることができる。特に、圧縮機120は、マフラ50Aよりも厚肉の上部軸受29Aにリブ58を設けているので、主軸に対する剛性を向上する程度が高くなり、より効果的に振動を抑制できる。また、上部軸受29Aを軽量化のために肉厚を抑える場合には、軸受自体の剛性を確保するためにもリブ58を設けることは効果的である。 Since the compressor 120 includes the rib 58, it is possible to suppress the generation of noise due to vibration transmitted from the sealed container 11 to the accumulator 14, as in the first embodiment. In particular, since the compressor 120 is provided with the rib 58 on the upper bearing 29A that is thicker than the muffler 50A, the degree to which the rigidity with respect to the main shaft is improved is increased, and vibration can be more effectively suppressed. Further, when the thickness of the upper bearing 29A is reduced in order to reduce the weight, it is effective to provide the ribs 58 in order to ensure the rigidity of the bearing itself.
 以上、本発明を実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 例えば、以上説明した実施形態は、2気筒タイプの圧縮機を例にしたが、本発明はこれに限定されず、例えば1気筒タイプの圧縮機に適用することもできるし、スクロール圧縮機構とロータリー圧縮機構を組み合わせた複合型の圧縮機にも適用できる。
 また、以上説明した実施形態では、上部軸受を密閉容器に固定する固定点と主軸の中心とを結ぶ径方向の線分に沿って延びる補剛リブを示した。しかし、上部軸受の形状や変形モードによっては、例えば、軸受がねじれる変形を抑制したい場合には、周方向に沿って補剛リブを設けることも効果的である。
As described above, the present invention has been described based on the embodiment. However, the configuration described in the above embodiment may be selected or changed to another configuration as long as it does not depart from the gist of the present invention.
For example, in the embodiment described above, a two-cylinder type compressor is taken as an example, but the present invention is not limited to this. For example, the present invention can be applied to a one-cylinder type compressor, a scroll compression mechanism, and a rotary The present invention can also be applied to a composite type compressor combined with a compression mechanism.
Moreover, in embodiment described above, the stiffening rib extended along the radial line segment which connects the fixing point which fixes an upper bearing to an airtight container, and the center of a main axis | shaft was shown. However, depending on the shape and deformation mode of the upper bearing, it is also effective to provide stiffening ribs along the circumferential direction when, for example, it is desired to suppress deformation of the bearing.
10,110,120 圧縮機
11  密閉容器
12A,12B 開口
14  アキュムレータ
14a 吸入口
15  ステー
16A,16B 吸入管
20A,20B シリンダ
20S シリンダ内壁面
21A,21B ピストンロータ
23  主軸
24  仕切板
29A 上部軸受
29B 下部軸受
291A,291B 基部
292A,292B スリーブ
293A,293B 受面
30A,30B 吸入ポート
36  電動モータ
37  ロータ
38  ステータ
40A,40B 偏心軸部
42  吐出口
50A,50B マフラ
51  フランジ
52  カップ
53  スリーブ
54  側壁
55  天板
56,57,58 リブ(補剛体)
59  絞り
60  吐出孔(第2の冷媒流路)
61  冷媒流路(第1の冷媒流路)
B   ボルト
F   固定点
R   空間
R1,R2 圧縮室
10, 110, 120 Compressor 11 Sealed container 12A, 12B Opening 14 Accumulator 14a Suction port 15 Stay 16A, 16B Suction pipe 20A, 20B Cylinder 20S Cylinder inner wall surface 21A, 21B Piston rotor 23 Main shaft 24 Partition plate 29A Upper bearing 29B Lower bearing 291A, 291B Base portion 292A, 292B Sleeve 293A, 293B Receiving surface 30A, 30B Suction port 36 Electric motor 37 Rotor 38 Stator 40A, 40B Eccentric shaft portion 42 Discharge port 50A, 50B Muffler 51 Flange 52 Cup 53 Sleeve 54 Side wall 55 Top plate 56 , 57, 58 Rib (stiffening body)
59 Restriction 60 Discharge hole (second refrigerant flow path)
61 Refrigerant flow path (first refrigerant flow path)
B Bolt F Fixed point R Space R1, R2 Compression chamber

Claims (8)

