WO2014136575A1 - Drill for composite material, and machining method and machining device using same - Google Patents

Drill for composite material, and machining method and machining device using same Download PDF

Info

Publication number
WO2014136575A1
WO2014136575A1 PCT/JP2014/053870 JP2014053870W WO2014136575A1 WO 2014136575 A1 WO2014136575 A1 WO 2014136575A1 JP 2014053870 W JP2014053870 W JP 2014053870W WO 2014136575 A1 WO2014136575 A1 WO 2014136575A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
tip
end side
cutting edge
diameter
Prior art date
Application number
PCT/JP2014/053870
Other languages
French (fr)
Japanese (ja)
Inventor
浩文 嶋田
Original Assignee
福井県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福井県 filed Critical 福井県
Publication of WO2014136575A1 publication Critical patent/WO2014136575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites

Definitions

  • the present invention is particularly suitable as a through-hole drilling tool for composite materials such as CFRP (Carbon Fiber Reinforced Plastics) or CFRTP (Carbon Fiber Reinforced Thermoplastics) such as fiber reinforced composite materials represented by thermoplastic carbon fiber reinforced plastics.
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRTP Carbon Fiber Reinforced Thermoplastics
  • a suitable drill more specifically, forming a so-called burr at the opening of the through hole in one drilling operation and forming a high-quality through hole that does not cause delamination or surface peeling on the through surface on the side of the through hole.
  • the present invention relates to a drill for composite materials.
  • a drill for FPC Flexible Printed Circuits
  • the blade portion is formed of any one of cemented carbide, cermet, ceramics, ultra-high pressure sintered body, or a material coated with a hard coating.
  • the flank is formed by the second flank and the third flank, and the flank angle of the third flank is set to 33 to 50 °. Therefore, the length of the cutting edge on the outer peripheral side of the chisel blade is shortened to reduce the width of the chip generated by the cutting edge, thereby improving the chip discharging performance and causing the poor discharging performance.
  • flash which becomes and can be suppressed.
  • Patent Document 2 as a drill suitable for CFRP drilling, it has a shape having a prepared hole processed part for machining a prepared hole and a finished part, and the diameter difference between the finished part and the prepared hole processed part is set to 0.1 mm or more and 2 mm or less.
  • a two-stage drill is disclosed.
  • Patent Document 3 a front end portion on which a front end cutting edge is formed and a rear end side outer diameter that is formed to be connected to the rear end side of the front end portion and larger in diameter than the front end side outer diameter and the front end side outer diameter. It is possible to form a taper part formed in a tapered shape with a difference in diameter and a finishing diameter larger than the outer diameter on the rear end side of the taper part while being connected to the rear end side of the taper part. And a straight portion having the same diameter as the whole, and a peripherally cutting edge spirally twisted is formed on the outer periphery of the tapered portion so that the drilling diameter is continuously increased. Is disclosed.
  • Carbon fiber reinforced composite material especially CFRTP, is lightweight and has high strength and rigidity, and is easy to mold, so it is widely used for automobile parts and notebook PC cases.
  • CFRTP generally has a structure in which sheets of carbon fiber impregnated with a thermoplastic resin material impregnated with hard and hard to cut are laminated in layers. Since the thermoplastic resin material has the property of softening at about 140 ° C., if the heat generation during drilling is not suppressed as much as possible, the chips softened by the heat generation will enter the through-hole entrance (opening on the drilling start surface side). To become solidified. In addition, the fibers come out and become easy to wind around the drill, and further cause processing defects such as generation of uncut parts, fluffing, and delamination due to a reduction in cutting ability due to cutting edge wear.
  • CFRTP which has a layered structure, is likely to generate burrs at the through-hole entrance and through-hole exit (opening on the side opposite to the drilling start surface), and delamination occurs due to the thrust force during processing. Since it is easy, it is difficult for the drills disclosed in Patent Documents 1 and 2 to perform drilling to a practically sufficient level.
  • the “thrust force” is a force applied in the direction opposite to the drill feed direction in drilling.
  • the drill disclosed in Patent Document 3 drills by rotating clockwise when the twist direction of the helical chip discharge groove formed along the outer peripheral cutting edge of the tapered portion is right-handed.
  • the cutting blade 200 is provided in the same direction as the drill rotation direction, and the cutting operation is performed in the tapered portion so as to go from the tip portion side of the chip discharge groove to the straight portion side. Then, the chips generated by the cutting operation move to the straight portion along the twist direction by the rotating action of the drill and are discharged on the shank side.
  • chips are welded to the chip discharge groove due to the influence of heat generated during the drilling process, or softened chips are discharged to the through hole inlet side and the through holes are formed. It is unavoidable that welding is performed around the opening.
  • the present invention has been made in view of the above problems, and suppresses welding and solidification so that chips are raised during drilling, and has high quality without causing almost any burrs or delamination on the workpiece.
  • An object of the present invention is to provide a composite material drill capable of drilling through holes.
  • the composite material drill according to the present invention is a composite material drill for perforating a workpiece including at least a part of a fiber reinforced composite material, the tip portion having a tip cutting edge formed thereon, and the rear portion of the tip portion.
  • a tapered portion formed in a tapered shape by being connected to the end side and having a diameter difference between the distal end side outer diameter and the rear end side outer diameter larger than the distal end side outer diameter; and the rear end of the tapered portion A straight portion that is formed on the same side so as to be able to form a finishing diameter larger than the outer diameter on the rear end side of the taper portion, and connected to the side.
  • a spirally twisted chip discharge groove is formed on the outer periphery of the taper portion, and an outer peripheral cutting edge is formed along an edge of the chip discharge groove on the straight portion side, so that a continuous drilling diameter is increased. Is set by the outer peripheral cutting edge. Operation by rotating the drill to take place, characterized in that it induces the chips produced by the cutting operation to face the drilling direction in the chip discharge groove. Further, the tip cutting edge of the tip portion has a tip angle of 60 ° to 140 °, and the center portion of the blade surface protrudes 0.5 mm or more from the cutting blade surface in the axial direction.
  • the taper angle between the outer diameter line in contact with the outer diameter on the front end side and the outer diameter on the rear end side and the center line of the drill shaft is set to 45 ° or less.
  • the entire taper portion is formed in the shape of a round land drill having the same diameter so that the taper portion can be formed to have a diameter that is 0.01 mm to 0.1 mm larger than the outer diameter on the rear end side.
  • the rake angle is set to 0 ° to 20 ° and the clearance angle is set to 5 ° to 20 °, and the chip discharge groove is formed with a twist angle of 60 ° or less.
  • the tip portion, the taper portion, and the straight portion are integrated coaxially.
  • the axial center of the tip part, the taper part, and the straight part is made to coincide with the rotational axis. Furthermore, a flow path is formed along the center axis of rotation in the tapered portion and the straight portion while opening at the distal end portion, and air or cutting oil flowing through the flow channel is ejected at the distal end portion. .
  • the machining method according to the present invention is a machining method for drilling a workpiece including at least a part of a fiber-reinforced composite material using the above-described drill, wherein the tip cutting edge and the taper portion of the tip portion A prepared hole is drilled in the workpiece by the outer peripheral cutting edge, and the formed prepared hole is subjected to finishing by the straight portion and drilled.
  • a machining apparatus includes a driving unit that holds the above-described drill and rotationally drives the central axis of the drill, and a supporting unit that supports a workpiece including at least a part of a fiber-reinforced composite material. And a moving means for relatively moving the drive means and / or the support means so as to drill the drill into the workpiece.
  • the drill for composite material according to the present invention is processed while expanding the diameter while keeping the cutting resistance low by performing the pilot hole machining with the tapered portion, burrs are unlikely to occur around the through-hole outlet, and the plate of the workpiece Thrust force applied in the thickness direction is also reduced. Therefore, when perforating a CFRTP having a laminated structure, the peeling force with respect to the laminated boundary surface is reduced, and delamination hardly occurs.
  • a cutting operation is performed by the outer peripheral cutting edge by forming a spirally twisted chip discharge groove on the outer periphery of the tapered portion and forming an outer peripheral cutting edge along the edge on the straight portion side of the chip discharge groove.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 1.
  • It is a side view regarding the modification of embodiment shown in FIG. It is explanatory drawing regarding the difference with the cutting action of the conventional straight twist drill and the drill of this invention. It is explanatory drawing regarding the machining method at the time of using the drill which concerns on this invention. It is an external appearance perspective view which shows an example of the machining apparatus using the drill which concerns on this invention. It is explanatory drawing regarding the cutting operation of the conventional drill.
  • FIG. 1 is a side view of an embodiment according to the present invention.
  • FIG. 2 is a front view relating to the tip of the drill shown in FIG. 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is an enlarged cross-sectional view relating to the outer peripheral cutting edge of the drill shown in FIG. 1.
  • the drill 1 is a right-handed, left-rotating drill, and is formed into a tip portion 5 that is a tip portion, a tapered portion 4 that has an outer peripheral cutting edge 7, and a round land drill shape.
  • the straight portion 3 and the shank 2 are connected and integrated on the same axis.
  • the drill 1 is a two-blade drill, in which the straight portion 3 is connected to the tip of the shank 2, and the tapered portion 4 is connected to the tip of the straight portion 3 integrally.
  • the taper part 4, the straight part 3, and the shank 2 are connected with a tolerance of coaxiality 0.01.
  • the taper portion 4 has a tapered shape formed by a difference in diameter between the front end side outer diameter D1 and the rear end side outer diameter D2, and the straight portion 3 is integrally connected to the rear end side.
  • the straight portion 3 is formed to be equal to or larger than the outer diameter D2 of the taper portion 4 rear end side.
  • a tip cutting edge 5 having a tip angle ⁇ 1 is connected to the tip end side of the taper portion 4.
  • the tapered outer periphery formed from the front end side outer diameter D1 to the rear end side outer diameter D2 of the taper portion 4 is formed with two helically twisted chip discharge grooves 6.
  • An outer peripheral cutting edge 7 twisted in a spiral shape is formed at the edge on the straight portion 3 side, and is set so that the perforation diameter continuously increases.
  • the straight portion 3 is formed in an end mill shape in order to shape a portion left uncut by the tapered portion 4 which is a prepared hole processing portion.
  • the tip cutting edge 5 which is the tip has a tip angle of 60 ° to 140 °, and the center portion of the blade edge surface protrudes 0.5 mm or more from the cutting blade surface in the axial direction,
  • the ridgelines 9 and 10 form a tip angle ⁇ 1, and the tip angle ⁇ 1 is set in a range of 60 ° to 140 °.
  • chip discharge grooves 6 are continuously formed on the outer circumferences of the taper portion 4 and the straight portion 3 in a spiral shape with a twist angle ⁇ 3 opposite to the drill rotation direction.
  • the twist angle ⁇ 3 of the chip discharge groove 6 depends on the size of the tip angle and the material of the workpiece, but it can be set to 60 ° or less in order to prevent the cutting edge from becoming too sharp and easily chipped.
  • the chips containing the fiber material of the composite material can be quickly discharged by setting the angle to 60 ° or less.
  • the outer peripheral cutting edge 7 of the tapered portion 4 that is the prepared hole processing portion is not provided with a margin 8 as shown in FIG. 3, and the rake angle ⁇ 5 and the clearance with respect to the conical surface in contact with the land outer periphery of the tapered portion 4 are provided.
  • Each angle ⁇ 4 is set in the range of 5 ° to 20 °.
  • the outer periphery cutting blade 7 is helically twisted and formed so that the edge by the side of the straight part 3 of the chip discharge groove 6 may be followed.
  • the taper angle ⁇ 2 resulting from the diameter difference between the front end side outer diameter D1 and the rear end side outer diameter D2 of the taper portion 4 is set to 45 ° or less.
  • the taper angle ⁇ 2 is greater than 45 °, the thrust resistance exceeds the rotational force, so that a large burr is generated and cannot be reliably removed at the straight portion.
  • the length L1 from the front end side outer diameter D1 to the rear end side outer diameter D2 of the taper portion 4 is determined by the taper angle ⁇ 2.
  • FIG. 4 is a cross-sectional view of the straight portion 3 when the BB cross section shown in FIG. 1 is viewed from the rear end side of the straight portion 3 toward the tapered portion 4.
  • the straight portion 3 is formed in the shape of a round land drill, and is formed to have a finishing diameter D3 equal to or larger than the rear end side outer diameter D2 of the tapered portion 4, and preferably 0.01 to 0.1 mm larger.
  • the axial centers of the tip cutting edge 5, the taper portion 4 and the straight portion 3 are aligned with the drill rotation axis, and the connecting portion between the taper portion 4 and the straight portion 3 has an outer diameter on the tip side of the straight portion 3 which is the taper portion 4. They are connected in a tapered or curved shape with a reduced diameter toward the rear end side outer diameter.
  • the tip cutting edge 5, the taper portion 4, the straight portion 3, and the shank 2 are integrated with a tolerance of coaxiality 0.01.
  • the surface of the drill 1 body is covered with a coating 12 made of diamond, as shown in FIG.
  • the coating 12 can be formed by, for example, a well-known CVD method or PVD method, and may be a DLC film.
  • Drills specializing in the processing of composite materials such as fiber reinforced resin materials need to sharpen the cutting edge and improve sharpness.
  • the cutting edge radius can be reduced.
  • the coating 12 with nano diamond coating the outer peripheral cutting edge has a good sharpness without increasing the diameter of the cutting edge radius.
  • the outer peripheral cutting edge has a good sharpness without increasing the diameter of the cutting edge radius. Can be maintained for a long time. Further, even when the sharpness is deteriorated due to wear of the blade edge or the like, since the burr generated during the drilling of the pilot hole can be effectively removed by the straight portion 3, high-precision drilling can be stably performed. .
  • the material to be drilled by the drill 1 is preferably a fiber reinforced composite material.
  • CFRTP thermoplastic carbon fiber reinforced plastic
  • CFRP thermosetting carbon fiber reinforced plastic jar
  • a glass fiber reinforced material examples thereof include a plastic cage (GFRP), a glass long fiber reinforced plastic (GMT) cage, a boron fiber reinforced plastic cage (BFRP), an aramid fiber reinforced plastic cage (AFRP, KFRP), and a polyethylene fiber reinforced plastic cage (DFRP).
  • Such fiber reinforced composite materials include reinforcing fibers in a matrix resin, and various forms have been developed. For example, what is provided with the layer structure which aligned the reinforcing fiber which consists of a long fiber in a predetermined direction, and was laminated
  • FIG. 6 is a side view of a modification of the embodiment shown in FIG.
  • a flow path 11 is formed along the rotation center axis inside the tapered portion 4 and the straight portion 3 while opening at the tip cutting edge 5 which is a tip portion.
  • fluid such as air or cutting oil can be ejected from the tip portion.
  • the flow path 11 shown in FIG. 6 has a straight shape, it can also have a spiral twisted shape.
  • the cutting edge of the outer peripheral cutting edge 7 faces obliquely downward with respect to the rotation direction. Is guided in the drilling direction while moving toward the center of the chip discharge groove 6. Therefore, chips are not discharged and stayed in the peripheral portion of the through-hole inlet, and it is possible to suppress the welding and solidification so that the chips rise.
  • chips in the chip discharge groove 6 are blown and scattered along the chip discharge groove 6 at a peripheral portion of the through hole entrance. Chips are discharged without stagnation. Further, chips are efficiently discharged without clogging the cutting surface with which the tip cutting edge 5 and the outer peripheral cutting edge 7 abut. Furthermore, since the drill body is cooled by the air or cutting oil jetted, it is effective when drilling a material that is easily softened by heat, such as a thermoplastic resin material.
  • the drill shown in FIG. 6 is particularly effective when the processing time until penetration is long, such as when the workpiece is thick.
  • FIG. 7 is a diagram illustrating the difference in cutting action between a conventional straight twist drill and the drill of the present invention.
  • FIG. 7A shows a cutting mechanism of a straight twist drill, in which a linear blade provided at the tip rotates in the rotation direction indicated by the arrow to cut in the axial direction, and is cut with a scissors.
  • FIG.7 (b) is explanatory drawing regarding the cutting action by the drill of this invention, and part B2 cuts similarly to the cutting action of a straight twist drill, but for inducing the outer periphery cutting edge provided in the taper part. It also plays a role in improving centripetality.
  • Part B ⁇ b> 1 shows the cutting action by the outer peripheral cutting edge 7 of the taper part 4.
  • the outer peripheral cutting edge 7 formed in the taper portion 4 has an arc shape when viewed from the axial direction, and is formed into a spiral shape and a tapered shape as a whole. Cutting by point contact is continuously performed on the material, generating powdery chips and contributing to reducing wear on the outer peripheral cutting edge. Further, the outer peripheral cutting edge has the same cutting action as that of cutting with a knife due to the inclination by the twist angle and the rotation of the cutting edge along the outer peripheral surface direction accompanying the drill rotation, and a sharp cutting edge is obtained. Further, since the outer peripheral cutting edge is spiral and formed in a tapered shape as a whole, the total extension of the cutting edge for expanding the diameter can be taken longer, which contributes to the improvement of the tool life.
  • the cutting edge of the outer peripheral cutting edge 7 faces obliquely downward with respect to the rotation direction, so that the cut chips move in the chip discharge groove 6 in the drilling direction. Be guided. As a result, the chips are prevented from being discharged from the through-hole inlet, and hardly stay in the periphery.
  • FIG. 8 is an explanatory diagram relating to a machining method when the drill according to the present invention is used.
  • FIG. 8A shows a state immediately before the start of drilling, and the tip of the drill 1 is set so as to abut on the plate-shaped workpiece M vertically.
  • the rotation direction of the drill 1 is set to a direction in which the outer peripheral cutting edge performs a cutting operation.
  • FIG. 8 (b) while the drill 1 rotates, the tip cutting edge of the tip portion first bites the workpiece M (eg, fiber reinforced composite material), and the outer periphery of the taper portion is cut. Induction of diameter expansion with a blade.
  • FIG. 8A shows a state immediately before the start of drilling, and the tip of the drill 1 is set so as to abut on the plate-shaped workpiece M vertically.
  • the rotation direction of the drill 1 is set to a direction in which the outer peripheral cutting edge performs a cutting operation.
  • FIG. 8 (b) while the drill 1 rotates, the tip cutting
  • the taper portion enters the workpiece M while the drill 1 is rotated, and diameter expansion processing is performed by the outer peripheral cutting edge.
  • the prepared hole is machined without causing delamination and burrs in the machined portion, and the chips are guided in the chip discharge groove in the drilling direction and are hardly discharged to the peripheral part of the through hole inlet. Therefore, stable drilling with an outer peripheral cutting edge is performed without welding and solidifying so that chips are raised at the peripheral portion of the through hole entrance.
  • FIG. 8D the straight portion enters the workpiece while the drill 1 rotates, and finishing is performed. Then, after the straight portion is removed from the workpiece M while finishing, the drill 1 is pulled up and the drilling process is completed.
  • FIG. 9 is an external perspective view of a machining apparatus using the drill according to the present invention.
  • the machining apparatus 100 includes a moving means including a XYZ three-axis movable mechanism by a ball screw mechanism or a linear motor mechanism and a five-axis mechanism to which a rotation mechanism around the X and Y axes is added.
  • the Z-axis moving mechanism 101 supports the drill 104 attached to the spindle shaft 103 and moves it up and down.
  • a ball screw mechanism or a linear motor mechanism is used as the moving means.
  • the Z-axis moving mechanism 101 includes a drive source that rotationally drives the spindle shaft 103.
  • the XY axis moving mechanism 102 moves the installation table to the X axis, the Y axis, or the XY compound axis.
  • a ball screw mechanism or a linear motor mechanism is used as the moving means.
  • a support tool 106 such as a vise or a restraining jig is disposed on the installation table, and a workpiece 105 made of a fiber reinforced composite material or the like is placed and fixed on the support tool 106.
  • the XY axis moving mechanism 102 is driven by a ball screw mechanism or a linear motor mechanism.
  • the Z-axis moving mechanism 101 and the XY-axis moving mechanism 102 are controlled to perform drilling while rotating the drill 104 with respect to the workpiece 105.
  • the support tool 106 what has the function to pinch
  • the spindle axis may be arranged on the X axis or the Y axis.
  • the cutting resistance and the drilling are achieved by forming a drill in which the tip cutting edge of the tip portion, the outer peripheral cutting edge of the taper portion, the chip discharge groove, and the outer peripheral cutting edge of the straight portion are integrated.
  • a fiber-reinforced composite material drill that reduces machining heat, suppresses chipping and solidification of chips around the through-hole inlet and through-hole outlet, and realizes high-precision drilling with almost no burr or delamination Is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

The purpose of the present invention is to provide a drill for composite materials that minimizes the fusing and solidifying of chips so that the chips rise during boring, and that makes it possible to bore without causing burrs or inter-layer peeling in a machined material. Provided is a drill (1) for composite materials that comprises a tip section having formed thereon a tip cutting blade (5), a tapered section (4) that connects with the rear end side of the tip section and that is formed to have a tapered shape, and a same-diameter straight section (3) that connects with the rear end side of the tapered section (4) and that forms a finished machined diameter that is the same or larger than the outer diameter of the rear end side of the tapered section (4). A chip discharge groove (6) that has a twisted spiral shape is formed on the outer periphery of the tapered section (4), and an outer peripheral cutting blade (7) is formed along the edge of the straight section (3) side of the chip discharge groove (6) and is set so that the boring diameter increases continuously.

Description

複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置Drill for composite material and machining method and machining apparatus using the same
 本発明は、CFRP(Carbon Fiber Reinforced Plastics;炭素繊維強化プラスチック)若しくはCFRTP(Carbon Fiber Reinforced ThermoPlastics;熱可塑性炭素繊維強化プラスチック)に代表される繊維強化複合材料等の複合材料の貫通穴あけ加工工具として特に好適なドリル、より詳しくは、1回の穿孔作業で貫通穴の開口部に所謂バリを作らず、貫通穴側面に層間剥離もしくは貫通面に表層剥離を発生させない高品位の貫通穴を形成することができる複合材料用ドリルに関する。 The present invention is particularly suitable as a through-hole drilling tool for composite materials such as CFRP (Carbon Fiber Reinforced Plastics) or CFRTP (Carbon Fiber Reinforced Thermoplastics) such as fiber reinforced composite materials represented by thermoplastic carbon fiber reinforced plastics. A suitable drill, more specifically, forming a so-called burr at the opening of the through hole in one drilling operation and forming a high-quality through hole that does not cause delamination or surface peeling on the through surface on the side of the through hole. The present invention relates to a drill for composite materials.
 CFRPに代表される繊維強化複合材料等の貫通穴あけ加工として、ダイヤモンドコートを施したストレートの超硬ドリルを用いて行う方法が公知である。しかし、この方法で貫通穴加工を行う場合、切れ刃先磨耗に伴う切れ味低下が生じやすく、そのため繊維の切残しやバリ、層間剥離などの加工不良が発生する。 As a through-hole drilling process for fiber reinforced composite materials such as CFRP, a method using a straight carbide drill with a diamond coat is known. However, when through-hole processing is performed by this method, sharpness deterioration due to wear of the cutting edge is likely to occur, and therefore processing defects such as uncut fibers, burrs, and delamination occur.
 穿孔加工の際のバリの抑制方法としては、例えば、特許文献1では、FPC(Flexible Printed Circuits;フレキシブルプリント基板)加工用のドリルを以下のように構成している。すなわち、少なくとも刃部を超硬合金、サーメット、セラミックス、超高圧焼結体のいずれか又はこれらに硬質皮膜を被覆したもので形成している。また、逃げ面を二番逃げ面と三番逃げ面とで形成し、三番逃げ面の逃げ角を33~50°に設定している。そのため、チゼル刃よりも外周側の切れ刃の長さを短縮してその切れ刃によって生成される切屑の幅を小さくし、これにより、切屑の排出性を向上させて排出性の悪いことが原因となって発生するバリを抑制することができる。 As a method for suppressing burrs during drilling, for example, in Patent Document 1, a drill for FPC (Flexible Printed Circuits) processing is configured as follows. That is, at least the blade portion is formed of any one of cemented carbide, cermet, ceramics, ultra-high pressure sintered body, or a material coated with a hard coating. Further, the flank is formed by the second flank and the third flank, and the flank angle of the third flank is set to 33 to 50 °. Therefore, the length of the cutting edge on the outer peripheral side of the chisel blade is shortened to reduce the width of the chip generated by the cutting edge, thereby improving the chip discharging performance and causing the poor discharging performance. The burr | flash which becomes and can be suppressed.
 特許文献2では、CFRP穿孔に適したドリルとして、下穴を加工する下穴加工部と仕上げ部を持つ形状で、仕上げ部と下穴加工部との径差を0.1mm以上2mm以下とした2段構造ドリルを開示している。 In Patent Document 2, as a drill suitable for CFRP drilling, it has a shape having a prepared hole processed part for machining a prepared hole and a finished part, and the diameter difference between the finished part and the prepared hole processed part is set to 0.1 mm or more and 2 mm or less. A two-stage drill is disclosed.
 特許文献3では、先端切れ刃が形成された先端部と、先端部の後端側に連接して形成されるとともに先端側外径及び当該先端側外径よりも大径の後端側外径の径差でテーパ形状に形成されたテーパ部と、テーパ部の後端側に連接して形成されるとともにテーパ部の後端側外径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部とを有し、テーパ部の外周には、螺旋状にねじれた外周切れ刃が形成されて連続的に穿孔径が大きくなるように設定されているドリルが開示されている。 In Patent Document 3, a front end portion on which a front end cutting edge is formed and a rear end side outer diameter that is formed to be connected to the rear end side of the front end portion and larger in diameter than the front end side outer diameter and the front end side outer diameter. It is possible to form a taper part formed in a tapered shape with a difference in diameter and a finishing diameter larger than the outer diameter on the rear end side of the taper part while being connected to the rear end side of the taper part. And a straight portion having the same diameter as the whole, and a peripherally cutting edge spirally twisted is formed on the outer periphery of the tapered portion so that the drilling diameter is continuously increased. Is disclosed.
特開2005-88088号公報Japanese Patent Laid-Open No. 2005-88088 特開2008-836号公報JP 2008-836 A 特開2011-104766号公報JP 2011-104766 A
 炭素繊維強化複合材、中でもCFRTPは、軽量でありながら高い強度と剛性を備えており、成形加工が容易なことから自動車用部品をはじめノートPC筐体など多用されている。 Carbon fiber reinforced composite material, especially CFRTP, is lightweight and has high strength and rigidity, and is easy to mold, so it is widely used for automobile parts and notebook PC cases.
 CFRTPは、一般に、硬く切れ難い炭素繊維に熱可塑性樹脂材料を含浸させたシートを層状に積層した構造を備えている。熱可塑性樹脂材料は、140℃程度で軟化する特性を有しているため、穿孔加工時の発熱を極力抑制しないと、発熱により軟化した切粉が貫通穴入口(穿孔開始面側の開口部)へ堆積固化するようになる。また、繊維が抜けてドリルへの巻き付きやすくなり、さらに刃先磨耗による切削能力低下から切残しの発生や毛羽立ち、層間剥離を生じるといった加工不良の原因となる。また、層状に積層した構造であるCFRTPは、貫通穴入口及び貫通穴出口(穿孔開始面側と反対側の開口部)にバリが発生し易く、また、加工時のスラスト力により層間剥離を起こし易いため、特許文献1、2が開示しているドリルでは、実用上十分と言える程度までの穿孔加工を行うことが難しい。ここで「スラスト力」とは、ドリル加工における穿孔送り方向と反対方向にかかる力のことである。 CFRTP generally has a structure in which sheets of carbon fiber impregnated with a thermoplastic resin material impregnated with hard and hard to cut are laminated in layers. Since the thermoplastic resin material has the property of softening at about 140 ° C., if the heat generation during drilling is not suppressed as much as possible, the chips softened by the heat generation will enter the through-hole entrance (opening on the drilling start surface side). To become solidified. In addition, the fibers come out and become easy to wind around the drill, and further cause processing defects such as generation of uncut parts, fluffing, and delamination due to a reduction in cutting ability due to cutting edge wear. Also, CFRTP, which has a layered structure, is likely to generate burrs at the through-hole entrance and through-hole exit (opening on the side opposite to the drilling start surface), and delamination occurs due to the thrust force during processing. Since it is easy, it is difficult for the drills disclosed in Patent Documents 1 and 2 to perform drilling to a practically sufficient level. Here, the “thrust force” is a force applied in the direction opposite to the drill feed direction in drilling.
 特許文献3に開示されたドリルは、図10に示すように、テーパ部の外周切れ刃に沿って形成された螺旋状の切屑排出溝のねじれ方向が右ねじれの場合に、右回転で穿孔するように使用される。そのため、ドリル回転方向と同一方向に切刃200が設けられており、テーパ部では、切屑排出溝の先端部側からストレート部側に向かうように切削動作が行われる。そして、切削動作により生じる切屑は、ドリルの回転作用によりねじれ方向に沿ってストレート部に移動してシャンク側において排出されるようになる。特に、熱可塑性樹脂材料をマトリクスとする繊維強化複合材料では、穿孔加工時に発生する熱の影響により切屑が切屑排出溝へ溶着したり、貫通穴入口側に軟化した切屑が排出されて貫通穴の開口周辺に盛り上がるように溶着することが避けられない。 As shown in FIG. 10, the drill disclosed in Patent Document 3 drills by rotating clockwise when the twist direction of the helical chip discharge groove formed along the outer peripheral cutting edge of the tapered portion is right-handed. As used. Therefore, the cutting blade 200 is provided in the same direction as the drill rotation direction, and the cutting operation is performed in the tapered portion so as to go from the tip portion side of the chip discharge groove to the straight portion side. Then, the chips generated by the cutting operation move to the straight portion along the twist direction by the rotating action of the drill and are discharged on the shank side. In particular, in a fiber reinforced composite material using a thermoplastic resin material as a matrix, chips are welded to the chip discharge groove due to the influence of heat generated during the drilling process, or softened chips are discharged to the through hole inlet side and the through holes are formed. It is unavoidable that welding is performed around the opening.
 本発明は、上記の課題を鑑みてなされたものであって、穿孔加工時に切屑が盛り上がるように溶着固化することを抑制するとともに、被加工材にバリや層間剥離をほとんど発生させずに高品位の貫通穴を穿孔加工することが可能な複合材料用ドリルを提供することを目的としている。 The present invention has been made in view of the above problems, and suppresses welding and solidification so that chips are raised during drilling, and has high quality without causing almost any burrs or delamination on the workpiece. An object of the present invention is to provide a composite material drill capable of drilling through holes.
 本発明に係る複合材料用ドリルは、繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する複合材料用ドリルであって、先端切れ刃が形成された先端部と、前記先端部の後端側に連接して形成されるとともに先端側外径及び当該先端側外径よりも大径の後端側外径の径差でテーパ形状に形成されたテーパ部と、前記テーパ部の後端側に連接して形成されるとともに前記テーパ部の前記後端側外径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部とを有し、前記テーパ部の外周には、螺旋状にねじれた切屑排出溝が形成されているとともに当該切屑排出溝の前記ストレート部側の端縁に沿って外周切れ刃が形成されて連続的に穿孔径が大きくなるように設定されており、前記外周切れ刃により切削動作が行われるようにドリルを回転させることで、切削動作により生じた切屑を前記切屑排出溝内において穿孔方向に向かうように誘導することを特徴とする。さらに、前記先端部の前記先端切れ刃は、60°~140°の先端角を有するとともに刃立て面中央部を切り刃面よりも軸方向に0.5mm以上突出させており、前記テーパ部は、前記先端側外径及び前記後端側外径に接する外径線とドリル軸の中心線との間のテーパ角を45°以下に設定しており、前記ストレート部は、前記仕上げ加工径が前記テーパ部の前記後端側外径よりも0.01mm~0.1mm大径に形成可能となるように全体が同径の丸ランドドリル状に形成されており、前記外周切れ刃は、5°~20°のすくい角及び5°~20°の逃げ角に設定されており、前記切屑排出溝は、60°以下のねじれ角で形成されていることを特徴とする。さらに、前記先端部、前記テーパ部及び前記ストレート部は、同軸状に一体化されていることを特徴とする。さらに、前記先端部、前記テーパ部及び前記ストレート部の軸心を回転軸心に合致させていることを特徴とする。さらに、前記先端部において開口するとともに前記テーパ部及び前記ストレート部の内部を回転中心軸に沿って流路が形成されており、前記流路に流通する空気又は切削油を前記先端部において噴出させる。 The composite material drill according to the present invention is a composite material drill for perforating a workpiece including at least a part of a fiber reinforced composite material, the tip portion having a tip cutting edge formed thereon, and the rear portion of the tip portion. A tapered portion formed in a tapered shape by being connected to the end side and having a diameter difference between the distal end side outer diameter and the rear end side outer diameter larger than the distal end side outer diameter; and the rear end of the tapered portion A straight portion that is formed on the same side so as to be able to form a finishing diameter larger than the outer diameter on the rear end side of the taper portion, and connected to the side. A spirally twisted chip discharge groove is formed on the outer periphery of the taper portion, and an outer peripheral cutting edge is formed along an edge of the chip discharge groove on the straight portion side, so that a continuous drilling diameter is increased. Is set by the outer peripheral cutting edge. Operation by rotating the drill to take place, characterized in that it induces the chips produced by the cutting operation to face the drilling direction in the chip discharge groove. Further, the tip cutting edge of the tip portion has a tip angle of 60 ° to 140 °, and the center portion of the blade surface protrudes 0.5 mm or more from the cutting blade surface in the axial direction. The taper angle between the outer diameter line in contact with the outer diameter on the front end side and the outer diameter on the rear end side and the center line of the drill shaft is set to 45 ° or less. The entire taper portion is formed in the shape of a round land drill having the same diameter so that the taper portion can be formed to have a diameter that is 0.01 mm to 0.1 mm larger than the outer diameter on the rear end side. The rake angle is set to 0 ° to 20 ° and the clearance angle is set to 5 ° to 20 °, and the chip discharge groove is formed with a twist angle of 60 ° or less. Furthermore, the tip portion, the taper portion, and the straight portion are integrated coaxially. Furthermore, the axial center of the tip part, the taper part, and the straight part is made to coincide with the rotational axis. Furthermore, a flow path is formed along the center axis of rotation in the tapered portion and the straight portion while opening at the distal end portion, and air or cutting oil flowing through the flow channel is ejected at the distal end portion. .
 本発明に係る機械加工方法は、上記のドリルを用いて繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する機械加工法であって、前記先端部の前記先端切れ刃及び前記テーパ部の前記外周切れ刃により前記被加工材に下穴加工を行い、形成された下穴に前記ストレート部により仕上げ加工を行って穿孔する。 The machining method according to the present invention is a machining method for drilling a workpiece including at least a part of a fiber-reinforced composite material using the above-described drill, wherein the tip cutting edge and the taper portion of the tip portion A prepared hole is drilled in the workpiece by the outer peripheral cutting edge, and the formed prepared hole is subjected to finishing by the straight portion and drilled.
 本発明に係る機械加工装置は、上記のドリルを保持するとともに前記ドリルの中心軸を中心に回転駆動する駆動手段と、繊維強化複合材料を少なくとも一部に含む被加工材を支持する支持手段と、前記ドリルを前記被加工材に対して穿孔加工を行うように前記駆動手段及び/又は前記支持手段を相対的に移動させる移動手段とを備えている。 A machining apparatus according to the present invention includes a driving unit that holds the above-described drill and rotationally drives the central axis of the drill, and a supporting unit that supports a workpiece including at least a part of a fiber-reinforced composite material. And a moving means for relatively moving the drive means and / or the support means so as to drill the drill into the workpiece.
 本発明に係る複合材料用ドリルは、下穴加工をテーパ部により行うことで切削抵抗を低く抑えて拡径しながら加工するため、貫通穴出口周辺にバリが生じにくく、さらに被加工材の板厚方向にかかるスラスト力も低減する。そのため、積層構造のCFRTPを穿孔加工する場合に、積層境界面に対する剥離力が減少して層間剥離が生じにくくなる。 Since the drill for composite material according to the present invention is processed while expanding the diameter while keeping the cutting resistance low by performing the pilot hole machining with the tapered portion, burrs are unlikely to occur around the through-hole outlet, and the plate of the workpiece Thrust force applied in the thickness direction is also reduced. Therefore, when perforating a CFRTP having a laminated structure, the peeling force with respect to the laminated boundary surface is reduced, and delamination hardly occurs.
 また、テーパ部の外周に螺旋状にねじれた切屑排出溝を形成するとともに切屑排出溝のストレート部側の端縁に沿って外周切れ刃を形成することで、外周切れ刃により切削動作が行われるようにドリルを回転させれば、切削動作により生じた切屑は、切屑排出溝内を穿孔方向に向かうように誘導されて、貫通穴入口の周辺部への排出が抑止される。そのため、貫通穴入口の周辺部に切屑がほとんど滞留することがなくなり、切屑が盛り上がるように溶着することを抑制できるようになる。そして、貫通した状態では、貫通穴入口から貫通穴出口に向かって切屑排出溝に沿って切屑が速やかに排出されて貫通穴出口の周辺部に切屑がほとんど滞留することがなく、貫通穴の開口の周辺部において切屑が盛り上るように溶着固化することを抑止した穿孔品質の高い加工を行うことができる。 Further, a cutting operation is performed by the outer peripheral cutting edge by forming a spirally twisted chip discharge groove on the outer periphery of the tapered portion and forming an outer peripheral cutting edge along the edge on the straight portion side of the chip discharge groove. If the drill is rotated in this manner, chips generated by the cutting operation are guided in the chip discharge groove toward the drilling direction, and discharge to the peripheral portion of the through hole entrance is suppressed. Therefore, almost no chips stay in the peripheral portion of the through-hole inlet, and it is possible to suppress welding so that the chips rise. And, in the penetrated state, the chips are quickly discharged along the chip discharge groove from the through hole inlet toward the through hole outlet, so that almost no chips remain in the peripheral portion of the through hole outlet, and the through hole is opened. It is possible to perform processing with high drilling quality that suppresses welding and solidification so that chips are raised in the peripheral portion of the steel.
本発明に係る実施形態に関する側面図である。It is a side view regarding the embodiment concerning the present invention. 図1に示すドリルの先端部に関する正面図である。It is a front view regarding the front-end | tip part of the drill shown in FIG. 図1のA-A線矢視の断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 図1のB-B線矢視の断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 1. 外周切れ刃に関する拡大断面図である。It is an expanded sectional view regarding an outer periphery cutting edge. 図1に示す実施形態の変形例に関する側面図である。It is a side view regarding the modification of embodiment shown in FIG. 従来のストレートツイストドリルと本発明のドリルの切削作用との違いに関する説明図である。It is explanatory drawing regarding the difference with the cutting action of the conventional straight twist drill and the drill of this invention. 本発明に係るドリルを用いた場合の機械加工方法に関する説明図である。It is explanatory drawing regarding the machining method at the time of using the drill which concerns on this invention. 本発明に係るドリルを用いた機械加工装置の一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the machining apparatus using the drill which concerns on this invention. 従来のドリルの切削動作に関する説明図である。It is explanatory drawing regarding the cutting operation of the conventional drill.
 以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。 Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.
 本発明に係る実施形態を図1~図5に基づいて説明する。図1は、本発明に係る実施形態に関する側面図である。図2は、図1に示すドリルの先端部に関する正面図である。図3は、図1のA-A線矢視の断面図である。図4は、図1のB-B線矢視の断面図である。図5は、図1に示すドリルの外周切れ刃に関する拡大断面図である。 Embodiments according to the present invention will be described with reference to FIGS. FIG. 1 is a side view of an embodiment according to the present invention. FIG. 2 is a front view relating to the tip of the drill shown in FIG. 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along line BB in FIG. FIG. 5 is an enlarged cross-sectional view relating to the outer peripheral cutting edge of the drill shown in FIG. 1.
 本実施形態に係るドリル1は、図1に示すように、右ねじれ左回転ドリルであり、先端部である先端切れ刃5、外周切れ刃7を有するテーパ部4、丸ランドドリル状に形成されたストレート部3及びシャンク2から構成され、それぞれが同軸上に連接一体化されて構成する。 As shown in FIG. 1, the drill 1 according to the present embodiment is a right-handed, left-rotating drill, and is formed into a tip portion 5 that is a tip portion, a tapered portion 4 that has an outer peripheral cutting edge 7, and a round land drill shape. The straight portion 3 and the shank 2 are connected and integrated on the same axis.
 ドリル1は、2枚刃ドリルであって、シャンク2の先端にストレート部3を連接し、ストレート部3の先端にテーパ部4を一体に連接してなる。テーパ部4、ストレート部3及びシャンク2は、同軸度0.01の公差で連接される。 The drill 1 is a two-blade drill, in which the straight portion 3 is connected to the tip of the shank 2, and the tapered portion 4 is connected to the tip of the straight portion 3 integrally. The taper part 4, the straight part 3, and the shank 2 are connected with a tolerance of coaxiality 0.01.
 テーパ部4は、先端側外径D1及び後端側外径D2の径差で形成されるテーパ状の形態をなし、その後端側にはストレート部3が一体に連接されている。ストレート部3は、テーパ部4後端側外径D2と同径以上に形成されている。テーパ部4の先端側には、先端角α1を有する先端切れ刃5が連接されている。 The taper portion 4 has a tapered shape formed by a difference in diameter between the front end side outer diameter D1 and the rear end side outer diameter D2, and the straight portion 3 is integrally connected to the rear end side. The straight portion 3 is formed to be equal to or larger than the outer diameter D2 of the taper portion 4 rear end side. A tip cutting edge 5 having a tip angle α1 is connected to the tip end side of the taper portion 4.
 テーパ部4の先端側外径D1から後端側外径D2までに形成されるテーパ状外周には、螺旋状にねじれた2条の切屑排出溝6が形成されており、切屑排出溝6のストレート部3側の端縁には、螺旋状にねじれた外周切れ刃7が形成されて連続的に穿孔径が大きくなるように設定されている。ストレート部3は下穴加工部であるテーパ部4によって切り残された部分を整形加工するためにエンドミル状に形成されている。 The tapered outer periphery formed from the front end side outer diameter D1 to the rear end side outer diameter D2 of the taper portion 4 is formed with two helically twisted chip discharge grooves 6. An outer peripheral cutting edge 7 twisted in a spiral shape is formed at the edge on the straight portion 3 side, and is set so that the perforation diameter continuously increases. The straight portion 3 is formed in an end mill shape in order to shape a portion left uncut by the tapered portion 4 which is a prepared hole processing portion.
 図1に示すように、先端部である先端切れ刃5は、60°~140°の先端角を有するとともに刃立て面中央部を切り刃面よりも軸方向に0.5mm以上突出させ、刃先の稜線9及び10で先端角α1が形成されており、先端角α1は、60°~140°の範囲に設定されている。 As shown in FIG. 1, the tip cutting edge 5 which is the tip has a tip angle of 60 ° to 140 °, and the center portion of the blade edge surface protrudes 0.5 mm or more from the cutting blade surface in the axial direction, The ridgelines 9 and 10 form a tip angle α1, and the tip angle α1 is set in a range of 60 ° to 140 °.
 図1に示すように、テーパ部4及びストレート部3の外周には、切屑排出溝6がドリル回転方向に対し逆向きにねじれ角α3で螺旋状に連続して形成されている。切屑排出溝6のねじれ角α3は、先端角の大きさや被加工材の材質にもよるが、切れ刃が鋭くなりすぎて欠け易くなることを防止するために、60°以下に設定することが好ましく、60°以下に設定することで複合材料の繊維材料を含んだ切屑を速やかに排出できる。 As shown in FIG. 1, chip discharge grooves 6 are continuously formed on the outer circumferences of the taper portion 4 and the straight portion 3 in a spiral shape with a twist angle α3 opposite to the drill rotation direction. The twist angle α3 of the chip discharge groove 6 depends on the size of the tip angle and the material of the workpiece, but it can be set to 60 ° or less in order to prevent the cutting edge from becoming too sharp and easily chipped. Preferably, the chips containing the fiber material of the composite material can be quickly discharged by setting the angle to 60 ° or less.
 下穴加工部であるテーパ部4の外周切れ刃7は、図3に示すようなマージン8が設定されておらず、テーパ部4のランド外周に接する円錐面に対して、すくい角α5及び逃げ角α4をそれぞれ5°~20°の範囲で設定している。そして、切屑排出溝6のストレート部3側の端縁に沿うように外周切れ刃7が螺旋状にねじれて形成されている。 The outer peripheral cutting edge 7 of the tapered portion 4 that is the prepared hole processing portion is not provided with a margin 8 as shown in FIG. 3, and the rake angle α5 and the clearance with respect to the conical surface in contact with the land outer periphery of the tapered portion 4 are provided. Each angle α4 is set in the range of 5 ° to 20 °. And the outer periphery cutting blade 7 is helically twisted and formed so that the edge by the side of the straight part 3 of the chip discharge groove 6 may be followed.
 図1に示すように、テーパ部4の先端側外径D1及び後端側外径D2の径差から生じるテーパ角α2は、45°以下に設定される。テーパ角α2が45°より大きくなるとスラスト抵抗が回転力を上回るため、大きいバリが発生してストレート部で確実に除去することができなくなる。テーパ部4の先端側外径D1から後端側外径D2まで長さL1は、テーパ角α2で決定される。 As shown in FIG. 1, the taper angle α2 resulting from the diameter difference between the front end side outer diameter D1 and the rear end side outer diameter D2 of the taper portion 4 is set to 45 ° or less. When the taper angle α2 is greater than 45 °, the thrust resistance exceeds the rotational force, so that a large burr is generated and cannot be reliably removed at the straight portion. The length L1 from the front end side outer diameter D1 to the rear end side outer diameter D2 of the taper portion 4 is determined by the taper angle α2.
 図4は、図1に示すB-B断面をストレート部3の後端側からテーパ部4方向に見たストレート部3の断面図である。ストレート部3は、丸ランドドリル状に形成され、テーパ部4の後端側外径D2と同径以上、好ましくは0.01mm~0.1mm大径の仕上げ加工径D3に形成されている。先端切れ刃5、テーパ部4およびストレート部3の軸心をドリル回転軸心に合致させ、テーパ部4及びストレート部3の間の連接部はストレート部3の先端側外径がテーパ部4の後端側外径に向けて縮径したテーパ状または曲面状で連接している。また、先端切れ刃5、テーパ部4、ストレート部3及びシャンク2は、同軸度0.01の公差で一体化される。 FIG. 4 is a cross-sectional view of the straight portion 3 when the BB cross section shown in FIG. 1 is viewed from the rear end side of the straight portion 3 toward the tapered portion 4. The straight portion 3 is formed in the shape of a round land drill, and is formed to have a finishing diameter D3 equal to or larger than the rear end side outer diameter D2 of the tapered portion 4, and preferably 0.01 to 0.1 mm larger. The axial centers of the tip cutting edge 5, the taper portion 4 and the straight portion 3 are aligned with the drill rotation axis, and the connecting portion between the taper portion 4 and the straight portion 3 has an outer diameter on the tip side of the straight portion 3 which is the taper portion 4. They are connected in a tapered or curved shape with a reduced diameter toward the rear end side outer diameter. The tip cutting edge 5, the taper portion 4, the straight portion 3, and the shank 2 are integrated with a tolerance of coaxiality 0.01.
 図1に示すドリルを中心軸を中心に左回転(図1中の矢印方向)させながら穿孔加工を行った場合、外周切れ刃7の刃先が回転方向に対して斜め下方向に向くので、切削される切屑は、刃先から切屑排出溝6の中心に向かって移動しながらドリル穿孔方向に向かうように誘導される。そのため、貫通穴入口の周辺部に切屑が排出されてほとんど滞留することがなく、切屑が盛り上がるように溶着固化することが抑止される。そして、ドリルが被加工材を貫通した後、貫通穴出口側から切屑排出溝6に沿って切屑が速やかに排出されて、貫通穴出口の周辺部にも切屑がほとんど滞留せず、切屑の溶着固化が抑止されて高品質の穿孔加工を行うことが可能となる。 When drilling is performed while the drill shown in FIG. 1 is rotated counterclockwise about the central axis (in the direction of the arrow in FIG. 1), the cutting edge of the outer peripheral cutting edge 7 faces obliquely downward with respect to the rotation direction. The chip to be cut is guided so as to move in the drilling direction while moving from the blade edge toward the center of the chip discharge groove 6. Therefore, chips are discharged and hardly stay in the peripheral part of the through hole entrance, and the welding and solidification is suppressed so that the chips rise. Then, after the drill has penetrated the workpiece, the chips are quickly discharged from the through hole outlet side along the chip discharge groove 6, so that the chips are hardly accumulated in the peripheral portion of the through hole outlet and the chips are welded. Solidification is suppressed and high-quality drilling can be performed.
 ドリル1本体の表面は、図5に示すように、ダイヤモンドからなる被膜12に覆われている。被膜12は、例えば、周知のCVD法又はPVD法で形成することができ、DLC膜であってもよい。繊維強化樹脂材料等の複合材料の加工に特化したドリルでは、刃先を鋭くし切れ味を向上させることが必要で、ドリル母材に超微粒子超硬合金材料を使用することで、刃先先端半径を小さく整形することができる。また、刃先を鋭くした場合刃先先端の欠けや磨耗が発生しやすいため、ナノダイヤモンドコーティングで被膜12を形成することで、刃先先端半径の径を大きくすることなく、外周切れ刃の良好な切れ味を長時間維持することができる。また、刃先の磨耗等により切れ味が悪くなった場合でも、下穴加工時に発生したバリをストレート部3によって効果的に除去することができるので、高精度の穿孔加工を安定して行うことができる。 The surface of the drill 1 body is covered with a coating 12 made of diamond, as shown in FIG. The coating 12 can be formed by, for example, a well-known CVD method or PVD method, and may be a DLC film. Drills specializing in the processing of composite materials such as fiber reinforced resin materials need to sharpen the cutting edge and improve sharpness. By using ultrafine cemented carbide material as the drill base material, the cutting edge radius can be reduced. Can be shaped small. In addition, when the cutting edge is sharpened, chipping and abrasion of the cutting edge tip are likely to occur. Therefore, by forming the coating 12 with nano diamond coating, the outer peripheral cutting edge has a good sharpness without increasing the diameter of the cutting edge radius. Can be maintained for a long time. Further, even when the sharpness is deteriorated due to wear of the blade edge or the like, since the burr generated during the drilling of the pilot hole can be effectively removed by the straight portion 3, high-precision drilling can be stably performed. .
 ドリル1により穿孔加工する被加工材としては、繊維強化複合材料が好適であり、具体的には、熱可塑性炭素繊維強化プラスチック(CFRTP)、熱硬化性炭素繊維強化プラスチック (CFRP) 、ガラス繊維強化プラスチック (GFRP) 、ガラス長繊維強化プラスチック(GMT) 、ボロン繊維強化プラスチック (BFRP)、アラミド繊維強化プラスチック (AFRP, KFRP)、ポリエチレン繊維強化プラスチック (DFRP)が挙げられる。こうした繊維強化複合材料は、マトリックス樹脂中に補強繊維を含み、様々な形態のものが開発されている。例えば、長繊維からなる補強繊維を所定の方向に引き揃えて多軸に積層した層構造を備えているものが挙げられる。 The material to be drilled by the drill 1 is preferably a fiber reinforced composite material. Specifically, a thermoplastic carbon fiber reinforced plastic (CFRTP), a thermosetting carbon fiber reinforced plastic jar (CFRP), a glass fiber reinforced material. Examples thereof include a plastic cage (GFRP), a glass long fiber reinforced plastic (GMT) cage, a boron fiber reinforced plastic cage (BFRP), an aramid fiber reinforced plastic cage (AFRP, KFRP), and a polyethylene fiber reinforced plastic cage (DFRP). Such fiber reinforced composite materials include reinforcing fibers in a matrix resin, and various forms have been developed. For example, what is provided with the layer structure which aligned the reinforcing fiber which consists of a long fiber in a predetermined direction, and was laminated | stacked on multiple axes | shafts.
 図6は、図1に示す実施形態の変形例に関する側面図である。この例では、先端部である先端切れ刃5において開口するとともにテーパ部4及びストレート部3の内部を回転中心軸に沿って流路11が形成されている。流路11に空気又は切削油を流通させることで、先端部から空気又は切削油等の流体を噴出させることができる。図6に示す流路11はストレート形状であるが、螺旋状にねじれた形状にすることもできる。図6に示すドリルを、図1と同様に、左回転させながら穿孔加工を行った場合、外周切れ刃7の刃先が回転方向に対して斜め下方向に向くので、切削される切屑は、刃先から切屑排出溝6の中心に向かって移動しながらドリル穿孔方向に向かうように誘導される。そのため、貫通穴入口の周辺部に切屑が排出されて滞留することがなく、切屑が盛り上がるように溶着固化することが抑止される。 FIG. 6 is a side view of a modification of the embodiment shown in FIG. In this example, a flow path 11 is formed along the rotation center axis inside the tapered portion 4 and the straight portion 3 while opening at the tip cutting edge 5 which is a tip portion. By circulating air or cutting oil through the flow path 11, fluid such as air or cutting oil can be ejected from the tip portion. Although the flow path 11 shown in FIG. 6 has a straight shape, it can also have a spiral twisted shape. When the drill shown in FIG. 6 is drilled while rotating counterclockwise in the same manner as in FIG. 1, the cutting edge of the outer peripheral cutting edge 7 faces obliquely downward with respect to the rotation direction. Is guided in the drilling direction while moving toward the center of the chip discharge groove 6. Therefore, chips are not discharged and stayed in the peripheral portion of the through-hole inlet, and it is possible to suppress the welding and solidification so that the chips rise.
 そして、先端切れ刃5から空気又は切削油を噴出させて穿孔を行うことで、切屑排出溝6内の切屑が切屑排出溝6に沿って一気に吹き飛ばされて飛散し、貫通穴入口の周辺部に切屑が滞留することなく排出されるようになる。また、先端切れ刃5及び外周切れ刃7が当接する切削面に切屑が詰ることなく効率よく排出されるようになる。さらに、ドリル本体が噴出する空気又は切削油により冷却されるため、熱可塑性樹脂材料などの熱により軟化しやすい材料を穿孔加工する場合に効果的である。図6に示すドリルは、被加工材が厚い場合のように、貫通するまでの加工時間が長い場合に特に有効である。 Then, by blowing air or cutting oil from the tip cutting edge 5 to perform drilling, chips in the chip discharge groove 6 are blown and scattered along the chip discharge groove 6 at a peripheral portion of the through hole entrance. Chips are discharged without stagnation. Further, chips are efficiently discharged without clogging the cutting surface with which the tip cutting edge 5 and the outer peripheral cutting edge 7 abut. Furthermore, since the drill body is cooled by the air or cutting oil jetted, it is effective when drilling a material that is easily softened by heat, such as a thermoplastic resin material. The drill shown in FIG. 6 is particularly effective when the processing time until penetration is long, such as when the workpiece is thick.
 図7は、従来のストレートツイストドリルと本発明のドリルの切削作用の違いを説明した図である。図7(a)は、ストレートツイストドリルの切削機構を示し、先端に設けられた直線状の刃が矢印で示す回転方向に回転して軸方向に切削するようになっており、鉋で切削する場合と同様の切削作用である。図7(b)は、本発明のドリルによる切削作用に関する説明図であり、部分B2は、ストレートツイストドリルの切削作用と同様に切削するが、テーパ部に設けた外周切れ刃を誘導するための求心性向上の役割も担っている。部分B1は、テーパ部4の外周切れ刃7による切削作用を示している。テーパ部4に形成された外周切れ刃7は、軸方向から見た場合に円弧状で、全体として螺旋状に形成されるとともにテーパ状に形成されているため、外周切れ刃7は、被加工材に対して点接触による切削が連続的に行われ、粉体状の切屑を生成し、外周切れ刃の磨耗低減に寄与する。また、外周切れ刃は、ねじれ角による傾斜とドリル回転に伴う外周面方向に沿う切れ刃の回転により、ナイフで切削する場合と同様の切削作用となり、鋭い切れ味が得られる。また、外周切れ刃は、螺旋状で全体としてテーパ状に形成されているため、拡径を行う切れ刃の総延長を長く取ることができるため、工具寿命の向上にも寄与する。そして、ドリルが矢印方向に回転した場合に、外周切れ刃7の刃先が回転方向に対して斜め下方向に向くため、切削された切屑は、切屑排出溝6内を穿孔方向に移動するように誘導される。そのため、切屑が貫通穴入口から排出されることが抑止されて、その周辺部にほとんど滞留することがなくなる。 FIG. 7 is a diagram illustrating the difference in cutting action between a conventional straight twist drill and the drill of the present invention. FIG. 7A shows a cutting mechanism of a straight twist drill, in which a linear blade provided at the tip rotates in the rotation direction indicated by the arrow to cut in the axial direction, and is cut with a scissors. The same cutting action as in the case. FIG.7 (b) is explanatory drawing regarding the cutting action by the drill of this invention, and part B2 cuts similarly to the cutting action of a straight twist drill, but for inducing the outer periphery cutting edge provided in the taper part. It also plays a role in improving centripetality. Part B <b> 1 shows the cutting action by the outer peripheral cutting edge 7 of the taper part 4. The outer peripheral cutting edge 7 formed in the taper portion 4 has an arc shape when viewed from the axial direction, and is formed into a spiral shape and a tapered shape as a whole. Cutting by point contact is continuously performed on the material, generating powdery chips and contributing to reducing wear on the outer peripheral cutting edge. Further, the outer peripheral cutting edge has the same cutting action as that of cutting with a knife due to the inclination by the twist angle and the rotation of the cutting edge along the outer peripheral surface direction accompanying the drill rotation, and a sharp cutting edge is obtained. Further, since the outer peripheral cutting edge is spiral and formed in a tapered shape as a whole, the total extension of the cutting edge for expanding the diameter can be taken longer, which contributes to the improvement of the tool life. When the drill rotates in the arrow direction, the cutting edge of the outer peripheral cutting edge 7 faces obliquely downward with respect to the rotation direction, so that the cut chips move in the chip discharge groove 6 in the drilling direction. Be guided. As a result, the chips are prevented from being discharged from the through-hole inlet, and hardly stay in the periphery.
 図8は、本発明に係るドリルを用いた場合の機械加工方法に関する説明図である。図8(a)では、穿孔開始直前の状態を示しており、ドリル1の先端部が板状の被加工材Mに対して垂直に当接するように設定されている。ドリル1の回転方向は、外周切れ刃が切削動作を行う方向に設定する。次に、図8(b)では、ドリル1が回転しながら先端部の先端切れ刃が被加工材M(例;繊維強化複合材料)に対して最初に食付きを行い、テーパ部の外周切れ刃による拡径加工を誘導する。次に、図8(c)は、ドリル1が回転しながらテーパ部が被加工材Mに進入して外周切れ刃による拡径加工が行われる。この段階では、加工部分に層間剥離及びバリを発生させないで下穴加工が行われ、切屑が切屑排出溝内を穿孔方向に誘導されて貫通穴入口の周辺部にほとんど排出されることがない。そのため、貫通穴入口の周辺部に切屑が盛り上がるように溶着固化することなく外周切れ刃による安定した穿孔加工が行われる。次に、図8(d)では、ドリル1が回転しながらストレート部が被加工材に進入して仕上げ加工が行われる。そして、ストレート部が仕上げ加工を行いながら被加工材Mから抜け出た後、ドリル1を引き上げて穿孔加工が終了する。 FIG. 8 is an explanatory diagram relating to a machining method when the drill according to the present invention is used. FIG. 8A shows a state immediately before the start of drilling, and the tip of the drill 1 is set so as to abut on the plate-shaped workpiece M vertically. The rotation direction of the drill 1 is set to a direction in which the outer peripheral cutting edge performs a cutting operation. Next, in FIG. 8 (b), while the drill 1 rotates, the tip cutting edge of the tip portion first bites the workpiece M (eg, fiber reinforced composite material), and the outer periphery of the taper portion is cut. Induction of diameter expansion with a blade. Next, in FIG. 8C, the taper portion enters the workpiece M while the drill 1 is rotated, and diameter expansion processing is performed by the outer peripheral cutting edge. At this stage, the prepared hole is machined without causing delamination and burrs in the machined portion, and the chips are guided in the chip discharge groove in the drilling direction and are hardly discharged to the peripheral part of the through hole inlet. Therefore, stable drilling with an outer peripheral cutting edge is performed without welding and solidifying so that chips are raised at the peripheral portion of the through hole entrance. Next, in FIG. 8D, the straight portion enters the workpiece while the drill 1 rotates, and finishing is performed. Then, after the straight portion is removed from the workpiece M while finishing, the drill 1 is pulled up and the drilling process is completed.
 図9は、本発明に係るドリルを用いた機械加工装置に関する外観斜視図である。機械加工装置100は、ボールねじ機構又はリニアモータ機構等によるXYZの3軸方向の可動機構並びにX軸及びY軸周りの回転機構を付加した5軸機構を備える移動手段を備えている。Z軸移動機構101は、スピンドル軸103に取り付けられたドリル104を支持して上下方向に移動させる。移動手段としては、ボールねじ機構又はリニアモータ機構が用いられる。また、Z軸移動機構101は、スピンドル軸103を回転駆動する駆動源を備えている。 FIG. 9 is an external perspective view of a machining apparatus using the drill according to the present invention. The machining apparatus 100 includes a moving means including a XYZ three-axis movable mechanism by a ball screw mechanism or a linear motor mechanism and a five-axis mechanism to which a rotation mechanism around the X and Y axes is added. The Z-axis moving mechanism 101 supports the drill 104 attached to the spindle shaft 103 and moves it up and down. As the moving means, a ball screw mechanism or a linear motor mechanism is used. Further, the Z-axis moving mechanism 101 includes a drive source that rotationally drives the spindle shaft 103.
 XY軸移動機構102は、X軸又はY軸あるいはXY複合軸に設置テーブルを移動させる。移動手段としては、ボールねじ機構又はリニアモータ機構が用いられる。設置テーブルには、バイス又は拘束治具等の支持具106が配置されており、支持具106に繊維強化複合材料等からなる被加工材105が載置固定されている。XY軸移動機構102は、ボールねじ機構又はリニアモータ機構により駆動される。 The XY axis moving mechanism 102 moves the installation table to the X axis, the Y axis, or the XY compound axis. As the moving means, a ball screw mechanism or a linear motor mechanism is used. A support tool 106 such as a vise or a restraining jig is disposed on the installation table, and a workpiece 105 made of a fiber reinforced composite material or the like is placed and fixed on the support tool 106. The XY axis moving mechanism 102 is driven by a ball screw mechanism or a linear motor mechanism.
 そして、Z軸移動機構101及びXY軸移動機構102を制御して被加工材105に対してドリル104を回転駆動しながら穿孔加工が行われる。なお、支持具106としては、被加工材105の厚み方向又は面方向から挟む機能を有するものを用いてもよい。また、スピンドル軸をX軸又はY軸に配置するようにすることもできる。 Then, the Z-axis moving mechanism 101 and the XY-axis moving mechanism 102 are controlled to perform drilling while rotating the drill 104 with respect to the workpiece 105. In addition, as the support tool 106, what has the function to pinch | interpose from the thickness direction or surface direction of the workpiece 105 may be used. Further, the spindle axis may be arranged on the X axis or the Y axis.
 以上説明したように、本発明においては、先端部の先端切れ刃、テーパ部の外周切れ刃、切屑排出溝、及びストレート部の外周切れ刃を一体化したドリルとすることにより、切削抵抗および穿孔加工熱を低減させ、貫通穴入口や貫通穴出口の周辺部への切屑の溶着固化を抑止し、バリや層間剥離をほとんど発生させずに高精度の穴加工が実現できる繊維強化複合材料用ドリルが得られる。 As described above, in the present invention, the cutting resistance and the drilling are achieved by forming a drill in which the tip cutting edge of the tip portion, the outer peripheral cutting edge of the taper portion, the chip discharge groove, and the outer peripheral cutting edge of the straight portion are integrated. A fiber-reinforced composite material drill that reduces machining heat, suppresses chipping and solidification of chips around the through-hole inlet and through-hole outlet, and realizes high-precision drilling with almost no burr or delamination Is obtained.
1・・ドリル、2・・シャンク、3・・ストレート部、4・・テーパ部、5・・先端切れ刃、6・・主刃切屑排出溝、7・・外周切れ刃、8・・マージン、9,10・・刃先の稜線、11・・流路、12・・被膜、100・・機械加工装置、101・・Z軸移動機構、102・・XY軸移動機構、103・・スピンドル軸、104・・ドリル、105・・被加工材、106・・支持具、α1・・先端角、α2・・テーパ角、α3・・ねじれ角、α4・・すくい角、α5・・逃げ角 1 ・ ・ Drill, 2 ・ Shank, 3 ・ ・ Straight part, 4 ・ ・ Taper part, 5 ・ ・ Cut tip cutting edge, 6 ・ ・ Cut discharge groove, 7 ・ ・ Cut edge, 8 ・ ・ Margin, 9, 10 ... Edge line of blade edge, 11 .... Flow path, 12 .... Coating, 100 ... Machining device, 101 ... Z axis moving mechanism, 102 ... XY axis moving mechanism, 103 ... Spindle axis, 104 ..Drill, 105 .. Workpiece, 106 .. Supporting tool, α 1 .. Tip angle, α 2 .. Taper angle, α 3 .. Torsion angle, α 4 .. Rake angle, α 5.

Claims (8)

  1.  繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する複合材料用ドリルであって、先端切れ刃が形成された先端部と、前記先端部の後端側に連接して形成されるとともに先端側外径及び当該先端側外径よりも大径の後端側外径の径差でテーパ形状に形成されたテーパ部と、前記テーパ部の後端側に連接して形成されるとともに前記テーパ部の前記後端側外径よりも大径の仕上げ加工径が形成可能となるように全体が同径に形成されたストレート部とを有し、前記テーパ部の外周には、螺旋状にねじれた切屑排出溝が形成されているとともに当該切屑排出溝の前記ストレート部側の端縁に沿って外周切れ刃が形成されて連続的に穿孔径が大きくなるように設定されており、前記外周切れ刃により切削動作が行われるようにドリルを回転させることで、切削動作により生じた切屑を前記切屑排出溝内において穿孔方向に向かうように誘導することを特徴とする複合材料用ドリル。 A composite material drill for drilling in a workpiece including at least a part of a fiber reinforced composite material, wherein the tip is formed with a tip end formed with a tip cutting edge and connected to a rear end side of the tip end portion. A tapered portion formed in a tapered shape with a diameter difference between a distal end side outer diameter and a rear end side outer diameter larger than the distal end side outer diameter, and connected to the rear end side of the tapered portion, and A straight portion formed entirely in the same diameter so that a finishing diameter larger than the outer diameter on the rear end side of the taper portion can be formed, and the outer periphery of the taper portion has a spiral shape A twisted chip discharge groove is formed, and an outer peripheral cutting edge is formed along an edge of the chip discharge groove on the straight portion side so that the perforation diameter is continuously increased. Rotate the drill so that the cutting action is performed by the cutting edge. It is to, composite material for drilling, characterized in that induces chips produced by the cutting operation to face the drilling direction in the chip discharge groove.
  2.  前記先端部の前記先端切れ刃は、60°~140°の先端角を有するとともに刃立て面中央部を切り刃面よりも軸方向に0.5mm以上突出させており、前記テーパ部は、前記先端側外径及び前記後端側外径に接する外径線とドリル軸の中心線との間のテーパ角を45°以下に設定しており、前記ストレート部は、前記仕上げ加工径が前記テーパ部の前記後端側外径よりも0.01mm~0.1mm大径に形成可能となるように全体が同径の丸ランドドリル状に形成されており、前記外周切れ刃は、5°~20°のすくい角及び5°~20°の逃げ角に設定されており、前記切屑排出溝は、60°以下のねじれ角で形成されていることを特徴とする請求項1に記載のドリル。 The tip cutting edge of the tip portion has a tip angle of 60 ° to 140 °, and the center portion of the blade surface protrudes 0.5 mm or more from the cutting blade surface in the axial direction. The taper angle between the outer diameter line in contact with the outer diameter on the front end side and the outer diameter on the rear end side and the center line of the drill shaft is set to 45 ° or less. Is formed in the shape of a round land drill having the same diameter so that it can be formed to a diameter larger than the outer diameter on the rear end side by 0.01 mm to 0.1 mm. 2. The drill according to claim 1, wherein a rake angle of 20 ° and a clearance angle of 5 ° to 20 ° are set, and the chip discharge groove is formed with a helix angle of 60 ° or less.
  3.  前記先端部、前記テーパ部及び前記ストレート部は、同軸状に一体化されていることを特徴とする請求項1又は2のいずれかに記載のドリル。 The drill according to any one of claims 1 and 2, wherein the tip portion, the tapered portion, and the straight portion are integrated coaxially.
  4.  前記先端部、前記テーパ部及び前記ストレート部の軸心を回転軸心に合致させていることを特徴とする請求項3に記載のドリル。 The drill according to claim 3, wherein the axis of the tip, the taper, and the straight is aligned with the axis of rotation.
  5.  前記先端部において開口するとともに前記テーパ部及び前記ストレート部の内部を回転中心軸に沿って流路が形成されており、前記流路に流通する空気又は切削油を前記先端部において噴出させることを特徴とする請求項1から4のいずれかに記載のドリル。 A flow path is formed along the rotation center axis in the tapered portion and the straight portion while opening at the distal end portion, and air or cutting oil flowing through the flow passage is ejected at the distal end portion. The drill according to any one of claims 1 to 4, wherein the drill is characterized.
  6.  請求項1から5のいずれかに記載のドリルを備えた穿孔加工具。 A drilling tool provided with the drill according to any one of claims 1 to 5.
  7.  請求項1から5のいずれかに記載のドリルを用いて繊維強化複合材料を少なくとも一部に含む被加工材に穿孔する機械加工法であって、前記先端部の前記先端切れ刃及び前記テーパ部の前記外周切れ刃により前記被加工材に下穴加工を行い、形成された下穴に前記ストレート部により仕上げ加工を行って穿孔することを特徴とする機械加工方法。 A machining method for drilling a workpiece including at least a part of a fiber-reinforced composite material using the drill according to any one of claims 1 to 5, wherein the tip cutting edge and the taper portion of the tip portion A machining method, comprising: drilling a prepared hole in the workpiece with the outer peripheral cutting edge and performing a finishing process on the formed prepared hole with the straight portion.
  8.  請求項1から5のいずれかに記載のドリルを保持するとともに前記ドリルの中心軸を中心に回転駆動する駆動手段と、繊維強化複合材料を少なくとも一部に含む被加工材を支持する支持手段と、前記ドリルを前記被加工材に対して穿孔加工を行うように前記駆動手段及び/又は前記支持手段を相対的に移動させる移動手段とを備えていることを特徴とする機械加工装置。 Drive means for holding the drill according to any one of claims 1 to 5 and rotationally driving about a central axis of the drill, and support means for supporting a workpiece including at least a part of a fiber reinforced composite material A machining apparatus comprising: a moving means for relatively moving the driving means and / or the supporting means so as to drill the drill into the workpiece.
PCT/JP2014/053870 2013-03-08 2014-02-19 Drill for composite material, and machining method and machining device using same WO2014136575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-046279 2013-03-08
JP2013046279A JP5476590B1 (en) 2013-03-08 2013-03-08 Drill for composite material and machining method and machining apparatus using the same

Publications (1)

Publication Number Publication Date
WO2014136575A1 true WO2014136575A1 (en) 2014-09-12

Family

ID=50749887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053870 WO2014136575A1 (en) 2013-03-08 2014-02-19 Drill for composite material, and machining method and machining device using same

Country Status (2)

Country Link
JP (1) JP5476590B1 (en)
WO (1) WO2014136575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384577A (en) * 2014-11-10 2015-03-04 苏州阿诺精密切削技术股份有限公司 Multi-operating-condition twist drill bit
JP2017113361A (en) * 2015-12-25 2017-06-29 マニー株式会社 Dental root amputation instrument
CN109226835A (en) * 2018-11-02 2019-01-18 常州市海力工具有限公司 A kind of step drill structure of micro-nano composite coating
EP3970890A4 (en) * 2019-06-26 2023-06-21 Bic Tool Co., Ltd. Drill for carbon-fiber composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105034076B (en) * 2015-08-18 2016-07-27 大连理工大学 A kind of dedicated tool of the efficient drilling of fibre reinforced composites
DE102019202165B4 (en) * 2019-02-19 2022-10-27 Kennametal Inc. Drill and method of machining a workpiece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148110A (en) * 1985-12-17 1987-07-02 Honda Motor Co Ltd Drill with oil path
JPH02237709A (en) * 1989-03-09 1990-09-20 Mitsubishi Heavy Ind Ltd Twist drill
EP0836919B1 (en) * 1996-09-21 2004-01-02 Black & Decker Inc. A drill bit
JP2011104766A (en) * 2009-10-21 2011-06-02 Fukui Prefecture Drill for composite material, and machining method and apparatus using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210315A (en) * 1990-08-10 1992-07-31 Nachi Fujikoshi Corp Rotary cutting tool
JP2002126923A (en) * 2000-10-23 2002-05-08 Osg Corp Drill
JP4976181B2 (en) * 2006-12-25 2012-07-18 住友電工ハードメタル株式会社 Tip placement method for throw-away drills
JP5184902B2 (en) * 2008-01-23 2013-04-17 住友電気工業株式会社 Drilling tools and drilling methods for fiber reinforced composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148110A (en) * 1985-12-17 1987-07-02 Honda Motor Co Ltd Drill with oil path
JPH02237709A (en) * 1989-03-09 1990-09-20 Mitsubishi Heavy Ind Ltd Twist drill
EP0836919B1 (en) * 1996-09-21 2004-01-02 Black & Decker Inc. A drill bit
JP2011104766A (en) * 2009-10-21 2011-06-02 Fukui Prefecture Drill for composite material, and machining method and apparatus using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104384577A (en) * 2014-11-10 2015-03-04 苏州阿诺精密切削技术股份有限公司 Multi-operating-condition twist drill bit
JP2017113361A (en) * 2015-12-25 2017-06-29 マニー株式会社 Dental root amputation instrument
CN109226835A (en) * 2018-11-02 2019-01-18 常州市海力工具有限公司 A kind of step drill structure of micro-nano composite coating
EP3970890A4 (en) * 2019-06-26 2023-06-21 Bic Tool Co., Ltd. Drill for carbon-fiber composite material

Also Published As

Publication number Publication date
JP2014172120A (en) 2014-09-22
JP5476590B1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5135614B2 (en) Drill for composite material and machining method and machining apparatus using the same
JP5476590B1 (en) Drill for composite material and machining method and machining apparatus using the same
US8602698B2 (en) Combination end milling/drilling/reaming cutting tool
JP6256865B2 (en) Cutting auxiliary lubricant and cutting method
US7665935B1 (en) Carbide drill bit for composite materials
JP5945283B2 (en) drill
US7575401B1 (en) PCD drill for composite materials
US9446454B2 (en) Segmented orbital drill
US6773211B2 (en) Orbital drilling cutting tool
JP5184902B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP5451831B2 (en) Drilling tools and drilling methods for fiber reinforced composites
JP7340319B2 (en) Manufacturing method of drill and drilled product
JP2014012302A (en) Drill for composite material, and method and apparatus for machine work using the drill
GB2494784A (en) Drill reamer with axially displaced cutting sections
JP2008142834A (en) Drill
JP2009039810A (en) Method for drilling hole in fiber-reinforced composite material
JP2724120B2 (en) Reamer for composite material processing
US10710175B2 (en) Orbital drill with left-handed and right-handed flutes
Suzuki et al. Application of a novel woven metal wire tool with electrodeposited diamond grains for carbon fiber reinforced plastics core drilling
EP3789143A1 (en) Forward-reverse feed helical milling method
JPH0871825A (en) Composite material machining core drill
JP2021008000A (en) End mill and drilling method
Michel et al. Laser based surface and post coating treatment of cutting tools
JP2016022572A (en) Cutting tool, and machining method and machining device using the same
JP2018183872A (en) Drill bit and hole formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759548

Country of ref document: EP

Kind code of ref document: A1