WO2014137134A1 - Method for synthesizing core material used for synthesizing hollow nano-silica material - Google Patents
Method for synthesizing core material used for synthesizing hollow nano-silica material Download PDFInfo
- Publication number
- WO2014137134A1 WO2014137134A1 PCT/KR2014/001765 KR2014001765W WO2014137134A1 WO 2014137134 A1 WO2014137134 A1 WO 2014137134A1 KR 2014001765 W KR2014001765 W KR 2014001765W WO 2014137134 A1 WO2014137134 A1 WO 2014137134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- synthesizing
- core material
- core
- synthesis
- solvent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a method for synthesizing a core material, and more particularly, to a method for synthesizing a core material used for synthesizing a hollow nano silica material through a ratio of an additive material.
- Core-shell nanoparticles are applicable to various fields such as photonic crystals, catalysts, drug delivery, cosmetics or functional coating materials.
- Such core-shell nanoparticles generally comprise certain nanoparticles as a core and are prepared by coating the core surface with another material.
- the physicochemical properties of these core-shell nanoparticles can be controlled by fine-tuning the composition, size or structure of the core or coating layer (ie shell) surrounding the core.
- the shell can improve the stability and dispersibility of the core nanoparticles, and can control the surface charge, functionality, or reactivity of the core nanoparticles.
- core-shell nanoparticles having magnetic properties, optical properties, or catalytic functions may be manufactured according to the material of the shell.
- Prior research papers introduce various types of core-shell nanoparticles, for example a-Fe 2 0 3 , Ce0 2 or Si0 2.
- Core-shell nanoparticles coated with polypyrrole on nanoparticles a-Fe 2 0 3)
- Core-shell nanoparticles coated with Au are introduced.
- the core-shell nanoparticles there are hollow particles in which all of the core nanoparticles have been removed, or particles having a hollow therein removed by removing a portion of the core nanoparticles.
- the hollow core-shell nanoparticles are applied to low refractive index materials, thermal insulation materials, or drug delivery capsules that require high porosity. It is possible.
- a typical form of such hollow core-shell nanoparticles is a hollow core, which is surrounded by a shell made of a single film, and the hollow core-shell is made of a single film such as silica or magnesium fluoride.
- Various shell nanoparticles and methods for their preparation have been proposed.
- Japanese Unexamined Patent Publication No. JP 2002-160907 discloses hollow silica particles in which a core is hollow and surrounded by a shell of a silica film, and a method of manufacturing the same.
- US 2005-0244322A1 discloses hollow silica particles and a method of manufacturing the same, wherein the core is hollow and the shell is made of a porous silica membrane having a plurality of channels surrounding the hollow core. have.
- Korean Patent Publication No. 0628033 discloses a vaporized magnesium fluoride particle and a method for producing the same, in which the core has a hollow shape and the core is surrounded by a shell of a magnesium fluoride film.
- the conventional hollow silica particles or the vaporized magnesium fluoride particles are all surrounded by a shell made of a hollow silica core or a magnesium fluoride film, and the single silica film or magnesium fluoride film has a dense structure or (FIG. 1A) The porous structure can be measured (FIG. 1B).
- HSS hollow silica spheres
- HSS used in some industries tends to prefer smaller hollow sizes. PS particles of small size are very difficult and inefficient when using the conventional method.
- the problem of the present invention to solve the above problems is to be utilized in various industries Since the HSS particles have different particle sizes depending on the purpose and use of the HSS particles, it is intended to provide a method for easily synthesizing HSS particles having various sizes using various synthesis methods. That is, to provide a method for synthesizing the core material particles used in the synthesis of HSS particles of various sizes by adjusting the ratio of the additives, and to provide a condition for synthesizing the particles of the same size in different proportions.
- a feature of the present invention for solving the above problems is a method for synthesizing a nanocore material, comprising: (a) adding polyvinylpyrrolidone (PVP) as a stabilizer to a distilled water solvent; (b) adding ⁇ (2,2'-azobis dihydrochloride) as an initiator; (c) adding styrene as a precursor; (d) stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours, wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, the stabilizer, and the initiator. It is characterized by.
- PVP polyvinylpyrrolidone
- ⁇ (2,2'-azobis dihydrochloride) as an initiator
- styrene as a precursor
- stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours, wherein the size of the particles is controlled by adjusting the concentration
- the core material is preferably polystyrene (PS), and the step (d) may include forming a 10% NaOH solution; It is preferable to include the step of mixing the NaOH solution and the styrene in a 1: 1 ratio to remove the inhibitor in the styrene.
- PS polystyrene
- the step (d) may include forming a 10% NaOH solution; It is preferable to include the step of mixing the NaOH solution and the styrene in a 1: 1 ratio to remove the inhibitor in the styrene.
- the step ( a ) may include adding the molar ratio of PVP to 0.001 to 0.0030, and the step (b) may add the molar ratio of AIBA to 0.01 to 0.1. Can be.
- the solvent is preferably a mixed solvent in which distilled water and acetone are mixed at a ratio of 1: 1.
- the present invention can be easily synthesized core material nanoparticles of various sizes using a variety of synthetic methods, and simply and efficiently improve the process Provided is a method for synthesizing small-sized core material nanoparticles.
- FIG. 1 is a view showing the structure of a hollow nano silica particles having a conventional core shell structure
- FIG. 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention
- FIG. 3 is a TEM photograph showing the size of the PS particles synthesized core material by adjusting the concentration of PVP according to an embodiment of the present invention
- FIG. 4 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of AIBA according to an embodiment of the present invention
- FIG. 5 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of a solvent according to an embodiment of the present invention
- FIG. 6 is a TEM photograph showing the size of various PS particles synthesized with a core material using a mixed solvent according to an embodiment of the present invention.
- FIG. 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention.
- the core material synthesis method according to an embodiment of the present invention, (a) adding a polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent (S100); (b) adding ⁇ (2,2'- azobis dihydrochloride) as an initiator (S200); (c) adding styrene as a precursor (S300); (d) stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours (S400), wherein the concentration of at least one of the solvent, stabilizer, and initiator is adjusted to It is characterized by adjusting the size.
- PVP polyvinylpyrrolidone
- the present invention proposes a method of controlling the size of the core material used for synthesizing the hollow nano-silica material, and by adjusting the concentration of any one of a solvent, a stabilizer, and an initiator. Suggest ways to adjust. [Form for implementation of invention]
- FIG. 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention.
- the core material synthesis method according to an embodiment of the present invention, (a) adding a polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent (S100); (b) adding ⁇ (2,2'- azobis dihydrochloride) as an initiator (S200); (c) adding styrene as a precursor (S300); (d) stirring the solution to which the stabilizer, the initiator and the precursor are added at 60 to 80 degrees for 24 hours (S400), wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, the stabilizer and the initiator. It characterized in that to adjust.
