WO2014136143A1 - Mobile device, exposure device, and device production method - Google Patents

Mobile device, exposure device, and device production method Download PDF

Info

Publication number
WO2014136143A1
WO2014136143A1 PCT/JP2013/001450 JP2013001450W WO2014136143A1 WO 2014136143 A1 WO2014136143 A1 WO 2014136143A1 JP 2013001450 W JP2013001450 W JP 2013001450W WO 2014136143 A1 WO2014136143 A1 WO 2014136143A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving member
actuator
axis
mobile device
moving
Prior art date
Application number
PCT/JP2013/001450
Other languages
French (fr)
Japanese (ja)
Inventor
柴崎 祐一
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2013/001450 priority Critical patent/WO2014136143A1/en
Publication of WO2014136143A1 publication Critical patent/WO2014136143A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving

Definitions

  • the present invention relates to a moving body apparatus, an exposure apparatus, and a device manufacturing method, and in particular, a moving body apparatus including a moving body having a coarse / fine movement structure, an exposure apparatus in which an object to be exposed is placed on the moving body apparatus, and the The present invention relates to a device manufacturing method using an exposure apparatus.
  • steppers step-and-repeat projection exposure apparatuses
  • step-and-scan projections An exposure apparatus (a so-called scanning stepper (also called a scanner)) or the like is mainly used.
  • a coarse / fine movement type stage apparatus including a coarse movement stage and a fine movement stage is used as a wafer stage apparatus on which a wafer to be exposed is placed.
  • the fine movement stage is driven at least in a horizontal plane by an electromagnetic actuator.
  • an actuator for driving the fine movement stage a linear motor or a voice coil motor (hereinafter abbreviated as VCM as appropriate) is often used.
  • VCM is characterized by high accuracy but relatively low efficiency, so some of the wafer stage devices have relatively low magnetic rigidity in the high-precision constant-velocity driving section of scanning that requires a fine movement stage. It is known to use a VCM that generates a force, and to use a more efficient actuator that generates a relatively large force in a low-accuracy acceleration / deceleration section of a scan, although the accuracy is low (for example, Patent Document 1). In the wafer stage apparatus disclosed in Patent Document 1, an electromagnetic actuator that does not generate heat relatively, such as an EI core actuator, is used as an efficient actuator.
  • planar motors will become the mainstream as a driving source for wafer stages for next-generation 450 mm wafers.
  • VCM or EI core actuator electromagnetic actuators
  • the base member the first moving member that moves on the base member along a two-dimensional plane including the first axis and the second axis orthogonal to each other, and the first movement
  • a second moving member supported by the member so as to be relatively movable; and a driving force along a first direction parallel to the first axis and a second direction parallel to the second axis.
  • a first actuator that acts between the first moving member and the second moving member, and a driving force along a third direction that intersects each of the first and second directions and is parallel to the two-dimensional plane;
  • a first moving body device including at least a pair of second actuators that act between one moving member and the second moving member.
  • the first actuator that causes the driving force along the first direction and the second direction to act between the first moving member and the second moving member
  • the second moving member is driven with respect to the first moving member by at least a pair of second actuators that apply a driving force along the three directions between the first moving member and the second moving member.
  • an exposure apparatus for exposing an object by irradiating an energy beam, wherein the object is held on the second moving member;
  • a first exposure apparatus comprising: a pattern generation device that forms a pattern on the object by irradiating the object with the energy beam.
  • scanning driving means driving of a moving body having a speed component substantially only in the second direction (scanning direction)
  • step driving means movement having a speed component in the first direction (step direction).
  • Means body drive In this specification, the terms scan driving and step driving are used in this sense.
  • the base member, the first moving member that moves on the base member along a two-dimensional plane including the first axis and the second axis orthogonal to each other, and the first movement A second moving member supported by the member so as to be relatively movable; a first driving device that drives the moving body with six degrees of freedom relative to the base member; and A second driving device that drives the first moving member with six degrees of freedom, and when the second moving member is rotationally driven around at least one of the first axis and the second axis,
  • the first driving member is driven to rotate about at least one of the first shaft and the second shaft by the first driving device, and the second moving member is turned to the first member by the second driving device.
  • at least one of the first axis and the second axis The second mobile device that rotates around it, is provided.
  • an exposure apparatus that irradiates an energy beam to expose an object, the second moving body apparatus in which the object is held on the second moving member;
  • a second exposure apparatus comprising: a pattern generation device that forms a pattern on the object by irradiating the object with the energy beam.
  • an object is exposed using one of the first and second exposure apparatuses, a pattern is formed on the object, and the object on which the pattern is formed is A device manufacturing method is provided.
  • a first moving member that moves along a two-dimensional plane including a first axis and a second axis that are orthogonal to each other, a substrate holding unit that holds a substrate, and Position information in the first direction along the first axis and position information in the second direction along the second axis are supported by the first moving member so as to be movable with respect to the first moving member.
  • a second actuator that acts between the second movable member, the third mobile device with a provided.
  • the first moving member when the first moving member is driven, positional information regarding the first direction and the second direction of the second moving member that is supported by the first moving member and is movably supported and holds the substrate. Based on this measurement information, the second moving member is driven relative to the first moving member by at least one of the first and second actuators.
  • an exposure apparatus for exposing a substrate by irradiating an energy beam, wherein the energy beam is applied to the third moving body device and the substrate held by the second moving body.
  • a pattern generation device that forms a pattern on the substrate by irradiating the substrate.
  • the substrate is exposed using the third exposure apparatus described above, a pattern is formed on the substrate, and the substrate on which the pattern is formed is developed.
  • a device manufacturing method is provided.
  • FIGS. 4 and 5 are plan views corresponding to the perspective views of FIGS. 4 and 5, respectively.
  • 7A is a cross-sectional view showing a part of the internal structure of the fine movement stage, and FIG.
  • FIG. 7B is a plan view showing the internal structure of the voice coil motor that drives the fine movement stage. It is a top view which shows the internal structure of EI core which drives a fine movement stage. The perspective view which looked at the fine movement stage and the wafer table fixed to this upper surface from the back surface side is shown. It is a figure for demonstrating an interferometer system. It is a top view which shows arrangement
  • FIG. 1 It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of the exposure apparatus which concerns on one Embodiment. It is a figure which shows the detailed structural example of each structure part of a stage apparatus among the structure parts of the control system of FIG. It is a figure showing the movement path
  • FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to an embodiment.
  • the exposure apparatus 100 is a step-and-scan projection exposure apparatus, that is, a so-called scanner.
  • a projection optical system PL is provided.
  • the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction (Z direction), and the scanning direction in which the reticle R and the wafer W are relatively scanned in a plane orthogonal to this is the Y-axis direction ( Y direction), the direction orthogonal to the Z axis and the Y axis is the X axis direction (X direction), and the rotation (tilt) directions around the X axis, Y axis, and Z axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • Z direction the scanning direction in which the reticle R and the wafer W are relatively scanned in a plane orthogonal to this is the Y-axis direction ( Y direction)
  • the direction orthogonal to the Z axis and the Y axis is the X axis direction (X direction)
  • the rotation (tilt) directions around the X axis, Y axis, and Z axis are
  • the exposure apparatus 100 includes an illumination system 10, a reticle stage RST, a projection unit PU, a stage apparatus 50 having a wafer stage WST and a measurement stage MST, a control system for these, and the like.
  • reticle R is placed on reticle stage RST
  • wafer W is placed on wafer stage WST.
  • the illumination system 10 includes, for example, a light source, an illumination uniformizing optical system having an optical integrator, and a reticle blind (both not shown) as disclosed in, for example, US Patent Application Publication No. 2003/0025890.
  • the illumination system 10 illuminates the slit-shaped illumination area IAR on the reticle R set (restricted) by the reticle blind (masking system) with illumination light (exposure light) IL with substantially uniform illuminance.
  • ArF excimer laser light (wavelength 193 nm) is used as the illumination light IL.
  • reticle stage RST On reticle stage RST, reticle R having a circuit pattern or the like formed on the pattern surface (the lower surface in FIG. 1) is fixed by, for example, vacuum suction.
  • the reticle stage RST can be finely driven in the XY plane by a reticle stage drive system 11 (not shown in FIG. 1, refer to FIG. 14) including, for example, a linear motor, and the scanning direction (left and right direction in FIG. 1). In the Y-axis direction) at a predetermined scanning speed.
  • Position information of reticle stage RST in the XY plane is transferred by reticle laser interferometer (hereinafter abbreviated as “reticle interferometer”) 116 to movable mirror 15 (actually And a Y moving mirror (or a retroreflector) having a reflecting surface orthogonal to the Y-axis direction and an X moving mirror having a reflecting surface orthogonal to the X-axis direction), for example, about 0.25 nm. Is always detected with a resolution of.
  • the measurement information of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 1, refer to FIG. 14).
  • main controller 20 not shown in FIG. 1, refer to FIG. 14
  • a reflecting surface formed by mirror finishing on the end surface of the reticle stage RST may be used.
  • Projection unit PU is arranged below reticle stage RST in FIG.
  • the projection unit PU includes a lens barrel 40 and a projection optical system PL held in the lens barrel 40.
  • the projection optical system PL for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along an optical axis AX parallel to the Z axis is used.
  • the projection optical system PL is, for example, double-sided telecentric and has a predetermined projection magnification (for example, 1/4, 1/5, or 1/8).
  • the illumination area IAR on the reticle R is illuminated by the illumination system 10
  • a reduced image of the circuit pattern of the reticle R in the illumination area IAR passes through the projection optical system PL (projection unit PU), and the second surface (image) of the projection optical system PL.
  • reticle R is moved relative to illumination area IAR (illumination light IL) in the scanning direction (Y-axis direction) and exposure area IA (illumination light IL).
  • illumination area IAR illumination light IL
  • exposure area IA illumination light IL
  • scanning exposure of one shot area (partition area) on the wafer W is performed, and the pattern of the reticle R is transferred to the shot area.
  • the pattern of the reticle R is generated on the wafer W by the illumination system 10 and the projection optical system PL, and the sensitive layer (resist layer) on the wafer W is exposed on the wafer W by the illumination light IL. A pattern is formed.
  • a local liquid immersion apparatus 8 is provided in order to perform liquid immersion exposure.
  • the local liquid immersion device 8 includes, for example, a liquid supply device 5, a liquid recovery device 6 (both not shown in FIG. 1, refer to FIG. 14), a liquid supply tube 31A, a liquid recovery tube 31B, a nozzle unit 32, and the like.
  • the nozzle unit 32 holds an optical element on the most image plane side (wafer W side) constituting the projection optical system PL, here a lens (hereinafter also referred to as “tip lens”) 191. It is suspended and supported by a main frame (not shown) that holds the projection unit PU so as to surround the lower end portion of the lens barrel 40.
  • a main frame not shown
  • the lower end surface of the nozzle unit 32 is set substantially flush with the lower end surface of the front lens 191.
  • the nozzle unit 32 includes a supply port and a recovery port for the liquid Lq, a supply channel and a recovery channel connected to the liquid supply tube 31A and the liquid recovery tube 31B, respectively, and a lower surface on which the recovery port is provided.
  • a wafer W is disposed opposite to the wafer W.
  • the liquid supply pipe 31A and the liquid recovery pipe 31B are connected to a liquid supply apparatus 5 and a liquid recovery apparatus 6 (both not shown in FIG. 1, refer to FIG. 14), respectively.
  • the liquid supply device 5 includes a tank for storing the liquid, a pressurizing pump, a temperature control device, a valve for controlling the flow rate of the liquid, and the like.
  • the liquid recovery device 6 includes a tank for storing the recovered liquid, a suction pump, a valve for controlling the flow rate of the liquid, and the like.
  • the main control device 20 controls the liquid supply device 5 to supply the liquid Lq between the tip lens 191 and the wafer W via the liquid supply pipe 31A and to control the liquid recovery device 6. Then, the liquid Lq is recovered from between the front lens 191 and the wafer W via the liquid recovery tube 31B. At this time, main controller 20 controls liquid supply device 5 and liquid recovery device 6 so that the amount of supplied liquid Lq and the amount of recovered liquid Lq are always equal. Accordingly, a certain amount of liquid Lq (see FIG. 1) is always exchanged and held between the front lens 191 and the wafer W, thereby forming the liquid immersion region 14 (see FIGS. 10, 11, etc.). . In addition, even when a measurement stage MST described later is positioned below the projection unit PU, the liquid immersion region 14 can be similarly formed between the tip lens 191 and the measurement table.
  • pure water that transmits ArF excimer laser light (light having a wavelength of 193 nm) (hereinafter, simply described as “water” unless otherwise required) is used as the liquid.
  • the stage device 50 is mounted on a base board 12 and a base board 12 that are supported substantially horizontally by a plurality of (for example, three or four) vibration isolation mechanisms (not shown) on the floor surface.
  • a plurality of (for example, three or four) vibration isolation mechanisms (not shown) on the floor surface.
  • Placed stage base 13, wafer stage WST and measurement stage MST arranged on stage base 13, stage drive system 124 (see FIG. 14) for driving wafer stage WST and measurement stage MST, and wafer stage WST and measurement stage A measurement system 300 (see FIG. 14) including a stage position measurement system 200 for measuring MST position information is provided.
  • the stage position measurement system 200 includes an interferometer system 118, an encoder system 150, a surface position measurement system 180, and the like.
  • the base board 12 is made of a flat plate member, and a support surface for supporting the stage base 13 movably in the XY plane is formed on the upper surface.
  • the stage base 13 is made of a flat plate member, and is supported on the above-described base board 12 via an air bearing (or rolling bearing) (not shown).
  • the stage base 13 receives a reaction force of the driving force, moves according to the momentum conservation law, and is a counter mass that is a kind of a reaction force canceling device that cancels the reaction force. Function as.
  • Position information of the stage base 13 in the XY plane is measured by a stage base position measurement system 169 (see FIG. 14) constituted by, for example, an encoder or an interferometer.
  • An example of the stage base position measurement system 169 is disclosed in, for example, US Patent Application No. 2009/0316133.
  • the main controller 20 Based on the measurement information from the stage base position measurement system 169, the main controller 20 passes the stage base drive system 160 (see FIG. 14) so that the amount of movement of the stage base 13 from the reference position is within a predetermined range.
  • the stage base 13 is driven. That is, the stage base drive system 160 is used as a trim motor.
  • the stage base 13 is a plate member having a rectangular shape in plan view in which the coil unit CUa is embedded on the upper surface side.
  • the coil unit CUa includes a plurality of coils that are two-dimensionally arranged in the XY plane.
  • a protection plate (not shown) made of a non-magnetic material is fixed on the upper surface of the stage base 13 so as to cover the coil unit CUa. The protection plate prevents direct contact between wafer stage WST and measurement stage MST and coil unit CUa.
  • Wafer stage WST has stage main body 81 and wafer table WTB arranged on stage main body 81, as shown in FIG.
  • FIGS. 2A, 2B, and 2C are views (plan view) of wafer stage WST viewed from above, and views (front view) of wafer stage WST viewed from the ⁇ Y direction, respectively. ) And a view (side view) of the wafer stage WST viewed from the + X direction are shown.
  • the stage main body 81 includes a coarse movement stage 82 and a fine movement stage 83 supported on the coarse movement stage 82, as shown in FIGS.
  • Wafer table WTB is mounted on fine movement stage 83 and fixed integrally therewith.
  • FIG. 3 is a perspective view of wafer stage WST
  • FIG. 4 is a perspective view of stage main body 81 with wafer table WTB removed from wafer stage WST of FIG. 3
  • FIG. 5 is stage main body 81 of FIG.
  • the perspective views of the coarse movement stage 82 from which the fine movement stage 83 is removed are respectively shown.
  • 6A and 6B are plan views corresponding to the perspective views of FIGS. 4 and 5, respectively.
  • FIG. 7A is a cross-sectional view showing the internal structure of the fine movement stage
  • FIG. 7B is a plan view showing the internal structure of the voice coil motor that drives the fine movement stage.
  • FIG. 8 is a plan view showing the internal structure of the EI core that drives the fine movement stage.
  • FIG. 9 is a perspective view of fine movement stage 83 and wafer table WTB fixed to the upper surface as viewed from the rear surface side.
  • wafer stage WST will be described with reference to FIGS.
  • coarse movement stage 82 is fixed to each of a rectangular plate-like slider portion 82a in plan view (as viewed from the + Z direction) and the upper surface of slider portion 82a.
  • Three octagonal first ribs 82b disposed substantially along the outer frame of the portion 82a, and three surrounding the vicinity of the bottom of each of the three actuators 28a to 28c constituting the Z / tilt drive mechanism 28 described later.
  • a second rib 82c having a first portion and a second portion for connecting the three first portions to each other; and a third rib 82d for connecting the first rib 82b and the second rib 82c at four locations. is doing.
  • the coarse movement stage 82 is thus lightweight and has a high rigidity.
  • the slider portion 82a has a magnet unit MUa composed of a plurality of magnets arranged in a matrix with the XY two-dimensional direction as the row direction and the column direction. ing.
  • a magnetic levitation type Lorentz force (electromagnetic force) drive disclosed in, for example, US Patent Application Publication No. 2003/0085676 is performed by the magnet unit MUa and the coil unit CUa embedded in the stage base 13.
  • a planar motor Ma of the type is configured.
  • size and direction of the electric current supplied to each coil which comprises the coil unit CUa are controlled by the main controller 20 (refer FIG. 15).
  • Coarse movement stage 82 (wafer stage WST) is driven in a six-degree-of-freedom direction (X-axis, Y-axis, Z-axis, ⁇ x, ⁇ y, and ⁇ z directions) with respect to stage base 13 by planar motor Ma. .
  • coarse movement stage 82 (wafer stage WST) is driven with a long stroke in the X-axis direction and Y-axis direction, and is finely driven in the remaining directions.
  • a pair of first ribs 82b located at both ends in the X-axis direction on the upper surface of the slider portion 82a are provided via a pair of support portions 87, respectively.
  • a stator portion 85a is provided.
  • four electromagnets TUc are provided on the first ribs 82b corresponding to the four corners of the slider portion 82a via the support portions 84, respectively. Each of the four electromagnets TUc is accommodated in a housing.
  • each stator portion 85a is composed of a plate-like member parallel to the XY plane, and inside thereof, as shown in FIGS. 7 (A) and 7 (B), a coil unit CUb. Is housed.
  • the fine movement stage 83 includes a main body portion 83a made of an octagonal plate-like member in plan view, and one side and the other side of the main body portion 83a in the X-axis direction.
  • a pair of mover portions 83b fixed to the respective end portions, and one each fixed to each of the octagonal oblique side portions (four sides other than the four sides substantially orthogonal to the X and Y axes) of the main body portion 83a.
  • the mover portion 83b is made of a member having a U-shaped XZ cross section, and will be described later on each of the upper and lower opposing portions (a pair of plate-like portions positioned above and below).
  • a magnet unit MUb is accommodated.
  • the above-described stator portion 85a is inserted in a non-contact manner between the upper and lower opposed portions of the mover portion 83b.
  • the magnetic member MUc various materials can be used as long as they are magnetically permeable substances that can respond to a force field generated by a coil of an electromagnet TUc described later.
  • the coil unit CUb accommodated in each of the pair of stator portions 85a and the pair of magnet units MUb accommodated in the mover portion 83b corresponding to the coil units CUb correspond to the pair of voice coils.
  • a motor Mb is configured (see FIG. 7A).
  • the voice coil motor Mb will be described.
  • the + X side and ⁇ X side voice coil motors Mb of the main body 83a have the same configuration, the + X side voice coil motor Mb will be described below.
  • the coil unit CUb is one X in a rectangular shape in plan view with the Y-axis direction as the longitudinal direction arranged at the center inside the stator portion 85a (the casing).
  • coil hereinafter referred to as “coil” as appropriate
  • Y coils hereinafter referred to as rectangular
  • the magnet unit MUb is a plan view in which the Y-axis direction arranged in the X-axis direction at the center of each of the upper and lower facing parts of the mover 83b is the longitudinal direction.
  • Magnets 55b and 57b As shown in FIG. 7B, each pair of permanent magnets 55b and 57b faces the coils 55a and 57a, and each pair of permanent magnets 56b and 57b faces the coil 56a. The positional relationship with the magnet is determined.
  • FIG. 7B shows only the magnet unit MUb accommodated in the upper facing portion of the upper and lower facing portions of the mover portion 83b, but is housed in the lower facing portion.
  • the magnet unit MUb is similarly configured.
  • Each pair of permanent magnets 55b, 56b, and 57b is arranged so that the directions of the magnetic poles of one and the other are opposite to each other.
  • Each of the pair of permanent magnets 55b, 57b, and 56b is opposed to the surface on the + Z side or ⁇ Z side of the coils 55a, 57a, and 56a constituting the coil unit CUb.
  • the coils 55a, 56a, and 57a included in the coil unit CUb in the stator 85a are provided by the pair of permanent magnets 55b, 56b, and 57b included in the pair of magnet units MUb in the vertically opposed portion of the mover 83b. Are sandwiched in the Z-axis direction.
  • the + X side voice coil motor Mb is configured by the stator portion 85a and the movable portion 83b having the above-described configuration.
  • each of the pair of upper and lower permanent magnets 55b, 56b, and 57b and each of the coils 55a, 56a, and 57a constitutes three voice coil motors.
  • the whole of one voice coil motor is regarded as one voice coil motor Mb.
  • the voice coil motor Mb on the + X side and the ⁇ X side of the main body 83a is configured.
  • Each of the voice coil motors Mb drives the fine movement stage 83 minutely in the Y-axis direction relative to the coarse movement stage 82 when a current flows through the Y coils 55a and 57a, and a current flows through the X coil 56a.
  • the fine movement stage 83 is finely driven in the X-axis direction with respect to the coarse movement stage 82.
  • a pair of voice coil motors Mb that is, the + X side voice coil motor Mb of the main body 83a and the ⁇ X side voice coil motor Mb of the main body 83a generate different driving forces in the Y-axis direction.
  • the fine movement stage 83 can be driven (rotated) in the ⁇ z direction with respect to the coarse movement stage 82.
  • the pair of voice coil motors Mb are respectively generated in the X-axis direction and the Y-axis by the main controller 20 controlling the magnitude and direction of the current supplied to each coil constituting each coil unit CUb.
  • the driving force in the direction is controlled (see FIG. 15).
  • each voice coil motor Mb for example, a voice coil motor (or linear motor) having a two-stage (or multi-stage) configuration similar to the fine movement stage drive system disclosed in US Patent Application Publication No. 2010/0073653. It is also possible to adopt.
  • EI core actuators Mc 1 , Mc 2 , Mc 3 , and Mc 4 are configured by the four magnetic members MUc fixed to the four oblique sides.
  • EI core actuator hereinafter abbreviated as EI core
  • FIG. 8 shows one EI core Mc 1 surrounded by a broken-line square Sq in FIG. 6A, that is, the EI core Mc 1 positioned at the corner of the + X side and ⁇ Y side end of the stage main body 81. Is shown enlarged.
  • the electromagnet TUc includes an E-shaped core TUc 0 called an E core (or E element), and a coil TUc 1 wound around three convex portions of the core TUc 0.
  • the three convex portions are parallel to the axis L C1 intersecting each of the X axis and the Y axis in the XY plane, and the tip surfaces of the three convex portions are planes orthogonal to the axis L C1. They are arranged in parallel.
  • the axis L C1 intersects the X axis and the Y axis at an angle other than 45 degrees, for example.
  • the axis L C1 forms an angle of about 40 degrees with respect to the X axis.
  • the core TUc 0 is a magnetically permeable member, iron or other materials can be used.
  • the core TUc 0 is not limited to the E core, and may be a C-shaped core or a multi-fork core.
  • the electromagnet TUc one in which the coil TUc 1 is wound around only the central convex portion of the three convex portions of the core TUc 0 can be used.
  • Magnetic member MUc is fixed to the inclined portion of the main body portion 83a of the fine movement stage 83 is arranged to face the distal end surface of the core of the electromagnet TUc TUc 0 (3 single convex portion) across the gap G. Facing surface of the magnetic member MUc facing the front end face of the electromagnet TUc is orthogonal to the axis L C1.
  • EI core is also configured similarly to the EI core Mc 1. That is, as shown in FIG. 6 (A), in the EI core Mc 1 and symmetrical arrangement with respect to the center of the main body portion 83a of the fine movement stage 83, another EI core Mc 3 is provided. That is, the EI core Mc 1 and axis Lc 1 and parallel to the direction of the opposite side of the main body portion 83a (corner side of the -X side and + Y side of the stage main body 81), an electromagnet constituting the EI core Mc 3 TUc and magnetic member MUc are provided in the same manner as described above.
  • Each of the above-described two (a pair) EI cores Mc 1 and Mc 3 is parallel to the axis Lc 1 between the magnetic member MUc and the core TUc 0 when a current is passed through the coil TUc 1 of the electromagnet TUc.
  • the EI core Mc 1 described above generates a suction force in the direction indicated by the black arrow in FIG.
  • EI core Mc 3 generates a suction force which the opposite direction.
  • the two (a pair of) EI cores Mc 1 and Mc 3 finely drive the fine movement stage 83 in the direction parallel to the axis Lc 1 with respect to the coarse movement stage 82 using the suction force as a driving force.
  • the remaining pair of EI cores Mc 2 and Mc 4 are the same as the pair of EI cores Mc 1 and Mc 3 described above, except that the center of the main body 83a of the fine movement stage 83 is shown in FIG. 6A.
  • a pair of EI cores Mc 1 and Mc 3 are arranged symmetrically.
  • Each of the pair of EI cores Mc 2 and Mc 4 has an axis Lc that is symmetrical with respect to the axis Lc 1 with respect to the Y axis, which attracts the magnetic member MUc toward the core TUc 0 when a current flows through the coil TUc 1 of the electromagnet TUc.
  • the pair of EI cores Mc 2 and Mc 4 finely drives the fine movement stage 83 in a direction parallel to the axis Lc 2 with respect to the coarse movement stage 82.
  • the axes Lc 1 and Lc 2 are determined so as to form angles of about 40 degrees and ⁇ 40 degrees with respect to the X axis, respectively.
  • These directions correspond to the direction of the maximum acceleration acting on the wafer stage WST during the shot-to-shot stepping operation of the wafer (wafer stage WST) in the later-described step-and-scan exposure operation. That is, in consideration of the direction of the maximum acceleration, the direction of the suction force by each of the four EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 (that is, the direction in which each EI core is attached) is set. .
  • the directions of the axes Lc 1 and Lc 2 may be determined according to the moving range (moving path) of wafer stage WST during the exposure operation. That is, when the movement range in the Y-axis direction that is the scanning direction is wider than the movement range in the X-axis direction, the axes Lc 1 and Lc 2 are set to an angle smaller than 45 degrees with respect to the X-axis as in this embodiment. As a result, the size of wafer stage WST in the Y-axis direction can be reduced. Thereby, it is possible to suppress an increase in the occupied area by the exposure apparatus without changing the moving range of wafer stage WST. Depending on the movement range (movement path) of wafer stage WST, axes Lc 1 and Lc 2 may be set to an angle larger than 45 degrees with respect to the X axis.
  • Each of the four EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 is controlled by the main controller 20 (see FIG. 15).
  • the main controller 20 controls the magnitude of the current supplied to the coil TUc 1 constituting the electromagnet TUc included in each of the four EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 , thereby allowing the EI core Mc 1 and Mc 2 to generate and stop the suction force (drive force) and to control the magnitude of the drive force.
  • a magnetic member MUc is provided on the slider portion 82 a side (support portion 84 side) opposite to the above, and the main body portion It is also possible to use an actuator of a type in which an electromagnet TUc is arranged on the 83a side.
  • Fine movement stage 83 is supported in a non-contact manner relative to coarse movement stage 82 by Z / tilt driving mechanism 28 shown in FIGS. 5 and 6B and self-weight canceller 29 (see FIG. 7A). ).
  • the self-weight canceller 29 is disposed at the center of the upper surface of the slider portion 82 a of the coarse movement stage 82.
  • the Z / tilt driving mechanism 28 is disposed at each vertex of an equilateral triangle whose center of gravity coincides with the center of the upper surface of the slider portion 82a, and supports the fine movement stage 83 (main body portion 83a) and is independent at the support point.
  • three actuators 28a, 28b, and 28c for example, voice coil motors
  • the stators of the actuators 28 a to 28 c are fixed to the coarse movement stage 82, and the mover is fixed to the fine movement stage 83.
  • the fine movement stage 83 is finely driven with respect to the coarse movement stage 82 in the three degrees of freedom in the Z-axis direction, the ⁇ x direction, and the ⁇ y direction.
  • the self-weight canceller 29 includes, as an example, a pad member 29a, a piston member 29b, and a cylinder member 29c (see FIG. 7A).
  • the pad member 29a is in a state of being close to the lower surface of the fine movement stage 83, and has a substantially hemispherical shape in which the upper surface is a flat surface and the lower surface is a curved surface (spherical surface).
  • a through hole (not shown) penetrating in the Z-axis direction is formed from the center of the upper surface of the pad member 29a.
  • the piston member 29b is formed of a member having a circular shape in the XY section and having a concave portion with a predetermined depth, and is provided on the lower side ( ⁇ Z side) of the pad member 29a.
  • the upper surface of the piston member 29b is curved (spherical) corresponding to the lower surface of the pad member 29a, and a through-hole (not shown) penetrating in the Z-axis direction is formed from the center. .
  • the cylinder member 29c is fixed to the upper surface of the slider portion 82a.
  • the cylinder member 29c is formed of a substantially cylindrical member, and its peripheral wall has an inverted U-shaped cross section and a shape in which an inner foot portion is set shorter than an outer foot portion.
  • the piston member 29b inserted into the internal space of the cylinder member 29c is slidable in the Z-axis direction.
  • the space surrounded by the slider portion 82a, the cylinder member 29c, and the piston member 29b is a substantially sealed space (air chamber). Therefore, by supplying gas from the gas supply device (not shown) into the air chamber, the air chamber is set to a higher pressure than the outside.
  • the gas in the air chamber passes through the through hole of the piston member 29b and is supplied between the upper surface of the piston member 29b and the lower surface of the pad member 29a. For this reason, a minute gap is formed between the piston member 29b and the pad member 29a by the static pressure of the gas that has entered between the upper surface of the piston member 29b and the lower surface of the pad member 29a. Further, part of the gas that has passed through the through hole of the piston member 29 b is supplied between the upper surface of the pad member 29 a and the lower surface of the fine movement stage 83 through the through hole formed in the pad member 29 a. Thus, a minute gap is formed between the pad member 29 a and the fine movement stage 83 by the static pressure of the gas that has entered between the upper surface of the pad member 29 a and the lower surface of the fine movement stage 83.
  • the self-weight of the fine movement stage 83 is supported by the gas in the air chamber. Further, by making the driving force generated by the three actuators 28a to 28c of the Z / tilt driving mechanism 28 the same, the fine movement stage 83 can be driven in the Z-axis direction with respect to the coarse movement stage 82. By varying the driving force generated by each of the three actuators 28a to 28c, the fine movement stage 83 can be driven in the rotation direction ( ⁇ x) around the X axis and the rotation direction ( ⁇ y) around the Y axis. It has become.
  • the fine movement stage 83 in the XY plane is maintained. It is possible to support its own weight in a state in which minute movement and inclination in the inclination direction with respect to the XY plane are allowed.
  • the configuration of the self-weight canceller is merely an example, and for example, a bellows may be used in place of the cylinder member 29c and the piston member 29b. Further, fine movement stage 83 may be supported by a self-weight canceller via a roller or the like.
  • each voice coil motor Mb a voice coil motor (or linear motor) having a two-stage (or multi-stage) configuration similar to the fine movement stage drive system disclosed in the aforementioned US Patent Application Publication No. 2010/0073653.
  • the fine movement stage 83 can be finely driven in the direction of 6 degrees of freedom with respect to the coarse movement stage 82 by the voice coil motor without providing the Z / tilt drive mechanism 28.
  • the fine movement stage drive system 34 includes the pair of voice coil motors Mb, the four EI cores Mc 1 to Mc 4 , and the Z / tilt drive mechanism 28 described so far (see FIG. 15). Further, the coarse motor stage drive system is configured by the planar motor Ma. Then, the fine movement stage drive system 34 and the coarse movement stage drive system (planar motor Ma) are used to move the fine movement stage 83 and the wafer table WTB (wafer W) mounted on the fine movement stage 83 to the stage base 13 in the direction of 6 degrees of freedom. A wafer stage drive system 36 is configured to drive (see FIG. 15).
  • the moving magnet type motor is adopted as the planar motor Ma and the voice coil motor Mb, a moving coil type motor can also be adopted.
  • the configuration in which the Z / tilt drive mechanism 28 includes three actuators has been described as an example, but a configuration including four or more actuators may be employed. In this case, since the actuator is redundant with respect to the degree of freedom, the fine movement stage 83 can be controlled to a higher degree.
  • a rectangular frame-shaped portion surrounding the self-weight canceller 29, the center of the + Y side of the rectangular frame-shaped portion, and both ends of the ⁇ Y side A support member 88 having three straight portions extending outward from each is provided.
  • a pin 88a extending in the + Z direction is fixed to the tip of each of the three straight portions of the support member 88.
  • the support member 88 and the three pins 88a are driven in the Z-axis direction by a drive device 89 (see FIG. 14).
  • the support member 88 is driven in the Z-axis direction by the driving device 89, and the three pins 88a are moved to the three openings (see FIG. 6A) of the fine movement stage 83 (main body 83a) and the wafer holder.
  • the wafer W is supported by the three pins 88a, or the wafer W is moved up and down.
  • a plate member Tb 0 is fixed to the end surface on the + Y end side of wafer stage WST (coarse movement stage 82).
  • One end of each of the two tubes Tb is fixed to Tb 0 by two fixing members Tb 1 .
  • Various sensors on wafer stage WST, power source power (current) of motor, etc., cooling medium for cooling motor, pressurized gas for air bearing, etc. from outside wafer stage WST via two tubes Tb Is supplied to wafer stage WST.
  • the tube Tb also includes wiring for transferring output signals from various sensors and control signals to the motor and the like.
  • each of the two tubes Tb is fixed to the measurement stage MST via the fixing member Tb 2 (see FIG. 1), and is arranged outside the stage apparatus 50 via the measurement stage MST. Is connected to a tube carrier (not shown).
  • measurement stage MST moves while maintaining a distance within a certain range from wafer stage WST during a series of operations of wafer exchange, alignment, and exposure. Therefore, measurement stage MST also functions as a tube carrier for wafer stage WST.
  • a wafer holder WH (not shown in FIG. 6, refer to FIG. 3) for holding wafer W by vacuum suction or the like is provided.
  • a circular opening that is slightly larger than the wafer holder is formed in the center outside the wafer holder (wafer mounting area), and has a rectangular outer shape (contour).
  • a (liquid repellent plate) 27 is provided. The surface of the plate 27 is subjected to a liquid repellency treatment with respect to the liquid Lq. The plate 27 is installed such that the entire surface (or part) of the plate 27 is substantially flush with the surface of the wafer W.
  • the plate 27 is located at the center of the wafer table WTB in the X-axis direction, and has a first liquid repellent area 27a having a rectangular outer shape (contour) in which the circular opening is formed at the center, and the first liquid repellent area 27a. And a pair of rectangular second liquid repellent areas 27b located at the + X side end and ⁇ X side end of the wafer table WTB.
  • the first and second liquid repellent regions 27a and 27b are also referred to as first and second water repellent plates 27a and 27b, respectively.
  • a measurement plate 30 is provided in the vicinity of the + Y side end of the first water repellent plate 27a.
  • a reference mark (not shown) is formed at the center of the measurement plate 30, and a pair of aerial image measurement slit patterns (slit-shaped measurement patterns) SL are formed on both sides of the reference mark in the X-axis direction. .
  • the surface of the measurement plate 30 is set almost flush with the surface of the wafer W.
  • a pair of light transmission systems that guide the illumination light IL transmitted therethrough to the outside of wafer stage WST, specifically, to a light receiving system (not shown) provided in measurement stage MST. 30a (see FIG. 6A) is provided on wafer stage WST.
  • scales 39 1 and 39 2 are formed on the pair of second water repellent plates 27b, respectively.
  • Each of the scales 39 1 and 39 2 is constituted by a reflective two-dimensional diffraction grating in which, for example, a diffraction grating having a periodic direction in the Y-axis direction and a diffraction grating having a periodic direction in the X-axis direction are combined.
  • the pitch of the lattice lines of the two-dimensional diffraction grating is set to 1 ⁇ m, for example, in both the Y-axis direction and the X-axis direction. In FIG. 2A, for the convenience of illustration, the pitch of the grating is shown larger than the actual pitch. The same applies to FIG.
  • a glass plate having water repellency for example, a low thermal expansion coefficient.
  • a glass plate having a thickness of 1 mm can be used, and the glass plate is placed on the upper surface of wafer table WTB so that the surface of the glass plate is the same height (same surface) as the wafer surface.
  • a positioning pattern (not shown) for determining the relative position between the encoder head and the scale, which will be described later, is provided near the end of the scale of each second water repellent plate 27b.
  • This positioning pattern can be constituted by, for example, a grid line having a reflectance different from that of the scale.
  • reflection surfaces 17a and 17b used in an interferometer system to be described later are formed on the ⁇ Y end surface and the ⁇ X end surface of wafer table WTB.
  • a reflection surface 17c used in the interferometer system is formed below the ⁇ Y end of wafer table WTB.
  • the wafer table WTB includes a rectangular plate-shaped top plate portion 33a, a rectangular frame-shaped portion 33b along the outer periphery of the lower surface of the top plate portion 33a, and a rectangular frame-shaped portion 33b. It has a plurality of rib portions 33c arranged inside and projecting from the lower surface of the top plate portion 33a. As one of the plurality of ribs 33c, it is provided with a main body portion 83a and the rib portion 33c 0 of octagonal frame shape having the same shape of the fine movement stage 83, wafer table WTB via the rib portion 33c 0 is The fine movement stage 83 is integrally fixed.
  • the four support portions 84 fixed on the coarse movement stage 82 and the upper portions of the four electromagnets TUc fixed thereto are formed in a rectangular frame shape with a part of the plurality of rib portions 33c of the wafer table WTB.
  • the fine movement stage 83 and the wafer table WTB are attached to the coarse movement stage 82 in a state of being accommodated in a space partitioned by the portion 33b. This lowers the overall height of wafer stage WST.
  • the measurement stage MST has a stage main body 92 and a measurement table MTB mounted on the stage main body 92.
  • the bottom of the stage main body 92 includes a magnet unit (not shown) composed of a plurality of magnets arranged two-dimensionally in the XY plane, and a Lorentz force (electromagnetic force) drive system together with the coil unit CUa in the stage base 13.
  • a planar motor Md (see FIG. 15) is configured.
  • measurement stage MST can be driven in at least three degrees of freedom (X, Y, ⁇ z) with respect to stage base 13 independently of wafer stage WST.
  • a stage drive system 124 is shown including a wafer stage drive system 36 that drives wafer stage WST and a drive system (planar motor Md) that drives measurement stage MST.
  • the measurement table MTB (and the stage main body 92) is provided with various measurement members.
  • this measuring member for example, as shown in FIG. 11, an illuminance unevenness sensor 94, an aerial image measuring device 96, a wavefront aberration measuring device 98, and the like are provided. Further, an illuminance monitor (not shown) may be provided.
  • the stage main body 92 is provided with a pair of light receiving systems (not shown) in an arrangement facing the pair of light transmission systems 30a.
  • each aerial image measurement slit pattern SL of measurement plate 30 on wafer stage WST is measured in a state where wafer stage WST and measurement stage MST are close to each other within a predetermined distance in the Y-axis direction (including a contact state).
  • a pair of aerial image measurement devices 45A and 45B that guides the transmitted illumination light IL by each light transmission system (not shown) and receives light by a light receiving element of each light receiving system (not shown) in the measurement stage MST. ) Is configured.
  • Each of the aerial image measurement devices 45A and 45B is configured similarly to the device disclosed in, for example, US Patent Application Publication No. 2002/0041377.
  • the measurement results (output signals of the light receiving elements) of the aerial image measuring devices 45A and 45B are sent to the main controller 20 via a signal processing device (not shown) (see FIG. 14).
  • a fiducial bar (hereinafter abbreviated as “FD bar”) 46 extends in the X-axis direction on the ⁇ Y side end surface of the measurement table MTB.
  • the FD bar 46 is kinematically supported on the measurement stage MST. Since the FD bar 46 is a prototype (measurement standard), an optical glass ceramic having a low thermal expansion coefficient, for example, Zerodure (trade name) manufactured by Schott is used as the material.
  • Reference gratings (for example, diffraction gratings) 52 having a periodic direction in the Y-axis direction are formed in the vicinity of one end and the other end in the longitudinal direction of the FD bar 46 in a symmetrical arrangement with respect to the center line. .
  • a plurality of reference marks M are formed on the upper surface of the FD bar 46.
  • As each reference mark M a two-dimensional mark having a size detectable by a primary alignment system and a secondary alignment system described later is used.
  • the surface of the FD bar 46 and the surface of the measurement table MTB are also covered with a liquid repellent film (water repellent film).
  • a reflection surface 19a and a reflection surface 19b similar to the wafer table WTB are formed on the + Y side end surface and the ⁇ X side end surface of the measurement table MTB (see FIG. 11).
  • a primary alignment system AL1 having a detection center at a position separated by a predetermined distance on the ⁇ Y side is provided.
  • Primary alignment system AL1 is fixed to the lower surface of the main frame (not shown).
  • AL2 3 and AL2 4 are provided.
  • the secondary alignment systems AL2 1 to AL2 4 are fixed to the lower surface of the main frame (not shown) via a movable support member (not shown), and are driven by the drive mechanisms 60 1 to 60 4 (see FIG. 14).
  • the relative positions of these detection areas can be adjusted with respect to the axial direction.
  • a straight line parallel to the X axis passing through the detection center of primary alignment system AL1 as shown in FIG. 11 or the like hereinafter, referred to as a reference axis) LA, the optical axis of the measurement beam BX2 from X interferometer 16X 2 described later It matches.
  • each of the alignment systems AL1, AL2 1 to AL2 4 for example, an image processing type FIA (Field Image Alignment) system is used. Imaging signals from the alignment systems AL1, AL2 1 to AL2 4 are supplied to the main controller 20 through a signal processing system (not shown).
  • FIA Field Image Alignment
  • interferometer system 118 that measures position information of wafer stage WST and measurement stage MST will be described.
  • the interferometer system 118 includes a Y interferometer 16Y for measuring the position of wafer stage WST, an X interferometer 16X 1 , 16X 2 , 16X 3 , a Z interferometer 16Z, and measurement.
  • a Y interferometer 18Y and an X interferometer 18X for measuring the position of the stage MST are included.
  • Y interferometer 16Y applies at least three measurement beams parallel to the Y axis including a pair of measurement beams BY 1 and BY 2 that are symmetrical with respect to reference axis LV to wafer table WTB. Irradiate the reflecting surface 17a. Then, Y interferometer 16Y receives the reflected light of each measurement beam and measures position information of wafer table WTB (wafer stage WST) in the Y-axis direction, ⁇ z direction, and ⁇ x direction.
