WO2014134857A1 - 一种保温隔热纤维及由该纤维制成的纺织品 - Google Patents

一种保温隔热纤维及由该纤维制成的纺织品 Download PDF

Info

Publication number
WO2014134857A1
WO2014134857A1 PCT/CN2013/074113 CN2013074113W WO2014134857A1 WO 2014134857 A1 WO2014134857 A1 WO 2014134857A1 CN 2013074113 W CN2013074113 W CN 2013074113W WO 2014134857 A1 WO2014134857 A1 WO 2014134857A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermal insulation
units
weight units
fiber
Prior art date
Application number
PCT/CN2013/074113
Other languages
English (en)
French (fr)
Inventor
毛盈军
Original Assignee
Mao Yingjun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mao Yingjun filed Critical Mao Yingjun
Priority to EP13877200.9A priority Critical patent/EP2966198A4/en
Priority to US14/773,340 priority patent/US20160017517A1/en
Publication of WO2014134857A1 publication Critical patent/WO2014134857A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/02Underwear

Definitions

  • the present invention relates to a textile fiber and a textile, and more particularly to a heat insulating fiber and a textile made of the fiber. Background technique
  • the insulation of most traditional textile fibers and textiles is improved by increasing the amount of fibers and increasing the thickness and weight of the fiber textiles; for example, the mainstream thermal underwear currently on the market has a larger weight.
  • the problem of thicker thickness has irreparable defects in terms of wearing comfort.
  • heat storage material is a new type of chemical material that can store heat energy. It undergoes a phase change at a specific temperature, accompanied by absorption or release of heat, which can be used to control the temperature of the surrounding environment or to store heat.
  • the principle and technical solution are significantly different from the thermal insulation; for example, hygroscopic heating fiber is one of them.
  • the hygroscopic heat-generating fiber has good hygroscopicity, and can convert the kinetic energy of the water molecules discharged by the human body into heat energy, thereby increasing the body temperature, and the discharged water vapor is more easily evaporated due to the increase in temperature.
  • the hygroscopic heating fiber has a relatively limited improvement in the thermal insulation of the textile, and at the same time, the cost of the fiber is relatively high. Summary of the invention
  • An object of the present invention is to provide an insulating fiber and a textile made of the fiber which are more heat-insulating, less expensive, and are easy to manufacture and industrially easy to implement.
  • the present invention provides a heat insulating fiber, which is added to a conventional textile fiber by adding 0.1 to 3% by weight of the total weight of the conventional textile fiber to increase the heat retention rate of the fiber, and the nano cell includes 300 ⁇ 8000 nm particles comprising at least a mixture of Ti and Ce, or a mixture of Ti and Mg, or a mixture of Ti, Ce, Mg, Si, Ca.
  • the conventional textile fibers comprise chemical fibers, and the chemical fibers comprise rayon and/or synthetic fibers.
  • the heat insulating fiber comprises from 300 to 4,000 nanometers of microparticles in an amount of from 1.5 to 3% by weight based on the total weight.
  • the microparticles comprise 500 to 10000 weight units
  • the heat insulating fiber comprises 0.1 to 1.5% by weight of the total weight of 4000 to 8000 nm of fine particles.
  • the microparticles comprise 500 to 10000 weight units of Ti and 60 to 300 weight units of Ce, or 500 to 10000 weight units of Ti and 10 to 500 weight units of Mg, or 500.
  • the microparticles further comprise 50 to 100 weight units of K, 100 to 500 weight units of Sn, and 50 to 100 weight units of S.
  • Another object of the present invention is to provide an insulated textile comprising at least some of the above-described thermal insulation fibers.
  • the fibers of the present invention can greatly improve the thermal insulation and the gram value of textiles when comparing textiles of the same weight and weave. Moreover, the present invention has the advantages of lower manufacturing cost, simple manufacturing process, easy industrial production, and the like as compared with the existing heat insulating fibers.
  • Fig. 1 is a comparison diagram of the heat retention rate of the detection result in the first embodiment of the present invention. Detailed description of the invention
  • Insulation rate (%) (1 -a/b) 100 (4) Test unit: Japan's statutory testing agency, general corporation, BOKEN textile inspection quality, evaluation agency, eastern business office
  • a textile fiber comprising about 2.9% by weight of nanocells based on the total weight of the conventional textile fibers is added to the conventional textile fiber, the nanocell having a particle size of about 300 nm; the particles comprising 9000 weight units of titanium (Ti) and 60 weight units The cerium ( Ce ), as well as other trace elements that need to be added according to the prior art.