- PVP polyvinylpyrrolidone
- S100 distilled water solvent
- S100 ⁇ (2,2'- azobis dihydrochloride
- S200 styren
- the present invention proposes a method of controlling the size of the core material used for synthesizing the hollow nano silica material, and by adjusting the concentration of any one of a solvent, a stabilizer, and an initiator, How to adjust Suggest.
- hollow silica particles which are widely used in the industry, have different particle sizes depending on the purpose and purpose of use, and the HSS particle size is determined by the core material used in the synthesis. Since it is most affected, the method of controlling the size of the core material and synthesizing it is an important issue.
- the embodiment of the present invention is new to the conventional synthesis method.
- distilled water is used as the solvent
- PVP, AIBA, and styrene are sequentially added to the solvent, followed by stirring at about 70 degrees for a predetermined time to synthesize polystyrene.
- (P) (P) polyvinylpyrrolidone (PVP) is added as a stabilizer using a distilled water as a solvent in the step (S100) at a constant molar ratio of the size of the particles.
- step (b) In step (S200), ⁇ (2,2'- azobis dihydrochloride), which is used as an initiator, is added to the PVP-added solution at a molar ratio that corresponds to the particle size.
- step S300 precursor styrene is added to the solution to which PVP and AIBA are added.
- step (d) the solution in which the additive is added to the solvent is stirred at about 7 CTC for 24 hours to synthesize polystyrene nanocore material particles.
- NaOH is used as a precursor to remove the inhibitor inside the styrene.
- the mixture is mixed with styrene at a ratio of 1: 1, and the inhibitor is separated.
- the inhibitor is used for chemical reaction, physiological action, etc. It refers to an interfering substance and, depending on the type of reaction, is called an antioxidant, a corrosion inhibitor, a polymerization inhibitor, a cocatalyst, a catalyst poison, a metabolic antagonist.
- Styrene (styrene) used as a precursor in the embodiment of the present invention has an inhibitor therein, it can act to reduce the reaction required for the synthesis, it is preferable to separate the extract agent in advance by mixing the NaOH solution Do.
- Core material synthesis method used in the synthesis of hollow nano-silica material according to an embodiment of the present invention is to control the size of the core material nanoparticles by controlling the concentration of at least one of a stabilizer, an initiator and a solvent. .
- Example 1 An embodiment of a method of synthesizing the core material nanoparticles by the size of the additive material by adjusting the type and concentration will be described.
- Polystyrene (PS) of the core material by controlling the molar ratio of polyvinylpyrrolidone (PVP) to 0.0001-0.0030 as a stabilizer in the additive material to synthesize the nanoparticle size of the core material used for the synthesis of the hollow silica material.
- the particle size can be synthesized from 100nm to 200nm.
- Stabilizers are added to prevent or change the state of chemicals or chemicals, and are used in various chemical industries such as gunpowder, synthetic resins, and food.
- a polyvinylpyrrolidone is used as a stabilizer, in order to induce interaction between the core nanoparticles and the shell particles, a so-called glue or adhesive polymer coating on the surface of the core nanoparticles is performed.
- the shell composed of a plurality of particles.
- Figure 3 is a TEM photograph showing the size of the PS particles synthesized core material by adjusting the concentration of PVP according to an embodiment of the present invention. As shown in Figure 3, by adjusting the concentration of the stabilizer PVP according to an embodiment of the present invention it can be clearly seen that the core material nanoparticles having a size of 100nm ⁇ 200nrrt was synthesized.
- Example 2
- the embodiment of the present invention controls the size of PS particles to 120 nm to 250 nm by controlling the ratio of ⁇ (2,2 '-azobis dihydrochloride) as an initiator to 0.01 to 0.10. It is possible to synthesize by adjusting.
- the initiator is a substance used to initiate a chain reaction.
- Initiators include substances that easily generate radicals by heat or light (for example, benzoyl peroxide), water, and the like that easily react with ions to generate ions (for example, BF (sub) 3 (/ sub)).
- ions for example, BF (sub) 3 (/ sub)
- Example 4 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of AIBA according to an embodiment of the present invention. As shown in Figure 4, by controlling the concentration of the stabilizer PVP according to an embodiment of the present invention it can be clearly seen that the core material nano-indenter having a size of 120nm ⁇ 250nm was synthesized.
- Example 3
- FIG. 5 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of a solvent according to an embodiment of the present invention. As shown in FIG. 5, it can be clearly seen that various core material nanoparticles having a size of 120 nm to 250 nm were synthesized by adjusting the concentration of a solvent according to an embodiment of the present invention.
- Example 4
- a mixed solvent of acetone and water is used to synthesize PS particles, which are core material nanoparticles having a size of 100 nm or less.
- the ratio of water and acetone is adjusted to the ratio of 1: 1 to proceed with the synthesis.
- FIG. 6 is a TEM photograph showing the size of various PS particles synthesized with a core material using a mixed solvent according to an embodiment of the present invention. As shown in FIG. 6 In accordance with an embodiment of the present invention, it is apparent that the size of PS particles, which is a core material, is synthesized to 100 nm or less using a mixed solvent in which acetone and water are mixed 1: 1. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Sandra who owns it can easily find out.
- the present invention relates to a method for synthesizing a core material, and more particularly, to a method for synthesizing a core material used for synthesizing a hollow nano-silica material through a ratio of additives.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
The present invention relates to a method for synthesizing core material nanoparticles used for synthesizing hollow nano-silica particles, and the method for synthesizing a nano-core material, comprises the steps of: (a) adding polyvinylpyrrolidone as a stabilizer to a distilled water solvent; (b) adding AIBA(2,2;-azobis dihydrochloride as an initiator; (c) adding styrene as a precursor; and (d) mixing the solution to which the stabilizer, the initiator, and the precursor are added for 24 hours at a temperature between 60 degrees to 80 degrees, wherein the particle size is adjusted by controlling the concentration of at least one of the solvent, the stabilizer, and the initiator. The present invention enables easy synthesis of core material nanoparticles having various sizes by using various synthesis techniques, and provides the method for synthesizing small core material nanoparticles by improving the steps to be simpler and more efficient.
Description
【명세서】 【Specification】
【발명의 명칭】 [Name of invention]
중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법 Synthesis method of core material used for synthesis of hollow nano silica material
【기술분야】 Technical Field
본 발명은 코어물질 합성 방법에 관한 것으로, 보다 상세하게는 첨가물질의 비율을 통한 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법에 관한 것이다. The present invention relates to a method for synthesizing a core material, and more particularly, to a method for synthesizing a core material used for synthesizing a hollow nano silica material through a ratio of an additive material.
[배경기술] [Background]
코어 -쉘 나노 입자는 광 결정 (photonic crystal), 촉매, 약물 전달 (drug delivery), 화장품 또는 기능성 코팅 소재 등의 다양한 분야에 적용 가능하다. 이러한 코어 -쉘 나노 입자는 일반적으로 소정의 나노 입자를 코어로 포함하고, 이 러 한 코어 표면을 다른 물질로 코팅하여 제조한다. 이 러한 코어 -쉘 나노 입자의 물리화학적 특성은 코어 또는 코어를 둘러싸는 코팅층 (즉, 쉘)의 조성 , 크기 또는 구조 등을 미세 튜닝 (fine-tuning)함으로써 조절할 수 있다. Core-shell nanoparticles are applicable to various fields such as photonic crystals, catalysts, drug delivery, cosmetics or functional coating materials. Such core-shell nanoparticles generally comprise certain nanoparticles as a core and are prepared by coating the core surface with another material. The physicochemical properties of these core-shell nanoparticles can be controlled by fine-tuning the composition, size or structure of the core or coating layer (ie shell) surrounding the core.
예를 들어, 쉘은 코어 나노 입자의 안정성, 분산성을 향상시 킬 수 있으며, 코어 나노 입자의 표면 전하, 기능성 (functionality) 또는 반웅성 (reactivity) 등을 조절할 수 있다. 또한, 쉘을 이루는 물질에 따라 자성 (magnetic property), 광학물성 (optical property) 또는 촉매 기능 등이 부여된 코어 -쉘 나노 입자를 제조할 수도 있다. For example, the shell can improve the stability and dispersibility of the core nanoparticles, and can control the surface charge, functionality, or reactivity of the core nanoparticles. In addition, core-shell nanoparticles having magnetic properties, optical properties, or catalytic functions may be manufactured according to the material of the shell.
선행 연구 논문 (Frank Caruso, Advanced materials, 2001, vol 13, No 1.11— 22)에는 다양한 종류의 코어 -쉘 나노 입자가 소개되어 있는데, 예를 들어, a-Fe203, Ce02 또는 Si02 나노 입자에 폴리피롤 (polypyrrole)이 코팅된 코어 -쉘 나노 입자, a-Fe203) 금 (Au) 혹은 은 (Au) 나노 입자에 Si02가 코팅된 코어 -쉘 나노 입자 또는 Si02 나노 입자에 금 (Au)이 코팅된 코어 -쉘 나노 입자 등이 소개되어 있다. Prior research papers (Frank Caruso, Advanced materials, 2001, vol 13, No 1.11—22) introduce various types of core-shell nanoparticles, for example a-Fe 2 0 3 , Ce0 2 or Si0 2. Core-shell nanoparticles coated with polypyrrole on nanoparticles, a-Fe 2 0 3) Core-shell nanoparticles or Si0 2 nanoparticles coated with Si0 2 on gold (Au) or silver (Au) nanoparticles Core-shell nanoparticles coated with Au are introduced.
한편, 코어 -쉘 나노 입자의 특별한 예로서, 코어 나노 입자의 전부가 제거된 중공 형 태의 입자 또는 상기 코어 나노 입자의 일부가 제거되 어 그 내부에 얼정 한 중공을 갖는 입자 등이 있다. 이러한 중공 형 태의 코어 -쉘 나노 입자는 높은 공극률이 요구되는 저굴절 소재나 단열 소재 또는 약물 전달 캡슐 등에 적용
가능하다. On the other hand, as a specific example of the core-shell nanoparticles, there are hollow particles in which all of the core nanoparticles have been removed, or particles having a hollow therein removed by removing a portion of the core nanoparticles. The hollow core-shell nanoparticles are applied to low refractive index materials, thermal insulation materials, or drug delivery capsules that require high porosity. It is possible.
이러한 중공 형태의 코어-쉘 나노 입자의 전형적인 형태는 코어가 비어 있고, 이 코어가 단일막으로 이루어진 쉘로 둘러싸인 형태인데, 종래부터 쉘이 실리카 또는 불화마그네슘 등의 단일막으로 이루어진 상기 중공 형태의 코어-쉘 나노 입자 및 이의 제조 방법이 다양하게 제안된 바 있다. A typical form of such hollow core-shell nanoparticles is a hollow core, which is surrounded by a shell made of a single film, and the hollow core-shell is made of a single film such as silica or magnesium fluoride. Various shell nanoparticles and methods for their preparation have been proposed.
예를 들어, 일본 공개특허공보 JP 2002-160907호에는, 코어가 중공 형태를 띄고 있으며, 이러한 코어가 실리카막의 쉘로 둘러싸인 중공 실리카 입자 및 이의 제조 방법이 개시되어 있다. 또한, 미국 공개특허공보 US 2005-0244322A1에는, 코어가 중공 형태를 띄고 있고, 쉘이 다수의 채널을 갖는 다공질 실리카막으로 이루어져 상기 중공 형태의 코어를 둘러싸고 있는 중공 실리카 입자 및 이의 제조 방법이 개시되어 있다. For example, Japanese Unexamined Patent Publication No. JP 2002-160907 discloses hollow silica particles in which a core is hollow and surrounded by a shell of a silica film, and a method of manufacturing the same. In addition, US 2005-0244322A1 discloses hollow silica particles and a method of manufacturing the same, wherein the core is hollow and the shell is made of a porous silica membrane having a plurality of channels surrounding the hollow core. have.
또한, 한국 등록특허공보 제 0628033호에는, 마찬가지로 코어가 중공 형태를 띄고 있으며, 이러한 코어가 불화 마그네슘막의 쉘로 둘러싸인 증공 불화마그네슘 입자 및 이의 제조 방법이 개시되어 있다. In addition, Korean Patent Publication No. 0628033 discloses a vaporized magnesium fluoride particle and a method for producing the same, in which the core has a hollow shape and the core is surrounded by a shell of a magnesium fluoride film.
이처럼, 종래의 중공 실리카 입자 또는 증공 불화마그네슴 입자는 모두 중공 형태의 코어를 단일 실리카막 또는 불화마그네슘막으로 이루어진 쉘이 둘러싼 형태를 띄고 있으며, 이러한 단일 실리카막 또는 불화마그네슘막은 치밀한 구조를 띄거나 (도 1의 (a)) 다공질 구조를 띌 수 있다 (도 1의 (b)). As such, the conventional hollow silica particles or the vaporized magnesium fluoride particles are all surrounded by a shell made of a hollow silica core or a magnesium fluoride film, and the single silica film or magnesium fluoride film has a dense structure or (FIG. 1A) The porous structure can be measured (FIG. 1B).
그러나, 산업에 다양하게 활용되는 중공형 실리카 입자 (hollow silica spheres:HSS)는 사용되는 목적, 용도에 따라 그 입자 크기를 달리해야 한다. HSS 입자 크기는 합성에 사용되는코어에 의해 영향을 받기 때문에, 다양한 크기의 HSS 입자를 다양한 합성 방법을 이용하여 용이하게 합성할 수 있는 방법이 요구되는 실정이다. However, hollow silica spheres (HSS), which are widely used in the industry, have different particle sizes depending on the purpose and purpose of use. Since HSS particle size is influenced by the core used for synthesis, there is a need for a method for easily synthesizing HSS particles having various sizes using various synthesis methods.
또한, 일부 산업에 사용되는 HSS는 중공의 크기가 작은 것을 선호하는 경향이 있다. 작은 크기의 PS 입자는 기존 방식을 이용할 경우 만들기가 매우 힘들며 비효율적이라는 문제점이 있다. In addition, HSS used in some industries tends to prefer smaller hollow sizes. PS particles of small size are very difficult and inefficient when using the conventional method.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 [Technical problem]
상술한 문제를 해결하고자 하는 본 발명의 과제는 산업에 다양하게 활용되는
HSS 입자는 사용되는 목적 , 용도에 따라 그 입자 크기를 달리해야 하므로, 다양한 크기의 HSS 입자를 다양한 합성 방법을 이용하여 용이하게 합성할 수 있는 방법을 제공하고자 함이다. 즉, 첨가물질들의 비율을 조절하여 다양한 크기의 HSS 입자의 합성에 사용되는 코어물질 입자를 합성하는 방법을 제공하고, 동일한 크기의 입자라도 다른 비율로 합성하는 조건을 제공하고자 함이다. The problem of the present invention to solve the above problems is to be utilized in various industries Since the HSS particles have different particle sizes depending on the purpose and use of the HSS particles, it is intended to provide a method for easily synthesizing HSS particles having various sizes using various synthesis methods. That is, to provide a method for synthesizing the core material particles used in the synthesis of HSS particles of various sizes by adjusting the ratio of the additives, and to provide a condition for synthesizing the particles of the same size in different proportions.
또한 새로움 물질을 첨가하여 간단하고 효율적으로 공정을 개선하여 작은 크기의 코어물질 나노 입자를 합성하는 방법을 제공하고자 함이다. In addition, it is intended to provide a method for synthesizing small-size core material nanoparticles by simply and efficiently improving the process by adding a new material.
【기술적 해결방법】 Technical Solution
상술한 과제를 해결하기 위한 본 발명의 특징은 나노 코어물질 합성방법에 있어서, (a) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계 ; (b) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 첨가하는 단계 ; (c) 전구체로 스티 렌 (styrene)을 첨가하는 단계; (d) 상기 안정제, 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계를 포함하되, 상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것을 특징으로 한다. A feature of the present invention for solving the above problems is a method for synthesizing a nanocore material, comprising: (a) adding polyvinylpyrrolidone (PVP) as a stabilizer to a distilled water solvent; (b) adding ΑΙΒΑ (2,2'-azobis dihydrochloride) as an initiator; (c) adding styrene as a precursor; (d) stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours, wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, the stabilizer, and the initiator. It is characterized by.
여기서, 상기 코어물질은 폴리스티 렌 (polystyrene:PS)인 것이 바람직하고, 상기 (d) 단계는, 10% 농도의 NaOH 용액을 형성하는 단계; 상기 NaOH 용액과 상기 스티 렌 (styrene)을 1:1 비율로 흔합하여, 상기 스티 렌 내부의 억제제를 제거하는 단계를 포함하는 것이 바람직하다. Here, the core material is preferably polystyrene (PS), and the step (d) may include forming a 10% NaOH solution; It is preferable to include the step of mixing the NaOH solution and the styrene in a 1: 1 ratio to remove the inhibitor in the styrene.
또한, 바람직하게는 상기 (a) 단계는, 상기 PVP의 몰 비율을 0.001 내지 0.0030로 하여 첨가하는 것일 수 있고, 상기 (b) 단계는, 상기 AIBA의 몰 비율을 0.01 내지 0.1으로 하여 첨가하는 것일 수 있다. Preferably, the step ( a ) may include adding the molar ratio of PVP to 0.001 to 0.0030, and the step (b) may add the molar ratio of AIBA to 0.01 to 0.1. Can be.
더하여 , 상기 용매의 농도를 0.1M 내지 0.4M 까지 조절하여 입자의 크기를 조절하는 것이 바람직하고, 상기 용매는, 증류수와 아세톤을 1: 1로 흔합한 흔합 용매인 것이 바람직하다. In addition, it is preferable to adjust the size of the particles by adjusting the concentration of the solvent to 0.1M to 0.4M, and the solvent is preferably a mixed solvent in which distilled water and acetone are mixed at a ratio of 1: 1.
[유리한 효과] [Favorable effect]
이와 같은 본 발명은 다양한 크기의 코어물질 나노 입자를 다양한 합성 방법을 이용하여 용이하게 합성할 수 있고, 간단하고 효율적으로 공정올 개선하여
작은 크기의 코어물질 나노 입자를 합성하는 방법을 제공한다. 【도면의 간단한 설명】 The present invention can be easily synthesized core material nanoparticles of various sizes using a variety of synthetic methods, and simply and efficiently improve the process Provided is a method for synthesizing small-sized core material nanoparticles. [Brief Description of Drawings]
도 1은 종래의 코어 쉘 구조를 갖는 중공형 나노 실리카 입자의 구조를 나타낸 도면이고, 1 is a view showing the structure of a hollow nano silica particles having a conventional core shell structure,
도 2는 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법의 흐름을 나타낸 도면이고, 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention,
도 3은 본 발명의 실시예에 따른 PVP의 농도를 조절하여 코어물질 합성한 PS 입자의 크기를 나타낸 TEM 사진이고, 3 is a TEM photograph showing the size of the PS particles synthesized core material by adjusting the concentration of PVP according to an embodiment of the present invention,
도 4는 본 발명의 실시예에 따른 AIBA의 농도를 조절하여 코어물질 합성한 다양한 PS 입자의 크기를 나타낸 TEM 사진이고, 4 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of AIBA according to an embodiment of the present invention,
도 5는 본 발명의 실시예에 따른 용매의 농도를 조절하여 코어물질 합성한 다양한 PS 입자의 크기를 나타낸 TEM 사진이고, 5 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of a solvent according to an embodiment of the present invention,
도 6은 본 발명의 실시예에 따른 흔합 용매를 사용하여 코어물질을 합성한 다양한 PS 입자의 크기를 나타낸 TEM 사진이다. 6 is a TEM photograph showing the size of various PS particles synthesized with a core material using a mixed solvent according to an embodiment of the present invention.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
도 2는 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법의 흐름을 나타낸 도면이다. 도 2에 나타낸 바와 같이, 본 발명의 실시예에 따른 코어물질 합성방법은, (a) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계 (S100); (b) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 첨가하는 단계 (S200); (c) 전구체로 스티렌 (styrene)을 첨가하는 단계 (S300); (d) 상기 안정계, 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계 (S400)를 포함하되, 상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것을 특징으로 한다. Figure 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention. As shown in Figure 2, the core material synthesis method according to an embodiment of the present invention, (a) adding a polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent (S100); (b) adding ΑΙΒΑ (2,2'- azobis dihydrochloride) as an initiator (S200); (c) adding styrene as a precursor (S300); (d) stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours (S400), wherein the concentration of at least one of the solvent, stabilizer, and initiator is adjusted to It is characterized by adjusting the size.