  • X interferometer 16X 1 the optical axis AX parallel to the (aforementioned exposure region match the center of the IA in the present embodiment) as and X-axis linear projection optical system PL (hereinafter, referred to as a reference axis) LH ( Figure At least three length measuring beams parallel to the X axis including a pair of length measuring beams BX1 1 and BX1 2 that are symmetrical with respect to 11) are irradiated on the reflecting surface 17b. Then, X interferometers 16X 1 is, X-axis direction of wafer table WTB (wafer stage WST), to measure the ⁇ z direction, and ⁇ y directions of the position information.
  • wafer table WTB wafer stage WST
  • the X interferometers 16X 2 and 16X 3 irradiate the reflecting surface 17b with at least one measuring beam parallel to the X axis including the measuring beams BX2 and BX3, respectively, and receive the respective reflected lights. Position information in the X-axis direction of wafer table WTB (wafer stage WST) is measured.
  • Z interferometer 16Z irradiates two measuring beams BZ 1 and BZ 2 onto reflecting surface 17c, receives the respective reflected lights, and measures the Z position of wafer table WTB (wafer stage WST).
  • the Y interferometer 18Y and the X interferometer 18X respectively irradiate the measuring surfaces MTa with the length measurement beams and receive the respective reflected lights. Position information regarding the direction of three degrees of freedom in at least the XY plane of the measurement stage MST is measured.
  • the measurement information of each interferometer of the interferometer system 118 is supplied to the main controller 20 (see FIG. 15). Details of the configuration of the interferometer system 118 are disclosed in, for example, US Patent Application Publication No. 2008/0088843.
  • position information (including rotation information in the ⁇ z direction) of wafer table WTB in the XY plane used for position control of wafer stage WST is mainly measured using an encoder system described later. Is done. Position information in the XY plane of wafer table WTB measured by interferometer system 118 indicates that wafer stage WST is located outside the measurement area of the encoder system (for example, near unloading position UP or loading position LP shown in FIG. 11). This is used for position control of wafer stage WST.
  • the position information in the XY plane of wafer table WTB measured by interferometer system 118 corrects (calibrates) long-term fluctuations (for example, due to deformation of the scale over time) of measurement information (measurement results) of the encoder system. ) Or for backup when the encoder system output is abnormal.
  • interferometer system 118 and an encoder system may be used together to control the position of wafer stage WST (wafer table WTB).
  • each of the head portions 62A, 62C, 62E, and 62F includes a plurality of heads, and these heads are fixed to a main frame (not shown) in a suspended state via support members.
  • reference symbol UP indicates an unloading position at which a wafer on wafer stage WST is unloaded
  • reference symbol LP indicates a loading position at which the wafer is loaded onto wafer stage WST.
  • the head portions 62A and 62C include four biaxial heads 65 1 to 65 4 and 64 1 to 64 4 , respectively.
  • the biaxial heads 65 1 to 65 4 there are X heads 65X 1 to 65X 4 whose measurement direction is the X axis direction and Y heads 65Y 1 to 65Y 4 whose measurement direction is the Y axis direction. Contained.
  • X heads 64X 1 to 64X 4 and Y heads 64Y 1 to 64Y 4 are accommodated in the housings of the biaxial heads 64 1 to 64 4 .
  • X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 Arranged on the reference axis LH at a predetermined interval WD (see FIG. 11).
  • Y heads 65Y 1 to 65Y 4 , 64Y 1 to 64Y 4 (more precisely, irradiation points on the scales 39 1 and 39 2 of the measurement beams emitted by the Y heads 65Y 1 to 65Y 4 and 64Y 1 to 64Y 4 ) Are arranged at the same X position as the corresponding X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 on a straight line LH 1 that is parallel to the reference axis LH and spaced a predetermined distance from the reference axis LH to the ⁇ Y side. Has been.
  • X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 , and Y heads 65Y 1 to 65Y 4 , 64Y 1 to 64Y 4 are respectively connected to X heads 65X, 64X, and Y heads 65Y as necessary. , 64Y.
  • each of the X heads 65X and 64X and the Y heads 65Y and 64Y for example, a diffraction interference type encoder head disclosed in US Patent Application Publication No. 2008/0088843 is used.
  • this type of encoder head two measurement beams are irradiated onto the corresponding scales 39 1 or 39 2 , and return light (diffracted light) from the scales (two-dimensional grating) of the two measurement beams is converted into one interference light.
  • the combined light is received, the intensity of the interference light is detected by a photodetector, and the displacement in the measurement direction of the scale (period direction of the diffraction grating) is measured based on the intensity change of the interference light.
  • the head units 62A and 62C are multi-lens (four eyes here) X linear encoders that measure the position (X position) in the X-axis direction of wafer stage WST (wafer table WTB) using scales 39 1 and 39 2.
  • 70Ax, 70Cx, and multi-lens (four eyes here) Y linear encoders 70Ay, 70Cy (see FIG. 15) for measuring the position in the Y-axis direction (Y position) are configured.
  • An encoder 70C is configured (see FIG. 15).
  • the X linear encoder is abbreviated as “encoder” as appropriate.
  • the Y linear encoder is abbreviated as “Y encoder” or “encoder” as appropriate.
  • the 2D encoder is abbreviated as an encoder as appropriate.
  • the four X heads 65X and 64X (more precisely, the irradiation points on the scale of the measurement beam emitted by the X heads 65X and 64X) and the four Y heads 65Y and 64Y (more from the head units 62A and 62C).
  • the distance WD in the X-axis direction of the measurement beam emitted from the Y heads 65Y and 64Y is set to be narrower than the width of the scales 39 1 and 39 2 in the X-axis direction. Accordingly, at the time of exposure, at least one of the four X heads 65X, 64X, and Y heads 65Y and 64Y always faces the corresponding scales 39 1 and 39 2 (the measurement beam is changed). Irradiation).
  • the width of the scale refers to the width of the diffraction grating (or this formation region), more precisely, the range in which the position can be measured by the head.
  • the head portions 62F and 62E include three biaxial heads 68 1 to 68 3 and 67 1 to 67 3 , respectively.
  • the X heads 68X 1 to 68X 3 and the Y heads 68Y 1 to 68Y 3 are accommodated in the housing of the biaxial heads 68 1 to 68 3 in the same manner as the biaxial heads 65 1 to 65 4. Yes.
  • X heads 67X 1 to 67X 3 and Y heads 67Y 1 to 67Y 3 are accommodated in the housings of the biaxial heads 67 1 to 67 3 .
  • X heads 68X 1 to 68X 3 , 67X 1 to 67X 3 are reference axes. Arranged at predetermined intervals WD along LA (see FIG. 11).
  • Y heads 68Y 1 to 68Y 3 , 67Y 1 to 67Y 3 are reference axes
  • the biaxial heads 68 1 to 68 3 , 67 1 to 67 3 , the X heads 68X 1 to 68X 3 , 67X 1 to 67X 3 , and the Y heads 68Y 1 to 68Y 3 , 67Y 1 to 67Y as necessary. 3 is also expressed as biaxial heads 68 and 67, X heads 68X and 67X, and Y heads 68Y and 67Y, respectively.
  • the diffraction interference type encoder head disclosed in the above-mentioned US Patent Application Publication No. 2008/0088843 is used. .
  • the heads 62F and 62E are multi-lens (three eyes here) X linear encoders that measure the position (X position) in the X-axis direction of wafer stage WST (wafer table WTB) using scales 39 1 and 39 2.
  • the multi-lens (three eyes here) Y linear encoders 70Fy and 70Ey (refer to FIG. 15) that measure the positions (Y positions) in the Y-axis direction are configured.
  • An encoder 70E is configured (see FIG. 15).
  • the three X heads 68X and 67X (more precisely, the irradiation points on the scale of the measurement beams emitted by the X heads 68X and 67X) and the three Y heads 68Y and 67Y (more Precisely, the distance WD in the X-axis direction between the irradiation points on the scale of measurement beams emitted from the Y heads 68Y and 67Y is set slightly smaller than the width of the scales 39 1 and 39 2 in the X-axis direction. Accordingly, at the time of alignment measurement, at least one of the three X heads 68X, 67X, Y heads 68Y, 67Y faces the corresponding scale 39 1 , 39 2 (irradiates the measurement beam). .
  • measurement information by the above-described encoders 70Ax, 70Ay, 70Cx, 70Cy is provided.
  • main controller 20 uses, for example, X position information measured by one of encoders 70A and 70C and Y position information respectively measured by encoders 70A and 70C.
  • the position (X, Y, ⁇ z) in the XY plane of the wafer stage WST is calculated by performing an operation as disclosed in, for example, US Patent Application Publication No. 2011/0051108.
  • measurement information by the encoders 70Ex, 70Ey, 70Fx, and 70Fy is obtained.
  • Main controller 20 uses these position information (measurement results) to calculate position (X, Y, ⁇ z) of wafer stage WST in the XY plane in the same manner as described above.
  • the Y heads 67Y 3 and 68Y 1 of the biaxial heads 67 3 and 68 1 that are adjacent to the secondary alignment systems AL2 1 and AL2 4 in the X-axis direction are used when measuring the baseline of the secondary alignment system.
  • the Y position of the FD bar 46 is measured at the position of each reference grating 52 by the Y heads 67Y 3 and 68Y 1 that face the pair of reference gratings 52 of the FD bar 46, respectively. Is done.
  • encoders composed of Y heads 67Y 3 and 68Y 1 that face the pair of reference gratings 52 are respectively Y linear encoders (abbreviated as “Y encoder” or “encoder” as appropriate) 70G and 70H (FIG. 15). See).
  • the Y encoders 70G and 70H are configured as Y linear encoders because a part of the Y heads 67Y 3 and 68Y 1 constituting the encoders 70F and 70E are opposed to the pair of reference gratings 52. It is what you call.
  • description will be made assuming that Y encoders 70G and 70H exist in addition to XY encoders 70F and 70E.
  • Measurement information from each encoder described above is supplied to the main controller 20.
  • Main controller 20 controls the position (including the rotation (yawing) in the ⁇ z direction) of wafer table WTB in the XY plane based on the measurement information from encoders 70A and 70C or 70E and 70F, and Y encoder 70G. And the position (yawing) of the FD bar 46 (measurement stage MST) in the ⁇ z direction based on the measured values of 70H.
  • main controller 20 uses X heads 65X and 64X and Y heads 65Y and 64Y that measure positional information of wafer stage WST when driving wafer stage WST in the X-axis direction.
  • the adjacent X heads 65X and 64X and Y heads 65Y and 65Y are sequentially switched. That is, in order to smoothly switch (connect) the X head and the Y head, as described above, the interval WD between the adjacent X head and Y head included in the head portions 62A and 62C is set to the scales 39 1 and 39 2. Is set narrower than the width in the X-axis direction.
  • a multipoint focal position detection system (hereinafter referred to as “multipoint AF system”) including an irradiation system 90a and a light receiving system 90b. ) Is provided.
  • the multipoint AF system the same configuration (oblique incidence method) as that disclosed in, for example, US Pat. No. 5,448,332 is adopted.
  • the irradiation system 90a is disposed on the + Y side of the ⁇ X end of the head unit 62E, and light is received on the + Y side of the + X end of the head unit 62F in a state facing this.
  • a system 90b is arranged.
  • the multipoint AF system (90a, 90b) is fixed to the lower surface of a main frame (not shown).
  • a plurality of detection points irradiated with the detection beam are not individually illustrated, and are elongated detection areas (beam areas) AF extending in the X-axis direction between the irradiation system 90 a and the light receiving system 90 b. It is shown. Since the detection area AF is set to have a length in the X-axis direction that is approximately the same as the diameter of the wafer W, the wafer W is scanned almost in the Y-axis direction once in the Z-axis direction. Position information (surface position information) can be measured.
  • a part of the surface position measurement system 180 is arranged in the vicinity of both ends of the detection area AF of the multipoint AF system (90a, 90b) in a symmetrical arrangement with respect to the reference axis LV.
  • Heads hereinafter abbreviated as “Z heads” 72 a, 72 b, 72 c, 72 d of each pair of Z position measurement sensors constituting the same are provided. These Z heads 72a to 72d are fixed to the lower surface of a main frame (not shown).
  • the above-described head portions 62A and 62C are each provided with four Z heads 76 1 to 76 4 and 74 1 to 74 4 as shown in FIG.
  • the Z heads 76 1 to 76 4 , 74 1 to 74 4 are parallel to the reference axis LH and on the straight line LH 2 spaced from the reference axis LH to the + Y side, corresponding X heads 65X 1 to 65X 4.
  • 64X 1 to 64X 4 are arranged at the same X position.
  • the Z heads 76 1 to 76 4 and 74 1 to 74 4 are also referred to as Z heads 76 and 74 as necessary.
  • each of the Z heads 72a to 72d and the Z heads 76 1 to 76 4 , 74 1 to 74 4 for example, an optical displacement sensor head similar to an optical pickup used in a CD drive device or the like is used.
  • Each of the Z heads 72a to 72d and the Z heads 76 1 to 76 4 , 74 1 to 74 4 irradiates the wafer table WTB with a measurement beam from above, receives the reflected light, and receives the wafer table at the irradiation point. The surface position of WTB is measured.
  • a configuration is adopted in which the measurement beam of the Z head is reflected by the reflection type diffraction grating constituting the scales 39 1 and 39 2 described above.
  • the Z heads 72a to 72d, 74 1 to 74 4 , and 76 1 to 76 4 are connected to the main controller 20 via the signal processing / selecting device 170 as shown in FIG.
  • the Z head is selected from the Z heads 72a to 72d, 74 1 to 74 4 , and 76 1 to 76 4 via the signal processing / selecting device 170 to be in an activated state.
  • the surface position information detected in (1) is received via the selection device 170.
  • positional information in the Z axis direction of wafer stage WST and the tilt direction with respect to the XY plane includes Z heads 72a to 72d, 74 1 to 74 4 , 76 1 to 76 4 and signal processing / selection device 170.
  • a surface position measurement system 180 is measured.
  • main controller 20 uses surface position measurement system 180 (see FIG. 14) in an effective stroke area of wafer stage WST, that is, in an area where wafer stage WST moves for exposure and alignment measurement. Position information regarding the two degrees of freedom direction (Z-axis direction and ⁇ y direction) is measured.
  • main controller 20 uses a measurement value of at least one of Z heads 76 j and 74 i (j and i are any one of 1 to 4) and uses a reference point (for example, on the surface of wafer table WTB).
  • the height Z 0 and rolling ⁇ y of wafer stage WST at the intersection of the upper surface of wafer table WTB and optical axis AX of projection optical system PL are calculated as disclosed in, for example, US Patent Application No. 2011/0051108.
  • the position information (pitching amount) ⁇ x in the ⁇ x direction uses the measurement result of another sensor system (interferometer system 118 in this embodiment).
  • the main controller 20 detects the position information (surface position information) on the surface of the wafer W in the Z-axis direction (hereinafter referred to as focus mapping), by using the four Z heads 72a to 72d facing the scales 39 1 and 39 2 .
  • focus mapping the position information
  • the height Z 0 and rolling ⁇ y of the wafer table WTB at the center of a plurality of detection points of the multipoint AF system (90a, 90b) are disclosed in, for example, US Patent Application No. 2011/0051108. It is calculated by the calculated operation.
  • the position information (pitching amount) ⁇ x in the ⁇ x direction uses the measurement result of another sensor system (interferometer system 118 in the present embodiment).
  • the exposure apparatus 100 is provided with a relative position measurement system 210 (see FIGS. 14 and 15) that measures the relative position between the coarse movement stage 82 and the fine movement stage 83.
  • the relative position measurement system 210 and the stage position measurement system 200 constitute a measurement system 300 (see FIGS. 14 and 15).
  • the relative position measurement system 210 includes a gap sensor 212 1 provided in at least one of the EI cores Mc 1 and MC 3 among the four EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 described above, and an EI core Mc. 2, includes a gap sensor 212 2 provided on at least one of MC 4, a sensor 214 provided in each of the three actuators 28a ⁇ 28c of Z ⁇ tilt drive mechanism 28 (see FIG. 15).
  • the relative position measurement system 210 further includes a pair of sensors 216 that measure the relative positions of the coarse movement stage 82 and the fine movement stage 83 provided in each of the pair of voice coil motors Mb.
  • the gap sensors 212 1 and 212 2 for example, electrostatic capacitance sensors are used.
  • the EI core Mc 1, gap sensors 212 1 provided in at least one of MC 3, parallel to the EI core Mc 1, MC 3 core TUC 0 and axis L C1 between the magnetic member MUc making up at least one Gaps for various directions are measured.
  • the gap in the direction parallel to is measured.
  • These measurement results are supplied to the main controller 20 (see FIG. 15), and the main controller 20 determines the relative positions of the fine movement stage 83 (wafer table WTB) with respect to the coarse movement stage 82 in the X axis direction and the Y axis direction. It is done.
  • the gap is indirectly measured.
  • Various sensors for measurement may be used.
  • the three sensors 214 for example, encoders are used.
  • the three sensors 214 measure the relative positions of the stator and the mover of the three actuators 28a to 28c of the Z / tilt drive mechanism 28 provided with each of the sensors 214.
  • the stators of the actuators 28a to 28c are fixed to the coarse movement stage 82 and the mover is fixed to the fine movement stage 83, the positional relationship between the coarse movement stage 82 and the fine movement stage 83 is determined based on the measurement result of the sensor 214. I can know.
  • These measurement results are supplied to the main controller 20 (see FIG.
  • the main controller 20 causes the fine movement stage 83 (wafer table WTB) to move relative to the coarse movement stage 82 in the Z-axis direction, the ⁇ x direction, and the ⁇ y direction.
  • a position is required.
  • a gap sensor that directly measures the gap (separation distance) between the coarse movement stage 82 and the fine movement stage 83 may be used.
  • an encoder can be used as the sensor 216.
  • the encoder measures the relative position in the Y-axis direction between the stator portion 85a and the movable portion 83b constituting each of the pair of voice coil motors Mb.
  • the measurement results of the pair of encoders are supplied to the main controller 20 (see FIG. 15), and the main controller 20 determines the relative position of the fine movement stage 83 (wafer table WTB) with respect to the coarse movement stage 82 in the ⁇ z direction.
  • a gap sensor may be provided as the sensor 216 in addition to the encoder.
  • the gap sensor measures the gap in the X-axis direction between the stator portion 85a and the movable portion 83b that constitute each of the pair of voice coil motors Mb.
  • a sensor that measures a physical quantity related to the gap may be used instead of the gap sensor.
  • FIG. 14 is a block diagram showing the input / output relationship of the main controller 20 that centrally configures the control system of the exposure apparatus 100 and performs overall control of each component.
  • the main controller 20 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 100.
  • various sensors provided on the measurement stage MST such as the illuminance unevenness sensor 94, the aerial image measuring device 96, and the wavefront aberration measuring device 98 described above are collectively shown as a sensor group 99.
  • FIG. 15 shows a detailed configuration example of each component of the stage apparatus 50 among the components shown in FIG.
  • a normal sequence process using wafer stage WST is executed by main controller 20.
  • wafer stage WST and measurement stage MST which are separated from each other during exposure, shift to a state where they are in contact with each other with a separation distance of about 300 ⁇ m, for example.
  • the ⁇ Y side end surface of the FD bar 46 on the measurement table MTB and the + Y side end surface of the wafer table WTB are in contact with or close to each other.
  • wafer stage WST and measurement stage MST are in contact or in close proximity, both move in the ⁇ Y direction, so that liquid immersion region 14 formed under projection unit PU moves onto measurement stage MST. .
  • wafer stage WST releases the state of contact with or close to measurement stage MST, and moves toward unloading position UP.
  • main controller 20 operates interferometer immediately before wafer stage WST can be driven (position control) based on the measurement result of encoder system 150. Switching to driving (position control) of wafer stage WST based on the measurement result of system 118 is performed.
  • the position measurement in the X-axis direction of wafer stage WST, the X interferometer 16X 3 is used.
  • the position adjustment of the FD bar 46 supported by the measurement stage MST in the XY plane and the baseline measurement of the four secondary alignment systems AL2 1 to AL2 4 Is done.
  • the Y encoders 70G and 70H described above are used.
  • wafer stage WST is driven, reference mark FM on measurement plate 30 is positioned within the detection field of primary alignment system AL1, and the first half of the baseline measurement of primary alignment system AL1 is performed.
  • the two X heads and the two Y heads respectively face the scales 39 1 and 39 2 , and the measurement system used for driving (position control) of the wafer stage WST is changed from the interferometer system 118 to the encoder system 150 ( The encoders 70E and 70F) are switched.
  • wafer alignment is performed using primary alignment system AL1 and secondary alignment systems AL2 1 to AL2 4 .
  • the wafer stage WST and the measurement stage MST are in contact or close to each other before the wafer alignment is started.
  • Wafer stage WST and measurement stage MST are in contact with or in close proximity to each other, and movement in the + Y direction is started.
  • liquid Lq in liquid immersion region 14 moves from measurement table MTB to wafer table WTB. Moving.
  • Focus mapping is performed in parallel with the wafer alignment (EGA) described above. Further, when the wafer stage WST comes to a predetermined position as the wafer alignment and focus mapping progress, the intensity distribution of the projected image of the mark on the reticle with respect to the XY position of the wafer table WTB using the aerial image measuring devices 45A and 45B. (That is, the latter half of the baseline measurement of the primary alignment system AL1) is performed. Based on this result and the result of the first half of the baseline measurement of the primary alignment system AL1, the baseline of the primary alignment system AL1 is obtained.
  • the contact or proximity state between wafer stage WST and measurement stage MST is released, step-and-scan exposure is performed, and a reticle pattern is transferred onto wafer W. Thereafter, the same operation is repeatedly executed.
  • the wafer stage is moved to the scan start position (acceleration start position) for exposure of each shot area on the wafer W based on the result of the above-described wafer alignment (for example, EGA). It is performed by repeating the stepping between shots moving in the WST and the above-described scanning exposure in which the pattern formed on the reticle R is transferred to each shot region by the scanning exposure method.
  • the main controller 20 exposes the wafer stage among the plurality of X heads 65X, 64X and Y heads 65Y, 64Y constituting the encoder system 150 when exposing the wafer W by the step-and-scan method.
  • the wafer stage WST among the plurality of Z heads 76 and 74 constituting the X head, the Y head, and the surface position measurement system 180 facing the scales 39 1 and 39 2 along with the movement of the WST, Using the Z head (and the Z interferometer 16Z) facing the scales 39 1 and 39 2 , as described above, the five degrees of freedom direction (X axis, Y axis, ⁇ z, Z axis, and ⁇ y directions) of the wafer table WTB.
  • main controller 20 measures the position information (pitching amount) in the ⁇ x direction of the wafer table (wafer stage WST) using Y interferometer 16 described above.
  • Main controller 20 drives wafer table WTB in the 6-degree-of-freedom direction based on the position information (measurement result) of wafer table WTB in the 6-degree-of-freedom direction.
  • main controller 20 obtains information obtained in advance by focus mapping, that is, surface position information at each detection point of multi-point AF system (90a, 90b) of wafer W as a left measurement point (Z head 72a, Conversion data converted into plane position data based on a straight line connecting the plane position of the plane position of the measurement point 72b) and the plane position of the right measurement point (center point of the measurement points of the Z heads 72c, 72d), and the above Of the projection optical system PL during exposure based on the Z position of the wafer table WTB measured by the Z heads 76 and 74 facing the scales 39 1 and 39 2 and the inclination (mainly ⁇ y rotation) with respect to the XY plane.
  • focus mapping that is, surface position information at each detection point of multi-point AF system (90a, 90b) of wafer W as a left measurement point (Z head 72a, Conversion data converted into plane position data based on a straight line connecting the plane position of the plane position of the measurement point 72b) and the plane position of the
  • ⁇ y direction (and ⁇ x direction) of wafer table WTB for matching the portion irradiated with illumination light IL on the surface of wafer W (region portion corresponding to exposure region IA). Controlling the location (focus leveling control of wafer W).
  • the movement path of wafer stage WST in step-and-scan exposure is uniquely determined according to the shot map (size and arrangement of shot areas) of wafer W.
  • This movement path is a movement path (hereinafter referred to as movement path BE) from the start position B to the end position E of the exposure center (center of the exposure area IA).
  • movement path BE movement path from the start position B to the end position E of the exposure center (center of the exposure area IA).
  • the exposure center moves relative to the wafer W from the start position B to the end position E along the movement path BE without stopping.
  • the exposure center is fixed, and the wafer W moves along a path opposite to the movement path BE.
  • the exposure center is moved to the movement path BE.
  • the wafer W is moved to the movement path BE.
  • the wafer W is moved to the movement path BE
  • wafer stage WST is driven (scanned) at a constant speed in order to scan and expose each shot area.
  • a curved section indicated by a broken line connecting the straight sections the scanning exposure for a certain shot area S m is completed, and the scanning exposure for the next shot area S m + 1 is started.
  • Stepping (step driving) is performed in the axial direction.
  • wafer stage WST is decelerated to zero speed in the scanning direction and further accelerated in the opposite direction.
  • main controller 20 drives coarse movement stage 82 using planar motor Ma, and scanning exposure that requires high control performance to drive synchronously with reticle stage RST.
  • the fine movement stage 83 is finely driven using a pair of voice coil motors Mb.
  • high control performance of the fine movement stage 83 is not required, but at the time of stepping that requires high (large) driving force, fine movement is performed using at least one of the EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4.
  • the stage 83 is finely driven.
  • the directions of the axes L c1 and L c2 are set according to the maximum acceleration direction of the wafer stage WST at the time of stepping. Therefore, an EI core that can generate a large driving force is used.
  • the fine movement stage 83 can be driven efficiently. This enables high-speed stepping of wafer stage WST while maintaining high synchronization accuracy with reticle stage RST.
  • the wafer table WTB is moved in the Z-axis direction and during the stepping. It may be driven in the tilt direction.
  • the core of the EI core at least one of the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 ) used for driving (position control) of the fine movement stage 83, particularly when driven in the ⁇ y direction or the ⁇ x direction.
  • the gap between TUc 0 and the magnetic member MUc is non-uniform (for example, different between the upper end and the lower end of the core TUc 0 ). In such a case, it becomes difficult to accurately predict the suction force generated by the EI core and drive the wafer table WTB with the required accuracy. A similar situation is also caused by the relative rotation of the fine movement stage 83 and the coarse movement stage 82 in the ⁇ z direction. Therefore, main controller 20, for example, position information regarding the ⁇ x direction, ⁇ y direction, and ⁇ z direction of wafer table WTB measured by interferometer system 118, fine movement stage 83 and coarse movement stage 83 measured by relative position measurement system 210 described above.
  • the fine movement stage 83 and the coarse movement stage 82 are driven together in at least one direction of the tilt direction, that is, the ⁇ y direction, the ⁇ x direction, and the ⁇ z direction.
  • the gap of the core TUC 0 and the magnetic member of the EI core Mc used to control a predetermined positional relationship for example, the entire surface of the core Can be maintained substantially uniform.
  • the predetermined positional relationship means a range in which the control of the EI core Mc can be secured. That is, it is only necessary to maintain a gap within a range in which the suction force generated by the EI core can be accurately predicted, and it is not always necessary to maintain perfect uniformity.
  • the fine movement stage 83 and the coarse movement stage are not necessarily required. It is not necessary to incline and synchronize with 82.
  • Main controller 20 may drive fine movement stage 83 using a pair of voice coil motors Mb together with EI core Mc when stepping wafer stage WST. In this case, main controller 20 may stop generating the driving force (suction force) by EI core Mc prior to the end of step driving of wafer stage WST. In this way, it is possible to avoid the remaining driving force by the EI core Mc from adversely affecting the scanning exposure.
  • the EI core Mc and the pair of voice coil motors Mb are used in combination during the step drive, the EI core Mc is largely paired with the pair of voice coil motors until the generation of the driving force by the EI core Mc is stopped. It is preferable to generate a driving force larger than Mb.
  • the main controller 20 controls the amount of current flowing through the coils of the electromagnets TUc based on the measurement results of the gap sensors 212 1 and 212 2 and the sensor 214 of the relative position measurement system 210 described above. Thereby, it becomes possible to precisely drive fine movement stage 83 (wafer table WTB) by controlling the driving force (attraction force) according to the gap between electromagnet TUc and magnetic body member MUc.
  • the cap control of the EI core Mc is disclosed in, for example, US Patent Application Publication No. 2005/0162802.
  • This U.S. Patent Application Publication discloses gap control by taking, as an example, an EIE core assembly having a pair of E cores disposed on both sides of a single I core.
  • This specification also states that "offset gap control works by manipulating the relative position between the E core and the I core" and "the actuator or actuators attached to the taxi stage are , May be used to perform a position operation ”.
  • sensors for measuring the positions of the first E core, the second E core, the I core, etc. (which may be interferometers, cap sensors, or optical sensors) control these elements.
  • position information may be sent to the controller, and thus these sensors may be used to manipulate the relative gap distance.
  • the gap control method for the EI core assembly disclosed in the above-mentioned US Patent Application Publication No. 2005/0162802 can also be applied to the EI core gap control according to the present embodiment. .
  • the main controller 20 may use the EI core Mc together with the pair of voice coil motors Mb at least partly during the scanning drive even when the fine movement stage 83 (wafer table WTB) is driven to scan.
  • main controller 20 controls both of the driving forces so that the pair of voice coil motors Mb generates a driving force larger than that of EI core Mc in most of the combined period of both.
  • the coarse movement stage 82 constituting the wafer stage WST is driven with respect to the stage base 13 by the planar motor Ma.
  • a pair of voice coil motors Mb provided on one side and the other side of the coarse movement stage 82 in the X-axis direction, and one side of each of the axes L c1 and L c2 intersecting the X-axis and the Y-axis, respectively.
  • Fine movement stage 83 (wafer table WTB) is driven with respect to coarse movement stage 82 by two pairs of EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 provided on the other side.
  • the wafer table WTB holding the wafer W can be precisely driven with respect to the stage base 13, and the voice coil motor Mb and the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 are coarsely moved. It can be compactly arranged on the upper surface of the slider portion 82a of the stage 82 without protruding to the outside, and the weight and size of the wafer stage can be reduced.
  • the planar motor Ma is adopted as a driving source for the coarse movement stage 82, and a pair of the voice coil motor Mb and the EI core Mc 1 are used as the driving source for the fine movement stage 83 at the same time.
  • Mc 2 , Mc 3 and Mc 4 were used in combination.
  • the direction of the driving force (suction force) generated by the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 (direction parallel to the axes Lc 1 , Lc 2 ) is the maximum acceleration direction of the wafer stage WST during stepping. It is set according to.
  • the main controller 20 projects the projection optical system PL of the wafer table WTB (fine movement stage 83) measured by the stage position measurement system 200 and this.
  • the wafer table WTB is finely driven in at least one of the ⁇ x and ⁇ y directions, for example, via the fine movement stage drive system 34 based on position information with reference to the main frame holding the Wafer table WTB (fine movement stage 83) and coarse movement stage 82 measured by relative position measurement system 210 are maintained so that a predetermined positional relationship between wafer table WTB (fine movement stage 83) and coarse movement stage 82 is maintained.
  • the coarse movement stage 82 is reduced by the planar motor Ma. Both are finely driven in one direction. As a result, the wafer is held without deteriorating the drive performance (control performance) of the EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 due to the change in the relative posture between the coarse motion stage 82 and the fine motion stage 83.
  • the fine movement stage 83 (wafer table WTB) to be driven can be precisely driven with respect to the stage base 13.
  • the fine movement stage 83 (wafer table WTB) that holds the wafer W described above is driven, so that the reticle is placed on each shot area on the wafer W with high overlay accuracy and high throughput.
  • An R pattern can be formed with high accuracy.
  • high-resolution exposure is performed by liquid immersion exposure.
  • the wafer stage WST has a pair of EI cores Mc 1 and MC 3 disposed on one side and the other side in the direction parallel to the axis Lc 1 with respect to the center of the main body 83a of the fine movement stage 83;
  • a pair of EI cores Mc 2 and Mc 4 arranged on one side and the other side in the direction parallel to the axis Lc 2 with respect to the center of the fine movement stage 83 has been described.
  • the present invention is not limited to this, and only one of the pair of EI cores Mc 1 and MC 3 and the pair of EI cores Mc 2 and Mc 4 may be provided.
  • the voice coil motor Mb that applies the driving force in the two orthogonal directions in the X-axis and Y-axis directions between the coarse movement stage 82 and the fine movement stage 83 (more precisely, the main body 83a) is provided.
  • the fine movement stage 83 (more precisely, the main body portion 83a) is interposed between the one side and the other side in the X-axis direction.
  • a plurality of parts may be arranged on one side and the other side of the X-axis direction with the part 83a interposed therebetween, or only one may be provided on the main body part 83a.
  • a device for preventing the fine movement stage 83 from rotating unnecessarily in the ⁇ z direction relative to the coarse movement stage 82 is provided, and the fine movement stage 83 is rotated by the planar motor Ma. May be.
  • the Lorentz force (electromagnetic force) driving type voice coil motor is used as the first actuator that causes the driving force along the X-axis direction and the Y-axis direction to act between the coarse movement stage 82 and the fine movement stage 83.
  • Mb is used, and a driving force is applied between the coarse movement stage 82 and the fine movement stage 83 along the directions parallel to the axes Lc 1 and Lc 2 that intersect the X-axis direction and the Y-axis direction and are parallel to the XY plane.
  • EI core is used as the second actuator to be operated has been described.
  • the present invention is not limited to this, and the first actuator may be a combination of other actuators as long as the first actuator is more accurate than the second actuator and the second actuator is more efficient than the first actuator.
  • the first actuator may be a two-dimensional linear actuator other than the Lorentz force driving method
  • the second actuator may be a one-dimensional actuator that generates an attractive force or a repulsive force other than the magnetic force.
  • the configuration in which the first actuator and the second actuator are provided has been described.
  • the first actuator may not be provided, and only the second actuator may be provided.
  • the EI core (the magnetic member MUc and the electromagnet TUc) is disposed outside the substantially circular wafer holder WH in the XY plane.
  • the present invention is not limited to this. is not.
  • the wafer holder is assumed to be circular with a predetermined radius
  • at least a part of the EI core may be arranged inside the outer peripheral edge (contour).
  • the inner side of the outer peripheral edge (contour) for example, 60% or 70% of the radius from the center to the distance (the radius of the wafer holder) from the center of the wafer holder WH (or the center of the main body 83a) to the outer peripheral edge of the wafer holder WH. , 80%, 90%, and the position excluding the center side.
  • the self-weight canceller 29, the support member 88, the three pins 88a, the driving device 89, and the like are disposed in the center of the stage main body 81 (coarse movement stage 82).
  • the EI core MC n (the magnetic member MUc and the electromagnet TUc) is arranged inside the outer peripheral edge (contour) of the wafer holder WH, for example, on the outer peripheral side from the three pins 88a. May be.
  • the EI core MC n if not completely positioned outside the wafer holder WH in the XY plane, in order to avoid positional interference between them, as shown in FIG.
  • the Z-axis direction, EI core MC n At least a portion of the wafer can be disposed under the wafer holder WH.
  • the driving force by the EI core MC n is applied to a portion other than the wafer holder WH of the fine movement stage 83 (fine movement stage 83 at least a part). Therefore, it is possible to prevent the wafer holder WH from being distorted due to the driving force.
  • the relative position measurement system 210 that measures the relative position between the coarse movement stage 82 and the fine movement stage 83 is provided.
  • the present invention is not limited to this, and instead of the relative position measurement system, a coarse movement stage position measurement system that measures the position of the coarse movement stage 82 in the direction of 6 degrees of freedom with reference to the projection optical system PL or the main frame that holds the projection optical system PL. It may be provided.
  • main controller 20 measures the result of measuring the position of wafer table WTB in the 6-degree-of-freedom direction measured by stage position measurement system 200 and 6 of coarse movement stage 82 measured by coarse movement stage position measurement system.
  • the gap between the core of the EI core and the magnetic member can be indirectly measured based on the measurement result of the position in the direction of freedom, and the coarse movement stage 82 can be jointly connected via the planar motor Ma. It can also be driven in the direction. In this case, the gap sensors 212 1 and 212 2 can be omitted.
  • the gaps between the cores of the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 and the magnetic member are set consciously wider than the required gaps. Also good.
  • main controller 20 uses EI core Mc and voice coil motor Mb together during step driving of wafer stage WST, for example, and finely moves using a pair of voice coil motor Mb prior to the end of step driving.
  • the stage 83 may be moved to the neutral position. In this case, generation of the driving force by the EI core may be stopped after the movement to the neutral position or after the end of step driving.
  • the 2D head (biaxial head) in which the X head and Y head described in the above embodiment are housed in one housing, measurement beams for X direction measurement and Y direction measurement are applied to the same irradiation point. It is also possible to use a two-dimensional head having a measurement direction in the X-axis direction and the Y-axis direction. As this type of two-dimensional head, for example, a three-grating diffraction interference type 2D head disclosed in US Patent Application Publication No. 2009/0268178 can be used. This 2D head may be arranged on the reference axis LH instead of the X heads 65X and 64X described above. In this case, the Y head need not be provided.
  • a two-dimensional head having the measurement direction in the X axis direction and the Z axis direction may be used.
  • a displacement measuring sensor head disclosed in US Pat. No. 7,561,280 can be used.
  • This two-dimensional head may be disposed on the reference axis LH instead of the X heads 65X and 64X described above.
  • the measurement system using the interferometer system and the encoder system is described.
  • the present invention is not limited to this.
  • the above-described interferometer system 118 is omitted, and the wafer table WTB is based on the main frame.
  • the position information in the direction of 6 degrees of freedom may be measured only by the encoder system.
  • the measurement system can be configured only by the interferometer system.
  • each measuring apparatus such as the encoder system described in the above embodiment is merely an example.
  • the case where an encoder system having a configuration in which a grating portion is provided on a wafer table (wafer stage) and an X head and a Y head are arranged outside the wafer stage is illustrated.
  • the present invention is not limited to this, for example, as disclosed in US Patent Application Publication No.
  • an encoder head is provided on the wafer stage, and a grating portion (for example, 2 You may employ
  • the Z head of the surface position measurement system is also provided on the wafer stage, and the surface of the grating portion may be a reflection surface irradiated with the measurement beam of the Z head, or the above-described 2D head or 3D head may be used. It may be used.
  • Position information in the direction of 6 degrees of freedom of the wafer table WTB as a reference may be measured by the encoder system.
  • an immersion exposure apparatus disclosed in, for example, European Patent Application Publication No. 1,420,298, US Patent No. 6,952,253, or US Patent Application Publication No. 2008/0088843.
  • the above embodiment can be applied.
  • the present embodiment is not limited to this, and the above embodiment may be applied to a dry type exposure apparatus that exposes the wafer W without using liquid (water).
  • the exposure apparatus is a step-and-scan scanning exposure apparatus.
  • the present invention is not limited to this.
  • the above-described embodiment can also be applied to a reduction projection exposure apparatus, a proximity exposure apparatus, a mirror projection aligner, or the like.
  • a reduction projection exposure apparatus for example, US Pat. No. 6,590,634, US Pat. No. 5,969,441, US Pat. No. 6,208,407, etc.
  • the above-described embodiment can also be applied to a multi-stage type exposure apparatus including a stage.
  • an exposure apparatus provided with a measurement stage including a measurement member (for example, a reference mark and / or a sensor) separately from the wafer stage is also described above.
  • the embodiment can be applied.
  • the projection optical system in the exposure apparatus of the above embodiment may be not only a reduction system but also any of the same magnification and enlargement systems, and the projection optical system PL may be any of a reflection system and a catadioptric system as well as a refractive system.
  • the projected image may be an inverted image or an erect image.
  • the illumination area and the exposure area described above are rectangular in shape, but the shape is not limited to this, and may be, for example, an arc, a trapezoid, or a parallelogram.
  • the light source of the exposure apparatus of the above embodiment is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser ( It is also possible to use a pulse laser light source with an output wavelength of 146 nm, an ultrahigh pressure mercury lamp that emits a bright line such as g-line (wavelength 436 nm), i-line (wavelength 365 nm), and the like. A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No.
  • a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light.
  • a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • the above embodiment is preferably applied to an EUV exposure apparatus using a light source that generates EUV (Extreme Ultraviolet) light in a soft X-ray region (for example, a wavelength region of 5 to 15 nm) using an SOR or a plasma laser as a light source.
  • EUV Extreme Ultraviolet
  • a soft X-ray region for example, a wavelength region of 5 to 15 nm
  • SOR or a plasma laser as a light source.
  • the above embodiment can be applied to an exposure apparatus that uses charged particle beams such as an electron beam or an ion beam.
  • a light transmission mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • an electronic mask variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257.
  • an active mask or an image generator for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
  • DMD Digital Micro-mirror Device
  • the above-described embodiment can be applied to an exposure apparatus (lithography system) that forms line and space patterns on a wafer by forming interference fringes on the wafer.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and one scan exposure is performed on one wafer.
  • the above embodiment can also be applied to an exposure apparatus that performs double exposure of shot areas almost simultaneously.
  • the object on which the pattern is to be formed in the above embodiment is not limited to the wafer, but other objects such as a glass plate, a ceramic substrate, a film member, or a mask blank. But it ’s okay.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head, an image sensor ( CCDs, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses.
  • CCDs, etc. image sensor
  • micromachines DNA chips and the like
  • the above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.
  • An electronic device such as a semiconductor element includes a step of designing a function / performance of a device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and an exposure apparatus (pattern formation) according to the above-described embodiment.
  • Lithography step to transfer the mask (reticle) pattern to the wafer using the apparatus, development step to develop the exposed wafer, etching step to remove the exposed member other than the portion where the resist remains by etching, etching is completed This is manufactured through a resist removal step that removes the resist that is no longer needed in step 1, a device assembly step (including a dicing process, a bonding process, and a package process), an inspection step, and the like.
  • the exposure method described above is executed using the exposure apparatus according to the above-described embodiment, and a device pattern is formed on the wafer. Therefore, a highly integrated device can be manufactured with high productivity. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A wafer stage (WST) is provided with a coarse movement stage (82), a fine movement stage (83), one pair of voice coil motors (Mb) that are provided to one side and to the other side of the fine movement stage (83) in the X-axis direction, and two pairs of EI cores (Mc1, Mc2, Mc3, Mc4) that are provided to one side and to the other side in a direction that is parallel to each of axes (Lc1, Lc2) that intersect each of the X axis and the Y axis of the fine movement stage (83). As a result, it is possible to precisely drive the wafer table (WTB) that holds a wafer (W) and to arrange a voice coil motor and an EI core within the coarse movement stage (82) in a compact manner.

Description

移動体装置及び露光装置、並びにデバイス製造方法MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
 本発明は、移動体装置及び露光装置、並びにデバイス製造方法に係り、特に粗微動構造の移動体を備える移動体装置及び該移動体装置に露光対象の物体が載置される露光装置、並びに該露光装置を用いるデバイス製造方法に関する。 The present invention relates to a moving body apparatus, an exposure apparatus, and a device manufacturing method, and in particular, a moving body apparatus including a moving body having a coarse / fine movement structure, an exposure apparatus in which an object to be exposed is placed on the moving body apparatus, and the The present invention relates to a device manufacturing method using an exposure apparatus.
 半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。 In lithography processes for manufacturing electronic devices (microdevices) such as semiconductor elements (integrated circuits, etc.) and liquid crystal display elements, step-and-repeat projection exposure apparatuses (so-called steppers) or step-and-scan projections An exposure apparatus (a so-called scanning stepper (also called a scanner)) or the like is mainly used.
 例えば、半導体製造用の露光装置では、露光対象のウエハが載置されるウエハステージ装置として、粗動ステージと微動ステージとを備えた粗微動タイプのステージ装置が比較的多く用いられている。通常、微動ステージは電磁アクチュエータによって少なくとも水平面内で駆動される。微動ステージを駆動するアクチュエータとしてリニアモータ又はボイスコイルモータ(以下、適宜、VCMと略記する)が多く用いられる。 For example, in an exposure apparatus for manufacturing a semiconductor, a coarse / fine movement type stage apparatus including a coarse movement stage and a fine movement stage is used as a wafer stage apparatus on which a wafer to be exposed is placed. Usually, the fine movement stage is driven at least in a horizontal plane by an electromagnetic actuator. As an actuator for driving the fine movement stage, a linear motor or a voice coil motor (hereinafter abbreviated as VCM as appropriate) is often used.
 通常、VCMは高精度だが比較的低効率であると特徴付けられるので、ウエハステージ装置のなかには、微動ステージを必要とする走査のうち高精度な等速駆動区間には磁気剛性の低い比較的小さい力を発生するVCMを利用し、走査のうち精度の低い加速及び減速区間には、精度は落ちるが比較的大きな力を発生するより効率的なアクチュエータを利用するものが知られている(例えば、特許文献1参照)。特許文献1に開示されるウエハステージ装置では、効率的なアクチュエータとして、比較的熱を発生しない電磁アクチュエータ、例えば、EIコア・アクチュエータが用いられる。 Usually, VCM is characterized by high accuracy but relatively low efficiency, so some of the wafer stage devices have relatively low magnetic rigidity in the high-precision constant-velocity driving section of scanning that requires a fine movement stage. It is known to use a VCM that generates a force, and to use a more efficient actuator that generates a relatively large force in a low-accuracy acceleration / deceleration section of a scan, although the accuracy is low (for example, Patent Document 1). In the wafer stage apparatus disclosed in Patent Document 1, an electromagnetic actuator that does not generate heat relatively, such as an EI core actuator, is used as an efficient actuator.
 一方、生産性向上の要求からウエハは次第に大型化し、次世代の450ミリウエハ用のウエハステージの駆動源としては、平面モータが主流になるのではないかと言われている。粗動ステージの駆動源として平面モータを用い、微動ステージの駆動源としてそれ以外の電磁アクチュエータ(たとえばVCMやEIコア・アクチュエータ)を用いる場合、微動ステージは可能な限り軽量かつ小型であることが求められる。 On the other hand, it is said that wafers will gradually become larger due to demands for improving productivity, and planar motors will become the mainstream as a driving source for wafer stages for next-generation 450 mm wafers. When a planar motor is used as the drive source for the coarse movement stage and other electromagnetic actuators (eg, VCM or EI core actuator) are used as the drive source for the fine movement stage, the fine movement stage is required to be as light and compact as possible. It is done.
米国特許出願公開第2006/0061218号明細書US Patent Application Publication No. 2006/0061218
 本発明の第1の態様によれば、ベース部材と、互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる少なくとも一対の第2アクチュエータと、を備える第1の移動体装置が、提供される。 According to the first aspect of the present invention, the base member, the first moving member that moves on the base member along a two-dimensional plane including the first axis and the second axis orthogonal to each other, and the first movement A second moving member supported by the member so as to be relatively movable; and a driving force along a first direction parallel to the first axis and a second direction parallel to the second axis. A first actuator that acts between the first moving member and the second moving member, and a driving force along a third direction that intersects each of the first and second directions and is parallel to the two-dimensional plane; There is provided a first moving body device including at least a pair of second actuators that act between one moving member and the second moving member.
 これによれば、移動体がベース部材上を移動するとき、第1方向及び第2方向に沿った駆動力を第1移動部材と第2移動部材との間に作用させる第1アクチュエータと、第3方向に沿った駆動力を第1移動部材と第2移動部材との間に作用させる少なくとも一対の第2アクチュエータとによって、第2移動部材が第1移動部材に対して駆動される。これにより、第2移動部材をベースに対して精密に駆動することが可能となるとともに、第1及び第2アクチュエータを第1移動部材上(移動体の内部)にコンパクトに配置して移動体の軽量化及び小型化を図ることが可能となる。 According to this, when the moving body moves on the base member, the first actuator that causes the driving force along the first direction and the second direction to act between the first moving member and the second moving member, The second moving member is driven with respect to the first moving member by at least a pair of second actuators that apply a driving force along the three directions between the first moving member and the second moving member. As a result, the second moving member can be precisely driven with respect to the base, and the first and second actuators can be compactly disposed on the first moving member (inside the moving body) to It becomes possible to reduce weight and size.
 本発明の第2の態様によれば、エネルギビームを照射して物体を露光する露光装置であって、前記物体が前記第2移動部材上に保持される上記第1の移動体装置と、前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える第1の露光装置が、提供される。 According to a second aspect of the present invention, there is provided an exposure apparatus for exposing an object by irradiating an energy beam, wherein the object is held on the second moving member; There is provided a first exposure apparatus comprising: a pattern generation device that forms a pattern on the object by irradiating the object with the energy beam.
 これによれば、物体上にパターンを精度良く形成することが可能となる。 According to this, it becomes possible to form the pattern on the object with high accuracy.
 上記第1の露光装置では、前記移動体の前記第2方向への走査駆動と前記第1方向へのステップ駆動とを繰り返して、前記第2部材上に保持された前記物体上の複数の区画領域のそれぞれに前記パターンを形成することとすることができる。ここで、走査駆動とは、実質的に第2方向(走査方向)のみに速度成分を有する移動体の駆動を意味し、ステップ駆動とは、第1方向(ステップ方向)に速度成分を有する移動体の駆動を意味する。本明細書では、かかる意味で、走査駆動及びステップ駆動なる用語が用いられている。 In the first exposure apparatus, a plurality of sections on the object held on the second member by repeating scanning driving in the second direction and step driving in the first direction of the moving body. The pattern may be formed in each of the regions. Here, scanning driving means driving of a moving body having a speed component substantially only in the second direction (scanning direction), and step driving means movement having a speed component in the first direction (step direction). Means body drive. In this specification, the terms scan driving and step driving are used in this sense.
 本発明の第3の態様によれば、ベース部材と、互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、前記ベース部材に対して前記移動体を6自由度で駆動する第1駆動装置と、前記第2移動部材を前記第1移動部材に対して6自由度で駆動する第2駆動装置とを備え、前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する際、前記第1駆動装置によって前記第1移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動するとともに、前記第2駆動装置によって前記第2移動部材を前記第1部材に対して前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する第2の移動体装置が、提供される。 According to the third aspect of the present invention, the base member, the first moving member that moves on the base member along a two-dimensional plane including the first axis and the second axis orthogonal to each other, and the first movement A second moving member supported by the member so as to be relatively movable; a first driving device that drives the moving body with six degrees of freedom relative to the base member; and A second driving device that drives the first moving member with six degrees of freedom, and when the second moving member is rotationally driven around at least one of the first axis and the second axis, The first driving member is driven to rotate about at least one of the first shaft and the second shaft by the first driving device, and the second moving member is turned to the first member by the second driving device. In contrast, at least one of the first axis and the second axis The second mobile device that rotates around it, is provided.
 これによれば、第1及び第2移動部材の相対姿勢を常に所望の状態に維持することができ、これにより、例えば第2駆動装置の制御性能の低下を防止することが可能になる。 According to this, it is possible to always maintain the relative postures of the first and second moving members in a desired state, thereby preventing, for example, a decrease in the control performance of the second drive device.
 本発明の第4の態様によれば、エネルギビームを照射して物体を露光する露光装置であって、前記物体が前記第2移動部材上に保持される上記第2の移動体装置と、前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える第2の露光装置が、提供される。 According to a fourth aspect of the present invention, there is provided an exposure apparatus that irradiates an energy beam to expose an object, the second moving body apparatus in which the object is held on the second moving member; There is provided a second exposure apparatus comprising: a pattern generation device that forms a pattern on the object by irradiating the object with the energy beam.
 これによれば、物体上にパターンを精度良く形成することが可能となる。 According to this, it becomes possible to form the pattern on the object with high accuracy.
 本発明の第5の態様によれば、上記第1及び第2の露光装置のいずれかを用いて物体を露光し、該物体上にパターンを形成することと、パターンが形成された前記物体を現像することと、を含むデバイス製造方法が、提供される。 According to the fifth aspect of the present invention, an object is exposed using one of the first and second exposure apparatuses, a pattern is formed on the object, and the object on which the pattern is formed is A device manufacturing method is provided.
 本発明の第6の態様によれば、互いに直交する第1軸及び第2軸を含む二次元平面に沿って移動する第1移動部材と、基板を保持する基板保持部を有し、かつ前記第1移動部材に対して移動可能に該第1移動部材に支持され、前記第1軸に沿った第1方向の位置情報及び前記第2軸に沿った第2方向に関する位置情報が計測される第2移動部材と、前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に関して前記第2移動部材の一側の下側又は側方側に配置され、前記第3方向に沿った駆動力を、前記第1移動部材と前記第2移動部材との間に作用させる第1のアクチュエータと、前記第3方向に関して前記第2移動部材の他側の下側又は側方側に配置され、前記第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第2のアクチュエータと、を備える第3の移動体装置が、提供される。 According to a sixth aspect of the present invention, there is provided a first moving member that moves along a two-dimensional plane including a first axis and a second axis that are orthogonal to each other, a substrate holding unit that holds a substrate, and Position information in the first direction along the first axis and position information in the second direction along the second axis are supported by the first moving member so as to be movable with respect to the first moving member. A second moving member and a third direction that intersects each of the first and second directions and is parallel to the two-dimensional plane, and is disposed on a lower side or a lateral side of the second moving member; A first actuator that causes a driving force along three directions to act between the first moving member and the second moving member; and a lower side or a side of the second moving member with respect to the third direction. Disposed on the side of the first moving member and the driving force along the third direction. A second actuator that acts between the second movable member, the third mobile device with a provided.
 これによれば、第1移動部材が駆動される際、第1移動部材に移動可能に支持され、基板を保持する基板保持部を有する第2移動部材の第1方向及び第2方向に関する位置情報が計測され、この計測情報に基づいて、第1及び第2アクチュエータの少なくとも一方によって、第2移動部材が第1移動部材に対して駆動される。 According to this, when the first moving member is driven, positional information regarding the first direction and the second direction of the second moving member that is supported by the first moving member and is movably supported and holds the substrate. Based on this measurement information, the second moving member is driven relative to the first moving member by at least one of the first and second actuators.
 本発明の第7の態様によれば、エネルギビームを照射して基板を露光する露光装置であって、上記第3の移動体装置と、前記第2移動体に保持された基板に前記エネルギビームを照射して前記基板上にパターンを形成するパターン生成装置と、を備える第3の露光装置が、提供される。 According to a seventh aspect of the present invention, there is provided an exposure apparatus for exposing a substrate by irradiating an energy beam, wherein the energy beam is applied to the third moving body device and the substrate held by the second moving body. And a pattern generation device that forms a pattern on the substrate by irradiating the substrate.
 これによれば、物体上にパターンを精度良く形成することが可能となる。 According to this, it becomes possible to form the pattern on the object with high accuracy.
 本発明の第8の態様によれば、上述の第3の露光装置を用いて基板を露光し、該基板上にパターンを形成することと、パターンが形成された前記基板を現像することと、を含むデバイス製造方法が、提供される。 According to the eighth aspect of the present invention, the substrate is exposed using the third exposure apparatus described above, a pattern is formed on the substrate, and the substrate on which the pattern is formed is developed. A device manufacturing method is provided.
一実施形態に係る露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus which concerns on one Embodiment. 図2(A)、図2(B)、及び図2(C)は、それぞれ、ウエハステージを示す平面図、正面図、及び側面図である。2A, 2B, and 2C are a plan view, a front view, and a side view, respectively, showing the wafer stage. ウエハステージを示す斜視図である。It is a perspective view which shows a wafer stage. ウエハステージからウエハテーブルを取り去ったステージ本体81を示す斜視図である。It is a perspective view which shows the stage main body 81 which removed the wafer table from the wafer stage. ステージ本体から微動ステージを取り外した粗動ステージを示す斜視図である。It is a perspective view which shows the coarse movement stage which removed the fine movement stage from the stage main body. 図6(A)及び図6(B)は、図4及び図5の斜視図にそれぞれ対応する平面図である。6A and 6B are plan views corresponding to the perspective views of FIGS. 4 and 5, respectively. 図7(A)は微動ステージの内部構造を一部断面して示す図、図7(B)は微動ステージを駆動するボイスコイルモータの内部構造を示す平面図である。7A is a cross-sectional view showing a part of the internal structure of the fine movement stage, and FIG. 7B is a plan view showing the internal structure of the voice coil motor that drives the fine movement stage. 微動ステージを駆動するEIコアの内部構造を示す平面図である。It is a top view which shows the internal structure of EI core which drives a fine movement stage. 微動ステージ及びこの上面に固定されたウエハテーブルを裏面側から見た斜視図が示されている。The perspective view which looked at the fine movement stage and the wafer table fixed to this upper surface from the back surface side is shown. 干渉計システムを説明するための図である。It is a figure for demonstrating an interferometer system. ステージ装置及びセンサユニットの配置を示す平面図である。It is a top view which shows arrangement | positioning of a stage apparatus and a sensor unit. エンコーダヘッド(Xヘッド、Yヘッド)とアライメント系の配置を示す平面図である。It is a top view which shows arrangement | positioning of an encoder head (X head, Y head) and an alignment system. Zヘッドと多点AF系の配置を示す平面図である。It is a top view which shows arrangement | positioning of Z head and a multipoint AF type | system | group. 一実施形態に係る露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input / output relationship of the main controller which mainly comprises the control system of the exposure apparatus which concerns on one Embodiment. 図14の制御系の構成各部のうち、ステージ装置の構成各部の詳細構成例を示す図である。It is a figure which shows the detailed structural example of each structure part of a stage apparatus among the structure parts of the control system of FIG. ステップ・アンド・スキャン方式の露光におけるウエハステージの移動経路に対応する露光中心のウエハ上の移動経路を表す図である。It is a figure showing the movement path | route on the wafer of an exposure center corresponding to the movement path | route of a wafer stage in exposure of a step and scan system. EIコアの配置の変形例を説明するための図である。It is a figure for demonstrating the modification of arrangement | positioning of EI core.
 以下、一実施形態について、図1~図16に基づいて説明する。 Hereinafter, an embodiment will be described with reference to FIGS.
 図1には、一実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、すなわちいわゆるスキャナである。後述するように、本実施形態では投影光学系PLが設けられている。以下においては、投影光学系PLの光軸AXと平行な方向をZ軸方向(Z方向)、これに直交する面内でレチクルRとウエハWとが相対走査される走査方向をY軸方向(Y方向)、Z軸及びY軸に直交する方向をX軸方向(X方向)とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。 FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to an embodiment. The exposure apparatus 100 is a step-and-scan projection exposure apparatus, that is, a so-called scanner. As will be described later, in the present embodiment, a projection optical system PL is provided. In the following description, the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction (Z direction), and the scanning direction in which the reticle R and the wafer W are relatively scanned in a plane orthogonal to this is the Y-axis direction ( Y direction), the direction orthogonal to the Z axis and the Y axis is the X axis direction (X direction), and the rotation (tilt) directions around the X axis, Y axis, and Z axis are the θx, θy, and θz directions, respectively. I do.
 露光装置100は、照明系10、レチクルステージRST、投影ユニットPU、ウエハステージWST及び計測ステージMSTを有するステージ装置50、及びこれらの制御系等を備えている。図1において、レチクルステージRST上にはレチクルRが載置され、ウエハステージWST上にはウエハWが載置されている。 The exposure apparatus 100 includes an illumination system 10, a reticle stage RST, a projection unit PU, a stage apparatus 50 having a wafer stage WST and a measurement stage MST, a control system for these, and the like. In FIG. 1, reticle R is placed on reticle stage RST, and wafer W is placed on wafer stage WST.
 照明系10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、オプティカルインテグレータを有する照度均一化光学系、及びレチクルブラインド(いずれも不図示)を有する照明光学系と、を含む。照明系10は、レチクルブラインド(マスキングシステム)で設定(制限)されたレチクルR上のスリット状の照明領域IARを照明光(露光光)ILによりほぼ均一な照度で照明する。ここで、照明光ILとして、例えばArFエキシマレーザ光(波長193nm)が用いられている。 The illumination system 10 includes, for example, a light source, an illumination uniformizing optical system having an optical integrator, and a reticle blind (both not shown) as disclosed in, for example, US Patent Application Publication No. 2003/0025890. An optical system. The illumination system 10 illuminates the slit-shaped illumination area IAR on the reticle R set (restricted) by the reticle blind (masking system) with illumination light (exposure light) IL with substantially uniform illuminance. Here, for example, ArF excimer laser light (wavelength 193 nm) is used as the illumination light IL.
 レチクルステージRST上には、パターン面(図1における下面)に回路パターンなどが形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では不図示、図14参照)によって、XY平面内で微小駆動可能であるとともに、走査方向(図1における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。 On reticle stage RST, reticle R having a circuit pattern or the like formed on the pattern surface (the lower surface in FIG. 1) is fixed by, for example, vacuum suction. The reticle stage RST can be finely driven in the XY plane by a reticle stage drive system 11 (not shown in FIG. 1, refer to FIG. 14) including, for example, a linear motor, and the scanning direction (left and right direction in FIG. 1). In the Y-axis direction) at a predetermined scanning speed.
 レチクルステージRSTのXY平面内の位置情報(θz方向の位置(回転)情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」と略記する)116によって、移動鏡15(実際には、Y軸方向に直交する反射面を有するY移動鏡(あるいは、レトロリフレクタ)とX軸方向に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計116の計測情報は、主制御装置20(図1では不図示、図14参照)に送られる。なお、移動鏡15に代えて、レチクルステージRSTの端面に鏡面加工により形成された反射面を用いても良い。 Position information of reticle stage RST in the XY plane (including position (rotation) information in the θz direction) is transferred by reticle laser interferometer (hereinafter abbreviated as “reticle interferometer”) 116 to movable mirror 15 (actually And a Y moving mirror (or a retroreflector) having a reflecting surface orthogonal to the Y-axis direction and an X moving mirror having a reflecting surface orthogonal to the X-axis direction), for example, about 0.25 nm. Is always detected with a resolution of. The measurement information of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 1, refer to FIG. 14). Instead of the movable mirror 15, a reflecting surface formed by mirror finishing on the end surface of the reticle stage RST may be used.
 投影ユニットPUは、レチクルステージRSTの図1における下方に配置されている。投影ユニットPUは、鏡筒40と、鏡筒40内に保持された投影光学系PLと、を含む。投影光学系PLとしては、例えば、Z軸と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4、1/5又は1/8など)を有する。このため、照明系10によってレチクルR上の照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介して照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLの第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系10、及び投影光学系PLによってウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。 Projection unit PU is arranged below reticle stage RST in FIG. The projection unit PU includes a lens barrel 40 and a projection optical system PL held in the lens barrel 40. As the projection optical system PL, for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along an optical axis AX parallel to the Z axis is used. The projection optical system PL is, for example, double-sided telecentric and has a predetermined projection magnification (for example, 1/4, 1/5, or 1/8). For this reason, when the illumination area IAR on the reticle R is illuminated by the illumination system 10, the illumination light that has passed through the reticle R arranged so that the first surface (object surface) and the pattern surface of the projection optical system PL substantially coincide with each other. Due to IL, a reduced image of the circuit pattern of the reticle R in the illumination area IAR (a reduced image of a part of the circuit pattern) passes through the projection optical system PL (projection unit PU), and the second surface (image) of the projection optical system PL. Formed on a region (hereinafter also referred to as an exposure region) IA that is conjugate to the illumination region IAR on the wafer W having a resist (sensitive agent) coated on the surface. Then, by synchronous driving of reticle stage RST and wafer stage WST, reticle R is moved relative to illumination area IAR (illumination light IL) in the scanning direction (Y-axis direction) and exposure area IA (illumination light IL). By moving the wafer W relative to the scanning direction (Y-axis direction), scanning exposure of one shot area (partition area) on the wafer W is performed, and the pattern of the reticle R is transferred to the shot area. The That is, in the present embodiment, the pattern of the reticle R is generated on the wafer W by the illumination system 10 and the projection optical system PL, and the sensitive layer (resist layer) on the wafer W is exposed on the wafer W by the illumination light IL. A pattern is formed.
 本実施形態の露光装置100には、液浸方式の露光を行うために、局所液浸装置8が設けられている。局所液浸装置8は、例えば液体供給装置5、液体回収装置6(いずれも図1では不図示、図14参照)、液体供給管31A、液体回収管31B、及びノズルユニット32等を含む。ノズルユニット32は、図1に示されるように、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子、ここではレンズ(以下、「先端レンズ」ともいう)191を保持する鏡筒40の下端部周囲を取り囲むように、投影ユニットPUを保持する不図示のメインフレームに吊り下げ支持されている。本実施形態では、ノズルユニット32は、図1に示されるように、その下端面が先端レンズ191の下端面とほぼ同一面に設定されている。また、ノズルユニット32は、液体Lqの供給口及び回収口と、液体供給管31A及び液体回収管31Bにそれぞれ接続される供給流路及び回収流路とを備え、前記回収口が設けられた下面にウエハWが対向して配置される。 In the exposure apparatus 100 of the present embodiment, a local liquid immersion apparatus 8 is provided in order to perform liquid immersion exposure. The local liquid immersion device 8 includes, for example, a liquid supply device 5, a liquid recovery device 6 (both not shown in FIG. 1, refer to FIG. 14), a liquid supply tube 31A, a liquid recovery tube 31B, a nozzle unit 32, and the like. As shown in FIG. 1, the nozzle unit 32 holds an optical element on the most image plane side (wafer W side) constituting the projection optical system PL, here a lens (hereinafter also referred to as “tip lens”) 191. It is suspended and supported by a main frame (not shown) that holds the projection unit PU so as to surround the lower end portion of the lens barrel 40. In the present embodiment, as shown in FIG. 1, the lower end surface of the nozzle unit 32 is set substantially flush with the lower end surface of the front lens 191. The nozzle unit 32 includes a supply port and a recovery port for the liquid Lq, a supply channel and a recovery channel connected to the liquid supply tube 31A and the liquid recovery tube 31B, respectively, and a lower surface on which the recovery port is provided. A wafer W is disposed opposite to the wafer W.
 液体供給管31A及び液体回収管31Bは、それぞれ液体供給装置5及び液体回収装置6(図1ではいずれも不図示、図14参照)に接続されている。ここで、液体供給装置5には、液体を貯蔵するタンク、加圧ポンプ、温度制御装置、液体の流量を制御するためのバルブ等が備えられている。液体回収装置6には、回収した液体を貯蔵するタンク、吸引ポンプ、液体の流量を制御するためのバルブ等が備えられている。 The liquid supply pipe 31A and the liquid recovery pipe 31B are connected to a liquid supply apparatus 5 and a liquid recovery apparatus 6 (both not shown in FIG. 1, refer to FIG. 14), respectively. Here, the liquid supply device 5 includes a tank for storing the liquid, a pressurizing pump, a temperature control device, a valve for controlling the flow rate of the liquid, and the like. The liquid recovery device 6 includes a tank for storing the recovered liquid, a suction pump, a valve for controlling the flow rate of the liquid, and the like.
 主制御装置20(図14参照)は、液体供給装置5を制御して、液体供給管31Aを介して先端レンズ191とウエハWとの間に液体Lqを供給するとともに、液体回収装置6を制御して、液体回収管31Bを介して先端レンズ191とウエハWとの間から液体Lqを回収する。このとき、主制御装置20は、供給される液体Lqの量と回収される液体Lqの量とが常に等しくなるように、液体供給装置5と液体回収装置6とを制御する。従って、先端レンズ191とウエハWとの間には、一定量の液体Lq(図1参照)が常に入れ替わって保持され、これにより液浸領域14(図10、図11等参照)が形成される。なお、投影ユニットPUの下方に後述する計測ステージMSTが位置する場合にも、同様に先端レンズ191と計測テーブルとの間に液浸領域14を形成することができる。 The main control device 20 (see FIG. 14) controls the liquid supply device 5 to supply the liquid Lq between the tip lens 191 and the wafer W via the liquid supply pipe 31A and to control the liquid recovery device 6. Then, the liquid Lq is recovered from between the front lens 191 and the wafer W via the liquid recovery tube 31B. At this time, main controller 20 controls liquid supply device 5 and liquid recovery device 6 so that the amount of supplied liquid Lq and the amount of recovered liquid Lq are always equal. Accordingly, a certain amount of liquid Lq (see FIG. 1) is always exchanged and held between the front lens 191 and the wafer W, thereby forming the liquid immersion region 14 (see FIGS. 10, 11, etc.). . In addition, even when a measurement stage MST described later is positioned below the projection unit PU, the liquid immersion region 14 can be similarly formed between the tip lens 191 and the measurement table.
 本実施形態では、上記の液体として、ArFエキシマレーザ光(波長193nmの光)が透過する純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものとする。なお、ArFエキシマレーザ光に対する水の屈折率nは、ほぼ1.44であり、水の中では、照明光ILの波長は、193nm×1/n=約134nmに短波長化される。 In this embodiment, pure water that transmits ArF excimer laser light (light having a wavelength of 193 nm) (hereinafter, simply described as “water” unless otherwise required) is used as the liquid. Note that the refractive index n of water with respect to ArF excimer laser light is approximately 1.44, and the wavelength of the illumination light IL is shortened to 193 nm × 1 / n = about 134 nm in water.
 ステージ装置50は、図1に示されるように、床面上に複数(例えば3つ又は4つ)の防振機構(図示省略)によってほぼ水平に支持されたベース盤12、ベース盤12上に配置されたステージベース13、ステージベース13上に配置されたウエハステージWST及び計測ステージMST、ウエハステージWST及び計測ステージMSTを駆動するステージ駆動系124(図14参照)、及びウエハステージWST及び計測ステージMSTの位置情報を計測するステージ位置計測系200を含む計測システム300(図14参照)等を備えている。ステージ位置計測系200は、図14に示されるように、干渉計システム118、エンコーダシステム150及び面位置計測システム180などを含む。 As shown in FIG. 1, the stage device 50 is mounted on a base board 12 and a base board 12 that are supported substantially horizontally by a plurality of (for example, three or four) vibration isolation mechanisms (not shown) on the floor surface. Placed stage base 13, wafer stage WST and measurement stage MST arranged on stage base 13, stage drive system 124 (see FIG. 14) for driving wafer stage WST and measurement stage MST, and wafer stage WST and measurement stage A measurement system 300 (see FIG. 14) including a stage position measurement system 200 for measuring MST position information is provided. As shown in FIG. 14, the stage position measurement system 200 includes an interferometer system 118, an encoder system 150, a surface position measurement system 180, and the like.
 ベース盤12は平板状部材からなり、上面にはステージベース13をXY平面内で移動可能に支持する支持面が形成されている。 The base board 12 is made of a flat plate member, and a support surface for supporting the stage base 13 movably in the XY plane is formed on the upper surface.
 ステージベース13は、平板状部材から成り、上述のベース盤12上に不図示のエアベアリング(又は転がり軸受)を介して支持されている。ステージベース13は、ウエハステージWST及び計測ステージMSTの駆動の際に、その駆動力の反力を受けて運動量保存則に従って移動し、その反力をキャンセルする反力キャンセル装置の一種であるカウンタマスとして機能する。ステージベース13のXY平面内の位置情報(前述したメインフレームを基準とする位置情報)は、例えばエンコーダあるいは干渉計から構成されるステージベース位置計測系169(図14参照)によって計測される。ステージベース位置計測系169の一例は、例えば米国特許出願第2009/0316133号明細書に開示されている。 The stage base 13 is made of a flat plate member, and is supported on the above-described base board 12 via an air bearing (or rolling bearing) (not shown). When the wafer stage WST and the measurement stage MST are driven, the stage base 13 receives a reaction force of the driving force, moves according to the momentum conservation law, and is a counter mass that is a kind of a reaction force canceling device that cancels the reaction force. Function as. Position information of the stage base 13 in the XY plane (position information with reference to the main frame described above) is measured by a stage base position measurement system 169 (see FIG. 14) constituted by, for example, an encoder or an interferometer. An example of the stage base position measurement system 169 is disclosed in, for example, US Patent Application No. 2009/0316133.
 主制御装置20は、ステージベース13の基準位置からの移動量が所定範囲に収まるように、ステージベース位置計測系169による計測情報に基づいて、ステージベース駆動系160(図14参照)を介してステージベース13を駆動する。すなわち、ステージベース駆動系160は、トリムモータとして使用される。 Based on the measurement information from the stage base position measurement system 169, the main controller 20 passes the stage base drive system 160 (see FIG. 14) so that the amount of movement of the stage base 13 from the reference position is within a predetermined range. The stage base 13 is driven. That is, the stage base drive system 160 is used as a trim motor.
 ステージベース13は、図2(B)及び図2(C)に示されるように、上面側にコイルユニットCUaが埋めこまれた平面視矩形の板状の部材である。コイルユニットCUaは、XY平面内で二次元配列された複数のコイルを含む。ステージベース13の上面には、コイルユニットCUaを覆うように、非磁性体から成る不図示の保護プレートが固定されている。保護プレートは、ウエハステージWST及び計測ステージMSTとコイルユニットCUaとの直接的な接触を防止する。 2B and 2C, the stage base 13 is a plate member having a rectangular shape in plan view in which the coil unit CUa is embedded on the upper surface side. The coil unit CUa includes a plurality of coils that are two-dimensionally arranged in the XY plane. A protection plate (not shown) made of a non-magnetic material is fixed on the upper surface of the stage base 13 so as to cover the coil unit CUa. The protection plate prevents direct contact between wafer stage WST and measurement stage MST and coil unit CUa.
ウエハステージWSTは、図1等に示されるように、ステージ本体81と、ステージ本体81の上に配置されたウエハテーブルWTBとを有している。 Wafer stage WST has stage main body 81 and wafer table WTB arranged on stage main body 81, as shown in FIG.
 図2(A)、図2(B)及び図2(C)には、それぞれ、ウエハステージWSTを上方から見た図(平面図)、ウエハステージWSTを-Y方向から見た図(正面図)、及びウエハステージWSTを+X方向から見た図(側面図)が、示されている。ステージ本体81は、図2(B)及び図2(C)等に示されるように、粗動ステージ82と、該粗動ステージ82上に支持される微動ステージ83とを有する。微動ステージ83上に、ウエハテーブルWTBが搭載されて一体的に固定されている。 2A, 2B, and 2C are views (plan view) of wafer stage WST viewed from above, and views (front view) of wafer stage WST viewed from the −Y direction, respectively. ) And a view (side view) of the wafer stage WST viewed from the + X direction are shown. The stage main body 81 includes a coarse movement stage 82 and a fine movement stage 83 supported on the coarse movement stage 82, as shown in FIGS. Wafer table WTB is mounted on fine movement stage 83 and fixed integrally therewith.
 図3には、ウエハステージWSTの斜視図が、図4には、図3のウエハステージWSTからウエハテーブルWTBを取り去ったステージ本体81の斜視図が、図5には、図4のステージ本体81から微動ステージ83を取り外した粗動ステージ82の斜視図が、それぞれ示されている。また、図6(A)及び図6(B)には、図4及び図5の斜視図に対応する平面図がそれぞれ示されている。図7(A)には、微動ステージの内部構造を示す断面図が示され、図7(B)には、微動ステージを駆動するボイスコイルモータの内部構造を示す平面図が示されている。また、図8には、微動ステージを駆動するEIコアの内部構造を示す平面図が示されている。また、図9には、微動ステージ83及びこの上面に固定されたウエハテーブルWTBを裏面側から見た斜視図が示されている。 3 is a perspective view of wafer stage WST, FIG. 4 is a perspective view of stage main body 81 with wafer table WTB removed from wafer stage WST of FIG. 3, and FIG. 5 is stage main body 81 of FIG. The perspective views of the coarse movement stage 82 from which the fine movement stage 83 is removed are respectively shown. 6A and 6B are plan views corresponding to the perspective views of FIGS. 4 and 5, respectively. FIG. 7A is a cross-sectional view showing the internal structure of the fine movement stage, and FIG. 7B is a plan view showing the internal structure of the voice coil motor that drives the fine movement stage. FIG. 8 is a plan view showing the internal structure of the EI core that drives the fine movement stage. FIG. 9 is a perspective view of fine movement stage 83 and wafer table WTB fixed to the upper surface as viewed from the rear surface side.
 ここで、図1~図9に基づいて、ウエハステージWSTについて説明する。 Here, wafer stage WST will be described with reference to FIGS.
 粗動ステージ82は、図5及び図6(B)などに示されるように、平面視(+Z方向から見て)矩形の板状のスライダ部82aと、スライダ部82a上面にそれぞれ固定され、スライダ部82aの外枠にほぼ沿って配置された二重の八角形状の第1リブ82bと、後述するZ・チルト駆動機構28を構成する3つのアクチュエータ28a~28cのそれぞれの底部近傍を囲む3つの第1部分とそれら3つの第1部分を互いに連結する第2部分とを有する第2リブ82cと、第1リブ82bと第2リブ82cとを4箇所で連結する第3リブ82dと、を有している。粗動ステージ82は、このように軽量で且つ高い剛性を有する構造になっている。 As shown in FIGS. 5 and 6B, etc., coarse movement stage 82 is fixed to each of a rectangular plate-like slider portion 82a in plan view (as viewed from the + Z direction) and the upper surface of slider portion 82a. Three octagonal first ribs 82b disposed substantially along the outer frame of the portion 82a, and three surrounding the vicinity of the bottom of each of the three actuators 28a to 28c constituting the Z / tilt drive mechanism 28 described later. A second rib 82c having a first portion and a second portion for connecting the three first portions to each other; and a third rib 82d for connecting the first rib 82b and the second rib 82c at four locations. is doing. The coarse movement stage 82 is thus lightweight and has a high rigidity.
 スライダ部82aは、図2(B)及び図2(C)に示されるように、XY二次元方向を行方向及び列方向としてマトリックス状に配置された複数の磁石から成る磁石ユニットMUaを有している。磁石ユニットMUaと、ステージベース13内に埋めこまれた前述のコイルユニットCUaとによって、例えば米国特許出願公開第2003/0085676号明細書などに開示される磁気浮上型のローレンツ力(電磁力)駆動方式の平面モータMaが構成されている。コイルユニットCUaを構成する各コイルに供給される電流の大きさ及び方向は、主制御装置20によって制御される(図15参照)。平面モータMaによって、粗動ステージ82(ウエハステージWST)は、ステージベース13に対して6自由度方向(X軸、Y軸、Z軸、θx、θy、及びθzの各方向)に駆動される。この場合、粗動ステージ82(ウエハステージWST)は、X軸方向及びY軸方向に関しては長ストロークで駆動され、残りの方向については、微小駆動される。 As shown in FIGS. 2B and 2C, the slider portion 82a has a magnet unit MUa composed of a plurality of magnets arranged in a matrix with the XY two-dimensional direction as the row direction and the column direction. ing. A magnetic levitation type Lorentz force (electromagnetic force) drive disclosed in, for example, US Patent Application Publication No. 2003/0085676 is performed by the magnet unit MUa and the coil unit CUa embedded in the stage base 13. A planar motor Ma of the type is configured. The magnitude | size and direction of the electric current supplied to each coil which comprises the coil unit CUa are controlled by the main controller 20 (refer FIG. 15). Coarse movement stage 82 (wafer stage WST) is driven in a six-degree-of-freedom direction (X-axis, Y-axis, Z-axis, θx, θy, and θz directions) with respect to stage base 13 by planar motor Ma. . In this case, coarse movement stage 82 (wafer stage WST) is driven with a long stroke in the X-axis direction and Y-axis direction, and is finely driven in the remaining directions.
 スライダ部82a上面のX軸方向の両端部に位置する部分の第1リブ82b上には、図5及び図6(B)に示されるように、一対の支持部87のそれぞれを介して一対の固定子部85aが設けられている。また、スライダ部82aの4つの角部のそれぞれに対応する部分の第1リブ82b上には、支持部84をそれぞれ介して4つの電磁石TUcが設けられている。4つの電磁石TUcのそれぞれは、ハウジングに収容されている。 As shown in FIGS. 5 and 6B, a pair of first ribs 82b located at both ends in the X-axis direction on the upper surface of the slider portion 82a are provided via a pair of support portions 87, respectively. A stator portion 85a is provided. Further, four electromagnets TUc are provided on the first ribs 82b corresponding to the four corners of the slider portion 82a via the support portions 84, respectively. Each of the four electromagnets TUc is accommodated in a housing.
 各固定子部85aは、図5に示されるように、XY平面に平行な板状部材から成り、その内部に、図7(A)及び図7(B)に示されるように、コイルユニットCUbが収容されている。 As shown in FIG. 5, each stator portion 85a is composed of a plate-like member parallel to the XY plane, and inside thereof, as shown in FIGS. 7 (A) and 7 (B), a coil unit CUb. Is housed.
 微動ステージ83は、図4及び図6(A)などに示されるように、平面視で八角形の板状部材から成る本体部83aと、本体部83aのX軸方向の一側と他側の端部それぞれに固定された一対の可動子部83bと、本体部83aの八角形の斜辺部(X軸及びY軸にほぼ直交する4つの辺以外の4つの辺)のそれぞれに各1つ固定された合計4つの磁性体部材MUcと、を有する。 As shown in FIGS. 4 and 6A, the fine movement stage 83 includes a main body portion 83a made of an octagonal plate-like member in plan view, and one side and the other side of the main body portion 83a in the X-axis direction. A pair of mover portions 83b fixed to the respective end portions, and one each fixed to each of the octagonal oblique side portions (four sides other than the four sides substantially orthogonal to the X and Y axes) of the main body portion 83a. A total of four magnetic members MUc.
 可動子部83bは、図7(A)に示されるように、XZ断面がU字状の部材から成り、その上下の対向部(上下に位置する一対の板状部分)のそれぞれに、後述する磁石ユニットMUbが収容されている。微動ステージ83が粗動ステージ82に組み込まれた図4の状態では、可動子部83bの上下の対向部間に、前述の固定子部85aが非接触で挿入されている。 As shown in FIG. 7A, the mover portion 83b is made of a member having a U-shaped XZ cross section, and will be described later on each of the upper and lower opposing portions (a pair of plate-like portions positioned above and below). A magnet unit MUb is accommodated. In the state of FIG. 4 in which the fine movement stage 83 is incorporated in the coarse movement stage 82, the above-described stator portion 85a is inserted in a non-contact manner between the upper and lower opposed portions of the mover portion 83b.
 磁性体部材MUcとしては、後述する電磁石TUcのコイルによって生成される力場に応答可能な磁気的に透過性のある物質であれば、種々の素材を用いることができる。 As the magnetic member MUc, various materials can be used as long as they are magnetically permeable substances that can respond to a force field generated by a coil of an electromagnet TUc described later.
 本実施形態では、前述の一対の固定子部85aのそれぞれに収容されたコイルユニットCUbと、これに対応して可動子部83bに収容された各一対の磁石ユニットMUbとによって、一対のボイスコイルモータMbが構成されている(図7(A)参照)。以下、ボイスコイルモータMbについて説明する。 In this embodiment, the coil unit CUb accommodated in each of the pair of stator portions 85a and the pair of magnet units MUb accommodated in the mover portion 83b corresponding to the coil units CUb correspond to the pair of voice coils. A motor Mb is configured (see FIG. 7A). Hereinafter, the voice coil motor Mb will be described.
 本体部83aの+X側と-X側のボイスコイルモータMbは、同じ構成を有しているので、以下では、+X側のボイスコイルモータMbについて説明する。 Since the + X side and −X side voice coil motors Mb of the main body 83a have the same configuration, the + X side voice coil motor Mb will be described below.
 コイルユニットCUbは、図7(B)に示されるように、固定子部85a(の筐体)の内部における中央部に配置されたY軸方向を長手方向とする平面視矩形状の1つのXコイル(以下、適宜「コイル」と呼ぶ)56aと、コイル56aのY軸方向の一側と他側にそれぞれ配置されたX軸方向を長手方向とする平面視矩形状の2つのYコイル(以下、適宜「コイル」と呼ぶ)55a,57aとを含む。 As shown in FIG. 7B, the coil unit CUb is one X in a rectangular shape in plan view with the Y-axis direction as the longitudinal direction arranged at the center inside the stator portion 85a (the casing). A coil (hereinafter referred to as “coil” as appropriate) 56a, and two Y coils (hereinafter referred to as rectangular) in plan view having the X-axis direction as a longitudinal direction and disposed on one side and the other side of the coil 56a in the Y-axis direction, respectively. (Referred to as “coils” where appropriate) 55a, 57a.
 磁石ユニットMUbは、図7(B)に示されるように、可動子部83bの上下対向部のそれぞれの内部における中央部にX軸方向に並べて配置されたY軸方向を長手方向とする平面視長方形の一対の永久磁石56bと、これらの永久磁石56bのY軸方向の一側と他側にそれぞれY軸方向に並べて配置された各一対のX軸方向を長手方向とする平面視長方形の永久磁石55b,57bとを含む。図7(B)に示されるように、各一対の永久磁石55b,57bが、それぞれコイル55a、57aと対向し、一対の永久磁石56bがコイル56aと対向し得るように、各コイルと各永久磁石との位置関係が定められている。 As shown in FIG. 7B, the magnet unit MUb is a plan view in which the Y-axis direction arranged in the X-axis direction at the center of each of the upper and lower facing parts of the mover 83b is the longitudinal direction. A pair of rectangular permanent magnets 56b, and permanent magnets having a rectangular shape in a plan view with each pair of X-axis directions arranged side by side in the Y-axis direction on one side and the other side of the permanent magnets 56b as the longitudinal direction. Magnets 55b and 57b. As shown in FIG. 7B, each pair of permanent magnets 55b and 57b faces the coils 55a and 57a, and each pair of permanent magnets 56b and 57b faces the coil 56a. The positional relationship with the magnet is determined.
 なお、図7(B)には、可動子部83bの上下の対向部のうち、上側の対向部に収容された磁石ユニットMUbのみが示されているが、下側の対向部に収容された磁石ユニットMUbも同様に構成されている。各一対の永久磁石55b,56b,57bは、それぞれ一方と他方との磁極の向きが互いに逆になるように配列されている。そして、各一対の永久磁石55b,57b,56bのそれぞれは、コイルユニットCUbを構成するコイル55a,57a,56aの+Z側又は-Z側の面に対向している。すなわち、可動子部83bの上下対向部内の一対の磁石ユニットMUbに含まれる、各一対の永久磁石55b,56b,57bにより、固定子部85a内のコイルユニットCUbに含まれるコイル55a,56a,57aがZ軸方向にそれぞれ挟まれている。 FIG. 7B shows only the magnet unit MUb accommodated in the upper facing portion of the upper and lower facing portions of the mover portion 83b, but is housed in the lower facing portion. The magnet unit MUb is similarly configured. Each pair of permanent magnets 55b, 56b, and 57b is arranged so that the directions of the magnetic poles of one and the other are opposite to each other. Each of the pair of permanent magnets 55b, 57b, and 56b is opposed to the surface on the + Z side or −Z side of the coils 55a, 57a, and 56a constituting the coil unit CUb. That is, the coils 55a, 56a, and 57a included in the coil unit CUb in the stator 85a are provided by the pair of permanent magnets 55b, 56b, and 57b included in the pair of magnet units MUb in the vertically opposed portion of the mover 83b. Are sandwiched in the Z-axis direction.
 上述の構成の固定子部85aと可動子部83bとにより、+X側のボイスコイルモータMbが構成される。この場合、厳密に言うと、上下一対の永久磁石55b,56b,57bのそれぞれと、コイル55a,56a,57aのそれぞれとによって、3つのボイスコイルモータが構成されるが、説明の便宜上、その3つのボイスコイルモータの全体を1つのボイスコイルモータMbとみなしている。 The + X side voice coil motor Mb is configured by the stator portion 85a and the movable portion 83b having the above-described configuration. In this case, strictly speaking, each of the pair of upper and lower permanent magnets 55b, 56b, and 57b and each of the coils 55a, 56a, and 57a constitutes three voice coil motors. The whole of one voice coil motor is regarded as one voice coil motor Mb.
 上述のようにして本体部83aの+X側及び-X側のボイスコイルモータMbが構成されている。各ボイスコイルモータMbは、Yコイル55a,57aに電流が流されることにより、粗動ステージ82に対して微動ステージ83をY軸方向に微小駆動し、Xコイル56aに電流が流されることにより、粗動ステージ82に対して微動ステージ83をX軸方向に微小駆動する。 As described above, the voice coil motor Mb on the + X side and the −X side of the main body 83a is configured. Each of the voice coil motors Mb drives the fine movement stage 83 minutely in the Y-axis direction relative to the coarse movement stage 82 when a current flows through the Y coils 55a and 57a, and a current flows through the X coil 56a. The fine movement stage 83 is finely driven in the X-axis direction with respect to the coarse movement stage 82.
 一対のボイスコイルモータMb、すなわち本体部83aの+X側のボイスコイルモータMb及び本体部83aの-X側のボイスコイルモータMbのそれぞれで互いに異なる強さのY軸方向の駆動力を発生することにより、粗動ステージ82に対して微動ステージ83をθz方向に駆動(回転)することができる。 A pair of voice coil motors Mb, that is, the + X side voice coil motor Mb of the main body 83a and the −X side voice coil motor Mb of the main body 83a generate different driving forces in the Y-axis direction. Thus, the fine movement stage 83 can be driven (rotated) in the θz direction with respect to the coarse movement stage 82.
 一対のボイスコイルモータMbは、主制御装置20によって、それぞれのコイルユニットCUbを構成する各コイルに供給される電流の大きさ及び方向が制御されることによりそれぞれで発生するX軸方向及びY軸方向の駆動力が制御される(図15参照)。なお、各ボイスコイルモータMbに代えて、例えば米国特許出願公開第2010/0073653号明細書に開示される微動ステージ駆動系と同様の2段(あるいは多段)構成のボイスコイルモータ(又はリニアモータ)を採用することも可能である。 The pair of voice coil motors Mb are respectively generated in the X-axis direction and the Y-axis by the main controller 20 controlling the magnitude and direction of the current supplied to each coil constituting each coil unit CUb. The driving force in the direction is controlled (see FIG. 15). Instead of each voice coil motor Mb, for example, a voice coil motor (or linear motor) having a two-stage (or multi-stage) configuration similar to the fine movement stage drive system disclosed in US Patent Application Publication No. 2010/0073653. It is also possible to adopt.
 本実施形態では、図6(A)に示されるように、スライダ部82aの4つの角部のそれぞれに設けられた4つの電磁石TUcと、各電磁石TUcに対向して本体部83aの八角形の4つの斜辺部のそれぞれに固定された4つの磁性体部材MUcとによって、4つのEIコア・アクチュエータMc,Mc、Mc、Mcが、構成されている。以下、EIコア・アクチュエータ(以下、EIコアと略記する)について説明する。 In this embodiment, as shown in FIG. 6A, four electromagnets TUc provided at each of the four corners of the slider portion 82a, and the octagonal shape of the main body portion 83a facing each electromagnet TUc. Four EI core actuators Mc 1 , Mc 2 , Mc 3 , and Mc 4 are configured by the four magnetic members MUc fixed to the four oblique sides. Hereinafter, the EI core actuator (hereinafter abbreviated as EI core) will be described.
 4つのEIコアMc,Mc、Mc、Mcのそれぞれは、同様に構成されているので、ここでは、そのうちの1つを取り上げて説明する。図8には、図6(A)中の破線の四角Sqで囲まれた1つのEIコアMc、すなわちステージ本体81の+X側かつ-Y側端部の角部に位置するEIコアMcが、拡大して示されている。 Since each of the four EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 is configured in the same manner, only one of them will be described here. FIG. 8 shows one EI core Mc 1 surrounded by a broken-line square Sq in FIG. 6A, that is, the EI core Mc 1 positioned at the corner of the + X side and −Y side end of the stage main body 81. Is shown enlarged.
 図8に示されるように、電磁石TUcは、Eコア(又はEエレメント)と呼ばれるE字状のコアTUcと、コアTUcの3つの凸部にそれぞれ巻回されたコイルTUcと、を含む。EコアTUcは、3つの凸部がXY平面内でX軸及びY軸のそれぞれに交差する軸LC1に平行に、かつその3つの凸部の先端面が軸LC1に直交する平面に平行になるように、配置されている。本実施形態では、軸LC1は、例えばX軸及びY軸に対して、45度以外の角度で交差している。例えば、軸LC1は、X軸に対して約40度の角度を成している。コアTUcは、磁気的に透過性のある部材であれば、鉄その他の素材を用いることができる。また、コアTUcとしては、Eコアに限らず、C状のコア又は複数叉コアでも良い。電磁石TUcとして、コアTUcの3つの凸部のうちの中央の凸部のみにコイルTUcが巻回されたものを用いることもできる。 As shown in FIG. 8, the electromagnet TUc includes an E-shaped core TUc 0 called an E core (or E element), and a coil TUc 1 wound around three convex portions of the core TUc 0. Including. In the E core TUc 0 , the three convex portions are parallel to the axis L C1 intersecting each of the X axis and the Y axis in the XY plane, and the tip surfaces of the three convex portions are planes orthogonal to the axis L C1. They are arranged in parallel. In the present embodiment, the axis L C1 intersects the X axis and the Y axis at an angle other than 45 degrees, for example. For example, the axis L C1 forms an angle of about 40 degrees with respect to the X axis. As long as the core TUc 0 is a magnetically permeable member, iron or other materials can be used. Further, the core TUc 0 is not limited to the E core, and may be a C-shaped core or a multi-fork core. As the electromagnet TUc, one in which the coil TUc 1 is wound around only the central convex portion of the three convex portions of the core TUc 0 can be used.
 磁性体部材MUcは、微動ステージ83の本体部83aの斜辺部に固定され、ギャップGを挟んで電磁石TUcのコアTUc(3つの凸部)の先端面に対向して配置されている。電磁石TUcの先端面と対向する磁性体部材MUcの対向面は、軸LC1に直交している。 Magnetic member MUc is fixed to the inclined portion of the main body portion 83a of the fine movement stage 83 is arranged to face the distal end surface of the core of the electromagnet TUc TUc 0 (3 single convex portion) across the gap G. Facing surface of the magnetic member MUc facing the front end face of the electromagnet TUc is orthogonal to the axis L C1.
その他のEIコアも上記EIコアMcと同様に構成されている。すなわち、図6(A)に示されるように、微動ステージ83の本体部83aの中心に関して上記EIコアMcと対称な配置で、別のEIコアMcが設けられている。すなわち、本体部83aを挟んでEIコアMcと軸Lcと平行な方向の反対側(ステージ本体81の-X側かつ+Y側の角部側)には、EIコアMcを構成する電磁石TUcと磁性体部材MUcとが上記と同様にして設けられている。 Other EI core is also configured similarly to the EI core Mc 1. That is, as shown in FIG. 6 (A), in the EI core Mc 1 and symmetrical arrangement with respect to the center of the main body portion 83a of the fine movement stage 83, another EI core Mc 3 is provided. That is, the EI core Mc 1 and axis Lc 1 and parallel to the direction of the opposite side of the main body portion 83a (corner side of the -X side and + Y side of the stage main body 81), an electromagnet constituting the EI core Mc 3 TUc and magnetic member MUc are provided in the same manner as described above.
 上述した2つ(一対)のEIコアMc、Mcのそれぞれは、電磁石TUcのコイルTUcに電流が流されることにより、磁性体部材MUcとコアTUcとの間に軸Lcに平行な方向の吸引力(駆動力)を発生する。例えば、前述のEIコアMcは、図8中に黒塗り矢印で示される方向の吸引力を発生する。EIコアMcは、これと逆向きの吸引力を発生する。2つ(一対)のEIコアMc、Mcは、上記吸引力を駆動力として、微動ステージ83を、粗動ステージ82に対して軸Lcに平行な方向に微小駆動する。 Each of the above-described two (a pair) EI cores Mc 1 and Mc 3 is parallel to the axis Lc 1 between the magnetic member MUc and the core TUc 0 when a current is passed through the coil TUc 1 of the electromagnet TUc. Generate suction force (driving force) in various directions. For example, the EI core Mc 1 described above generates a suction force in the direction indicated by the black arrow in FIG. EI core Mc 3 generates a suction force which the opposite direction. The two (a pair of) EI cores Mc 1 and Mc 3 finely drive the fine movement stage 83 in the direction parallel to the axis Lc 1 with respect to the coarse movement stage 82 using the suction force as a driving force.
 残りの一対のEIコアMc、Mcは、上述の一対のEIコアMc、Mcと同様に、ただし、図6(A)に示されるように、微動ステージ83の本体部83aの中心を通るY軸に関して、一対のEIコアMc、Mcと対称な配置で構成されている。一対のEIコアMc、Mcのそれぞれは、電磁石TUcのコイルTUcに電流が流されることにより、磁性体部材MUcをコアTUc側に引きつける、Y軸に関して軸Lcと対称な軸Lcに平行な方向の吸引力(駆動力)を発生する。一対のEIコアMc、Mcは、微動ステージ83を、粗動ステージ82に対して軸Lcに平行な方向に微小駆動する。 The remaining pair of EI cores Mc 2 and Mc 4 are the same as the pair of EI cores Mc 1 and Mc 3 described above, except that the center of the main body 83a of the fine movement stage 83 is shown in FIG. 6A. With respect to the Y-axis that passes through, a pair of EI cores Mc 1 and Mc 3 are arranged symmetrically. Each of the pair of EI cores Mc 2 and Mc 4 has an axis Lc that is symmetrical with respect to the axis Lc 1 with respect to the Y axis, which attracts the magnetic member MUc toward the core TUc 0 when a current flows through the coil TUc 1 of the electromagnet TUc. 2 generates a suction force (driving force) in a direction parallel to 2 . The pair of EI cores Mc 2 and Mc 4 finely drives the fine movement stage 83 in a direction parallel to the axis Lc 2 with respect to the coarse movement stage 82.
 前述の説明から明らかなように、軸Lc、LcはX軸に対して、それぞれ、約40度及び-40度の角度を成すように定められている。これらの方向は、後述するステップ・アンド・スキャン方式の露光動作におけるウエハ(ウエハステージWST)のショット間ステッピング動作時において、ウエハステージWSTに作用する最大加速度の方向に対応している。すなわち、この最大加速度の方向を考慮して、4つのEIコアMc,Mc、Mc、Mcのそれぞれによる吸引力の方向(すなわち、それぞれのEIコアの取り付け方向)が設定されている。 As is apparent from the above description, the axes Lc 1 and Lc 2 are determined so as to form angles of about 40 degrees and −40 degrees with respect to the X axis, respectively. These directions correspond to the direction of the maximum acceleration acting on the wafer stage WST during the shot-to-shot stepping operation of the wafer (wafer stage WST) in the later-described step-and-scan exposure operation. That is, in consideration of the direction of the maximum acceleration, the direction of the suction force by each of the four EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 (that is, the direction in which each EI core is attached) is set. .
 また、軸Lc、Lcの方向は、露光動作中におけるウエハステージWSTの移動範囲(移動経路)に応じて決定してもかまわない。すなわち、走査方向であるY軸方向の移動範囲がX軸方向の移動範囲よりも広い場合、本実施形態のように軸Lc、LcをX軸に対して45度よりも小さい角度とすることで、ウエハステージWSTのY軸方向の大きさを縮小することができる。これにより、ウエハステージWSTの移動範囲を変更せずに露光装置による占有面積の増加を抑えることが可能になる。なお、ウエハステージWSTの移動範囲(移動経路)に応じ、軸Lc、LcをX軸に対して45度よりも大きな角度としても良い。 The directions of the axes Lc 1 and Lc 2 may be determined according to the moving range (moving path) of wafer stage WST during the exposure operation. That is, when the movement range in the Y-axis direction that is the scanning direction is wider than the movement range in the X-axis direction, the axes Lc 1 and Lc 2 are set to an angle smaller than 45 degrees with respect to the X-axis as in this embodiment. As a result, the size of wafer stage WST in the Y-axis direction can be reduced. Thereby, it is possible to suppress an increase in the occupied area by the exposure apparatus without changing the moving range of wafer stage WST. Depending on the movement range (movement path) of wafer stage WST, axes Lc 1 and Lc 2 may be set to an angle larger than 45 degrees with respect to the X axis.
 4つのEIコアMc,Mc、Mc、Mcのそれぞれは、主制御装置20によって制御される(図15参照)。主制御装置20は、4つのEIコアMc,Mc、Mc、Mcのそれぞれが有する電磁石TUcを構成するコイルTUcに供給される電流の大きさを制御することで、EIコアMc,Mcのそれぞれの吸引力(駆動力)の発生及び停止、並びに駆動力の大きさを制御する。なお、上記EIコアMc,Mc、Mc、Mcの少なくとも1つに代えて、上記と反対に、スライダ部82a側(支持部84側)に磁性体部材MUcが設けられ、本体部83a側に電磁石TUcが配置されるタイプのアクチュエータを用いることも可能である。 Each of the four EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 is controlled by the main controller 20 (see FIG. 15). The main controller 20 controls the magnitude of the current supplied to the coil TUc 1 constituting the electromagnet TUc included in each of the four EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 , thereby allowing the EI core Mc 1 and Mc 2 to generate and stop the suction force (drive force) and to control the magnitude of the drive force. In place of at least one of the EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 , a magnetic member MUc is provided on the slider portion 82 a side (support portion 84 side) opposite to the above, and the main body portion It is also possible to use an actuator of a type in which an electromagnet TUc is arranged on the 83a side.
 微動ステージ83は、図5及び図6(B)に示されるZ・チルト駆動機構28と、自重キャンセラ29とによって粗動ステージ82に対して非接触で支持されている(図7(A)参照)。自重キャンセラ29は、粗動ステージ82のスライダ部82a上面の中心に配置されている。Z・チルト駆動機構28は、スライダ部82a上面の中心にその重心が一致する正三角形の各頂点の位置に配置され、微動ステージ83(本体部83a)をそれぞれ支持するとともに、その支持点で独立してZ軸方向に駆動する3つのアクチュエータ28a、28b、及び28c(例えばボイスコイルモータ)を含む。アクチュエータ28a~28cの固定子は、粗動ステージ82に固定され、可動子は、微動ステージ83に固定されている。Z・チルト駆動機構28(3つのアクチュエータ28a~28c)により、微動ステージ83は、粗動ステージ82に対してZ軸方向、θx方向、及びθy方向の3自由度方向に微小駆動される。 Fine movement stage 83 is supported in a non-contact manner relative to coarse movement stage 82 by Z / tilt driving mechanism 28 shown in FIGS. 5 and 6B and self-weight canceller 29 (see FIG. 7A). ). The self-weight canceller 29 is disposed at the center of the upper surface of the slider portion 82 a of the coarse movement stage 82. The Z / tilt driving mechanism 28 is disposed at each vertex of an equilateral triangle whose center of gravity coincides with the center of the upper surface of the slider portion 82a, and supports the fine movement stage 83 (main body portion 83a) and is independent at the support point. And three actuators 28a, 28b, and 28c (for example, voice coil motors) that are driven in the Z-axis direction. The stators of the actuators 28 a to 28 c are fixed to the coarse movement stage 82, and the mover is fixed to the fine movement stage 83. By the Z / tilt drive mechanism 28 (three actuators 28a to 28c), the fine movement stage 83 is finely driven with respect to the coarse movement stage 82 in the three degrees of freedom in the Z-axis direction, the θx direction, and the θy direction.
 自重キャンセラ29は、一例としてパッド部材29a、ピストン部材29b及びシリンダ部材29cを含む(図7(A)参照)。パッド部材29aは、微動ステージ83の下面に近接した状態とされ、その上面が平面で、その下面が曲面(球面)とされた略半球状の形状を有している。このパッド部材29a上面の中央部からはZ軸方向に貫通する貫通孔(不図示)が形成されている。ピストン部材29bは、XY断面円形で、かつ所定深さの凹部を有する部材から成り、前記パッド部材29aの下側(-Z側)に設けられている。このピストン部材29bの上面は、パッド部材29aの下面に対応して曲面加工(球面加工)されており、その中央部からは、Z軸方向に貫通する貫通孔(不図示)が形成されている。シリンダ部材29cは、スライダ部82aの上面に固定されている。シリンダ部材29cは、略円筒状の部材から成り、その周壁は、断面逆U字状で内側の足部分が外側の足部分よりも短く設定された形状を有している。シリンダ部材29cの内部空間に挿入されたピストン部材29bは、Z軸方向に摺動自在とされている。 The self-weight canceller 29 includes, as an example, a pad member 29a, a piston member 29b, and a cylinder member 29c (see FIG. 7A). The pad member 29a is in a state of being close to the lower surface of the fine movement stage 83, and has a substantially hemispherical shape in which the upper surface is a flat surface and the lower surface is a curved surface (spherical surface). A through hole (not shown) penetrating in the Z-axis direction is formed from the center of the upper surface of the pad member 29a. The piston member 29b is formed of a member having a circular shape in the XY section and having a concave portion with a predetermined depth, and is provided on the lower side (−Z side) of the pad member 29a. The upper surface of the piston member 29b is curved (spherical) corresponding to the lower surface of the pad member 29a, and a through-hole (not shown) penetrating in the Z-axis direction is formed from the center. . The cylinder member 29c is fixed to the upper surface of the slider portion 82a. The cylinder member 29c is formed of a substantially cylindrical member, and its peripheral wall has an inverted U-shaped cross section and a shape in which an inner foot portion is set shorter than an outer foot portion. The piston member 29b inserted into the internal space of the cylinder member 29c is slidable in the Z-axis direction.
 スライダ部82aと、シリンダ部材29cと、ピストン部材29bとによって、囲まれた空間がほぼ密閉された空間(空気室)とされている。従って、この空気室内に、気体供給装置(不図示)から気体が供給されることにより、空気室内がその外部より高圧に設定される。 The space surrounded by the slider portion 82a, the cylinder member 29c, and the piston member 29b is a substantially sealed space (air chamber). Therefore, by supplying gas from the gas supply device (not shown) into the air chamber, the air chamber is set to a higher pressure than the outside.
 ここで、空気室内の気体は、ピストン部材29bの貫通孔を通ってピストン部材29bの上面とパッド部材29aの下面との間に供給される。このため、ピストン部材29bの上面とパッド部材29aの下面との間に入り込んだ気体の静圧によりピストン部材29bとパッド部材29aとの間に微小な隙間が形成されるようになっている。さらに、ピストン部材29bの貫通孔を通った気体の一部は、パッド部材29aに形成された貫通孔を通って、パッド部材29aの上面と微動ステージ83の下面との間に供給される。これにより、パッド部材29aの上面と微動ステージ83の下面との間に入り込んだ気体の静圧により、パッド部材29aと微動ステージ83との間に微小な隙間が形成されるようになっている。 Here, the gas in the air chamber passes through the through hole of the piston member 29b and is supplied between the upper surface of the piston member 29b and the lower surface of the pad member 29a. For this reason, a minute gap is formed between the piston member 29b and the pad member 29a by the static pressure of the gas that has entered between the upper surface of the piston member 29b and the lower surface of the pad member 29a. Further, part of the gas that has passed through the through hole of the piston member 29 b is supplied between the upper surface of the pad member 29 a and the lower surface of the fine movement stage 83 through the through hole formed in the pad member 29 a. Thus, a minute gap is formed between the pad member 29 a and the fine movement stage 83 by the static pressure of the gas that has entered between the upper surface of the pad member 29 a and the lower surface of the fine movement stage 83.
 自重キャンセラ29によると、空気室内の気体により微動ステージ83の自重が支持される。また、Z・チルト駆動機構28の3つのアクチュエータ28a~28cが発生する駆動力を同一にすることで、微動ステージ83を粗動ステージ82に対してZ軸方向に駆動することが可能であるとともに、3つのアクチュエータ28a~28cのそれぞれで発生する駆動力を異ならせることにより、微動ステージ83をX軸回りの回転方向(θx)及びY軸回りの回転方向(θy)に駆動することが可能となっている。 According to the self-weight canceller 29, the self-weight of the fine movement stage 83 is supported by the gas in the air chamber. Further, by making the driving force generated by the three actuators 28a to 28c of the Z / tilt driving mechanism 28 the same, the fine movement stage 83 can be driven in the Z-axis direction with respect to the coarse movement stage 82. By varying the driving force generated by each of the three actuators 28a to 28c, the fine movement stage 83 can be driven in the rotation direction (θx) around the X axis and the rotation direction (θy) around the Y axis. It has become.
 また、空気室内の気圧により、パッド部材29aの上面と微動ステージ83の下面、パッド部材29aの下面とピストン部材29bの上面とが非接触に維持されているので、微動ステージ83のXY平面内の微小移動及びXY平面に対する傾斜方向への傾きを許容した状態でその自重を支持することが可能である。 Further, since the upper surface of the pad member 29a and the lower surface of the fine movement stage 83 and the lower surface of the pad member 29a and the upper surface of the piston member 29b are maintained in non-contact by the air pressure in the air chamber, the fine movement stage 83 in the XY plane is maintained. It is possible to support its own weight in a state in which minute movement and inclination in the inclination direction with respect to the XY plane are allowed.
 なお、上記の自重キャンセラの構成は一例に過ぎず、例えば上述のシリンダ部材29c及びピストン部材29bに代えて、ベローズを用いても良い。また、自重キャンセラにより、コロなどを介して微動ステージ83を支持しても良い。 Note that the configuration of the self-weight canceller is merely an example, and for example, a bellows may be used in place of the cylinder member 29c and the piston member 29b. Further, fine movement stage 83 may be supported by a self-weight canceller via a roller or the like.
 なお、各ボイスコイルモータMbに代えて、前述の米国特許出願公開第2010/0073653号明細書に開示される微動ステージ駆動系と同様の2段(あるいは多段)構成のボイスコイルモータ(又はリニアモータ)を採用する場合には、Z・チルト駆動機構28を設けること無く、そのボイスコイルモータにより、微動ステージ83を粗動ステージ82に対して6自由度方向に微小駆動することができる。 Instead of each voice coil motor Mb, a voice coil motor (or linear motor) having a two-stage (or multi-stage) configuration similar to the fine movement stage drive system disclosed in the aforementioned US Patent Application Publication No. 2010/0073653. ), The fine movement stage 83 can be finely driven in the direction of 6 degrees of freedom with respect to the coarse movement stage 82 by the voice coil motor without providing the Z / tilt drive mechanism 28.
 これまでに説明した一対のボイスコイルモータMb、4つのEIコアMc~Mc、及びZ・チルト駆動機構28を含んで、微動ステージ駆動系34が構成されている(図15参照)。また、平面モータMaによって、粗動ステージ駆動系が構成されている。そして、微動ステージ駆動系34と粗動ステージ駆動系(平面モータMa)とによって、微動ステージ83及びこれに搭載されているウエハテーブルWTB(ウエハW)を、ステージベース13に対して6自由度方向へ駆動するウエハステージ駆動系36が構成されている(図15参照)。 The fine movement stage drive system 34 includes the pair of voice coil motors Mb, the four EI cores Mc 1 to Mc 4 , and the Z / tilt drive mechanism 28 described so far (see FIG. 15). Further, the coarse motor stage drive system is configured by the planar motor Ma. Then, the fine movement stage drive system 34 and the coarse movement stage drive system (planar motor Ma) are used to move the fine movement stage 83 and the wafer table WTB (wafer W) mounted on the fine movement stage 83 to the stage base 13 in the direction of 6 degrees of freedom. A wafer stage drive system 36 is configured to drive (see FIG. 15).
 なお、平面モータMaとボイスコイルモータMbとしてムービングマグネット式のモータを採用したが、ムービングコイル式のモータを採用することもできる。また、Z・チルト駆動機構28が3つのアクチュエータを含む構成を例として説明したが、4つ以上のアクチュエータを含む構成とすることもできる。この場合、自由度に対して冗長なアクチュエータを有することになるので、微動ステージ83をより高度に制御することが可能となる。 In addition, although the moving magnet type motor is adopted as the planar motor Ma and the voice coil motor Mb, a moving coil type motor can also be adopted. Further, the configuration in which the Z / tilt drive mechanism 28 includes three actuators has been described as an example, but a configuration including four or more actuators may be employed. In this case, since the actuator is redundant with respect to the degree of freedom, the fine movement stage 83 can be controlled to a higher degree.
 ステージ本体81の中央には、図5及び図6(B)に示されるように、自重キャンセラ29を取り囲む矩形枠状部と、該矩形枠状部の+Y辺の中央と-Y辺の両端のそれぞれから外側に延びる3本の直線部とを有する支持部材88が設けられている。この支持部材88の3本の直線部のそれぞれの先端には、+Z方向に伸びるピン88aが固定されている。支持部材88及び3本のピン88aは、駆動装置89(図14参照)によってZ軸方向に駆動される。ウエハ交換時などに、駆動装置89により支持部材88をZ軸方向に駆動して、3本のピン88aを微動ステージ83(本体部83a)の3つの開口(図6(A)参照)及びウエハホルダWH(図6(A)では不図示、図3参照)の開口を介して上下動することにより、3本のピン88aによってウエハWを支持したり、あるいはそのウエハWを上下動させたりする。 At the center of the stage body 81, as shown in FIGS. 5 and 6B, a rectangular frame-shaped portion surrounding the self-weight canceller 29, the center of the + Y side of the rectangular frame-shaped portion, and both ends of the −Y side A support member 88 having three straight portions extending outward from each is provided. A pin 88a extending in the + Z direction is fixed to the tip of each of the three straight portions of the support member 88. The support member 88 and the three pins 88a are driven in the Z-axis direction by a drive device 89 (see FIG. 14). At the time of wafer exchange or the like, the support member 88 is driven in the Z-axis direction by the driving device 89, and the three pins 88a are moved to the three openings (see FIG. 6A) of the fine movement stage 83 (main body 83a) and the wafer holder. By moving up and down through the opening of WH (not shown in FIG. 6A, see FIG. 3), the wafer W is supported by the three pins 88a, or the wafer W is moved up and down.
 ウエハステージWST(粗動ステージ82)には、例えば図6(A)及び図6(B)等に示されるように、+Y端側の端面に板状部材Tbが固定され、該板状部材Tbに2つのチューブTbのそれぞれの一端が、2つの固定部材Tbによって固定されている。2つのチューブTbを介して、ウエハステージWSTの外部から、ウエハステージWST上の各種センサ類、モータなどの電源電力(電流)、モータを冷却するための冷却媒体、エアベアリング用の加圧気体等が、ウエハステージWSTに供給される。また、各種センサ類からの出力信号及びモータ等への制御信号を転送するための配線も、チューブTbに含まれる。 For example, as shown in FIGS. 6A and 6B, a plate member Tb 0 is fixed to the end surface on the + Y end side of wafer stage WST (coarse movement stage 82). One end of each of the two tubes Tb is fixed to Tb 0 by two fixing members Tb 1 . Various sensors on wafer stage WST, power source power (current) of motor, etc., cooling medium for cooling motor, pressurized gas for air bearing, etc. from outside wafer stage WST via two tubes Tb Is supplied to wafer stage WST. The tube Tb also includes wiring for transferring output signals from various sensors and control signals to the motor and the like.
 2つのチューブTbそれぞれの他端は、計測ステージMSTに固定部材Tbを介して固定され(図1参照)、計測ステージMSTを介してステージ装置50外部に配置され、計測ステージMSTとともにY軸方向に移動するチューブキャリア(不図示)に接続されている。本実施形態では、計測ステージMSTは、ウエハ交換、アライメント、露光の一連の動作中、ウエハステージWSTから一定範囲内の距離を保って移動する。このため、計測ステージMSTは、ウエハステージWSTに対するチューブキャリアとしても機能する。 The other end of each of the two tubes Tb is fixed to the measurement stage MST via the fixing member Tb 2 (see FIG. 1), and is arranged outside the stage apparatus 50 via the measurement stage MST. Is connected to a tube carrier (not shown). In the present embodiment, measurement stage MST moves while maintaining a distance within a certain range from wafer stage WST during a series of operations of wafer exchange, alignment, and exposure. Therefore, measurement stage MST also functions as a tube carrier for wafer stage WST.
 ウエハテーブルWTBの上面の中央には、ウエハWを真空吸着等によって保持するウエハホルダWH(図6では不図示、図3参照)が設けられている。ウエハホルダ(ウエハの載置領域)の外側には、図2(A)に示されるように、ウエハホルダよりも一回り大きな円形の開口が中央に形成され、かつ矩形状の外形(輪郭)を有するプレート(撥液板)27が設けられている。このプレート27の表面は、液体Lqに対して撥液化処理されている。なお、プレート27は、その表面の全部(あるいは一部)がウエハWの表面と略同一面となるように設置されている。 At the center of the upper surface of wafer table WTB, a wafer holder WH (not shown in FIG. 6, refer to FIG. 3) for holding wafer W by vacuum suction or the like is provided. As shown in FIG. 2 (A), a circular opening that is slightly larger than the wafer holder is formed in the center outside the wafer holder (wafer mounting area), and has a rectangular outer shape (contour). A (liquid repellent plate) 27 is provided. The surface of the plate 27 is subjected to a liquid repellency treatment with respect to the liquid Lq. The plate 27 is installed such that the entire surface (or part) of the plate 27 is substantially flush with the surface of the wafer W.
 プレート27は、ウエハテーブルWTBのX軸方向の中央に位置し、中央に上述の円形の開口が形成された矩形の外形(輪郭)を有する第1撥液領域27aと、第1撥液領域27aをX軸方向に挟んでウエハテーブルWTBの+X側端部、-X側端部に位置する長方形の一対の第2撥液領域27bと、を有している。なお、本実施形態では、前述の如く液体Lqとして水を用いるので、以下では第1及び第2撥液領域27a,27bをそれぞれ第1及び第2撥水板27a,27bとも呼ぶ。 The plate 27 is located at the center of the wafer table WTB in the X-axis direction, and has a first liquid repellent area 27a having a rectangular outer shape (contour) in which the circular opening is formed at the center, and the first liquid repellent area 27a. And a pair of rectangular second liquid repellent areas 27b located at the + X side end and −X side end of the wafer table WTB. In the present embodiment, since water is used as the liquid Lq as described above, the first and second liquid repellent regions 27a and 27b are also referred to as first and second water repellent plates 27a and 27b, respectively.
 第1撥水板27aの+Y側の端部近傍には、計測プレート30が設けられている。この計測プレート30には、中央に基準マーク(不図示)が形成され、基準マークのX軸方向の両側に一対の空間像計測スリットパターン(スリット状の計測用パターン)SLが、形成されている。計測プレート30の表面は、ウエハWの表面とほぼ同一面に設定されている。各空間像計測スリットパターンSLに対応して、これらを透過する照明光ILを、ウエハステージWST外部、具体的には、計測ステージMSTに設けられる受光系(不図示)に導く一対の送光系30a(図6(A)参照)が、ウエハステージWSTに設けられている。 A measurement plate 30 is provided in the vicinity of the + Y side end of the first water repellent plate 27a. A reference mark (not shown) is formed at the center of the measurement plate 30, and a pair of aerial image measurement slit patterns (slit-shaped measurement patterns) SL are formed on both sides of the reference mark in the X-axis direction. . The surface of the measurement plate 30 is set almost flush with the surface of the wafer W. Corresponding to each aerial image measurement slit pattern SL, a pair of light transmission systems that guide the illumination light IL transmitted therethrough to the outside of wafer stage WST, specifically, to a light receiving system (not shown) provided in measurement stage MST. 30a (see FIG. 6A) is provided on wafer stage WST.
 一対の第2撥水板27bには、後述するエンコーダシステムで用いられるスケールが形成されている。詳述すると、一対の第2撥水板27bには、それぞれ、スケール391,392が形成されている。スケール391,392はそれぞれ、例えばY軸方向を周期方向とする回折格子とX軸方向を周期方向とする回折格子とが組み合わされた、反射型の二次元回折格子によって構成されている。二次元回折格子の格子線のピッチは、Y軸方向及びX軸方向のいずれの方向についても、例えば1μmと設定されている。なお、図2(A)では、図示の便宜のため、格子のピッチは、実際のピッチよりも大きく図示されている。図11においても同様である。 On the pair of second water repellent plates 27b, scales used in an encoder system described later are formed. More specifically, scales 39 1 and 39 2 are formed on the pair of second water repellent plates 27b, respectively. Each of the scales 39 1 and 39 2 is constituted by a reflective two-dimensional diffraction grating in which, for example, a diffraction grating having a periodic direction in the Y-axis direction and a diffraction grating having a periodic direction in the X-axis direction are combined. The pitch of the lattice lines of the two-dimensional diffraction grating is set to 1 μm, for example, in both the Y-axis direction and the X-axis direction. In FIG. 2A, for the convenience of illustration, the pitch of the grating is shown larger than the actual pitch. The same applies to FIG.
 また、回折格子を保護するために、撥水性を備えた、例えば低熱膨張率のガラス板でカバーしても良い。ここで、ガラス板としては、例えば厚さ1mmのものを用いることができ、そのガラス板の表面がウエハ面と同じ高さ(同一面)になるよう、ウエハテーブルWTB上面に設置される。 Further, in order to protect the diffraction grating, it may be covered with a glass plate having water repellency, for example, a low thermal expansion coefficient. Here, for example, a glass plate having a thickness of 1 mm can be used, and the glass plate is placed on the upper surface of wafer table WTB so that the surface of the glass plate is the same height (same surface) as the wafer surface.
 なお、各第2撥水板27bのスケールの端付近には、後述するエンコーダヘッドとスケール間の相対位置を決めるための、不図示の位置出しパターンがそれぞれ設けられている。この位置出しパターンは例えばスケールとは反射率の異なる格子線によって構成することができる。 A positioning pattern (not shown) for determining the relative position between the encoder head and the scale, which will be described later, is provided near the end of the scale of each second water repellent plate 27b. This positioning pattern can be constituted by, for example, a grid line having a reflectance different from that of the scale.
 図2(A)~図2(C)等に示されるように、ウエハテーブルWTBの-Y端面,-X端面には、後述する干渉計システムで用いられる反射面17a,17bが形成されている。また、ウエハテーブルWTBの-Y端部の下部には、干渉計システムで用いられる反射面17cが形成されている。 As shown in FIGS. 2A to 2C and the like, reflection surfaces 17a and 17b used in an interferometer system to be described later are formed on the −Y end surface and the −X end surface of wafer table WTB. . In addition, a reflection surface 17c used in the interferometer system is formed below the −Y end of wafer table WTB.
 ウエハテーブルWTBは、図3及び図9からわかるように、矩形板状の天板部33aと、該天板部33aの下面の外周に沿った矩形枠状部33bと、矩形枠状部33bの内部に配置され、天板部33aの下面から突設された複数のリブ部33cとを有している。この複数のリブ部33cの1つとして、微動ステージ83の本体部83aと同形状の八角形枠状のリブ部33cが設けられており、該リブ部33cを介してウエハテーブルWTBは、微動ステージ83に一体的に固定されている。 As can be seen from FIGS. 3 and 9, the wafer table WTB includes a rectangular plate-shaped top plate portion 33a, a rectangular frame-shaped portion 33b along the outer periphery of the lower surface of the top plate portion 33a, and a rectangular frame-shaped portion 33b. It has a plurality of rib portions 33c arranged inside and projecting from the lower surface of the top plate portion 33a. As one of the plurality of ribs 33c, it is provided with a main body portion 83a and the rib portion 33c 0 of octagonal frame shape having the same shape of the fine movement stage 83, wafer table WTB via the rib portion 33c 0 is The fine movement stage 83 is integrally fixed.
 また、粗動ステージ82上に固定された4つの支持部84及びこれらに固定された4つの電磁石TUcの上部が、ウエハテーブルWTBの上述の複数のリブ部33cのうちの一部と矩形枠状部33bとで区画される空間内に収まる状態で、粗動ステージ82に対して微動ステージ83及びウエハテーブルWTBが取り付けられている。これによって、ウエハステージWSTの全高を低くしている。 Further, the four support portions 84 fixed on the coarse movement stage 82 and the upper portions of the four electromagnets TUc fixed thereto are formed in a rectangular frame shape with a part of the plurality of rib portions 33c of the wafer table WTB. The fine movement stage 83 and the wafer table WTB are attached to the coarse movement stage 82 in a state of being accommodated in a space partitioned by the portion 33b. This lowers the overall height of wafer stage WST.
 図1に戻り、計測ステージMSTは、ステージ本体92とステージ本体92上に搭載された計測テーブルMTBとを有している。ステージ本体92の底部にはXY平面内でXY二次元配列された複数の磁石から成る磁石ユニット(不図示)が含まれ、ステージベース13内のコイルユニットCUaとともにローレンツ力(電磁力)駆動方式の平面モータMd(図15参照)が構成される。この平面モータMdによって、計測ステージMSTは、ステージベース13に対し、ウエハステージWSTとは独立に、少なくとも3自由度方向(X、Y、θz)に駆動可能である。なお、図14では、ウエハステージWSTを駆動するウエハステージ駆動系36と計測ステージMSTを駆動する駆動系(平面モータMd)とを含んで、ステージ駆動系124として示されている。 Referring back to FIG. 1, the measurement stage MST has a stage main body 92 and a measurement table MTB mounted on the stage main body 92. The bottom of the stage main body 92 includes a magnet unit (not shown) composed of a plurality of magnets arranged two-dimensionally in the XY plane, and a Lorentz force (electromagnetic force) drive system together with the coil unit CUa in the stage base 13. A planar motor Md (see FIG. 15) is configured. By this planar motor Md, measurement stage MST can be driven in at least three degrees of freedom (X, Y, θz) with respect to stage base 13 independently of wafer stage WST. In FIG. 14, a stage drive system 124 is shown including a wafer stage drive system 36 that drives wafer stage WST and a drive system (planar motor Md) that drives measurement stage MST.
 計測テーブルMTB(及びステージ本体92)には、各種計測用部材が設けられている。この計測用部材としては、例えば、図11に示されるように、照度むらセンサ94、空間像計測器96、波面収差計測器98などが設けられている。更に照度モニタ(不図示)を設けても良い。また、ステージ本体92には、前述の一対の送光系30aに対向する配置で、一対の受光系(不図示)が設けられている。本実施形態では、ウエハステージWSTと計測ステージMSTとがY軸方向に関して所定距離以内に近接した状態(接触状態を含む)において、ウエハステージWST上の計測プレート30の各空間像計測スリットパターンSLを透過した照明光ILを各送光系(不図示)で案内し、計測ステージMST内の各受光系(不図示)の受光素子で受光する、一対の空間像計測装置45A,45B(図14参照)が構成される。空間像計測装置45A,45Bのそれぞれは、例えば、米国特許出願公開第2002/0041377号明細書に開示される装置と同様に構成されている。空間像計測装置45A,45Bの計測結果(受光素子の出力信号)は、信号処理装置(不図示)を介して主制御装置20に送られる(図14参照)。 The measurement table MTB (and the stage main body 92) is provided with various measurement members. As this measuring member, for example, as shown in FIG. 11, an illuminance unevenness sensor 94, an aerial image measuring device 96, a wavefront aberration measuring device 98, and the like are provided. Further, an illuminance monitor (not shown) may be provided. Further, the stage main body 92 is provided with a pair of light receiving systems (not shown) in an arrangement facing the pair of light transmission systems 30a. In the present embodiment, each aerial image measurement slit pattern SL of measurement plate 30 on wafer stage WST is measured in a state where wafer stage WST and measurement stage MST are close to each other within a predetermined distance in the Y-axis direction (including a contact state). A pair of aerial image measurement devices 45A and 45B (see FIG. 14) that guides the transmitted illumination light IL by each light transmission system (not shown) and receives light by a light receiving element of each light receiving system (not shown) in the measurement stage MST. ) Is configured. Each of the aerial image measurement devices 45A and 45B is configured similarly to the device disclosed in, for example, US Patent Application Publication No. 2002/0041377. The measurement results (output signals of the light receiving elements) of the aerial image measuring devices 45A and 45B are sent to the main controller 20 via a signal processing device (not shown) (see FIG. 14).
 計測テーブルMTBの-Y側端面には、図11に示されるように、フィデューシャルバー(以下、「FDバー」と略述する)46がX軸方向に延設されている。FDバー46は、計測ステージMST上にキネマティックに支持されている。FDバー46は、原器(計測基準)となるため、低熱膨張率の光学ガラスセラミックス、例えば、ショット社のゼロデュア(商品名)などがその素材として採用されている。FDバー46の長手方向の一側と他側の端部近傍には、そのセンターラインに関して対称な配置で、Y軸方向を周期方向とする基準格子(例えば回折格子)52がそれぞれ形成されている。また、FDバー46の上面には、複数の基準マークMが形成されている。各基準マークMとしては、後述するプライマリアライメント系、セカンダリアライメント系によって検出可能な寸法の2次元マークが用いられている。なお、FDバー46の表面及び計測テーブルMTBの表面も撥液膜(撥水膜)で覆われている。 As shown in FIG. 11, a fiducial bar (hereinafter abbreviated as “FD bar”) 46 extends in the X-axis direction on the −Y side end surface of the measurement table MTB. The FD bar 46 is kinematically supported on the measurement stage MST. Since the FD bar 46 is a prototype (measurement standard), an optical glass ceramic having a low thermal expansion coefficient, for example, Zerodure (trade name) manufactured by Schott is used as the material. Reference gratings (for example, diffraction gratings) 52 having a periodic direction in the Y-axis direction are formed in the vicinity of one end and the other end in the longitudinal direction of the FD bar 46 in a symmetrical arrangement with respect to the center line. . A plurality of reference marks M are formed on the upper surface of the FD bar 46. As each reference mark M, a two-dimensional mark having a size detectable by a primary alignment system and a secondary alignment system described later is used. The surface of the FD bar 46 and the surface of the measurement table MTB are also covered with a liquid repellent film (water repellent film).
計測テーブルMTBの+Y側の端面及び-X側端面には、ウエハテーブルWTBと同様の反射面19a及び反射面19bが形成されている(図11参照)。 A reflection surface 19a and a reflection surface 19b similar to the wafer table WTB are formed on the + Y side end surface and the −X side end surface of the measurement table MTB (see FIG. 11).
 本実施形態に係る露光装置100では、図11及び図12に示されるように、投影光学系PLの光軸AXを通る平行な直線(以下、基準軸と呼ぶ)LV上で、光軸AXから-Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が設けられている。プライマリアライメント系AL1は、不図示のメインフレームの下面に固定されている。図12に示されるように、プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。セカンダリアライメント系AL21~AL24は、不図示の可動式の支持部材を介してメインフレーム(不図示)の下面に固定されており、駆動機構601~604(図14参照)により、X軸方向に関してこれらの検出領域の相対位置が調整可能となっている。なお、図11等に示されるプライマリアライメント系AL1の検出中心を通るX軸に平行な直線(以下、基準軸と呼ぶ)LAは、後述するX干渉計16Xからの測長ビームBX2の光軸に一致している。 In the exposure apparatus 100 according to the present embodiment, as shown in FIGS. 11 and 12, on the parallel straight line (hereinafter referred to as a reference axis) LV passing through the optical axis AX of the projection optical system PL, from the optical axis AX. A primary alignment system AL1 having a detection center at a position separated by a predetermined distance on the −Y side is provided. Primary alignment system AL1 is fixed to the lower surface of the main frame (not shown). As shown in FIG. 12, secondary alignment systems AL2 1 and AL2 2 in which detection centers are arranged almost symmetrically with respect to the reference axis LV on one side and the other side in the X-axis direction across the primary alignment system AL1. , AL2 3 and AL2 4 are provided. The secondary alignment systems AL2 1 to AL2 4 are fixed to the lower surface of the main frame (not shown) via a movable support member (not shown), and are driven by the drive mechanisms 60 1 to 60 4 (see FIG. 14). The relative positions of these detection areas can be adjusted with respect to the axial direction. Incidentally, a straight line parallel to the X axis passing through the detection center of primary alignment system AL1 as shown in FIG. 11 or the like (hereinafter, referred to as a reference axis) LA, the optical axis of the measurement beam BX2 from X interferometer 16X 2 described later It matches.
 本実施形態では、アライメント系AL1,AL21~AL24のそれぞれとして、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。アライメント系AL1,AL21~AL24のそれぞれからの撮像信号は、不図示の信号処理系を介して主制御装置20に供給される。 In this embodiment, as each of the alignment systems AL1, AL2 1 to AL2 4 , for example, an image processing type FIA (Field Image Alignment) system is used. Imaging signals from the alignment systems AL1, AL2 1 to AL2 4 are supplied to the main controller 20 through a signal processing system (not shown).
 次に、ウエハステージWST及び計測ステージMSTの位置情報を計測する干渉計システム118(図14参照)の構成等について説明する。 Next, the configuration and the like of interferometer system 118 (see FIG. 14) that measures position information of wafer stage WST and measurement stage MST will be described.
 干渉計システム118は、図10及び図15に示されるように、ウエハステージWSTの位置計測用のY干渉計16Y、X干渉計16X,16X,16X、及びZ干渉計16Z、並びに計測ステージMSTの位置計測用のY干渉計18Y及びX干渉計18X等を含む。 As shown in FIGS. 10 and 15, the interferometer system 118 includes a Y interferometer 16Y for measuring the position of wafer stage WST, an X interferometer 16X 1 , 16X 2 , 16X 3 , a Z interferometer 16Z, and measurement. A Y interferometer 18Y and an X interferometer 18X for measuring the position of the stage MST are included.
 Y干渉計16Yは、図10に示されるように、基準軸LVに関して対称な一対の測長ビームBY1,BY2を含むY軸に平行な少なくとも3本の測長ビームを、ウエハテーブルWTBの反射面17aに照射する。そして、Y干渉計16Yは、それぞれの測長ビームの反射光を受光して、ウエハテーブルWTB(ウエハステージWST)のY軸方向、θz方向、及びθx方向の位置情報を計測する。 As shown in FIG. 10, Y interferometer 16Y applies at least three measurement beams parallel to the Y axis including a pair of measurement beams BY 1 and BY 2 that are symmetrical with respect to reference axis LV to wafer table WTB. Irradiate the reflecting surface 17a. Then, Y interferometer 16Y receives the reflected light of each measurement beam and measures position information of wafer table WTB (wafer stage WST) in the Y-axis direction, θz direction, and θx direction.
 X干渉計16Xは、投影光学系PLの光軸AX(本実施形態では前述の露光領域IAの中心とも一致)を通りかつX軸と平行な直線(以下、基準軸と呼ぶ)LH(図11等参照)に関して対称な一対の測長ビームBX11,BX12を含むX軸に平行な少なくとも3本の測長ビームを、反射面17bに照射する。そして、X干渉計16Xは、ウエハテーブルWTB(ウエハステージWST)のX軸方向、θz方向、及びθy方向の位置情報を計測する。 X interferometer 16X 1, the optical axis AX parallel to the (aforementioned exposure region match the center of the IA in the present embodiment) as and X-axis linear projection optical system PL (hereinafter, referred to as a reference axis) LH (Figure At least three length measuring beams parallel to the X axis including a pair of length measuring beams BX1 1 and BX1 2 that are symmetrical with respect to 11) are irradiated on the reflecting surface 17b. Then, X interferometers 16X 1 is, X-axis direction of wafer table WTB (wafer stage WST), to measure the θz direction, and θy directions of the position information.
 X干渉計16X、16Xは、それぞれ、測長ビームBX2、BX3を含むX軸に平行な少なくとも各1本の測長ビームを、反射面17bに照射し、それぞれの反射光を受光してウエハテーブルWTB(ウエハステージWST)のX軸方向の位置情報を計測する。 The X interferometers 16X 2 and 16X 3 irradiate the reflecting surface 17b with at least one measuring beam parallel to the X axis including the measuring beams BX2 and BX3, respectively, and receive the respective reflected lights. Position information in the X-axis direction of wafer table WTB (wafer stage WST) is measured.
 Z干渉計16Zは、反射面17cに2本の測長ビームBZ1,BZ2を照射し、それぞれの反射光を受光してウエハテーブルWTB(ウエハステージWST)のZ位置を計測する。 Z interferometer 16Z irradiates two measuring beams BZ 1 and BZ 2 onto reflecting surface 17c, receives the respective reflected lights, and measures the Z position of wafer table WTB (wafer stage WST).
 Y干渉計18Y、及びX干渉計18Xは、図10に示されるように、それぞれ、計測テーブルMTBの反射面19a,19bに測長ビームを照射して、それぞれの反射光を受光することにより、計測ステージMSTの少なくともXY平面内の3自由度方向に関する位置情報を計測する。 As shown in FIG. 10, the Y interferometer 18Y and the X interferometer 18X respectively irradiate the measuring surfaces MTa with the length measurement beams and receive the respective reflected lights. Position information regarding the direction of three degrees of freedom in at least the XY plane of the measurement stage MST is measured.
 干渉計システム118の上記各干渉計の計測情報は、主制御装置20に供給されている(図15参照)。なお、干渉計システム118の構成の詳細は、例えば米国特許出願公開第2008/0088843号明細書などに開示されている。 The measurement information of each interferometer of the interferometer system 118 is supplied to the main controller 20 (see FIG. 15). Details of the configuration of the interferometer system 118 are disclosed in, for example, US Patent Application Publication No. 2008/0088843.
 本実施形態に係る露光装置100では、ウエハステージWSTの位置制御に用いられるウエハテーブルWTBのXY平面内の位置情報(θz方向の回転情報を含む)は、主として、後述するエンコーダシステムを用いて計測される。干渉計システム118で計測されるウエハテーブルWTBのXY平面内の位置情報は、ウエハステージWSTがエンコーダシステムの計測領域外(例えば、図11に示されるアンローディングポジションUP又はローディングポジションLP付近)に位置する際に、ウエハステージWSTの位置制御に用いられる。また、干渉計システム118で計測されるウエハテーブルWTBのXY平面内の位置情報は、エンコーダシステムの計測情報(計測結果)の長期的変動(例えばスケールの経時的な変形などによる)を補正(較正)する場合、あるいはエンコーダシステムの出力異常時のバックアップ用などとして補助的に使用される。勿論、干渉計システム118とエンコーダシステムとを併用して、ウエハステージWST(ウエハテーブルWTB)の位置を制御することとしても良い。 In exposure apparatus 100 according to the present embodiment, position information (including rotation information in the θz direction) of wafer table WTB in the XY plane used for position control of wafer stage WST is mainly measured using an encoder system described later. Is done. Position information in the XY plane of wafer table WTB measured by interferometer system 118 indicates that wafer stage WST is located outside the measurement area of the encoder system (for example, near unloading position UP or loading position LP shown in FIG. 11). This is used for position control of wafer stage WST. Further, the position information in the XY plane of wafer table WTB measured by interferometer system 118 corrects (calibrates) long-term fluctuations (for example, due to deformation of the scale over time) of measurement information (measurement results) of the encoder system. ) Or for backup when the encoder system output is abnormal. Of course, interferometer system 118 and an encoder system may be used together to control the position of wafer stage WST (wafer table WTB).
 次に、ウエハステージWSTのXY平面内の位置情報(θz方向の回転情報を含む)を計測するエンコーダシステム150(図14及び図15参照)の構成等について説明する。 Next, the configuration of the encoder system 150 (see FIGS. 14 and 15) that measures position information (including rotation information in the θz direction) of the wafer stage WST in the XY plane will be described.
 露光装置100では、図11に示されるように、投影ユニットPU(ノズルユニット32)の+X側、-X側に、一対のヘッド部62A、62Cが、それぞれ配置されている。また、ヘッド部62C、62Aそれぞれの-Y側でかつアライメント系AL1、AL21~AL24とほぼ同一のY位置に、ヘッド部62E、62Fが、それぞれ配置されている。ヘッド部62A,62C,62E及び62Fは、後述するように、それぞれ複数のヘッドを含み、これらのヘッドが、支持部材を介して、メインフレーム(不図示)に吊り下げ状態で固定されている。なお、図11において、符号UPは、ウエハステージWST上にあるウエハのアンロードが行われるアンローディングポジションを示し、符号LPは、ウエハステージWST上へのウエハのロードが行われるローディングポジションを示す。 In the exposure apparatus 100, as shown in FIG. 11, a pair of head portions 62A and 62C are disposed on the + X side and the −X side of the projection unit PU (nozzle unit 32), respectively. Further, the head portions 62E and 62F are arranged at the Y position on the −Y side of each of the head portions 62C and 62A and at substantially the same Y position as the alignment systems AL1, AL2 1 to AL2 4 . As will be described later, each of the head portions 62A, 62C, 62E, and 62F includes a plurality of heads, and these heads are fixed to a main frame (not shown) in a suspended state via support members. In FIG. 11, reference symbol UP indicates an unloading position at which a wafer on wafer stage WST is unloaded, and reference symbol LP indicates a loading position at which the wafer is loaded onto wafer stage WST.
 ヘッド部62A、62Cは、図12に示されるように、各4つの2軸ヘッド651~654,641~644を備えている。2軸ヘッド651~654の筐体の内部には、X軸方向を計測方向とするXヘッド65X1~65X4と、Y軸方向を計測方向とするYヘッド65Y1~65Y4とが収容されている。同様に、2軸ヘッド641~644の筐体の内部には、Xヘッド64X1~64X4と、Yヘッド64Y1~64Y4とが収容されている。Xヘッド65X1~65X4,64X1~64X4(より正確には、Xヘッド65X1~65X4,64X1~64X4が発する計測ビームのスケール391、392上の照射点)は、基準軸LH上に、所定間隔WD(図11参照)で配置されている。また、Yヘッド65Y1~65Y4,64Y1~64Y4(より正確には、Yヘッド65Y1~65Y4,64Y1~64Y4が発する計測ビームのスケール391、392上の照射点)は、基準軸LHに平行であり且つ基準軸LHから-Y側に所定距離離間する直線LH上に、対応するXヘッド65X1~65X4,64X1~64X4と同じX位置に、配置されている。以下では、必要に応じて、Xヘッド65X1~65X4,64X1~64X4、及びYヘッド65Y1~65Y4,64Y1~64Y4を、それぞれ、Xヘッド65X,64X、及びYヘッド65Y,64Yとも表記する。 As shown in FIG. 12, the head portions 62A and 62C include four biaxial heads 65 1 to 65 4 and 64 1 to 64 4 , respectively. In the housing of the biaxial heads 65 1 to 65 4 , there are X heads 65X 1 to 65X 4 whose measurement direction is the X axis direction and Y heads 65Y 1 to 65Y 4 whose measurement direction is the Y axis direction. Contained. Similarly, X heads 64X 1 to 64X 4 and Y heads 64Y 1 to 64Y 4 are accommodated in the housings of the biaxial heads 64 1 to 64 4 . X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 (more precisely, irradiation points on the measurement beam scales 39 1 and 39 2 emitted by the X heads 65X 1 to 65X 4 and 64X 1 to 64X 4 ) Arranged on the reference axis LH at a predetermined interval WD (see FIG. 11). Y heads 65Y 1 to 65Y 4 , 64Y 1 to 64Y 4 (more precisely, irradiation points on the scales 39 1 and 39 2 of the measurement beams emitted by the Y heads 65Y 1 to 65Y 4 and 64Y 1 to 64Y 4 ) Are arranged at the same X position as the corresponding X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 on a straight line LH 1 that is parallel to the reference axis LH and spaced a predetermined distance from the reference axis LH to the −Y side. Has been. In the following description, X heads 65X 1 to 65X 4 , 64X 1 to 64X 4 , and Y heads 65Y 1 to 65Y 4 , 64Y 1 to 64Y 4 are respectively connected to X heads 65X, 64X, and Y heads 65Y as necessary. , 64Y.
 ここで、Xヘッド65X,64X、及びYヘッド65Y,64Yのそれぞれとして、一例として、米国特許出願公開第2008/0088843号明細書などに開示されている回折干渉型のエンコーダヘッドが用いられている。この種のエンコーダヘッドでは、2つの計測ビームを対応するスケール391又は392に照射し、その2つの計測ビームのスケール(2次元グレーティング)からの戻り光(回折光)を1つの干渉光に合成して受光し、この干渉光の強度を光検出器で検出し、その干渉光の強度変化に基づいて、スケールの計測方向(回折格子の周期方向)の変位を計測する。 Here, as each of the X heads 65X and 64X and the Y heads 65Y and 64Y, for example, a diffraction interference type encoder head disclosed in US Patent Application Publication No. 2008/0088843 is used. . In this type of encoder head, two measurement beams are irradiated onto the corresponding scales 39 1 or 39 2 , and return light (diffracted light) from the scales (two-dimensional grating) of the two measurement beams is converted into one interference light. The combined light is received, the intensity of the interference light is detected by a photodetector, and the displacement in the measurement direction of the scale (period direction of the diffraction grating) is measured based on the intensity change of the interference light.
 ヘッド部62A,62Cは、スケール391,392を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する多眼(ここでは4眼)のXリニアエンコーダ70Ax,70Cx、及びY軸方向の位置(Y位置)を計測する多眼(ここでは4眼)のYリニアエンコーダ70Ay,70Cy(図15参照)を構成する。そして、Xリニアエンコーダ70AxとYリニアエンコーダ70Ayとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Aが構成されている(図15参照)。同様に、Xリニアエンコーダ70CxとYリニアエンコーダ70Cyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Cが構成されている(図15参照)。 The head units 62A and 62C are multi-lens (four eyes here) X linear encoders that measure the position (X position) in the X-axis direction of wafer stage WST (wafer table WTB) using scales 39 1 and 39 2. 70Ax, 70Cx, and multi-lens (four eyes here) Y linear encoders 70Ay, 70Cy (see FIG. 15) for measuring the position in the Y-axis direction (Y position) are configured. A multi-lens (four eyes in this case) two-dimensional (2D) encoder that measures positional information in the X-axis and Y-axis directions of wafer stage WST (wafer table WTB) by X linear encoder 70Ax and Y linear encoder 70Ay. 70A is configured (see FIG. 15). Similarly, a multi-lens (four eyes in this case) two-dimensional (2D) measuring position information in the X-axis and Y-axis directions of wafer stage WST (wafer table WTB) by X linear encoder 70Cx and Y linear encoder 70Cy. An encoder 70C is configured (see FIG. 15).
 なお、以下では、Xリニアエンコーダを、適宜、「エンコーダ」と略称する。同様に、Yリニアエンコーダを、適宜、「Yエンコーダ」又は「エンコーダ」と略称する。同様に、2Dエンコーダを、適宜、エンコーダと略称する。 In the following, the X linear encoder is abbreviated as “encoder” as appropriate. Similarly, the Y linear encoder is abbreviated as “Y encoder” or “encoder” as appropriate. Similarly, the 2D encoder is abbreviated as an encoder as appropriate.
 ここで、ヘッド部62A,62Cがそれぞれ備える4つのXヘッド65X,64X(より正確には、Xヘッド65X,64Xが発する計測ビームのスケール上の照射点)及び4つのYヘッド65Y,64Y(より正確には、Yヘッド65Y,64Yが発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、スケール391,392のX軸方向の幅より狭く設定されている。従って、露光の際などには、それぞれ4つのXヘッド65X,64X,Yヘッド65Y,64Yのうち、少なくとも各1つのヘッドが、常に、対応するスケール391,392に対向する(計測ビームを照射する)。ここで、スケールの幅とは、回折格子(又はこの形成領域)の幅、より正確にはヘッドによる位置計測が可能な範囲を指す。 Here, the four X heads 65X and 64X (more precisely, the irradiation points on the scale of the measurement beam emitted by the X heads 65X and 64X) and the four Y heads 65Y and 64Y (more from the head units 62A and 62C). Precisely, the distance WD in the X-axis direction of the measurement beam emitted from the Y heads 65Y and 64Y is set to be narrower than the width of the scales 39 1 and 39 2 in the X-axis direction. Accordingly, at the time of exposure, at least one of the four X heads 65X, 64X, and Y heads 65Y and 64Y always faces the corresponding scales 39 1 and 39 2 (the measurement beam is changed). Irradiation). Here, the width of the scale refers to the width of the diffraction grating (or this formation region), more precisely, the range in which the position can be measured by the head.
 ヘッド部62F、62Eは、図12に示されるように、各3つの2軸ヘッド681~683,671~673を備えている。2軸ヘッド681~683の筐体の内部には、2軸ヘッド651~654等と同様に、Xヘッド68X1~68X3と、Yヘッド68Y1~68Y3とが収容されている。同様に、2軸ヘッド671~673の筐体の内部には、Xヘッド67X1~67X3と、Yヘッド67Y1~67Y3とが収容されている。 As shown in FIG. 12, the head portions 62F and 62E include three biaxial heads 68 1 to 68 3 and 67 1 to 67 3 , respectively. The X heads 68X 1 to 68X 3 and the Y heads 68Y 1 to 68Y 3 are accommodated in the housing of the biaxial heads 68 1 to 68 3 in the same manner as the biaxial heads 65 1 to 65 4. Yes. Similarly, X heads 67X 1 to 67X 3 and Y heads 67Y 1 to 67Y 3 are accommodated in the housings of the biaxial heads 67 1 to 67 3 .
 Xヘッド68X1~68X3,67X1~67X3(より正確には、68X1~68X3,67X1~67X3が発する計測ビームのスケール391、392上の照射点)は、基準軸LAに沿って所定間隔WD(図11参照)で配置されている。Yヘッド68Y1~68Y3,67Y1~67Y3(より正確には、68Y1~68Y3,67Y1~67Y3が発する計測ビームのスケール391、392上の照射点)は、基準軸LAに平行であり且つ基準軸LAから-Y側に離間する直線LA上に、対応するXヘッド68X1~68X3,67X1~67
3と同じX位置に、配置されている。以下では、必要に応じて、2軸ヘッド681~683,671~673、Xヘッド68X1~68X3,67X1~67X3、及びYヘッド68Y1~68Y3,67Y1~67Y3を、それぞれ、2軸ヘッド68,67、Xヘッド68X,67X、及びYヘッド68Y,67Yとも表記する。ここで、Xヘッド68X,67X、及びYヘッド68Y,67Yのそれぞれとしても、一例として前述の米国特許出願公開第2008/0088843号明細書などに開示されている回折干渉型のエンコーダヘッドが用いられる。
X heads 68X 1 to 68X 3 , 67X 1 to 67X 3 (more precisely, irradiation points on scales 39 1 and 39 2 of measurement beams emitted by 68X 1 to 68X 3 and 67X 1 to 67X 3 ) are reference axes. Arranged at predetermined intervals WD along LA (see FIG. 11). Y heads 68Y 1 to 68Y 3 , 67Y 1 to 67Y 3 (more precisely, irradiation points on measurement beam scales 39 1 and 39 2 emitted by 68Y 1 to 68Y 3 and 67Y 1 to 67Y 3 ) are reference axes Corresponding X heads 68X 1 to 68X 3 , 67X 1 to 67 on a straight line LA 1 parallel to LA and spaced from the reference axis LA to the −Y side
It is arranged at the same X position as X 3 . In the following, the biaxial heads 68 1 to 68 3 , 67 1 to 67 3 , the X heads 68X 1 to 68X 3 , 67X 1 to 67X 3 , and the Y heads 68Y 1 to 68Y 3 , 67Y 1 to 67Y as necessary. 3 is also expressed as biaxial heads 68 and 67, X heads 68X and 67X, and Y heads 68Y and 67Y, respectively. Here, as each of the X heads 68X and 67X and the Y heads 68Y and 67Y, for example, the diffraction interference type encoder head disclosed in the above-mentioned US Patent Application Publication No. 2008/0088843 is used. .
 ヘッド部62F、62Eは、スケール391,392を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する多眼(ここでは3眼)のXリニアエンコーダ70Fx,70Ex、及びY軸方向の位置(Y位置)を計測する多眼(ここでは3眼)のYリニアエンコーダ70Fy,70Ey(図15参照)を構成する。そして、Xリニアエンコーダ70FxとYリニアエンコーダ70Fyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Fが構成される(図15参照)。同様に、Xリニアエンコーダ70ExとYリニアエンコーダ70Eyとによって、ウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報を計測する多眼(ここでは4眼)の2次元(2D)エンコーダ70Eが構成される(図15参照)。 The heads 62F and 62E are multi-lens (three eyes here) X linear encoders that measure the position (X position) in the X-axis direction of wafer stage WST (wafer table WTB) using scales 39 1 and 39 2. The multi-lens (three eyes here) Y linear encoders 70Fy and 70Ey (refer to FIG. 15) that measure the positions (Y positions) in the Y-axis direction are configured. A multi-lens (four eyes in this case) two-dimensional (2D) encoder that measures positional information of the wafer stage WST (wafer table WTB) in the X-axis and Y-axis directions by the X linear encoder 70Fx and the Y linear encoder 70Fy. 70F is configured (see FIG. 15). Similarly, a multi-lens (four eyes in this case) two-dimensional (2D) measuring position information about the X-axis and Y-axis directions of wafer stage WST (wafer table WTB) by X linear encoder 70Ex and Y linear encoder 70Ey. An encoder 70E is configured (see FIG. 15).
 ここで、ヘッド部62F、62Eがそれぞれ備える3つのXヘッド68X,67X(より正確には、Xヘッド68X,67Xが発する計測ビームのスケール上の照射点)及び3つのYヘッド68Y,67Y(より正確には、Yヘッド68Y,67Yが発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、スケール391,392のX軸方向の幅より僅かに狭く設定されている。従って、アライメント計測の際などには、それぞれ3つのXヘッド68X,67X,Yヘッド68Y,67Yのうち、少なくとも1つのヘッドが対応するスケール391,392に対向する(計測ビームを照射する)。 Here, the three X heads 68X and 67X (more precisely, the irradiation points on the scale of the measurement beams emitted by the X heads 68X and 67X) and the three Y heads 68Y and 67Y (more Precisely, the distance WD in the X-axis direction between the irradiation points on the scale of measurement beams emitted from the Y heads 68Y and 67Y is set slightly smaller than the width of the scales 39 1 and 39 2 in the X-axis direction. Accordingly, at the time of alignment measurement, at least one of the three X heads 68X, 67X, Y heads 68Y, 67Y faces the corresponding scale 39 1 , 39 2 (irradiates the measurement beam). .
 例えば、露光時などには、上述のエンコーダ70Ax,70Ay,70Cx,70Cyによる計測情報(エンコーダ70A,70Cによって計測されたウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報)が、主制御装置20に供給される。主制御装置20は、これらの位置情報(計測結果)のうち、例えばエンコーダ70A,70Cのいずれかで計測されたX位置の情報と、エンコーダ70A,70Cでそれぞれ計測されたY位置の情報とを用いて、例えば米国特許出願公開第2011/0051108号明細書などに開示されるような演算を行ってウエハステージWSTのXY平面内の位置(X,Y,θz)を算出する。 For example, at the time of exposure, measurement information by the above-described encoders 70Ax, 70Ay, 70Cx, 70Cy (position information about the X-axis and Y-axis directions of wafer stage WST (wafer table WTB) measured by encoders 70A, 70C) is provided. To the main controller 20. Of these position information (measurement results), main controller 20 uses, for example, X position information measured by one of encoders 70A and 70C and Y position information respectively measured by encoders 70A and 70C. The position (X, Y, θz) in the XY plane of the wafer stage WST is calculated by performing an operation as disclosed in, for example, US Patent Application Publication No. 2011/0051108.
 また、ウエハアライメント時などには、エンコーダ70Ex,70Ey,70Fx,70Fyによる計測情報(エンコーダ70E,70Fによって計測されたウエハステージWST(ウエハテーブルWTB)のX軸及びY軸方向に関する位置情報)が、主制御装置20に供給される。主制御装置20は、これらの位置情報(計測結果)を用いて、上記と同様にウエハステージWSTのXY平面内での位置(X,Y,θz)を算出する。 Further, at the time of wafer alignment or the like, measurement information by the encoders 70Ex, 70Ey, 70Fx, and 70Fy (position information regarding the X-axis and Y-axis directions of the wafer stage WST (wafer table WTB) measured by the encoders 70E and 70F) is obtained. Supplied to the main controller 20. Main controller 20 uses these position information (measurement results) to calculate position (X, Y, θz) of wafer stage WST in the XY plane in the same manner as described above.
 また、本実施形態では、セカンダリアライメント系のベースライン計測時などに、セカンダリアライメント系AL21、AL24にX軸方向で隣接する2軸ヘッド673、681のYヘッド67Y3,68Y1が、FDバー46の一対の基準格子52とそれぞれ対向し、この一対の基準格子52と対向するYヘッド67Y3,68Y1によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向するYヘッド67Y3,68Y1によって構成されるエンコーダをYリニアエンコーダ(適宜、「Yエンコーダ」又は「エンコーダ」とも略述する)70G,70H(図15参照)と呼ぶ。なお、Yエンコーダ70G,70Hは、エンコーダ70F、70Eを構成する一部のYヘッド67Y3,68Y1が、一対の基準格子52に対向することで、Yリニアエンコーダが構成されることから、このように呼んでいるものである。以下においても、便宜上、XYエンコーダ70F,70Eの他に、Yエンコーダ70G,70Hが存在するものとして説明を行う。 In the present embodiment, the Y heads 67Y 3 and 68Y 1 of the biaxial heads 67 3 and 68 1 that are adjacent to the secondary alignment systems AL2 1 and AL2 4 in the X-axis direction are used when measuring the baseline of the secondary alignment system. The Y position of the FD bar 46 is measured at the position of each reference grating 52 by the Y heads 67Y 3 and 68Y 1 that face the pair of reference gratings 52 of the FD bar 46, respectively. Is done. In the following, encoders composed of Y heads 67Y 3 and 68Y 1 that face the pair of reference gratings 52 are respectively Y linear encoders (abbreviated as “Y encoder” or “encoder” as appropriate) 70G and 70H (FIG. 15). See). The Y encoders 70G and 70H are configured as Y linear encoders because a part of the Y heads 67Y 3 and 68Y 1 constituting the encoders 70F and 70E are opposed to the pair of reference gratings 52. It is what you call. In the following, for the sake of convenience, description will be made assuming that Y encoders 70G and 70H exist in addition to XY encoders 70F and 70E.
 上述した各エンコーダによる計測情報は、主制御装置20に供給される。主制御装置20は、エンコーダ70A及び70C、又は70E及び70Fによる計測情報に基づいて、ウエハテーブルWTBのXY平面内の位置(θz方向の回転(ヨーイング)を含む)を制御するとともに、Yエンコーダ70G及び70Hの計測値に基づいて、FDバー46(計測ステージMST)のθz方向の位置(ヨーイング)を制御する。 Measurement information from each encoder described above is supplied to the main controller 20. Main controller 20 controls the position (including the rotation (yawing) in the θz direction) of wafer table WTB in the XY plane based on the measurement information from encoders 70A and 70C or 70E and 70F, and Y encoder 70G. And the position (yawing) of the FD bar 46 (measurement stage MST) in the θz direction based on the measured values of 70H.
 また、図示は省略されているが、主制御装置20は、ウエハステージWSTをX軸方向に駆動する際、ウエハステージWSTの位置情報を計測するXヘッド65X、64X及びYヘッド65Y、64Yを、隣のXヘッド65X、64X及びYヘッド65Y、64Yに順次切り換える。すなわち、このXヘッド及びYヘッドの切り換え(つなぎ)を円滑に行うために、前述の如く、ヘッド部62A,62Cに含まれる隣接するXヘッド及びYヘッドの間隔WDが、スケール391,392のX軸方向の幅よりも狭く設定されている。 Although not shown, main controller 20 uses X heads 65X and 64X and Y heads 65Y and 64Y that measure positional information of wafer stage WST when driving wafer stage WST in the X-axis direction. The adjacent X heads 65X and 64X and Y heads 65Y and 65Y are sequentially switched. That is, in order to smoothly switch (connect) the X head and the Y head, as described above, the interval WD between the adjacent X head and Y head included in the head portions 62A and 62C is set to the scales 39 1 and 39 2. Is set narrower than the width in the X-axis direction.
 さらに、本実施形態の露光装置100では、図11及び図13に示されるように、照射系90a及び受光系90bから成る多点焦点位置検出系(以下、「多点AF系」と略述する)が設けられている。多点AF系としては、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成(斜入射方式)が採用されている。本実施形態では、一例として、前述のヘッド部62Eの-X端部の+Y側に照射系90aが配置され、これに対峙する状態で、前述のヘッド部62Fの+X端部の+Y側に受光系90bが配置されている。なお、多点AF系(90a,90b)は、メインフレーム(不図示)の下面に固定されている。 Furthermore, in the exposure apparatus 100 of the present embodiment, as shown in FIGS. 11 and 13, a multipoint focal position detection system (hereinafter referred to as “multipoint AF system”) including an irradiation system 90a and a light receiving system 90b. ) Is provided. As the multipoint AF system, the same configuration (oblique incidence method) as that disclosed in, for example, US Pat. No. 5,448,332 is adopted. In the present embodiment, as an example, the irradiation system 90a is disposed on the + Y side of the −X end of the head unit 62E, and light is received on the + Y side of the + X end of the head unit 62F in a state facing this. A system 90b is arranged. The multipoint AF system (90a, 90b) is fixed to the lower surface of a main frame (not shown).
 図11及び図13では、それぞれ検出ビームが照射される複数の検出点が、個別に図示されず、照射系90a及び受光系90bの間でX軸方向に延びる細長い検出領域(ビーム領域)AFとして示されている。検出領域AFは、X軸方向の長さがウエハWの直径と同程度に設定されているので、ウエハWをY軸方向に1回スキャンするだけで、ウエハWのほぼ全面でZ軸方向の位置情報(面位置情報)を計測できる。 In FIG. 11 and FIG. 13, a plurality of detection points irradiated with the detection beam are not individually illustrated, and are elongated detection areas (beam areas) AF extending in the X-axis direction between the irradiation system 90 a and the light receiving system 90 b. It is shown. Since the detection area AF is set to have a length in the X-axis direction that is approximately the same as the diameter of the wafer W, the wafer W is scanned almost in the Y-axis direction once in the Z-axis direction. Position information (surface position information) can be measured.
 図13に示されるように、多点AF系(90a,90b)の検出領域AFの両端部近傍に、基準軸LVに関して対称な配置で、面位置計測システム180(図14参照)の一部を構成する各一対のZ位置計測センサのヘッド(以下、「Zヘッド」と略述する)72a,72b、及び72c,72dが設けられている。これらのZヘッド72a~72dは、不図示のメインフレームの下面に固定されている。 As shown in FIG. 13, a part of the surface position measurement system 180 (see FIG. 14) is arranged in the vicinity of both ends of the detection area AF of the multipoint AF system (90a, 90b) in a symmetrical arrangement with respect to the reference axis LV. Heads (hereinafter abbreviated as “Z heads”) 72 a, 72 b, 72 c, 72 d of each pair of Z position measurement sensors constituting the same are provided. These Z heads 72a to 72d are fixed to the lower surface of a main frame (not shown).
 さらに、前述のヘッド部62A、62Cは、図13に示されるように、各4つのZヘッド761~764,741~744を備えている。ここで、Zヘッド761~764,741~744は、基準軸LHに平行であり且つ基準軸LHから+Y側に離間する直線LH上に、対応するXヘッド65X1~65X4,64X1~64X4と同じX位置に、配置されている。以下では、必要に応じて、Zヘッド761~764,741~744を、Zヘッド76,74とも表記する。 Further, the above-described head portions 62A and 62C are each provided with four Z heads 76 1 to 76 4 and 74 1 to 74 4 as shown in FIG. Here, the Z heads 76 1 to 76 4 , 74 1 to 74 4 are parallel to the reference axis LH and on the straight line LH 2 spaced from the reference axis LH to the + Y side, corresponding X heads 65X 1 to 65X 4. , 64X 1 to 64X 4 are arranged at the same X position. Hereinafter, the Z heads 76 1 to 76 4 and 74 1 to 74 4 are also referred to as Z heads 76 and 74 as necessary.
 Zヘッド72a~72d、及びZヘッド761~764,741~744のそれぞれとしては、例えば、CDドライブ装置などで用いられる光ピックアップと同様の光学式変位センサのヘッドが用いられる。Zヘッド72a~72d、及びZヘッド761~764,741~744のそれぞれは、ウエハテーブルWTBに対し上方から計測ビームを照射し、この反射光を受光して、照射点におけるウエハテーブルWTBの面位置を計測する。なお、本実施形態では、Zヘッドの計測ビームは、前述のスケール391,392を構成する反射型回折格子によって反射される構成を採用している。 As each of the Z heads 72a to 72d and the Z heads 76 1 to 76 4 , 74 1 to 74 4 , for example, an optical displacement sensor head similar to an optical pickup used in a CD drive device or the like is used. Each of the Z heads 72a to 72d and the Z heads 76 1 to 76 4 , 74 1 to 74 4 irradiates the wafer table WTB with a measurement beam from above, receives the reflected light, and receives the wafer table at the irradiation point. The surface position of WTB is measured. In the present embodiment, a configuration is adopted in which the measurement beam of the Z head is reflected by the reflection type diffraction grating constituting the scales 39 1 and 39 2 described above.
 Zヘッド72a~72d,741~744,761~764は、図15に示されるように、信号処理・選択装置170を介して主制御装置20に接続されており、主制御装置20は、信号処理・選択装置170を介してZヘッド72a~72d,741~744,761~764の中から任意のZヘッドを選択して作動状態とし、この作動状態としたZヘッドで検出した面位置情報を選択装置170を介して受け取る。本実施形態では、Zヘッド72a~72d,741~744,761~764と、信号処理・選択装置170とを含んでウエハステージWSTのZ軸方向及びXY平面に対する傾斜方向の位置情報を計測する面位置計測システム180が構成されている。 The Z heads 72a to 72d, 74 1 to 74 4 , and 76 1 to 76 4 are connected to the main controller 20 via the signal processing / selecting device 170 as shown in FIG. The Z head is selected from the Z heads 72a to 72d, 74 1 to 74 4 , and 76 1 to 76 4 via the signal processing / selecting device 170 to be in an activated state. The surface position information detected in (1) is received via the selection device 170. In the present embodiment, positional information in the Z axis direction of wafer stage WST and the tilt direction with respect to the XY plane includes Z heads 72a to 72d, 74 1 to 74 4 , 76 1 to 76 4 and signal processing / selection device 170. A surface position measurement system 180 is measured.
 本実施形態では、主制御装置20は、面位置計測システム180(図14参照)を用いて、ウエハステージWSTの有効ストローク領域、すなわち露光及びアライメント計測のためにウエハステージWSTが移動する領域において、その2自由度方向(Z軸方向及びθy方向)に関する位置情報を計測する。 In the present embodiment, main controller 20 uses surface position measurement system 180 (see FIG. 14) in an effective stroke area of wafer stage WST, that is, in an area where wafer stage WST moves for exposure and alignment measurement. Position information regarding the two degrees of freedom direction (Z-axis direction and θy direction) is measured.
 主制御装置20は、露光時には、少なくとも各1つのZヘッド76j,74i(j,iは1~4のいずれか)の計測値を用いて、ウエハテーブルWTBの表面上の基準点(例えばウエハテーブルWTBの上面と投影光学系PLの光軸AXとの交点)における、ウエハステージWSTの高さZとローリングθyを、例えば米国特許出願第2011/0051108号明細書などに開示される演算により算出する。ただし、θx方向に関する位置情報(ピッチング量)θxは、別のセンサシステム(本実施形態では干渉計システム118)の計測結果を用いる。 At the time of exposure, main controller 20 uses a measurement value of at least one of Z heads 76 j and 74 i (j and i are any one of 1 to 4) and uses a reference point (for example, on the surface of wafer table WTB). The height Z 0 and rolling θy of wafer stage WST at the intersection of the upper surface of wafer table WTB and optical axis AX of projection optical system PL are calculated as disclosed in, for example, US Patent Application No. 2011/0051108. Calculated by However, the position information (pitching amount) θx in the θx direction uses the measurement result of another sensor system (interferometer system 118 in this embodiment).
 主制御装置20は、ウエハW表面のZ軸方向に関する位置情報(面位置情報)の検出(以下、フォーカスマッピングと呼ぶ)時には、スケール391,392に対向する4つのZヘッド72a~72dの計測値を用いて、多点AF系(90a,90b)の複数の検出点の中心におけるウエハテーブルWTBの高さZとローリングθyを、例えば米国特許出願第2011/0051108号明細書などに開示される演算により算出する。なお、先と同様に、θx方向に関する位置情報(ピッチング量)θxは、別のセンサシステム(本実施形態では干渉計システム118)の計測結果を用いる。 The main controller 20 detects the position information (surface position information) on the surface of the wafer W in the Z-axis direction (hereinafter referred to as focus mapping), by using the four Z heads 72a to 72d facing the scales 39 1 and 39 2 . Using the measured values, the height Z 0 and rolling θy of the wafer table WTB at the center of a plurality of detection points of the multipoint AF system (90a, 90b) are disclosed in, for example, US Patent Application No. 2011/0051108. It is calculated by the calculated operation. Similarly to the above, the position information (pitching amount) θx in the θx direction uses the measurement result of another sensor system (interferometer system 118 in the present embodiment).
 ところで、EIコアは、コアと磁性体部材とのギャップに応じて、その発生する吸引力が変動する。従って、本実施形態では、微動ステージ83と粗動ステージ82との相対位置(相対姿勢を含む)の変動によって、二対のEIコアMc,Mcのそれぞれが発生する吸引力が変動することになる。そのため、EIコアが発生する吸引力(駆動力)を高精度に制御するためには、コアと磁性体部材とのギャップを直接的または間接的に計測する必要がある。そこで、本実施形態に係る露光装置100には、粗動ステージ82と微動ステージ83との相対位置を計測する相対位置計測系210(図14及び図15参照)が設けられている。また、相対位置計測系210と、ステージ位置計測系200とによって、計測システム300が構成されている(図14及び図15参照)。 By the way, in the EI core, the generated attractive force varies depending on the gap between the core and the magnetic member. Therefore, in the present embodiment, the suction force generated by each of the two pairs of EI cores Mc 1 and Mc 2 varies depending on the variation in the relative position (including the relative posture) between the fine movement stage 83 and the coarse movement stage 82. become. Therefore, in order to control the attractive force (driving force) generated by the EI core with high accuracy, it is necessary to directly or indirectly measure the gap between the core and the magnetic member. Therefore, the exposure apparatus 100 according to the present embodiment is provided with a relative position measurement system 210 (see FIGS. 14 and 15) that measures the relative position between the coarse movement stage 82 and the fine movement stage 83. The relative position measurement system 210 and the stage position measurement system 200 constitute a measurement system 300 (see FIGS. 14 and 15).
 相対位置計測系210は、前述の4つのEIコアMc,Mc、Mc、Mcのうち、EIコアMc,MCの少なくとも一方に設けられたギャップセンサ212と、EIコアMc,MCの少なくとも一方に設けられたギャップセンサ212と、Z・チルト駆動機構28の3つのアクチュエータ28a~28cそれぞれに設けられたセンサ214とを含む(図15参照)。本実施形態では、相対位置計測系210は、一対のボイスコイルモータMbのそれぞれに設けられた粗動ステージ82と微動ステージ83との相対位置を計測する一対のセンサ216をもさらに含む。 The relative position measurement system 210 includes a gap sensor 212 1 provided in at least one of the EI cores Mc 1 and MC 3 among the four EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 described above, and an EI core Mc. 2, includes a gap sensor 212 2 provided on at least one of MC 4, a sensor 214 provided in each of the three actuators 28a ~ 28c of Z · tilt drive mechanism 28 (see FIG. 15). In the present embodiment, the relative position measurement system 210 further includes a pair of sensors 216 that measure the relative positions of the coarse movement stage 82 and the fine movement stage 83 provided in each of the pair of voice coil motors Mb.
 ギャップセンサ212,212としては、例えば、静電容量センサが用いられる。EIコアMc、MCの少なくとも一方に設けられたギャップセンサ212により、EIコアMc、MCの少なくとも一方を構成するコアTUcと磁性体部材MUcとの間の軸LC1に平行な方向に関するギャップが計測される。一方、EIコアMc、MCの少なくとも一方に設けられたギャップセンサ212により、EIコアMc、MCの少なくとも一方を構成するコアTUcと磁性体部材MUcとの間の軸LC2に平行な方向に関するギャップが計測される。これらの計測結果は主制御装置20に供給され(図15参照)、主制御装置20によって、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するX軸方向及びY軸方向に関する相対位置が求められる。 As the gap sensors 212 1 and 212 2 , for example, electrostatic capacitance sensors are used. The EI core Mc 1, gap sensors 212 1 provided in at least one of MC 3, parallel to the EI core Mc 1, MC 3 core TUC 0 and axis L C1 between the magnetic member MUc making up at least one Gaps for various directions are measured. Meanwhile cores, EI cores Mc 2, MC by the gap sensor 212 2 provided on at least one of the 4 cores, EI cores Mc 2, MC 4 axis L C2 between the core TUC 0 and the magnetic material member MUc making up at least one The gap in the direction parallel to is measured. These measurement results are supplied to the main controller 20 (see FIG. 15), and the main controller 20 determines the relative positions of the fine movement stage 83 (wafer table WTB) with respect to the coarse movement stage 82 in the X axis direction and the Y axis direction. It is done.
 ここで、ギャップセンサ212,212の少なくとも一方に代えて、コアTUcと磁性体部材MUcとの間の上記ギャップ(離間距離)に関連する物理量を計測することで、そのギャップを間接的に計測する各種のセンサを用いても良い。例えば、EIコアMc(n=1,2,3,4)で発生した磁気吸引力を計測する磁気センサなどを用いることができる。 Here, instead of at least one of the gap sensors 212 1 and 212 2 , by measuring a physical quantity related to the gap (separation distance) between the core TUc 0 and the magnetic member MUc, the gap is indirectly measured. Various sensors for measurement may be used. For example, a magnetic sensor or the like that measures the magnetic attractive force generated in the EI core Mc n (n = 1, 2, 3, 4) can be used.
 3つのセンサ214として、例えば、エンコーダが用いられる。3つのセンサ214は、それぞれが設けられたZ・チルト駆動機構28の3つのアクチュエータ28a~28cの固定子と可動子との相対位置を計測する。前述の通り、アクチュエータ28a~28cの固定子は粗動ステージ82に、可動子は微動ステージ83に固定されているので、センサ214の計測結果により粗動ステージ82と微動ステージ83との位置関係を知ることができる。これらの計測結果は主制御装置20に供給され(図14参照)、主制御装置20によって、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するZ軸方向、θx方向、及びθy方向に関する相対位置が求められる。この場合も、センサ214に代えて、粗動ステージ82と微動ステージ83とのギャップ(離間距離)を直接計測するギャップセンサを用いても良い。 As the three sensors 214, for example, encoders are used. The three sensors 214 measure the relative positions of the stator and the mover of the three actuators 28a to 28c of the Z / tilt drive mechanism 28 provided with each of the sensors 214. As described above, since the stators of the actuators 28a to 28c are fixed to the coarse movement stage 82 and the mover is fixed to the fine movement stage 83, the positional relationship between the coarse movement stage 82 and the fine movement stage 83 is determined based on the measurement result of the sensor 214. I can know. These measurement results are supplied to the main controller 20 (see FIG. 14), and the main controller 20 causes the fine movement stage 83 (wafer table WTB) to move relative to the coarse movement stage 82 in the Z-axis direction, the θx direction, and the θy direction. A position is required. Also in this case, instead of the sensor 214, a gap sensor that directly measures the gap (separation distance) between the coarse movement stage 82 and the fine movement stage 83 may be used.
 センサ216としては、エンコーダを用いることができる。エンコーダは、一対のボイスコイルモータMbのそれぞれを構成する固定子部85aと可動子部83bと間のY軸方向の相対位置を計測する。この一対のエンコーダの計測結果は主制御装置20に供給され(図15参照)、主制御装置20により、微動ステージ83(ウエハテーブルWTB)の粗動ステージ82に対するθz方向に関する相対位置が求められる。センサ216として、エンコーダに加えて、ギャップセンサを設けても良い。この場合、ギャップセンサは、一対のボイスコイルモータMbのそれぞれを構成する固定子部85aと可動子部83bとの間のX軸方向のギャップを計測する。この場合も、ギャップセンサに代えて、上記ギャップ(離間距離)に関連する物理量を計測するセンサを用いても良い。 As the sensor 216, an encoder can be used. The encoder measures the relative position in the Y-axis direction between the stator portion 85a and the movable portion 83b constituting each of the pair of voice coil motors Mb. The measurement results of the pair of encoders are supplied to the main controller 20 (see FIG. 15), and the main controller 20 determines the relative position of the fine movement stage 83 (wafer table WTB) with respect to the coarse movement stage 82 in the θz direction. A gap sensor may be provided as the sensor 216 in addition to the encoder. In this case, the gap sensor measures the gap in the X-axis direction between the stator portion 85a and the movable portion 83b that constitute each of the pair of voice coil motors Mb. In this case, a sensor that measures a physical quantity related to the gap (separation distance) may be used instead of the gap sensor.
 図14には、露光装置100の制御系を中心的に構成し、構成各部を統括制御する主制御装置20の入出力関係を示すブロック図が示されている。主制御装置20は、ワークステーション(又はマイクロコンピュータ)等を含み、露光装置100の構成各部を統括制御する。なお、図14においては、前述した照度むらセンサ94、空間像計測器96及び波面収差計測器98など、計測ステージMSTに設けられた各種センサが、纏めてセンサ群99として示されている。また、図15には、図14の構成部分のうち、ステージ装置50の構成各部の詳細構成例が示されている。 FIG. 14 is a block diagram showing the input / output relationship of the main controller 20 that centrally configures the control system of the exposure apparatus 100 and performs overall control of each component. The main controller 20 includes a workstation (or a microcomputer) and the like, and comprehensively controls each part of the exposure apparatus 100. In FIG. 14, various sensors provided on the measurement stage MST such as the illuminance unevenness sensor 94, the aerial image measuring device 96, and the wavefront aberration measuring device 98 described above are collectively shown as a sensor group 99. FIG. 15 shows a detailed configuration example of each component of the stage apparatus 50 among the components shown in FIG.
 上述のようにして構成された本実施形態に係る露光装置では、例えば米国特許出願公開第2009/0268178号明細書の第2の実施形態に開示される露光装置と同様に、大略以下の手順に従って、ウエハステージWSTを用いた通常のシーケンスの処理が、主制御装置20によって実行される。 In the exposure apparatus according to this embodiment configured as described above, for example, in the same manner as the exposure apparatus disclosed in the second embodiment of US Patent Application Publication No. 2009/0268178, the following procedure is generally followed. A normal sequence process using wafer stage WST is executed by main controller 20.
 具体的には、ステップ・アンド・スキャン方式のウエハWの露光終了後、ウエハステージWSTのアンローディングポジションUPに向けての移動が開始される。この移動の途中で、露光中は互いに離れていたウエハステージWSTと計測ステージMSTとが、接触あるいは例えば300μm程度の離間距離を挟んで近接する状態に移行する。ここで、計測テーブルMTB上のFDバー46の-Y側の端面とウエハテーブルWTBの+Y側の端面とが接触あるいは近接する。ウエハステージWSTと計測ステージMSTとが、接触あるいは近接した状態で、ともに-Y方向に移動することにより、投影ユニットPUの下に形成されていた液浸領域14が、計測ステージMST上に移動する。その後、ウエハステージWSTは、計測ステージMSTとの接触あるいは近接した状態を解除し、アンローディングポジションUPに向かって移動する。 Specifically, after the exposure of the step-and-scan wafer W, the movement of the wafer stage WST toward the unloading position UP is started. In the middle of this movement, wafer stage WST and measurement stage MST, which are separated from each other during exposure, shift to a state where they are in contact with each other with a separation distance of about 300 μm, for example. Here, the −Y side end surface of the FD bar 46 on the measurement table MTB and the + Y side end surface of the wafer table WTB are in contact with or close to each other. When wafer stage WST and measurement stage MST are in contact or in close proximity, both move in the −Y direction, so that liquid immersion region 14 formed under projection unit PU moves onto measurement stage MST. . Thereafter, wafer stage WST releases the state of contact with or close to measurement stage MST, and moves toward unloading position UP.
 ウエハステージWSTのアンローディングポジションUPに向けての移動の途中で、エンコーダシステム150の計測結果に基づくウエハステージWSTの駆動(位置制御)が不可能になる直前に、主制御装置20は、干渉計システム118の計測結果に基づくウエハステージWSTの駆動(位置制御)に切り換える。ここで、ウエハステージWSTのX軸方向に関する位置計測には、X干渉計16Xが使用される。 In the middle of movement of wafer stage WST toward unloading position UP, main controller 20 operates interferometer immediately before wafer stage WST can be driven (position control) based on the measurement result of encoder system 150. Switching to driving (position control) of wafer stage WST based on the measurement result of system 118 is performed. Here, the position measurement in the X-axis direction of wafer stage WST, the X interferometer 16X 3 is used.
 ウエハステージWSTのアンローディングポジションUPに移動後、ウエハテーブルWTB上のウエハWのアンロードが行われる。そして、ウエハステージWSTのローディングポジションLPへの移動及びウエハテーブルWTB上への次のウエハWをロードが行われる。 After moving to the unloading position UP of wafer stage WST, unloading of wafer W on wafer table WTB is performed. Then, movement of wafer stage WST to loading position LP and loading of the next wafer W onto wafer table WTB are performed.
 上記のウエハテーブルWTB上のウエハ交換動作と並行して、計測ステージMSTに支持されたFDバー46のXY平面内での位置調整と、4つのセカンダリアライメント系AL21~AL24のベースライン計測とが行われる。ここで、FDバー46のθz方向の位置(回転)情報を計測するために、前述のYエンコーダ70G,70Hが使用される。 In parallel with the wafer exchange operation on the wafer table WTB, the position adjustment of the FD bar 46 supported by the measurement stage MST in the XY plane and the baseline measurement of the four secondary alignment systems AL2 1 to AL2 4 Is done. Here, in order to measure the position (rotation) information of the FD bar 46 in the θz direction, the Y encoders 70G and 70H described above are used.
 次に、ウエハステージWSTが駆動され、計測プレート30上の基準マークFMがプライマリアライメント系AL1の検出視野内に位置決めされ、プライマリアライメント系AL1のベースライン計測の前半の処理が行われる。このとき、2つのXヘッド及び2つのYヘッドが、それぞれスケール391,392に対向し、ウエハステージWSTの駆動(位置制御)に用いられる計測系が、干渉計システム118からエンコーダシステム150(エンコーダ70E,70F)に切り換えられる。 Next, wafer stage WST is driven, reference mark FM on measurement plate 30 is positioned within the detection field of primary alignment system AL1, and the first half of the baseline measurement of primary alignment system AL1 is performed. At this time, the two X heads and the two Y heads respectively face the scales 39 1 and 39 2 , and the measurement system used for driving (position control) of the wafer stage WST is changed from the interferometer system 118 to the encoder system 150 ( The encoders 70E and 70F) are switched.
 その後、プライマリアライメント系AL1とセカンダリアライメント系AL21~AL24を用いたウエハアライメント(EGA)が実行される。 Thereafter, wafer alignment (EGA) is performed using primary alignment system AL1 and secondary alignment systems AL2 1 to AL2 4 .
 本実施形態では、ウエハアライメントを開始するまでに、ウエハステージWSTと計測ステージMSTとは接触又は近接した状態へ移行している。ウエハステージWSTと計測ステージMSTとは接触又は近接した状態で、+Y方向への移動が開始され、その移動の途中で、液浸領域14の液体Lqは、計測テーブルMTB上からウエハテーブルWTB上に移動する。 In this embodiment, the wafer stage WST and the measurement stage MST are in contact or close to each other before the wafer alignment is started. Wafer stage WST and measurement stage MST are in contact with or in close proximity to each other, and movement in the + Y direction is started. During the movement, liquid Lq in liquid immersion region 14 moves from measurement table MTB to wafer table WTB. Moving.
 上述のウエハアライメント(EGA)と並行して、フォーカスマッピングが行われる。また、ウエハアライメント及びフォーカスマッピングの進行に伴い、ウエハステージWSTが所定の位置に来たとき、空間像計測装置45A、45Bを用いてウエハテーブルWTBのXY位置に対するレチクル上マークの投影像の強度分布を計測する処理(すなわち、プライマリアライメント系AL1のベースライン計測の後半の処理)が行われる。この結果と、前述のプライマリアライメント系AL1のベースライン計測の前半の処理の結果とに基づいて、プライマリアライメント系AL1のベースラインが求められる。 フ ォ ー カ ス Focus mapping is performed in parallel with the wafer alignment (EGA) described above. Further, when the wafer stage WST comes to a predetermined position as the wafer alignment and focus mapping progress, the intensity distribution of the projected image of the mark on the reticle with respect to the XY position of the wafer table WTB using the aerial image measuring devices 45A and 45B. (That is, the latter half of the baseline measurement of the primary alignment system AL1) is performed. Based on this result and the result of the first half of the baseline measurement of the primary alignment system AL1, the baseline of the primary alignment system AL1 is obtained.
 以上の作業が終了後、ウエハステージWSTと計測ステージMSTとは接触又は近接した状態が解除され、ステップ・アンド・スキャン方式の露光が行われ、ウエハW上にレチクルパターンが転写される。以降、同様の動作が繰り返し実行される。 After the above operations are completed, the contact or proximity state between wafer stage WST and measurement stage MST is released, step-and-scan exposure is performed, and a reticle pattern is transferred onto wafer W. Thereafter, the same operation is repeatedly executed.
 上記のステップ・アンド・スキャン方式の露光は、前述のウエハアライメント(例えばEGA)等の結果に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTを移動するショット間ステッピングと、各ショット領域に対してレチクルRに形成されたパターンを走査露光方式で転写する前述の走査露光と、を繰り返すことにより行われる。 In the step-and-scan exposure described above, the wafer stage is moved to the scan start position (acceleration start position) for exposure of each shot area on the wafer W based on the result of the above-described wafer alignment (for example, EGA). It is performed by repeating the stepping between shots moving in the WST and the above-described scanning exposure in which the pattern formed on the reticle R is transferred to each shot region by the scanning exposure method.
 本実施形態では、主制御装置20は、ステップ・アンド・スキャン方式でウエハWを露光する際に、エンコーダシステム150を構成する複数のXヘッド65X、64X及びYヘッド65Y、64Yのうち、ウエハステージWSTの移動に伴って、スケール391,392に対向するXヘッド、Yヘッド、及び面位置計測システム180を構成する複数のZヘッド76、74のうち、ウエハステージWSTの移動に伴って、スケール391,392に対向するZヘッド(及びZ干渉計16Z)を用いて、前述の如く、ウエハテーブルWTBの5自由度方向(X軸、Y軸、θz、Z軸及びθyの各方向)に関する位置情報を計測する。また、主制御装置20は、前述のY干渉計16を用いて、ウエハテーブル(ウエハステージWST)のθx方向の位置情報(ピッチング量)を計測する。主制御装置20は、上記のウエハテーブルWTBの6自由度方向の位置情報(計測結果)に基づいて、ウエハテーブルWTBを6自由度方向に駆動する。その際、主制御装置20は、事前にフォーカスマッピングで得られた情報、すなわちウエハWの多点AF系(90a,90b)の各検出点における面位置情報を、左計測点(Zヘッド72a、72bの計測点の中心点)の面位置と右計測点(Zヘッド72c、72dの計測点の中心点)の面位置とを結ぶ直線を基準とする面位置データに換算した換算データと、上記のスケール391,392に対向するZヘッド76、74で計測されるウエハテーブルWTBのZ位置とXY平面に対する傾斜(主としてθy回転)とに基づいて、露光中、投影光学系PLの焦点深度の範囲内にウエハW表面の照明光ILが照射される部分(露光領域IAに対応する領域部分)を一致させるためのウエハテーブルWTBのZ軸方向、θy方向(及びθx方向)の位置の制御(ウエハWのフォーカス・レベリング制御)を行う。 In the present embodiment, the main controller 20 exposes the wafer stage among the plurality of X heads 65X, 64X and Y heads 65Y, 64Y constituting the encoder system 150 when exposing the wafer W by the step-and-scan method. Along with the movement of the wafer stage WST, among the plurality of Z heads 76 and 74 constituting the X head, the Y head, and the surface position measurement system 180 facing the scales 39 1 and 39 2 along with the movement of the WST, Using the Z head (and the Z interferometer 16Z) facing the scales 39 1 and 39 2 , as described above, the five degrees of freedom direction (X axis, Y axis, θz, Z axis, and θy directions) of the wafer table WTB. ) Is measured. Further, main controller 20 measures the position information (pitching amount) in the θx direction of the wafer table (wafer stage WST) using Y interferometer 16 described above. Main controller 20 drives wafer table WTB in the 6-degree-of-freedom direction based on the position information (measurement result) of wafer table WTB in the 6-degree-of-freedom direction. At that time, main controller 20 obtains information obtained in advance by focus mapping, that is, surface position information at each detection point of multi-point AF system (90a, 90b) of wafer W as a left measurement point (Z head 72a, Conversion data converted into plane position data based on a straight line connecting the plane position of the plane position of the measurement point 72b) and the plane position of the right measurement point (center point of the measurement points of the Z heads 72c, 72d), and the above Of the projection optical system PL during exposure based on the Z position of the wafer table WTB measured by the Z heads 76 and 74 facing the scales 39 1 and 39 2 and the inclination (mainly θy rotation) with respect to the XY plane. In the Z-axis direction, θy direction (and θx direction) of wafer table WTB for matching the portion irradiated with illumination light IL on the surface of wafer W (region portion corresponding to exposure region IA). Controlling the location (focus leveling control of wafer W).
 本実施形態では、ステップ・アンド・スキャン方式の露光におけるウエハステージWSTの移動経路は、ウエハWのショットマップ(ショット領域のサイズ及び配置)に応じて一意に定められている。図16には、一例として、26個のショット領域S(m=1~26)を有するウエハWに対する上記露光におけるウエハステージWSTの移動経路が示されている。この移動経路は、露光中心(露光領域IAの中心)の開始位置Bから終了位置Eまでの移動経路(以下、移動経路BEと呼ぶ)である。ステップ・アンド・スキャン方式の露光において、露光中心は、開始位置Bから、移動経路BEに沿って、終了位置Eまで、停止することなく、ウエハWに対して移動する。なお、実際には、露光中心が固定で、ウエハWが、移動経路BEとは、逆の経路に沿って移動するが、ここでは、説明を分かり易くする等のため、露光中心が移動経路BEに沿ってウエハW上を移動するものとしている。 In the present embodiment, the movement path of wafer stage WST in step-and-scan exposure is uniquely determined according to the shot map (size and arrangement of shot areas) of wafer W. FIG. 16 shows, as an example, a moving path of wafer stage WST in the above-described exposure for wafer W having 26 shot regions S m (m = 1 to 26). This movement path is a movement path (hereinafter referred to as movement path BE) from the start position B to the end position E of the exposure center (center of the exposure area IA). In step-and-scan exposure, the exposure center moves relative to the wafer W from the start position B to the end position E along the movement path BE without stopping. Actually, the exposure center is fixed, and the wafer W moves along a path opposite to the movement path BE. Here, for the sake of easy understanding, the exposure center is moved to the movement path BE. Along the wafer W.
 図16中に実線で示されるY軸に平行な直線区間では、それぞれのショット領域を走査露光するために、ウエハステージWSTは等速で駆動(走査駆動)される。また、直線区間を繋ぐ破線で示される曲線区間では、あるショット領域Sに対する走査露光が終了し、次のショット領域Sm+1に対する走査露光を開始するために、ウエハステージWSTは非走査方向(X軸方向)にステッピング(ステップ駆動)される。このステッピングと並行して、ウエハステージWSTは、走査方向に関して速度ゼロまで減速され、さらに逆向きに加速される。 In the linear section parallel to the Y axis shown by the solid line in FIG. 16, wafer stage WST is driven (scanned) at a constant speed in order to scan and expose each shot area. In a curved section indicated by a broken line connecting the straight sections, the scanning exposure for a certain shot area S m is completed, and the scanning exposure for the next shot area S m + 1 is started. Stepping (step driving) is performed in the axial direction. In parallel with this stepping, wafer stage WST is decelerated to zero speed in the scanning direction and further accelerated in the opposite direction.
 ステップ・アンド・スキャン方式の露光動作に際し、主制御装置20は、平面モータMaを用いて粗動ステージ82を駆動するとともに、レチクルステージRSTと同期駆動するために高い制御性能が必要となる走査露光時には、一対のボイスコイルモータMbを用いて微動ステージ83を微小駆動する。一方、微動ステージ83の高い制御性能は必要としないが、高い(大きな)駆動力を必要とするステッピング時には、EIコアMc、Mc、Mc、Mcの少なくとも1つを用いて、微動ステージ83を微小駆動する。本実施例において、前述の軸Lc1,Lc2の方向は、ステッピング時におけるウエハステージWSTの最大加速度方向に応じて設定されているので、大きな駆動力を発生することができるEIコアを用いて効率的に微動ステージ83を駆動することができる。これにより、レチクルステージRSTとの高い同期精度を維持しつつ、ウエハステージWSTの高速ステッピングが可能となる。 In the step-and-scan exposure operation, main controller 20 drives coarse movement stage 82 using planar motor Ma, and scanning exposure that requires high control performance to drive synchronously with reticle stage RST. At times, the fine movement stage 83 is finely driven using a pair of voice coil motors Mb. On the other hand, high control performance of the fine movement stage 83 is not required, but at the time of stepping that requires high (large) driving force, fine movement is performed using at least one of the EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4. The stage 83 is finely driven. In this embodiment, the directions of the axes L c1 and L c2 are set according to the maximum acceleration direction of the wafer stage WST at the time of stepping. Therefore, an EI core that can generate a large driving force is used. The fine movement stage 83 can be driven efficiently. This enables high-speed stepping of wafer stage WST while maintaining high synchronization accuracy with reticle stage RST.
 上記のウエハWのフォーカス・レベリング制御を行う際、各ショット領域の走査露光の開始に先立って、そのフォーカス・レベリング制御開始の制御遅れを回避するため、ステッピング中にウエハテーブルWTBがZ軸方向及び/又は傾斜方向に駆動されることがある。この場合、特にθy方向又はθx方向に駆動されると、微動ステージ83の駆動(位置制御)に用いられるEIコア(EIコアMc、Mc、Mc、Mcの少なくとも1つ)のコアTUcと磁性体部材MUcとのギャップが不均一(例えば、コアTUcの上端と下端とで異なる)となる。このような場合、EIコアが発生する吸引力を正確に予測しウエハテーブルWTBを要求される精度で駆動することが困難になる。同様の状況は、微動ステージ83と粗動ステージ82との相対的なθz方向の回転によっても生じる。そこで、主制御装置20は、例えば干渉計システム118によって計測されるウエハテーブルWTBのθx方向、θy方向およびθz方向に関する位置情報と、前述の相対位置計測系210によって計測される微動ステージ83と粗動ステージ82との相対位置情報とに基づいて、微動ステージ83の駆動に用いられるEIコアMc(EIコアMc、Mc、Mc、Mcの少なくとも1つ)、及び平面モータMaをそれぞれ介して微動ステージ83及び粗動ステージ82を、一緒に傾斜方向、すなわちθy方向、θx方向およびθz方向の少なくとも一方向に駆動する。これにより、微動ステージ83と粗動ステージ82とが相対的に傾斜することなく、制御に用いられるEIコアMcのコアTUcと磁性体部材とのギャップを所定の位置関係(例えばコアの全面に対してほぼ均一)に維持することができる。ここで、所定の位置関係とは、EIコアMcの制御が担保できる範囲を意味する。すなわち、EIコアが発生する吸引力を正確に予測できる範囲のギャップに維持することができれば良く、常に完全な均一性を維持する必要はない。 When performing the above-described focus / leveling control of the wafer W, prior to the start of the scanning exposure of each shot area, in order to avoid a control delay in the start of the focus / leveling control, the wafer table WTB is moved in the Z-axis direction and during the stepping. It may be driven in the tilt direction. In this case, the core of the EI core (at least one of the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 ) used for driving (position control) of the fine movement stage 83, particularly when driven in the θy direction or the θx direction. The gap between TUc 0 and the magnetic member MUc is non-uniform (for example, different between the upper end and the lower end of the core TUc 0 ). In such a case, it becomes difficult to accurately predict the suction force generated by the EI core and drive the wafer table WTB with the required accuracy. A similar situation is also caused by the relative rotation of the fine movement stage 83 and the coarse movement stage 82 in the θz direction. Therefore, main controller 20, for example, position information regarding the θx direction, θy direction, and θz direction of wafer table WTB measured by interferometer system 118, fine movement stage 83 and coarse movement stage 83 measured by relative position measurement system 210 described above. based on the relative position information of a moving stage 82, (at least one of EI cores Mc 1, Mc 2, Mc 3, Mc 4) EI core Mc used to drive the fine movement stage 83, and a planar motor Ma, respectively Then, the fine movement stage 83 and the coarse movement stage 82 are driven together in at least one direction of the tilt direction, that is, the θy direction, the θx direction, and the θz direction. Thus, without the fine movement stage 83 and the coarse movement stage 82 is inclined relative, the gap of the core TUC 0 and the magnetic member of the EI core Mc used to control a predetermined positional relationship (for example, the entire surface of the core Can be maintained substantially uniform). Here, the predetermined positional relationship means a range in which the control of the EI core Mc can be secured. That is, it is only necessary to maintain a gap within a range in which the suction force generated by the EI core can be accurately predicted, and it is not always necessary to maintain perfect uniformity.
 なお、ウエハWのフォーカス・レベリング制御におけるθy方向、θx方向の駆動、およびθz方向の駆動量が、EIコアMcの制御を担保できる範囲内で収まる場合には、必ずしも微動ステージ83と粗動ステージ82とを同期させて傾斜させなくても良い。 When the driving amount in the θy direction, the θx direction, and the driving amount in the θz direction in the focus / leveling control of the wafer W are within the range in which the control of the EI core Mc can be secured, the fine movement stage 83 and the coarse movement stage are not necessarily required. It is not necessary to incline and synchronize with 82.
 主制御装置20は、ウエハステージWSTをステップ駆動する際に、EIコアMcとともに一対のボイスコイルモータMbを用いて微動ステージ83を駆動しても良い。この場合、主制御装置20は、ウエハステージWSTのステップ駆動が終了するのに先立って、EIコアMcによる駆動力(吸引力)の発生を停止しても良い。このようにすると、EIコアMcによる残存駆動力が、走査露光に悪影響を与えることを回避することが可能になる。ステップ駆動中に、EIコアMcと一対のボイスコイルモータMbを併用する場合、EIコアMcによる駆動力の発生が停止されるまでの期間ではその大部分でEIコアMcが、一対のボイスコイルモータMbよりも大きな駆動力を発生するのが好ましい。 Main controller 20 may drive fine movement stage 83 using a pair of voice coil motors Mb together with EI core Mc when stepping wafer stage WST. In this case, main controller 20 may stop generating the driving force (suction force) by EI core Mc prior to the end of step driving of wafer stage WST. In this way, it is possible to avoid the remaining driving force by the EI core Mc from adversely affecting the scanning exposure. When the EI core Mc and the pair of voice coil motors Mb are used in combination during the step drive, the EI core Mc is largely paired with the pair of voice coil motors until the generation of the driving force by the EI core Mc is stopped. It is preferable to generate a driving force larger than Mb.
 前述の通り、EIコアが発生する吸引力を高精度に制御するためには、コアと磁性体部材とのギャップを計測し、計測されたギャップに応じて各電磁石TUcのコイルに流れる電流量を制御する必要がある。本実施形態において、主制御装置20は、前述の相対位置計測系210のギャップセンサ212、212及びセンサ214等の計測結果に基づいて、各電磁石TUcのコイルに流れる電流量を制御する。これにより、電磁石TUcと磁性体部材MUcとの間のギャップに応じて駆動力(吸引力)を制御して、微動ステージ83(ウエハテーブルWTB)を精密駆動することが可能になる。EIコアMcのキャップ制御については、例えば米国特許出願公開第2005/0162802号明細書に開示されている。この米国特許出願公開明細書には、1つのIコアを挟んで両側に配置された一対のEコアを有するE-I-Eコア・アセンブリを例としてギャップ制御について開示されている。また、この明細書には、「EコアとIコアとの間の相対位置を操作することによってオフセット・ギャップ制御は機能すること」、及び「租動ステージに取り付けられたアクチュエータ又は複数のアクチュエータは、位置操作を行うために使用しても良い。」ことなどが開示されている。また、この明細書には、「第1Eコア、第2Eコア、及びIコア等の位置を計測するためのセンサ(干渉計でも、キャップセンサでも、光学センサでも良い)は、これらのエレメントを制御するために位置情報をコントローラに送っても良く、ひいては、これらのセンサは相対ギャップ距離の操作に用いても良い。」ことなども開示されている。上記米国特許出願公開第2005/0162802号明細書に開示されているE-I-Eコア・アセンブリについてのギャップ制御の方法は、本実施形態に係るEIコアのギャップ制御にも適用することができる。 As described above, in order to control the attractive force generated by the EI core with high accuracy, the gap between the core and the magnetic member is measured, and the amount of current flowing through the coil of each electromagnet TUc is determined according to the measured gap. Need to control. In the present embodiment, the main controller 20 controls the amount of current flowing through the coils of the electromagnets TUc based on the measurement results of the gap sensors 212 1 and 212 2 and the sensor 214 of the relative position measurement system 210 described above. Thereby, it becomes possible to precisely drive fine movement stage 83 (wafer table WTB) by controlling the driving force (attraction force) according to the gap between electromagnet TUc and magnetic body member MUc. The cap control of the EI core Mc is disclosed in, for example, US Patent Application Publication No. 2005/0162802. This U.S. Patent Application Publication discloses gap control by taking, as an example, an EIE core assembly having a pair of E cores disposed on both sides of a single I core. This specification also states that "offset gap control works by manipulating the relative position between the E core and the I core" and "the actuator or actuators attached to the taxi stage are , May be used to perform a position operation ”. This specification also states that “sensors for measuring the positions of the first E core, the second E core, the I core, etc. (which may be interferometers, cap sensors, or optical sensors) control these elements. In order to do so, position information may be sent to the controller, and thus these sensors may be used to manipulate the relative gap distance. " The gap control method for the EI core assembly disclosed in the above-mentioned US Patent Application Publication No. 2005/0162802 can also be applied to the EI core gap control according to the present embodiment. .
 主制御装置20は、微動ステージ83(ウエハテーブルWTB)を走査駆動する際にも、走査駆動中の少なくとも一部で、一対のボイスコイルモータMbとともに、EIコアMcを用いても良い。この場合、両者の併用期間中の大部分で一対のボイスコイルモータMbがEIコアMcよりも大きな駆動力を発生するように、主制御装置20は、両者の駆動力を制御する。これにより、EIコアの制御性能の低さが微動ステージ83(ウエハテーブルWTB)の制御性に影響を与えることをほぼ確実に防止することができるとともに、補助的な駆動力を加えることで高速での走査駆動が可能になる。 The main controller 20 may use the EI core Mc together with the pair of voice coil motors Mb at least partly during the scanning drive even when the fine movement stage 83 (wafer table WTB) is driven to scan. In this case, main controller 20 controls both of the driving forces so that the pair of voice coil motors Mb generates a driving force larger than that of EI core Mc in most of the combined period of both. As a result, it is possible to almost certainly prevent the low control performance of the EI core from affecting the controllability of the fine movement stage 83 (wafer table WTB), and at the same time, by applying an auxiliary driving force. Scanning driving becomes possible.
 以上説明したように、本実施形態に係る露光装置100及び該露光装置100が備えるステージ装置50によると、平面モータMaによりウエハステージWSTを構成する粗動ステージ82がステージベース13に対して駆動され、粗動ステージ82のX軸方向の一側と他側のそれぞれに設けられた一対のボイスコイルモータMbと、X軸及びY軸にそれぞれに交差する軸Lc1,Lc2のそれぞれの一側と他側に設けられた二対のEIコアMc、Mc、Mc、Mcとにより、微動ステージ83(ウエハテーブルWTB)が粗動ステージ82に対して駆動される。これにより、ウエハWを保持するウエハテーブルWTBをステージベース13に対して精密に駆動することが可能となるとともに、ボイスコイルモータMb及びEIコアMc、Mc、Mc、Mcを粗動ステージ82のスライダ部82aの上面にその外部にはみ出すこと無くコンパクトに配置することができ、ウエハステージの軽量化及び小型化を図ることが可能となる。 As described above, according to the exposure apparatus 100 and the stage apparatus 50 provided in the exposure apparatus 100 according to the present embodiment, the coarse movement stage 82 constituting the wafer stage WST is driven with respect to the stage base 13 by the planar motor Ma. A pair of voice coil motors Mb provided on one side and the other side of the coarse movement stage 82 in the X-axis direction, and one side of each of the axes L c1 and L c2 intersecting the X-axis and the Y-axis, respectively. Fine movement stage 83 (wafer table WTB) is driven with respect to coarse movement stage 82 by two pairs of EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 provided on the other side. As a result, the wafer table WTB holding the wafer W can be precisely driven with respect to the stage base 13, and the voice coil motor Mb and the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 are coarsely moved. It can be compactly arranged on the upper surface of the slider portion 82a of the stage 82 without protruding to the outside, and the weight and size of the wafer stage can be reduced.
 また、本実施形態に係る露光装置100によると、粗動ステージ82の駆動源として平面モータMaを採用し、これに併せて微動ステージ83の駆動源として一対のボイスコイルモータMb及びEIコアMc、Mc、Mc、Mcを併用することした。そして、EIコアMc、Mc、Mc、Mcが発生する駆動力(吸引力)の方向(軸Lc,Lcに平行な方向)が、ステッピング時におけるウエハステージWSTの最大加速度方向に応じて設定されている。これにより、主にステッピング時に必要となるX軸及びY軸それぞれに交差する方向の駆動力を効率的に発生することができ、ひいてはEIコアを軽量化することができる。更に、パターンの高い重ね合わせ精度を維持しつつ、ウエハステージWSTの高速ステッピングが可能となる。 Further, according to the exposure apparatus 100 according to the present embodiment, the planar motor Ma is adopted as a driving source for the coarse movement stage 82, and a pair of the voice coil motor Mb and the EI core Mc 1 are used as the driving source for the fine movement stage 83 at the same time. , Mc 2 , Mc 3 and Mc 4 were used in combination. The direction of the driving force (suction force) generated by the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 (direction parallel to the axes Lc 1 , Lc 2 ) is the maximum acceleration direction of the wafer stage WST during stepping. It is set according to. As a result, it is possible to efficiently generate the driving force in the direction intersecting with each of the X axis and the Y axis, which is mainly required at the time of stepping, and the EI core can be reduced in weight. Further, high-speed stepping of wafer stage WST is possible while maintaining high pattern overlay accuracy.
 また、本実施形態の露光装置100では、例えばウエハステージWSTのステップ駆動時に、主制御装置20は、ステージ位置計測系200によって計測されるウエハテーブルWTB(微動ステージ83)の投影光学系PL及びこれを保持するメインフレームを基準とする位置情報に基づいて、微動ステージ駆動系34を介してウエハテーブルWTBを例えばθx及びθy方向のうちの少なくとも一方向に微小駆動する際、これと並行して、ウエハテーブルWTB(微動ステージ83)と粗動ステージ82との所定の位置関係が維持されるように、相対位置計測系210によって計測されるウエハテーブルWTB(微動ステージ83)と粗動ステージ82との相対位置情報に基づいて、平面モータMaを介して粗動ステージ82が、上記少なくとも一方向に微小駆動する。これにより、粗動ステージ82と微動ステージ83との間の相対姿勢の変化によるEIコアMc、Mc、Mc、Mcの駆動性能(制御性能)の低下を招くことなく、ウエハを保持する微動ステージ83(ウエハテーブルWTB)をステージベース13に対して精密に駆動することが可能となる。 In the exposure apparatus 100 of the present embodiment, for example, when the wafer stage WST is step-driven, the main controller 20 projects the projection optical system PL of the wafer table WTB (fine movement stage 83) measured by the stage position measurement system 200 and this. In parallel with this, when the wafer table WTB is finely driven in at least one of the θx and θy directions, for example, via the fine movement stage drive system 34 based on position information with reference to the main frame holding the Wafer table WTB (fine movement stage 83) and coarse movement stage 82 measured by relative position measurement system 210 are maintained so that a predetermined positional relationship between wafer table WTB (fine movement stage 83) and coarse movement stage 82 is maintained. Based on the relative position information, the coarse movement stage 82 is reduced by the planar motor Ma. Both are finely driven in one direction. As a result, the wafer is held without deteriorating the drive performance (control performance) of the EI cores Mc 1 , Mc 2 , Mc 3 , and Mc 4 due to the change in the relative posture between the coarse motion stage 82 and the fine motion stage 83. The fine movement stage 83 (wafer table WTB) to be driven can be precisely driven with respect to the stage base 13.
 また、本実施形態に係る露光装置100によると、上述のウエハWを保持する微動ステージ83(ウエハテーブルWTB)の駆動により、高い重ね合わせ精度及び高いスループットでウエハW上の各ショット領域に、レチクルRのパターンを高精度に形成することが可能となる。また、露光装置100によると、液浸露光により高解像度の露光が行われる。 In addition, according to the exposure apparatus 100 according to the present embodiment, the fine movement stage 83 (wafer table WTB) that holds the wafer W described above is driven, so that the reticle is placed on each shot area on the wafer W with high overlay accuracy and high throughput. An R pattern can be formed with high accuracy. Further, according to the exposure apparatus 100, high-resolution exposure is performed by liquid immersion exposure.
 なお、上記実施形態では、ウエハステージWSTが、微動ステージ83の本体部83aの中心に関し軸Lcに平行な方向の一側と他側に配置された一対のEIコアMc、MCと、微動ステージ83の中心に関し軸Lcに平行な方向の一側と他側に配置された一対のEIコアMc、Mcとを備える場合について説明した。しかし、これに限らず、一対のEIコアMc、MC及び一対のEIコアMc、Mcの一方のみが設けられていても良い。また、上記実施形態では、粗動ステージ82と微動ステージ83(より正確には本体部83a)との間にX軸及びY軸方向の直交2軸方向の駆動力を作用させるボイスコイルモータMbが、微動ステージ83(より正確には本体部83a)を挟んでX軸方向の一側と他側に各1つ配置される場合について説明したが、これに限らず、ボイスコイルモータMbは、本体部83aを挟んでX軸方向の一側と他側にそれぞれ複数配置されていても良いし、本体部83aに1つのみ設けられていても良い。後者の場合には、微動ステージ83が粗動ステージ82に対してθz方向に不必要に回転するのを防止するための装置を設け、微動ステージ83のθz方向の回転は、平面モータMaによって行っても良い。 In the above embodiment, the wafer stage WST has a pair of EI cores Mc 1 and MC 3 disposed on one side and the other side in the direction parallel to the axis Lc 1 with respect to the center of the main body 83a of the fine movement stage 83; The case where a pair of EI cores Mc 2 and Mc 4 arranged on one side and the other side in the direction parallel to the axis Lc 2 with respect to the center of the fine movement stage 83 has been described. However, the present invention is not limited to this, and only one of the pair of EI cores Mc 1 and MC 3 and the pair of EI cores Mc 2 and Mc 4 may be provided. In the above embodiment, the voice coil motor Mb that applies the driving force in the two orthogonal directions in the X-axis and Y-axis directions between the coarse movement stage 82 and the fine movement stage 83 (more precisely, the main body 83a) is provided. In the above description, the fine movement stage 83 (more precisely, the main body portion 83a) is interposed between the one side and the other side in the X-axis direction. A plurality of parts may be arranged on one side and the other side of the X-axis direction with the part 83a interposed therebetween, or only one may be provided on the main body part 83a. In the latter case, a device for preventing the fine movement stage 83 from rotating unnecessarily in the θz direction relative to the coarse movement stage 82 is provided, and the fine movement stage 83 is rotated by the planar motor Ma. May be.
 また、上記実施形態では、X軸方向及びY軸方向に沿った駆動力を粗動ステージ82と微動ステージ83との間に作用させる第1アクチュエータとしてローレンツ力(電磁力)駆動方式のボイスコイルモータMbが用いられ、X軸方向及びY軸方向のそれぞれに交差しXY平面に平行な軸Lc、Lcに平行な方向に沿った駆動力を粗動ステージ82と微動ステージ83との間に作用させる第2アクチュエータとしてEIコアが用いられる場合について説明した。しかし、これに限らず、第1アクチュエータは第2アクチュエータよりも高精度であり、かつ第2アクチュエータは第1アクチュエータよりも高効率であれば、その他のアクチュエータの組み合わせであっても良い。例えば、第1アクチュエータはローレンツ力駆動方式以外の2次元リニアアクチュエータであっても良いし、第2アクチュエータは、磁気力以外の吸引力又は斥力を発生する1次元アクチュエータであっても良い。 In the above-described embodiment, the Lorentz force (electromagnetic force) driving type voice coil motor is used as the first actuator that causes the driving force along the X-axis direction and the Y-axis direction to act between the coarse movement stage 82 and the fine movement stage 83. Mb is used, and a driving force is applied between the coarse movement stage 82 and the fine movement stage 83 along the directions parallel to the axes Lc 1 and Lc 2 that intersect the X-axis direction and the Y-axis direction and are parallel to the XY plane. The case where the EI core is used as the second actuator to be operated has been described. However, the present invention is not limited to this, and the first actuator may be a combination of other actuators as long as the first actuator is more accurate than the second actuator and the second actuator is more efficient than the first actuator. For example, the first actuator may be a two-dimensional linear actuator other than the Lorentz force driving method, and the second actuator may be a one-dimensional actuator that generates an attractive force or a repulsive force other than the magnetic force.
 また、上記実施形態では、第1アクチュエータと第2アクチュエータとが設けられた構成について説明したが、第1アクチュエータは設けられず、第2アクチュエータのみが設けられていても良い。 In the above embodiment, the configuration in which the first actuator and the second actuator are provided has been described. However, the first actuator may not be provided, and only the second actuator may be provided.
 なお、上記実施形態では、EIコア(磁性体部材MUc及び電磁石TUc)を、XY平面内で略円形状のウエハホルダWHよりも外側に配置する構成が採用されているが、これに限定されるものではない。例えば、ウエハホルダを所定の半径の円形と想定した場合、その外周縁(輪郭)の内側にEIコアの少なくとも一部が配置されるようにしても良い。外周縁(輪郭)の内側としては、ウエハホルダWHの中心(あるいは本体部83aの中心)からウエハホルダWH外周縁までの距離(ウエハホルダの半径)のうち、例えば、中心からその半径の6割、7割、8割、9割、といった位置で、且つその中心部側を除く位置とすることができる。 In the above embodiment, the EI core (the magnetic member MUc and the electromagnet TUc) is disposed outside the substantially circular wafer holder WH in the XY plane. However, the present invention is not limited to this. is not. For example, when the wafer holder is assumed to be circular with a predetermined radius, at least a part of the EI core may be arranged inside the outer peripheral edge (contour). As the inner side of the outer peripheral edge (contour), for example, 60% or 70% of the radius from the center to the distance (the radius of the wafer holder) from the center of the wafer holder WH (or the center of the main body 83a) to the outer peripheral edge of the wafer holder WH. , 80%, 90%, and the position excluding the center side.
 ここで、前述のように、ステージ本体81(粗動ステージ82)の中央には、自重キャンセラ29や支持部材88、3本のピン88a、駆動装置89等が配置されているので、それらを避けて、EIコアMC(磁性体部材MUc及び電磁石TUc)を、図17に示されるように、ウエハホルダWHの外周縁(輪郭)の内側、例えば、3本のピン88aよりも外周側に配置しても良い。EIコアMCを、XY平面内でウエハホルダWHよりも完全に外側に配置しない場合、両者の位置的な干渉を避けるために、図17に示されるように、Z軸方向に関して、EIコアMCの少なくとも一部をウエハホルダWHの下に配置することができる。その場合、ウエハホルダWHとEIコアMCの配置位置に高さ方向(Z方向)の差をつけることができるため、EIコアMCによる駆動力を微動ステージ83のウエハホルダWH以外の部分(微動ステージ83の少なくとも一部)に作用させることができる。そのため、前記駆動力が原因でウエハホルダWHに歪みが生じるのを防止することができる。 Here, as described above, the self-weight canceller 29, the support member 88, the three pins 88a, the driving device 89, and the like are disposed in the center of the stage main body 81 (coarse movement stage 82). As shown in FIG. 17, the EI core MC n (the magnetic member MUc and the electromagnet TUc) is arranged inside the outer peripheral edge (contour) of the wafer holder WH, for example, on the outer peripheral side from the three pins 88a. May be. The EI core MC n, if not completely positioned outside the wafer holder WH in the XY plane, in order to avoid positional interference between them, as shown in FIG. 17, the Z-axis direction, EI core MC n At least a portion of the wafer can be disposed under the wafer holder WH. In that case, since a difference in the height direction (Z direction) can be given to the arrangement position of the wafer holder WH and the EI core MC n , the driving force by the EI core MC n is applied to a portion other than the wafer holder WH of the fine movement stage 83 (fine movement stage 83 at least a part). Therefore, it is possible to prevent the wafer holder WH from being distorted due to the driving force.
 また、上記実施形態では、ウエハテーブルWTB(及び計測ステージMST)の位置を計測するステージ位置計測系200の他、粗動ステージ82と微動ステージ83との相対位置を計測する相対位置計測系210が設けられた場合について説明した。しかし、これに限らず、相対位置計測系に代えて、粗動ステージ82の6自由度方向の位置を投影光学系PL又はこれを保持するメインフレームを基準として計測する粗動ステージ位置計測系を設けても良い。このようにすると、主制御装置20は、ステージ位置計測系200によって計測されるウエハテーブルWTBの6自由度方向の位置の計測結果と粗動ステージ位置計測系によって計測される粗動ステージ82の6自由度方向の位置の計測結果とに基づいて、EIコアのコアと磁性体部材とのギャップを間接的に計測することができ、また、平面モータMaを介して粗動ステージ82を一緒に同方向に駆動することもできる。この場合、ギャップセンサ212、212を省略することができる。 In the above embodiment, in addition to the stage position measurement system 200 that measures the position of the wafer table WTB (and the measurement stage MST), the relative position measurement system 210 that measures the relative position between the coarse movement stage 82 and the fine movement stage 83 is provided. The case where it was provided was described. However, the present invention is not limited to this, and instead of the relative position measurement system, a coarse movement stage position measurement system that measures the position of the coarse movement stage 82 in the direction of 6 degrees of freedom with reference to the projection optical system PL or the main frame that holds the projection optical system PL. It may be provided. In this manner, main controller 20 measures the result of measuring the position of wafer table WTB in the 6-degree-of-freedom direction measured by stage position measurement system 200 and 6 of coarse movement stage 82 measured by coarse movement stage position measurement system. The gap between the core of the EI core and the magnetic member can be indirectly measured based on the measurement result of the position in the direction of freedom, and the coarse movement stage 82 can be jointly connected via the planar motor Ma. It can also be driven in the direction. In this case, the gap sensors 212 1 and 212 2 can be omitted.
 なお、上記実施形態において、EIコアMc、Mc、Mc、Mcのそれぞれのコアと磁性体部材とのギャップを、必要とされるギャップより、意識的に広めに設定しておいても良い。かかる場合、主制御装置20は、例えばウエハステージWSTのステップ駆動時に、EIコアMcとボイスコイルモータMbとを併用するとともに、ステップ駆動の終了に先立って、一対のボイスコイルモータMbを用いて微動ステージ83を中立位置に移動することとしても良い。この場合、EIコアによる駆動力の発生を、その中立位置への移動終了後又はステップ駆動の終了後に停止しても良い。 In the above embodiment, the gaps between the cores of the EI cores Mc 1 , Mc 2 , Mc 3 , Mc 4 and the magnetic member are set consciously wider than the required gaps. Also good. In such a case, main controller 20 uses EI core Mc and voice coil motor Mb together during step driving of wafer stage WST, for example, and finely moves using a pair of voice coil motor Mb prior to the end of step driving. The stage 83 may be moved to the neutral position. In this case, generation of the driving force by the EI core may be stopped after the movement to the neutral position or after the end of step driving.
 なお、上記実施形態では、X軸方向、Y軸方向及びZ軸方向をそれぞれ計測方向とする3種の1次元ヘッド、すなわちXヘッド、Yヘッド、及びZヘッドを組み合わせて使用する場合について説明した。しかし、これら3種の1次元ヘッドに代えて、例えば、X軸方向、Y軸方向、及びZ軸方向の全てを計測方向とする3次元ヘッドを用いても良い。この3次元ヘッドを用いる場合、上述したXヘッド65X,64Xに代えてこの3次元ヘッドを基準軸LH上に配置すれば良い。 In the above-described embodiment, a case has been described in which three types of one-dimensional heads whose measurement directions are the X-axis direction, the Y-axis direction, and the Z-axis direction, that is, the X head, the Y head, and the Z head are used in combination. . However, instead of these three types of one-dimensional heads, for example, a three-dimensional head having all of the X-axis direction, the Y-axis direction, and the Z-axis direction as measurement directions may be used. When this three-dimensional head is used, this three-dimensional head may be arranged on the reference axis LH instead of the X heads 65X and 64X described above.
 また、上記実施形態で説明したXヘッドとYヘッドとを1つの筐体に収容した2Dヘッド(2軸ヘッド)に代えて、同一の照射点にX方向計測用とY方向計測用の計測ビームを照射し、X軸方向及びY軸方向を計測方向とする2次元ヘッドを用いることもできる。この種の2次元ヘッドとしては、例えば米国特許出願公開第2009/0268178号明細書などに開示されている3格子回折干渉型の2Dヘッドを用いることができる。上述したXヘッド65X,64Xに代えてこの2Dヘッドを基準軸LH上に配置すれば良い。この場合、Yヘッドは設けなくても良い。 Further, instead of the 2D head (biaxial head) in which the X head and Y head described in the above embodiment are housed in one housing, measurement beams for X direction measurement and Y direction measurement are applied to the same irradiation point. It is also possible to use a two-dimensional head having a measurement direction in the X-axis direction and the Y-axis direction. As this type of two-dimensional head, for example, a three-grating diffraction interference type 2D head disclosed in US Patent Application Publication No. 2009/0268178 can be used. This 2D head may be arranged on the reference axis LH instead of the X heads 65X and 64X described above. In this case, the Y head need not be provided.
 また、上記実施形態におけるXヘッドとZヘッドとに代えて、X軸方向及びZ軸方向を計測方向とする2次元ヘッドを用いても良い。この種の2次元ヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドを用いることができる。上述したXヘッド65X,64Xに代えてこの2次元ヘッドを基準軸LH上に配置すれば良い。 Further, instead of the X head and the Z head in the above embodiment, a two-dimensional head having the measurement direction in the X axis direction and the Z axis direction may be used. As this type of two-dimensional head, for example, a displacement measuring sensor head disclosed in US Pat. No. 7,561,280 can be used. This two-dimensional head may be disposed on the reference axis LH instead of the X heads 65X and 64X described above.
 また、上記実施形態においては干渉計システムとエンコーダシステムとを併用した計測システムを説明したが、これに限られず、例えば前述の干渉計システム118を省略し、メインフレームを基準とするウエハテーブルWTBの6自由度方向の位置情報を、そのエンコーダシステムのみによって計測することとしても良い。あるいは、計測システムを干渉計システムのみによって構成することも可能である。 In the above embodiment, the measurement system using the interferometer system and the encoder system is described. However, the present invention is not limited to this. For example, the above-described interferometer system 118 is omitted, and the wafer table WTB is based on the main frame. The position information in the direction of 6 degrees of freedom may be measured only by the encoder system. Alternatively, the measurement system can be configured only by the interferometer system.
 また、上記実施形態で説明したエンコーダシステムなどの各計測装置の構成は一例に過ぎないことは勿論である。例えば、上記実施形態では、ウエハテーブル(ウエハステージ)上に格子部を設け、これに対向してXヘッド、Yヘッドをウエハステージの外部に配置する構成のエンコーダシステムを採用した場合について例示したが、これに限らず、例えば米国特許出願公開第2006/0227309号明細書などに開示されているように、ウエハステージにエンコーダヘッドを設け、これに対向してウエハステージの外部に格子部(例えば2次元格子又は2次元に配置された1次元の格子部)を配置する構成のエンコーダシステムを採用しても良い。この場合において、面位置計測システムのZヘッドもウエハステージに設け、この格子部の面を、Zヘッドの計測ビームが照射される反射面としても良いし、あるいは上述の2Dヘッド又は3次元ヘッドを用いても良い。テーブル上にヘッドを配置するタイプであって、上述の3次元ヘッド又はZ軸方向を計測方向として含む上記2次元ヘッドを含むエンコーダシステム用いる場合、前述の干渉計システム118に代えて、メインフレームを基準とするウエハテーブルWTBの6自由度方向の位置情報を、そのエンコーダシステムによって計測することとしても良い。 Of course, the configuration of each measuring apparatus such as the encoder system described in the above embodiment is merely an example. For example, in the above-described embodiment, the case where an encoder system having a configuration in which a grating portion is provided on a wafer table (wafer stage) and an X head and a Y head are arranged outside the wafer stage is illustrated. However, the present invention is not limited to this, for example, as disclosed in US Patent Application Publication No. 2006/0227309, etc., an encoder head is provided on the wafer stage, and a grating portion (for example, 2 You may employ | adopt the encoder system of the structure which arrange | positions the one-dimensional grating | lattice part arrange | positioned by a two-dimensional lattice or a two-dimensional. In this case, the Z head of the surface position measurement system is also provided on the wafer stage, and the surface of the grating portion may be a reflection surface irradiated with the measurement beam of the Z head, or the above-described 2D head or 3D head may be used. It may be used. When using an encoder system that includes a head on a table and includes the above-described three-dimensional head or the above-described two-dimensional head that includes the Z-axis direction as a measurement direction, Position information in the direction of 6 degrees of freedom of the wafer table WTB as a reference may be measured by the encoder system.
 なお、例えば欧州特許出願公開第1,420,298号明細書、米国特許第6,952,253号明細書、あるいは米国特許出願公開第2008/0088843号明細書などに開示される液浸露光装置にも、上記実施形態は適用することができる。また、これに限らず、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に、上記実施形態を適用しても良い。 Note that an immersion exposure apparatus disclosed in, for example, European Patent Application Publication No. 1,420,298, US Patent No. 6,952,253, or US Patent Application Publication No. 2008/0088843. In addition, the above embodiment can be applied. Further, the present embodiment is not limited to this, and the above embodiment may be applied to a dry type exposure apparatus that exposes the wafer W without using liquid (water).
 また、上記実施形態では、露光装置が、ステップ・アンド・スキャン方式の走査型露光装置である場合について説明したが、これに限らず、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも上記実施形態を適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。また、例えば国際公開第2005/074014号などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも上記実施形態は適用が可能である。 In the above-described embodiment, the case where the exposure apparatus is a step-and-scan scanning exposure apparatus has been described. However, the present invention is not limited to this. The above-described embodiment can also be applied to a reduction projection exposure apparatus, a proximity exposure apparatus, a mirror projection aligner, or the like. Further, as disclosed in, for example, US Pat. No. 6,590,634, US Pat. No. 5,969,441, US Pat. No. 6,208,407, etc. The above-described embodiment can also be applied to a multi-stage type exposure apparatus including a stage. Further, as disclosed in, for example, International Publication No. 2005/0774014, an exposure apparatus provided with a measurement stage including a measurement member (for example, a reference mark and / or a sensor) separately from the wafer stage is also described above. The embodiment can be applied.
 また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、この投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はこの形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。 Further, the projection optical system in the exposure apparatus of the above embodiment may be not only a reduction system but also any of the same magnification and enlargement systems, and the projection optical system PL may be any of a reflection system and a catadioptric system as well as a refractive system. The projected image may be an inverted image or an erect image. Further, the illumination area and the exposure area described above are rectangular in shape, but the shape is not limited to this, and may be, for example, an arc, a trapezoid, or a parallelogram.
 なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。 The light source of the exposure apparatus of the above embodiment is not limited to the ArF excimer laser, but is a KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser ( It is also possible to use a pulse laser light source with an output wavelength of 146 nm, an ultrahigh pressure mercury lamp that emits a bright line such as g-line (wavelength 436 nm), i-line (wavelength 365 nm), and the like. A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, US Pat. No. 7,023,610, a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser is used as vacuum ultraviolet light. For example, a harmonic that is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
 また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、SORやプラズマレーザを光源として、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させる光源を用いたEUV露光装置にも上記実施形態を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。 In the above embodiment, it is needless to say that the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used. For example, the above embodiment is preferably applied to an EUV exposure apparatus using a light source that generates EUV (Extreme Ultraviolet) light in a soft X-ray region (for example, a wavelength region of 5 to 15 nm) using an SOR or a plasma laser as a light source. be able to. In addition, the above embodiment can be applied to an exposure apparatus that uses charged particle beams such as an electron beam or an ion beam.
 また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。 In the above-described embodiment, a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. Instead of this reticle, For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257. Also called an active mask or an image generator, for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
 また、例えば干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。 Further, for example, the above-described embodiment can be applied to an exposure apparatus (lithography system) that forms line and space patterns on a wafer by forming interference fringes on the wafer.
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。 Further, as disclosed in, for example, US Pat. No. 6,611,316, two reticle patterns are synthesized on a wafer via a projection optical system, and one scan exposure is performed on one wafer. The above embodiment can also be applied to an exposure apparatus that performs double exposure of shot areas almost simultaneously.
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。 Note that the object on which the pattern is to be formed in the above embodiment (the object to be exposed to the energy beam) is not limited to the wafer, but other objects such as a glass plate, a ceramic substrate, a film member, or a mask blank. But it ’s okay.
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。 The use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing. For example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head, an image sensor ( CCDs, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates or silicon wafers, etc. The above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.
 半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態に係る露光装置(パターン形成装置)によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、及び検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態に係る露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 An electronic device such as a semiconductor element includes a step of designing a function / performance of a device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and an exposure apparatus (pattern formation) according to the above-described embodiment. Lithography step to transfer the mask (reticle) pattern to the wafer using the apparatus, development step to develop the exposed wafer, etching step to remove the exposed member other than the portion where the resist remains by etching, etching is completed This is manufactured through a resist removal step that removes the resist that is no longer needed in step 1, a device assembly step (including a dicing process, a bonding process, and a package process), an inspection step, and the like. In this case, in the lithography step, the exposure method described above is executed using the exposure apparatus according to the above-described embodiment, and a device pattern is formed on the wafer. Therefore, a highly integrated device can be manufactured with high productivity. .

Claims (47)

  1.  ベース部材と、
     互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、
     前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、
     前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる少なくとも一対の第2アクチュエータと、を備える移動体装置。
    A base member;
    A first moving member that moves on the base member along a two-dimensional plane including a first axis and a second axis that are orthogonal to each other; a second moving member that is supported by the first moving member so as to be relatively movable; A moving body having
    A first actuator that causes a driving force along a first direction parallel to the first axis and a second direction parallel to the second axis to act between the first moving member and the second moving member;
    At least a pair of second elements that cause a driving force along a third direction that intersects each of the first and second directions and is parallel to the two-dimensional plane to act between the first moving member and the second moving member. And an actuator.
  2.  前記第1アクチュエータは前記第2アクチュエータよりも高精度であり、前記第2アクチュエータは前記第1アクチュエータよりも高効率である請求項1に記載の移動体装置。 The mobile device according to claim 1, wherein the first actuator is more accurate than the second actuator, and the second actuator is more efficient than the first actuator.
  3.  前記第1アクチュエータはローレンツ力を発生するアクチュエータであり、前記第2アクチュエータは吸引力を発生するアクチュエータである請求項1又は2に記載の移動体装置。 The mobile device according to claim 1 or 2, wherein the first actuator is an actuator that generates a Lorentz force, and the second actuator is an actuator that generates a suction force.
  4.  前記第1アクチュエータは、前記第1方向の駆動力を発生する第1部分と、前記第2方向の駆動力を発生する第2部分とを有する請求項1~3のいずれか一項に記載の移動体装置。 The first actuator according to any one of claims 1 to 3, wherein the first actuator includes a first portion that generates the driving force in the first direction and a second portion that generates the driving force in the second direction. Mobile device.
  5.  前記第1アクチュエータは、前記第2移動部材を挟んで前記第1方向の一側及び他側に各1つ配置されている請求項1~4のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 4, wherein each of the first actuators is disposed on one side and the other side of the first direction with the second moving member interposed therebetween.
  6.  前記第2アクチュエータは、前記第3方向に沿った一直線上に前記第2移動部材を挟んで各1つ配置されている請求項1~5のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 5, wherein each of the second actuators is arranged on a straight line along the third direction with the second moving member interposed therebetween.
  7.  前記第2アクチュエータは、前記第2移動部材の前記第2軸に関して前記第3方向と対称な第4方向に沿った一直線上に前記第2移動部材を挟んで各1つ配置されている請求項1~6のいずれか一項に記載の移動体装置。 The said 2nd actuator is arrange | positioned 1 each on both sides of the said 2nd moving member on the straight line along the 4th direction symmetrical with the said 3rd direction with respect to the said 2nd axis | shaft of the said 2nd moving member. The mobile device according to any one of 1 to 6.
  8.  前記第3方向と前記第4方向とは、前記第2軸と45度以外の角度で交差する請求項7に記載の移動体装置。 The mobile device according to claim 7, wherein the third direction and the fourth direction intersect with the second axis at an angle other than 45 degrees.
  9.  前記第2アクチュエータは、前記第1及び第2移動部材の一方に設けられた磁性体と、これに対応して前記第1及び第2移動部材の他方に設けられた電磁石とを含む請求項1~8のいずれか一項に記載の移動体装置。 The said 2nd actuator contains the magnetic body provided in one of the said 1st and 2nd moving member, and the electromagnet provided in the other of the said 1st and 2nd moving member corresponding to this. The mobile device according to any one of 1 to 8.
  10.  前記第1移動部材と前記第2移動部材との間の離間距離に関連する物理量を計測する複数のセンサをさらに備え、
     前記複数のセンサの計測結果に基づいて、前記第1及び第2アクチュエータの少なくとも一方が制御される請求項1~9のいずれか一項に記載の移動体装置。
    A plurality of sensors for measuring a physical quantity related to a separation distance between the first moving member and the second moving member;
    The mobile device according to any one of claims 1 to 9, wherein at least one of the first and second actuators is controlled based on measurement results of the plurality of sensors.
  11.  前記複数のセンサは、前記第2アクチュエータの近傍に配置された複数のセンサを含む請求項10に記載の移動体装置。 The mobile device according to claim 10, wherein the plurality of sensors include a plurality of sensors arranged in the vicinity of the second actuator.
  12.  前記複数のセンサは、前記第1アクチュエータの近傍に配置されたセンサをさらに含む請求項11に記載の移動体装置。 The mobile device according to claim 11, wherein the plurality of sensors further include a sensor disposed in the vicinity of the first actuator.
  13.  前記センサは、前記離間距離を計測するギャップセンサである請求項10~12のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 10 to 12, wherein the sensor is a gap sensor that measures the separation distance.
  14.  前記第1アクチュエータは固定子と可動子とを備え、
     前記固定子と前記可動子との一方は、磁石ユニットを含み、
     前記固定子と前記可動子との他方は、前記磁石ユニットに対向するコイルユニットを含む請求項1~13のいずれか一項に記載の移動体装置。
    The first actuator includes a stator and a mover,
    One of the stator and the mover includes a magnet unit,
    The movable body apparatus according to any one of claims 1 to 13, wherein the other of the stator and the mover includes a coil unit facing the magnet unit.
  15.  前記第1移動部材に対して前記第2移動部材を前記二次元平面に直交する方向に駆動する第3アクチュエータをさらに備える請求項1~14のいずれか一項に記載の移動体装置。 15. The moving body apparatus according to claim 1, further comprising a third actuator that drives the second moving member in a direction orthogonal to the two-dimensional plane with respect to the first moving member.
  16.  前記ベース部材に対して前記移動体を前記二次元平面に沿って駆動する平面モータをさらに備える請求項1~15のいずれか一項に記載の移動体装置。 The movable body apparatus according to any one of claims 1 to 15, further comprising a planar motor that drives the movable body along the two-dimensional plane with respect to the base member.
  17.  前記平面モータは、前記ベース部材に設けられたコイルユニットと、前記第1移動部材に設けられた磁石ユニットとを含むムービングマグネット型の平面モータである請求項16に記載の移動体装置。 The mobile device according to claim 16, wherein the planar motor is a moving magnet type planar motor including a coil unit provided on the base member and a magnet unit provided on the first moving member.
  18.  前記平面モータは前記二次元平面と交差する方向の駆動力を発生する請求項16又は17に記載の移動体装置。 The mobile device according to claim 16 or 17, wherein the planar motor generates a driving force in a direction intersecting the two-dimensional plane.
  19.  前記第2移動部材を前記二次元平面と直交する方向に移動自在に支持する支持装置をさらに備える請求項1~18のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 18, further comprising a support device that movably supports the second moving member in a direction orthogonal to the two-dimensional plane.
  20.  エネルギビームを照射して物体を露光する露光装置であって、
     前記物体が前記第2移動部材上に保持される請求項1~19のいずれか一項に記載の移動体装置と、
     前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える露光装置。
    An exposure apparatus that exposes an object by irradiating an energy beam,
    The mobile device according to any one of claims 1 to 19, wherein the object is held on the second moving member;
    An exposure apparatus comprising: a pattern generation device that forms a pattern on the object by irradiating the object with the energy beam.
  21.  前記移動体の前記第2方向への走査駆動と前記第1方向へのステップ駆動とを繰り返して、前記第2部材上に保持された前記物体上の複数の区画領域のそれぞれに前記パターンを形成し、
     前記走査駆動中の少なくとも一部で前記第1アクチュエータが前記第2アクチュエータよりも大きな駆動力を発生し、前記ステップ駆動中の少なくとも一部で前記第2アクチュエータが前記第1アクチュエータよりも大きな駆動力を発生する請求項20に記載の露光装置。
    The pattern is formed in each of the plurality of partitioned regions on the object held on the second member by repeating the scanning drive in the second direction and the step drive in the first direction of the moving body. And
    The first actuator generates a larger driving force than the second actuator in at least a part during the scanning drive, and the second actuator is larger than the first actuator in at least a part during the step driving. The exposure apparatus according to claim 20, wherein
  22.  前記第3方向は、前記ステップ駆動中の前記移動体に作用する最大加速度の方向に一致する請求項21に記載の露光装置。 The exposure apparatus according to claim 21, wherein the third direction coincides with a direction of maximum acceleration acting on the moving body during the step driving.
  23.  前記ステップ駆動から前記走査駆動に遷移するのに先立って前記移動体の前記ステップ駆動中に前記第2アクチュエータの駆動力の発生が停止される請求項21又は22に記載の露光装置。 23. The exposure apparatus according to claim 21, wherein generation of the driving force of the second actuator is stopped during the step driving of the movable body prior to the transition from the step driving to the scanning driving.
  24.  ベース部材と、
     互いに直交する第1軸及び第2軸を含む二次元平面に沿って前記ベース部材上を移動する第1移動部材と、該第1移動部材に相対移動可能に支持された第2移動部材と、を有する移動体と、
     前記ベース部材に対して前記移動体を6自由度で駆動する第1駆動装置と、
     前記第2移動部材を前記第1移動部材に対して6自由度で駆動する第2駆動装置とを備え、
     前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する際、前記第1駆動装置によって前記第1移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動するとともに、前記第2駆動装置によって前記第2移動部材を前記第1部材に対して前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動する移動体装置。
    A base member;
    A first moving member that moves on the base member along a two-dimensional plane including a first axis and a second axis that are orthogonal to each other; a second moving member that is supported by the first moving member so as to be relatively movable; A moving body having
    A first driving device that drives the movable body with six degrees of freedom relative to the base member;
    A second driving device that drives the second moving member with respect to the first moving member with six degrees of freedom;
    When the second moving member is rotationally driven about at least one of the first axis and the second axis, the first driving device causes the first moving member to move between the first axis and the second axis. The second driving device is driven to rotate about at least one of the first axis and the second axis with respect to the first member by the second driving device. Mobile device to do.
  25.  前記第1移動部材と前記第2移動部材との所定の位置関係が維持されるように、前記第1駆動装置と前記第2駆動装置とによって前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方に対して回転駆動する請求項24に記載の移動体装置。 The first driving device and the second driving device move the second moving member to the first shaft and the first shaft so that a predetermined positional relationship between the first moving member and the second moving member is maintained. The mobile device according to claim 24, wherein the mobile device is rotationally driven with respect to at least one of the two axes.
  26.  前記第1駆動装置は、前記ベース部材に設けられたコイルユニットと、前記第1移動部材に設けられた磁石ユニットとを含むムービングマグネット型の平面モータであり、該平面モータは、前記ベース部材と前記移動体との間に前記二次元平面に直交する方向の駆動力を発生する請求項24又は25に記載の移動体装置。 The first driving device is a moving magnet type planar motor including a coil unit provided on the base member and a magnet unit provided on the first moving member, and the planar motor includes the base member and 26. The moving body apparatus according to claim 24 or 25, wherein a driving force in a direction orthogonal to the two-dimensional plane is generated between the moving body and the moving body.
  27.  前記第2駆動装置は、前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第1アクチュエータと、前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第2アクチュエータと、前記第1移動部材に対して前記第2移動部材を前記二次元平面に直交する方向に駆動する第3アクチュエータとを含む請求項24~26のいずれか一項に記載の移動体装置。 The second driving device applies a driving force between the first moving member and the second moving member along a first direction parallel to the first axis and a second direction parallel to the second axis. A first actuator to be applied, and a driving force that intersects each of the first and second directions and that extends in a third direction parallel to the two-dimensional plane between the first moving member and the second moving member. 27. The second actuator according to claim 24, further comprising: a second actuator to be driven; and a third actuator that drives the second moving member in a direction perpendicular to the two-dimensional plane with respect to the first moving member. Mobile device.
  28.  前記第1アクチュエータはローレンツ力を発生するアクチュエータであり、前記第2アクチュエータは吸引力を発生するアクチュエータである請求項27に記載の移動体装置。 28. The mobile device according to claim 27, wherein the first actuator is an actuator that generates a Lorentz force, and the second actuator is an actuator that generates a suction force.
  29.  基準フレームと、
     前記基準フレームに対して前記第2移動部材の位置情報を計測する第1計測装置と、前記基準フレームに対する前記第1移動部材の位置情報又は前記第1移動部材と前記第2移動部材との相対位置の情報を計測する第2計測装置とを含む計測系と、をさらに備え、前記計測系の計測結果に基づいて、前記第1駆動装置と前記第2駆動装置とにより前記第2移動部材を駆動する請求項24~28のいずれか一項に記載の移動体装置。
    A reference frame;
    A first measuring device that measures position information of the second moving member with respect to the reference frame; and position information of the first moving member with respect to the reference frame or a relative relationship between the first moving member and the second moving member. A measurement system including a second measurement device that measures position information, and based on a measurement result of the measurement system, the first driving device and the second driving device are used to move the second moving member. The mobile device according to any one of claims 24 to 28, which is driven.
  30.  前記第1計測装置は、前記第2移動部材を介した光を受光して前記第2移動部材の位置情報を計測する干渉計を含む請求項24~29のいずれか一項に記載の移動体装置。 The moving body according to any one of claims 24 to 29, wherein the first measuring device includes an interferometer that receives light transmitted through the second moving member and measures position information of the second moving member. apparatus.
  31.  前記第1計測装置は、前記第2移動部材及び前記基準フレームの一方に設けられたグレーティングからの反射光を受光して前記第2移動部材の位置情報を計測するエンコーダを含む請求項24~30のいずれか一項に記載の移動体装置。 The first measuring device includes an encoder that receives reflected light from a grating provided on one of the second moving member and the reference frame and measures position information of the second moving member. The moving body device according to any one of the above.
  32.  前記第2計測装置は、前記第1移動部材と前記第2移動部材との間の離間距離を計測する複数のギャップセンサを含み、該複数のギャップセンサの計測結果に基づいて前記第1移動部材と前記第2移動部材との相対位置情報を計測する請求項24~31のいずれか一項に記載の移動体装置。 The second measuring device includes a plurality of gap sensors for measuring a separation distance between the first moving member and the second moving member, and the first moving member based on a measurement result of the plurality of gap sensors. The mobile device according to any one of claims 24 to 31, wherein relative position information between the first moving member and the second moving member is measured.
  33.  前記第2アクチュエータは、前記第1及び第2移動部材の一方に設けられた磁性体と、これに対応して前記第1及び第2移動部材の他方に設けられた電磁石とを含む請求項27~32のいずれか一項に記載の移動体装置。 The said 2nd actuator contains the magnetic body provided in one of the said 1st and 2nd moving member, and the electromagnet provided in the other of the said 1st and 2nd moving member corresponding to this. The mobile device according to any one of to 32.
  34.  エネルギビームを照射して物体を露光する露光装置であって、
     前記物体が前記第2移動部材上に保持される請求項24~33のいずれか一項に記載の移動体装置と、前記物体に前記エネルギビームを照射して前記物体上にパターンを形成するパターン生成装置と、を備える露光装置。
    An exposure apparatus that exposes an object by irradiating an energy beam,
    The moving body device according to any one of claims 24 to 33, wherein the object is held on the second moving member, and a pattern that forms a pattern on the object by irradiating the object with the energy beam. And an exposure apparatus.
  35.  前記第1駆動装置と前記第2駆動装置とにより前記第2移動部材を前記第1軸と前記第2軸との少なくとも一方の軸周りに回転駆動して、前記物体を露光位置に位置決めする請求項34に記載の露光装置。 The first driving device and the second driving device rotate the second moving member around at least one of the first axis and the second axis to position the object at an exposure position. Item 34. The exposure apparatus according to Item 34.
  36.  請求項20~23、34、35のいずれか一項に記載の露光装置を用いて物体を露光し、該物体上にパターンを形成することと、パターンが形成された前記物体を現像することと、を含むデバイス製造方法。 Exposing an object using the exposure apparatus according to any one of claims 20 to 23, 34, and 35, forming a pattern on the object, and developing the object on which the pattern is formed; A device manufacturing method comprising:
  37.  互いに直交する第1軸及び第2軸を含む二次元平面に沿って移動する第1移動部材と、
     基板を保持する基板保持部を有し、かつ前記第1移動部材に対して移動可能に該第1移動部材に支持され、前記第1軸に沿った第1方向の位置情報及び前記第2軸に沿った第2方向に関する位置情報が計測される第2移動部材と、
     前記第1及び第2方向のそれぞれに交差し前記二次元平面に平行な第3方向に関して前記第2移動部材の一側の下側又は側方側に配置され、前記第3方向に沿った駆動力を、前記第1移動部材と前記第2移動部材との間に作用させる第1のアクチュエータと、
     前記第3方向に関して前記第2移動部材の他側の下側又は側方側に配置され、前記第3方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第2のアクチュエータと、
    を備える移動体装置。
    A first moving member that moves along a two-dimensional plane including a first axis and a second axis orthogonal to each other;
    Position information in the first direction along the first axis and the second axis, which has a substrate holding part for holding the substrate and is supported by the first moving member so as to be movable with respect to the first moving member A second moving member in which position information about the second direction along the line is measured;
    Drive along the third direction, which is disposed on the lower side or the lateral side of the second moving member with respect to a third direction that intersects each of the first and second directions and is parallel to the two-dimensional plane. A first actuator that applies a force between the first moving member and the second moving member;
    The driving force along the third direction is applied between the first moving member and the second moving member, and is disposed on the lower side or the side of the second moving member with respect to the third direction. A second actuator to be
    A mobile device comprising:
  38.  前記第1移動部材は、前記基板を前記基板保持部に対して前記二次元平面と交差する方向に移動させる移動機構を有し、
     前記第1及び第2のアクチュエータは、前記第3方向に関して前記移動機構よりも外側に配置されている請求項37に記載の移動体装置。
    The first moving member includes a moving mechanism that moves the substrate in a direction intersecting the two-dimensional plane with respect to the substrate holding unit,
    38. The moving body apparatus according to claim 37, wherein the first and second actuators are disposed outside the moving mechanism with respect to the third direction.
  39.  前記第1及び第2のアクチュエータは吸引力を発生するアクチュエータである請求項37又は38に記載の移動体装置。 The mobile device according to claim 37 or 38, wherein the first and second actuators are actuators that generate a suction force.
  40.  前記第2移動部材の前記第2軸に関して前記第3方向と対称な第4方向に関して前記第2移動部材の一側の下側又は側方側に配置され、前記第4方向に沿った駆動力を、前記第1移動部材と前記第2移動部材との間に作用させる第3のアクチュエータと、
     前記第4方向に関して前記第2移動部材の他方の下側又は側方側に配置され、前記第4方向に沿った駆動力を前記第1移動部材と前記第2移動部材との間に作用させる第4のアクチュエータと、
    をさらに備える請求項37~39のいずれか一項に記載の移動体装置。
    A driving force that is disposed on the lower side or the lateral side of the second moving member with respect to a fourth direction that is symmetrical to the third direction with respect to the second axis of the second moving member, and that is along the fourth direction. A third actuator that acts between the first moving member and the second moving member;
    The driving force is arranged between the first moving member and the second moving member, and is disposed on the lower side or the side of the other of the second moving member with respect to the fourth direction. A fourth actuator;
    The mobile device according to any one of claims 37 to 39, further comprising:
  41.  前記第3方向と前記第4方向とは、前記第2軸と45度以外の角度で交差する請求項40に記載の移動体装置。 41. The mobile device according to claim 40, wherein the third direction and the fourth direction intersect with the second axis at an angle other than 45 degrees.
  42.  前記第1移動部材と前記第2移動部材との間の離間距離に関連する物理量を計測するセンサと、
     前記センサの計測結果に基づいて、前記第1及び第2のアクチュエータを制御する制御装置と、をさらに備える請求項37~41のいずれか一項に記載の移動体装置。
    A sensor for measuring a physical quantity related to a separation distance between the first moving member and the second moving member;
    The mobile device according to any one of claims 37 to 41, further comprising: a control device that controls the first and second actuators based on a measurement result of the sensor.
  43.  前記第1移動部材を支持するベース部材をさらに備え、
     前記第1軸に平行な第1方向及び前記第2軸に平行な第2方向に沿った駆動力を前記ベース部材と前記第1移動部材との間に作用させる駆動装置をさらに備える請求項37~42のいずれか一項に記載の移動体装置。
    A base member supporting the first moving member;
    38. A driving device for causing a driving force along a first direction parallel to the first axis and a second direction parallel to the second axis to act between the base member and the first moving member. 43. The mobile device according to any one of .about.42.
  44.  前記第2移動部材の前記第1方向及び前記第2方向に関する位置情報を求める位置計測装置をさらに備え、
     前記位置情報に基づいて前記駆動装置が制御される請求項43に記載の移動体装置。
    A position measuring device for obtaining position information about the first direction and the second direction of the second moving member;
    44. The mobile device according to claim 43, wherein the driving device is controlled based on the position information.
  45.  エネルギビームを照射して基板を露光する露光装置であって、
     請求項37~44のいずれか一項に記載の移動体装置と、前記第2移動体に保持された基板に前記エネルギビームを照射して前記基板上にパターンを形成するパターン生成装置と、を備える露光装置。
    An exposure apparatus that exposes a substrate by irradiating an energy beam,
    A moving body device according to any one of claims 37 to 44, and a pattern generation device that forms a pattern on the substrate by irradiating the energy beam onto the substrate held by the second moving body. An exposure apparatus provided.
  46.  前記移動体の前記第2方向への走査駆動と前記第1方向へのステップ駆動とを繰り返して、前記第2部材上に保持された前記物体上の複数の区画領域のそれぞれに前記パターンを形成し、
     前記ステップ駆動中の少なくとも一部で前記第1及び第2の少なくとも一方のアクチュエータが駆動力を発生し、
     前記第3方向は、前記ステップ駆動中の前記移動体に作用する最大加速度の方向に基づいて設定されている請求項45に記載の露光装置。
    The pattern is formed in each of the plurality of partitioned regions on the object held on the second member by repeating the scanning drive in the second direction and the step drive in the first direction of the moving body. And
    The at least one of the first and second actuators generates a driving force in at least part of the step driving;
    46. The exposure apparatus according to claim 45, wherein the third direction is set based on a direction of maximum acceleration acting on the moving body during the step drive.
  47.  請求項45又は46に記載の露光装置を用いて基板を露光し、該基板上にパターンを形成することと、パターンが形成された前記基板を現像することと、を含むデバイス製造方法。 A device manufacturing method comprising: exposing a substrate using the exposure apparatus according to claim 45 or 46; forming a pattern on the substrate; and developing the substrate on which the pattern is formed.
PCT/JP2013/001450 2013-03-07 2013-03-07 Mobile device, exposure device, and device production method WO2014136143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001450 WO2014136143A1 (en) 2013-03-07 2013-03-07 Mobile device, exposure device, and device production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001450 WO2014136143A1 (en) 2013-03-07 2013-03-07 Mobile device, exposure device, and device production method

Publications (1)

Publication Number Publication Date
WO2014136143A1 true WO2014136143A1 (en) 2014-09-12

Family

ID=51490714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001450 WO2014136143A1 (en) 2013-03-07 2013-03-07 Mobile device, exposure device, and device production method

Country Status (1)

Country Link
WO (1) WO2014136143A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005387A1 (en) * 2015-07-09 2017-01-12 Asml Netherlands B.V. Movable support and lithographic apparatus
WO2024075671A1 (en) * 2022-10-03 2024-04-11 ボンドテック株式会社 Alignment device and alignment method
JP7495151B2 (en) 2022-10-03 2024-06-04 ボンドテック株式会社 Alignment apparatus and alignment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199580A (en) * 2009-02-24 2010-09-09 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2010262969A (en) * 2009-04-30 2010-11-18 Canon Inc Stage apparatus, exposure apparatus using the same, and device manufacturing method
JP2013506974A (en) * 2009-09-30 2013-02-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199580A (en) * 2009-02-24 2010-09-09 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2010262969A (en) * 2009-04-30 2010-11-18 Canon Inc Stage apparatus, exposure apparatus using the same, and device manufacturing method
JP2013506974A (en) * 2009-09-30 2013-02-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005387A1 (en) * 2015-07-09 2017-01-12 Asml Netherlands B.V. Movable support and lithographic apparatus
CN107850852A (en) * 2015-07-09 2018-03-27 Asml荷兰有限公司 Movable support member and lithographic equipment
JP2018521347A (en) * 2015-07-09 2018-08-02 エーエスエムエル ネザーランズ ビー.ブイ. Movable support and lithographic apparatus
US10228626B2 (en) 2015-07-09 2019-03-12 Asml Netherlands B.V. Movable support and lithographic apparatus
CN107850852B (en) * 2015-07-09 2021-07-16 Asml荷兰有限公司 Movable support and lithographic apparatus
WO2024075671A1 (en) * 2022-10-03 2024-04-11 ボンドテック株式会社 Alignment device and alignment method
JP7495151B2 (en) 2022-10-03 2024-06-04 ボンドテック株式会社 Alignment apparatus and alignment method

Similar Documents

Publication Publication Date Title
JP5804301B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5700363B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5131281B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5348630B2 (en) Exposure apparatus and device manufacturing method
JP5614099B2 (en) Mobile device, exposure apparatus, exposure method, and device manufacturing method
TWI623820B (en) Positioning device, lithographic apparatus and device manufacturing method
JP2012531029A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2013506974A (en) Exposure apparatus, exposure method, and device manufacturing method
JP5348629B2 (en) Exposure apparatus and device manufacturing method
JP5348627B2 (en) MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP5910982B2 (en) MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP2012531028A (en) Exposure apparatus and device manufacturing method
JP5299638B2 (en) Exposure apparatus and device manufacturing method
JP6862543B2 (en) Motor assembly, lithographic equipment, and device manufacturing methods
WO2014136143A1 (en) Mobile device, exposure device, and device production method
JP2012531030A (en) Exposure apparatus and device manufacturing method
JP2011211180A (en) Exposure method, exposure apparatus, and device manufacturing method
JP2012089769A (en) Exposure equipment and method for manufacturing device
JP5757397B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2013153744A1 (en) Mobile body device, exposure device, and device production method
JP2012089768A (en) Exposure device and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP