JP4004278B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP4004278B2
JP4004278B2 JP2001358919A JP2001358919A JP4004278B2 JP 4004278 B2 JP4004278 B2 JP 4004278B2 JP 2001358919 A JP2001358919 A JP 2001358919A JP 2001358919 A JP2001358919 A JP 2001358919A JP 4004278 B2 JP4004278 B2 JP 4004278B2
Authority
JP
Japan
Prior art keywords
cylinder
compression mechanism
compressor
refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001358919A
Other languages
Japanese (ja)
Other versions
JP2003161280A (en
Inventor
裕之 松森
俊行 江原
兼三 松本
大 松浦
里  和哉
孝 佐藤
隆泰 斎藤
晴久 山崎
昌也 只野
悟 今井
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001358919A priority Critical patent/JP4004278B2/en
Publication of JP2003161280A publication Critical patent/JP2003161280A/en
Application granted granted Critical
Publication of JP4004278B2 publication Critical patent/JP4004278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空調装置、給湯機、カーエアコン、ショーケース、冷凍・冷蔵庫、自動販売機などの冷凍装置において冷媒を圧縮する回転式圧縮機に関する。
【0002】
【従来の技術】
この種の圧縮機としては、例えば図20に示した内部中間圧型の回転式2段圧縮機(以下、単に圧縮機と云う)10Xが周知である。この圧縮機10Xにおいては、密閉容器12内の上部にステータ22、ロータ24などからなる電動機構部14を備えると共に、その下部に電動機構部14のロータ24と回転軸16を介して連結された2段式の回転式圧縮機構部18を備えている。
【0003】
この圧縮機10Xの2段式の回転式圧縮機構部18においては、下側に第1の圧縮機構部32が配設され、その上側に第2の圧縮機構部34が配設され、図示しないアキュムレータから冷媒導入管92を介して導入した気体の冷媒を下段側の第1の圧縮機構部32で圧縮し、その圧縮した冷媒を密閉容器12内に吐出、それを冷媒導入管94を介して2段目の第2の圧縮機構部34に導入し、そこでさらに高圧に圧縮して冷媒吐出管96から図示しない空調装置の冷媒回路に高圧冷媒を供給するように構成されている。
【0004】
この圧縮機10Xにおいては、第1の圧縮機構部32で圧縮した冷媒を第2の圧縮機構部34によりさらに高圧に圧縮するので、第2の圧縮機構部34により例えば12MPaG程度の高圧に圧縮された気体が通過する上部カバー部材の吐出消音室64を封止する上部カバー68は、第1の圧縮機構部32により例えば6MPaG程度の圧力に圧縮された気体が通過する下部支持部材54の吐出消音室62を封止する下部カバー66より厚くして耐圧性が高められている。
【0005】
すなわち、上記従来の圧縮機10Xにおいては、高圧に圧縮された気体が通過する上部支持部材56の吐出消音室64を単に板厚の厚い上部カバー68により封止する構成であったため、全体の質量が増加すると云った問題点があった。
【0006】
【発明が解決しようとする課題】
したがって、質量の増加を招くことなく上部カバーの耐圧性を改善する必要があり、それが解決すべき課題となっていた。
【0007】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するため、密閉容器内に圧縮機構部と電動機構部とを備え、この圧縮機構部がシリンダと、そのシリンダの両端部を封止する軸受を有する端面封止部材と、その端面封止部材に軸支され電動機構部により回転される回転軸と、その回転軸に偏心して取り付けられ外周面がシリンダの内周面に摺接し、端面が端面封止部材の内面に摺接して偏心回転するローラと、シリンダに設けられたベーンスロットに挿入設置されてローラの外周面に当接し、ローラの偏心回転に追従して往復運動しシリンダ内を低圧室と高圧室とに区画するベーンと、シリンダ内で圧縮された気体が通過する端面封止部材の消音室を封止する円板状部とこの円板状部の中央に設けて軸受が貫通する孔から延設される筒状部とで形成されるカバー部材と、そのカバー部材の外面に設けられて円筒部の外周から円板状部に放射状に形成されたリブとを備えるようにした第1の構成の回転式圧縮機と、
【0008】
さらに、冷媒を繰り返し圧縮可能に圧縮機構部を複数段に設置し、その後段の圧縮機構部に、外面にリブが設けられたカバー部材を設けるようにした第2の構成の回転式圧縮機と、
を提供するものである。
【0009】
【発明の実施の形態】
以下、本発明の一実施形態を図1〜図19に基づいて詳細に説明する。なお、理解を容易にするため、これらの図面においても前記図20において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0010】
図1は本発明の回転式圧縮機の実施例として、第1および第2の圧縮機構部32、34を備えた内部中間圧型2段圧縮式の圧縮機10の縦断面図、図2は上部カバー68の斜視図、図3は圧縮機10の正面図、図4は圧縮機10の側面図、図5は圧縮機10のもう一つの縦断面図、図6は圧縮機10のさらにもう一つの縦断面図、図7は圧縮機10の電動機構部14部分の平断面図、図8は圧縮機10の回転式圧縮機構部18の拡大断面図をそれぞれ示している。
【0011】
圧縮機10は、鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動機構部14、およびこの電動機構部14の下側に配置され、電動機構部14の回転軸16により駆動される第1の圧縮機構部32(1段目)、およびその上に配置された第2の圧縮機構部34(2段目)からなる回転式圧縮機構部18により構成されている。
【0012】
実施例の圧縮機10の高さ寸法は220mm(外径120mm)、電動機構部14の高さ寸法は約80mm(外径110mm)、回転式圧縮機構部18の高さ寸法は約70mm(外径110mm)で、電動機構部14と回転式圧縮機構部18との間隔は約5mmとなっている。また、第2の圧縮機構部34の排除容積は第1の圧縮機構部32の排除容積よりも小さく設計されている。
【0013】
密閉容器12は実施例では厚さ4.5mmの鋼板により形成され、底部を冷凍機油190を溜める貯油部とし、電動機構部14と回転式圧縮機構部18を収納する円筒状の容器本体12Aと、この容器本体12Aの上部開口を閉鎖する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、その取付孔12Dには電動機構部14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0014】
この場合、ターミナル20の周囲のエンドキャップ12Bには、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は電気的端子139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。取付部20Bの厚さ寸法は2.4±0.5mmとされている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0015】
電動機構部14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0016】
ステータ22は、ドーナツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を備えている(図7)。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石31を挿入して構成されている。
【0017】
第1の圧縮機構部32と第2の圧縮機構部34との間には中間仕切板36が挟持されている。すなわち、第1の圧縮機構部32と第2の圧縮機構部34は、中間仕切板36と、この中間仕切板36の下側と上側に配置されたシリンダ38、40と、そのシリンダ38、40内に180度の位相差を有して回転軸16に設けた偏心部42、44と、その偏心部42、44に嵌合されて偏心回転するローラ46、48と、そのローラ46、48に当接してシリンダ38、40内をそれぞれ低圧室側と高圧室側とに区画するベーン50と、シリンダ38の下側の開口面およびシリンダ40の上側の開口面を閉鎖して回転軸16の軸受けを兼ねる軸支持部材としての下部支持部材54および上部支持部材56により構成される。
【0018】
下部支持部材54および上部支持部材56には、吸込ポート161、162によりシリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の開口部はそれぞれカバーにより閉鎖される。すなわち、吐出消音室62は下部カバー66により、吐出消音室64は上部カバー68により閉鎖される。
【0019】
また、下部支持部材54の中央には軸受け54Aが貫通形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、上部支持部材56の中央には軸受け56Aが起立形成されており、この軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は摩擦抵抗の小さい材料により形成されており、回転軸16はこれらブッシュ122、123を介して下部支持部材54の軸受け54Aと上部支持部材56の軸受け56Aとで保持される。
【0020】
この場合、下部カバー66はドーナツ状をした円形の鋼板により形成されており、周辺部の4カ所を4本の主ボルト129によって下から下部支持部材54に固定され、吐出ポート39により第1の圧縮機構部32のシリンダ38内部と連通する吐出消音室62の下面開口部を閉鎖する。この主ボルト129の先端は上部支持部材56に螺合する。下部カバー66の内周縁は下部支持部材54の軸受け54A内面より内方に突出しており、これによって、ブッシュ122の下端面は下部カバー66によって保持され、脱落が防止されている(図10)。図11は下部支持部材54の下面を示しており、127は吐出消音室62内において吐出ポート39を開閉する第1の圧縮機構部32の吐出弁の装着溝である。
【0021】
下部支持部材54は鉄系の焼結材料(若しくは鋳物でも可)により形成されており、下部カバー66を取り付ける側の面(下面)は、平面度0.1mm以下に加工された後、スチーム処理が加えられている。このスチーム処理によって下部カバー66を取り付ける側の面は酸化鉄となるため、焼結材料内部の孔が塞がれてシール性が向上する。これにより、下部カバー66と下部支持部材54間にガスケットを介設する必要が無くなる。
【0022】
なお、吐出消音室62と密閉容器12内における上部カバー68の電動機構部14側は、シリンダ38、40や中間仕切板36を貫通する孔である連通路63により連通されている(図5)。この場合、連通路63の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動機構部14のステータ22に巻装された相隣接するステータコイル28同士の隙間に向けられている(図7)。
【0023】
また、上部カバー68は吐出ポート41により第2の圧縮機構部34のシリンダ40内部と連通する吐出消音室64の上面開口部を閉鎖し、密閉容器12内を吐出消音室64と電動機構部14側とに仕切る。この上部カバー68は図2に示すように、円板状部68Aの中央部に設けた前記上部支持部材56の軸受け56Aが貫通する孔から上方に筒状部68Bが延設され、その立設された筒状部68Bの外周部から放射状に複数のリブ68Cが設けられている。それぞれのリブ68Cは、円板状部68Aの上面から立設されたと見ることもできる。また、ボルト孔68Dが4個穿設されている。そして、上部支持部材56との間にビード付きのガスケット124を挟み込んだ状態で(図13)、そのガスケット124を介して周辺部が4本の主ボルト78により、上から上部支持部材56に固定されている。この主ボルト78の先端は下部支持部材54に螺合する。
【0024】
上部カバー68を係る構成としたことで、円板状部68Aの剛性が顕著に向上するので、円板状部68Aを含めた全体を薄くしながらも密閉容器12内よりも高圧となる吐出消音室64の圧力に十分に耐えながら、軽量化を達成することができる。さらに、この上部カバー68の内周縁と軸受け56Aの外面間にはOリング126が設けられている(図13)。係るOリング126により軸受け56A側のシールを行うことで、上部カバー68の内周縁で十分にシールを行い、ガスリークを防ぐことができるようになり、吐出消音室64の容積拡大が図れると共に、Oリングにより上部カバー68の内周縁側を軸受け56Aに固定する必要も無くなる。なお、図12において128は吐出消音室64内において吐出ポート41を開閉する第2の圧縮機構部34の吐出弁の装着溝である。
【0025】
第1の圧縮機構部32のシリンダ38の上側の開口面と、第2の圧縮機構部34のシリンダ40の下側の開口面とを閉鎖する中間仕切板36内には、シリンダ40内の吸込側に対応する位置に、図14、図15に示したように外周面から内周面に至り、外周面と内周面とを連通して給油路を形成する貫通孔131が穿設されており、この貫通孔131の外周面側に封止材132を圧入するなどして外周面側の開口を封止している。また、この貫通孔131の中途部から上側に延びる連通孔133が穿設されている。
【0026】
一方、シリンダ40の吸込ポート162(吸込側)には中間仕切板36の連通孔133に連通する連通孔134が穿設されている。また、回転軸16内には図8に示したように軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔81、82が設けられており、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔81、82を介してオイル孔80に連通している。
【0027】
また、回転軸16の偏心部42、44にも、オイル孔80に連通する給油孔83、84が設けられている。そして、給油孔83、84が開設されている部分には、軸方向の溝部と、その溝部と交差する周方向の溝部が設けられている。
【0028】
すなわち、給油孔83が開設されている部分には軸方向の溝部43Aと、その溝部43Aと交差する周方向の溝部43Bが設けられ、給油孔84が開設されている部分には軸方向の溝部45Aと、その溝部45Aと交差する周方向の溝部45Bが設けられている。
【0029】
そのため、密閉容器12の底部から回転軸16のオイル孔80を介して汲み上げられ、例えば第2の圧縮機構部34の偏心部44の給油孔84から吐出し、高速回転している回転軸16の回転方向と反対側の溝部45Bの部分に入った冷凍機油190は、回転軸16の回転に伴って軸方向よりも溝部45Bの終端部から取り残されたように、回転軸16の偏心部44の外周面とローラ48の内周面との間の周方向に入り込み易いので、回転負荷が大きく、そのため回転軸16の偏心部44と、その偏心部44に装着されるローラ48とが密着状態で摺動してもその間に入り込んで、回転軸16の偏心部44とローラ48との間の潤滑が効果的に行われる(回転負荷が小さい第1の圧縮機構部32の偏心部42の給油孔83から吐出した冷凍機油190も同様に作用する)。
【0030】
また、運転中の密閉容器12内は中間圧となるため、2段目の圧縮を行うために高圧となるシリンダ40内には冷凍機油190の供給が困難となるが、中間仕切板36を前記構成としたことにより、密閉容器12内底部の貯油部から汲み上げられてオイル孔80を上昇し、給油孔81、82から吐出した冷凍機油190は、中間仕切板36の貫通孔131に入り、連通孔133、134からシリンダ40の吸込側(吸込ポート162)に供給され、摺動部分の潤滑に供される。
【0031】
図17において、Lは第2の圧縮機構部34のシリンダ40の吸入側の圧力変動を示し、P1は中間仕切板36の内周面の圧力を示す。この図にL1で示すようにシリンダ40の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力よりも低下する。この期間に中間仕切板36の貫通孔131、連通孔133からシリンダ40の連通孔134を介してシリンダ40内に給油が成されることになる。
【0032】
上記したようにシリンダ38、40、中間仕切板36、支持部材54、56およびカバー66、68はそれぞれ4本の主ボルト78と、主ボルト129により上下から締結されるが、さらに、シリンダ38、40、中間仕切板36、支持部材54、56は、これら主ボルト78、129の外側に位置する補助ボルト136により締結される(図5)。この補助ボルト136は上部支持部材56側から挿入され、先端は下支持部材54に螺合している。
【0033】
また、この補助ボルト136は前記ベーン50の後述するベーンスロット70の近傍に位置している。このように補助ボルト136を追加して回転式圧縮機構部18を一体化することで、内部が極めて高圧となることに対するシール性の確保が成されると共に、ベーン50のベーンスロット70の近傍を締め付けるので、ベーン50に加える高圧の背圧のリークも防止できるようになる。
【0034】
一方、シリンダ40内には前記ベーン50を収納するベーンスロット70と、このベーンスロット70の外側に位置してバネ部材としてのスプリング76を収納する収納部70Aが形成されており、この収納部70Aはベーンスロット70側と密閉容器12(容器本体12A)側に開口している(図9)。前記スプリング76はベーン50の外側端部に当接し、常時ベーン50をローラ48側に付勢する。そして、このスプリング76の密閉容器12側の収納部70A内には金属製のプラグ137が設けられ、スプリング76の抜け止めの役目を果たす。
【0035】
この場合、プラグ137の外寸は収納部70Aの内寸よりも小さく設定され、プラグ137は収納部70A内に隙間嵌めにより挿入される。また、プラグ137の周面にはそのプラグ137と収納部70Aの内面間をシールするためのOリング138が取り付けられている。そして、シリンダ40の外端、すなわち、収納部70Aの外端と密閉容器12の容器本体12A間の間隔は、Oリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定されている。そして、ベーン50のベーンスロット70に連通する図示しない背圧室には第2の圧縮機構部34の吐出圧力である高圧が背圧として加えられる。従って、プラグ137のスプリング76側は高圧、密閉容器12側は中間圧となる。
【0036】
係る寸法関係としたことにより、プラグ137を収納部70A内に圧入固定する場合のように、シリンダ40が変形して上部支持部材56との間のシール性が低下し、性能劣化を招く不都合を未然に回避することができるようになる。また、係る隙間嵌めであっても、シリンダ40と密閉容器12間の間隔をOリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定しているので、スプリング76側の高圧(ベーン50の背圧)によってプラグ137が収納部70Aから押し出される方向に移動しても、密閉容器12に当接して移動が阻止された時点で依然Oリング138は収納部70A内に位置してシールするので、プラグ138の機能には何ら問題は生じない。
【0037】
ところで、回転軸16と一体に180度の位相差を持って形成される偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている(図18)。すなわち、回転軸16に設けた偏心部42、44を連結する連結部90の断面形状は偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている(図中ハッチングの部分)。
【0038】
これにより、回転軸16に一体に隣設された偏心部42、44を連結する連結部90の断面積が大きくなり、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16に作用する負荷も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0039】
この場合、下側の偏心部42の中心をO1とし、上側の偏心部44の中心をO2とすると、偏心部42の偏心方向側の連結部90の面の円弧の中心はO1、偏心部44の偏心方向側の連結部90の面の円弧の中心はO2となる。これにより、回転軸16を切削加工機に固定して偏心部42、44と連結部90を切削加工する際、偏心部42を加工した後、半径のみを変更して連結部90の一面を加工し、固定位置を変更して連結部90の他面を加工し、半径のみを変更して偏心部44を加工すると云う作業が可能となる。これにより、回転軸16を固定し直す回数が減少して生産性が著しく改善されるようになる。
【0040】
密閉容器12の容器本体12Aの湾曲した側面の、下部支持部材54と上部支持部材56の吸込通路58、60、吐出消音室64および上部カバー68の上側(電動機構部14の下端に略対応する位置)に対応する位置に、円筒状のスリーブ141〜144が溶接固定されている。スリーブ142はスリーブ141と略90度ずれた位置に設けられ、スリーブ143はスリーブ141の上側に設けられ、スリーブ144はスリーブ141と略対向する位置に設けられている。
【0041】
そして、スリーブ141内には第1の圧縮機構部32のシリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端はシリンダ38の吸込通路58に連通されている。この冷媒導入管92の他端はアキュムレータ204の下端に接続される。
【0042】
また、スリーブ143内には第2の圧縮機構部34のシリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端はシリンダ40の吸込通路60に連通されている。この冷媒導入管94は密閉容器12の上側を通過してスリーブ142から延設され、他端はスリーブ142内に挿入接続されて密閉容器12内に連通している。また、スリーブ144内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室64に連通されている。
【0043】
アキュムレータ204は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器側のブラケット147にアキュムレータ204側のブラケット205を介するなどして密閉容器12の側方に設置される。
【0044】
スリーブ141に挿入接続する冷媒導入管92と、スリーブ143に挿入接続する冷媒導入管94とは、スリーブ141、143の近傍では互いに反対側に引き回されている。すなわち、図4に示したようにアキュムレータ204から延設される冷媒導入管92は図面右方向に屈曲してスリーブ141に至り、他方の冷媒導入管94は図面左方向に屈曲してスリーブ143に至るように構成され、これによりアキュムレータ204の上下寸法を拡大して容積を増やしても、冷媒導入管92、94が相互に干渉することはない。
【0045】
また、スリーブ141の外周部にはネジ溝151が形成されており、スリーブ142、143、144の外周部には鍔部152が形成されている。そして、このネジ溝151には気密試験配管接続用のコネクタがネジ止め可能とされ、鍔部152には気密試験配管接続用のカプラが着脱自在に係合可能とされている。
【0046】
このような構成としたことで、図示しない圧搾空気生成装置からの気密試験配管をカプラやコネクタを用いて簡単に接続することができるようになるので、短時間で気密試験を終えることができるようになる。特に、上下方向で隣接するスリーブ141と143は、一方のスリーブ141にネジ溝151が、他方のスリーブ143に鍔部152が形成されているので、コネクタに比較して寸法の大きいカプラを二つ隣接して取り付ける状況となることがなくなり、スリーブ141と143の間隔が狭い場合にもその狭い空間を利用して気密試験配管を各スリーブ141、143に接続可能となる。
【0047】
この圧縮機10の冷媒としては、地球環境に優しく、また不燃性であり、且つ、毒性のないこと、などを満足するものとして、自然冷媒である炭酸ガスの一例としての二酸化炭素(CO2)を使用し、潤滑油としての冷凍機油190としては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0048】
実施例に示した上記構成の圧縮機10は、例えば図19に示すような車載用冷房装置200の冷媒回路で使用される。すなわち、圧縮機10の冷媒吐出管96は空冷式などのガスクーラ201の入口に接続される。そして、このガスクーラ201を出た冷媒管は減圧装置としての膨張弁202を経て蒸発器203の入口に接続され、蒸発器203の出口に冷媒導入管92が接続される。なお、図19ではアキュムレータ204は省略されている。
【0049】
次に、図19に示した冷房装置200の動作を説明する。圧縮機10のターミナル20および図示しない配線を介して電動機構部14のステータコイル28に通電すると、電動機構部14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた偏心部42、44に嵌合されているローラ46、48がシリンダ38、40内で偏心回転する。
【0050】
このため、冷媒導入管92および下部支持部材54に形成された吸込通路58を経由して吸込ポート161からシリンダ38の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ46とベーン50の動作により圧縮されて中間圧(MP1:8MPaG)となりシリンダ38の高圧室側より吐出ポート39、下部支持部材54に形成された吐出消音室62から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0051】
このとき、中間吐出管121は上方の電動機構部14のステータ22に巻装された相隣接するステータコイル28同士の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動機構部14方向に積極的に供給でき、電動機構部14の温度上昇が抑制される。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0052】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ142から出て(中間吐出圧は前記MP1)冷媒導入管94および上部支持部材56に形成された吸込通路60を経由して吸込ポート162からシリンダ40の低圧室側に吸入される(2段目吸入圧MP2)。吸入された中間圧の冷媒ガスは、ローラ48とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室側から吐出ポート41を通り上部支持部材56に形成された吐出消音室64、冷媒吐出管96を経由してガスクーラ201内に流入する。このときの冷媒温度は約100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して冷却され、ガスクーラ201を出る。
【0053】
そして、膨張弁202で減圧された後、蒸発器203に流入して蒸発する。この蒸発器203における蒸発時に冷媒が周囲から奪う気化熱により、車内の空気が冷却されて冷房が行われる。蒸発器203で蒸発した冷媒蒸気はアキュムレータ204(図19では示していない)を経て冷媒導入管92から第1の圧縮機構部32内に吸い込まれるサイクルを繰り返す。
【0054】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0055】
例えば、上部カバー68に設けるリブ68Cは、筒状部68Bと同心円状に円板状部68Aの上面に設けるようにしても良い。その際、筒状部68Bは必ずしも設ける必要はない。また、円周状に設けるリブと、半径方向に設けるリブとを併用することも可能である。
【0056】
また、ガスクーラ201で高温高圧の冷媒ガスが放熱する熱の利用が可能に構成して、圧縮機10を、▲1▼暖房運転も可能な空調装置の圧縮器として使用する、▲2▼給湯装置の圧縮機として使用する、ことなども可能である。
【0057】
また、この圧縮機10を冷凍装置の圧縮機として使用するときには、冷媒としてハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)などが使用されても良い。
【0058】
【発明の効果】
以上説明したように、本発明の回転式圧縮機は、シリンダ内で圧縮された気体が通過する端面封止部材の消音室を封止するカバー部材の外面にリブを設けるようにした圧縮機であり、さらに外部から取り込む気体を繰り返し圧縮可能に圧縮機構部を複数段に設置し、その後段の圧縮機構部に、外面にリブが設けられたカバー部材を設けるようにした圧縮機であるので、カバー部材の剛性が顕著に向上する。そのため、カバー部材の薄肉化、軽量化が図れる。
【図面の簡単な説明】
【図1】本発明の圧縮機の縦断面図である。
【図2】本発明の圧縮機に使用するカバー部材の斜視図である。
【図3】図1の圧縮機の正面図である。
【図4】図1の圧縮機の側面図である。
【図5】図1の圧縮機のもう一つの縦断面図である。
【図6】図1の圧縮機のさらにもう一つの縦断面図である。
【図7】図1の圧縮機の電動機構部部分の平断面図である。
【図8】図1の圧縮機の回転式圧縮機構部の拡大断面図である。
【図9】図1の圧縮機の第2の圧縮機構部のベーン部分の拡大断面図である。
【図10】図1の圧縮機の下部支持部材および下部カバーの断面図である。
【図11】図1の圧縮機の下部支持部材の下面図である。
【図12】図1の圧縮機の上部支持部材および上部カバーの上面図である。
【図13】図1の圧縮機の上部支持部材および上カバーの断面図である。
【図14】図1の圧縮機の中間仕切板の上面図である。
【図15】図14のA−A線断面図である。
【図16】図1の圧縮機のシリンダの上面図である。
【図17】図1の圧縮機のシリンダの吸入側の圧力変動を示す図である。
【図18】図1の圧縮機の回転軸の連結部を示す断面説明図である。
【図19】図1の圧縮機を適用した空調装置の冷媒回路図である。
【図20】従来技術を示す説明図である。
【符号の説明】
10、10X (回転式)圧縮機
12 密閉容器
12A 容器本体
12B エンドキャップ
14 電動機構部
16 回転軸
18 回転式圧縮機構部
20 ターミナル
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
31 永久磁石
32 第1の圧縮機構部
34 第2の圧縮機構部
36 中間仕切板
38、40 シリンダ
39、41 吐出ポート
42 偏心部
43A、43B 溝部
44 偏心部
45A、45B 溝部
46、48 ローラ
50 ベーン
54 下部支持部材
54A 軸受け
56 上部支持部材
58、60 吸込通路
62 吐出消音室
63 連通路
64 吐出消音室
66 下部カバー
68 上部カバー
68A 円板状部
68B 筒状部
68C リブ
68D ボルト孔
70 ベーンスロット
70A 収納部
76 スプリング(バネ部材)
78、129 主ボルト
80 オイル孔
81、82、83、84 給油孔
90 連結部
92、94 冷媒導入管
96 冷媒吐出管
121 中間吐出管
131 貫通孔(給油路)
132 封止材
133、134 連通孔
137 プラグ
138 Oリング
141、142、143、144 スリーブ
147 ブラケット
152 鍔部
151 ネジ溝
161、162 吸込ポート
190 冷凍機油
200 空調装置
201 ガスクーラ
202 膨張弁
203 蒸発器
204 アキュムレータ
205 ブラケット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary compressor that compresses refrigerant in a refrigeration apparatus such as an air conditioner, a water heater, a car air conditioner, a showcase, a freezer / refrigerator, and a vending machine.
[0002]
[Prior art]
As this type of compressor, for example, an internal intermediate pressure type rotary two-stage compressor (hereinafter simply referred to as a compressor) 10X shown in FIG. 20 is well known. The compressor 10X includes an electric mechanism unit 14 including a stator 22, a rotor 24, and the like in the upper part of the hermetic container 12, and is connected to a lower part of the compressor 10X via the rotor 24 and the rotary shaft 16 of the electric mechanism unit 14. A two-stage rotary compression mechanism 18 is provided.
[0003]
In the two-stage rotary compression mechanism section 18 of the compressor 10X, a first compression mechanism section 32 is disposed on the lower side, and a second compression mechanism section 34 is disposed on the upper side, not shown. The gaseous refrigerant introduced from the accumulator through the refrigerant introduction pipe 92 is compressed by the first compression mechanism portion 32 on the lower stage side, and the compressed refrigerant is discharged into the sealed container 12, which is discharged through the refrigerant introduction pipe 94. The refrigerant is introduced into the second compression mechanism section 34 in the second stage, where it is further compressed to a high pressure and supplied from the refrigerant discharge pipe 96 to a refrigerant circuit of an air conditioner (not shown).
[0004]
In the compressor 10X, the refrigerant compressed by the first compression mechanism unit 32 is compressed to a higher pressure by the second compression mechanism unit 34, so that the refrigerant is compressed by the second compression mechanism unit 34 to a high pressure of about 12 MPaG, for example. The upper cover 68 that seals the discharge silencing chamber 64 of the upper cover member through which the gas passes passes is discharged from the lower support member 54 through which the gas compressed by the first compression mechanism 32 to a pressure of, for example, about 6 MPaG passes. It is thicker than the lower cover 66 that seals the chamber 62 to enhance pressure resistance.
[0005]
That is, in the conventional compressor 10X, the discharge silencer chamber 64 of the upper support member 56 through which the gas compressed to a high pressure passes is simply sealed by the upper cover 68 having a large plate thickness. There was a problem that increased.
[0006]
[Problems to be solved by the invention]
Therefore, it is necessary to improve the pressure resistance of the upper cover without causing an increase in mass, which has been a problem to be solved.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, the present invention includes a compression mechanism portion and an electric mechanism portion in a sealed container, and the compression mechanism portion seals the cylinder and both ends of the cylinder. With bearing An end face sealing member, a rotary shaft that is pivotally supported by the end face sealing member and rotated by the electric mechanism portion, is attached eccentrically to the rotary shaft, and the outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder, and the end surface is end face sealed. A roller that slides in contact with the inner surface of the stop member and rotates eccentrically, and is inserted and installed in a vane slot provided in the cylinder, abuts against the outer peripheral surface of the roller, and reciprocates following the eccentric rotation of the roller to move inside the cylinder in a low-pressure chamber And the sound deadening chamber of the end face sealing member through which the gas compressed in the cylinder passes are sealed. It is formed by a disk-shaped part and a cylindrical part provided in the center of the disk-shaped part and extending from a hole through which the bearing passes. A cover member and an outer surface of the cover member And formed radially from the outer periphery of the cylindrical part to the disk-like part A rotary compressor having a first configuration including a rib;
[0008]
Furthermore, a rotary compressor having a second configuration in which a compression mechanism unit is provided in a plurality of stages so that the refrigerant can be repeatedly compressed, and a cover member having a rib provided on the outer surface is provided in the subsequent compression mechanism part. ,
Is to provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In order to facilitate understanding, in these drawings, parts having the same functions as those described with reference to FIG.
[0010]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type two-stage compression compressor 10 having first and second compression mechanisms 32 and 34 as an embodiment of the rotary compressor of the present invention, and FIG. 3 is a front view of the compressor 10, FIG. 4 is a side view of the compressor 10, FIG. 5 is another longitudinal sectional view of the compressor 10, and FIG. FIG. 7 is a plan sectional view of the electric mechanism portion 14 of the compressor 10, and FIG. 8 is an enlarged sectional view of the rotary compression mechanism portion 18 of the compressor 10.
[0011]
The compressor 10 includes a cylindrical airtight container 12 made of a steel plate, an electric mechanism portion 14 disposed and housed above the internal space of the airtight container 12, and an electric mechanism portion disposed below the electric mechanism portion 14. The rotary compression mechanism unit 18 includes a first compression mechanism unit 32 (first stage) driven by the rotation shaft 16 of the unit 14 and a second compression mechanism unit 34 (second stage) disposed thereon. It is comprised by.
[0012]
The height dimension of the compressor 10 of the embodiment is 220 mm (outer diameter 120 mm), the height dimension of the electric mechanism section 14 is about 80 mm (outer diameter 110 mm), and the height dimension of the rotary compression mechanism section 18 is about 70 mm (outside). The distance between the electric mechanism 14 and the rotary compression mechanism 18 is about 5 mm. Further, the excluded volume of the second compression mechanism section 34 is designed to be smaller than the excluded volume of the first compression mechanism section 32.
[0013]
In the embodiment, the sealed container 12 is formed of a steel plate having a thickness of 4.5 mm, and the bottom part is an oil storage part that stores the refrigerating machine oil 190, and the cylindrical container body 12A that houses the electric mechanism part 14 and the rotary compression mechanism part 18; The container body 12A has a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container body 12A, and a circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B. A terminal (wiring is omitted) 20 for supplying electric power to the electric mechanism portion 14 is attached to the attachment hole 12D.
[0014]
In this case, the end cap 12B around the terminal 20 is formed with a stepped portion 12C having a predetermined curvature in an annular shape by press-fitting. The terminal 20 includes a circular glass portion 20A through which the electrical terminal 139 is attached, and a metal attachment portion 20B formed around the glass portion 20A and projecting obliquely outward and downward in a bowl shape. It is configured. The thickness dimension of the mounting portion 20B is 2.4 ± 0.5 mm. And the terminal 20 inserts the glass part 20A into the mounting hole 12D from the lower side, faces the upper side, and attaches the mounting part 20B to the peripheral edge of the mounting hole 12D, and the peripheral edge of the mounting hole 12D of the end cap 12B. The attachment portion 20B is welded to the end cap 12B.
[0015]
The electric mechanism section 14 includes a stator 22 that is annularly attached along the inner peripheral surface of the upper space of the sealed container 12, and a rotor 24 that is inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0016]
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method (FIG. 7). Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet 31 is inserted into the laminated body 30.
[0017]
An intermediate partition plate 36 is sandwiched between the first compression mechanism portion 32 and the second compression mechanism portion 34. That is, the first compression mechanism portion 32 and the second compression mechanism portion 34 include an intermediate partition plate 36, cylinders 38 and 40 disposed below and above the intermediate partition plate 36, and the cylinders 38 and 40. The eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees therein, the rollers 46 and 48 fitted into the eccentric portions 42 and 44 and rotated eccentrically, and the rollers 46 and 48 The bearings of the rotary shaft 16 are closed by closing the vane 50 that abuts and divides the cylinders 38 and 40 into the low-pressure chamber side and the high-pressure chamber side, the lower opening surface of the cylinder 38 and the upper opening surface of the cylinder 40, respectively. The lower support member 54 and the upper support member 56 are used as shaft support members that also serve as the shaft support members.
[0018]
The lower support member 54 and the upper support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the cylinders 38 and 40 by suction ports 161 and 162, respectively, and recessed discharge silencer chambers 62 and 64. The openings of both discharge silencing chambers 62 and 64 are each closed by a cover. That is, the discharge silencer chamber 62 is closed by the lower cover 66, and the discharge silencer chamber 64 is closed by the upper cover 68.
[0019]
A bearing 54A is formed through the center of the lower support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. Further, a bearing 56A is formed upright at the center of the upper support member 56, and a cylindrical bush 123 is also mounted on the inner surface of the bearing 56A. The bushes 122 and 123 are made of a material having a low frictional resistance, and the rotating shaft 16 is held by the bearings 54A of the lower support member 54 and the bearings 56A of the upper support member 56 through the bushes 122 and 123.
[0020]
In this case, the lower cover 66 is formed of a circular steel plate having a donut shape, and four peripheral bolts are fixed to the lower support member 54 from below with four main bolts 129. The lower surface opening of the discharge silencing chamber 62 communicating with the inside of the cylinder 38 of the compression mechanism 32 is closed. The tip of the main bolt 129 is screwed into the upper support member 56. The inner periphery of the lower cover 66 protrudes inwardly from the inner surface of the bearing 54A of the lower support member 54, whereby the lower end surface of the bush 122 is held by the lower cover 66 and is prevented from falling off (FIG. 10). FIG. 11 shows the lower surface of the lower support member 54, and 127 is a mounting groove for the discharge valve of the first compression mechanism 32 that opens and closes the discharge port 39 in the discharge silencer chamber 62.
[0021]
The lower support member 54 is formed of an iron-based sintered material (or a casting may be used), and the surface (lower surface) on which the lower cover 66 is attached is processed to a flatness of 0.1 mm or less, and then subjected to steam treatment. Has been added. Since the surface on which the lower cover 66 is attached is made of iron oxide by this steam treatment, the hole inside the sintered material is closed and the sealing performance is improved. This eliminates the need for a gasket between the lower cover 66 and the lower support member 54.
[0022]
The discharge silencer chamber 62 and the upper cover 68 in the sealed container 12 are communicated with each other by the communication path 63 which is a hole penetrating the cylinders 38 and 40 and the intermediate partition plate 36 (FIG. 5). . In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path 63, and the intermediate discharge pipe 121 is a gap between adjacent stator coils 28 wound around the stator 22 of the upper electric mechanism section 14. (FIG. 7).
[0023]
Further, the upper cover 68 closes the upper surface opening of the discharge silencing chamber 64 communicating with the inside of the cylinder 40 of the second compression mechanism section 34 by the discharge port 41, and the discharge silencing chamber 64 and the electric mechanism section 14 in the sealed container 12. Divide into sides. As shown in FIG. 2, the upper cover 68 has a cylindrical portion 68B extending upward from a hole through which the bearing 56A of the upper support member 56 is provided at the center of the disc-shaped portion 68A. A plurality of ribs 68C are provided radially from the outer periphery of the cylindrical portion 68B. Each rib 68C can also be seen as standing from the upper surface of the disc-shaped portion 68A. Further, four bolt holes 68D are formed. Then, with the beaded gasket 124 sandwiched between the upper support member 56 (FIG. 13), the peripheral portion is fixed to the upper support member 56 from above by the four main bolts 78 via the gasket 124. Has been. The tip of the main bolt 78 is screwed into the lower support member 54.
[0024]
Since the rigidity of the disk-shaped part 68A is remarkably improved by adopting the configuration related to the upper cover 68, the discharge silencer that has a higher pressure than the inside of the sealed container 12 while making the whole including the disk-shaped part 68A thin. Weight reduction can be achieved while sufficiently withstanding the pressure in the chamber 64. Further, an O-ring 126 is provided between the inner peripheral edge of the upper cover 68 and the outer surface of the bearing 56A (FIG. 13). By sealing the bearing 56A side with the O-ring 126, it becomes possible to sufficiently seal the inner periphery of the upper cover 68 and prevent gas leakage, and the volume of the discharge silencer chamber 64 can be increased. The ring eliminates the need to fix the inner peripheral edge of the upper cover 68 to the bearing 56A. In FIG. 12, reference numeral 128 denotes a mounting groove for the discharge valve of the second compression mechanism section 34 that opens and closes the discharge port 41 in the discharge silencer chamber 64.
[0025]
In the intermediate partition plate 36 that closes the upper opening surface of the cylinder 38 of the first compression mechanism portion 32 and the lower opening surface of the cylinder 40 of the second compression mechanism portion 34, the suction in the cylinder 40 As shown in FIGS. 14 and 15, a through-hole 131 is formed in the position corresponding to the side from the outer peripheral surface to the inner peripheral surface, and connects the outer peripheral surface and the inner peripheral surface to form an oil supply passage. The opening on the outer peripheral surface side is sealed by, for example, press-fitting a sealing material 132 into the outer peripheral surface side of the through hole 131. Further, a communication hole 133 extending upward from the middle part of the through hole 131 is formed.
[0026]
On the other hand, a communication hole 134 communicating with the communication hole 133 of the intermediate partition plate 36 is formed in the suction port 162 (suction side) of the cylinder 40. Further, as shown in FIG. 8, a vertical oil hole 80 and lateral oil supply holes 81 and 82 communicating with the oil hole 80 are provided in the rotary shaft 16 as shown in FIG. The opening on the inner peripheral surface side of the 36 through-hole 131 communicates with the oil hole 80 through these oil supply holes 81 and 82.
[0027]
In addition, oil supply holes 83 and 84 communicating with the oil hole 80 are also provided in the eccentric portions 42 and 44 of the rotating shaft 16. And the groove part of the axial direction and the groove part of the circumferential direction which cross | intersects the groove part are provided in the part in which the oil supply holes 83 and 84 are opened.
[0028]
That is, the groove portion 43A in the axial direction and the circumferential groove portion 43B intersecting with the groove portion 43A are provided in the portion where the oil supply hole 83 is opened, and the axial groove portion is provided in the portion where the oil supply hole 84 is opened. 45A and a circumferential groove 45B intersecting with the groove 45A are provided.
[0029]
Therefore, the rotary shaft 16 is pumped from the bottom of the sealed container 12 through the oil hole 80 of the rotary shaft 16 and discharged, for example, from the oil supply hole 84 of the eccentric portion 44 of the second compression mechanism portion 34. The refrigerating machine oil 190 that has entered the portion of the groove 45B opposite to the rotation direction is left behind from the end portion of the groove 45B rather than the axial direction as the rotation shaft 16 rotates, so that the eccentric portion 44 of the rotation shaft 16 rotates. Since it easily enters the circumferential direction between the outer peripheral surface and the inner peripheral surface of the roller 48, the rotational load is large, so that the eccentric portion 44 of the rotating shaft 16 and the roller 48 attached to the eccentric portion 44 are in close contact with each other. Even if it slides, it enters between them, and lubrication between the eccentric portion 44 of the rotating shaft 16 and the roller 48 is effectively performed (oil supply hole of the eccentric portion 42 of the first compression mechanism portion 32 having a small rotational load). Refrigerator discharged from 83 190 also acts in the same way).
[0030]
In addition, since the inside of the closed container 12 during operation is at an intermediate pressure, it is difficult to supply the refrigerating machine oil 190 into the cylinder 40 that is at a high pressure for performing the second stage compression. With this configuration, the refrigeration oil 190 that has been pumped up from the oil storage section at the inner bottom of the sealed container 12 and raised through the oil hole 80 and discharged from the oil supply holes 81 and 82 enters the through hole 131 of the intermediate partition plate 36 and communicates therewith. The holes 133 and 134 are supplied to the suction side (suction port 162) of the cylinder 40 to be used for lubricating the sliding portion.
[0031]
In FIG. 17, L indicates the pressure fluctuation on the suction side of the cylinder 40 of the second compression mechanism 34, and P <b> 1 indicates the pressure on the inner peripheral surface of the intermediate partition plate 36. As indicated by L1 in this figure, the pressure (suction pressure) on the suction side of the cylinder 40 is lower than the pressure on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is supplied into the cylinder 40 from the through hole 131 and the communication hole 133 of the intermediate partition plate 36 through the communication hole 134 of the cylinder 40.
[0032]
As described above, the cylinders 38 and 40, the intermediate partition plate 36, the support members 54 and 56, and the covers 66 and 68 are fastened from above and below by the four main bolts 78 and the main bolts 129. 40, the intermediate partition plate 36, and the support members 54 and 56 are fastened by auxiliary bolts 136 positioned outside these main bolts 78 and 129 (FIG. 5). The auxiliary bolt 136 is inserted from the upper support member 56 side, and the tip thereof is screwed to the lower support member 54.
[0033]
The auxiliary bolt 136 is positioned in the vicinity of the vane slot 70 described later of the vane 50. Thus, by adding the auxiliary bolt 136 and integrating the rotary compression mechanism portion 18, the sealing performance against the extremely high pressure inside is ensured, and the vicinity of the vane slot 70 of the vane 50 is secured. Since the tightening is performed, leakage of a high back pressure applied to the vane 50 can be prevented.
[0034]
On the other hand, a vane slot 70 for storing the vane 50 and a storage portion 70A for storing a spring 76 as a spring member located outside the vane slot 70 are formed in the cylinder 40, and the storage portion 70A. Is open to the vane slot 70 side and the closed container 12 (container body 12A) side (FIG. 9). The spring 76 is in contact with the outer end of the vane 50 and constantly urges the vane 50 toward the roller 48. A metal plug 137 is provided in the housing portion 70A of the spring 76 on the closed container 12 side, and serves to prevent the spring 76 from coming off.
[0035]
In this case, the outer dimension of the plug 137 is set smaller than the inner dimension of the storage portion 70A, and the plug 137 is inserted into the storage portion 70A by a clearance fit. An O-ring 138 is attached to the peripheral surface of the plug 137 for sealing between the plug 137 and the inner surface of the storage portion 70A. The distance between the outer end of the cylinder 40, that is, the outer end of the storage portion 70A and the container body 12A of the sealed container 12 is set to be smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Has been. A high pressure, which is the discharge pressure of the second compression mechanism 34, is applied as a back pressure to a back pressure chamber (not shown) communicating with the vane slot 70 of the vane 50. Accordingly, the plug 137 has a high pressure on the spring 76 side and an intermediate pressure on the sealed container 12 side.
[0036]
With such a dimensional relationship, as in the case where the plug 137 is press-fitted and fixed in the housing portion 70A, the cylinder 40 is deformed, the sealing performance with the upper support member 56 is lowered, and the performance is deteriorated. It will be possible to avoid it. Even with such a clearance fit, the distance between the cylinder 40 and the sealed container 12 is set to be smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Even if the plug 137 moves in the direction in which the plug 137 is pushed out of the storage portion 70A due to the high pressure (back pressure of the vane 50), the O-ring 138 is still positioned in the storage portion 70A when the movement is prevented by contact with the hermetic container 12. Therefore, no problem occurs in the function of the plug 138.
[0037]
Incidentally, the connecting portion 90 that connects the eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional area larger than the circular cross section of the rotating shaft 16. Therefore, in order to give rigidity, it is formed into a non-circular shape such as a rugby ball (FIG. 18). That is, the cross-sectional shape of the connecting portion 90 that connects the eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in a direction perpendicular to the eccentric direction of the eccentric portions 42 and 44 (the hatched portion in the figure). ).
[0038]
As a result, the cross-sectional area of the connecting portion 90 that connects the eccentric portions 42 and 44 that are integrally adjacent to the rotating shaft 16 is increased, and the secondary moment is increased to increase the strength (rigidity), thereby improving durability and reliability. Improves sex. In particular, when a refrigerant having a high operating pressure is compressed in two stages, the load acting on the rotary shaft 16 increases due to the large pressure difference between the high and low pressures. In addition, the rotating shaft 16 is prevented from being elastically deformed.
[0039]
In this case, if the center of the lower eccentric portion 42 is O1, and the center of the upper eccentric portion 44 is O2, the center of the arc of the surface of the connecting portion 90 on the eccentric direction side of the eccentric portion 42 is O1, and the eccentric portion 44. The center of the arc of the surface of the connecting portion 90 on the eccentric direction side is O2. Thus, when the eccentric part 42, 44 and the connecting part 90 are cut by fixing the rotating shaft 16 to the cutting machine, after machining the eccentric part 42, only one radius is changed to process one surface of the connecting part 90. Then, it becomes possible to change the fixed position to process the other surface of the connecting portion 90 and change only the radius to process the eccentric portion 44. As a result, the number of times of fixing the rotating shaft 16 is reduced, and the productivity is remarkably improved.
[0040]
The suction passages 58 and 60 of the lower support member 54 and the upper support member 56, the discharge silencer chamber 64, and the upper cover 68 on the curved side surface of the container main body 12A of the sealed container 12 (corresponding substantially to the lower end of the electric mechanism unit 14). Cylindrical sleeves 141 to 144 are fixed by welding at positions corresponding to (position). The sleeve 142 is provided at a position approximately 90 degrees away from the sleeve 141, the sleeve 143 is provided above the sleeve 141, and the sleeve 144 is provided at a position substantially facing the sleeve 141.
[0041]
In the sleeve 141, one end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the cylinder 38 of the first compression mechanism section 32 is inserted and connected. One end of the refrigerant introduction pipe 92 is connected to the suction passage 58 of the cylinder 38. It is communicated to. The other end of the refrigerant introduction pipe 92 is connected to the lower end of the accumulator 204.
[0042]
Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the cylinder 40 of the second compression mechanism section 34 is inserted into and connected to the sleeve 143, and one end of the refrigerant introduction pipe 94 is connected to the suction passage 60 of the cylinder 40. It is communicated to. The refrigerant introduction pipe 94 passes through the upper side of the sealed container 12 and extends from the sleeve 142, and the other end is inserted and connected into the sleeve 142 to communicate with the sealed container 12. In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 144, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 64.
[0043]
The accumulator 204 is a tank that performs gas-liquid separation of the sucked refrigerant. 12 sideways.
[0044]
The refrigerant introduction pipe 92 inserted and connected to the sleeve 141 and the refrigerant introduction pipe 94 inserted and connected to the sleeve 143 are drawn to the opposite sides in the vicinity of the sleeves 141 and 143. That is, as shown in FIG. 4, the refrigerant introduction pipe 92 extending from the accumulator 204 is bent in the right direction in the drawing to reach the sleeve 141, and the other refrigerant introduction pipe 94 is bent in the left direction in the drawing to form the sleeve 143. Thus, even if the vertical dimension of the accumulator 204 is increased to increase the volume, the refrigerant introduction pipes 92 and 94 do not interfere with each other.
[0045]
Further, a screw groove 151 is formed on the outer peripheral portion of the sleeve 141, and a collar portion 152 is formed on the outer peripheral portion of the sleeves 142, 143, and 144. A connector for connecting the airtight test pipe can be screwed into the thread groove 151, and a coupler for connecting the airtight test pipe can be detachably engaged with the flange 152.
[0046]
By adopting such a configuration, an airtight test pipe from a compressed air generating device (not shown) can be easily connected using a coupler or a connector, so that the airtight test can be completed in a short time. become. In particular, in the sleeves 141 and 143 adjacent in the vertical direction, one sleeve 141 is formed with a thread groove 151 and the other sleeve 143 is formed with a flange 152, so that two couplers larger in size than the connector are provided. Even when the sleeves 141 and 143 are narrowly spaced, the airtight test pipe can be connected to each of the sleeves 141 and 143 using the narrow space.
[0047]
As a refrigerant of the compressor 10, carbon dioxide (CO 2) as an example of carbon dioxide, which is a natural refrigerant, satisfies the requirements of being friendly to the global environment, non-combustible and non-toxic. 2 As the refrigerating machine oil 190 as the lubricating oil, for example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil are used.
[0048]
The compressor 10 having the above-described configuration shown in the embodiment is used in a refrigerant circuit of an in-vehicle cooling apparatus 200 as shown in FIG. 19, for example. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of an air-cooled gas cooler 201. The refrigerant pipe exiting the gas cooler 201 is connected to the inlet of the evaporator 203 via an expansion valve 202 as a decompression device, and the refrigerant introduction pipe 92 is connected to the outlet of the evaporator 203. In FIG. 19, the accumulator 204 is omitted.
[0049]
Next, the operation of the cooling device 200 shown in FIG. 19 will be described. When the stator coil 28 of the electric mechanism unit 14 is energized through the terminal 20 of the compressor 10 and a wiring (not shown), the electric mechanism unit 14 is activated and the rotor 24 rotates. By this rotation, the rollers 46 and 48 fitted to the eccentric portions 42 and 44 provided integrally with the rotary shaft 16 are eccentrically rotated in the cylinders 38 and 40.
[0050]
For this reason, the low-pressure (first-stage suction pressure LP: 4 MPaG) refrigerant gas sucked from the suction port 161 to the low-pressure chamber side of the cylinder 38 through the refrigerant introduction pipe 92 and the suction passage 58 formed in the lower support member 54. Is compressed by the operation of the roller 46 and the vane 50 to become an intermediate pressure (MP1: 8 MPaG) from the high pressure chamber side of the cylinder 38 through the discharge port 39 and the discharge silencer chamber 62 formed in the lower support member 54 through the communication path 63. It is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0051]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 wound around the stator 22 of the upper electric mechanism section 14, refrigerant gas having a relatively low temperature is still supplied to the electric mechanism section. 14 can be actively supplied, and the temperature rise of the electric mechanism unit 14 is suppressed. Moreover, the inside of the airtight container 12 becomes intermediate pressure (MP1) by this.
[0052]
The intermediate pressure refrigerant gas in the sealed container 12 exits from the sleeve 142 (intermediate discharge pressure is MP1), and the suction port 162 passes through the refrigerant introduction pipe 94 and the suction passage 60 formed in the upper support member 56. To the low pressure chamber side of the cylinder 40 (second-stage suction pressure MP2). The suctioned intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 48 and the vane 50 to become a high-temperature and high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPaG), and is discharged from the high-pressure chamber side. The gas flows into the gas cooler 201 through the discharge silencer chamber 64 formed in the upper support member 56 and the refrigerant discharge pipe 96. The refrigerant temperature at this time has increased to about 100 ° C., and the high-temperature and high-pressure refrigerant gas is radiated and cooled, and exits the gas cooler 201.
[0053]
Then, after being depressurized by the expansion valve 202, it flows into the evaporator 203 and evaporates. The air in the vehicle is cooled by the heat of vaporization that the refrigerant removes from the surroundings at the time of evaporation in the evaporator 203 to perform cooling. The refrigerant vapor evaporated in the evaporator 203 repeats a cycle of being sucked into the first compression mechanism section 32 from the refrigerant introduction pipe 92 via the accumulator 204 (not shown in FIG. 19).
[0054]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0055]
For example, the ribs 68C provided on the upper cover 68 may be provided on the upper surface of the disk-shaped part 68A concentrically with the cylindrical part 68B. At this time, the cylindrical portion 68B is not necessarily provided. Moreover, it is also possible to use a rib provided in a circumferential shape and a rib provided in the radial direction in combination.
[0056]
Further, the gas cooler 201 is configured to be able to use the heat radiated from the high-temperature and high-pressure refrigerant gas, and the compressor 10 is used as a compressor of an air conditioner capable of (1) heating operation, and (2) a hot water supply device It is also possible to use it as a compressor.
[0057]
Further, when the compressor 10 is used as a compressor of a refrigeration apparatus, hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), or the like may be used as a refrigerant.
[0058]
【The invention's effect】
As described above, the rotary compressor of the present invention is a compressor in which ribs are provided on the outer surface of the cover member that seals the sound deadening chamber of the end surface sealing member through which the gas compressed in the cylinder passes. Yes, because it is a compressor in which the compression mechanism unit is installed in a plurality of stages so that the gas taken in from the outside can be repeatedly compressed, and the cover member with the rib provided on the outer surface is provided in the subsequent compression mechanism part. The rigidity of the cover member is significantly improved. Therefore, the cover member can be made thinner and lighter.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor according to the present invention.
FIG. 2 is a perspective view of a cover member used in the compressor of the present invention.
FIG. 3 is a front view of the compressor of FIG. 1;
4 is a side view of the compressor of FIG. 1. FIG.
FIG. 5 is another longitudinal sectional view of the compressor of FIG. 1;
6 is still another longitudinal sectional view of the compressor of FIG. 1. FIG.
7 is a plan sectional view of an electric mechanism portion of the compressor of FIG. 1. FIG.
8 is an enlarged cross-sectional view of a rotary compression mechanism portion of the compressor of FIG.
9 is an enlarged cross-sectional view of a vane portion of a second compression mechanism portion of the compressor of FIG.
10 is a cross-sectional view of a lower support member and a lower cover of the compressor of FIG.
11 is a bottom view of a lower support member of the compressor of FIG.
12 is a top view of an upper support member and an upper cover of the compressor of FIG. 1. FIG.
13 is a cross-sectional view of an upper support member and an upper cover of the compressor of FIG.
14 is a top view of an intermediate partition plate of the compressor in FIG. 1. FIG.
15 is a cross-sectional view taken along line AA in FIG.
16 is a top view of a cylinder of the compressor in FIG. 1. FIG.
FIG. 17 is a diagram showing pressure fluctuation on the suction side of the cylinder of the compressor of FIG. 1;
18 is an explanatory cross-sectional view showing a connecting portion of a rotating shaft of the compressor shown in FIG. 1;
FIG. 19 is a refrigerant circuit diagram of an air conditioner to which the compressor of FIG. 1 is applied.
FIG. 20 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
10, 10X (rotary) compressor
12 Sealed container
12A Container body
12B End cap
14 Electric mechanism
16 Rotating shaft
18 Rotary compression mechanism
20 terminal
22 Stator
24 Rotor
26 Laminate
28 Stator Coil
30 Laminate
31 Permanent magnet
32 1st compression mechanism part
34 Second compression mechanism
36 Intermediate divider
38, 40 cylinders
39, 41 Discharge port
42 Eccentric part
43A, 43B Groove
44 Eccentric part
45A, 45B Groove
46, 48 rollers
50 Vane
54 Lower support member
54A Bearing
56 Upper support member
58, 60 Suction passage
62 Discharge silencer
63 communication path
64 Discharge silencer
66 Bottom cover
68 Top cover
68A disk-shaped part
68B cylindrical part
68C rib
68D bolt hole
70 vane slot
70A storage unit
76 Spring (spring member)
78, 129 Main bolt
80 Oil hole
81, 82, 83, 84 Refueling hole
90 connecting part
92, 94 Refrigerant introduction pipe
96 Refrigerant discharge pipe
121 Intermediate discharge pipe
131 Through hole (oil supply passage)
132 Sealant
133, 134 communication hole
137 plug
138 O-ring
141, 142, 143, 144 sleeve
147 Bracket
152 buttock
151 thread groove
161, 162 Suction port
190 Refrigerating machine oil
200 Air conditioner
201 gas cooler
202 expansion valve
203 Evaporator
204 Accumulator
205 Bracket

Claims (2)

密閉容器内に圧縮機構部と電動機構部とを備え、この圧縮機構部がシリンダと、そのシリンダの両端部を封止する軸受を有する端面封止部材と、その端面封止部材に軸支され電動機構部により回転される回転軸と、その回転軸に偏心して取り付けられ外周面がシリンダの内周面に摺接し、端面が端面封止部材の内面に摺接して偏心回転するローラと、シリンダに設けられたベーンスロットに挿入設置されてローラの外周面に当接し、ローラの偏心回転に追従して往復運動しシリンダ内を低圧室と高圧室とに区画するベーンと、シリンダ内で圧縮された気体が通過する端面封止部材の消音室を封止する円板状部とこの円板状部の中央に設けて軸受が貫通する孔から延設される筒状部とで形成されるカバー部材と、そのカバー部材の外面に設けられて円筒部の外周から円板状部に放射状に形成されたリブとを備えたことを特徴とする回転式圧縮機。The airtight container includes a compression mechanism portion and an electric mechanism portion, and the compression mechanism portion is pivotally supported by a cylinder, an end surface sealing member having a bearing that seals both ends of the cylinder, and the end surface sealing member. A rotating shaft that is rotated by the electric mechanism, a roller that is eccentrically attached to the rotating shaft, has an outer peripheral surface that is in sliding contact with the inner peripheral surface of the cylinder, and an end surface that is in sliding contact with the inner surface of the end surface sealing member; The vane is inserted into the vane slot provided in the cylinder and abuts against the outer peripheral surface of the roller, reciprocates following the eccentric rotation of the roller, and the vane partitions the cylinder into a low pressure chamber and a high pressure chamber, and is compressed in the cylinder. A cover formed by a disk-shaped part that seals the silencer chamber of the end surface sealing member through which the gas passes and a cylindrical part that is provided at the center of the disk-shaped part and extends from a hole through which the bearing passes. Member and the outer surface of the cover member Rotary compressor, characterized in that a rib formed radially in a disc-shaped portion from the outer periphery of the cylindrical portion Te. 冷媒を繰り返し圧縮可能に圧縮機構部が複数段に設置され、外面にリブが設けられたカバー部材が後段の圧縮機構部に設けられたことを特徴とする請求項1記載の回転式圧縮機。  2. The rotary compressor according to claim 1, wherein the compression mechanism section is provided in a plurality of stages so that the refrigerant can be repeatedly compressed, and a cover member having a rib provided on the outer surface is provided in the subsequent compression mechanism section.
JP2001358919A 2001-11-26 2001-11-26 Rotary compressor Expired - Fee Related JP4004278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358919A JP4004278B2 (en) 2001-11-26 2001-11-26 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358919A JP4004278B2 (en) 2001-11-26 2001-11-26 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003161280A JP2003161280A (en) 2003-06-06
JP4004278B2 true JP4004278B2 (en) 2007-11-07

Family

ID=19170014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358919A Expired - Fee Related JP4004278B2 (en) 2001-11-26 2001-11-26 Rotary compressor

Country Status (1)

Country Link
JP (1) JP4004278B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042227B (en) * 2009-10-13 2014-04-16 珠海格力电器股份有限公司 Birotor two-stage enthalpy-increasing compressor, air conditioner and heat pump water heater
CN103967789B (en) * 2013-02-04 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 Dual-level enthalpy adding compressor and there is its air conditioner
JP6161923B2 (en) * 2013-03-12 2017-07-12 三菱重工業株式会社 Rotary compressor
CN104047857B (en) * 2013-03-15 2016-06-08 珠海格力节能环保制冷技术研究中心有限公司 A kind of two rotors two-stage increases enthalpy compressor
CN203962390U (en) * 2013-06-28 2014-11-26 珠海格力节能环保制冷技术研究中心有限公司 A kind of rotary two-stage compressor and there is its air conditioner and heat pump water heater
CN203962391U (en) * 2013-06-28 2014-11-26 珠海格力节能环保制冷技术研究中心有限公司 Two-stage enthalpy increasing rotor compressor and there is its air conditioner, heat pump water heater
WO2016103619A1 (en) * 2014-12-25 2016-06-30 デンソートリム株式会社 Rotation position detection device for internal combustion engine
CN114183360B (en) * 2021-12-17 2023-03-28 珠海格力电器股份有限公司 Rotor compressor liquid storage device, rotor compressor assembly and air conditioner

Also Published As

Publication number Publication date
JP2003161280A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3728227B2 (en) Rotary compressor
JP4004278B2 (en) Rotary compressor
JP2003166472A (en) Compressor
JP2006097549A (en) Compressor
JP2003254276A (en) Rotary compressor
US20060073034A1 (en) Compressor
JP4020612B2 (en) Rotary compressor
JP2003176796A (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP4024056B2 (en) Rotary compressor
JP2003184771A (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP3913507B2 (en) Rotary compressor
JP3963703B2 (en) Electric compressor
JP3963695B2 (en) Manufacturing method of rotary compressor
JP2003201981A (en) Rotary compressor
JP4401365B2 (en) Rotary compressor
JP2005220752A (en) Compressor
JP2003161261A (en) Compressor
JP3963691B2 (en) Hermetic electric compressor
JP3825670B2 (en) Electric compressor
JP3986283B2 (en) Rotary compressor
JP3762690B2 (en) Rotary compressor
JP2003161282A (en) Rotary compressor
JP2003129958A (en) Rotary compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees