WO2014140467A1 - Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne - Google Patents

Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne Download PDF

Info

Publication number
WO2014140467A1
WO2014140467A1 PCT/FR2014/050542 FR2014050542W WO2014140467A1 WO 2014140467 A1 WO2014140467 A1 WO 2014140467A1 FR 2014050542 W FR2014050542 W FR 2014050542W WO 2014140467 A1 WO2014140467 A1 WO 2014140467A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
weight
acrylic
liquid
fibrous substrate
Prior art date
Application number
PCT/FR2014/050542
Other languages
English (en)
Inventor
Pierre Gerard
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2015562280A priority Critical patent/JP6539590B2/ja
Priority to US14/774,179 priority patent/US10683405B2/en
Priority to EP14715355.5A priority patent/EP2970684B1/fr
Publication of WO2014140467A1 publication Critical patent/WO2014140467A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/06Copolymers with vinyl aromatic monomers

Definitions

  • the present invention relates to a liquid (meth) acrylic syrup for impregnating a fibrous substrate.
  • the invention relates to a viscous (meth) acrylic liquid syrup containing mainly methacrylic or acrylic components and a component intended to render transparent / translucent a composite material comprising a fibrous substrate based on glass fibers, and a thermoplastic matrix obtained after polymerization of the syrup.
  • the invention further relates to a process for impregnating a fibrous substrate comprising long glass fibers with said viscous liquid syrup.
  • the invention also relates to a fibrous substrate pre-impregnated with said syrup which is useful for the manufacture of composite parts.
  • the present invention also relates to a method of manufacturing composite parts and composite parts obtained by this method.
  • a composite material is a macroscopic combination of two or more immiscible materials.
  • the composite material is constituted by at least one material that forms the matrix, that is to say a continuous phase ensuring the cohesion of the structure, and a reinforcing material.
  • the objective when using a composite material, is to obtain performance that is not available with each of its components when used separately.
  • composite materials are widely used in many industrial sectors such as construction, automotive, aerospace, transportation, recreation, electronics and sports, particularly because of their best mechanical performance (superior tensile strength, superior tensile modulus, superior fracture toughness) and low density compared to homogeneous materials.
  • the most important class in terms of volume on the commercial industrial scale, is that of organic matrix composites, in which the matrix material is generally a polymer.
  • the matrix of a polymeric composite material is either a thermoplastic polymer or a thermosetting polymer.
  • Thermosetting polymers consist of three-dimensional crosslinked structures.
  • a prepolymer is mixed with the other component, such as beads or glass fibers, or the other component is wetted or impregnated and subsequently baked.
  • prepolymers or matrix material for thermosetting polymers are unsaturated polyesters, vinyl esters, epoxy or phenolic materials. The heating of the polymer chains makes it possible to crosslink and harden the material permanently.
  • thermosetting polymer matrix A major drawback of a thermosetting polymer matrix is its crosslinking.
  • the matrix can not easily be shaped into other forms. Once the polymer is crosslinked, the shape is fixed. This also makes it difficult to recycle the thermosetting composite material and mechanical or structured parts or articles manufactured comprising said thermosetting composite material, which are burned in a cement plant or disposed of in a landfill.
  • thermoplastic polymers To allow thermoforming and recycling, it is preferred to use thermoplastic polymers.
  • thermoplastic polymers consist of linear or branched polymers which are not crosslinked.
  • the thermoplastic polymers are heated to mix the constituents necessary for the manufacture of the composite material and are cooled to freeze the final shape.
  • the problem is the very high viscosity of its molten thermoplastic polymers.
  • thermoplastic polymer-based polymer composite material In order to prepare a thermoplastic polymer-based polymer composite material, a melt thermoplastic polymer resin, commonly referred to as “syrup”, is used to impregnating the reinforcing material, for example a fibrous substrate.
  • Syrup a melt thermoplastic polymer resin
  • a syrup answering this problem has been developed by the Applicant and is described in the patent applications No. FR1159553, or its PCT extension WO2013 / 056845 and in the patent application No. FR1256929 or its PCT extension WO2014 / 013028.
  • the thermoplastic polymer syrup constitutes the matrix of the composite material.
  • the viscosity of the impregnating syrup must be controlled and adapted so as not to be too fluid or too viscous, so as to correctly impregnate each fiber of the fibrous substrate.
  • wetting is partial, depending on whether the syrup is too fluid or too viscous, respectively "bare" zones, that is to say non-impregnated zones, appear and zones where polymer drops form on the fibers that are causing the creation of bubbles. These "bare" zones and these bubbles cause the appearance of defects in the final composite material which cause, among other things, a loss of mechanical strength of the final composite material.
  • thermosetting polymer a material sold under the trademark Acrylit G10 may be mentioned.
  • this composite material consists of a polyester acrylic resin reinforced with glass fibers.
  • the material is a thermosetting composite that is neither thermoformable nor recyclable.
  • this composite material is very resistant to UV radiation since it turns yellow after about a year of exposure. This material is not suitable for outdoor use, especially for the realization of roofing elements or building facades.
  • the invention therefore aims to remedy at least one of the disadvantages of the prior art.
  • the invention aims in particular to provide a piece of transparent / translucent thermoplastic composite material.
  • the invention also aims to wet completely, correctly and homogeneously the fibrous substrate during impregnation. Any defect in the wetting of the fibers for example by bubbles and voids decreases the mechanical performance of the final composite part and its ability to obtain a total transmission of light (losses due to the diffusion of light by the defects of the material).
  • Another object of the present invention is to provide a method which can be achieved at low cost and which allows the manufacture, on an industrial scale, of thermoplastic composite parts. Furthermore, the process should be easy and simple to implement using commercially available compounds. The manufacture of composite parts must also be reproducible and fast, which means short cycle times.
  • a liquid (meth) acrylic syrup for impregnating a fibrous substrate said fibrous substrate being constituted by long glass fibers of refractive index, or said syrup of impregnation being characterized in that it comprises:
  • said (meth) acrylic syrup having an index of refraction n4 which tends to nl and a dynamic viscosity of between 10 mPa * s and 10 000 mPa * s, preferably between 50 mPa * s and 5000 mPa * s and advantageously between 100 mPa * s and 1000 mPa * s, provides a complete and correct impregnation of the fibrous substrate and a transparency of the composite material obtained after polymerization of said pre-impregnated substrate, the light transmission rate being between 50% and 100%, preferably greater than 70%.
  • an impregnating process for impregnating a fibrous substrate said fibrous material consisting of long glass fibers, the fibers having a form factor of from at least 1000, preferably at least 1500, more preferably at least 2000, preferably at least 3000, most preferably at least 5000, more preferably at least 6000 still more preferably at least 7500 and most preferably at least 10000 and said method comprising a step of impregnating said fibrous substrate with said liquid (meth) acrylic impregnating syrup, provides complete and correct impregnation of the fibrous substrate and a transparent substrate after polymerization, the light transmission rate being between 50% and 100%, preferably greater than 70%.
  • thermoplastic composite parts having transparency properties, with a light transmission rate of between 50% and 100%, preferably greater than 70%, and very resistant to UV radiation.
  • fibrous substrate refers to fabrics, felts or nonwovens which may be in the form of strips, webs, braids, locks or pieces.
  • long fiber refers to fibers having a form factor of at least 1000, preferably at least 1500, more preferably at least 2000, advantageously at least 3000, most preferably at least 5000, still more preferably at least 6000, still more advantageously at least 7500 and most preferably at least 10,000.
  • (meth) acrylic refers to any type of acrylic and methacrylic monomers.
  • PMMA methyl methacrylate
  • SMA styrene maleic anhydride copolymer
  • polymerization refers to the process of converting a monomer or a mixture of monomers into a polymer.
  • thermoplastic polymer refers to a polymer that turns into a liquid or becomes more liquid or less viscous when heated and that can take on new forms through the application of heat and pressure.
  • thermosetting polymer refers to a prepolymer in a soft, solid or viscous state which irreversibly turns into an insoluble and infusible polymer network by firing.
  • polymer composite refers to a multicomponent material comprising a plurality of different phase domains, of which at least one type of phase domain is a continuous phase and wherein at least one component is a polymer.
  • transparent or translucent as used relates to a material having a total transmission rate of visible light of between 50% and 100%, preferably greater than 70%, according to the light transmission measurements defined. by the measurement standard ASTM D 1003
  • transmission of light includes the transmission of visible and infra-red spectrum waves namely light whose wavelength is between 380nm and 780nm.
  • refractive index is relative to the refractive indexes n1, n2, n3, n4 of the media traversed by the light visible spectrum.
  • the present invention relates to a liquid (meth) acrylic syrup for impregnating a fibrous substrate, said fibrous substrate consisting of long glass fibers of refractive index n i and said syrup being characterized in what he understands:
  • said (meth) acrylic syrup having an index of refraction n4 which tends to nl and a dynamic viscosity of between 10 mPa * s and 10 000 mPa * s, preferably between 50 mPa * s and 5000 mPa * s and advantageously between 100 mPa * s and 1000 mPa * s.
  • the monomer is selected from acrylic acid, methacrylic acid, hydroxyalkyl acrylic monomers, hydroxyalkyl methacrylic monomers, acrylic alkyl monomers, methacrylic alkyl monomers and mixtures thereof.
  • the monomer is chosen from acrylic acid, methacrylic acid, hydroxyalkyl acrylic monomers, hydroxyalkyl methacrylic monomers, alkyl acrylic monomers, alkyl methacrylic monomers and their derivatives. mixtures, the alkyl group containing 1 to 22 carbons, linear, branched or cyclic; the alkyl group preferably containing 1 to 12 carbons, linear, branched or cyclic.
  • the (meth) acrylic monomer is chosen from methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, methacrylic acid, acrylic acid, and the like.
  • the (meth) acrylic monomer is selected from methyl methacrylate, isobornyl acrylate or acrylic acid and mixtures thereof.
  • At least 50% by weight, preferably at least 60% by weight of the monomer is methyl methacrylate.
  • % by weight of the monomer is a mixture of methyl methacrylate with isobornyl acrylate and / or acrylic acid.
  • the (meth) acrylic polymer mention may be made of alkyl polymethacrylates or alkyl polyacrylates. According to a preferred embodiment, the (meth) acrylic polymer is polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • PMMA refers to a homopolymer or copolymer of methyl methacrylate (MMA) or mixtures thereof.
  • the homopolymer or copolymer of methyl methacrylate comprises at least 70%, preferably at least 80%, advantageously at least 90% and more advantageously at least 95% by weight. of methyl methacrylate.
  • the PMMA is a mixture of at least one homopolymer and at least one MMA copolymer, or a mixture of at least two homopolymers or two MMA copolymers having an average molecular weight different, or a mixture of at least two MMA copolymers having a different monomer composition.
  • the methyl methacrylate (MMA) copolymer comprises from 70% to 99.7% by weight of methyl methacrylate and from 0.3 to 30% by weight of at least one monomer containing at least one ethylenic unsaturation which can copolymerize with methyl methacrylate.
  • These monomers are well known and may include acrylic and methacrylic acids and (meth) acrylates in which the alkyl group contains from 1 to 12 carbon atoms.
  • the alkyl group contains from 1 to 12 carbon atoms.
  • the comonomer is an alkyl acrylate wherein the alkyl group contains from 1 to 4 carbon atoms.
  • the methyl methacrylate (MMA) copolymer comprises from 80% to 99.7%, advantageously from 90% to 99.7% and more preferably from 90% to 99.5% by weight. weight of methyl methacrylate and from 0.3% to 20%, advantageously from 0.3% to 10% and more preferably from 0.5% to 10% by weight of at least one monomer containing at least one ethylenic unsaturation which can copolymerize with methyl methacrylate.
  • the comonomer is selected from methyl acrylate or ethyl acrylate or mixtures thereof.
  • the weight average molecular weight of the (meth) acrylic polymer must be high, which means greater than 50,000 g / mol, preferably greater than 100,000 g / mol.
  • the weight average molecular weight can be measured by steric exclusion chromatography (SEC).
  • the refractive index n2 of the (meth) acrylic polymer is from 1.48 to 1.50, preferably from 1.485 to 1.495 and more preferably from 1.487 to 1.493.
  • the (meth) acrylic polymer is completely soluble in the (meth) acrylic monomer or in the (meth) acrylic monomer mixture. It makes it possible to increase the viscosity of the (meth) acrylic monomer or the mixture of (meth) acrylic monomers.
  • the solution obtained is generally called “syrup” or "prepolymer”.
  • the value of the dynamic viscosity of the liquid (meth) acrylic syrup is between 10 mPa * s and 10 000 mPa * s, preferably between 50 mPa * s and 5000 mPa * s and advantageously between 100 mPa * s and 1 mPa * s. 000 mPa * s.
  • the viscosity of the syrup can easily be measured with a rheometer or viscometer.
  • the dynamic viscosity is measured at 25 ° C.
  • the liquid (meth) acrylic syrup has a Newtonian behavior, which means that there is no dilution under shear, so that the dynamic viscosity is independent of the shear in a rheometer or the speed of the shear. mobile in a viscometer.
  • Such a syrup viscosity obtained allows proper impregnation of the fibers of the fibrous substrate.
  • the liquid (meth) acrylic syrup does not contain added voluntarily additional solvent.
  • the liquid (meth) acrylic syrup according to the invention intended to impregnate the fibrous substrate, comprises in particular a) a (meth) acrylic monomer or a mixture of (meth) acrylic monomers, and b) at least one compound intended to to make the thermoplastic polymer matrix obtained after polymerization of the syrup, transparent.
  • component b) it is chosen from components having a refractive index n3, such that n3> n2 and which can be mixed with the (meth) acrylic polymer or the (meth) acrylic and monomeric polymer mixture ( meth) acrylic and having a dynamic viscosity of between 10 mPa * s and 10 000 mPa * s, preferably between 50 mPa * s and 5000 mPa * s and advantageously between 100 mPa * s and 1000 mPa * s .
  • This component b) is chosen from:
  • styrene maleic anhydride (SMA) polymer present at a level of at least 10% by weight, preferably at least 15%, advantageously at least 20% and more preferably at least 25% by weight of the syrup ( meth) acrylic liquid total, - to be completely miscible in the syrup (meth) acrylic and keep this miscibility during the polymerization of the syrup, that is to say have a transparent thermoplastic resin, the styrene polymer maleic anhydride must contain between 15 and 50% of maleic anhydride monomer, preferably between 20 and 35%
  • styrene present at least 10% by weight, preferably at least 15%, preferably at least 20% and more preferably at least 25% by weight of the total liquid (meth) acrylic syrup .
  • the syrup component (s) are incorporated with the following percentages by mass:
  • the (meth) acrylic monomer or the (meth) acrylic monomers in the liquid (meth) acrylic syrup are present in at least 90% by weight, preferably 85% by weight, advantageously 80% by weight. weight and more preferably 75% by weight of the syrup
  • the (meth) acrylic polymer (s) in the liquid (meth) acrylic syrup are present at a level of at least 10% by weight, preferably at least 15%, advantageously at least 20% or more. advantageously at least 25% by weight of the total liquid (meth) acrylic syrup.
  • the syrup more particularly comprises:
  • a first step consists in preparing a first syrup comprising the (meth) acrylic monomer or (meth) acrylic monomer mixture;
  • the SMA styrene maleic anhydride polymer is then added to the monomer, in the proportions indicated above, to maintain a dynamic viscosity of between 10 mPa.s and 10,000 mPa.s, preferably between 50 mPa.s and 5000 mPa.s. * s and advantageously between 100 mPa * s and 1000 mPa * s.
  • This polymer thanks to the presence of its maleic anhydride functionalities, is miscible in the (meth) acrylic polymer.
  • Its refractive index n3 is 1.565 to 1.585, preferably 1.57 to 1.582 and more preferably 1.574 to 1.580 and greater than n2, where n2 is the index of the (meth) acrylic polymer.
  • Their mixture in the proportions above allows to obtain a syrup (meth) acrylic of refractive index n4.
  • this polymer has a viscosity similar to the (meth) acrylic polymer.
  • the syrup more particularly comprises:
  • the syrup comprises:
  • the syrup comprises:
  • a first step consists of preparing a first syrup comprising the (meth) acrylic monomer or mixture of (meth) acrylic monomers and a (meth) acrylic polymer;
  • styrene and the (meth) acrylic monomer then form a (meth) acrylic-styrene copolymer, whose refractive index n3 varies according to the number of styrene units in the chain. polymer of the (meth) acrylic polymer in formation.
  • styrene is incorporated in the (meth) acrylic syrup
  • this copolymer is polymethacrylate-co-styrene, comprising from 10% to 50% by weight of styrene.
  • the liquid (meth) acrylic impregnating syrup also comprises an initiator or an initiator system for starting the polymerization of the monomer or monomers. Initiators or initiator systems that are activated by heat may be mentioned.
  • the heat-activated initiator is preferably a radical initiator.
  • radical initiator it may be chosen from diacyl peroxides, peroxyesters, dialkyl peroxides, peroxyacetals or azo compounds.
  • the initiator or initiator system is selected from isopropyl carbonate, benzoyl peroxide, lauroyl peroxide, caproyl peroxide, dicumyl peroxide, tert-butyl perbenzoate, tert-butyl per (2-ethylhexanoate), cumyl hydroperoxide, 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane, tert-butyl peroxyisobutyrate , tert-butyl peracetate, tert-butyl perpivalate, amyl perpivalate, tert-butyl peroctoate, azobisisobutyronitrile (AIBN), azobisisobutyramide, 2,2'-azobis (2, 4 dimethylvaleronitrile) or 4, 4'-azobis (4-cyanopentanoic acid).
  • AIBN azobisisobutyronitrile
  • the initiator or the initiator system is selected from peroxides containing 2 to 20 carbon atoms.
  • the process for impregnating the fibrous substrate comprises a step of impregnating the fibrous substrate, based on long glass fibers, with the liquid (meth) acrylic syrup described above. This impregnation step is done in a closed mold.
  • glass fabrics comprising glass fibers obtained from silica or molten mixtures after passing through a die.
  • the substrate may be in the form of strips, webs, braids, locks or parts.
  • the fibrous material can have different shapes and dimensions, one-dimensional, two-dimensional or three-dimensional.
  • a fibrous substrate comprises an assembly of one or more fibers. When the fibers are continuous, their assembly forms tissues.
  • the one-dimensional form corresponds to long linear fibers.
  • the fibers may be discontinuous or continuous.
  • the fibers may be arranged randomly or in parallel with each other in the form of a continuous filament.
  • a fiber is defined by its form factor, which is the ratio of the length and diameter of the fiber.
  • the fibers used in the The present invention is long fibers or continuous glass fibers.
  • the fibers have a form factor of at least 1000, preferably at least 1500, more preferably at least 2000, preferably at least 3000, most preferably at least 5000. 000, still more preferably at least 6000, still more preferably at least 7500 and most preferably at least 10,000.
  • the two-dimensional form corresponds to fibrous mats or non-woven or woven reinforcements or bundles of fibers, which may also be braided. Even though the two-dimensional shape has a certain thickness and therefore has in principle a third dimension, it is considered two-dimensional according to the present invention.
  • the three-dimensional shape corresponds, for example, to fibrous mats or non-woven reinforcements or bundles of fibers or their mixtures, stacked or folded, an assembly of the two-dimensional form in the third dimension.
  • the origins of the fibrous material may be natural or synthetic.
  • a natural material mention may be made of vegetable fibers, wood fibers, animal fibers or mineral fibers.
  • Natural fibers are, for example, sisal, jute, hemp, flax, cotton, coconut fiber and banana fiber.
  • Animal fibers are for example wool or hair.
  • polymeric fibers selected from thermosetting polymer fibers, thermoplastic polymers or mixtures thereof.
  • the polymeric fibers may consist of polyamide (aliphatic or aromatic), polyester, polyvinyl alcohol, polyolefins, polyurethanes, polyvinyl chloride, polyethylene, unsaturated polyesters, epoxy resins and esters of vinyl.
  • the mineral fibers may also be chosen from glass fibers, especially of type E, R or S2, carbon fibers, boron fibers or silica fibers.
  • the selected fibrous substrate comprises glass fibers, especially of type E, R or S2, whose refractive index ni varies from 1.52 to 1.6.
  • the selected fibers are fibers S2 with a refractive index of 1.52.
  • the fibers of the fibrous substrate have a diameter between 0.005 ⁇ and ⁇ , preferably between ⁇ and 50 ⁇ , more preferably between 5 ⁇ and 30 ⁇ and advantageously between ⁇ and 25 ⁇ .
  • the fibers of the fibrous substrate of the present invention are chosen from continuous fibers (which means that the form factor is not necessarily applicable as for long fibers) for the one-dimensional form, or for fibers long or continuous for the two-dimensional or three-dimensional form of the fibrous substrate.
  • the invention relates to a transparent polymeric composite material comprising a matrix
  • thermoplastic (meth) acrylic and a fibrous substrate used as reinforcement wherein the fibrous substrate is made of long glass fibers, said composite material being characterized in that the thermoplastic (meth) acrylic matrix is obtained after polymerization of said fibrous substrate having impregnated with said syrup
  • Another aspect of the present invention is a method of manufacturing mechanical or structured parts or products comprising the following steps:
  • step a) The impregnation of the fibrous substrate in step a) is preferably carried out in a closed mold.
  • step a) and step b) are carried out in the same closed mold.
  • thermoplastic matrix has an index of refraction n4 which tends towards that neither of the fiberglass substrate.
  • refractive index n4 of the thermoplastic matrix is identical to that of the fiberglass substrate.
  • the method of manufacturing composite parts is selected from resin transfer molding or infusion.
  • All methods include the step of impregnating the fibrous substrate with the liquid (meth) acrylic syrup prior to the polymerization step in a mold.
  • Resin transfer molding is a process using a two-sided molding assembly that forms the two surfaces of a composite material.
  • the bottom side is a rigid mold.
  • the upper side may be a rigid or flexible mold.
  • Flexible molds can be made from composite materials, silicone or extruded polymeric films such as nylon. Both sides snap together to form a molding cavity.
  • the distinctive feature of resin transfer molding is that the fibrous substrate is placed in this cavity and the molding assembly is closed prior to syrup introduction.
  • Resin transfer molding includes many varieties that differ in mechanics introducing the liquid (meth) acrylic syrup into the fibrous substrate in the molding cavity. These variations range from vacuum infusion to vacuum resin transfer molding (VARTM). This process can be performed at room temperature or elevated.
  • VARTM vacuum resin transfer molding
  • the liquid (meth) acrylic syrup must have the appropriate viscosity for this method of preparation of the polymeric composite material.
  • the liquid (meth) acrylic syrup is sucked into the fibrous substrate present in a special mold by applying a slight vacuum.
  • the fibrous substrate is infused and completely impregnated with the liquid (meth) acrylic syrup.
  • An advantage of this process is the large amount of fibrous material in the composite.
  • the composite part is in particular a room a building or building part (facades, panels, roofs), automobile, a bus room, a boat part, a train piece, a sports article, a part of a plane or helicopter, a piece of spaceship or rocket, a piece of photovoltaic module, a material for construction or building, a piece of wind turbine, a piece of furniture, a piece of telephone or cell phone, a computer or television room, a printer and photocopier room.
  • a room a building or building part (facades, panels, roofs), automobile, a bus room, a boat part, a train piece, a sports article, a part of a plane or helicopter, a piece of spaceship or rocket, a piece of photovoltaic module, a material for construction or building, a piece of wind turbine, a piece of furniture, a piece of telephone or cell phone, a computer or television room, a printer and photocopier room.
  • thermoplastic (meth) acrylic matrix is highly resistant to UV radiation so that these parts can be used outdoors without any problem. In this which relates to the recycling of the thermoplastic composite part, it can be achieved by grinding or depolymerization of the thermoplastic polymer.
  • the grinding is performed mechanically to obtain smaller parts of the workpiece. Since the part comprises a thermoplastic polymer, this polymer can be heated, and the parts again transformed to a certain extent to obtain a recycled object.
  • thermoplastic composite is heated to pyrolyze or thermally decompose PMMA and recover methyl methacrylate as a monomer.
  • At least 50% by weight of the MMA present in the polymer are recovered by thermal decomposition.
  • the piece is brought to a temperature of at least 200 ° C and less than or equal to 400 ° C.
  • Example Manufacture of a transparent thermoplastic composite material.
  • the syrup is prepared by dissolving 25% by weight PMMA (from Xiran ® SMA28110 society Polyscope Polymers BV, a copolymer comprising MMA methyl methacrylate, 75% by weight of methyl acrylate, which is stabilized with MEHQ (hydroquinone monomethyl ether).
  • a 100% by weight of syrup are incorporated 2% by weight of benzolique peroxide (Luperox ® A75 PBO- of Arkema) and 0.2% by weight of DMT (N, -dimethyl-p-toluidine Sigma-Aldrich).
  • the syrup has a dynamic viscosity of 520 mPa * 25 ° C.
  • the syrup is injected into a closed mold comprising a glass fabric as fibrous and polymeric material at 25 ° C for 80 minutes.
  • a syrup is prepared by dissolving 25% by weight of SMA (styrene maleic anhydride) containing 28% of maleic anhydride in 75% by weight of methyl methacrylate, which is stabilized with MEHQ (hydroquinone monomethyl ether). ).
  • SMA styrene maleic anhydride
  • MEHQ hydroquinone monomethyl ether
  • a fiberglass fibrous substrate having a refractive index of not more than 1.52 is placed in a closed mold.
  • the (meth) acrylic syrup is injected into the closed mold comprising the glass fabric and polymerized at 25 ° C. for 80 minutes.
  • thermoplastic composite part obtained has a contact transparency, passes more than 50% of the light and has no defects.
  • this piece is very resistant to UV radiation and can therefore be used intensively outdoors. It is therefore perfectly adapted to equip roofs, or facades of buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

La présente invention concerne un sirop (méth) acrylique liquide d'imprégnation d'un substrat fibreux. La présente invention concerne en particulier un sirop liquide visqueux contenant principalement des composants méthacryliques ou acryliques. L'invention concerne également un procédé de fabrication d'un tel sirop. L'invention concerne en outre un procédé d'imprégnation d'un substrat fibreux comportant des fibres de verre longues avec ledit sirop liquide visqueux. L'invention concerne également un substrat fibreux pré-imprégné avec ledit sirop qui est utile pour la fabrication de pièces transparentes pour notamment le bâtiment. La présente invention concerne également un procédé de fabrication pour la fabrication de pièces transparentes obtenues par ce procédé.

Description

SIROP (METH) ACRYLIQUE LIQUIDE D'IMPREGNATION D'UN SUBSTRAT FIBREUX, PROCEDE D'IMPREGNATION D'UN SUBSTRAT FIBREUX, MATERIAU COMPOSITE OBTENU APRES POLYMERISATION DUDIT SUBSTRAT PRE-IMPREGNE
^Domaine de l' invention^
[001] La présente invention concerne un sirop (méth) acrylique liquide d'imprégnation d'un substrat fibreux.
[002] Plus particulièrement, l'invention concerne un sirop liquide (méth) acrylique visqueux contenant principalement des composants méthacryliques ou acryliques et un composant destiné à rendre transparent/translucide un matériau composite comprenant un substrat fibreux à base de fibres de verre, et une matrice thermoplastique obtenue après polymérisation du sirop. L'invention concerne en outre un procédé d'imprégnation d'un substrat fibreux comportant des fibres de verre longues avec ledit sirop liquide visqueux. L'invention concerne également un substrat fibreux pré-imprégné avec ledit sirop qui est utile pour la fabrication de pièces composites.
[003] La présente invention concerne également un procédé de fabrication de pièces composites et des pièces composites obtenues par ce procédé.
JArt antérieur^
[004] Les pièces mécaniques qui doivent tenir des contraintes élevées pendant leur utilisation, sont largement fabriquées à partir de matériaux composites. Un matériau composite est une combinaison macroscopique de deux matériaux non miscibles ou plus. Le matériau composite est constitué par au moins un matériau qui forme la matrice, c'est-à-dire une phase continue assurant la cohésion de la structure, et un matériau de renfort.
[005] L'objectif, lors de l'utilisation d'un matériau composite, est d'obtenir des performances qui ne sont pas disponibles avec chacun de ses constituants lorsqu'ils sont utilisés séparément. Par conséquent, des matériaux composites sont largement utilisés dans plusieurs secteurs industriels tels que par exemple la construction, l'automobile, l'aérospatial, les transports, les loisirs, l'électronique et le sport, notamment en raison de leurs meilleures performances mécaniques (résistance à la traction supérieure, module de traction supérieur, ténacité à la rupture supérieure) et de leur faible densité, en comparaison des matériaux homogènes.
[006] La classe la plus importante, au regard du volume à l'échelle industrielle commerciale, est celle des composites à matrices organiques, dans lesquels le matériau de matrice est généralement un polymère. La matrice d'un matériau composite polymère est soit un polymère thermoplastique, soit un polymère thermodurcissable.
[007] Les polymères thermodurcissables consistent en des structures tridimensionnelles réticulées. Afin de préparer le matériau composite polymère, un prépolymère est mélangé avec l'autre composant, tel que des billes ou fibres de verre, ou l'autre composant est mouillé ou imprégné et cuit ultérieurement. Des exemples de prépolymères ou de matériau de matrice pour polymères thermodurcissables sont les polyesters insaturés, les esters de vinyle, les matériaux époxy ou phénoliques . Le chauffage des chaînes polymères permet de réticuler et de durcir le matériau de manière permanente .
[008] Un inconvénient majeur d'une matrice polymère thermodurcissable est sa réticulation . La matrice ne peut pas facilement être façonnée en d'autres formes. Une fois le polymère réticulé, la forme est fixée. Ceci rend également difficile le recyclage du matériau composite thermodurcissable et des pièces ou articles mécaniques ou structurés fabriqués comprenant ledit matériau composite thermodurcissable, qui sont brûlés dans une cimenterie ou jetés dans une décharge.
[009] Pour permettre le thermoformage et le recyclage, on préfère utiliser les polymères thermoplastiques.
[010] Les polymères thermoplastiques consistent en des polymères linéaires ou ramifiés qui ne sont pas réticulés. Les polymères thermoplastiques sont chauffés afin de mélanger les constituants nécessaires pour la fabrication du matériau composite et sont refroidis pour figer la forme finale. Le problème est la viscosité très importante de ses polymères thermoplastiques fondus.
[011] Afin de préparer un matériau composite polymère à base de polymère thermoplastique, une résine polymère thermoplastique à l'état fondu, communément appelée « sirop », est utilisée pour imprégner le matériau de renfort, par exemple un substrat fibreux. Un sirop répondant à ce problème a été mis au point par la Demanderesse et est décrit dans les demandes de brevet N° FR1159553, ou son extension PCT WO2013/056845 et dans la demande de brevet N° FR1256929 ou son extension PCT WO2014/013028. Une fois polymérisé, le sirop polymère thermoplastique constitue la matrice du matériau composite. Au moment de l'imprégnation, la viscosité du sirop d'imprégnation doit être maîtrisée et adaptée pour ne pas être trop fluide ou trop visqueuse, de manière à imprégner correctement chaque fibre du substrat fibreux. Lorsque le mouillage est partiel, selon que le sirop est trop fluide ou trop visqueux, il apparaît respectivement des zones « à nu », c'est-à-dire non imprégnées, et des zones où il se forme des gouttes de polymère sur les fibres qui sont à l'origine de la création de bulles. Ces zones « à nu » et ces bulles engendrent l'apparition de défauts dans le matériau composite final qui sont à l'origine, entre autre, d'une perte de résistance mécanique du matériau composite final.
[012] Un besoin se fait sentir de plus en plus, notamment dans le secteur du bâtiment, d'avoir des éléments transparents ou translucides. Ces éléments peuvent être des éléments de toitures, ou de façades ou encore des parois pour des bâtiments. Lorsqu'il n'y a pas d'exigence sur la rigidité mécanique, les matériaux utilisés sont des thermoplastiques transparents tel que polyméthacrylate de méthyle .
[013] Il existe à ce jour, des matériaux composites transparents en polymère thermodurcissable . On peut citer par exemple, un matériau commercialisé sous la marque déposée Acrylit G10. Cependant, ce matériau composite est constitué d'une résine acrylique polyester renforcée par des fibres de verre. Le matériau est donc un composite thermodurcissable qui n'est ni thermoformable ni recyclable. De plus, ce matériau composite résiste très mal aux rayonnements UV puisqu'il jaunit après environ un an d'exposition. Ce matériau ne convient donc pas pour un usage extérieur, notamment pour la réalisation d'éléments de toiture ou de façades de bâtiments.
[014] Dés lors que les éléments à réaliser doivent présenter une résistance mécanique, on préfère utiliser un matériau composite. [ Problème technique]
[015] L'invention a donc pour but de remédier à au moins un des inconvénients de l'art antérieur.
[016] L'invention vise notamment à proposer une pièce en matériau composite thermoplastique transparente / translucide.
[017] L'invention vise en outre à mouiller complètement, correctement et de manière homogène le substrat fibreux pendant l'imprégnation. Tout défaut du mouillage des fibres par exemple par des bulles et des vides diminue les performances mécaniques de la pièce composite finale et ses capacités à obtenir une transmission totale de la lumière (pertes liées à la diffusion de la lumière par les défauts du matériau) .
[018] Un autre objectif de la présente invention est de proposer un procédé qui peut être réalisé à faible coût et qui permet une fabrication, à l'échelle industrielle, de pièces composites thermoplastiques. Par ailleurs, le procédé doit être facile et simple à mettre en œuvre en utilisant des composés disponibles dans le commerce. La fabrication des pièces composites doit également être reproductible et rapide, ce qui signifie des temps de cycle courts .
J^Brève description de l' invention^
[019] De manière surprenante, il a été découvert qu'un sirop (meth) acrylique liquide d'imprégnation d'un substrat fibreux, ledit substrat fibreux étant constitué de fibres de verre longues d' indice de réfraction ni, ledit sirop d'imprégnation étant caractérisé en ce qu' il comprend :
a) un monomère (méth) acrylique ,
b) au moins un composant, d'indice de réfraction n3 , tel que n3 > ni,
[020] ledit sirop (meth) acrylique ayant un indice de réfraction n4 qui tend vers ni et une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s, fournit une imprégnation complète et correcte du substrat fibreux et une transparence du matériau composite obtenu après polymérisation dudit substrat pré-imprégné , le taux de transmission de la lumière étant compris entre 50% et 100%, de préférence supérieur à 70%.
[021] De manière surprenante, la demanderesse a également découvert qu'un procédé d'imprégnation pour l'imprégnation d'un substrat fibreux, ledit matériau fibreux étant constitué de fibres de verre longues, les fibres ayant un facteur de forme d'au moins 1 000, de préférence d'au moins 1 500, de manière davantage préférée d'au moins 2 000, avantageusement d'au moins 3 000, le plus avantageusement d'au moins 5 000, encore plus avantageusement d'au moins 6000, toujours plus avantageusement d'au moins 7500 et le plus avantageusement d'au moins 10 000 et ledit procédé comprenant une étape d' imprégnation dudit substrat fibreux avec ledit sirop (méth) acrylique liquide d'imprégnation, fournit une imprégnation complète et correcte du substrat fibreux et un substrat transparent après polymérisation, le taux de transmission de la lumière étant compris entre 50% et 100%, de préférence supérieur à 70%.
[022] Étonnamment, il a en outre été découvert qu'un procédé de fabrication de pièces composites comprenant les étapes suivantes : a) l'imprégnation d'un substrat fibreux en fibres de verre longues d' indice de réfraction ni avec un tel sirop (méth) acrylique liquide,
b) la polymérisation du sirop (méth) acrylique liquide imprégnant ledit substrat fibreux,
permet d'obtenir des pièces composites thermoplastiques présentant des propriétés de transparence, avec un taux de transmission de la lumière compris entre 50% et 100%, de préférence supérieur à 70%, et très résistantes aux rayonnements UV.
[Description détaillée de l'invention]
[023] Le terme « substrat fibreux » tel qu'utilisé se rapporte à des tissus, des feutres ou des non-tissés qui peuvent être sous la forme de bandes, de nappes, de tresses, de mèches ou de pièces.
[024] Le terme « fibre longue » tel qu'utilisé se rapporte à des fibres ayant un facteur de forme d'au moins 1 000, de préférence d'au moins 1 500, de manière davantage préférée d'au moins 2 000, avantageusement d'au moins 3 000, le plus avantageusement d'au moins 5 000, encore plus avantageusement d'au moins 6000, toujours plus avantageusement d'au moins 7500 et le plus avantageusement d'au moins 10 000.
[025] Le terme « (méth) acrylique » tel qu'utilisé se rapporte à tout type de monomères acryliques et méthacryliques .
[026] Le terme « PMMA » tel qu'utilisé se rapporte aux homo- et copolymères de méthacrylate de méthyle (MMA) , le rapport en poids de MMA dans le PMMA étant d'au moins 70 % en poids pour le copolymère de MMA.
[027] Le terme « monomère » tel qu'utilisé se rapporte à une molécule qui peut subir une polymérisation.
[028] Le terme « SMA » tel qu'il est utilisé se rapporte au styrène anhydride maléique copolymère.
[029] Le terme « polymérisation tel qu'utilisé se rapporte au procédé de transformation d'un monomère ou d'un mélange de monomères en un polymère .
[030] Le terme « polymère thermoplastique » tel qu'utilisé se rapporte à un polymère qui se transforme en un liquide ou devient plus liquide ou moins visqueux lorsqu'il est chauffé et qui peut prendre de nouvelles formes par l'application de chaleur et de pression .
[031] Le terme « polymère thermodurcissable » tel qu'utilisé se rapporte à un prépolymère à un état souple, solide ou visqueux qui se transforme de manière irréversible en un réseau polymère insoluble et infusible par cuisson.
[032] Le terme « composite polymère » tel qu'utilisé se rapporte à un matériau multicomposant comprenant plusieurs domaines de phase différents, parmi lesquels au moins un type de domaine de phase est une phase continue et dans lequel au moins un composant est un polymère .
[033] Le terme « transparent ou translucide » tel qu'utilisé concerne un matériau ayant un taux de transmission total de la lumière visible compris entre 50% et 100%, de préférence supérieur à 70% , selon les mesures de la transmission lumineuse définies par la norme de mesure ASTM D 1003
[034] Le terme « transmission de la lumière » tel qu'il est utilisé comprend la transmission des ondes du spectre visible et infra rouge à savoir la lumière dont la longueur d'onde est entre 380nm 780nm.
[035] Le terme « indice de réfraction » est relatif aux indices réfraction ni, n2 , n3, n4 des milieux traversés par la lumière spectre visible .
[036] Selon un premier aspect, la présente invention concerne un sirop (méth) acrylique liquide d'imprégnation d'un substrat fibreux, ledit substrat fibreux étant constitué de fibres de verre longues d'indice de réfraction ni et ledit sirop étant caractérisé en ce qu'il comprend:
a) un monomère (méth) acrylique ,
b) au moins un composant, d'indice de réfraction n3, tel que n3 ≥ ni,
ledit sirop (meth) acrylique ayant un indice de réfraction n4 qui tend vers ni et une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s.
[037] En ce qui concerne le monomère (méth) acrylique , le monomère est choisi parmi l'acide acrylique, l'acide méthacrylique, les monomères acryliques d' hydroxyalkyle, les monomères méthacryliques d' hydroxyalkyle , les monomères acryliques d' alkyle, les monomères méthacryliques d' alkyle et leurs mélanges.
[038] De préférence, le monomère est choisi parmi l'acide acrylique, l'acide méthacrylique, les monomères acryliques d' hydroxyalkyle, les monomères méthacryliques d' hydroxyalkyle, les monomères acryliques d' alkyle, les monomères méthacryliques d' alkyle et leurs mélanges, le groupe alkyle contenant de 1 à 22 carbones, linéaires, ramifiés ou cycliques; le groupe alkyle contenant de préférence 1 à 12 carbones, linéaires, ramifiés ou cycliques.
[039] Avantageusement, le monomère (méth) acrylique est choisi parmi le méthacrylate de méthyle, le méthacrylate d'éthyle, l'acrylate de méthyle, l'acrylate d'éthyle, l'acide méthacrylique, l'acide acrylique, l'acrylate de n-butyle, l'acrylate d' isobutyle, le méthacrylate de n-butyle, le méthacrylate d' isobutyle, l'acrylate de cyclohexyle, le méthacrylate de cyclohexyle, l'acrylate d' isobornyle, le méthacrylate d' isobornyle, l'acrylate d' hydroxyethyle , le méthacrylate d' hydroxyethyle et leurs mélanges.
[040] Plus avantageusement, le monomère (méth) acrylique est choisi parmi le méthacrylate de méthyle, l'acrylate d' isobornyle ou l'acide acrylique et leurs mélanges.
[041] Selon un mode de réalisation préféré, au moins 50% en poids, de préférence au moins 60% en poids du monomère est le méthacrylate de méthyle .
[042] Selon un mode de réalisation davantage préféré, au moins 50 % en poids, de préférence au moins 60 % en poids, de manière davantage préférée au moins 70 % en poids et avantageusement au moins 80 % en poids et encore plus avantageusement 90 % en poids du monomère est un mélange de méthacrylate de méthyle avec de l'acrylate d' isobornyle et/ou de l'acide acrylique.
[043] En ce qui concerne le polymère (méth) acrylique, on peut mentionner les polyméthacrylates d'alkyle ou les polyacrylates d'alkyle. Selon un mode de réalisation préféré, le polymère (méth) acrylique est le polyméthacrylate de méthyle (PMMA) .
[044] Le terme « PMMA » désigne un homopolymère ou copolymère de méthacrylate de méthyle (MMA) ou leurs mélanges .
[045] Selon un mode de réalisation, l'homo- ou le copolymère de méthacrylate de méthyle (MMA) comprend au moins 70%, de préférence au moins 80 %, avantageusement au moins 90% et plus avantageusement au moins 95% en poids de méthacrylate de méthyle.
[046] Selon un autre mode de réalisation, le PMMA est un mélange d'au moins un homopolymère et d'au moins un copolymère de MMA, ou un mélange d' au moins deux homopolymères ou deux copolymères de MMA ayant un poids moléculaire moyen différent, ou un mélange d'au moins deux copolymères de MMA ayant une composition de monomères différente .
[047] Le copolymère de méthacrylate de méthyle (MMA) comprend de 70% à 99,7 % en poids de méthacrylate de méthyle et de 0,3 à 30 % en poids d' au moins un monomère contenant au moins une insaturation éthylénique qui peut copolymériser avec le méthacrylate de méthyle.
[048] Ces monomères sont bien connus et on peut notamment mentionner les acides acrylique et méthacrylique et les (méth) acrylates d' alkyle dans lesquels le groupe alkyle contient de 1 à 12 atomes de carbone. À titre d'exemple, on peut mentionner l'acrylate de méthyle et le (méth) acrylate d'éthyle, de butyle ou de 2-éthylhexyle . De préférence, le comonomère est un acrylate d' alkyle dans lequel le groupe alkyle contient de 1 à 4 atomes de carbone.
[049] Selon un mode de réalisation préféré, le copolymère de méthacrylate de méthyle (MMA) comprend de 80 % à 99,7 %, avantageusement de 90% à 99,7 % et plus avantageusement de 90% à 99,5 % en poids de méthacrylate de méthyle et de 0,3 % à 20 %, avantageusement de 0,3 % à 10 % et plus avantageusement de 0,5% à 10 % en poids d'au moins un monomère contenant au moins une insaturation éthylénique qui peut copolymériser avec le méthacrylate de méthyle. De préférence, le comonomère est choisi parmi l'acrylate de méthyle ou l'acrylate d'éthyle ou leurs mélanges.
[050] La masse moléculaire moyenne en poids du polymère (méth) acrylique doit être élevée, ce qui signifie supérieure à 50 000 g/mol, de préférence supérieure à 100 000 g/mol.
[051] la masse moléculaire moyenne en poids peut être mesurée par chromatographie d'exclusion stérique (SEC en anglais) .
[052] L'indice de réfraction n2 du polymère (méth) acrylique est de 1,48 à 1,50, de préférence de 1,485 à 1,495 et plus avantageusement de 1,487 à 1, 493.
[053] Le polymère (méth) acrylique est complètement soluble dans le monomère (méth) acrylique ou dans le mélange de monomères (méth) acryliques . Il permet d'augmenter la viscosité du monomère (méth) acrylique ou du mélange de monomères (méth) acryliques . La solution obtenue est généralement nommée « sirop » ou « prépolymère ». La valeur de la viscosité dynamique du sirop (méth) acrylique liquide est comprise entre de 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s. La viscosité du sirop peut facilement être mesurée avec un rhéomètre ou un viscosimètre . La viscosité dynamique est mesurée à 25 °C. Le sirop (méth) acrylique liquide a un comportement newtonien, ce qui signifie qu'il n'y a pas de dilution sous cisaillement, de sorte que la viscosité dynamique est indépendante du cisaillement dans un rhéomètre ou de la vitesse du mobile dans un viscosimètre . Une telle viscosité du sirop obtenu permet une imprégnation correcte des fibres du substrat fibreux.
[054] Avantageusement, le sirop (méth) acrylique liquide ne contient pas de solvant ajouté volontairement supplémentaire.
[055] Le sirop (méth) acrylique liquide selon l'invention, destiné à imprégner le substrat fibreux, comprend notamment a) un monomère (méth) acrylique ou un mélange de monomères (méth) acryliques, et b) au moins un composé destiné à rendre la matrice polymère thermoplastique obtenue après polymérisation du sirop, transparente.
[056] En ce qui concerne le composant b) il est choisi parmi des composants ayant un indice de réfraction n3, tel que n3> n2 et pouvant être mélangé au polymère (méth) acrylique ou au mélange polymère (méth) acrylique et monomère (méth) acrylique et permettant d'avoir une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s.
[057] Ce composant b) est choisi parmi :
du polymère styrène anhydride maléique (SMA) présent à hauteur d'au moins 10% en poids, de préférence d'au moins 15 %, avantageusement d'au moins 20 % et plus avantageusement d'au moins 25 % en poids du sirop (méth) acrylique liquide total, - pour être complètement miscible dans le sirop (meth) acrylique et garder cette miscibilité lors de la polymérisation du sirop, c'est-à-dire avoir une résine thermoplastique transparente, le polymère de styrène anhydride maléique doit contenir entre 15 et 50% de monomère anhydride maléique, de préférence entre 20 et 35%
ou
du styrène, présent à hauteur d'au moins 10% en poids , de préférence d'au moins 15 %, avantageusement d'au moins 20 % et plus avantageusement d'au moins 25 % en poids du sirop (méth) acrylique liquide total.
[058] Afin de conserver une viscosité dynamique du sirop (méth) acrylique telle qu'elle permet une bonne imprégnation du substrat fibreux, et de conserver les propriétés thermoplastiques de la matrice obtenue après polymérisation du substrat fibreux pré- imprégné de sirop, le ou les composants du sirop sont incorporés avec les pourcentages massiques suivants :
[059] Le monomère (méth) acrylique ou les monomères (méth) acryliques dans le sirop (méth) acrylique liquide sont présents à hauteur d'au moins 90 % en poids, de préférence de 85 % en poids, avantageusement de 80 % en poids et plus avantageusement de 75 % en poids du sirop
(méth) acrylique liquide total,
[060] Le ou les polymères (méth) acryliques dans le sirop (méth) acrylique liquide sont présents à hauteur d'au moins 10 % en poids, de préférence d'au moins 15 %, avantageusement d'au moins 20 % et plus avantageusement d'au moins 25 % en poids du sirop (méth) acrylique liquide total.
[061] Lorsque le composant b) choisi, est du styrène anhydride maléique, le sirop comprend plus particulièrement :
a) de 70% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 20 % en poids à 30% en poids de styrène anhydride maléique .
[062] S' agissant du procédé de fabrication du sirop (méth) acrylique liquide, avec le polymère SMA styrène anhydride maléique,
une première étape consiste à préparer un premier sirop comprenant le monomère (méth) acrylique ou mélange de monomères (méth) acrylique;
le polymère SMA styrène anhydride maléique, est ensuite ajouté dans le monomère, dans les proportions indiquées ci- dessus pour conserver une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s.
[063] Ce polymère, grâce à la présence de ses fonctionnalités anhydride maléique, est miscible dans le polymère (meth) acrylique . Son indice de réfraction n3 est de 1.565 à 1.585, de préférence de 1.57 à 1.582 et plus avantageusement de 1.574 à 1.580 et supérieur à n2, n2 étant l'indice du polymère (meth) acrylique . Leur mélange dans les proportions ci-dessus permet d'obtenir un sirop (meth) acrylique d'indice de réfraction n4. De plus, ce polymère présente une viscosité similaire au polymère (meth) acrylique.
[064] Lorsque le composant b) choisi est du styrène, le sirop comprend plus particulièrement :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 25% en poids de styrène
c) de 10 à % en poids à 25 % en poids d'un polymère (méth) acrylique,
De préférence, le syrop comprend :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 45% en poids de styrène.
c) de 2,5 % en poids à 30 % en poids d'un polymère (méth) acrylique,
d) de 2,5% en poids à 30 % en poids d'un copolymère (méth) acrylique-styrène, comprenant de 10% à 50% en poids de styrène .
Et, plus avantageusement , le syrop comprend :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 40% en poids de styrène.
c) de 5 % en poids à 30 % en poids d'un polymère (méth) acrylique,
d) de 5% en poids à 30 % en poids d'un copolymère (méth) acrylique-styrène, comprenant de 10% à 50% en poids de styrène .
[065] S' agissant du procédé de fabrication du sirop (méth) acrylique liquide , avec le styrène ,
une première étape consiste à préparer un premier sirop comprenant le monomère (méth) acrylique ou mélange de monomères (méth) acrylique et un polymère (méth) acrylique ;
- puis on rajoute le styrène dans les proportions indiquées ci- dessus pour conserver une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s.
[066] Au moment de la polymérisation ultérieure du sirop, le styrène et le monomère (meth) acrylique forment alors un copolymère (méth) acrylique-styrène, dont l'indice de réfraction n3 varie en fonction du nombre de motifs styrène dans la chaîne polymère du polymère (meth) acrylique en formation.
[067] De plus, dans ce cas où on incorpore du styrène dans le sirop (meth) acrylique, il est possible de remplacer en tout ou partie le polymère (meth) acrylique, utilisé pour augmenter la viscosité du monomère ou mélange de monomère (meth) acrylique, par un copolymère (méth) acrylique-styrène . De préférence, ce copolymère est du polyméthacrylate -co-styrène, comprenant de 10% à 50% en poids de styrène .
[068] Le sirop (méth) acrylique liquide d'imprégnation comprend également un initiateur ou un système initiateur pour démarrer la polymérisation du monomère ou des monomères. On peut mentionner les initiateurs ou les systèmes initiateurs qui sont activés par la chaleur.
[069] L'initiateur activé par la chaleur est de préférence un initiateur radicalaire.
[070] En ce qui concerne l'initiateur radicalaire, il peut être choisi parmi les peroxydes de diacyle, les peroxyesters , les peroxydes de dialkyle, les peroxyacétals ou les composés azo.
[071] Pour démarrer la polymérisation du monomère ou des monomères, l'initiateur ou le système initiateur est choisi parmi le carbonate d' isopropyle, le peroxyde de benzoyle, le peroxyde de lauroyle, le peroxyde de caproyle, le peroxyde de dicumyle, le perbenzoate de tert-butyle, le per (2-éthylhexanoate) de tert-butyle, 1 ' hydroperoxyde de cumyle, le 1 , 1-di (tert-butylperoxy) -3 , 3 , 5-triméthylcyclohexane , le peroxyisobutyrate de tert-butyle, le peracétate de tert-butyle, le perpivalate de tert-butyle, le perpivalate d'amyle, le peroctoate de tert-butyle, 1 ' azobisisobutyronitrile (AIBN) , l' azobisisobutyramide, le 2, 2' -azobis (2, 4-diméthylvaléronitrile) ou l'acide 4 , 4 ' -azobis ( 4- cyanopentanoïque) . L'utilisation d'un mélange d'initiateurs radicalaires choisis dans la liste ci-dessus ne sortirait pas de la portée de l'invention.
[072] De préférence, pour démarrer la polymérisation du monomère ou des monomères, l'initiateur ou le système initiateur est choisi parmi les peroxydes contenant 2 à 20 atomes de carbone.
[073] La teneur en initiateur radicalaire par rapport au monomère ou monomères du sirop (méth) acrylique liquide est de 100 à 50 000 ppm en poids (50 000 ppm = 5 % en poids), de préférence entre 200 et 40 000 ppm en poids et avantageusement entre 300 et 30 000 ppm en poids .
[074] En ce qui concerne le procédé d'imprégnation du substrat fibreux, il comprend une étape d'imprégnation du substrat fibreux, à base de fibres de verres longues, avec le sirop (méth) acrylique liquide décrit précédemment. Cette étape d'imprégnation se fait dans un moule fermé.
[075] Si la viscosité du sirop (méth) acrylique liquide à une température donnée est un peu trop élevée pour le procédé d'imprégnation, il est possible de chauffer le sirop afin d'avoir un sirop plus liquide pour le mouillage suffisant et l'imprégnation correcte et complète du substrat fibreux.
[076] S' agissant du substrat fibreux, on peut mentionner les tissus de verre comprenant des fibres de verre obtenues à partir de silice ou de mélanges fondu après passage dans une filière. Le substrat peut se présenter sous forme de bandes, de nappes, de tresses, de mèches ou de pièces. Le matériau fibreux peut avoir différentes formes et dimensions, monodimensionnelles , bidimensionnelles ou tridimensionnelles. Un substrat fibreux comprend un assemblage d'une ou de plusieurs fibres. Lorsque les fibres sont continues, leur assemblage forme des tissus.
[077] La forme monodimensionnelle correspond à des fibres longues linéaires. Les fibres peuvent être discontinues ou continues. Les fibres peuvent être agencées de manière aléatoire ou en parallèle les unes aux autres sous la forme d'un filament continu. Une fibre est définie par son facteur de forme, qui est le rapport entre la longueur et le diamètre de la fibre. Les fibres utilisées dans la présente invention sont des fibres longues ou des fibres continues en verre. Les fibres ont un facteur de forme d'au moins 1 000, de préférence d'au moins 1 500, de manière davantage préférée d'au moins 2 000, avantageusement d'au moins 3 000, le plus avantageusement d'au moins 5 000, encore plus avantageusement d'au moins 6000, toujours plus avantageusement d'au moins 7500 et le plus avantageusement d'au moins 10 000.
[078] La forme bidimensionnelle correspond à des mats fibreux ou des renforts non tissés ou tissés ou des faisceaux de fibres, qui peuvent également être tressés. Même si la forme bidimensionnelle a une certaine épaisseur et par conséquent a en principe une troisième dimension, elle est considérée comme bidimensionnelle selon la présente invention.
[079] La forme tridimensionnelle correspond par exemple à des mats fibreux ou des renforts non tissés ou des faisceaux de fibres ou leurs mélanges, empilés ou pliés, un assemblage de la forme bidimensionnelle dans la troisième dimension.
[080] Les origines du matériau fibreux peuvent être naturelles ou synthétiques. En tant que matériau naturel, on peut mentionner les fibres végétales, les fibres de bois, les fibres animales ou les fibres minérales.
[081] Des fibres naturelles sont par exemple le sisal, le jute, le chanvre, le lin, le coton, les fibres de noix de coco et les fibres de banane. Des fibres animales sont par exemple la laine ou les cheveux.
[082] En tant que matériau synthétique, on peut mentionner des fibres polymères choisies parmi les fibres de polymères thermodurcissables, de polymères thermoplastiques ou leurs mélanges.
[083] Les fibres polymères peuvent être constituées de polyamide (aliphatique ou aromatique), de polyester, d'alcool polyvinylique, de polyoléfines , de polyuréthanes , de polychlorure de vinyle, de polyéthylène, de polyesters insaturés, de résines époxy et d'esters de vinyle.
[084] Les fibres minérales peuvent également être choisies parmi les fibres de verre, notamment de type E, R ou S2, les fibres de carbone, les fibres de bore ou les fibres de silice. [085] De préférence, le substrat fibreux choisi comprend des fibres de verre, notamment de type E, R ou S2, dont l'indice de réfraction ni varie de 1,52 à 1,6. Avantageusement les fibres choisies sont des fibres S2 d'indice de réfraction 1,52.
[086] Les fibres du substrat fibreux ont un diamètre entre 0.005μιτι et ΙΟΟμιτι, de préférence entre Ιμιτι et 50μιτι, de manière davantage préférée entre 5μιτι et 30μιτι et avantageusement entre ΙΟμιτι et 25μιτι.
[087] De préférence les fibres du substrat fibreux de la présente invention sont choisies parmi les fibres continues (ce qui signifie que le facteur de forme n'est pas forcement applicable comme pour des fibres longues) pour la forme monodimensionnelle, ou pour des fibres longues ou continues pour la forme bidimensionnelle ou tridimensionnelle du substrat fibreux.
[088] Selon un aspect supplémentaire, l'invention concerne un matériau composite polymère transparent comprenant une matrice
(méth) acrylique thermoplastique et un substrat fibreux utilisé comme renfort, dans lequel le substrat fibreux est constitué de fibres de verre longues, ledit matériau composite étant caractérisé en ce que la matrice (méth) acrylique thermoplastique est obtenue après polymérisation dudit substrat fibreux pré-imprégné dudit sirop
(méth) acryique liquide.
[089] Un autre aspect de la présente invention est un procédé de fabrication de pièces ou produits mécaniques ou structurés comprenant les étapes suivantes :
a) l'imprégnation d'un substrat fibreux, ledit substrat fibreux étant constitué de fibres de verre longues, avec le sirop (méth) acrylique liquide,
b) la polymérisation du sirop (méth) acrylique liquide imprégnant ledit substrat fibreux.
[090] L'imprégnation du substrat fibreux à l'étape a) est de préférence réalisée dans un moule fermé.
[091] Avantageusement, l'étape a) et l'étape b) sont réalisées dans le même moule fermé.
[092] Après la polymérisation du substrat à base de fibres de verre pré-imprégné de sirop, on obtient une pièce en matériau composite dont la matrice thermoplastique présente un indice de réfraction n4 qui tend vers celui ni du substrat en fibres de verre. De préférence, l'indice de réfraction n4 de la matrice thermoplastique est identique à celui ni du substrat en fibres de verre.
[093] En ce qui concerne la mesure de la transparence, on utilise avantageusement la méthode de la transmission lumineuse selon la norme ASTM D 1003.
[094] En ce qui concerne le procédé de fabrication de pièces composites, différents procédés pourraient être utilisés pour préparer des pièces. On peut mentionner l'infusion, le moulage en sac sous vide, le moulage en sac sous pression, le moulage en autoclave, le moulage par transfert de résine (RTM) , le moulage par injection-réaction (RIM) , le moulage par injection-réaction renforcé (R-RIM) et ses variantes, le moulage sous presse ou le moulage par compression .
[095] Le plus avantageusement, le procédé de fabrication de pièces composites est choisi parmi le moulage par transfert de résine ou 1 ' infusion .
[096] Tous les procédés comprennent l'étape d'imprégnation du substrat fibreux avec le sirop (méth) acrylique liquide avant l'étape de polymérisation dans un moule.
[097] L'étape de polymérisation du sirop (méth) acrylique liquide imprégnant ledit substrat fibreux a lieu après l'étape d'imprégnation dans le même moule.
[098] Le moulage par transfert de résine est un procédé utilisant un ensemble de moulage à deux côtés qui forme les deux surfaces d'un matériau composite. Le côté inférieur est un moule rigide. Le côté supérieur peut être un moule rigide ou flexible. Des moules flexibles peuvent être fabriqués à partir de matériaux composites, de silicone ou de films polymères extrudés tels que le nylon. Les deux côtés s'emboîtent pour former une cavité de moulage. La caractéristique distinctive du moulage par transfert de résine est que le substrat fibreux est placé dans cette cavité et que l'ensemble de moulage est fermé avant l'introduction du sirop
(méth) acrylique liquide. Le moulage par transfert de résine comprend de nombreuses variétés qui diffèrent au niveau de la mécanique d'introduction du sirop (méth) acrylique liquide dans le substrat fibreux dans la cavité de moulage. Ces variations vont de l'infusion sous vide au moulage par transfert de résine sous vide (VARTM) . Ce procédé peut être réalisé à température ambiante ou élevée.
[099] Avec le procédé d'infusion, le sirop (méth) acrylique liquide doit avoir la viscosité adaptée pour ce procédé de préparation du matériau composite polymère. Le sirop (méth) acrylique liquide est aspiré dans le substrat fibreux présent dans un moule spécial par application d'un léger vide. Le substrat fibreux est infusé et complètement imprégné par le sirop (méth) acrylique liquide.
[0100] Un avantage de ce procédé est la grande quantité de matériau fibreux dans le composite.
[0101] En ce qui concerne l'utilisation des pièces composites ainsi fabriquées, on peut mentionner les applications bâtiment, automobiles, les applications transport tels que le bus ou la camion, les applications nautiques, les applications ferroviaires, le sport, les applications aéronautiques et aérospatiales, les applications photovoltaïques , les applications informatiques, les applications pour la construction et le bâtiment, les applications pour les télécommunications et les applications pour l'énergie éolienne .
[0102] La pièce composite est notamment une pièce une pièce de construction ou de bâtiment (façades, panneaux, toitures) , d'automobile, une pièce de bus, une pièce de bateau, une pièce de train, un article de sport, une pièce d'avion ou d'hélicoptère, une pièce de vaisseau spatial ou de fusée, une pièce de module photovoltaïque, un matériau pour la construction ou le bâtiment, une pièce d' éolienne, une pièce de meuble, une pièce de téléphone ou de téléphone portable, une pièce d'ordinateur ou de télévision, une pièce d'imprimante et de photocopieuse.
[0103] Les pièces en matériau composite obtenues après imprégnation d'un substrat fibreux avec le sirop (méth) acrylique et polymérisation sont transparentes (ou translucides) . La matrice thermoplastique (meth) acrylique résiste très bien aux rayonnements UV si bien que ces pièces peuvent être utilisées en extérieur sans aucun problème. En ce qui concerne le recyclage de la pièce composite thermoplastique, il peut être réalisé par broyage ou dépolymérisation du polymère thermoplastique .
[0104] Le broyage est effectué mécaniquement afin d'obtenir des parties plus petites de la pièce. Puisque la pièce comprend un polymère thermoplastique, ce polymère peut être chauffé, et les pièces de nouveau transformées dans une certaine limite pour obtenir un objet recyclé.
[0105] De préférence, la pièce composite thermoplastique est chauffée pour réaliser une pyrolyse ou une décomposition thermique du PMMA et récupérer le méthacrylate de méthyle en tant que monomère.
[0106] Avantageusement, au moins 50 % en poids du MMA présent dans le polymère sont récupérés par décomposition thermique.
[0107] La pièce est portée à une température d'au moins 200 °C et inférieure ou égale à 400 °C.
[0108] Exemple : Fabrication d'un matériau composite thermoplastique transparent .
[0109] Le sirop est préparé en dissolvant 25% en poids de PMMA (du Xiran® SMA28110 de la société Polyscope Polymers B.V, un copolymère de MMA comprenant de méthacrylate de méthyle, dans 75% en poids d'acrylate de méthyle , lequel est stabilisé avec du MEHQ (éther monométhylique d' hydroquinone ) .) . A 100% en poids de sirop, sont incorporés 2% en poids de peroxyde benzolique (PBO- Luperox® A75 de ARKEMA) et 0,2% en poids de DMT (N, -dimethyl-p-toludine de Sigma- Aldrich) . Le sirop a une viscosité dynamyque de 520 mPa*s a 25°C. Le sirop est injecté dans un moule clos comprenant un tissu de verre comme substart fibreux et polymèrisé à 25 °C pendant 80 minutes.
[0110] lere étape : préparation du sirop (meth) acrylique
[0111] Un sirop est préparé par dissolution de 25% en poids de SMA (styrène anhydride maléïque) contenant 28% d'anhydride maléïque dans 75% en poids de méthacrylate de méthyle, qui est stabilisé avec du MEHQ (éther monométhylique d' hydroquinone ) . Ce polymère se dissout dans le monomère méthacrylate de méthyle et il présente un indice de réfraction de 1,59. [0112] Ces proportions de SMA dans le monomère méthacrylatye permettent d'obtenir un sirop présentant un indice de réfraction n4 proche de 1,52, et une viscosité dynamique à 25°C de 500 mPa.s .
[0113] 2eme étape : imprégnation d'un substrat fibreux et polymérisation
[0114] Un substrat fibreux en fibres de verre, présentant un indice de réfraction ni égal à 1,52, est placé dans un moule fermé. Le sirop (meth) acrylique est injecté dans le moule fermé comprenant le tissus de verre et polymérisé à 25°C pendant 80 minutes.
[0115] La pièce composite thermoplastique obtenue présente une transparence de contact, laisse passer plus de 50% de la lumière et ne présente aucun défaut. De plus, cette pièce est très résistante aux rayonnements UV et peut donc être utilisée de manière intensive en extérieur. Elle est donc parfaitement adaptée pour équiper des toitures, ou des façades de bâtiments.

Claims

REVENDICATIONS
Sirop (meth) acrylique liquide d'imprégnation d'un substrat fibreux, ledit substrat fibreux étant constitué de fibres de verre longues d'indice de réfraction ni, ledit sirop d'imprégnation étant caractérisé en ce qu'il comprend :
a) un monomère (méth) acrylique ,
b) au moins un composant, d'indice de réfraction n3, tel que n3 > ni,
ledit sirop (meth) acrylique ayant un indice de réfraction n4 qui tend vers ni et une viscosité dynamique comprise entre 10 mPa*s et 10 000 mPa*s, de préférence entre 50 mPa*s et 5 000 mPa*s et avantageusement entre 100 mPa*s et 1 000 mPa*s.
Sirop (meth) acrylique liquide selon la revendication 1, caractérisé en ce qu'il comporte en outre :
c) un polymère (méth) acrylique , d'indice de réfraction n2.
Sirop (meth) acrylique liquide selon la revendication 1 ou 2, caractérisé en ce que ledit au moins un composant b) est choisi parmi :
- du styrène anhydride maléique présent à hauteur d'au moins 10% en poids, de préférence d'au moins 15 %, avantageusement d'au moins 20 % et plus avantageusement d'au moins 25 % en poids du sirop (méth) acrylique liquide total ;
ou
du styrène, présent à hauteur d'au moins 10% en poids, de préférence d'au moins 15 %, avantageusement d'au moins 20 % et plus avantageusement d'au moins 25 % en poids du sirop (méth) acrylique liquide total.
Sirop (meth) acrylique liquide selon la revendication 1 ou 3, caractérisé en qu'il comprend :
a) de 70% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 20 % en poids à 30% en poids de styrène anhydride maléique .
5. Sirop (meth) acrylique liquide selon la revendication 1, 2 et 3, caractérisé en qu' il comprend :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 25% en poids de styrène,
c) de 10 à % en poids à 25 % en poids d'un polymère (méth) acrylique,
Sirop (meth) acrylique liquide selon la revendication 2 ou 5, caractérisé en ce qu'il comprend :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 45% en poids de styrène,
c) de 2,5 % en poids à 30 % en poids d'un polymère (méth) acrylique,
d) de 2,5% en poids à 30 % en poids d'un copolymère (méth) acrylique-styrène , comprenant de 10% à 50% en poids de styrène .
Sirop (meth) acrylique liquide selon la revendication 6 caractérisé en ce qu'il comprend :
a) de 50% en poids à 80 % en poids d'un monomère (méth) acrylique,
b) de 10 % en poids à 40% en poids de styrène.
c) de 5 % en poids à 30 % en poids d'un polymère (méth) acrylique,
d) de 5% en poids à 30 % en poids d'un copolymère (méth) acrylique-styrène, comprenant de 10% à 50% en poids de styrène ,
Sirop (meth) acrylique liquide selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère (méth) acrylique est un homo- ou copolymère de méthacrylate de méthyle (MMA) ou un de leurs mélanges . Sirop (meth) acrylique liquide selon l'une quelconque des revendications précédentes, caractérisé en ce que le copolymère de méthacrylate de méthyle (MMA) comprend au moins 70 %, de préférence au moins 80 %, avantageusement au moins 90 % et plus avantageusement au moins 95% en poids de méthacrylate de méthyle (MMA) . Sirop (meth) acrylique liquide selon la revendication 8 ou 9, caractérisé en ce que le copolymère de méthacrylate de méthyle (MMA) comprend de 70% à 99,7 % en poids, de préférence de 80% à 99,7 % en poids, avantageusement de 90 % à 99,7 % en poids et plus avantageusement de 90 % à 99,5 % en poids de méthacrylate de méthyle et de 0,3 à 30 % en poids, de préférence de 0,3 % à 20 % en poids, avantageusement de 0,3 % à 10 % et plus avantageusement de 0,5 % à 10% en poids d'au moins un monomère contenant au moins une insaturation éthylénique qui peut copolymériser avec le méthacrylate de méthyle. Sirop (meth) acrylique liquide selon l'une quelconque des revendications 2 à 10, caractérisé en ce que le polymère (méth) acrylique comprend un comonomère, ledit comonomère étant un acrylate d'alkyle contenant un groupe alkyle de 1 à 12 atomes de carbone . Sirop (meth) acrylique liquide selon la revendication 11, caractérisé en ce que le comonomère est choisi parmi l' acrylate de méthyle ou l' acrylate d' éthyle et un de leurs mélanges. Sirop (meth) acrylique liquide selon l'une quelconque des revendications précédentes, caractérisé en ce que le monomère (méth) acrylique est choisi parmi l'acide acrylique, l'acide méthacrylique, les monomères acryliques d'alkyle, les monomères méthacryliques d'alkyle et leurs mélanges, le groupe alkyle contenant de 1 à 22 carbones, linéaires, ramifiés ou cycliques ; le groupe alkyle contenant de préférence 1 à 12 carbones, linéaires, ramifiés ou cycliques. Sirop (meth) acrylique liquide selon l'une quelconque les revendications 1 à 11, caractérisé en ce que le monomère (méth) acrylique est choisi parmi le méthacrylate de méthyle, le méthacrylate d'éthyle, l'acrylate de méthyle, l'acrylate d'éthyle, l'acide méthacrylique, l'acide acrylique, l'acrylate de n-butyle, l'acrylate d'isobutyle, le méthacrylate de n-butyle, le méthacrylate d'isobutyle, l'acrylate de cyclohexyle, le méthacrylate de cyclohexyle, l'acrylate d' isobornyle, le méthacrylate d' isobornyle et leurs mélanges.
Sirop (meth) acrylique liquide selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le monomère (méth) acrylique est choisi parmi le méthacrylate de méthyle, l'acrylate d' isobornyle ou l'acide acrylique et leurs mélanges.
5. Sirop (meth) acrylique liquide selon l'une quelconque des revendications 13 à 14, caractérisé en ce que 50 % en poids du monomère (méth) acrylique est le méthacrylate de méthyle.
Procédé d'imprégnation pour l'imprégnation d'un substrat fibreux, ledit substrat fibreux étant constitué de fibres de verre longues, et ledit procédé comprenant une étape d'imprégnation dudit substrat fibreux avec ledit sirop (méth) acrylique selon l'une des revendications 1 à 15.
. Procédé d'imprégnation selon la revendication 17, caractérisé en ce que l'étape d'imprégnation dudit substrat fibreux est réalisée dans un moule fermé.
Matériau composite polymère transparent comprenant une matrice (méth) acrylique thermoplastique et un substrat fibreux utilisé comme renfort, dans lequel le substrat fibreux est constitué de fibres de verre longues, ledit matériau composite étant caractérisé en ce que la matrice (méth) acrylique thermoplastique est obtenue après polymérisation dudit substrat fibreux préimprégné dudit sirop (méth) acryique liquide selon l'une quelconque des revendiations 1 à 16.
. Procédé de fabrication de pièces composites transparentes, comprenant les étapes suivantes :
a) l'imprégnation d'un substrat fibreux constitué de fibres de verre longues avec un sirop (méth) acrylique liquide selon l'une quelconque des revendications 1 à 16,
b) la polymérisation du sirop (méth) acrylique liquide imprégnant ledit substrat fibreux.
Procédé de fabrication selon la revendication 20, caractérisé en ce que l'imprégnation du substrat fibreux à l'étape a) est réalisée dans un moule fermé.
Procédé de fabrication selon l'une quelconque des revendications 20 à 21 caractérisé en ce que l'étape a) et l'étape b) sont réalisées dans le même moule fermé.
]. Procédé de fabrication selon l'une quelconque des revendications 20 à 22, caractérisé en ce que le procédé est choisi parmi le moulage par transfert de résine ou l'infusion.
. Pièce mécanique ou structurelle transparente en matériau composite selon la revendication 18, ou obtenue par le procédé de fabrication selon les revendications 20 à 23.
Pièce selon la revendication 24, ladite pièce étant une pièce de construction de construction ou de bâtiment (façades, panneaux, toitures) , d'automobile, une pièce de bateau, une pièce de train, un article de sport, une pièce d'avion ou d'hélicoptère, une pièce de vaisseau spatial ou de fusée, une pièce de module photovoltaïque, une pièce d'éolienne, une pièce de meuble, une pièce de téléphone ou de téléphone portable, une pièce d'ordinateur ou de télévision, une pièce d'imprimante et de photocopieuse .
PCT/FR2014/050542 2013-03-11 2014-03-10 Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne WO2014140467A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015562280A JP6539590B2 (ja) 2013-03-11 2014-03-10 繊維性基材を含浸するための液体(メタ)アクリルシロップ、繊維性基材を含浸するための方法、このプレ含浸基材の重合の後に得られた複合材料
US14/774,179 US10683405B2 (en) 2013-03-11 2014-03-10 Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method of impregnating a fibrous substrate, composite material obtained following polymerisation of the pre-impregnated substrate
EP14715355.5A EP2970684B1 (fr) 2013-03-11 2014-03-10 Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352148A FR3002942B1 (fr) 2013-03-11 2013-03-11 Sirop (meth)acrylique liquide d'impregnation d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne.
FR1352148 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014140467A1 true WO2014140467A1 (fr) 2014-09-18

Family

ID=48771604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050542 WO2014140467A1 (fr) 2013-03-11 2014-03-10 Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne

Country Status (5)

Country Link
US (1) US10683405B2 (fr)
EP (1) EP2970684B1 (fr)
JP (1) JP6539590B2 (fr)
FR (1) FR3002942B1 (fr)
WO (1) WO2014140467A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3016642A1 (fr) * 2014-01-22 2015-07-24 Arkema France
US10040889B2 (en) 2013-04-25 2018-08-07 Arkema France Liquid (meth) acrylic syrup it's method of polymerization, use and molded article obtained thereof
US10131768B2 (en) 2013-03-11 2018-11-20 Arkema France Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method of impregnating a fibrous substrate, composite material obtained following polymerisation of the pre-impregnated substrate
WO2020002842A1 (fr) * 2018-06-28 2020-01-02 Arkema France Composition (meth) acrylique, materiau composite obtenu a partir d'une telle composition, son procede de fabrication et ses utilisations
US10683405B2 (en) 2013-03-11 2020-06-16 Arkema France Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method of impregnating a fibrous substrate, composite material obtained following polymerisation of the pre-impregnated substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002941B1 (fr) * 2013-03-08 2015-04-10 Arkema France Sirop (meth)acrylique liquide d'impregnation d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne
DE102016101819B4 (de) * 2016-02-02 2020-11-05 Claus Schierz Verfahren zur Herstellung eines Mineralfaservliesstoffes
JP6959647B2 (ja) * 2017-07-05 2021-11-02 ユニチカ株式会社 透明シート、該透明シートを含む防煙垂壁、及び透明シートの製造方法
JP6371445B1 (ja) * 2017-07-05 2018-08-08 ユニチカ株式会社 透明シート、該透明シートを含む防煙垂壁、及び透明シートの製造方法
CN110016195B (zh) * 2018-12-05 2022-01-25 奇美实业股份有限公司 聚甲基丙烯酸酯组成物及其所形成的光学元件与显示设备
US11111373B2 (en) 2018-12-05 2021-09-07 Chi Mei Corporation Polymethacrylate composition and optical device made therefrom, and display apparatus
CN115232423B (zh) * 2022-07-12 2023-11-03 浙江华帅特新材料科技有限公司 金属内嵌pmma复合板材的制造方法、金属内嵌pmma复合板材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684305A (en) * 1951-01-09 1954-07-20 Celastic Corp Process of effecting polymerization
FR1159553A (fr) 1956-04-18 1958-06-30 Colgate Palmolive Peet Co Préparation buccale
FR1256929A (fr) 1960-05-13 1961-03-24 Continental Can Co Procédé de fabrication de pièces tubulaires par laminage et gonflage et billettes pour la mise en oeuvre de ce procédé
FR1374046A (fr) * 1962-11-08 1964-10-02 Du Pont Procédé de polymérisation de monomères acryliques
WO2013056845A2 (fr) 2011-10-21 2013-04-25 Arkema France Matériau composite obtenu par polymérisation in situ de résines (méth)acryliques thermoplastiques, et son utilisation
WO2014013028A1 (fr) 2012-07-18 2014-01-23 Arkema France Traitement d'imprégnation pour substrat fibreux, sirop (méth)acrylique liquide pour ce traitement d'imprégnation, procédé de polymérisation, et article structuré ainsi obtenu

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL300171A (fr) * 1962-11-08
JPS5148501B2 (fr) * 1972-12-26 1976-12-21
JPS5478787A (en) * 1977-12-06 1979-06-23 Sumitomo Chem Co Ltd Production of transparent glass fiber reinforced resin
JPS5947248A (ja) * 1982-09-13 1984-03-16 Mitsubishi Rayon Co Ltd 難燃性アクリル系樹脂組成物及びその製造方法
JP2008276203A (ja) 2007-04-03 2008-11-13 Asahi Kasei Chemicals Corp 光学フィルム
FR3002877B1 (fr) 2013-03-07 2015-03-27 Arkema France Procede de fabrication d'un materiau composite multicouche, materiau composite multicouche obtenu par le procede et pieces ou structures mecaniques realisees avec ledit materiau.
FR3002940B1 (fr) 2013-03-08 2016-01-22 Arkema France Sirop (meth)acrylique liquide d'impregnation d'un substrat fibreux et son procede de fabrication, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne.
FR3002941B1 (fr) 2013-03-08 2015-04-10 Arkema France Sirop (meth)acrylique liquide d'impregnation d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne
FR3002942B1 (fr) 2013-03-11 2016-01-22 Arkema France Sirop (meth)acrylique liquide d'impregnation d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684305A (en) * 1951-01-09 1954-07-20 Celastic Corp Process of effecting polymerization
FR1159553A (fr) 1956-04-18 1958-06-30 Colgate Palmolive Peet Co Préparation buccale
FR1256929A (fr) 1960-05-13 1961-03-24 Continental Can Co Procédé de fabrication de pièces tubulaires par laminage et gonflage et billettes pour la mise en oeuvre de ce procédé
FR1374046A (fr) * 1962-11-08 1964-10-02 Du Pont Procédé de polymérisation de monomères acryliques
WO2013056845A2 (fr) 2011-10-21 2013-04-25 Arkema France Matériau composite obtenu par polymérisation in situ de résines (méth)acryliques thermoplastiques, et son utilisation
WO2014013028A1 (fr) 2012-07-18 2014-01-23 Arkema France Traitement d'imprégnation pour substrat fibreux, sirop (méth)acrylique liquide pour ce traitement d'imprégnation, procédé de polymérisation, et article structuré ainsi obtenu

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131768B2 (en) 2013-03-11 2018-11-20 Arkema France Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method of impregnating a fibrous substrate, composite material obtained following polymerisation of the pre-impregnated substrate
US10683405B2 (en) 2013-03-11 2020-06-16 Arkema France Liquid (meth)acrylic syrup for impregnating a fibrous substrate, method of impregnating a fibrous substrate, composite material obtained following polymerisation of the pre-impregnated substrate
US10040889B2 (en) 2013-04-25 2018-08-07 Arkema France Liquid (meth) acrylic syrup it's method of polymerization, use and molded article obtained thereof
FR3016642A1 (fr) * 2014-01-22 2015-07-24 Arkema France
WO2015110534A1 (fr) * 2014-01-22 2015-07-30 Arkema France Procédé d'imprégnation pour substrat fibreux, sirop monomère liquide pour ledit procédé d'imprégnation, son procédé de polymérisation et article structuré obtenu
WO2020002842A1 (fr) * 2018-06-28 2020-01-02 Arkema France Composition (meth) acrylique, materiau composite obtenu a partir d'une telle composition, son procede de fabrication et ses utilisations
FR3083241A1 (fr) * 2018-06-28 2020-01-03 Arkema France Composition (meth)acrylique, materiau composite obtenu a partir d'une telle composition, son procede de fabrication et ses utilisations

Also Published As

Publication number Publication date
JP2016512272A (ja) 2016-04-25
US10683405B2 (en) 2020-06-16
FR3002942B1 (fr) 2016-01-22
US20160017106A1 (en) 2016-01-21
EP2970684B1 (fr) 2020-04-22
FR3002942A1 (fr) 2014-09-12
JP6539590B2 (ja) 2019-07-03
EP2970684A1 (fr) 2016-01-20

Similar Documents

Publication Publication Date Title
EP2970684B1 (fr) Sirop (meth) acrylique liquide d'impregantion d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne
EP2971327B1 (fr) Sirop (meth) acrylique liquide d'impregnation d'un substrat fibreux, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne
FR2993581A1 (fr) Procede d'impregnation pour un substrat fibreux, sirop (meth)acrylique liquide pour le procede d'impregnation, son procede de polymerisation et produit structure obtenu a partir de celui-ci
EP2964692B1 (fr) Sirop (meth) acrylique liquide d'impregnation d'un substrat fibreux et son procede de fabrication, procede d'impregnation d'un substrat fibreux, materiau composite obtenu apres polymerisation dudit substrat pre-impregne
JP6285864B2 (ja) イン・サイテュ重合で得られる熱可塑性(メタ)アクリル樹脂の複合材料と、その使用
EP3237538B1 (fr) Sirop (meth)acrylique liquide, procede d'impregnation d'un substrat fibreux par ledit sirop, et procédé de fabrication de pièces ou d'articles mécaniques structurés à l'aide de ce syrop
FR3016642A1 (fr)
EP3237471B1 (fr) Sirop (meth) acrylique liquide, procédé d'imprégnation d'un substrat fibreux par ledit sirop, et matériau composite obtenu après polymérisation dudit sirop d'imprégnation
EP2964452B1 (fr) Procédé de fabrication d'un matériau composite multicouche, matériau composite multicouche obtenu par le procédé et pièces ou structures mécaniques réalisées avec ledit matériau
FR3060577A1 (fr) Composition liquide comprenant deux initiateurs, son procede de polymerisation, utilisation et materiau ou composition obtenu apres polymerisation de la composition
FR3016641A1 (fr)
FR3082845A1 (fr) Composition liquide comprenant trois initiateurs, son procede de polymerisation, son utilisation et materiau obtenu apres polymerisation de la composition
FR3078537A1 (fr) Composition de precurseur pour composites thermoplastiques acryliques et ses procedes de preparation et utilisation
EP3237505A1 (fr) Procede d'impregnation d'un substrat fibreux avec un melange (meth)acrylique, composition dudit melange (meth)acrylique, et materiau composite obtenu apres polymerisation dudit melange (meth)acrylique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14715355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562280

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14774179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014715355

Country of ref document: EP