  1.  供給された冷媒を圧縮して吐出するロータリー圧縮機構と、
     前記ロータリー圧縮機構を挟んで設けられる上部軸受及び下部軸受と、
     上部軸受及び下部軸受の各々に回転自在に支持され、前記ロータリー圧縮機構を貫通する主軸と、
     前記主軸をその中心軸線の周りに回転駆動させる電動モータと、
     前記上部軸受に固定され、前記ロータリー圧縮機構から吐出される前記冷媒が内部に流入するマフラと、
     前記ロータリー圧縮機構、前記上部軸受、前記下部軸受、前記主軸、前記電動モータ、および前記マフラを内部に収容する密閉容器と、
     を備え、
     前記マフラ及び前記上部軸受の少なくとも一方に、前記上部軸受を前記密閉容器に固定する固定点と前記主軸の中心とを結ぶ径方向の線分に沿って延びる補剛体が設けられている、
    ことを特徴とするロータリー圧縮機。
    A rotary compression mechanism for compressing and discharging the supplied refrigerant;
    An upper bearing and a lower bearing provided across the rotary compression mechanism;
    A main shaft that is rotatably supported by each of the upper bearing and the lower bearing and passes through the rotary compression mechanism;
    An electric motor for rotating the main shaft around its central axis;
    A muffler fixed to the upper bearing and into which the refrigerant discharged from the rotary compression mechanism flows;
    A sealed container that houses the rotary compression mechanism, the upper bearing, the lower bearing, the main shaft, the electric motor, and the muffler;
    With
    At least one of the muffler and the upper bearing is provided with a stiffening body extending along a radial line segment connecting a fixing point for fixing the upper bearing to the sealed container and the center of the main shaft,
    A rotary compressor characterized by that.
  2.  前記補剛体は前記マフラに設けられている、
    請求項1に記載のロータリー圧縮機。
    The stiffening body is provided on the muffler,
    The rotary compressor according to claim 1.
  3.  前記補剛体は前記マフラと一体的に形成される、
    請求項1または2に記載のロータリー圧縮機。
    The stiffening body is formed integrally with the muffler.
    The rotary compressor according to claim 1 or 2.
  4.  前記マフラは、
     前記マフラと一体的に形成された前記補剛体と、
     前記補剛体に形成される、前記マフラの内部から前記密閉容器の内部に吐出される前記冷媒が通過する第1の冷媒流路と、を備える、
    請求項1に記載のロータリー圧縮機。
    The muffler is
    The stiffening body formed integrally with the muffler;
    A first refrigerant flow path formed in the stiffening body, through which the refrigerant discharged from the inside of the muffler to the inside of the sealed container passes,
    The rotary compressor according to claim 1.
  5.  前記マフラは、
     前記マフラとは別体として形成され、かつ、前記マフラに固定される前記補剛リブと、
     前記マフラの内部から前記密閉容器の内部に吐出される前記冷媒が通過する第2の冷媒流路と、を備える、
    請求項1に記載のロータリー圧縮機。
    The muffler is
    The stiffening rib formed separately from the muffler and fixed to the muffler;
    A second refrigerant flow path through which the refrigerant discharged from the inside of the muffler passes into the sealed container.
    The rotary compressor according to claim 1.
  6.  前記リブ57の内部と前記マフラの内部は天板で仕切られており、
     前記天板に、前記第2の冷媒流路が形成される、
    請求項5に記載のロータリー圧縮機。
    The inside of the rib 57 and the inside of the muffler are partitioned by a top plate,
    The second refrigerant flow path is formed on the top plate.
    The rotary compressor according to claim 5.
  7.  前記補剛体は前記上部軸受に設けられている、
    請求項1に記載のロータリー圧縮機。
    The stiffening body is provided on the upper bearing,
    The rotary compressor according to claim 1.
  8.  前記補剛体は複数の補剛体リブである、
    請求項1から7のいずれか1項に記載のロータリー圧縮機。
    The stiffener is a plurality of stiffener ribs;
    The rotary compressor according to any one of claims 1 to 7.
PCT/JP2013/005732 2013-03-12 2013-09-26 Rotary compressor WO2014141331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13877835.2A EP2942526B1 (en) 2013-03-12 2013-09-26 Rotary compressor
CN201380071045.1A CN104937274B (en) 2013-03-12 2013-09-26 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048886 2013-03-12
JP2013048886A JP6161923B2 (en) 2013-03-12 2013-03-12 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2014141331A1 true WO2014141331A1 (en) 2014-09-18

Family

ID=51536034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005732 WO2014141331A1 (en) 2013-03-12 2013-09-26 Rotary compressor

Country Status (4)

Country Link
EP (1) EP2942526B1 (en)
JP (1) JP6161923B2 (en)
CN (1) CN104937274B (en)
WO (1) WO2014141331A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625864B2 (en) * 2015-10-27 2019-12-25 三菱重工サーマルシステムズ株式会社 Rotary compressor
JP2019183721A (en) * 2018-04-06 2019-10-24 三菱重工サーマルシステムズ株式会社 Compressor system
JP2023034613A (en) 2021-08-31 2023-03-13 株式会社東芝 Compressor, and air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182691A (en) 1983-04-01 1984-10-17 Hitachi Ltd Signal processing system of color video camera
JPH0626478A (en) 1992-07-07 1994-02-01 Hitachi Ltd Rotary compressor
JPH0658283A (en) * 1992-08-03 1994-03-01 Sanyo Electric Co Ltd Muffler for rotary compressor
JPH07133781A (en) 1993-11-08 1995-05-23 Sanyo Electric Co Ltd Internal high pressure type compressor
JPH109172A (en) * 1996-06-19 1998-01-13 Hitachi Ltd Closed type compressor
JP2010116787A (en) * 2008-11-11 2010-05-27 Panasonic Corp Rotary compressor
JP2010116786A (en) * 2008-11-11 2010-05-27 Panasonic Corp Rotary compressor
JP2012077636A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Compressor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202392A (en) * 1982-05-20 1983-11-25 Sanyo Electric Co Ltd Enclosed type rotary compressor
JPS6336087A (en) * 1986-07-29 1988-02-16 Matsushita Refrig Co Rotary type compressor
JPH0792068B2 (en) * 1987-01-12 1995-10-09 松下冷機株式会社 Rotary compressor
JPH0792066B2 (en) * 1987-04-13 1995-10-09 松下冷機株式会社 Rotary compressor
JPH11287192A (en) * 1998-04-02 1999-10-19 Matsushita Refrig Co Ltd Rotary type refrigerant compressor
JP4004278B2 (en) * 2001-11-26 2007-11-07 三洋電機株式会社 Rotary compressor
JP4266104B2 (en) * 2002-07-29 2009-05-20 東芝キヤリア株式会社 Horizontal rotary compressor
JP2004270543A (en) * 2003-03-07 2004-09-30 Matsushita Electric Ind Co Ltd Closed type compressor
JP2012072679A (en) * 2010-09-28 2012-04-12 Daikin Industries Ltd Compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182691A (en) 1983-04-01 1984-10-17 Hitachi Ltd Signal processing system of color video camera
JPH0626478A (en) 1992-07-07 1994-02-01 Hitachi Ltd Rotary compressor
JPH0658283A (en) * 1992-08-03 1994-03-01 Sanyo Electric Co Ltd Muffler for rotary compressor
JPH07133781A (en) 1993-11-08 1995-05-23 Sanyo Electric Co Ltd Internal high pressure type compressor
JPH109172A (en) * 1996-06-19 1998-01-13 Hitachi Ltd Closed type compressor
JP2010116787A (en) * 2008-11-11 2010-05-27 Panasonic Corp Rotary compressor
JP2010116786A (en) * 2008-11-11 2010-05-27 Panasonic Corp Rotary compressor
JP2012077636A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Compressor

Also Published As

Publication number Publication date
EP2942526B1 (en) 2019-03-27
CN104937274B (en) 2017-06-27
JP2014173554A (en) 2014-09-22
EP2942526A1 (en) 2015-11-11
CN104937274A (en) 2015-09-23
EP2942526A4 (en) 2016-04-06
JP6161923B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6187266B2 (en) Electric compressor
JP5441982B2 (en) Rotary compressor
JP6112104B2 (en) Rotary compressor
JP2009180203A (en) Double cylinder rotary compressor
JP2013204464A (en) Rotary compressor
JP6161923B2 (en) Rotary compressor
JP6674223B2 (en) Rotary compressor, method of manufacturing rotary compressor
WO2016139873A1 (en) Compressor
WO2016059873A1 (en) Bracket for compressor, and rotary compressor
JP2011074813A (en) Rotary compressor
EP3369932B1 (en) Rotary compressor
WO2019207783A1 (en) Scroll compressor and method for manufacturing same
WO2015025449A1 (en) Multi-stage compressor and refrigeration cycle device
JP2012149545A (en) Rotary compressor
JP5984444B2 (en) Rotary compressor
WO2019021976A1 (en) Rotary compressor
WO2019039182A1 (en) Rotary compressor
JP5237029B2 (en) Rotary compressor
JP4438886B2 (en) Rotary fluid machine
KR20060087259A (en) Assembling structure for compressing part of twin rotary compressor
JP2007056680A (en) Rotary compressor
JP2006200374A (en) Rotary compressor
JP2016017481A (en) Rotary compressor
JP5923983B2 (en) Rotary compressor
JP7063699B2 (en) How to assemble a crankshaft, rotary compressor, and crankshaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013877835

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE