WO2014139135A1 - 流体调节装置 - Google Patents

流体调节装置 Download PDF

Info

Publication number
WO2014139135A1
WO2014139135A1 PCT/CN2013/072657 CN2013072657W WO2014139135A1 WO 2014139135 A1 WO2014139135 A1 WO 2014139135A1 CN 2013072657 W CN2013072657 W CN 2013072657W WO 2014139135 A1 WO2014139135 A1 WO 2014139135A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
hole
cylinder
regulating device
piston
Prior art date
Application number
PCT/CN2013/072657
Other languages
English (en)
French (fr)
Inventor
王晓东
Original Assignee
沈如华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈如华 filed Critical 沈如华
Priority to PCT/CN2013/072657 priority Critical patent/WO2014139135A1/zh
Priority to EP13877643.0A priority patent/EP2974788A4/en
Publication of WO2014139135A1 publication Critical patent/WO2014139135A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/02Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
    • G01F11/021Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the piston type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/882Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using measuring chambers, e.g. volumetric pumps, for feeding the substances
    • B01F35/8822Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using measuring chambers, e.g. volumetric pumps, for feeding the substances using measuring chambers of the piston or plunger type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • F04B13/02Pumps specially modified to deliver fixed or variable measured quantities of two or more fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs

Definitions

  • the present invention relates to a fluid regulating device for controlling the amount of chemicals (e.g., pharmaceuticals, hairdressing products, fragrances, color pastes, lacquers, etc.), which is particularly suitable for use in color machines.
  • chemicals e.g., pharmaceuticals, hairdressing products, fragrances, color pastes, lacquers, etc.
  • the color grading machine is a machine that adjusts a variety of different color paints by selecting and marking the base color paste according to the user's needs.
  • the color machine has the advantages of high efficiency and high accuracy with respect to manual color adjustment, and in particular, it can ensure that the same color is completely the same every time.
  • the color toners currently available in the market can be roughly classified into two types according to the application thereof, and one is a color toner machine for preparing a large number of products for industrial purposes, such as a latex paint coloring machine applied in a factory, The other type is a coloring machine that produces samples for sampling purposes, for example, in a latex paint coloring shop or laboratory.
  • the first type of tinting machine usually has a large amount of toner and less precision for small shots, while the second type of color machine often has a small amount of latex paint (such as 1 liter, 4 liters). If the amount of the color paste is sometimes very small (for example, only a certain amount of paste is required to be 0.077 ml or 0.038 ml or less), the precision is high.
  • the coloring machine currently used in the color shop on the market also has a large metering requirement for the color matching of the excellent pulp. It is known in the art that for a color grading machine, if it can ensure efficient and large-scale color paste injection efficiency, it is difficult to ensure the accuracy of small-scale color paste injection.
  • the tinting machine usually has a plurality of independent color matching circuits, each of which corresponds to a colorant to be mixed.
  • Each circuit consists of a color paste bucket for storing a given amount of paste, and a color paste.
  • the barrel is connected to a pump for drawing a certain amount of color paste from the paste bucket and for injecting it into the mixing container (for example, a piston pump, a gear pump, a screw pump, a folding pump, etc.), and associated control valves and pipes. .
  • the amount of color paste to be injected is usually determined by the stroke of the pump.
  • the amount of color paste injected from the piston pump depends on the piston stroke of the piston pump
  • the amount of color paste injected from the screw pump depends on the angle of rotation of the screw. Wait.
  • the working stroke of the pump corresponds to the corresponding amount of paste applied.
  • the pump equipped with the coloring machine is usually a large number of pumps. This is because, when a large amount of color paste needs to be injected, it is generally desirable to have a large amount of the pump, thereby satisfying the time required to dispense a large amount of color paste while reducing the time taken for the color paste to be injected, thereby improving the injection efficiency and product productivity.
  • a small amount of the piston pump has a larger moving stroke of the piston when the excellent slurry is injected than the piston pump of a large number of piston pumps, even if the former is a rear Several times. Therefore, it is avoided that a large number of pumps cannot guarantee the accuracy of the injection when the micro-paste is injected.
  • the small amount of pump to achieve a large number of injections is cumbersome, time-consuming and inefficient. Moreover, it is unrealistic to provide two different color machines with different precisions for cost and size considerations.
  • the aperture size of the nozzle of the excellent slurry also affects the efficiency of injection and the accuracy of the injection.
  • the aperture of the color paste outlet is large, high efficiency is achieved.
  • the color paste is injected, and if the aperture of the color paste outlet is small, the precision of the small-scale color paste injection is good, but the high-efficiency color paste injection is hindered.
  • US 2009/0236367 A1 discloses a dual piston assembly for a color machine in which a small piston is moved between a retracted position and a discharge position in a large piston driven by an actuator (piston rod) to achieve a small amount Color paste is injected.
  • the actuator when the actuator (piston rod) moves downward, the large piston is synchronously moved, and when the large piston moves to the lowermost position and can no longer move, then, the piston rod is further pushed downward, so that the small piston is Drive, thus outputting a small amount of color paste.
  • this double-piston assembly saves a certain amount of space, the structural design is complicated and the control steps are cumbersome.
  • the small piston must be actuated after the large piston has completed its stroke, and the design of this structure must be such that the spring force in the small piston is greater than the driving force of the large piston when the excellent slurry is injected, in order to ensure a reliable guarantee of the injection accuracy.
  • the spring force is usually designed to have a large amount of surplus, so as to ensure the simultaneous injection and movement of the large piston and the actuator (piston rod) to ensure the required injection accuracy of the large-scale color paste.
  • the thrust required for a large piston to prime a slurry is usually large.
  • the pre-compression force of the spring on the small piston is also much larger than the maximum large piston pushing force to achieve this synchronization, which makes the force required for the small piston to move the excellent slurry to overcome the spring force and The sum of the forces of the small piston pushing the color paste.
  • This resultant force is usually large, so that the power required by the actuator of the piston pump is increased, which invisibly increases the manufacturing cost of the mechanism.
  • EP 1 908 510 A2 Another type of color grading machine is also disclosed in EP 1 908 510 A2, which utilizes two colorant control loops to be coupled to the same color paddle and spout to achieve bulk and micro-injection of the color paste.
  • the two control loops are relatively independent, each with separate components such as a separate pump and a three-way valve.
  • the two color control units are large in size, complicated in structure, and high in cost because they are equipped with two control loops which are substantially similar in composition.
  • a fluid regulating device including a dual cylinder pump having a first cylinder and a second cylinder arranged side by side, and respectively a first piston and a second piston located in the first measuring cylinder and the second measuring cylinder, wherein a piston rod of the first piston and a piston rod of the second piston are coupled in parallel by a same piston rod connecting head So that the first piston and the second piston can perform synchronous reciprocating motion in the first measuring cylinder and the second measuring cylinder, respectively, and wherein the fluid regulating device further comprises an adjusting mechanism,
  • the adjustment mechanism has an actuator including a mechanical converter and a actuator for actuating the converter, the mechanical converter being capable of implementing a plurality of fluid regulation states driven by the actuator, wherein the converter Having a housing and a core disposed within the housing, the housing including a first surface, a second surface, and a third
  • the diameter of the first cylinder is larger than the diameter of the second cylinder, and the first piston rod is larger than the diameter of the second piston rod.
  • the adjustment mechanism has a first fluid adjustment state in which the actuator is in a first actuation position and a core of the transducer is in the actuator Driving the first cylinder to be in fluid communication with the fluid reservoir through the first through hole and the third through hole, and allowing the second cylinder to pass only through the second through hole And the fourth through hole is in fluid communication with the fluid storage tank through a conduit.
  • the fluid regulating device further includes a second fluid regulating state, In the second fluid adjustment state, the actuator is in a second actuated position, and the core of the converter allows the first cylinder to pass only the first through hole under the drive of the actuator And the fifth through hole is in direct fluid communication with the fluid receiving container without a conduit, and allows the second measuring cylinder to pass through the second through hole and the fourth through hole through a pipeline
  • the fluid storage tank is in fluid communication.
  • the fluid regulating device further includes a third fluid regulating state in which the actuator is in a third actuated position and the core of the converter is in the actuating Driving the first cylinder directly in fluid communication with the fluid receiving container only through the first through hole and the fifth through hole without the conduit, and allowing the second measuring cylinder to only The second through hole and the sixth through hole are in direct fluid communication with the fluid receiving container without a conduit.
  • the fluid regulating device includes a fourth fluid regulating state, in which the actuator is in the fourth actuating position, and the core of the converter is in the Driving the second cylinder directly in fluid communication with the fluid receiving container only through the second through hole and the sixth through hole without the conduit, and allowing the first measuring cylinder
  • the fluid passage is in fluid communication with the fluid storage tank only through the first through hole and the fourth through hole.
  • the actuator is a manual shifting lever.
  • the actuator is a motor.
  • the mechanical converter is a column core switching valve.
  • a fluid regulating device comprising a dual cylinder pump having a first cylinder and a second cylinder arranged side by side, and respectively located in the first cylinder and the second cylinder a first piston and a second piston in the cylinder, wherein a piston rod of the first piston and a piston rod of the second piston are coupled in parallel by a same piston rod joint, thereby causing the first piston and the
  • the second piston is capable of synchronously reciprocating in the first measuring cylinder and the second measuring cylinder, respectively Movement
  • the fluid regulating device further includes an adjustment mechanism including an electric converter and an actuator for actuating the electric converter, the electric converter being capable of a plurality of fluid adjustment states are achieved under actuation of the actuator, wherein the converter has a housing and a core within the housing, the housing including a first surface, a second surface, and a third surface, a first through hole in fluid communication with the first measuring cylinder and a second through hole in fluid communication with the second measuring cylinder; a second surface
  • the core has a rotatable first chip and a second chip coaxially connected to the actuator via a coupling, the two rotatable chips being driven by the actuator
  • the lower can be rotated angularly simultaneously to achieve the plurality of fluid conditioning states.
  • the adjustment mechanism has a first fluid adjustment state, in which the first chip and the second chip are both in a first rotational position, at this time, the first chip Allowing the first cylinder to be in fluid communication with the fluid reservoir through the first through hole and the third through hole, and the second chip allows the second cylinder to pass only the first
  • the two through holes and the fourth through hole are in fluid communication with the fluid storage tank through a conduit.
  • the adjustment mechanism has a second fluid adjustment state, in which the first chip and the second chip are both in a second rotational position, at this time, the first chip Allowing the first graduated cylinder to be in direct fluid communication with the fluid receiving container only through the first through hole and the fifth through hole without a conduit, and the second chip allows the second graduated cylinder Only through the second The through hole and the fourth through hole are in fluid communication with the fluid storage tank through a conduit.
  • the adjustment mechanism has a third fluid adjustment state, in which the first chip and the second chip are both in a third rotational position, at this time, the first chip And the second chip respectively blocks fluid communication between the first graduated cylinder and the second graduated cylinder and the fluid receiving container and the fluid receiving container.
  • the adjustment mechanism has a fourth fluid adjustment state, in which the first chip and the second chip are both in a fourth rotational position, at this time, the second chip Allowing the second graduated cylinder to be in direct fluid communication with the fluid receiving container only through the second through hole and the sixth through hole without a conduit, and the first chip allows the first graduated cylinder
  • the fluid passage is in fluid communication with the fluid storage tank only through the first through hole and the fourth through hole.
  • the third through hole and the fourth through hole are connected to the fluid storage tank through the same pipe.
  • the diameter of the sixth through hole is smaller than the diameter of the fifth through hole, so that the fluid regulating device realizes a large flow of fluid injection through the fifth through hole, and passes through the sixth through hole through the fifth through hole. A small flow or micro flow of fluid is dispensed.
  • Yet another aspect of the invention relates to a coloring machine comprising: at least one fluid storage tank; at least one fluid injection port; and the fluid regulating device described above, the fluid regulating device and the corresponding fluid
  • the reservoir and the fluid injection port are in selective fluid communication.
  • FIG. 1 is a perspective view schematically showing a fluid regulating device according to a first embodiment of the present invention
  • Figure 2 is a view showing an overall assembly of a color concentrator with a fluid regulating device according to a first embodiment of the present invention
  • Figure 3 is a perspective view schematically showing a converter of an adjusting mechanism of a fluid regulating device according to a first embodiment of the present invention
  • Figure 4 is a partially cutaway perspective view schematically showing a first fluid regulating state in the adjusting mechanism of the fluid regulating device according to the first embodiment of the present invention
  • Figure 5 is a partially cutaway perspective view schematically showing a second fluid regulating state in the adjusting mechanism of the fluid regulating device according to the first embodiment of the present invention
  • Figure 6 is a partially cutaway perspective view schematically showing a third fluid regulating state in the adjusting mechanism of the fluid adjusting device according to the first embodiment of the present invention
  • Figure 7 is a partially cutaway perspective view schematically showing a fourth fluid regulating state in the adjusting mechanism of the fluid regulating device according to the first embodiment of the present invention.
  • Figure 8 is a partially cutaway perspective view schematically showing a fluid regulating device according to a second embodiment of the present invention.
  • Figure 9 is an overall assembly view schematically showing a color concentrator with a fluid regulating device according to a second embodiment of the present invention.
  • Figure 10 is a perspective view schematically showing an actuator and an associated converter core in an adjustment mechanism of a fluid regulating device according to a second embodiment of the present invention
  • Figure 11 is a schematic illustration according to Figure 11
  • FIG. 12 is a view schematically showing adjustment of a fluid regulating device according to a second embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view schematically showing a third fluid regulating state in the adjusting mechanism of the fluid regulating device according to the second embodiment of the present invention.
  • Open perspective Figure 14 is a partially cutaway perspective view schematically showing a fourth fluid regulating state in the adjusting mechanism of the fluid regulating device according to the second embodiment of the present invention.
  • FIG. 1 there is shown schematically a fluid regulating device 3 according to a first embodiment of the present invention in accordance with a first embodiment of the present invention. It can be used for color adjustment in the color grading machine 1 shown in Fig. 2.
  • a fluid regulating device 3 according to a first embodiment of the present invention in accordance with a first embodiment of the present invention. It can be used for color adjustment in the color grading machine 1 shown in Fig. 2.
  • directional terms such as “upper,”, “lower”, “left”, “right”, etc. are used, but those skilled in the art will clearly understand the above given with reference to the accompanying drawings. The orientation should not be construed as limiting the invention.
  • the positions of the dual cylinder pump, the actuator and the fluid inlet and outlet shown in Fig. 1 are not necessarily arranged as shown in the drawings, and may be made within a certain range according to the spirit of the present invention. transform.
  • the fluid regulating device 3 is composed of a dual cylinder pump 8 and an adjustment mechanism 9.
  • the dual cylinder pump 8 is preferably a piston pump having a first cylinder 10 having a larger diameter and a second cylinder 11 having a smaller diameter.
  • the first cylinder 10 and the second cylinder 11 preferably have a cylindrical shape that is substantially elongated along their longitudinal axis and have substantially the same longitudinal direction length.
  • the diameter of the first measuring cylinder 10 is 4 - 10 times the diameter of the second measuring cylinder 11.
  • the first cylinder 10 and the second cylinder 11 are arranged to be positioned side by side by the cylinder positioning member 14 at one end thereof, and are also arranged to be side by side at the other end thereof through the first through hole 22 and the second through hole 23 on the adjustment mechanism Groundly connected to an adjustment mechanism 9 (which will be described in detail below).
  • the first and second graduated cylinders can be coupled to the cylinder positioning member 14 and the adjustment mechanism 19 in a manner well known in the art.
  • the first and second measuring cylinders may be coupled to the cylinder positioning member 14 by an interference fit, and the first and second measuring cylinders are press-fitted into the first positioning hole 15 and the second positioning hole 16 of the cylinder positioning member 14, respectively. .
  • first and second graduated cylinders may be coupled to the first positioning hole 15 and the second positioning hole 16 of the cylinder positioning member 14 by screwing.
  • the first and second graduated cylinders can be similar
  • the mode is connected to the first through hole 22 and the second through hole 23 of the adjustment mechanism 19.
  • a first piston 12 capable of reciprocating movement (shown in FIG. 8 below) is disposed in the first measuring cylinder 10, and a second piston 13 capable of reciprocating movement is disposed in the second measuring cylinder 11 (as described below) Figure 8)).
  • the diameter of the first piston 12 placed in the first measuring cylinder 10 is correspondingly larger than the diameter of the second piston 13 placed in the second measuring cylinder 11.
  • the piston rod 17 of the first piston 12 and the piston rod 18 of the second piston 13 may be the same or different in diameter, but each has a first end coupled to the corresponding piston and a second end coupled to the same piston rod connector 19.
  • the second ends of the piston rods 17, 18 are respectively attached to the piston rod coupling 19 through the first positioning holes 15 and the second positioning holes 16 of the cylinder positioning member 14.
  • the piston rod coupling 19 connects the piston rods 17, 18 of the two cylinders together so that the piston rod 17 of the first piston 12 and the piston rod 18 of the second piston 13 can be applied to the piston rod coupling 19 Simultaneously, the first piston 12 and the second piston 13 are simultaneously urged to synchronously reciprocate in the first cylinder 10 and the second cylinder.
  • the piston rod 17 (first piston rod 17) of the first piston 12 and the piston rod 18 (second piston rod 18) of the second piston 13 may be integrally formed with the piston rod connector 19 as a single piece, or may be known in the art.
  • the connection means - such as bonding, welding, etc. - is combined with the piston rod connector 19.
  • the piston rod coupling 19 is arranged in a direction substantially perpendicular to the cylinder body of the cylinder, thereby ensuring that the first piston rod 17 and the second piston rod 18 are simultaneously movable relative to the first cylinder 10 and the second cylinder 11 At the same longitudinal depth.
  • the fluid regulating device 3 further includes an adjustment mechanism 9.
  • the adjustment mechanism 9 includes a converter 21 and an actuator 20 for actuating the converter.
  • the converter 21 is preferably, for example, a mechanical conversion, and more preferably a column-type switching valve.
  • Fig. 2 schematically shows a color mixing machine 1 equipped with a fluid regulating device 3 according to a first embodiment of the invention, which further comprises, in general, a fluid storage tank 2 for containing color paste and a fluid storage tank 2 And fluid receiving capacity below the fluid regulating device 3 Device 4.
  • the fluid regulating device 3 is in fluid communication with the fluid reservoir 2 through an output line 5 and discharges the fluid into the fluid receiving container 4.
  • the tinting machine 1 usually has more than two fluid storage tanks 2 for containing base paints of different colors in order to simultaneously or separately output color pastes of different colors into the fluid receiving container 4, for example with a base paint. Mix thoroughly to bring up the desired color.
  • the dual cylinder pump 8 is selectively in fluid communication with the fluid reservoir 2 and the output line 5, driven by the actuator 20 of the adjustment mechanism 9, thereby enabling a plurality of fluids to be realized. Adjustment status (described in detail below).
  • the converter 21 in the adjustment mechanism 9 of the fluid regulating device 3 according to the first embodiment of the present invention is further schematically shown in Fig. 3.
  • the converter 21 has a housing that is preferably in a substantially rectangular shape, but the shape of the housing is not limited to the rectangular shape.
  • the converter 21 is preferably a switching valve, and more preferably a three-way switching valve.
  • the housing of the converter 21 has a first surface I provided with a first through hole 22 for engaging the first measuring cylinder 10 and a second through hole 23 for engaging with the second measuring cylinder 11.
  • the through holes are arranged side by side and sealingly engaged with the respective graduated cylinders of the dual cylinder pump 8, for example, in a manner well known in the art to prevent fluid leakage.
  • the individual cylinders of the dual cylinders 8 can optionally be joined to the first surface I of the converter 21 by means of a pipe or, preferably, directly to the surface I.
  • the housing of the converter 21 also has a second surface II that engages the fluid reservoir 2 and a third surface III that directs the fluid receiving container 4.
  • the second surface II and the third surface III are located on opposite sides of the converter 21.
  • Two through holes are provided in the second surface II.
  • the third through holes 24 and the fourth through holes 25 respectively pass through the two through holes, and the first measuring cylinder 10 and the second measuring cylinder 11 of the dual cylinder pump 8 are at the converter 21.
  • the converter 21 allows the fluid in the first cylinder 10 and the second cylinder 11 to selectively pass through the fifth through hole 26 and the sixth through hole 26 on the surface III, respectively, directly to the fluid without the pipeline Received in container 4.
  • the fifth through hole 26 and the sixth through hole 26 are two separated through holes, wherein the fifth through hole 26 selectively communicates with the first measuring cylinder 10, and the sixth through hole 26, and the The two measuring cylinders 11 are selectively in communication.
  • the diameters of the two through holes vary depending on the accuracy of the injection. Generally, the diameter of the through hole 26 communicating with the first cylinder 10 is larger than the diameter of the through hole 26 communicating with the second cylinder 11. Different injection accuracy is further ensured by providing two separate injection through holes.
  • the fifth through hole may also be a single hole on the surface III, and the first and second measuring cylinders are selectively in communication with the single through hole to inject fluid.
  • the converter 21 is capable of switching the four fluid regulation states of the adjustment mechanism 9 under the drive of the actuator 20 (shown in Figure 1).
  • the actuator 20 shown is a manual actuating lever having four different actuating positions corresponding to the four fluid adjustment states.
  • the converter 21 shown in FIGS. 4 to 7 is partially cut away, exposing the core 27 of the converter 21 in the housing, It is preferably a valve core of a column-type regulating valve.
  • the spool 27 is mechanically coupled to the actuator 20 and is driven by the actuator 20.
  • the adjustment mechanism 9 is in the first fluid-regulated state.
  • the core of the converter 21 of the adjustment mechanism 9 allows the first cylinder 10 of the dual cylinder pump 8 to be in fluid communication with the fluid reservoir 2 via the first through hole 22 and the third through hole 24.
  • the second cylinder 11 is in fluid communication with the fluid reservoir 2 via the second through hole 23 and the fourth through hole 25.
  • the adjustment mechanism 9 is in the second fluid adjustment state.
  • the core 27 of the converter 21 is further rotated by the actuator (actuating lever) 20, allowing the first through hole 11 to be in fluid communication with the fifth through hole 26, and the second through hole 23 and fourth.
  • the through holes 25 are in fluid communication.
  • the piston rod connecting head 19 of the dual cylinder pump 8 is pushed, the fluid that has been sucked into the first measuring cylinder 10 in the first fluid regulating state may pass through the first through hole 11 and the fifth through hole 26 in the absence of the tube. In the case of a road, it is injected into the fluid receiving container 4.
  • the second fluid regulation state is particularly suitable for large flows requiring
  • the application of the body output makes it possible to output fluid quickly and in large quantities with high fluid output efficiency. Since the push-down of the piston rod connecting head 19 causes the fluid in the second measuring cylinder 11 to flow back into the fluid storage tank 2, no waste of fluid is caused.
  • the adjustment mechanism 9 is in the third fluid adjustment state as shown in Figure 6.
  • the core portion 27 of the converter 21 is rotated by the actuator (actuating lever) 20 so that the fluid communication between the first through hole 22, the second through hole 23 and the fluid reservoir 2 is blocked. That is, the first through hole 22 is not in fluid communication with the third through hole 24 while the second through hole 23 is not in fluid communication with the fourth through hole 25, but the first through hole 22 and the second through hole 23 are both allowed. It is in fluid communication with the fifth through hole 26 and the sixth through hole 26, respectively.
  • the actuator (actuation lever) 20 When the adjustment mechanism 9 is in the fourth fluid adjustment state as shown in Fig. 7, the actuator (actuation lever) 20 is located at the fourth actuation position D. At this time, the core 27 of the converter 21 is rotated such that the first cylinder 10 of the dual cylinder pump 8 is in fluid communication with the fluid reservoir 2 via the first through hole 22 and the third through hole 24 to push the first downward At the time of the piston 12, the fluid in the first cylinder is returned to the fluid storage tank through the first and third through holes. Further, the second cylinder 11 of the dual cylinder pump 8 is in fluid communication with the fluid receiving container 4 such that the fluid in the second cylinder passes from the second through hole 23 through the sixth through hole 26 when pushing the second piston 13 downward. And directly into the fluid receiving container 4.
  • the fluid regulating device In the fourth fluid regulating state, the fluid regulating device according to the first embodiment of the present invention would be very advantageous for applications requiring a high precision microfluidic output, since this is a second measuring cylinder of smaller volume to achieve fluid Output, and volume
  • the large first graduated cylinder is in fluid communication only with the fluid reservoir.
  • Such a design allows the amount of fluid ejected from the second cylinder to be reduced to a small amount, even a small amount, under the same piston working stroke, thereby satisfying the high precision requirements for fluid output.
  • the fluid in the first cylinder is returned to the fluid storage tank by pushing down the piston rod connector without causing waste of fluid.
  • the fluid regulating device according to the second embodiment of the present invention is schematically shown in Fig. 8.
  • the fluid regulating device 3 is generally composed of a dual cylinder pump 8 and an adjustment mechanism 9.
  • the dual cylinder pump of the fluid regulating device 3 of the second embodiment is substantially identical in construction to the dual cylinder pump of the fluid regulating device 3 as compared with the fluid regulating device 3 of the first embodiment.
  • the dual cylinder pump 8 is partially cut away to expose the first piston 12 and the second piston 13. Therefore, in order to avoid the description being too verbose, a detailed description of the dual cylinder pump 8 of the second embodiment is omitted here.
  • Fig. 9 schematically shows a color grading machine 1 equipped with a fluid regulating device 3 according to a second embodiment of the present invention.
  • the color grading machine 1 is substantially the same as the color grading machine 1 of the first embodiment except for the fluid regulating means. Therefore, in order to avoid the description being too verbose, a detailed description of the same components of the color grading machine 1 of the second embodiment is omitted here.
  • the adjustment mechanism 9 of the fluid adjustment device 3 of the second embodiment is an electric adjustment mechanism including an actuator 20' and an electric converter 2''.
  • the actuator 20' is preferably a motor
  • the converter 2 is electrically coupled to the motor 20 via a coupling 28 (shown in Figure 10).
  • the electrical converter 21 is a ceramic core valve having a core 27 having two rotatable porcelain core plates 35, 36 disposed coaxially with the coupling 28 for implementing the dual cylinder pump 8 and fluid Four different fluid regulation states between the reservoir 2 and the fluid receiving container 4.
  • the electrical converter can also have other forms, and the valve plate can also be Made up of other materials, such as metal.
  • Fig. 10 schematically shows the motor 20 of the converting mechanism 9, and the core 27 of the converter 21 of the second embodiment.
  • the shape of the casing of the converter 21 is substantially the same as that of the first embodiment, and is a substantially rectangular shape, but the shape of the casing is not limited to this shape.
  • the core 27 of the converter 21 is located in the housing and has conduits in fluid communication with the respective through holes on respective surfaces of the housing. Specifically, the core 27 has a first conduit 29 in fluid communication with the first through hole 11 on the first surface I of the housing and a second conduit in fluid communication with the second through hole 23 on the first surface I. 30.
  • the first cylinder 10 having a larger volume of the dual cylinder pump 8 is capable of drawing fluid from the fluid reservoir 2 through the first through hole 22 or returning the fluid to the fluid reservoir.
  • the second smaller cylinder 11 of the dual cylinder pump 8 can draw fluid from the fluid reservoir 2 via the second through bore 23 or return the fluid to the fluid reservoir.
  • the core 27 further includes a first conduit 31 in selective fluid communication with the third through hole 24 on the second surface II of the housing, and a second fluid in selective fluid communication with the fifth through hole 26 on the third surface III A conduit 32, a second conduit 33 in selective fluid communication with the fourth through bore 25 on the second surface II, and a fourth conduit 34 in selective fluid communication with the sixth through bore 26 on the third surface III.
  • the first porcelain core valve piece 35 of the core 27 is used to adjust the fluid communication state of the first measuring cylinder 10 with the fluid storage tank 2 and the fluid receiving container 4, and is adjusted by the second ceramic core valve piece 36 of the core portion 27.
  • the second measuring cylinder 11 is in fluid communication with the fluid storage tank 2 and the fluid receiving container 4.
  • the rotation angles of the first and second ceramic core sheets of the core portion 27 are set to 0 degrees.
  • the rotating mechanism 9 at this time is in the first fluid adjustment state as described above.
  • the converter core 27 of the adjustment mechanism 9 allows the first cylinder 10 of the dual cylinder pump 8 to be in fluid communication with the fluid reservoir 2 via the first through bore 22, the first conduit 31 and the third through bore 24.
  • the second measuring cylinder 11 passes through the second through hole 23, the third The conduit 33 and the fourth through bore 25 are in fluid communication with the fluid reservoir 2.
  • the core portion 27 of the converter 21 prevents the first cylinder 10 and the second cylinder 11 from being in fluid communication with the fifth through hole 26 and the sixth through hole 26, respectively.
  • pushing the piston rod connector 19 of the dual cylinder pump 8 further inwardly returns only the fluid in the two cylinders to the fluid reservoir 2. It is particularly advantageous to allow the fluid remaining in the first and second cylinders to flow back to the fluid reservoir 2 in a fluid-regulated state, which minimizes waste, thereby saving cost and environmental benefits.
  • the adjustment mechanism 9 is in the second fluid adjustment state.
  • the core portion 27 of the converter 21 allows the first through hole 22 to communicate with the fifth through hole 26 via the second conduit 32, and the second through hole 23 passes through the third conduit 33 and the fourth through hole 25 Fluid communication.
  • the piston rod connector 19 of the dual cylinder pump 8 is pushed, the fluid that has been drawn into the first cylinder 10 in the first fluid regulation state may pass through the first through hole 22, the second conduit 32, and the fifth pass.
  • the hole 26 is directly injected into the fluid receiving container 4.
  • the second through hole 23 is still in fluid communication with the third through hole 24, but the fluid communication between the second through hole 23 and the sixth through hole 26 is cut off. Therefore, pushing the second piston 13 in the second graduated cylinder 11 returns the fluid therein to the fluid storage tank 2 without being discharged from the adjustment mechanism 9 into the fluid receiving container 4.
  • the second fluid regulation state is particularly suitable for large flows requiring
  • the application of the body output makes it possible to output fluid quickly and in large quantities with high fluid output efficiency. Since the push-down of the piston rod connecting head 19 causes the fluid in the second measuring cylinder 11 to flow back into the fluid storage tank 2, no waste of fluid is caused.
  • the adjustment mechanism 9 is in the third fluid regulating state.
  • the first and second valve pieces of the core portion 27 of the converter 21 are simultaneously rotated by the motor 20 so that the fluid between the first through hole 22, the second through hole 23 and the fluid storage tank 2 Connectivity is blocked.
  • the fluid communication between the first through hole 22 and the second through hole 23 and the fifth through hole 26 and the sixth through hole 26 is also blocked, respectively.
  • the motor 20, through the coupling 28, causes the first valve piece and the second valve piece to rotate by 270 degrees.
  • the core portion 27 of the converter 21 is rotated such that the first cylinder 10 of the dual cylinder pump 8 is in fluid communication with the fluid storage tank 2 via the first through hole 22, the first conduit 31 and the third through hole 24,
  • the fluid in the first cylinder is returned to the fluid storage tank through the first through hole, the first conduit, and the third through hole.
  • the second cylinder 11 of the dual cylinder pump 8 is in fluid communication with the fluid receiving container 4 via the fourth conduit 34, the fifth through hole 26, such that the fluid in the second cylinder is from the second passage when pushing the second piston 13 downward.
  • the hole 23 exits through the sixth through hole 26 through the fourth duct 34 and directly enters the fluid receiving container 4.
  • the fluid regulating device In the fourth fluid regulating state, the fluid regulating device according to the first embodiment of the present invention would be very advantageous for applications requiring a high precision microfluidic output, since this is a second measuring cylinder of smaller volume to achieve fluid The output, while the first volumetric cylinder of greater volume is only in fluid communication with the fluid reservoir.
  • Such a design allows the amount of fluid ejected from the second cylinder to be reduced to a small amount, even a small amount, under the same piston working stroke, thereby satisfying the high precision requirements for fluid output.
  • the fluid in the first cylinder is returned to the fluid storage tank by pushing down the piston rod connector without causing waste of fluid.
  • the converter 31 of the first embodiment can also be driven by a motor, in which case the core 27 of the converter 21 is rotated by the motor.
  • Four different actuation positions corresponding to the four fluid regulation states are achieved.
  • the fluid regulating device of the present invention a large amount of high-efficiency output of the fluid and a minute high-precision output of the fluid are realized.
  • the dual-cylinder pump arrangement enables independent fluid flow adjustment, resulting in further fluid conditioning and output efficiency.
  • the fluid regulating device according to the present invention further simplifies the components on the basis of achieving independent fluid flow adjustment, thereby reducing the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种流体调节装置(3),该流体调节装置(3)包括双量筒泵(8),所述双量筒泵(8)具有并排布置的第一量筒(10)和第二量筒(11),以及分别位于所述第一量筒(10)和第二量筒(11)中的第一活塞(12)和第二活塞(13),其中,所述第一活塞(12)的活塞杆(17)和所述第二活塞(13)的活塞杆(18)通过同一活塞杆连接头(19)并联地联接,从而使得所述第一活塞(12)和所述第二活塞(13)能够分别在所述第一量筒(10)和所述第二量筒(11)内做同步的往复式运动。另外还涉及包括流体调节装置(3)的调色机。

Description

流体调节装置 技术领域
本发明涉及用于对化学用品 (例如药剂、 美容美发产品、 香 水、 调色色浆、 漆等) 的量进行控制调节的流体调节装置, 该流 体调节装置尤其适用于调色机。 背景技术
调色机是根据用户需求通过选择、 注出基础颜色的色浆来调 配出更多种不同颜色涂料的机器。 调色机相对于手工调色有效率 高、 准确度高的优点, 特别是能保证同一个颜色每次调出来是完 全相同的。 目前市场可获得的调色机根据其应用场合的不同可以 大致分成两类, 一类是用于为工业目的制备大量产品的调色机, 例如被应用在工厂内的乳胶漆调色机等, 而另一类是为取样目的 来生产样品的调色机, 例如, 被应用在乳胶漆调色商店或实验室 等。第一种类型的调色机通常调色量大,对小注出量的精度较少, 而第二种类型的调色机由于经常会对很少量的乳胶漆(如 1升、 4 升装乳胶漆桶)进行调色, 调色色浆的注出量有时会非常小(如, 只要求注出某种色浆量为 0.077ml或 0.038ml或更小量), 则对精 度要求高, 但目前市场上调色店中使用的调色机也有大计量地注 出色浆的配色要求。 在本行业内都知道, 对于一种调色机, 如果 其能保证高效的大计量的色浆注出效率, 就很难保证小计量的色 浆注出精度。 相反, 如果要保证小计量色浆注出精度, 就难保证 大计量色浆注出时的注出效率。 这是一对矛盾, 一直困扰着调色 机的全面性能的提升, 给用户的全面调色带来一定的不便性。
调色机通常具有多个独立的调色回路, 每个回路对应一种待 混合的色浆。 各个回路由用于储存给定量色浆的色浆桶、 与色浆 桶连通用于从色浆桶吸取一定量的色浆并用于将其注入混合容器 中的泵(例如活塞泵、 齿轮泵、 螺杆泵和折叠泵等)、 以及相关联 的控制阀和管道等构成。
在调色机中, 色浆的注出量通常由泵的行程决定, 例如活塞 泵的色浆注出量取决于活塞泵的活塞行程, 而螺杆泵的色浆注出 量取决于螺杆转动角度等。 但无论泵的类型如何, 泵的工作行程 对应着相应的一定色浆注出量。
对于以上描述的第一种类型的调色机而言, 调色机所配备的 泵通常是大量泵。 这是因为, 当需要注出大量色浆时, 通常希望 泵的量大, 从而满足注出大量色浆要求的同时减少色浆注出时所 用的时间, 从而提高注出效率和产品生产率。 然而, 根据使用者 的各种需要, 很多时候也需要注出的色浆量小, 甚至是微量的色 浆量, 此时这种大量的泵往往达不到微量精度要求。 这是因为, 对于大量的泵而言, 小量甚至微量的色浆注出所对应的泵的工作 行程非常小。 此时, 要求这种泵在机械结构上能够分辨和实现微 小的工作行程, 同时又要保证该工作行程所注出的色浆量精度度 高, 这是非常困难的事情。 为了弥补大量泵的不足, 人们会利用 设有小量泵的调色机, 也就是以上描述的第二种调色机来实现微 量且高精度要求。 以带有活塞泵的这种调色机为例, 小量的活塞 泵在注出色浆时其活塞的移动行程比大量的活塞泵注出同等量时 的活塞移动行程要大, 甚至前者是后者的好几倍。 由此, 避免了 大量的泵在注出微量色浆时无法保证注出精度的问题。 然而, 小 量的泵要实现大量注出又是繁瑣费时效率低的。 而且, 出于成本 和尺寸的考虑, 同时提供两种精度不同的调色机是不现实的。 另 外一点, 不只是大、 小活塞泵的注出行程决定色浆注出的精度和 效率, 注出色浆的出浆嘴的孔径大小也同样影响色浆的注出效率 和注出精度。 也就是说, 色浆注出口的孔径大时, 好实现高效率 的色浆注出, 色浆注出口的孔径小的话, 好实现小计量色浆注出 的精度, 但会障碍高效的色浆注出。
US2009/0236367A1公开了一种用于调色机的双活塞组件,其 中, 小活塞在致动器 (活塞杆)驱动下在大活塞中在收缩位置和 排放位置之间运动, 以实现小量的色浆注出。 该结构中, 当致动 器 (活塞杆)往下移动时, 大活塞被同步移动, 当大活塞运动到 最下面位置不能再移动时, 接下来, 活塞杆进一步向下推动, 使 得小活塞被驱动, 从而输出小量的色浆。 这种双活塞组件虽然节 省了一定的空间, 但是结构设计复杂, 控制步骤繁瑣。 小活塞必 须在大活塞完成其行程后才能被致动, 而且在设计这种结构时必 须要使得小活塞中的弹簧力大于大活塞注出色浆时的推动力, 为 了确保注出精度的可靠保证, 弹簧力通常要设计的有很大的, 富 余量, 这样才能保证大活塞与致动器(活塞杆)的同步注出移动, 保证所需的大计量色浆的注出精度。 而大活塞注出色浆所需的推 动力通常比较大。 也就是说, 小活塞上的弹簧的预压紧力也得比 最大的大活塞推动力要大许多才能实现这种同步, 这就使得小活 塞运动注出色浆时所需的力是克服弹簧力和小活塞推动色浆的力 之和。 这个合力通常很大, 使得活塞泵的致动器所需的功率也就 增大, 无形地增加了该机构的制造成本。
EP1908510A2也公开了另一类型的调色机, 其利用两个色浆 量控制回路与同一色浆桶和注出口连接, 以实现色浆的大量和微 量注出。 这两个控制回路相对独立, 各自具有分离的泵和三通阀 等组成部件。 由于配备了组成部件大体类似的两套控制回路, 该 调色机体积大, 结构冗杂, 成本高。
因此, 目前市场上的调色机存在待改进的空间。 发明内容 为了解决上文所描述的技术问题, 本发明的目的之一在于提 供一种流体调节装置, 该装置包括双量筒泵, 所述双量筒泵具有 并排布置的第一量筒和第二量筒、 以及分别位于所述第一量筒和 所述第二量筒中的第一活塞和第二活塞, 其中, 所述第一活塞的 活塞杆和所述第二活塞的活塞杆通过同一活塞杆连接头并联地联 接, 从而使得所述第一活塞和所述第二活塞能够分别在所述第一 量筒和所述第二量筒内做同步的往复式运动, 并且其中, 所述流 体调节装置还包括调节机构, 该调节机构具有包括机械式转换器 以及用于致动该转换器的致动器, 所述机械式转换器能够在所述 致动器的驱动下实现多个流体调节状态, 其中, 所述转换器具有 壳体和位于该壳体内的芯部, 所述壳体包括第一表面、 第二表面 和第三表面, 在所述第一表面上设置有与所述第一量筒流体连通 的第一通孔和与所述第二量筒流体连通的笫二通孔; 在所述第二 表面上设置有用于使所述第一量筒与外部流体贮罐进行流体连通 的第三通孔和用于使所述第二量筒与所述外部流体贮罐进行流体 连通的第四通孔; 在所述第三表面上设置有用于使所述第一量筒 与外部流体接收容器进行流体连通的第五通孔和使所述第二量筒 与外部流体接收容器进行流体连通的第六通孔。
优选地, 所述第一量筒的直径大于所述第二量筒的直径, 并 且所述第一活塞杆大于所述第二活塞杆的直径。
优选地, 所述调节机构具有第一流体调节状态, 在该第一流 体调节状态中, 所述致动器处于第一致动位置, 而所述转换器的 芯部在所述致动器的驱动下允许所述第一量筒仅通过所述第一通 孔和所述第三通孔通过管路与所述流体贮罐流体连通, 并允许所 述第二量筒仅通过所述第二通孔和所述第四通孔通过管路与所述 流体贮罐流体连通。
优选地, 所述流体调节装置还包括第二流体调节状态, 在该 第二流体调节状态中, 所述致动器处于第二致动位置, 并且所述 转换器的芯部在所述致动器的驱动下允许所述第一量筒仅通过所 述第一通孔和所述第五通孔在没有管路的情况下与所述流体接收 容器直接流体连通, 并允许所述第二量筒仅通过所述第二通孔和 所述第四通孔通过管路与所述流体贮罐流体连通。
优选地, 所述流体调节装置还包括第三流体调节状态, 在该 第三流体调节状态中, 所述致动器处于第三致动位置, 并且所述 转换器的芯部在所述致动器的驱动下允许所述第一量筒仅通过所 述第一通孔和所述第五通孔在没有管路的情况下与所述流体接收 容器直接流体连通, 并允许所述第二量筒仅通过所述第二通孔和 所述第六通孔在没有管路的情况下与所述流体接收容器直接流体 连通。
优选地, 所述流体调节装置包括第四流体调节状态, 在该第 四流体调节状态中, 所述致动器处于所述第四致动位置, 并且所 述转换器的芯部在所述致动器的驱动下允许所述第二量筒仅通过 所述第二通孔和所述第六通孔在没有管路的情况下与所述流体接 收容器直接流体连通, 并允许所述第一量筒仅通过所述第一通孔 和所述第四通孔通过管路与所述流体贮罐流体连通。
优选地, 所述致动器是手动转换杆。
优选地, 所述致动器是电机。
优选地, 所述机械式转换器是柱岡芯转换阀。
本发明的另一个方面涉及一种流体调节装置, 该装置包括双 量筒泵, 所述双量筒泵具有并排布置的第一量筒和第二量筒、 以 及分别位于所述第一量筒和所述第二量筒中的第一活塞和第二活 塞, 其中, 所述第一活塞的活塞杆和所述第二活塞的活塞杆通过 同一活塞杆连接头并联地联接, 从而使得所述第一活塞和所述第 二活塞能够分别在所述第一量筒和所述第二量筒内做同步的往复 式运动, 并且其中, 所述流体调节装置还包括调节机构, 该调节 机构包括电动式转换器和用于致动该电动式转换器的致动器, 所 述电动式转换器能够在所述致动器的驱动下实现多个流体调节状 态, 其中, 所述转换器具有壳体和位于该壳体内的芯部, 所述壳 体包括第一表面、 第二表面和第三表面, 在所述第一表面上设置 有与所述第一量筒流体连通的第一通孔和与所述第二量筒流体连 通的第二通孔; 在所述第二表面上设置有用于使所述第一量筒与 外部流体贮罐进行流体连通的第三通孔和用于使所述第二量筒与 所述外部流体贮罐进行流体连通的第四通孔; 在所述第三表面上 设置有用于使所述第一量筒与外部流体接收容器进行流体连通的 第五通孔和使所述第二量筒与外部流体接收容器进行流体连通的 第六通孑 IJ。
优选地, 所述芯部具有通过一联轴器与所述致动器同轴地连 接的可转动的第一芯片和第二芯片, 这两个可转动的芯片在所述 致动器的驱动下能够同步地呈角度地旋转, 从而实现所述多个流 体调节状态。
优选地, 所述调节机构具有第一流体调节状态, 在该第一流 体调节状态中, 所述第一芯片和所述笫二芯片都处于第一转动位 置中, 此时, 所述第一芯片允许所述第一量筒仅通过所述第一通 孔和所述第三通孔通过管路与所述流体贮罐流体连通, 而所述第 二芯片允许所述第二量筒仅通过所述第二通孔和所述第四通孔通 过管路与所述流体贮罐流体连通。
优选地, 所述调节机构具有第二流体调节状态, 在该第二流 体调节状态中, 所述第一芯片和所述第二芯片都处于第二转动位 置中, 此时, 所述第一芯片允许所述第一量筒仅通过所述第一通 孔和所述第五通孔在没有管路的情况下与所述流体接收容器直接 流体连通, 并且所述第二芯片允许所述第二量筒仅通过所述第二 通孔和所述第四通孔通过管路与所述流体贮罐流体连通。
优选地, 所述调节机构具有第三流体调节状态, 在该第三流 体调节状态中, 所述第一芯片和所述笫二芯片都处于第三转动位 置中, 此时, 所述第一芯片和所述第二芯片分别阻断了所述第一 量筒和所述第二量筒与所述流体接收容器和所述流体接收容器的 流体连通。
优选地, 所述调节机构具有第四流体调节状态, 在该第四流 体调节状态中, 所述第一芯片和所述第二芯片都处于第四转动位 置中, 此时, 所述第二芯片允许所述第二量筒仅通过所述第二通 孔和所述第六通孔在没有管路的情况下与所述流体接收容器直接 流体连通, 而所述第一芯片允许所述第一量筒仅通过所述第一通 孔和所述第四通孔通过管路与所述流体贮罐流体连通。
优选地, 第三通孔和所述第四通孔通过同一管路与所述流体 贮罐连接。
优选地, 所述第六通孔的直径小于所述第五通孔的直径, 从 而所述流体调节装置通过所述第五通孔实现大流量的流体注出, 而通过所述第六通孔实现小流量或者微流量的流体注出。
本发明的又一个方面涉及一种调色机, 该调色机包括: 至少一个流体贮罐; 至少一个流体注出口; 以及以上所描述的流 体调节装置, 该流体调节装置与相应的所述流体贮罐和所述流体 注出口选择性地流体连通。
利用本发明的流体调节装置, 能够仅通过单个调色机便可以 以低成本实现高产量和高精度要求, 不仅体积尺寸小, 操作者操 纵控制起来也简单方便。 附图说明
现在将参考附图以非限制性的方式对本发明进行进一步描述 和阐明, 在附图中:
图 1是示意性地示出了根据本发明第一实施例的流体调节装 置的透视图;
图 2是示意性地示出了带有根据本发明第一实施例的流体调 节装置的调色机的整体装配图;
图 3是示意性地示出了根据本发明第一实施例的流体调节装 置的调节机构的转换器的透视图;
图 4是示意性地示出了根据本发明第一实施例的流体调节装 置的调节机构中的第一个流体调节状态的局部剖开透视图;
图 5是示意性地示出了根据本发明第一实施例的流体调节装 置的调节机构中的第二个流体调节状态的局部剖开透视图;
图 6是示意性地示出了根据本发明第一实施例的流体调节装 置的调节机构中的第三个流体调节状态的局部剖开透视图;
图 7是示意性地示出了根据本发明第一实施例的流体调节装 置的调节机构中的第四个流体调节状态的局部剖开透视图;
图 8是示意性地示出了根据本发明第二实施例的流体调节装 置的局部剖开透视图;
图 9是示意性地示出了带有根据本发明第二实施例的流体调 节装置的调色机的整体装配图;
图 10 是示意性地示出了根据本发明第二实施例的流体调节 装置的调节机构中的致动器和相关联的转换器芯部的透视图; 图 11 是示意性地示出了根据本发明第二实施例的流体调节 装置的调节机构中的第一个流体调节状态的局部剖开透视图; 图 12 是示意性地示出了根据本发明第二实施例的流体调节 装置的调节机构中的第二个流体调节状态的局部剖开透视图; 图 13 是示意性地示出了根据本发明笫二实施例的流体调节 装置的调节机构中的第三个流体调节状态的局部剖开透视图; 图 14 是示意性地示出了根据本发明笫二实施例的流体调节 装置的调节机构中的第四个流体调节状态的局部剖开透视图。 具体实施方式
先参见图 1, 该图示意性地示出了根据本发明第一实施例的 根据本发明第一实施例的流体调节装置 3。 它可以被用在如图 2 所示的调色机 1中用来进行调色。 需要说明的是, 为了使描述更 加清楚明确, 采用了例如"上,,、 "下"、 "左"、 "右"等方向术语。 但本领域技术人员将清楚了解以上结合附图给出的取向不应作为 对发明的限制。 此外, 图 1中所示的双量筒泵、 致动器和流体出 入口的位置并不是必须按照图示要求排列, 可以根据本发明的精 神在一定范围内做出变型。
在图 1所示的第一实施例中, 流体调节装置 3由双量筒泵 8 和调节机构 9组成。 双量筒泵 8优选地是活塞泵, 具有直径较大 的第一量筒 10和直径较小的第二量筒 11。 第一量筒 10和第二量 筒 11优选地具有沿其纵向轴线基本上伸长的圓筒状形状,并且具 有基本上相同的纵向方向长度。优选地, 第一量筒 10的直径为第 二量筒 11的直径的 4 - 10倍。
第一量筒 10和第二量筒 11布置成在其一端处通过量筒定位 件 14并排地定位,并还布置成在其另一端处通过调节机构上的第 一通孔 22和第二通孔 23并排地连接到调节机构 9 (其将在下文 详细描述)。第一和第二量筒可以以本领域公知的方式与量筒定位 件 14以及调节机构 19连接。 例如, 第一和第二量筒可以通过过 盈配合与量筒定位件 14连接,此时笫一和第二量筒被分别压配合 到量筒定位件 14的第一定位孔 15和第二定位孔 16中。此外, 第 一和第二量筒可以通过螺紋接合的方式与量筒定位件 14 的第一 定位孔 15和第二定位孔 16连接。 第一和第二量筒可以以类似的 方式连接到调节机构 19第一通孔 22和第二通孔 23。
在第一量筒 10中设置能够进行往复式运动的第一活塞 12(如 下文的图 8中所示), 并且在第二量筒 11中设置能够进行往复式 运动的第二活塞 13 (如下文的图 8中所示)。 被置于第一量筒 10 中的第一活塞 12的直径相应地大于被置于第二量筒 11中的第二 活塞 13的直径。 第一活塞 12的活塞杆 17和第二活塞 13的活塞 杆 18可以直径相同或者不同,但都具有与对应的活塞连接的第一 端和与同一活塞杆连接头 19连接的第二端。 活塞杆 17, 18的第 二端分别穿过量筒定位件 14的第一定位孔 15和第二定位孔 16 附接至活塞杆连接头 19。 活塞杆连接头 19将两个量筒中的活塞 杆 17、 18连接在一起,从而使得第一活塞 12的活塞杆 17和第二 活塞 13的活塞杆 18能够在施加给活塞杆连接头 19的作用力下同 时同步地推动第一活塞 12和第二活塞 13在第一量筒 10和第二量 筒中做同步的往复式运动。 第一活塞 12的活塞杆 17 (第一活塞 杆 17 )和第二活塞 13的活塞杆 18 (第二活塞杆 18 )可以与活塞 杆连接头 19一体地形成为单件,也可以通过本领域公知的连接方 式——例如粘接、焊接等——与活塞杆连接头 19结合在一起。优 选地, 活塞杆连接头 19沿着基本上垂直于量筒筒身的方向布置, 从而保证第一活塞杆 17和第二活塞杆 18在运动时能够相对于第 一量筒 10和第二量筒 11同时处于相同的纵向深度处。
进一步如图 1所示地, 根据本发明第一实施例的流体调节装 置 3还包括调节机构 9。调节机构 9包括转换器 21和用于致动该 转换器的致动器 20。 转换器 21例如优选地是机械式转换岡, 并 更加优选地是柱芯式转换阀。
图 2示意性地示出了装配有根据本发明第一实施例的流体调 节装置 3的调色机 1, 其从总体上进一步包括用于盛装色浆的流 体贮罐 2和位于流体贮罐 2和流体调节装置 3下方的流体接收容 器 4。 流体调节装置 3通过输出管路 5与流体贮罐 2流体连通, 并将流体排放到流体接收容器 4中。
视实际需要, 调色机 1通常具有两个以上的流体贮罐 2来盛 装不同颜色的基础色浆, 以便同时或分别地输出不同颜色的色浆 到流体接收容器 4中, 再例如与基础漆进行充分混合, 从而调出 所期望的颜色。
在图 2所示的调色机中, 在调节机构 9的致动器 20驱动下, 双量筒泵 8能够与流体贮罐 2和输出管路 5选择性地流体联通, 从而能够实现多个流体调节状态 (将在下文详细描述)。
图 3中进一步示意性地示出了根据本发明第一实施例的流体 调节装置 3的调节机构 9中的转换器 21。 如图所示, 转换器 21 具有优选地呈大致矩形形状的壳体, 但壳体的形状并不仅限于矩 形形状。 在该实施例中, 如之前已提及地, 转换器 21优选地为转 换阀, 并更加优选地的是三通转换阀。转换器 21的壳体具有第一 表面 I, 该表面设有用于与第一量筒 10接合的第一通孔 22和用 于与第二量筒 11接合的第二通孔 23。 优选地, 这些通孔并排设 置, 并例如以本领域公知的方式与双量筒泵 8的相应量筒密封接 合, 从而防止流体泄漏。 双量筒 8的各个量筒可以可选地通过管 路与转换器 21的第一表面 I接合,或者优选地与该表面 I直接接 合。
转换器 21的壳体还具有和流体贮罐 2接合的第二表面 II和 导向流体接收容器 4的第三表面 III。 可选地, 第二表面 II和第 三表面 III位于转换器 21的相对两侧上。在第二表面 II上设有两 个通孔 第三通孔 24和第四通孔 25 分别通过这两个通孔, 双量筒泵 8的第一量筒 10和第二量筒 11在转换器 21的控制下与 流体贮罐 2选择性地流体连通, 以便从流体贮罐 2吸取流体或者 将流体返回到流体贮罐 2中。 转换器 21允许第一量筒 10和第二量筒 11中的流体能够选择 性地通过表面 III上的第五通孔 26和第六通孔 26,分别在没有管 路的情况下直接注出到流体接收容器 4中。 具体而言, 第五通孔 26和第六通孔 26,是分离的两个通孔, 其中, 第五通孔 26与第一 量筒 10选择性地连通,而第六通孔 26,与第二量筒 11选择性地连 通。 这两个通孔的直径根据注出精度要求而不同。 一般地, 与第 一量筒 10连通的通孔 26的直径大于与第二量筒 11连通的通孔 26,的直径。 通过设置两个分离的注出通孔, 进一步确保了不同的 注出精度。 根据本发明的一个实施例, 该第五通孔也可以是表面 III上的单孔,第一和第二量筒与该单个通孔选择性地连通以注出 流体。
下文将结合图 4至图 7详细地描述通过根据本发明第一实施 例的流体调节装置 3的调节机构 9实现的四个流体调节状态。 在 该实施例中, 转换器 21能够在致动器 20 (如图 1所示) 的驱动 下转换调节机构 9的所述四个流体调节状态。 图中所示致动器 20 是手动的致动杆, 具有与所述四个流体调节状态对应的四个不同 致动位置。为了更好地示出转换器 21是如何实现四个流体调节状 态地, 图 4至图 7所示转换器 21被局部剖开处理, 露出了转换器 21的位于壳体中的芯部 27,优选为柱芯式调节阀的阀芯。该阀芯 27与致动器 20机械地连接, 并在致动器 20的驱动下转动。
首先如图 4所示, 在调节机构 9分别与流体贮罐 2、 双量筒 泵 8和流体混合 4连接好的情况下,当调节机构 9的致动器 20(致 动杆, 在图 4中未示出)处于第一致动位置 Α (如图 1所示)时, 调节机构 9位于第一流体调节状态中。 此时, 调节机构 9的转换 器 21的芯部允许双量筒泵 8的第一量筒 10经由第一通孔 22和第 三通孔 24与流体贮罐 2流体连通。 类似并同步地, 第二量筒 11 经由第二通孔 23和第四通孔 25与流体贮罐 2流体连通。 由此一 来, 向外拉动双量筒泵 8的活塞杆连接头 19将允许第一活塞 12 和第二活塞 13在第一量筒 10和第二量筒 11 中做同步的向外运 动,从而将流体贮罐 2中的流体同时吸入第一量筒 10和第二量筒 11内。 需注意的是, 由于第一量筒 10和第二量筒 11的内部容积 不同, 相同的活塞工作行程吸入或者推出的流体量不同。 直径较 大的第一量筒 10在同一活塞工作行程中吸入的流体量较多,而直 径较小的第二量筒 11在同一活塞工作行程中吸入的流体量较少。 在该状态中,转换器 21的芯部 27阻止了第一量筒 10和第二量筒 11与第五通孔 26和第六通孔 26,之间的流体连通。 由此, 在该状 态中,进一步向内推动双量筒泵 8的活塞杆连接头 19只会让两个 量筒中的流体返回到流体贮罐 2中。 在第一流体调节状态下, 允 许存留在第一和第二量筒中的流体回流到流体贮罐 2将是特别有 利的, 这样可以最大程度地减少浪费, 从而节约成本, 也利于环 保。
在致动器 (致动杆) 20处于第二致动位置 B (如图 1所示) 时, 调节机构 9位于第二流体调节状态。 此时, 转换器 21的芯部 27在致动器 (致动杆) 20驱动下进一步转动, 允许第一通孔 11 与第五通孔 26的流体连通、以及第二通孔 23与第四通孔 25的流 体连通。 此时, 若推动双量筒泵 8的活塞杆连接头 19, 则在第一 流体调节状态中已被吸入第一量筒 10 中的流体可以经由第一通 孔 11和第五通孔 26在没有管路的情况下注入到流体接收容器 4 中。 然而, 由于转换器 21的芯部 27仍允许第二通孔 23与第三通 孔 24的流体连通, 但切断了第二通孔 23与第六通孔 26,之间的 流体连通, 因此, 推动第二量筒 11中的第二活塞 13会让其中的 流体返回至流体贮罐 2中, 而不会从调节机构 9注出到流体接收 容器 4中。
值得注意的是, 该第二流体调节状态特别适用于需要大量流 体输出的应用场合, 从而能够以较高的流体输出效率快速且大量 地输出流体。 由于下推活塞杆连接头 19使得第二量筒 11内的流 体流回到流体贮罐 2中, 没有造成对流体的浪费。
当致动器 (致动杆) 20处于笫三致动位置 C (如图 1所示) 时, 调节机构 9处于如图 6所示的第三流体调节状态。 此时, 转 换器 21的芯部 27在致动器(致动杆) 20驱动下转动成使得第一 通孔 22、 第二通孔 23与流体贮罐 2之间的流体连通被阻断。 也 就是说, 第一通孔 22不与第三通孔 24流体连通, 同时第二通孔 23不与第四通孔 25流体连通, 但是第一通孔 22和第二通孔 23 都被允许分别与第五通孔 26和第六通孔 26,流体连通。 在该状态 下, 若推动双量筒泵 8的活塞杆连接头 19, 则在第一流体调节状 态中已被吸入第一量筒 10中的流体可以经由第一通孔 22和第五 通孔 26在没有管路的情况下注入到流体接收容器 4中。与此同步 地, 推动双量筒泵 8的活塞杆连接头 19还使得第二量筒 11中的 流体可以经由第二通孔 23和第六通孔 26,在没有管路的情况下注 入到流体接收容器 4中。
当调节机构 9处于如图 7所示的第四流体调节状态时, 致动 器 (致动杆) 20位于第四致动位置 D。 此时, 转换器 21的芯部 27被转动成使得双量筒泵 8的第一量筒 10经由第一通孔 22和第 三通孔 24与流体贮罐 2流体连通, 以便在向下推动第一活塞 12 时, 在第一量筒中的流体通过第一和第三通孔返回流体贮罐中。 此外, 双量筒泵 8的第二量筒 11与流体接收容器 4流体连通,使 得第二量筒中的流体在向下推动第二活塞 13时从第二通孔 23经 第六通孔 26,出来, 并直接进入流体接收容器 4中。
在该第四流体调节状态中, 根据本发明第一实施例的流体调 节装置对于需要高精度的微量流体输出应用场合将是非常有利 的, 因为此时是容积较小的第二量筒实现流体的输出, 而容积较 大的第一量筒仅与流体贮罐流体连通。 这样的设计使得在相同的 活塞工作行程下, 从第二量筒推出的流体量能够变得很少量, 甚 至是微量, 从而满足了对流体输出量的高精度要求。 同时, 由于 下推活塞杆连接头使得第一量筒内的流体流回到流体贮罐中, 没 有造成对流体的浪费。
根据本发明第二实施例的流体调节装置在图 8中示意性地示 出, 为了清楚性目的, 与第一实施例相同的组成部件分别用相同 的附图标记指代。 在图 8所示的笫二实施例中, 流体调节装置 3, 总体上由双量筒泵 8和调节机构 9,组成。 与第一实施例的流体调 节装置 3相比, 第二实施例的流体调节装置 3,的双量筒泵与流体 调节装置 3的双量筒泵在构造上基本上相同。 在图 8中, 双量筒 泵 8被局部地剖开以露出第一活塞 12和第二活塞 13。 因此, 为 了避免说明书过于冗长, 在此省略了对第二实施例的双量筒泵 8 的详细描述。
图 9示意性地示出了装配有根据本发明第二实施例的流体调 节装置 3,的调色机 1,。 除了流体调节装置不同外, 调色机 1,与第 一实施例的调色机 1大体相同。 因此, 为了避免说明书过于冗长, 在此省略了对第二实施例的调色机 1,的相同组成部件的详细描 述。
与第一实施例中的手动式机械调节机构 9不同, 第二实施例 的流体调节装置 3,的调节机构 9,是电动式调节机构, 包括致动器 20'和电转换器 2Γ。 致动器 20'优选为电机, 转换器 2Γ通过联轴 器 28 (如图 10所示) 与电机 20,电连接。 优选地, 电转换器 21, 是瓷芯阀, 其芯部 27,具有两块与联轴器 28同轴地设置的可转动 瓷芯阀片 35、 36, 用来实现双量筒泵 8与流体贮罐 2和流体接收 容器 4之间的四个不同的流体调节状态。 然而, 本领域技术人员 应当了解的是, 电转换器也可以具有其它的形式, 其阀片也可是 由其它材料组成, 例如金属。
图 10示意性地示出了第二实施例的转换机构 9,的电机 20,和 转换器 21,的芯部 27,。 在第二实施例中, 转换器 21,的壳体形状 与第一实施例的基本相同, 为大致矩形形状, 但是壳体的形状并 不局限于该形状。 转换器 21,的芯部 27,位于壳体中, 并具有与壳 体的相应表面上的各个通孔进行流体连通的导管。 具体而言, 芯 部 27,具有与壳体的第一表面 I上的第一通孔 11流体连通的笫一 导管 29和与第一表面 I上的第二通孔 23流体连通的第二导管 30。 通过第一导管 29, 双量筒泵 8的容积较大的第一量筒 10能够经 由第一通孔 22从流体贮罐 2抽吸流体,或者将流体返回该流体贮 罐中。 类似地, 通过第二导管 30, 双量筒泵 8的容积较小的第二 量筒 11能够经由第二通孔 23从流体贮罐 2抽吸流体, 或者将流 体返回该流体贮罐中。
芯部 27,进一步包括与壳体的第二表面 II上的第三通孔 24选 择性流体连通的第一导管 31、与第三表面 III上的第五通孔 26选 择性流体连通的第二导管 32、 与第二表面 II上的第四通孔 25选 择性流体连通的第二导管 33、 以及与第三表面 III上的第六通孔 26,选择性流体连通的第四导管 34。
通过芯部 27,的第一瓷芯阀片 35来调节第一量筒 10与流体 贮罐 2和流体接收容器 4的流体连通状态, 并且通过芯部 27,的 第二瓷芯阀片 36来调节第二量筒 11与流体贮罐 2和流体接收容 器 4的流体连通状态。
如图 11所示, 芯部 27,的第一和第二瓷芯阀片的转动角度被 设定为 0度。 此时的转动机构 9,处于如上文所述的第一流体调节 状态。 调节机构 9,的转换器芯部 27,允许双量筒泵 8的第一量筒 10经由第一通孔 22、 第一导管 31以及第三通孔 24与流体贮罐 2 流体连通。 类似并同步地, 第二量筒 11经由第二通孔 23、 第三 导管 33和第四通孔 25与流体贮罐 2流体连通。 由此一来, 向外 拉动双量筒泵 8的活塞杆连接头 19将允许第一活塞 12和第二活 塞 13在第一量筒 10和第二量筒 11中做同步的向外运动,从而将 流体贮罐 2中的流体同时吸入第一量筒 10和第二量筒 11内。 需 注意的是, 由于第一量筒 10和第二量筒 11的内部容积不同, 相 同的活塞工作行程吸入或者推出的流体量不同。 直径较大的第一 量筒 10在同一活塞工作行程中吸入的流体量较多,而直径较小的 第二量筒 11在同一活塞工作行程中吸入的流体量较少。在该状态 中, 转换器 21,的芯部 27,阻止了第一量筒 10和第二量筒 11分别 与第五通孔 26和第六通孔 26,之间的流体连通。 由此, 在该状态 中,进一步向内推动双量筒泵 8的活塞杆连接头 19只会让两个量 筒中的流体返回到流体贮罐 2中。 在笫一流体调节状态下, 允许 存留在第一和第二量筒中的流体回流到流体贮罐 2将是特别有利 的, 这样可以最大程度地减少浪费, 从而节约成本, 也利于环保。
如图 12所示, 在电机 20,驱动联轴器 28使第一瓷芯阀片 35 和第二瓷芯阀片 36同时转动 90度时, 调节机构 9,位于第二流体 调节状态。 此时, 转换器 21,的芯部 27,允许第一通孔 22经由第 二导管 32与第五通孔 26的流体连通、以及第二通孔 23经由第三 导管 33与第四通孔 25的流体连通。 此时, 若推动双量筒泵 8的 活塞杆连接头 19,则在第一流体调节状态中已被吸入第一量筒 10 中的流体可以经由第一通孔 22、 笫二导管 32以及第五通孔 26直 接注入到流体接收容器 4中。 然而, 由于转换器 21,的芯部 27,仍 允许第二通孔 23与第三通孔 24的流体连通, 但切断了第二通孔 23与第六通孔 26,之间的流体连通, 因此, 推动第二量筒 11中的 第二活塞 13会让其中的流体返回至流体贮罐 2中,而不会从调节 机构 9,注出到流体接收容器 4中。
值得注意的是, 该第二流体调节状态特别适用于需要大量流 体输出的应用场合, 从而能够以较高的流体输出效率快速且大量 地输出流体。 由于下推活塞杆连接头 19使得第二量筒 11内的流 体流回到流体贮罐 2中, 没有造成对流体的浪费。
如图 13所示, 当电机 20,驱动联轴器 28使第一瓷芯阀片 35 和第二瓷芯阀片 36转动 180度时, 调节机构 9,位于第三流体调 节状态。此时,转换器 21,的芯部 27,的第一和第二阀片在电机 20, 驱动下同时转动成使得第一通孔 22、 第二通孔 23与流体贮罐 2 之间的流体连通被阻断。 与此同时, 第一通孔 22和第二通孔 23 与第五通孔 26和第六通孔 26,的流体连通也分别被阻断。
当调节机构 9,处于如图 14所示的第四流体调节状态时, 电 机 20,通过联轴器 28使得第一阀片和第二阀片转动 270度。此时, 转换器 21,的芯部 27,被转动成使得双量筒泵 8的第一量筒 10经 由第一通孔 22、 第一导管 31和第三通孔 24与流体贮罐 2流体连 通, 以便在向下推动第一活塞 12时,在第一量筒中的流体通过第 一通孔、 第一导管和第三通孔返回流体贮罐中。 此外, 双量筒泵 8的第二量筒 11经由第四导管 34、 第五通孔 26与流体接收容器 4流体连通,使得第二量筒中的流体在向下推动第二活塞 13时从 第二通孔 23通过第四导管 34经第六通孔 26,出来, 并直接进入 流体接收容器 4中。
在该第四流体调节状态中, 根据本发明第一实施例的流体调 节装置对于需要高精度的微量流体输出应用场合将是非常有利 的, 因为此时是容积较小的第二量筒实现流体的输出, 而容积较 大的第一量筒仅与流体贮罐流体连通。 这样的设计使得在相同的 活塞工作行程下, 从第二量筒推出的流体量能够变得很少量, 甚 至是微量, 从而满足了对流体输出量的高精度要求。 同时, 由于 下推活塞杆连接头使得第一量筒内的流体流回到流体贮罐中, 没 有造成对流体的浪费。 然而, 还需提及的是, 虽然在本实施例中使用了电机, 然而 第一实施例的转换器 31也可以用电机来驱动,此时,通过电机驱 动转换器 21的芯部 27转动来实现与所述四个流体调节状态对应 的四个不同致动位置。
根据本发明的流体调节装置, 实现了流体的大量高效率输出 和流体的微量高精度输出。 在本发明的流体调节装置中, 双量筒 泵的设置实现了独立的流体流量调节, 使得流体的调节和输出效 率得以进一步提升。 此外, 根据本发明的流体调节装置在实现独 立的流体流量调节的基础上还精简了组成部件, 降低了成本。
尽管已经结合在此公开的结构说明了本发明, 但对所述细节 不具有限值作用, 并且本发明试图覆盖在改进目的的范围内或者 所附权利要求书范围内的各种变型和改变。

Claims

权 利 要 求
1. 一种流体调节装置, 该装置包括双量筒泵, 所述双量筒泵 具有并排布置的第一量筒和第二量筒、 以及分别位于所述第一量 筒和所述第二量筒中的第一活塞和第二活塞, 其中, 所述第一活 塞的活塞杆和所述第二活塞的活塞杆通过同一活塞杆连接头并联 地联接, 从而使得所述第一活塞和所述第二活塞能够分别在所述 第一量筒和所述第二量筒内做同步的往复式运动, 并且其中, 所 述流体调节装置还包括调节机构, 该调节机构具有包括机械式转 换器以及用于致动该转换器的致动器, 所述机械式转换器能够在 所述致动器的驱动下实现多个流体调节状态, 其中, 所述转换器 具有壳体和位于该壳体内的芯部, 所述壳体包括第一表面、 第二 表面和第三表面, 在所述第一表面上设置有与所述第一量筒流体 连通的第一通孔和与所述第二量筒流体连通的第二通孔; 在所述 第二表面上设置有用于使所述第一量筒与外部流体贮罐进行流体 连通的第三通孔和用于使所述第二量筒与所述外部流体贮罐进行 流体连通的第四通孔; 在所述第三表面上设置有用于使所述第一 量筒与外部流体接收容器进行流体连通的第五通孔和使所述第二 量筒与外部流体接收容器进行流体连通的第六通孔。
2. 根据权利要求 1所述的流体调节装置, 其特征在于, 所述 第一量筒的直径大于所述第二量筒的直径, 并且所述第一活塞杆 大于所述第二活塞杆的直径。
3. 根据权利要求 1或 2所述的流体调节装置, 其特征在于, 所述调节机构具有第一流体调节状态,在该第一流体调节状态中, 所述致动器处于第一致动位置, 而所述转换器的芯部在所述致动 器的驱动下允许所述第一量筒仅通过所述第一通孔和所述第三通 孔通过管路与所述流体贮罐流体连通, 并允许所述第二量筒仅通 过所述第二通孔和所述第四通孔通过管路与所述流体贮罐流体连 通。
4. 根据权利要求 3所述的流体调节装置, 其特征在于, 所述 流体调节装置还包括第二流体调节状态, 在该第二流体调节状态 中, 所述致动器处于第二致动位置, 并且所述转换器的芯部在所 述致动器的驱动下允许所述第一量筒仅通过所述第一通孔和所述 第五通孔在没有管路的情况下与所述流体接收容器直接流体连 通, 并允许所述第二量筒仅通过所述第二通孔和所述第四通孔通 过管路与所述流体贮罐流体连通。
5. 根据权利要求 4所述的流体调节装置, 其特征在于, 所述 流体调节装置还包括第三流体调节状态, 在该第三流体调节状态 中, 所述致动器处于第三致动位置, 并且所述转换器的芯部在所 述致动器的驱动下允许所述第一量筒仅通过所述第一通孔和所述 第五通孔在没有管路的情况下与所述流体接收容器直接流体连 通, 并允许所述第二量筒仅通过所述第二通孔和所述第六通孔在 没有管路的情况下与所述流体接收容器直接流体连通。
6. 根据权利要求 5所述的流体调节装置, 其特征在于, 所述 流体调节装置包括第四流体调节状态,在该第四流体调节状态中, 所述致动器处于所述第四致动位置, 并且所述转换器的芯部在所 述致动器的驱动下允许所述第二量筒仅通过所述第二通孔和所述 第六通孔在没有管路的情况下与所述流体接收容器直接流体连 通, 并允许所述第一量筒仅通过所述第一通孔和所述第四通孔通 过管路与所述流体贮罐流体连通。
7. 根据权利要求 1或 2所述的流体调节装置, 其特征在于, 所述致动器是手动转换杆。
8. 根据权利要求 1或 2所述的流体调节装置, 其特征在于, 所述致动器是电机。
9. 根据权利要求 1或 2所述的流体调节装置, 其特征在于, 所述机械式转换器是柱芯式转换阀。
10. 根据权利要求 1或 2所述的流体调节装置, 其特征在于, 所述第六通孔的直径小于所述第五通孔的直径, 从而所述流体调 节装置通过所述第五通孔实现大流量的流体注出, 而通过所述第 六通孔实现小流量或者微流量的流体注出。
11. 一种流体调节装置, 该装置包括双量筒泵, 所述双量筒泵 具有并排布置的第一量筒和第二量筒、 以及分别位于所述第一量 筒和所述第二量筒中的第一活塞和第二活塞, 其中, 所述第一活 塞的活塞杆和所述第二活塞的活塞杆通过同一活塞杆连接头并联 地联接, 从而使得所述第一活塞和所述第二活塞能够分别在所述 第一量筒和所述第二量筒内做同步的往复式运动, 并且其中, 所 述流体调节装置还包括调节机构, 该调节机构包括电动式转换器 和用于致动该电动式转换器的致动器, 所述电动式转换器能够在 所述致动器的驱动下实现多个流体调节状态, 其中, 所述转换器 具有壳体和位于该壳体内的芯部, 所述壳体包括第一表面、 第二 表面和第三表面, 在所述第一表面上设置有与所述第一量筒流体 连通的第一通孔和与所述第二量筒流体连通的第二通孔; 在所述 第二表面上设置有用于使所述第一量筒与外部流体贮罐进行流体 连通的第三通孔和用于使所述第二量筒与所述外部流体贮罐进行 流体连通的第四通孔; 在所述第三表面上设置有用于使所述第一 量筒与外部流体接收容器进行流体连通的第五通孔和使所述第二 量筒与外部流体接收容器进行直接流体连通的第六通孔。
12. 根据权利要求 11所述的流体调节装置, 其特征在于, 所 述芯部具有通过一联轴器与所述致动器同轴地连接的可转动的第 一芯片和第二芯片, 这两个可转动的芯片在所述致动器的驱动下 能够同步地呈角度地旋转, 从而实现所述多个流体调节状态。
13. 根据权利要求 11或 12所述的流体调节装置,其特征在于, 所述调节机构具有第一流体调节状态,在该第一流体调节状态中, 所述第一芯片和所述第二芯片都处于第一转动位置中, 此时, 所 述第一芯片允许所述第一量筒仅通过所述第一通孔和所述第三通 孔通过管路与所述流体贮罐流体连通, 而所述第二芯片允许所述 第二量筒仅通过所述第二通孔和所述笫四通孔通过管路与所述流 体贮罐流体连通。
14. 根据权利要求 13所述的流体调节装置, 其特征在于, 所 述调节机构具有第二流体调节状态, 在该第二流体调节状态中, 所述第一芯片和所述第二芯片都处于第二转动位置中, 此时, 所 述第一芯片允许所述第一量筒仅通过所述第一通孔和所述第五通 孔在没有管路的情况下与所述流体接收容器直接流体连通, 并且 所述第二芯片允许所述第二量筒仅通过所述第二通孔和所述第四 通孔通过管路与所述流体贮罐流体连通。
15. 根据权利要求 14所述的流体调节装置, 其特征在于, 所 述调节机构具有第三流体调节状态, 在该第三流体调节状态中, 所述第一芯片和所述第二芯片都处于第三转动位置中, 此时, 所 述第一芯片和所述第二芯片分别阻断了所述第一量筒和所述第二 量筒与所述流体接收容器和所述流体接收容器的流体连通。
16. 根据权利要求 15所述的流体调节装置, 其特征在于, 所 述调节机构具有第四流体调节状态, 在该第四流体调节状态中, 所述第一芯片和所述第二芯片都处于第四转动位置中, 此时, 所 述第二芯片允许所述第二量筒仅通过所述第二通孔和所述第六通 孔在没有管路的情况下与所述流体接收容器直接流体连通, 而所 述第一芯片允许所述第一量筒仅通过所述第一通孔和所述第四通 孔通过管路与所述流体贮罐流体连通。
17. 根据权利要求 11或 12所述的流体调节装置,其特征在于, 其特征在于, 所述致动器是电机。
18. 根据权利要求 11或 12所述的流体调节装置,其特征在于, 第三通孔和所述第四通孔通过同一管路与所述流体贮罐连接。
19. 根据权利要求 11或 12所述的流体调节装置,其特征在于, 所述第六通孔的直径小于所述第五通孔的直径, 从而所述流体调 节装置通过所述第五通孔实现大流量的流体注出, 而通过所述第 六通孔实现小流量或者微流量的流体注出。 一种调色机, 该调色机包括: 至少一个流体贮罐;
至少一个流体注出口; 以及
至少一个根据权利要求 1 - 19所述的流体调节装置, 该流体 调节装置与相应的所述流体贮罐和所述流体注出口选择性地流体 连通。
PCT/CN2013/072657 2013-03-15 2013-03-15 流体调节装置 WO2014139135A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/072657 WO2014139135A1 (zh) 2013-03-15 2013-03-15 流体调节装置
EP13877643.0A EP2974788A4 (en) 2013-03-15 2013-03-15 Fluid adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072657 WO2014139135A1 (zh) 2013-03-15 2013-03-15 流体调节装置

Publications (1)

Publication Number Publication Date
WO2014139135A1 true WO2014139135A1 (zh) 2014-09-18

Family

ID=51535820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072657 WO2014139135A1 (zh) 2013-03-15 2013-03-15 流体调节装置

Country Status (2)

Country Link
EP (1) EP2974788A4 (zh)
WO (1) WO2014139135A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095866A1 (zh) * 2014-12-19 2016-06-23 郑州三华科技实业有限公司 一种既大量注出又微量注出色浆的控制阀
CN105757023A (zh) * 2014-12-19 2016-07-13 沈如华 一种既大量注出又微量注出色浆的控制阀
CN105756919A (zh) * 2014-12-19 2016-07-13 沈如华 一种既大量注出又微量注出色浆泵
CN105757022A (zh) * 2014-12-19 2016-07-13 沈如华 既大量注出又微量注出色浆的控制阀
CN113856539A (zh) * 2021-10-29 2021-12-31 东莞市新展新自动化科技有限公司 一种水性漆加工用定比混料装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194302B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 大泵前端强回流低阻复合泵阀
CN108194303B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 小泵强回流大泵单注出复合泵阀
CN108194299B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 大泵强回流大泵单注出复合泵阀
CN108194301B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 小泵强回流大泵注小量复合泵
CN108194304B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 大泵强回流小泵注小量复合泵
CN108194300B (zh) * 2017-12-22 2020-02-11 郑州三华科技实业有限公司 大小泵同时强回流及大小泵同时注出复合泵阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027785A (en) * 1976-04-12 1977-06-07 Chicago Commutator, Inc. Dual pump colorant dispenser
CN2474222Y (zh) * 2001-04-29 2002-01-30 葛文青 可调色喷漆装置
CN2620592Y (zh) * 2003-06-08 2004-06-16 郑州三华科技实业有限公司 适用于调色机上的循环回气装置
CN2706224Y (zh) * 2004-05-20 2005-06-29 郭奕传 调色机
WO2006040033A1 (en) * 2004-10-14 2006-04-20 Imperial Chemical Industries Plc A tinting machine system
US7111757B1 (en) * 2003-09-12 2006-09-26 O'brien Thomas Matthew Device and method for the volumetric measurement and dispensing of liquids
US20090236367A1 (en) 2008-03-24 2009-09-24 Fluid Management Operations, Llc Pistonpump in Pistonpump
CN201921667U (zh) * 2011-01-13 2011-08-10 沈如华 一种适用于自动调色机的色浆定量注出机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1418026A (en) * 1972-03-21 1975-12-17 British United Shoe Machinery Apparatus adapted for use in dispensing a composition provided by mixing together a plurality of constituent compositions
US4056258A (en) * 1975-01-15 1977-11-01 Centro Nazionale Delle Richerche Actuating device with electronic control for injectors of liquid mixers
JP4027693B2 (ja) * 2002-03-20 2007-12-26 トリニティ工業株式会社 塗料送給装置及びバルブユニット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027785A (en) * 1976-04-12 1977-06-07 Chicago Commutator, Inc. Dual pump colorant dispenser
CN2474222Y (zh) * 2001-04-29 2002-01-30 葛文青 可调色喷漆装置
CN2620592Y (zh) * 2003-06-08 2004-06-16 郑州三华科技实业有限公司 适用于调色机上的循环回气装置
US7111757B1 (en) * 2003-09-12 2006-09-26 O'brien Thomas Matthew Device and method for the volumetric measurement and dispensing of liquids
CN2706224Y (zh) * 2004-05-20 2005-06-29 郭奕传 调色机
WO2006040033A1 (en) * 2004-10-14 2006-04-20 Imperial Chemical Industries Plc A tinting machine system
US20090236367A1 (en) 2008-03-24 2009-09-24 Fluid Management Operations, Llc Pistonpump in Pistonpump
CN201921667U (zh) * 2011-01-13 2011-08-10 沈如华 一种适用于自动调色机的色浆定量注出机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2974788A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016095866A1 (zh) * 2014-12-19 2016-06-23 郑州三华科技实业有限公司 一种既大量注出又微量注出色浆的控制阀
CN105757023A (zh) * 2014-12-19 2016-07-13 沈如华 一种既大量注出又微量注出色浆的控制阀
CN105756919A (zh) * 2014-12-19 2016-07-13 沈如华 一种既大量注出又微量注出色浆泵
CN105757022A (zh) * 2014-12-19 2016-07-13 沈如华 既大量注出又微量注出色浆的控制阀
KR20170109531A (ko) * 2014-12-19 2017-09-29 정저우 산화 테크놀로지 앤 인더스트리 컴퍼니 리미티드 컬러 페이스트의 대량 분사와 미량 분사가 가능한 제어 밸브
CN105757023B (zh) * 2014-12-19 2017-12-08 沈如华 一种既大量注出又微量注出色浆的控制阀
JP2017538076A (ja) * 2014-12-19 2017-12-21 鄭州三華科技実業有限公司 カラーペーストの大量吐出及び微量吐出の両立を実現できる制御弁
JP2018503763A (ja) * 2014-12-19 2018-02-08 鄭州三華科技実業有限公司Zhengzhou Sanhua Technology & Industry Co.,Ltd カラーペーストの大量吐出及び微量吐出の両立を実現できるポンプ
EP3236120A4 (en) * 2014-12-19 2018-08-01 Zhengzhou Sanhua Technology & Industry Co., Ltd Control valve for pouring color paste in both large amount and small amount
US10221839B2 (en) 2014-12-19 2019-03-05 Zhengzhou Sanhua Technology & Industry Co., Ltd Control valve for pouring color paste in both large amount and small amount
RU2683008C2 (ru) * 2014-12-19 2019-03-25 ЧЖЭНЧЖОУ САНЬХУА ТЕКНОЛОДЖИ энд ИНДАСТРИ КО., ЛТД Клапан управления для обеспечения вытекания красящей пасты и в большом количестве, и в малом количестве
KR102003477B1 (ko) * 2014-12-19 2019-10-17 정저우 산화 테크놀로지 앤 인더스트리 컴퍼니 리미티드 컬러 페이스트의 대량 분사와 미량 분사가 가능한 제어 밸브
CN113856539A (zh) * 2021-10-29 2021-12-31 东莞市新展新自动化科技有限公司 一种水性漆加工用定比混料装置

Also Published As

Publication number Publication date
EP2974788A1 (en) 2016-01-20
EP2974788A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2014139135A1 (zh) 流体调节装置
US10221839B2 (en) Control valve for pouring color paste in both large amount and small amount
US4008003A (en) Valveless positive displacement pump
JP5784025B2 (ja) 二成分液体吐出ガン及びシステム
US6840404B1 (en) Metering system & methods
EP2505259B1 (en) Liquid dispenser and method for preventing liquid segregation
WO2014113934A1 (zh) 分配阀组件以及用于调色机的色浆分配装置
CN201921667U (zh) 一种适用于自动调色机的色浆定量注出机构
KR20160029694A (ko) 점성 물질의 작은 비드를 분배하기 위한 장치 및 방법
WO2006096719A3 (en) Precision fluid dispensing system
CN105757023A (zh) 一种既大量注出又微量注出色浆的控制阀
CN105756919A (zh) 一种既大量注出又微量注出色浆泵
CN210460971U (zh) 一种调色机的双级流量色浆供应装置
CN105757022A (zh) 既大量注出又微量注出色浆的控制阀
US8640601B2 (en) Output system for a plurality of masses
CN216173810U (zh) 一种具有胶水循环存储功能的定量配给阀和点胶机
CN210484686U (zh) 一种用于调色机的换向阀
CN214261696U (zh) 一种生产混凝土添加剂用混料设备
CN211328973U (zh) 一种多组分涂料的定量混合及喷涂装置
JP2004313859A (ja) 流動体の混合塗布装置
CN211802080U (zh) 一种多组份点胶阀
US5257722A (en) Device for filling one or more molds with flowable materials
CN210356985U (zh) Ab胶灌胶搅拌结构
CN220464317U (zh) 一种基于混凝土制备的加药装置
CN220697261U (zh) 一种双组分柱塞点胶机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013877643

Country of ref document: EP