  • the nanocell of the present invention can be added using any of the existing textile fiber manufacturing techniques.
  • the preparation method used in the present invention comprises the following steps: A. spinning a natural high molecular substance or an inorganic substance (such as viscose fiber), or a synthetic high molecular substance or an inorganic substance (such as nylon or acrylic). a melt or a solution; B. adding the above-mentioned nano-units Ti and Ce to the spinning melt or solution; C, extruding through a spinning mechanism to form fibers.
  • the other process steps are the same as those of the prior art fiber preparation method, and are not described herein again.
  • the weight unit ratio of the above-mentioned nano-cells Ti and Ce may be any other ratio, and the inventors of the present invention conducted a large number of repeated tests, and the nano-units of various ratios make the fiber product have better heat retention.
  • the nano-units of various ratios make the fiber product have better heat retention.
  • only one set of experimental data in a plurality of experiments is selected for explanation (the same below).
  • the particles of the present invention may be an oxide or a nitride at a normal temperature, or may be in a form which is stable in existence, such as a compound or a monomer.
  • weight unit described in the present invention preferably has a weight ratio of "micrograms/kg", and of course, it can be weighed according to other actual weight units according to actual demand (the same applies hereinafter).
  • Comparative experiment 1 sample: AEON sales of absorbent absorbent underwear, the detection method is the same as the above “experimental method”;
  • Comparative sample 2 The absorbing underwear sold by Uniqlo, the detection method is the same as the above "test method";
  • the thermal insulation rate and content should be marked on the outer packaging of the thermal underwear, and the "insulation rate” should not be lower than 30%; in fact, the vast majority
  • the so-called thermal underwear is increased in weight by increasing the weight (ie by increasing the thickness and weight of the underwear).
  • the unexpected technical effects obtained by the textile made of the thermal insulation fiber of the present invention are as follows: The invention adopts the gram weight of the ordinary underwear, but achieves a thermal insulation rate far higher than that of the thermal underwear.
  • the heat storage is provided only to the heat storage product by an external heat source (or a substance that internally generates heat). Energy, and the process of storing heat by the heat storage product; and the working principle of the heat insulating fiber of the invention is to reflect the heat of the human body as much as possible through the nano unit and keep isolated from the external environment.
  • the above experiments of the present invention are all directed to the insulation test of underwear textiles, and there is no energy supplement or supply of external heat sources (such as sunlight or the like). Therefore, the present invention also belongs to fibers containing nano-units in the preparation of warm textiles. application.
  • Example 2 Example 2:
  • test sample is a textile fiber which is added to the conventional textile fiber by about 0.2% by weight of the total weight of the conventional textile fiber, and the nanometer has a particle size of about 8000 nm;
  • the fine particles include 500 parts by weight of titanium (Ti) and 300 parts by weight of cerium (Ce), and 100 parts by weight of potassium (K), 100 parts by weight of tin (Sn), and 100 parts by weight of sulfur (S).
  • the nanocell of the present invention can be added in a fiber manufacturing process using any of the prior art.
  • test results of the present embodiment are as follows: the textile containing the thermal insulation fiber of the present invention having a basis weight of 150 (g/m 2 ) has a thermal retention rate of 43.2%; the other comparative experiments are the same as those of the first embodiment, and are no longer - Said.
  • Example 3 The heat preservation rate of the test results of this embodiment is shown in the figure: Example 3:
  • the present embodiment is different from the above embodiment in that the test sample is a textile fiber in which about 1.5% by weight of the nano unit is added to the conventional textile fiber, and the nano cell has a particle size of about 4000 nm; Including 10,000 by weight units of titanium (Ti), and 10 parts by weight of magnesium (Mg), the nano-units of the present invention can be added in a fiber manufacturing process using any of the prior art.
  • the test sample is a textile fiber in which about 1.5% by weight of the nano unit is added to the conventional textile fiber, and the nano cell has a particle size of about 4000 nm; Including 10,000 by weight units of titanium (Ti), and 10 parts by weight of magnesium (Mg), the nano-units of the present invention can be added in a fiber manufacturing process using any of the prior art.
  • test results of the present embodiment are as follows: the textile containing the thermal insulation fiber of the present invention having a basis weight of 150 (g/m 2 ) has a thermal retention rate of 43.5 %; the other comparative experiments are the same as those of the first embodiment, and the description thereof will not be repeated here. .
  • Example 4 The heat preservation rate of the test results of this embodiment is shown in the figure: Example 4:
  • the present embodiment is different from the above embodiment in that the test sample is a textile fiber in which about 1.6% by weight of the total weight of the nano unit is added to the conventional textile fiber, and the nano cell has a particle size of about 5000 nm; Including 500 parts by weight of titanium (Ti) and 500 parts by weight of magnesium (Mg), and 80 parts by weight of potassium (K), 300 parts by weight of tin (Sn), and 70 parts by weight of sulfur (S), the present invention
  • the nanocells can be added to the fiber manufacturing process using any of the prior art.
  • the test result of the present embodiment is as follows: the textile containing the thermal insulation fiber of the invention having a basis weight of 150 (g/m 2 ) has a thermal retention rate of 43.1%; the other comparative experiments are the same as those of the first embodiment, and no longer Narration.
  • this embodiment also employs a method for preparing another thermal insulation fiber, which comprises the steps of preparing a textile fiber chemical fiber masterbatch.
  • a method for preparing another thermal insulation fiber which comprises the steps of preparing a textile fiber chemical fiber masterbatch.
  • the above nano unit is added, and then the fiber is produced.
  • the other process steps of the fiber preparation method of this embodiment are the same as those of the prior art fiber preparation method, and will not be described herein.
  • the present embodiment is different from the above embodiment in that the test sample is a textile fiber in which about 1.8% by weight of the nano unit is added to the conventional textile fiber, and the nano cell has a particle size of about 3000 nm; Including 500 parts by weight of titanium (Ti), 500 parts by weight of magnesium (Mg), 100 parts by weight of cerium (Ce), 300 parts by weight of calcium (Ca), and 1700 parts by weight of silicon (Si); and 50 weight units Potassium (K), 500 weight units of tin (Sn), and 50 weight units of sulfur (S), the nanocell of the present invention can be added to the fiber manufacturing process using any of the prior art.
  • Ti titanium
  • Mg magnesium
  • Ce cerium
  • Ca cerium
  • Si calcium
  • Si silicon
  • K Potassium
  • Sn tin
  • S sulfur
  • test results of the present embodiment are as follows: the textile containing the thermal insulation fiber of the present invention having a basis weight of 150 (g/m 2 ) has a thermal retention rate of 43.7%; the other comparative experiments are the same as those of the first embodiment, and the description thereof will not be repeated here. .
  • thermo insulation fibers The heat preservation rate of the test results of this embodiment is shown in the figure: Furthermore, it is another object of the present invention to provide a heat-insulating textile, such as a knitted or woven product, in which at least some of the above-mentioned fibers are included, and of course, all of the insulating fibers of the present invention may be used. production. It is still another object of the present invention to provide an application of a nanocell-containing fiber in the preparation of a warm textile, wherein the nanocell-containing fiber is any of the above thermal insulation fibers.
  • the thermal insulation fiber of the present invention may have other uses in other fields or similar fields, but in the present invention, it is sufficient to prove by the above-mentioned plurality of experiments that the thermal insulation fiber of the present invention is under the same conditions (for example, the same weight) It has better thermal insulation properties and, therefore, can be effectively applied in the field of preparing warm textiles.
  • the heat insulating fiber of the invention Compared with the existing heat insulating fiber, the heat insulating fiber of the invention has the advantages of better heat preservation property, lower cost, convenient manufacture, easy industrial implementation, and the like, and can be effectively used for preparing high quality heat insulation. Textiles.
  • the specific embodiments of the present invention have been described in detail, those skilled in the art will understand. Various modifications and alterations may be made to those details in light of the teachings of the invention, which are within the scope of the invention. The full scope of the invention is given by the appended claims and any equivalents thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)

Abstract

保温隔热纤维、保温隔热的纺织品以及含有纳米单元的纤维在制备保暖纺织品中的应用。其中,保温隔热纤维为:在常规纺织纤维中添加占常规纺织纤维总重量0.1-3%重量份的纳米单元提高纤维的保温率,所述纳米单元包括300-8000纳米的微粒子,所述的微粒子包括至少Ti和Ce的混合物、或者Ti和Mg的混合物、或者Ti、Ce、Mg、Si、Ca的混合物。

Description

一种保温隔热纤维及由该纤维制成的纺织品 优先权信息
本申请请求 2013年 03月 05 日向中国国家知识产权局提交的、 专利申请 号为 201310069914.9的专利申请的优先权和权益,并且通过参照将其全文并入 此处。 技术领域
本发明涉及一种纺织纤维及纺织品, 特别是涉及一种保温隔热纤维及由该 纤维制成的纺织品。 背景技术
现有技术中, 绝大多数传统纺织纤维及纺织品的保温是通过增加纤维的用 量以及提高纤维纺织品的厚度和重量来提高其保温性能的; 例如, 目前市场销 售的主流保暖内衣均具有重量较大、 厚度较厚的问题, 在穿着的舒适性方面, 具有难以弥补的缺陷。
另外, 也有部分现有技术采用了蓄热材料来提高纤维纺织品的保温性。 所 谓蓄热材料就是一种能够储存热能的新型化学材料。 它在特定的温度下发生物 相变化, 并伴随着吸收或放出热量, 可用来控制周围环境的温度, 或用以储存 热能。 其原理和技术方案与保温隔热具有显著的差异性; 例如, 吸湿发热纤维 便是其中一种。 吸湿发热纤维具有良好的吸湿性, 能将人体排出的水分子的动 能转化为热能, 从而提高体感温度, 由于温度的升高又使得排出的水汽更易蒸 发掉。 但是, 吸湿发热纤维对纺织品保温性的提高也比较有限, 同时, 该种纤维 的成本也较为高昂。 发明内容
本发明的目的是提出一种保温性更好、 成本更加低廉、 并且方便制造、 易 于产业化实施的保温隔热纤维及由该纤维制成的纺织品。
为实现上述目的, 本发明提供了一种保温隔热纤维, 在常规纺织纤维中添 加占常规纺织纤维总重量 0.1 ~ 3%重量份的纳米单元提高纤维的保温率, 所述 纳米单元包括 300 ~ 8000纳米的 粒子, 所述的 粒子包括至少 Ti和 Ce的混 合物、 或者 Ti和 Mg的混合物、 或者 Ti、 Ce、 Mg、 Si、 Ca的混合物。
优选地, 所述常规纺织纤维包括化学纤维, 所述的化学纤维包括人造纤维 和 /或合成纤维。
优选地, 所述保温隔热纤维包括占总重量 1.5 ~ 3%重量份的 300 ~ 4000纳 米的微粒子。
优选地, 在所述的纳米单元中, 所述微粒子包括 500 ~ 10000重量单元的
Ti和 60 ~ 300重量单元的 Ce, 或者 500 ~ 10000重量单元的 Ti和 10 ~ 500重 量单元的 Mg, 或者 500 ~ 10000重量单元的 Ti、 60 ~ 300重量单元的 Ce、 50 ~ 500重量单元的 Ca、 10 ~ 500重量单元的^¾、 50 ~ 3000重量单元的 Si。
优选地, 所述保温隔热纤维包括占总重量 0.1 ~ 1.5%重量份的 4000 ~ 8000 纳米的微粒子。
优选地, 在所述的纳米单元中, 所述微粒子包括 500 ~ 10000重量单元的 Ti和 60 ~ 300重量单元的 Ce, 或者 500 ~ 10000重量单元的 Ti和 10 ~ 500重 量单元的 Mg, 或者 500 ~ 10000重量单元的 Ti、 60 ~ 300重量单元的 Ce、 50 ~ 500重量单元的 Ca、 10 ~ 500重量单元的^¾、 50 ~ 3000重量单元的 Si。
优选地, 在所述的纳米单元中, 所述的微粒子还包括 50 ~ 100重量单元的 K、 100 ~ 500重量单元的 Sn和 50 ~ 100重量单元的 S。
本发明的另一目的在于提供一种保温隔热的纺织品, 该纺织品至少包括部 分上述的保温隔热纤维。
本发明的又一目的在于提供一种含有纳米单元的纤维在制备保暖纺织品 中的应用, 所述含有纳米单元的纤维为上述任意的保温隔热纤维。
基于上述技术方案, 本发明的优点是:
由于本发明在常规纺织纤维中加入了一定比例的 300 ~ 8000纳米微粒子纳 米单元, 使得本发明的纤维在对比相同克重和织法的纺织品时, 能够大幅提高 纺织品的保温性和克罗值, 并且本发明相对于现有的保温纤维而言, 具有制造 成本较低、 制造工艺筒单、 易于工业化生产等等优点。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中 将变得明显和容易理解, 其中:
图 1为本发明实施例 1中检测结果的保温率对照图。 发明详细描述
下面详细描述本发明的实施例。 下面描述的实施例是示例性的, 仅用于解 释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的, 按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂 或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品。 实施例 1:
参见表 1和图 1, 其中示出本发明一种保温隔热纤维保温效果的检测实施 例。
(1)检测名称: 保温性实验
(2) 实验目的: 对纤维制品及面料对保温性进行测试, 为了提高制品及 面料的保温性, 将对纤维之间注入不易传热的空气, 来抑制其散热。
(3) 实验方法: 以 "JISL1096织物及编物的生地实验方法" 为基础而进 行的实验。 使用保温性实验机, 设定一定温度(36±0.5°C ) 热板和实验片为一 组; 2小时后, 求出实验片所放散的热量 a。 另外, 再求出实验片不与热板配 组的状态下, 经过 2小时后放散出的热量 b, 按下式算出保温率(% ):
保温率(% ) = ( 1 -a/b) 100 (4)检测单位: 日本法定检测机构 般财团法人 BOKEN纺检品质 评价机构东部事业所
(5)检测样品:
5.1-本发明纤维样品:
在常规纺织纤维中加入了约占常规纺织纤维总重量 2.9%重量份纳米单元 的纺织纤维, 该纳米单元的 粒大小约 300纳米; 所述 粒子包括 9000重量 单元的钛( Ti )和 60重量单元的铈( Ce ), 以及按照现有技术需要添加的其他 微量元素。 本发明的纳米单元可以采用现有纺织纤维制造技术中的任意一种进行添 加。 本发明所采用的制备方法包括如下步骤: A、 将天然的高分子物质或无机 物 (如: 粘胶纤维)、 或者合成的高分子物质或无机物 (如: 锦纶或腈纶)制 成纺丝熔体或溶液; B、 在所述纺丝熔体或溶液中添加上述的纳米单元 Ti 和 Ce; C、 经喷丝机构挤出, 形成纤维。 其他工艺步骤与现有技术的纤维制备方 法相同, 在此不再赘述。
需要说明的是, 上述纳米单元 Ti和 Ce的重量单元比率也可以为其他任意 比率, 本发明的发明人进行了大量的重复试验, 各种比例的纳米单元均使得纤 维制品具有较好的保温性, 本实施例仅选择了众多实验中的一组实验数据做出 说明 (下同)。
此外, 本发明的 粒子可以为常温状态下的氧化物或氮化物, 也可以为其 他能够稳定存在的形式, 例如化合物或单体。
需要说明的是: 本发明所述的 "重量单元"优选为 "微克 /公斤" 的重量比 值, 当然也可以根据实际需求量按照其他的重量单位进行称量(下同)。
5.2 -对比实验:
对比实验 1的样品: 永旺销售的吸湿发热内衣, 检测方法与上述的 "实验 方法" 相同;
对比实验 2的样品: 优衣库销售的吸湿发热内衣, 检测方法与上述的 "实 验方法" 相同;
对比实验 3的样品: 饰梦乐销售的吸湿发热内衣, 检测方法与上述的 "实 验方法" 相同;
对比实验 4的样品:伊藤洋华堂销售的全羊毛内衣,检测方法与上述的 "实 验方法" 相同;
对比实险 5的样品: 优衣库销售的 100 %羊绒衫, 检测方法与上述的 "实 验方法" 相同。 ( 6 )检测结果:
表 1: 纺织品保温性实测数据
Figure imgf000007_0001
上述检测结果的保温率对照图参见附图 1所示, 其中, 从本发明与对比试 验 1、 2、 3的比较中可以看出: 在相同的克重下, 本发明纤维制得的纺织品的 保温率, 是其他市场销售吸湿发热内衣保温率的 2倍多; 需要说明的是: "克 重" 是纺织丝绸产品评价常用单位, 是每平方米织物的重量, 单位是 "克 /平方 米"; 克重是针织面料的一个重要的技术指标。
进一步, 对比试验 1、 2、 3中纺织品的保温率已经比市场上绝大多数内衣 的保温率高出很多。
根据我国 《FZ/T 73022-2004针织保暖内衣》 的规定, 保暖内衣的成品外 包装上均须标示保温率、含量等指标, 其中 "保温率"不得低于 30%; 事实上, 绝大多数所谓的保暖内衣, 均是通过增加克重数(即通过增加内衣的厚度和重 量)来提高其保温率。 而由本发明保温隔热纤维制得的纺织品, 所获得意想不到的技术效果是: 本发明采用普通内衣的克重数, 却达到了远远高于保暖内衣的保温率。
甚至于参见表 1和图 1中, 从本发明与对比试验 4、 5的比较中可以看出: 在远小于羊毛制品和羊绒制品的克重下, 本发明纤维制得的纺织品的保温率, 比羊毛制品和羊绒制品的保暖率还要高出许多。 换言之, 本发明保温隔热纤维 制得的内衣, 可以具有替代羊毛衫和羊绒衫的用途。
需要说明的是本发明的 "保温隔热" 与现有技术中 "蓄热保温" 之间的差 另1 J : 蓄热是只由外部热源 (或内部产生热量的物质)向蓄热产品提供能量, 并 由蓄热产品进行储存热量的过程; 而本发明保温隔热纤维的工作原理是将人体 的热量尽可能多地经由纳米单元反射回来, 并与外界环境保持隔离。 此外, 本 发明的上述实验均是针对内衣纺织品的保温性实验, 并无外界热源(例如阳光 等光源)的能量补充或供给, 因此, 本发明亦属于含有纳米单元的纤维在制备 保暖纺织品中的应用。 实施例 2:
本实施例与上述实施例的不同之处在于,检测样品是在常规纺织纤维中加 入了约占常规纺织纤维总重量 0.2%重量份纳米单元的纺织纤维, 该纳米单元 的微粒大小约 8000纳米; 所述微粒子包括 500重量单元的钛(Ti )和 300重 量单元的铈(Ce ), 以及 100重量单元的钾(K )、 100重量单元的锡(Sn )和 100重量单元的硫(S )。 本发明的纳米单元可以采用现有技术中的任意一种在 纤维制造的工艺中进行添加。
本实施例的检测结果为: 克重为 150 (克 /平方米)的含有本发明保温隔热 纤维的纺织品, 其保温率为 43.2 % ; 其他对比实验与实施例 1相同, 在此不再 -述。
本实施例检测结果的保温率对照图: 略。 实施例 3:
本实施例与上述实施例的不同之处在于,检测样品是在常规纺织纤维中加 入了约占总重量 1.5%重量份纳米单元的纺织纤维, 该纳米单元的微粒大小约 4000纳米; 所述微粒子包括 10000重量单元的钛( Ti ), 以及 10重量单元的镁 ( Mg ), 本发明的纳米单元可以采用现有技术中的任意一种在纤维制造的工艺 中进行添加。
本实施例的检测结果为: 克重为 150 (克 /平方米)的含有本发明保温隔热 纤维的纺织品, 其保温率为 43.5 % ; 其他对比实验与实施例 1相同, 在此不再 赘述。
本实施例检测结果的保温率对照图: 略。 实施例 4:
本实施例与上述实施例的不同之处在于,检测样品是在常规纺织纤维中加 入了约占总重量 1.6%重量份纳米单元的纺织纤维, 该纳米单元的微粒大小约 5000纳米;所述微粒子包括 500重量单元的钛( Ti )和 500重量单元的镁( Mg ), 以及 80重量单元的钾( K )、 300重量单元的锡( Sn )和 70重量单元的硫 ( S ), 本发明的纳米单元可以采用现有技术中的任意一种在纤维制造的工艺中进行 添力口。
本实施例的检测结果为: 克重为 150 (克 /平方米)的含有本发明保温隔热 纤维的纺织品, 其保温率为 43.1 % ; 其他对比实验与实施例 1相同, 在此不再 赘述。
本实施例检测结果的保温率对照图: 略。
此外, 本实施例还采用了另一种保温隔热纤维的制备方法, 包括纺织纤维 化纤母粒的制备步骤, 在化纤母粒的制备过程中, 添加上述的纳米单元, 然后 生产出纤维。 本实施例纤维制备方法的其他工艺步骤与现有技术的纤维制备方 法相同, 在此不再赘述。 实施例 5:
本实施例与上述实施例的不同之处在于,检测样品是在常规纺织纤维中加 入了约占总重量 1.8%重量份纳米单元的纺织纤维, 该纳米单元的微粒大小约 3000纳米;所述微粒子包括 500重量单元的钛(Ti )、 500重量单元的镁(Mg )、 100重量单元的铈( Ce )、 300重量单元的钙( Ca )和 1700重量单元的硅( Si ); 以及 50重量单元的钾( K )、 500重量单元的锡( Sn )和 50重量单元的硫 ( S ), 本发明的纳米单元可以采用现有技术中的任意一种在纤维制造的工艺中进行 添力口。
本实施例的检测结果为: 克重为 150 (克 /平方米)的含有本发明保温隔热 纤维的纺织品, 其保温率为 43.7 % ; 其他对比实验与实施例 1相同, 在此不再 赘述。
本实施例检测结果的保温率对照图: 略。 此外, 本发明的另一目的是提供一种保温隔热的纺织品, 例如针织或梭织 产品, 在该纺织品中, 至少包括部分上述的纤维, 当然, 也可以全部使用本发 明的保温隔热纤维制成。 本发明的又一目的在于提供一种含有纳米单元的纤维在制备保暖纺织品 中的应用, 所述含有纳米单元的纤维为上述任意的保温隔热纤维。 本发明的保 温隔热纤维抑或在其他领域或相似领域具有其他用途, 但在本发明中, 通过上 述多组实验足以证明,本发明的保温隔热纤维在相同的条件下(例如克重相同) 具有更好的保温隔热性能,因此,能够有效地应用在制备保暖纺织品领域当中。
显而易见, 本领域的普通技术人员, 可以用本发明一种保温隔热纤维及由 该纤维制成的纺织品, 构成各种类型的纺织纤维、 纺织品及相应的制备方法。 工业实用性
本发明的保温隔热纤维, 相对于现有的保温纤维而言, 具有保温性更好、 成本更加低廉、 并且方便制造、 易于产业化实施等优点, 能够有效地用于制备 优质的保温隔热的纺织品。 尽管本发明的具体实施方式已经得到详细的描述, 本领域技术人员将会理 解。 根据已经公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改 变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等 同物给出。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性 实施例"、 "示例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例 或示例描述的具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例 或示例中。 在本说明书中, 对上述术语的示意性表述不一定指的是相同的实施 例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在任何的一个或 多个实施例或示例中以合适的方式结合。

Claims

权利要求书
1、 一种保温隔热纤维, 其特征在于: 在常规纺织纤维中添加占常规纺织 纤维总重量 0.1 ~ 3%重量份的纳米单元提高纤维的保温率, 所述纳米单元包括 300 ~ 8000纳米的微粒子, 所述的微粒子包括至少 Ti和 Ce的混合物、 或者 Ti 和 Mg的混合物、 或者 Ti、 Ce、 Mg、 Si、 Ca的混合物。
2、 根据权利要求 1所述的保温隔热纤维, 其特征在于: 所述常规纺织纤 维包括化学纤维, 所述的化学纤维包括人造纤维和 /或合成纤维。
3、根据权利要求 2所述的保温隔热纤维,其特征在于:包括占总重量 1.5 ~ 3%重量份的 300 ~ 4000纳米的微粒子。
4、 根据权利要求 3所述的保温隔热纤维, 其特征在于: 在所述的纳米单 元中, 所述微粒子包括 500 ~ 10000重量单元的 Ti和 60 ~ 300重量单元的 Ce, 或者 500 ~ 10000重量单元的 Ti和 10 ~ 500重量单元的 Mg, 或者 500 ~ 10000 重量单元的 Ti、 60 ~ 300重量单元的。6、 50 ~ 500重量单元的。&、 10 ~ 500重 量单元的 Mg、 50 ~ 3000重量单元的8
5、根据权利要求 2所述的保温隔热纤维,其特征在于:包括占总重量 0.1 ~ 1.5%重量份的 4000 ~ 8000纳米的微粒子。
6、 根据权利要求 5所述的保温隔热纤维, 其特征在于: 在所述的纳米单 元中, 所述微粒子包括 500 ~ 10000重量单元的 Ti和 60 ~ 300重量单元的 Ce, 或者 500 ~ 10000重量单元的 Ti和 10 ~ 500重量单元的 Mg, 或者 500 ~ 10000 重量单元的 Ti、 60 ~ 300重量单元的。6、 50 ~ 500重量单元的。&、 10 ~ 500重 量单元的 Mg、 50 ~ 3000重量单元的8
7、 根据权利要求 4或 6所述的保温隔热纤维, 其特征在于: 在所述的纳 米单元中, 所述的微粒子还包括 50 ~ 100重量单元的 K、 100 ~ 500重量单元的 Sn和 50 ~ 100重量单元的 S。
8、 一种保温隔热的纺织品, 其特征在于: 该纺织品至少包括部分上述任 意一项权利要求所述的保温隔热纤维。
9、 一种含有纳米单元的纤维在制备保暖纺织品中的应用, 其特征在于, 所述含有纳米单元的纤维为上述任意一项权利要求所述的保温隔热纤维。
PCT/CN2013/074113 2013-03-05 2013-04-11 一种保温隔热纤维及由该纤维制成的纺织品 WO2014134857A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13877200.9A EP2966198A4 (en) 2013-03-05 2013-04-11 THERMO-INSULATING FIBER AND TEXTILE CONSISTING OF THE SAME
US14/773,340 US20160017517A1 (en) 2013-03-05 2013-04-11 Thermal insulation fiber and textile made of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310069914.9A CN103147143B (zh) 2013-03-05 2013-03-05 一种保温隔热纤维及由该纤维制成的纺织品
CN201310069914.9 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014134857A1 true WO2014134857A1 (zh) 2014-09-12

Family

ID=48545445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074113 WO2014134857A1 (zh) 2013-03-05 2013-04-11 一种保温隔热纤维及由该纤维制成的纺织品

Country Status (4)

Country Link
US (1) US20160017517A1 (zh)
EP (1) EP2966198A4 (zh)
CN (1) CN103147143B (zh)
WO (1) WO2014134857A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104664634A (zh) * 2015-03-03 2015-06-03 北京厚文知识产权顾问有限公司 一种局部发热保温的保健内衣
CN104664635A (zh) * 2015-03-03 2015-06-03 北京厚文知识产权顾问有限公司 一种局部发热保温的保健内衣
TWI698563B (zh) * 2018-12-25 2020-07-11 南亞塑膠工業股份有限公司 一種隔熱的深色涼感纖維及其所製得的紡織品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709511A (zh) * 2009-11-26 2010-05-19 毛盈军 遇光快速升温发热的化学纤维及包含该纤维的纺织品
CN102677204A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677205A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677206A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677203A (zh) * 2012-05-14 2012-09-19 毛盈军 一种升温蓄热的纤维及其制备方法和纺织品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054074A (ko) * 2001-12-24 2003-07-02 (주)아이벡스 광화석 분말을 함유한 다기능성 섬유 및 그 제조방법
CN102912466B (zh) * 2012-05-14 2014-12-17 毛盈军 一种升温蓄热的纤维及其制备方法和纺织品
CN103160943B (zh) * 2013-03-05 2015-05-20 毛盈军 一种保温隔热纤维及由该纤维制成的纺织品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709511A (zh) * 2009-11-26 2010-05-19 毛盈军 遇光快速升温发热的化学纤维及包含该纤维的纺织品
CN102677204A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677205A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677206A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品
CN102677203A (zh) * 2012-05-14 2012-09-19 毛盈军 一种升温蓄热的纤维及其制备方法和纺织品

Also Published As

Publication number Publication date
EP2966198A4 (en) 2016-09-28
CN103147143B (zh) 2014-12-17
EP2966198A1 (en) 2016-01-13
CN103147143A (zh) 2013-06-12
US20160017517A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
WO2014134856A1 (zh) 一种保温隔热纤维及由该纤维制成的纺织品
CN103572588A (zh) 一种纳米材料增强棉织物抗皱整理液及其应用
JP5245013B2 (ja) 降温冷却の化学繊維及び該繊維を含有する織物
WO2011063580A1 (zh) 遇光快速升温发热的化学纤维及包含该纤维的纺织品
WO2014134857A1 (zh) 一种保温隔热纤维及由该纤维制成的纺织品
Xia et al. Hybridizing rational designed hydrophobic PEG-based derivatives into nanoporous F–SiO2 as form-stable phase change materials for melt-spun PA6 phase change fibers with a superior washing durability
CN103451757A (zh) 一种具有抗静电、耐酸碱、隔热阻燃特性的纤维
CN107034536A (zh) 一种带有石墨烯棉纤维的制备方法
CN110424078A (zh) 一种吸光发热混纺纱线
Xue et al. Double-network polyimide/silica aerogel fiber for thermal insulation under extremely hot and humid environment
WO2013170547A1 (zh) 一种升温蓄热的纤维及其制备方法和纺织品
Niu et al. The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature
CN106948170A (zh) 一种纤维制品的后处理方法、得到的改性纤维制品及其用途
Chen et al. Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber
Chen et al. Ke Wang
Alongi et al. Poly (ethylene terephthalate)-carbon nanofiber nano composite for fiber spinning; properties and combustion behavior
TW201346085A (zh) 一種降溫發冷纖維、製備方法及紡織品
WO2013170543A1 (zh) 一种升温蓄热的纤维及其制备方法和纺织品
WO2013170544A1 (zh) 一种升温蓄热的纤维及其制备方法和纺织品
CN107299414B (zh) 高分子量右旋聚乳酸-低分子量左旋聚乳酸共混纤维的制备方法及产物
Bai et al. Multi-network PVA/SA aerogel fiber: Unveiling superior mechanical, thermal insulation, and extreme condition stability
Ji et al. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide
CN102926026A (zh) 一种含聚苯硫醚的复合纤维
Liu et al. Self-healing sodium acetate trihydrate phase change material gel demonstrating solar energy conversion and storage for personal thermal management under static and dynamic modes
TW201346090A (zh) 一種降溫發冷纖維、製備方法及紡織品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013877200

Country of ref document: EP