이처럼 본원 발명은 중공형 나노 실리카 물질 합성에 사용되는 코어물질의 합성 방법에 있어서, 그 크기를 조절하는 방법을 제안하고 있으며, 그 방법으로 용매, 안정제, 개시제 중 어느 하나의 농도를 조절하여 크기를 조절하는 방법을 제안한다.
【발명의 실시를 위 한 형 태】 As such, the present invention proposes a method of controlling the size of the core material used for synthesizing the hollow nano-silica material, and by adjusting the concentration of any one of a solvent, a stabilizer, and an initiator. Suggest ways to adjust. [Form for implementation of invention]
본 발명의 이 점 및 특징, 그리고 그것을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 통해 설명될 것 이다. 그러나 본 발명은 여기에서 설명되는 실시 예들에 한정되지 않고 다른 형 태로 구체화될 수도 있다. 단지, 본 실시 예들은 본 발명 이 속하는 기술분야에서 통상의 지식을 가진 자에 게 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여 제공되는 것 이다. Advantages and features of the present invention, and a method for achieving the same will be described with reference to embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. However, the present embodiments are provided to explain in detail enough to easily implement the technical idea of the present invention to those skilled in the art.
도면들에 있어서, 본 발명의 실시 예들은 도시된 특정 형 태로 제한되는 것 이 아니며 명확성을 기하기 위하여 과장된 것이다. 또한 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소를 나타낸다. In the drawings, the embodiments of the present invention are not limited to the specific forms shown and are exaggerated for clarity. In addition, parts denoted by the same reference numerals throughout the specification represent the same components.
본 명세서에서 "및 /또는"이 란 표현은 전후에 나열된 구성요소들 중 적어도 하나를 포함하는 의미로 사용된다. 또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한ᅳ 명세서에서 사용되는 "포함한다" 또는 "포함하는"으로 언급된 구성요소, 단계, 동작 및 소자는 하나 이상의 다른 구성요소, 단계, 동작, 소자 및 장치의 존재 또는 추가를 의미한다. 이하에서 본 발명에 따른 바람직한 실시 예를 도면을 참조하여 상세히 설명하기로 한다. The expression “and / or” is used herein to mean at least one of the components listed before and after. In addition, singular forms also include the plural unless specifically stated otherwise in the text. Also, as used herein, components, steps, operations, and elements referred to as "comprising" or "comprising" mean the presence or addition of one or more other components, steps, operations, elements, and devices. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시 예에 따른 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법의 흐름을 나타낸 도면이다. 도 2에 나타낸 바와 같이, 본 발명의 실시 예에 따른 코어물질 합성방법은, (a) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계 (S100); (b) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 첨가하는 단계 (S200); (c) 전구체로 스티 렌 (styrene)을 첨가하는 단계 (S300); (d) 상기 안정제 , 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계 (S400)를 포함하되, 상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것을 특징으로 한다. 2 is a view showing the flow of the core material synthesis method used in the synthesis of hollow nano silica material according to an embodiment of the present invention. As shown in Figure 2, the core material synthesis method according to an embodiment of the present invention, (a) adding a polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent (S100); (b) adding ΑΙΒΑ (2,2'- azobis dihydrochloride) as an initiator (S200); (c) adding styrene as a precursor (S300); (d) stirring the solution to which the stabilizer, the initiator and the precursor are added at 60 to 80 degrees for 24 hours (S400), wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, the stabilizer and the initiator. It characterized in that to adjust.
이처 럼 본원 발명은 중공형 나노 실리카 물질 합성에 사용되는 코어물질의 합성 방법에 있어서 , 그 크기를 조절하는 방법을 제안하고 있으며 , 그 방법으로 용매, 안정제, 개시제 중 어느 하나의 농도를 조절하여 크기를 조절하는 방법을
제안한다. As described above, the present invention proposes a method of controlling the size of the core material used for synthesizing the hollow nano silica material, and by adjusting the concentration of any one of a solvent, a stabilizer, and an initiator, How to adjust Suggest.
상술한 바와 같이 산업에 다양하게 활용되는 중공형 실리카 입자 (hollow silical spheres:HSS)는 사용되는 목적 , 용도에 따라 그 입자 크기를 달리해야 고, HSS 입자 크기에 그 합성에 사용되는 코어 물질에 의해 가장 크게 영향을 받으므로, 코어 물질의 크기를 조절하여 합성하는 방법 이 중요한 이슈이다. As described above, hollow silica particles (HSS), which are widely used in the industry, have different particle sizes depending on the purpose and purpose of use, and the HSS particle size is determined by the core material used in the synthesis. Since it is most affected, the method of controlling the size of the core material and synthesizing it is an important issue.
그러므로, 본 발명의 실시 예에서는 lOOnm 내지 250nm 범위의 나노 코어물질의 합성방법에 있어서는, 첨가물질들의 농도 또는 비율을 조절하여 용이하게 다양한 크기의 코어물질 입자를 합성하는 방법을 제안하고, 동일한 크기의 입자라도 다른 비율로 합성하는 조건을 제안한다. Therefore, in an embodiment of the present invention, in the method of synthesizing nanocore materials in the range of 100 nm to 250 nm, a method of easily synthesizing core material particles having various sizes by controlling the concentration or ratio of additives is proposed. The conditions which synthesize | combine particle | grains in a different ratio are proposed.
그리고, 일부 산업에 사용되는 HSS는 중공의 크기가 작은것을 선호하는 경향이 있는바, lOOnm 이하의 매우 작은 크기의 나노 코어물질의 합성방법에 있어서 , 본 발명의 실시 예에서는 종래의 합성방법에 새로운 물질을 첨가하여 간단하고 효율적으로 공정을 개선하여 나노 코어물질의 합성방법을 제안한다. 나노 코어물질 합성공정 In addition, the HSS used in some industries tends to prefer a smaller hollow size. In the method of synthesizing nanocore material having a very small size of 100 nm or less, the embodiment of the present invention is new to the conventional synthesis method. We propose a method for synthesizing nano-core materials by simply and efficiently improving the process by adding materials. Nano core material synthesis process
본 발명의 실시에에서는 용매는 증류수를 사용하고, 상기 용매에 PVP, AIBA 및 스티 렌을 순서 대로 첨가하여 , 약 70도에서 소정 시간동안 교반시켜 폴리스티 렌 (polystyrene)을 합성한다, In the embodiment of the present invention, distilled water is used as the solvent, PVP, AIBA, and styrene are sequentially added to the solvent, followed by stirring at about 70 degrees for a predetermined time to synthesize polystyrene.
구체적으로, 도 2에 나타낸 바와 같이 , (a) 단계 (S100)에서 증류수를 용매로 하여 안정제로서 PVP(polyvinylpyrrolidone)를 입자의 크기에 대웅된 일정 한 몰비율로 첨가한다. Specifically, as shown in Figure 2, (P) (P) polyvinylpyrrolidone (PVP) is added as a stabilizer using a distilled water as a solvent in the step (S100) at a constant molar ratio of the size of the particles.
(b) 단계 (S200)에서, 상기 PVP가 첨가된 용액에 개시 제로 사용되는 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 입자의 크기에 대웅되는 몰비율로 첨가한다. (b) In step (S200), ΑΙΒΑ (2,2'- azobis dihydrochloride), which is used as an initiator, is added to the PVP-added solution at a molar ratio that corresponds to the particle size.
(c) 단계 (S300)에서, 상기 PVP와 AIBA가 첨가된 용액에 전구체 스티 렌 (styrene)을 첨가한다. (c) In step S300, precursor styrene is added to the solution to which PVP and AIBA are added.
(d) 단계 (S400)에서, 상기 용매에 첨가물질이 첨가된 용액을 약 7CTC에서 24시간 동안 교반하여 폴리스티 렌 나노 코어물질 입자를 합성한다. (d) In step (S400), the solution in which the additive is added to the solvent is stirred at about 7 CTC for 24 hours to synthesize polystyrene nanocore material particles.
여기서, 전구체로 스티 렌의 내부에 있는 억제제를 제거하기 위해 NaOH를 사용한다. 10% 농도의 NaOH 용액을 제조한 후, 스티 렌과 1 : 1 비율로 섞 어 주게 되면 억 제제가 분리 된다. 여기서 억 제제는 화학반웅, 생리작용 등의 진행을
방해하는 물질을 말한하는 것으로, 반웅의 종류에 따라 산화 방지제, 부식 방지제, 중합 억제제, 부촉매, 촉매독, 대사 길항 (代謝洁抗) 물질 등이라 부른다. Here, NaOH is used as a precursor to remove the inhibitor inside the styrene. After preparing a 10% NaOH solution, the mixture is mixed with styrene at a ratio of 1: 1, and the inhibitor is separated. In this case, the inhibitor is used for chemical reaction, physiological action, etc. It refers to an interfering substance and, depending on the type of reaction, is called an antioxidant, a corrosion inhibitor, a polymerization inhibitor, a cocatalyst, a catalyst poison, a metabolic antagonist.
본 발명의 실시 예에서 전구체로 사용되는 스티 렌 (styrene)은 내부에 억제제가 존재하여, 합성에 필요한 반웅을 저하시키는 작용을 할 수 있으므로, 상기 NaOH 용액을 섞어 사전에 엑제제를 분리하는 것이 바람직하다. 본 발명의 실시 예에 따른 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법은 그 핵심 적 특징은 안정제, 개시제 및 용매 중 적어도 어느 하나의 농도를 조절하여 코어물질 나노 입자의 크기를 조절하는 것이다. Styrene (styrene) used as a precursor in the embodiment of the present invention has an inhibitor therein, it can act to reduce the reaction required for the synthesis, it is preferable to separate the extract agent in advance by mixing the NaOH solution Do. Core material synthesis method used in the synthesis of hollow nano-silica material according to an embodiment of the present invention is to control the size of the core material nanoparticles by controlling the concentration of at least one of a stabilizer, an initiator and a solvent. .
이하에서 첨가물질의 종류와 농도를 조절하여 코어 물질 나노입자의 크기별로 합성하는 방법의 실시 예를 설명하기로 한다. 실시예 1 Hereinafter, an embodiment of a method of synthesizing the core material nanoparticles by the size of the additive material by adjusting the type and concentration will be described. Example 1
중공형 실리카 물질 합성에 사용되는 코어물질의 나노 입자의 크기를 합성하기 위해 첨가 물질중 안정제로 PVP(polyvinylpyrrolidone)의 몰 비율을 0.0001 - 0.0030 까지 조절하여 첨가함으로써, 코어 물질의 폴리스티 렌 (PS) 입자의 크기를 lOOnm ~ 200nm 까지 합성 가능하다. Polystyrene (PS) of the core material by controlling the molar ratio of polyvinylpyrrolidone (PVP) to 0.0001-0.0030 as a stabilizer in the additive material to synthesize the nanoparticle size of the core material used for the synthesis of the hollow silica material. The particle size can be synthesized from 100nm to 200nm.
여기서 안정제는 물질을 방치 또는 보존할 때, 그 상태변화ᅳ화학변화를 방지하기 위하여 첨가하는 물질로서, 화약 ·합성 수지 ·식품 따위 여 러 화학 공업 부문에서 각각 그 목적에 따라 사용된다. Stabilizers are added to prevent or change the state of chemicals or chemicals, and are used in various chemical industries such as gunpowder, synthetic resins, and food.
본 발명의 실시 예에서는 안정제로 PVP(polyvinylpyrrolidone)를 사용는데, 이는 코어 나노 입자와 쉘 입자 간의 상호 작용을 유도하기 위해, 코어 나노 입자 표면에 소위 아교 (glue) 또는 접착제 작용을 하는 고분자 물질을 코팅하여 , 상기 고분자 물질이 코팅된 코어 나노 입자 표면을 복수의 입자로 이루어진 쉘이 용이하게 감싸도록 하기 위함이다. In an embodiment of the present invention, a polyvinylpyrrolidone (PVP) is used as a stabilizer, in order to induce interaction between the core nanoparticles and the shell particles, a so-called glue or adhesive polymer coating on the surface of the core nanoparticles is performed. In order to easily wrap the surface of the core nanoparticles coated with the polymer material, the shell composed of a plurality of particles.
도 3은 본 발명의 실시 예에 따른 PVP의 농도를 조절하여 코어물질 합성한 PS 입자의 크기를 나타낸 TEM 사진이다. 도 3에 나타낸 바와 같이, 본 발명의 실시 예에 따라 안정 제인 PVP의 농도를 조절하여 lOOnm ~ 200nrrt 크기를 갖는 코어물질 나노입자가 합성되 었음을 선명하게 알 수 있다.
실시 예 2 Figure 3 is a TEM photograph showing the size of the PS particles synthesized core material by adjusting the concentration of PVP according to an embodiment of the present invention. As shown in Figure 3, by adjusting the concentration of the stabilizer PVP according to an embodiment of the present invention it can be clearly seen that the core material nanoparticles having a size of 100nm ~ 200nrrt was synthesized. Example 2
다양한 크기의 코어물질 나노입자로서 PS 입자를 합성하기 위해 본 발명의 실시 예에서는 개시제로서 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 비율을 0.01 ~ 0.10 까지 조절하여 PS 입자의 크기를 120nm ~ 250nm 까지 조절하여 합성하는 것이 가능하다. In order to synthesize PS particles as nanoparticles of various sizes of core materials, the embodiment of the present invention controls the size of PS particles to 120 nm to 250 nm by controlling the ratio of ΑΙΒΑ (2,2 '-azobis dihydrochloride) as an initiator to 0.01 to 0.10. It is possible to synthesize by adjusting.
여기서 개시제는 연쇄반웅을 개시시키 기 위해 사용되는 물질. 열이나 빛에 의해 용이하게 라디칼을 생성하는 물질 (예를 들면 과산화벤조일), 물 등과 반웅하여 쉽게 이온을 생성하는 물질 (예를 들면 BF(sub)3(/sub)) 등이 개시제가 된다. 본 발명의 실시 예에서는 개시제로, ΑΙΒΑ(2,2' - azobis (2-methylpropionamidine) dihydrochloride)를 사용하는 것이 바람직하다. Wherein the initiator is a substance used to initiate a chain reaction. Initiators include substances that easily generate radicals by heat or light (for example, benzoyl peroxide), water, and the like that easily react with ions to generate ions (for example, BF (sub) 3 (/ sub)). In the embodiment of the present invention, it is preferable to use ΑΙΒΑ (2,2'- azobis (2-methylpropionamidine) dihydrochloride) as an initiator.
도 4는 본 발명의 실시 예에 따른 AIBA의 농도를 조절하여 코어물질 합성 한 다양한 PS 입자의 크기를 나타낸 TEM 사진이다. 도 4에 나타낸 바와 같이, 본 발명의 실시 예에 따라 안정제인 PVP의 농도를 조절하여 120nm ~ 250nm 크기를 갖는 코어물질 나노압자가 합성되 었음을 명 백히 알 수 있다. 실시예 3 4 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of AIBA according to an embodiment of the present invention. As shown in Figure 4, by controlling the concentration of the stabilizer PVP according to an embodiment of the present invention it can be clearly seen that the core material nano-indenter having a size of 120nm ~ 250nm was synthesized. Example 3
용매의 농도를 조절하여 코어물질 나노입자의 크기를 조절하는 합성방법으로서, 용매의 농도를 0.1M 내지 0.4M까지 조절할 경우, 코어물질 나노입자인 PS 입자의 크기를 100nm 내지 200nm까지 조절하는 것이 가능하다. 도 5는 본 발명의 실시 예에 따른 용매의 농도를 조절하여 코어물질 합성한 다양한 PS 입자의 크기를 나타낸 TEM 사진이다. 도 5에 나타낸 바와 같이, 본 발명의 실시 예에 따라 용매의 농도를 조절하여 120nm ~ 250nm 크기를 갖는 다양한 코어물질 나노입자가 합성되었음을 명백히 알 수 있다. 실시예 4 Synthetic method for controlling the size of the core material nanoparticles by adjusting the concentration of the solvent, when the concentration of the solvent is adjusted to 0.1M to 0.4M, it is possible to control the size of the PS particles of the core material nanoparticles to 100nm to 200nm Do. 5 is a TEM photograph showing the size of various PS particles synthesized by core material by adjusting the concentration of a solvent according to an embodiment of the present invention. As shown in FIG. 5, it can be clearly seen that various core material nanoparticles having a size of 120 nm to 250 nm were synthesized by adjusting the concentration of a solvent according to an embodiment of the present invention. Example 4
본 발명의 실시 예에서는 lOOnm 이하의 크기를 갖는 코어물질 나노입자인 PS 입자를 합성하기 위해서 아세톤과 물을 섞은 흔합 용매를 사용한다. 이 때의 물과 아세톤 비율은 1: 1 비율로 조절하여 합성을 진행한다. In an embodiment of the present invention, a mixed solvent of acetone and water is used to synthesize PS particles, which are core material nanoparticles having a size of 100 nm or less. At this time, the ratio of water and acetone is adjusted to the ratio of 1: 1 to proceed with the synthesis.
도 6은 본 발명의 실시 예에 따른 흔합 용매를 사용하여 코어물질을 합성한 다양한 PS 입자의 크기를 나타낸 TEM 사진이다. 도 6에 나타낸 바와 같이 본
발명의 실시예에 따라 아세톤과 물을 1:1로 흔합한 흔합 용매를 사용하여 코어물질인 PS 입자의 크기가 lOOnm 이하로 합성되었음을 명백히 알 수 있다. 이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능 하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다. 6 is a TEM photograph showing the size of various PS particles synthesized with a core material using a mixed solvent according to an embodiment of the present invention. As shown in FIG. 6 In accordance with an embodiment of the present invention, it is apparent that the size of PS particles, which is a core material, is synthesized to 100 nm or less using a mixed solvent in which acetone and water are mixed 1: 1. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Anyone who owns it can easily find out.
【산업상 이용가능성】 Industrial Applicability
본 발명은 본 발명은 코어물질 합성 방법에 관한 것으로, 보다 상세하게는 첨가물질의 비율을 통한 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법에 관한것으로 산업상 이용가능성이 있다.
The present invention relates to a method for synthesizing a core material, and more particularly, to a method for synthesizing a core material used for synthesizing a hollow nano-silica material through a ratio of additives.
Claims
【청구항 1】 [Claim 1]
나노 코어물질 합성방법에 있어서, In the method of synthesizing nano core materials,
(a) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계; (a) adding polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent;
(b) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochlorkle)를 첨가하는 단계; (b) adding ΑΙΒΑ (2,2'- azobis dihydrochlorkle) as an initiator;
(c) 전구체로 스티렌 (styrene)을 첨가하는 단계; (c) adding styrene as a precursor;
(d) 상기 안정게, 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계를 포함하되, (d) stably stirring the solution to which the initiator and precursor are added at 60 to 80 degrees for 24 hours,
상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법. Core material synthesis method used in the synthesis of hollow nano-silica material, characterized in that for controlling the size of the particles by adjusting the concentration of at least one of the solvent, stabilizer and initiator.
【청구항 2】 [Claim 2]
제 1항에 있어서, The method of claim 1,
상기 코어물질은 폴리스티렌 (polystyrene:PS)인 것을 특징으로 하는 중공형 나노 실리카물질 합성에 사용되는 코어물질 합성방법. The core material is a polystyrene (polystyrene: PS) core material synthesis method used in the synthesis of hollow nano-silica material, characterized in that.
【청구항 3】 [Claim 3]
제 1항에 있어서, The method of claim 1,
상기 (d) 단계는, In step (d),
10% 농도의 NaOH용액을 형성하는 단계; Forming a 10% NaOH solution;
상기 NaOH 용액과 상기 스티렌 (styrene)을 1:1 비율로 흔합하여, 상기 스티렌 내부의 억제제를 제거하는 단계를 포함하는 것을 특징으로 하는 중공형 나노실리카 물질 합성에 사용되는코어물질 합성방법. The NaOH solution and the styrene (styrene) by mixing in a ratio of 1: 1, the core material synthesis method used for synthesizing the hollow nano-silica material, characterized in that it comprises the step of removing the inhibitor in the styrene.
【청구항 4】 [Claim 4]
제 1항 내지 제 3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
상기 (a) 단계는, In step (a),
상기 PVP의 몰 비율을 0.001 내지 0.0030로 하여 첨가하는 것을 특징으로
하는 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법 . It is added by setting the molar ratio of the PVP to 0.001 to 0.0030. A method for synthesizing core materials used to synthesize hollow nano silica materials.
【청구항 5】 [Claim 5]
겨 U항 내지 겨 13항 중 어느 한 항에 있어서, According to any one of claims U to 13,
상기 (b) 단계는' Step (b) is
상기 AIBA의 몰 비율을 0.01 내지 0.1으로 하여 첨가하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법 . Core material synthesis method used for the synthesis of hollow nano-silica material, characterized in that the addition of the molar ratio of the AIBA to 0.01 to 0.1.
【청구항 6】 [Claim 6]
제 1항 내지 제 3항 중 어느 한 항에 있어서 , The method according to any one of claims 1 to 3,
상기 용매의 농도를 0.1M 내지 0.4M 까지 조절하여 입자의 크기를 조절하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법 . Core material synthesis method used in the synthesis of hollow nano-silica material, characterized in that the size of the particles by controlling the concentration of the solvent to 0.1M to 0.4M.
[청구항 7】 [Claim 7]
제 1항 내지 제 3항 증 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
상기 용매는, The solvent,
증류수와 아세톤을 1:1로 흔합한 흔합 용매인 것을 특징으로 하는 중공형 나노 실리카 물질 합성에 사용되는 코어물질 합성방법 .
A method for synthesizing a core material used for synthesizing a hollow nano silica material, characterized in that the mixed solvent is a 1: 1 mixture of distilled water and acetone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130023409 | 2013-03-05 | ||
KR10-2013-0023409 | 2013-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014137134A1 true WO2014137134A1 (en) | 2014-09-12 |
Family
ID=51491596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/001765 WO2014137134A1 (en) | 2013-03-05 | 2014-03-04 | Method for synthesizing core material used for synthesizing hollow nano-silica material |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014137134A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190037484A (en) * | 2017-09-29 | 2019-04-08 | 계명대학교 산학협력단 | Manufacuring method of Mesoporous hollow silica spheres with including copper |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08143627A (en) * | 1994-11-25 | 1996-06-04 | Mitsubishi Paper Mills Ltd | Production of singly dispersible polystyrene particle |
KR20080100511A (en) * | 2007-05-14 | 2008-11-19 | 요업기술원 | Coating composition for anti-glare film having polystyrene particle, and anti-glare film prepared therefrom |
-
2014
- 2014-03-04 WO PCT/KR2014/001765 patent/WO2014137134A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08143627A (en) * | 1994-11-25 | 1996-06-04 | Mitsubishi Paper Mills Ltd | Production of singly dispersible polystyrene particle |
KR20080100511A (en) * | 2007-05-14 | 2008-11-19 | 요업기술원 | Coating composition for anti-glare film having polystyrene particle, and anti-glare film prepared therefrom |
Non-Patent Citations (1)
Title |
---|
KWON, JAE MIN: "Preparation of Hollow Silica Spheres with Controllable Sizes Using Polystyrene as a Template by Non-calcined Process", MASTER DISSERTATION, February 2013 (2013-02-01) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190037484A (en) * | 2017-09-29 | 2019-04-08 | 계명대학교 산학협력단 | Manufacuring method of Mesoporous hollow silica spheres with including copper |
KR101991827B1 (en) * | 2017-09-29 | 2019-06-21 | 계명대학교 산학협력단 | Manufacuring method of Mesoporous hollow silica spheres with including copper |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yokoi et al. | Synthesis of mesoporous silica nanospheres promoted by basic amino acids and their catalytic application | |
WO2009081700A1 (en) | Polymer-coated fine inorganic particle and process for producing the same | |
Beija et al. | RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids | |
EP2009033B1 (en) | Hollow polymer particles and colored hollow polymer particles | |
Li et al. | Hybrid nanorattles of metal core and stimuli-responsive polymer shell for confined catalytic reactions | |
JP6006319B2 (en) | Methods for preparing metal quantum clusters under molecular constraints | |
Yao et al. | Preparation of raspberry-like polypyrrole composites with applications in catalysis | |
Zhang et al. | Synthesis of Polymeric Yolk− Shell Microspheres by Seed Emulsion Polymerization | |
Thickett et al. | Recent advances in colloidal nanocomposite design via heterogeneous polymerization techniques | |
TW200540191A (en) | Use of random copolymers | |
TW200418745A (en) | Process for the production of inverse opal-like structures | |
US10143988B2 (en) | Method for synthesizing non-spherical nanostructures | |
KR101672532B1 (en) | Syntehtic method of core material for mesoporous hollow sillica spheres, and core meterial manufactured by it | |
CN101694795B (en) | Preparation method of multi-pore canal nuclear shell type magnet gold compound nano-particle | |
KR101444028B1 (en) | Fabrication of silica/titania multi shell hollow structure nanopartices using adsorption of polyvinylpyrrolidone and sol-gel reaction within interfacial surface | |
CN110200821A (en) | A kind of l-menthol slow-release material and preparation method thereof based on graphene quantum dot | |
KR20170112559A (en) | Method of synthesizing nano-sized particles | |
JP2014087786A (en) | Method for manufacturing microcapsule and microcapsule | |
WO2014137134A1 (en) | Method for synthesizing core material used for synthesizing hollow nano-silica material | |
Liu et al. | Synthesis of ellipsoidal hematite/silica/polymer hybrid materials and the corresponding hollow polymer ellipsoids | |
Li et al. | Yolk–Shell Nanocomposites of a Gold Nanocore Encapsulated in an Electroactive Polyaniline Shell for Catalytic Aerobic Oxidation | |
CN103254373A (en) | Preparation method of stable segmented copolymer PAPMA (Polymethyl Acrylate P-acetamide Phenyl Ester)-b-PNIPAM (Polyisopropyl Acrylamide) based Au nanometer particle | |
Shi et al. | Micro/nanohybrid hierarchical poly (N‐isopropylacrylamide)/calcium carbonate composites for smart drug delivery | |
Chen et al. | Ag nanoparticles-coated silica–PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles in the interior surfaces | |
Song et al. | One-step synthesis of Janus hybrid nanoparticles using reverse atom transfer radical polymerization in emulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14760983 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14760983 Country of ref document: EP Kind code of ref document: A1 |